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Abstract

As memory access times continue to be a bottleneck, dif-
ferential research is required for better understanding of
memory access performance. Studies of cache-conscious
allocation and software prefetch have recently sparked re-
search in the area of software optimizations on memory, as
pointer-based data structures previously have been elusive
to the optimizing techniques available. Research on hard-
ware prefetch mechanisms have in some cases shown im-
provements, but less analytical schemes have tended to de-
grade performance for pointer-based data structures.

This paper combines four hardware schemes, normally
not efficient on pointer-based data structures, and a greedy
software prefetch with cache-conscious allocation to eval-
uate positive effects of increased locality, in a comparative
evaluation, on five level 1 data cache line sizes.

We show that cache-conscious allocation utilizes large
cache lines efficiently and that none of the prefetch strate-
gies evaluated add significantly to the effect already
achieved by the cache-conscious allocation on the hard-
ware evaluated. The passive prefetching mechanism of us-
ing large cache lines with cache-conscious allocation is by
far outstanding.

1 Introduction

As processor speeds are increasing and programs are be-
coming more memory intensive, memory access times are a
bottleneck for performance. This situation is putting pres-
sure on research for better data cache performance and some
interesting efforts have recently been devoted to this area.
Pointer-based data structures are usually randomly allocated
in memory and will generally not achieve good locality, re-
sulting in higher miss-rates. This has raised the need to han-
dle the unpredictability of pointer-based data structures in
an efficient way.

Two previously studied software-based strategies attempt
to provide performance improvements specifically for appli-

cations using pointer-based data structures. The two tech-
niques are software prefetch, [15, 16], and cache-conscious
allocation of data, [6, 5, 7]. Those results showed that
cache-conscious allocation is by far the most efficient op-
timization technique of the two. Software prefetch is, how-
ever, better suited for automatization and it has been effi-
ciently implemented in a compiler to dynamically prefetch
only hot data streams, [8], to limit the cost of the extra
instructions. Cache-conscious allocation with a software
prefetch scheme is evaluated in [2]. It compares the impact
on bandwidth and verifies that latency and bandwidth trade
off and limit the effectiveness of each optimization. It is
concluded that software prefetch does not add significantly
to the performance benefit of cache-conscious allocation.

Studies of hardware-based strategies have lately at-
tempted, in some cases successfully, [11, 14, 19, 18, 23], to
achieve performance improvements for pointer-based data
structures, often referred to in these studies as linked data
structures. These studies concentrate on calculating and
prefetching pointers, [4, 11, 19, 23], pointer dependencies,
[12, 18], and the effects of effectively predicting what to
evict from the cache to accommodate prefetched data, [14],
and they consequently require, more or less extra over-head,
memory and/or instructions. The usefulness of general (e.g.
next-line) hardware prefetch of pointer-based data struc-
tures is not encouraging, [21]. Strategies prefetching with-
out knowledge of the data flow are likely to pollute the cache
when applied to pointer-based data structures. However,
these hardware strategies have the potential to take advan-
tage of the increased locality of cache-consciously allocated
data, [20].

In theory, prefetching and cache-conscious allocation
should complement each other’s weakness. Cache-
conscious allocation should reduce the prefetch overhead of
fetching blocks with partially unwanted data in the cache
lines. Prefetching should reduce the cache misses and miss
latencies between individual nodes of data structures in dif-
ferent cache-consciously allocated blocks. The difficulties



lie in achieving adequate correctness and precision. By
combining the hardware prefetch with cache-conscious al-
location on pointer-based data structures, the effects of both
strategies can be completely exploited, without adding any
instruction overhead of a software strategy.

The cache-conscious allocation and hardware prefetching
strategies have never been merged and evaluated for perfor-
mance and possible synergy effects. The software strategy
is compared with four hardware strategies, normally inef-
ficient on pointer-based data structures, and not requiring
extra analysis, memory or instructions. The optimization
strategies and the abbreviations used in this paper are found
in Table 1. We will present a comparative evaluation of the
strategies found in Table 2, and our conclusions of the gath-
ered results.

Optimization Abbreyv.
No Optimizations noopt

SW Prefetch swpf

CC Allocation w cc-block 256 cc256

HW Prefetch on Miss hwpfpom
HW Prefetch Tagged hwpftagg
HW Prefetch on Miss, one cache block hwpfoneblk
HW Prefetch on Miss, rest of cc-block  hwpfallblk

Table 1. Abbreviations of the optimization strategies

Sections 2 and 3, contain memory related performance
characteristics and background of cache-conscious alloca-
tion and prefetching for pointer-based data structures.

| alone  with cc256
swpf X X
cc256 X -
hwpfpom X X
hwpftagg X X
hwpfoneblk | - X
hwpfallblk | - X

Table 2. All combinations of the cache-conscious alloca-
tion and prefetching used in this study

The experimental framework is presented in section 4.
To perform the experiments we have modeled a MIPS-like
uniprocessor architecture in SimpleScalar, [3], and run four
benchmarks of the Olden benchmark suite, [17]. We have
analysed the performance effects of the techniques on five
different cache line sizes. The performance evaluation of
our results is found in section 5, and section 6 presents some
of the related work in these areas. In section 7 are our con-
clusions and further issues to explore.

Figure 1. How nodes can be cache-consciously allocated
in blocks to improve locality, (e.g. the next list node in a
linked list or the children of a node in a tree)

2 Cache-Conscious Allocation

The technique of cache-conscious allocation is a technique
worth further study as it has exhibited such excellent im-
provements in execution time performance. We have at-
tempted to duplicate the cache-conscious allocation used
by Chilimbi et al., [6]. Cache-conscious allocation can be
adapted to the specific needs of a program by choosing the
cache-conscious block size, or cc-block size, according to
its data structures and to the specific cache line size of a
system.

Cache-conscious allocation of data structures attempts to
co-allocate data in the same cache line, so that cache line
utilization is improved. By allocating data structures refer-
enced after each other on the same cache line, better locality
will be achieved, see Figure 1. This should lead to improved
performance by a reduction of cache misses.

2.1 About ccmalloc

In this evaluation we have used a function called
ccmalloc () for cache-conscious allocation of memory.
The main difference from a regular malloc () is that
ccmalloc () takes as an extra argument, a pointer to some
data structure that is likely to be referenced close (in time)
to the newly allocated structure. ccmalloc () attempts to
allocate the new data in the same cc-block as the data struc-
ture pointed at by the argument pointer, as introduced in [5].
In the sample code in Figure 2 the parents and their children
are attempted to be allocated together.

ccmalloc () invokes calls to the standard malloc ()
in two cases; when allocating a new cc-block or when the
size of the data structure is larger than the cc-block. Other-
wise, if called with a pointer to an already allocated struc-
ture, the new structure is put in empty slot in the cc-block
right after that structure. When no proper area is found, or-
dinary malloc () is called with the cc-block size.



#ifdef CCMALLOC
child = ccmalloc (sizeof (struct node),
parent) ) ;
#else
child = malloc(sizeof (struct node)) ;
#endif

Figure 2. An example of how ccmalloc () is used to
co-allocate a new node close to its parent node

2.2 Cache-Conscious Blocks, cc-blocks

The trade-off of cache-conscious allocation is that it de-
mands cache lines large enough to contain more than one
pointer structure in each, to improve hit rates and execution
time. Thus the choice of the cc-block size is quite impor-
tant. The bigger the blocks the lower the miss-rate if the
allocation policy is successful, otherwise the memory over-
head, i.e. fragmentation, can overwhelm other performance
effects.

Previous studies on cache-conscious allocation used the
same hardware cache line size as the cc-block size, [2, 5].
However, the cc-block size can be set dynamically in soft-
ware, independently of the hardware cache line size. This
means that even though the hardware cache line is smaller
than the used data structures, ccmalloc () can take ad-
vantage of co-allocating data structures, and can be varied
depending on the size of the data structures the programmer
wants to co-allocate. In this study the cc-block size is set to
256 B, while the hardware cache line size is varied from 16
B to 256 B.

3 Prefetch

Prefetching structures before they are referenced will reduce
the cost of a cache miss. Ideally the prefetching should start
early enough so that the structure will be in the cache when
referenced and thereby fully hiding the cache miss latency
from the execution.

Prefetch can be controlled by software and/or hardware.
Software prefetch results in extra instructions, which could
affect performance by adding extra cycles to the execution
time. Hardware prefetch does not lead to an instruction
overhead, but to additional complexity in hardware. In our
experiments the prefetching pertains only to the level 1 data
cache.

3.1 Software Controlled Prefetch

Software prefetch is implemented by including a prefetch
instruction in the instruction set. Prefetch instructions
should be inserted in the program code, well ahead of ref-
erence, according to a prefetch algorithm. Several algo-

rithms have been investigated in earlier studies on their own,
[15, 16].

Pointer-based data structures often contain pointers to
other structures, creating a chain of pointers. These point-
ers are dereferenced to find the prefetching addresses. The
software controlled prefetch in this study is a greedy algo-
rithm duplicated from Mowry et al., [15]. It is manually
inserted in the code and does not require any extra memory
or calculations. When a node is referenced, it prefetches all
children of that node. This reduces cache miss latencies for
the consecutively referenced children, as described in Fig-
ure 3. Without extra pointers or calculation, prefetching can
only be done on the node’s children, not its grandchildren.

Software prefetch is easier to control and optimize. As it
only prefetches lines needed, the risk of polluting the cache
with unused data decreases. The difficulty lies in getting the
distance large enough to finish the prefetch before a refer-
ence. Software prefetch also imposes an instruction over-
head caused by the prefetch instructions, possibly spoiling
performance improvements gained by reduced cache miss
latencies. It is also sensitive to bandwidth, [2], and issue
width, [1].

3.2 Hardware Controlled Prefetch

There are several ways of implementing hardware prefetch
support, [10, 13], and the algorithm choosing the lines to
prefetch, [11, 19, 20, 22]. Depending on the algorithm used,
prefetching can occur when a miss is caused or when a hint
is given by the programmer through an instruction, or can
always occur on certain types of data. The prefetch will
fetch one or more extra lines into the cache.

We have implemented two hardware strategies orig-
inally described by Smith, [20], and later Vanderwiel,
[21]: prefetch-on-miss, and tagged prefetch. The hard-
ware prefetch mechanisms in this study attempt to utilize
spatial locality, and do not analyze data access patterns.
Pointer-based data structures usually do not respond well to
these general strategies alone, due to their random alloca-
tion in memory and the difficulties to control the precision
of the prefetches without extra analysis. We have also im-
plemented two strategies that are designed to prefetch parts
of the cache-consciously allocated blocks. These modified
prefetch-on-miss strategies are implemented for the purpose
of evaluating the other strategies’ prefetch data overhead.

3.2.1 Prefetch-on-Miss

The prefetch-on-miss algorithm simply prefetches the next
sequential line, i+/, when detecting a cache miss of line i.
After handling a miss in the data cache a prefetch of the fol-
lowing line is always initialized. So each miss in the cache
will lead to the fetch of two lines into the cache, if the line
to prefetch is not already in the cache.



preorder (treeNode *t) |
if (t != NULL}{
prefetchit->left);
prefetchi{t->right};
process (L->datal ;
precrder{t->left];
preorder (t->right) ;

O cache miss

O partial latency cache miss

o . cache hit

Figure 3. An example of how prefetch affects cache misses with the greedy algorithm, picture by [15]. The first node
always gives a miss, if latency is two cycles. By prefetching both children the penalty will decrease for the following

references.

The drawback of prefetch-on-miss is that it could lead to
a lot of unused data in the cache, as it prefetches the next
cache line on every miss. The performance of prefetch-on-
miss is decided by the regularity of data references and their
locality.

3.2.2 Tagged Prefetch

In the tagged prefetch strategy, each prefetched line is
tagged with a prefetch tag. Like in the prefetch-on-miss
strategy a cache miss of line i will lead to a prefetch of line
i+1. When a prefetched line i is then referenced for the first
time the tag is removed and line i+/ is prefetched, though
no miss has occurred.

This is an efficient prefetch method to use when mem-
ory is referenced fairly sequentially, and has been shown
in studies without pointer-based data structures, [20, 21],
to provide up to twice the performance improvements
of prefetch-on-miss. However, as with prefetch-on-miss,
prefetches are done indiscriminately on every miss and on
referencing a prefetched line in the level 1 cache, risking
unused data in the cache.

3.2.3 Prefetch-on-Miss, optimized for ccmalloc ()

The hardware prefetch mechanism can be efficiently com-
bined with cache-conscious allocation, by introducing a hint
with the address to the beginning of such a block. We have
implemented a detection mechanism that prefetches only
cache-consciously allocated blocks. This mechanism is im-
plemented with two different strategies, depending on how
many cache lines to prefetch, prefetch-one-cc-on-miss, and
prefetch-all-cc-on-miss.

Prefetch-one-cc-on-miss simply prefetches the next line
after detecting a cache-miss on a cache-consciously al-
located block, like the prefetch-on-miss but only on cc-
blocks. The other, prefetch-all-cc-on-miss, decides dynam-
ically how many lines to prefetch depending on where on
the cc-block the missing cache line is located. This strategy

prefetches all cache lines in the current cc-block from the
address causing the miss and forward.

4 Experimental Framework

This section describes the hardware framework and the
benchmarks on which the strategies were evaluated.

4.1 Hardware Architecture

The tests were conducted on an out-of-order, MIPS-like,
uniprocessor simulator based on the SimpleScalar tool set,
[3], with processor architecture parameters set according to
Table 3. The memory latency is equivalent of 50 ns random
access time, no wait states, for a 266 MHz bus, and a 3 GHz
processor.

Prefetch handling was added to the simulator, introduc-
ing a prefetch instruction for the software prefetch, and
hardware prefetch detection mechanisms for the hardware
prefetch strategies. The benchmarks were compiled with
the SimpleScalar GCC compiler for big-endian using the
flags *-1c -03".

4.2 The Benchmarks

The effects of merging cache-conscious allocation with ei-
ther prefetch strategy were evaluated with applications from
the Olden benchmark suite, [17]. Olden consists of ten ap-
plications with differing data structures and is commonly
used to measure effects of architectural features.

We used four applications in our experiments, health,
mst, perimeter, and treeadd. They were selected
because they use dynamically allocated pointer-based data
structures. Figure 4 shows their un-optimized stall times,
indicating where the different benchmarks have their bottle-
necks.

The busy time in Figure 4 seems to be extraordinarily
low. However, since the processor model is an out-of-order



Architectural Parameter

Value

LI D-Cache Size

16 kB

LI D-Cache Line Size

{16B.32B, 64 B, 128 B, 256 B}

LI I-Cache Size

32 kB

L1 I-Cache Line Size

32B

LI Replacement Policy

Last Recently Used (LRU)

L1 Cache Associativity

2-way set-associative

L2 Unified Cache Size 512kB

L2 Replacement Policy LRU

L2 Cache Associative 2-way set-associative
D-TLB Size 512 kB

I-TLB Size 256 kB

LI D-Cache Latency 2 cycles

L2 D-Cache Latency 12 cycles

Memory Latency 60 cycles(+ 10 cycles/sequential access)
Memory Access Bus Width 8B

Load/Store Queue 8 entries

Instruction Fetch Queue 4 entries

Issue Width

4 instr/cycles

Functional Units

4 int, 4 FP, 2 memory

Multiplier/Divider 1int, 1 FP

Branch Prediction Scheme Bimodal

Branch Prediction Table Size 2048 B

Branch Target Buffer 4-way associative, 512 B
Branch Miss-Prediction Latency 3 cycles

Table 3. The Architectural Model

model, the concept of stall is not well defined. We use the
same definition as has been done in many other previous
studies: when the maximum number of instructions are re-
tired in a clock cycle, that cycle is counted as busy. Oth-
erwise, we say that the cycle is stalled due to the oldest
instruction waiting to be retired. If that is a load- or store
instruction, it is a memory stall, otherwise it is a FU stall. If
there is no instruction waiting to be retired, the stall is said
to be a fetch stall. This means that busy time is the fraction
of all clock cycles when the full issue width can be utilized.

The optimization strategies are likely to have the greatest
effect on the benchmarks where memory stalls are predomi-
nant. At the end of this section is an overview of benchmark
parameters and behavior, see Table 4, chosen according to
the studies that we are re-examining and combining.

health simulates a Columbian health care system. El-
ements are moved between lists during execution, and there
is more calculation between data references compared to the
other benchmarks. Because of poor data structures and al-
gorithms, health is not an exemplary benchmark, pointed
out by Zilles, [24]. As results from health are presented
here, the reader is alerted to read those results with caution.
They are still relevant for our memory allocation evalua-

tions.

mst creates a graph and calculates its minimal span-
ning tree. The mst benchmark originally used a lo-
cality optimization procedure which made the effects of
ccmalloc () non-existent. The data structures were al-
located in 32 kB blocks, not fitting in the 256 B cc-blocks
used in ccmalloc (). mst was thus modified to use an
ordinary allocation procedure instead, to enable measuring
the effects of ccmalloc ().

perimeter calculates the perimeter of a region of an
image. The data structures are allocated in an order sim-
ilar to access order, resulting in some kind of locality op-
timization. There are few calculations between references,
complicating prefetch.

treeadd calculates a recursive sum of values in a bal-
anced binary-tree. It is similar to perimeter, but has
slightly more calculations between data references.

5 Performance Evaluation

In this section we present the performance evaluation. We
begin with the impact on execution time. Then we present
effects on cache performance and prefetch issues. Finally



Primary

Benchmark Input Parameters Data
Structure
Health levels=5, max.time=500 linked lists
probability=1
Mst nodes=512 array of linked lists
Perimeter levels=12 quad tree
Treeadd nodes=20 balanced binary tree

Table 4. The benchmarks from Olden Benchmark Suite used

noopt, 32B Cache Line

100%
90%

80%
70%
60%
50%
40%
30%

E Memory Stall
EFU stall

H Busy

O Instr fetch stall

20%
10%
0%

Figure 4. Stall times without cc-allocation or prefetching
for the applications, on a 32 byte cache line

we discuss the memory and instruction overhead.

5.1 Execution Time

The execution times in Figure 5 show that cache-conscious
allocation outperforms both hardware and software prefetch
on their own, while software prefetch outperforms hardware
prefetch without cache-conscious allocation of data. The
data structures random location in memory makes sequen-
tial hardware prefetch volatile as there is no guarantee for
the next sequential line ever being used, and as expected
when there is no inherent locality in the data, the hardware
strategies decrease performance for some simulations.

5.1.1 Effects of Cache Line Size

The combinations of prefetch strategies and cache-
conscious allocation show that larger cache line sizes reduce
the impact of prefetching. Large cache lines with cache-
consciously allocated data decrease cache misses, and thus
also the need and impact of prefetching. The improvements
of the combined strategies are more noticeable on larger

cache lines. By combining hardware prefetch with cache-
conscious allocation, pollution, a common problem of large
cache lines, decreases, due to improved locality.

5.1.2 Effects on Memory Stall

To evaluate the efficiency of our memory-targeted optimiza-
tions, stall times can show if memory stall is affected. These
are presented for the 32 B line size, for the combinations of
cache-conscious allocation, with software prefetch and with
prefetch-on-miss, in Figure 6. The memory stalls for noopt
are presented in section 5.2.

Stall times are reduced by 12% on average for the com-
bined strategies. The software combination caused the
greatest stall reduction for health and mst, and the hard-
ware strategy is better for perimeter and treeadd.

5.1.3 Software vs. Hardware Prefetch, in combination with
Cache-Conscious Allocation

In general the combinations of hardware prefetch with
cache-conscious allocation outperform the combinations
with software prefetch. The results show that the ability
to exploit locality well is more important to improved per-
formance than decreased miss latencies.

Software prefetch combined with cache-conscious al-
location improves the results of software prefetch alone.
However, it is less successful than cache-conscious alloca-
tion alone. The improved cache line utilization, decreased
miss latencies, and successful prefetches, do not overcome
the overhead caused by the prefetch instructions. The issue
width of the hardware in this study, and data dependencies
can limit the ability to schedule the prefetch instruction for
early execution.

The results of hardware combinations with prefetch-on-
miss and tagged hardware prefetch do not differ very much.
The two cc-block aware strategies, prefetch-one-cc-on-miss
and prefetch-all-cc-on-miss, do not outperform prefetch-on-
miss, indicating that prefetch-on-miss exploits the locality
of the cache-consciously allocated data well, without pollut-
ing the cache. The prefetch-all-cc-on-miss strategy behaves
slightly worse than prefetch-one-cc-on-miss, indicating that
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Figure 5. Normalized execution times for the applications, and all the various allocation and prefetch strategies for

different cache block sizes.



cc256-hwpfpom, 32B Cache Line
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Figure 6. Stall times for cc-allocation combined with software prefetch (a) and hardware prefetch-on-miss (b)

prefetching all the data from the cc-block will cause conflict
misses, throwing out data still in use.

5.2 Cache Performance

The miss-rates are improved by most optimization strate-
gies, charts showing their improvements are found in Fig-
ure 7. The increased spatial locality with ccmalloc ()
reduces cache misses and minimizes cache pollution. Soft-
ware prefetch generally shows a reduction in miss-rates.
The combinations achieve the lowest rates, and the com-
bination with software prefetch has the lowest miss-rates on
average.

Figure 7 shows that large cache lines with cache-
consciously allocated data are much more effective on
cache misses than the implemented prefetchers. Hardware
prefetch tends to prefetch too much unused data, and soft-
ware prefetch tries to prefetch too much data that is already
in the cache. Many of the prefetch instructions are thus un-
necessary.

The fraction of loads that could be successfully
prefetched, and partially hiding the latency, and un-
prefetched loads are found in Figure 8. It shows that the
software prefetch achieves higher precision of prefetched
data, resulting in more successfully prefetched data in the
single strategy case.

Prefetch-on-miss and tagged prefetch, without cache-
conscious allocation, do not result in a lot of successful
prefetches at all, as shown in Figure 8. Prefetch-on-miss
and tagged hardware prefetch increase miss-rates for small
cache lines, but show a radical improvement for the largest
cache line size. These results only imply that large cache
lines are able sometimes to alleviate the bluntness of hard-
ware prefetch even without locality.

When prefetching uses cache-conscious allocation there
is a general increase of successful prefetches. The hardware
strategies are more sensitive to cache line size than the soft-
ware prefetch. Misses and tags trig the hardware prefetch,
resulting in fewer attempts to prefetch data already in the

cache. The hardware prefetch will, however, prefetch more
unused data than software prefetch, as it lacks precision.

5.2.1 Software Prefetch combined with Cache-Conscious Al-
location

Software prefetch combined with cache-conscious alloca-
tion results in an increased amount of used cache lines
among the prefetched lines, shown in Figure 8. This is
caused by the increased spatial locality allowing the acci-
dental prefetch of a node that will be used that would other-
wise cause a miss. However, it also results in an increased
amount of prefetch instructions that tries to prefetch data
already in the cache.

5.2.2 Hardware Prefetch combined with Cache-Conscious Al-
location

The hardware strategies show greater improvements with
the cache-conscious allocation than the combinations with
software prefetch, Figure 7. Prefetch-on-miss and tagged
prefetch do not differ very much in cache behavior.

The hardware strategies modified for cache-conscious al-
location do not show any great results of prefetch though
they provide more successful prefetch rates than prefetch-
on-miss and tagged without cache-conscious allocation,
shown in Figure 8. Further, the amount of unused
but prefetched lines are larger than the amount of used
prefetched lines when implementing prefetch in hardware
without any detection due to problems with precision.

Although the amount of unused prefetched lines de-
creases when combining hardware prefetch with cache-
conscious allocation, the amount is still high compared to
software prefetch. The lack of precision renders hardware
prefetch inefficient as the amount of unused data is high.
The number of used prefetched lines decreases with larger
cache lines. This is due to increased spatial locality, and
to the reduced need of prefetch caused by the larger cache
lines.
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Figure 7. Level-1 data cache miss-rates for the applications and the various allocation and prefetch strategies

5.3 Memory and Instruction Overhead

Table 5 shows the allocated heap memory for all the bench-
marks. For the prefetch strategies no extra memory is
needed. ccmalloc (), however, uses more memory than
the ordinarymalloc (). This does not necessarily improve
overall performance. This implies that the cc-block size has
to be chosen carefully. Smaller cc-blocks require less mem-
ory, but when too small for the data structures allocation
defaults tomalloc ().

Software prefetch generates extra instructions, and the
relative instruction increase is found in Table 6, for all the
benchmarks. The positive effects of software prefetch are
reduced and sometimes revoked by this overhead.

Health Mst
20% 3.0%

Treeadd
3.4%

Perimeter
0.57%

Table 6. Software Prefetch Instruction Overhead, Rela-
tive Increase

6 Related Work

The research to improve performance for applications using
pointer-based data structures has been restricted to cache-
conscious layout manipulation and prefetch. To our knowl-

edge this is the first evaluation of cache-conscious allocation
combined and compared with both hardware and software
prefetch.

In the field of prefetching, Mowry et al., [15, 16], have in-
vestigated three strategies for software prefetch of pointer-
based data structures, using the Olden benchmarks and a
simulated MIPS-like architecture. One of these, the greedy
prefetch, is implemented in this study. Mowry et al. inserted
the prefetch through a compiler, and we added the prefetch
instructions manually. We managed to duplicate their re-
sults for health, treeadd and perimeter. For mst,
however, their different allocation makes the effect of their
software prefetch less prominent than ours.

Chilimbi et al., [6, 5, 7], have done extensive research on
cache-conscious allocation, of which we have achieved sim-
ilar results to Chilimbi’s new block strategy , [6], which we
have evaluated in the different combinations and on several
cache line sizes. Chilimbi et al. also evaluated Mowry’s
greedy prefetch against ccmalloc () in [6]. The hard-
ware prefetch in this study is not comparable to ours as it
fetches loads and stores in the reorder buffer of 64 places.
In a more recent study, Chilimbi et al. conclude that more
profiling information seem necessary to prefetch with bet-
ter results, [8], and that automatization of ccmalloc () is
inefficient. Runtime systems with dynamic memory man-
agement are better suited for automating cache-conscious
schemes, [9].
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Figure 8. Prefetch Efficiency. The graphs show the fraction of loads that could be successfully prefetched, and the

partially hiding, and the latency and unprefetched loads.

Allocation Strategy Health  Mst Perimeter Treeadd
malloc 2756 kB 3596 kB 3080 kB 16488 kB
ccmalloc (cc-block 256B) 9336 kB 3876 kB 6188 kB 33980 kB

Table 5. Allocated Heap Memory for different allocation strategies

Badawy et al., [2], have evaluated the effects of com-
bining software prefetch with cache-conscious allocation
in benchmarks from the Olden benchmark suite, similar to
our evaluation. Their software prefetch is, however, differ-
ent from ours, adding jump-pointers in the data structures.
They also have different hardware framework. Badawy
et al. have evaluated the impact of different bandwidths,
whereas we have evaluated the impact of different cache
line sizes, in a uniprocessor system. According to Badawy
et al., cache-conscious allocation only outperforms soft-
ware prefetch when bandwidth is limited; with sufficient
bandwidth software prefetch is the most successful strategy.
However, their research also shows that the combination of
cache-conscious allocation and software prefetch might not
lead to further performance improvements, instead it coun-
teracts changes in bandwidth or latency. Their results are
similar to ours, although we have implemented a different
software prefetch that does not require any extra memory.

Several researchers have studied hardware prefetch,
or hybrid schemes, and successfully adapted hardware
prefetch to pointer-based data structures with irregular ac-
cess behavior. However, they generally require more hard-
ware than those evaluated in this study. Hardware support

has been investigated by the use of lock-up free prefetching,
[13], and prefetch buffers, [10], and general prefetching in
hardware is described in [20, 21] together with other cache
memory aspects. Karlsson et al., [11], propose a technique
for prefetching pointer-based data structures, either in soft-
ware combined with hardware or in software alone, by im-
plementing prefetch arrays, making it possible to prefetch
both short data structures and longer data structures without
knowing the traversal path. Roth et al. have investigated
more adaptable strategies for hybrid prefetch schemes, us-
ing dependence graphs, [18], and jump pointer prefetching,
[19]. In [19], Roth et al. evaluate a framework for jump-
pointers implemented in turn in software, hardware, and in
a hybrid scheme, in which the hybrid scheme outperforms
each scheme on its own.

Annavaram et al., [1], have performed research of both
the instruction overhead and lack of spatial locality, and how
they are affected by increased issue widths. Their research
shows that out-of-order processors with a wide issue width
can hide memory latency, making pointer prefetch less use-
ful, and that as the issue width increases, the lack of spatial
locality tends to cause performance degradation.



7 Conclusions

Cache-conscious allocation seems to be an efficient way to
overcome the drawbacks of large cache lines. This is due
to the passive hardware prefetch of cache-conscious alloca-
tion. The combinations of all prefetch strategies and cache-
conscious allocation show that the larger the cache line size
the less impact of prefetch. As the cache line gets larger,
the positive effects of prefetch are less prominent compared
to the use of cache-conscious allocation alone. With large
cache lines and cache-consciously allocated data, the cache
misses decrease, and thereby both the need and impact of
prefetching decrease.

Combining cache-conscious allocation with hardware
prefetch can be unnecessary, as it seems that the effect
of cache-conscious allocation alone is not outdone by any
combination. However, cache-conscious allocation can be
used to overcome negative impact of next-line hardware
prefetch on applications using pointer-based data structures.
Our study further shows that hardware prefetch is better at
exploiting cache-conscious data than software prefetch, in
the hardware used. With a larger issue width these results
may change.

The successful hardware prefetch strategies generally re-
quire extra memory and analysis, which can be compared to
the memory required by cache-conscious allocation. This
overhead is also partly true of our prefetch schemes, but not
for those, that, in combination with cache-conscious allo-
cation, give the best results. One conclusion of the gath-
ered results from previous studies and ours is that when a
compiler can use profiling information to optimize memory
allocation in a cache-conscious fashion, the effort required
for the hardware prefetch engine is limited. However, when
profiling is too expensive performance will likely benefit
from elaborate prefetch support.

Further studies in this area can include comparisons with
more elaborate hardware and hybrid prefetching schemes to
exploit cache-conscious allocation, and varying issue width
as well as bandwidth in the hardware. Even if the possi-
bilities of automating ccmalloc () are limited, as it re-
quires extensive analysis of data flow, the use in environ-
ments where more cache-consciousness is available with
garbage collection should not be overlooked. It would also
be interesting to study how well hardware support can be
applied to object-oriented programs and be used by virtual
machines wanting to optimize cache-consciousness.

8 Acknowledgements

The authors would like to thank Todd Mowry at Carnegie-
Mellon University, for providing the source code for the
Olden benchmarks that we have run, and Youtao Zang
of Arizona University, for providing the base code for

ccmalloc (). The authors are also grateful to the anony-
mous reviewers for their helpful comments.

9 References

[1] Murali Annavaram, Gary S. Tyson, and Edward S.
Davidson. Instruction overhead and data locality ef-
fects in superscalar processors. In IEEE International
Symposium on Performance Analysis of Systems and

Software (ISPASS), pages 95-100, April 2000.

[2] Abdel-Hameed A. Badawy, Aneesh Aggarwal, Don-
ald Yeung, and Chau-Wen Tseng. Evaluating the
impact of memory system performance on software
prefetching and locality optimizations. In Proceedings
of the 15th ACM International Conference on Super-
computing (ICS-01), pages 486—500, June 2001.

[3] Doug Burger and Todd M. Austin. The SimpleScalar
Tool Set, Version 2.0. info@simplescalar.com.

[4] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and
Gary Valentin. Fractal prefetching b-trees: optimizing
both cache and disk performance. In Proceedings of
2002 ACM SIGMOD International Conference on the
Management of Data, pages 157-168, 2002.

[5] Trishul M Chilimbi, Bob Davidsson, and James R.
Larus. Cache-conscious structure definition. In Pro-
ceedings of Conference on Programming Languages
Design and Implementation 99 (PLDI). ACM, SIG-
PLAN, May 1999.

[6] Trishul M. Chilimbi, Mark D. Hill, and James R.
Larus. Cache-conscious structure layout. In Proceed-
ings of SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 1-12, 1999.

[7] Trishul M. Chilimbi, Mark D. Hill, and James R.
Larus. Making pointer-based data structures cache
conscious. IEEE Computer, 33:12:67-74, December
2000.

[8] Trishul M. Chilimbi and Martin Hirzel. Dynamic hot
data stream prefetching for general-purpose programs.
In Proceedings of Conference on Programming Lan-
guages Design and Implementation *02 (PLDI). ACM,
SIGPLAN, May 2002.

[9] Trishul M. Chilimbi and James R. Larus. Using
generational garbage collection to implement cache-
conscious data placement. In Proceedings of the

first international symposium on Memory manage-
ment, pages 37-48. ACM Press, 1998.



[10]

[11]

[12]

[14]

[15]

[16]

[17]
[18]

[20]

Norman P. Jouppi Jouppi. Improving direct-mapped
cache performance by the addition of a small fully-
associative cache and prefetch buffers. In Proceedings
of the 17th Annual International Symposium on Com-
puter Architecture, pages 364-373. IEEE, June 1990.

Magnus Karlsson, Fredrik Dahlgren, and Per Sten-
strm. A prefetching technique for irregular accesses
to linked data structures. In Sixth International Sym-
posium on High-Performance Computer Architecture

(HPCA-6), pages 206-217, January 2000.

Nicholas Kohout, Seungryul Choi, Dongkeun Kim,
and Donald Yeung. Multi-chain prefetching: Effec-
tive exploitation of inter-chain memory parallelism for
pointer-chasing codes. In Proceedings of the 10th In-
ternational Conference on Parallel Architectures and
Compilation Techniques, Barcelona, Spain. September
2001.

David Kroft. Lockup-free instruction fetch/prefetch
cache organization. In Proceedings of the Eighth Inter-
national Symposium on Computer Architecture, pages
81-87. ACM, SIGARCH, May 1981.

An-Chow Lai, Cem Fide, and Babak Falsafi. Dead-
block prediction and dead-block correlating prefetch-
ers. In Proceedings of the 28th Annual International

Symposium on Computer Architecture, pages 144—
154,2001.

Chi-Keung Luk and Todd C. Mowry. Automatic
compiler-inserted prefetching for pointer-based appli-
cations. IEEE Transactions on Computers, 48:2:134—
141, 1999.

Chi-Keung Luk and Todd C. Mowry. Compiler-based
prefetching for recursive data structures. In Pro-
ceedings of 7th Conference on Architectural Support
for Programming Languages and Operating Systems,

pages 222-233, October 1996.
Olden benchmark suite v. 1.01, June 1996.

Amir Roth, Andreas Moshovos, and Gurindar S. Sohi.
Dependence based prefetching for linked data struc-
tures. In Proceedings of the Eighth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ACM Press),
pages 115-126, 1998.

Amir Roth and Gurindar S. Sohi. Effective jump-
pointer prefetching for linked data structures. In Pro-
ceedings of the 26th Annual International Symposium
on Computer Architecture, pages 111-121, 1999.

Alan J. Smith. Cache memories. ACM Computing
Surveys, 14:3:473-530, September 1982.

(21]

(22]

(23]

[24]

Steven P. VanderWiel and David Lilja. Data prefetch
mechanisms. ACM Computing Surveys, 32:2:174—
199, June 2000.

Chenggiang Zhang and Sally A. McKee. Hardware-
only stream prefetching and dynamic access order-
ing. In International Conference on Supercomputing,
pages 167-175, 2000.

L. Zhang, S. McKee, W. Hsieh, and J. Carter. Pointer-
based prefetching within the impulse adaptable mem-
ory controller: Initial results. In Proceedings of the
Workshop on Solving the Memory Wall Problem, June
2000.

Craig B. Zilles. Benchmark health considered harm-
ful. Computer Architecture News, 29:3, 2001.



