Improving Memory Performance of Sorting
Algorithms

Li Xiao, Xiaodong Zhang, Stefan A. Kubricht
Department of Computer Science

College of William and Mary

Williamsburg, VA 23187-8795

Memory hierarchy considerations during sorting algorithm design and implementation play an
important role in significantly improving execution performance. Existing algorithms mainly
attempt to reduce capacity misses on direct-mapped caches. To reduce other types of cache misses
that occur in the more common set-associative caches and the TLB, we restructure the mergesort
and quicksort algorithms further by integrating tiling, padding, and buffering techniques and by
repartitioning the data set. Our study shows that substantial performance improvements can be
obtained using our new methods.

General Terms: Caches, Memory Performance, Mergesort, Quicksort, TLB

1. INTRODUCTION

Sorting operations are fundamental and are often repeatedly used in many large-
scale scientific and commercial applications. Because of this prominence, any effort
to maximize the efficiency in these programs requires ensuring that the sorting
algorithms used have been correctly selected and are precisely implemented. Re-
structuring standard efficient sorting algorithms (such as mergesort and quicksort)
to exploit cache locality has proven to be an effective approach for improving perfor-
mance on high-end systems. Since sorting algorithms are highly sensitive to both
the memory hierarchy of the computer architecture and the types of data sets,
care must be taken when choosing an algorithm to fully optimize the performance
for a specific sorting operation. Existing restructured algorithms (e.g., [4]) mainly
attempt to reduce capacity misses on direct-mapped caches. In this paper, we
present, several restructured mergesort and quicksort algorithms that exhibit sub-
stantial performance improvements by further increasing the locality of the memory
references to reduce other types of cache misses, such as conflict misses and TLB

This work is supported in part by the National Science Foundation under grants CCR-9400719,
CCR-9812187, and EIA-9977030, by the Air Force Office of Scientific Research under grant
AFOSR-95-1-0215, and by Sun Microsystems under grant EDUE-NAFO0O-980405.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

misses. These new algorithms utilize both tiling and padding techniques, data set
repartitioning, and knowledge of the processor hardware (such as cache and TLB
associativity) to fully optimize the performance. Thus, in order to maximize ef-
ficiency, it is necessary to implement the cache-effective algorithms carefully and
precisely at the algorithm design and programming levels.

Our efforts focus chiefly on restructuring mergesort and quicksort algorithms to
more effectively utilize the cache. Our results and contributions are summarized
below:

—By applying padding techniques we are able to reduce significantly cache conflict
misses and TLB misses, which are not fully addressed in the algorithm designs of
tiled mergesort and multimergesort [4]. For our two mergesort alternatives, the
optimizations improve both cache and overall performance. Our experiments on
different high-end workstations show that our algorithms achieve up to a 70%
reduction in execution time compared with the base mergesort, and up to a 54%
reduction versus the fastest of the tiled and multimergesort algorithms.

—By partitioning the data set based on data ranges, we are able to improve the
cache locality of quicksort on unbalanced data sets. Our two quicksort alterna-
tives significantly outperform the memory-tuned quicksort [4] and flashsort [6]
on unbalanced data sets.

—Cache-effective sorting algorithm design depends on the computer architecture as
well as the type of data set. The algorithm design should include parameters such
as the size and associativity of both the data cache and TLB, the ratio between
the data set size and the cache size, and possibly other factors. Using our mea-
surements and simulations, we show the importance of considering these factors
by demonstrating how machines interact differently with the various algorithms.

—A major issue that must be considered when designing a sorting algorithm for
practical use concerns the trade-offs resulting from increasing the instruction
count in order to reduce cache misses and other high-latency memory operations.
To address this, we give an execution timing model to quantitatively predict the
performance of an algorithm. We also give analytical predictions of the number of
cache misses for the sorting algorithms before and after the cache optimizations.
We show that cycles lost from increasing the instruction count to maximize cache
reuse can be a negligible price to pay when compared to the many cycles that
would

2. ARCHITECTURAL AND ALGORITHMIC PARAMETERS AND EVALUATION METHOD-
OLOGY

In this section, we first list and describe the architectural-dependent parameters we
used in designing the algorithms. We then introduce the performance evaluation
methodology and present the data sets used in the experiments.

2.1 Architectural and algorithmic parameters

A data set consists of a number of elements. One element may be a 4-byte integer,
an 8-byte integer, a 4-byte floating point number, or an 8-byte double floating point
number. We use the same generic unit, an element, to specify the cache capacity.
Because the size of caches and cache lines are always a multiple of an element in

Improving Memory Performance of Sorting Algorithms . 3

practice, a general unit is practically meaningful to both architects and application
programmers. The algorithmic and architectural parameters we will use to describe
cache-effective sorting algorithms are as follows: N: the size of the data set, C: the
data cache size, L: the size of a cache line, K: the cache associativity, Ts: the
number of entries in a TLB set, Krrp: the TLB associativity, and P;,: the size of
a memory page.

2.2 Performance evaluation methodology

Directly monitoring and measuring a program’s cache behavior is an important
task for providing insights and guidance for optimizing the memory performance
of an algorithm. Since current systems are not able to directly report memory
related performance statistics (such as the number of cache hits or misses) during
program execution, users must use tools to gather these statistics. ATOM [10] is a
system utility for DEC Alpha machines for instrumenting and analyzing program
executables. The ATOM analysis tool accepts the results of an instrumented pro-
gram and presents the cache performance statistics. Using the ATOM utility, users
can directly monitor and measure the cache performance on DEC alpha machines.
The analysis of sorting algorithms in [4] uses the ATOM tool. Due to its platform
dependence, memory performance studies using ATOM are not feasible on other
types of machines.

The need for studying a broad range of platforms necessitates an alternative
approach. We conducted our performance evaluation in two steps: (1) completing
algorithm analysis and measuring performance on different high-end workstations,
and (2) utilizing execution-driven simulations to gather insight into the memory
performance of the algorithms on these machines. Employing the first step, we are
able to measure the algorithm performance on a wide variety of machines. From
the second step we are able to gather a deeper understanding of how the cache
behavior affects the execution performance.

For our simulation environment, we used the SimpleScalar tool set [1], a family
of simulators for studying interactions between application programs and computer
architectures. The simulation tools take an application program’s binaries compiled
for the SimpleScalar Instruction Set Architecture (a close derivative of the MIPS
instruction set) and generate statistics during the execution of the program on the
simulated architecture. The statistics generated include many detailed execution
traces which are not available from measurements on a computer, such as the
number of cache misses in the L1, L2 and TLB caches.

We ran the compared sorting algorithms on different simulated memory archi-
tectures with memory hierarchies similar to those on typical high-end workstations
to observe the following performance factors:

—L1 or L2 cache misses per element: to compare the number of data cache misses.
—TLB misses per element: to compare the number of TLB misses.
—Instruction count per element: to compare the algorithmic complexities.

—Reduction rate of total execution cycles: to compare the percentage of cycles
saved in comparison to the base mergesort or the memory-tuned quicksort.

4 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

2.3 Data sets

The algorithms are compared and evaluated experimentally and analytically. We
tested the sorting algorithms on a variety of data sets consisting of 8-byte integer
elements. The 9 data sets we used are enumerated below. (Probability Density
Functions and Inverse Distribution Functions of some of the number generators
used can be found in [7].)

(1) Random: the data set is obtained by calling the random number generator
random() from the C library, which returns integers in the range of 0 to 23! —1.

(2) Equilikely: function Equilikely(a,b) returns integers in the range a to b.

(3) Bernoulli: function Bernoulli(p) returns integers 0 or 1.

(4) Geometric: function Geometric(p) returns integers 0, 1, 2, ...

(5) Pascal: function Pascal(N,p) returns integers 0, 1, 2, ...

(6) Binomial: function Binomial(N,p) returns integers 0, 1, 2, ..., N.

(7) Poisson: function Poisson(u) returns integers 0, 1, 2, ...

(8) Zero: the data set consists entirely of Os.

(9) Unbalanced: function returns integers in the range of 0 to 215 — 1 for i = 0 to
%N — 1, by calling rand () from the C library, where i is the data element
index and N is data set size; and returns integers M AX /100 + ¢ for 7 = %N
to N, where MAX =231 — 1.

3. CACHE-EFFECTIVE MERGESORT ALGORITHMS

In this section, we first briefly evaluate the two existing mergesort algorithms on
their cache locality, as well as their merits and limits. We present two new mergesort
alternatives to address these limits. The experimental performance evaluation done
through measurements will be presented in Section 5.

3.1 Tiled mergesort and multimergesort

LaMarca and Ladner [4] present two mergesort algorithms to effectively utilize the
data cache. The first one is called tiled mergesort. The basic idea is to partition
the data set into subarrays which are sorted individually. This is mainly done for
two reasons: to avoid capacity misses and to fully use the data loaded in the cache
before it must be replaced. The algorithm is divided into two phases. In the first
phase, subarrays of length C'/2 (half the cache size) are sorted by the base mergesort
algorithm to exploit temporal locality. The algorithm returns to the base mergesort
without considering cache locality in the second phase to complete the sorting of
the entire data set.

The second mergesort, called multimergesort, addresses the limits of the tiled
mergesort. In this algorithm, the first phase is the same as the first phase of the
tiled mergesort. In the second phase, a multiway merge method is used to merge
all the sorted subarrays together in a single pass. A priority queue is used to hold
the heads of the lists (the sorted subarrays from the first phase) to be merged.
This algorithm exploits cache locality well when the number of subarrays in the
second phase is less than C/2 (half the cache size). However, the instruction count
is significantly increased in this algorithm.

Our analysis of the two mergesort algorithms shows two areas for improvement.
First, both algorithms significantly reduce capacity misses, but do not sufficiently

Improving Memory Performance of Sorting Algorithms . 5

reduce conflict misses. In mergesort, the basic idea is to merge two sorted subar-
rays to a destination array. In a cache with low associativity, mapping conflicts
occur frequently among the elements in the three subarrays. Also, reducing TLB
misses is not considered in the algorithm designs. Even when the data set is only
moderately large, TLB misses may severely degrade execution performance, com-
pounding on the effect of normal data cache misses. Our experiments show that
the performance improvement of the multimerge algorithm on several machines is
modest—although it decreases the number of data cache misses, the heap structure
significantly increases the number of TLB misses.

3.2 New mergesort alternatives

We present two new restructured mergesort alternatives for reducing conflict misses
and TLB misses with a minimized instruction count increase: tiled mergesort with
padding and multimergesort with TLB padding.

3.2.1 Tiled mergesort with padding. Padding is a technique that modifies the data
layout of a program so that conflict misses are reduced or eliminated. The data
layout modification can be done at run-time by system software [2; 12] or at compile-
time by compiler optimization [8]. However, padding done at the algorithm design
level using a full understanding of the data structures is expected to outperform
optimizations using the two methods above [13].

In the second phase of the tiled mergesort, pairs of sorted subarrays are sorted
and merged into a destination array. One element from each of the two subarrays
is selected at a time for a sorting comparison in sequence. These three data ele-
ments in the two different subarrays and the destination array can potentially be in
conflicting cache blocks because they may be mapped to the same block in a direct-
mapped cache and in a 2-way associative cache. This phenomenon occurs most
often when the source array (containing the two subarrays) and the destination
array are allocated contiguously in memory.

On a direct-mapped cache, the total number of conflict misses for the tiled merge-
sort in the worst case is approximately

1 2N

(14 55N log, 1, M)

where log, % is the number of passes in the second phase of the sorting and 1+ %
represents 1 conflict miss per comparison and % conflict misses for every time an
element is placed into the destination array following a comparison, respectively.

In order to change the base addresses of these potentially conflicting cache blocks,
we insert L elements (or a spacing the size of a cache line) to separate every section
of C elements in the data set in the second phase of the tiled mergesort. These
padding elements can significantly reduce the cache conflicts in the second phase of
the mergesort. The memory used by the padding elements is trivial when compared
to the size of the data set. The increase in the instruction count (resulting from
having to move each element in a subarray to its new position for the padding) is
also minor. We call this method as tiled mergesort with padding.

On a direct-mapped cache, the total number of conflict misses for the tiled merge-

6 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

Before padding After Padding
0 1 2 3 |4 5 6 7 0 1 2 3 4 5 6 7 8
two sorted
2 |3 | 4|7 1 3| 6|8 abarey 2 3| 4|7 L |1 3 6 | 8
| Lonm LT
8eonflict \ N e \/’\ff// 4oonflict
misses . AA MIsses
APV)
cache 0 1 2 3
destination
1 2 3 3 416 7 8 |aray 1 2 3|3 L 4 6 7 8
X0 Xl x2 3 x4 x5 X6 X7 X2 X3 x4 x5 x6 x1 x8 X9 x10

Fig. 1. Data layout of subarrays is modified by padding to reduce the conflict misses.

sort with padding is at most

3 2N
ZNl—log2 ?]a (2)

where log, % is the number of passes in the second phase of the sorting and %
represents the number of conflict misses per element. After the padding is added,
the one conflict miss per comparison is reduced to %, and the % conflict misses
from the placement in (1) are eliminated. Comparing the two approximations in
(1) and (2), we see that tiled mergesort with padding reduces the conflict misses
of tiled mergesort by about 25%. (Our experimental results on the Sun Ultra 5, a
workstation with a direct-mapped cache, show that execution times of tiled merge-
sort were reduced 23% to 68% by tiled mergesort with padding. These execution
time reductions mainly come from the abatement of conflict misses.)

Figure 1 shows an example of how the data layout of two subarrays in the second
phase of tiled mergesort is modified by padding to reduce conflict misses. In this
example, a direct-mapped cache holds 4 elements. In the figure, identical lines
represent a pair comparison and the corresponding action to store the selected
element in the destination array. The letter “m” in the figure represents a cache
miss. Without padding, there are 8 conflict misses when merging the two sorted
subarrays into the destination array; there are only 4 after padding is added.

Figure 2 shows the L1 misses (see the left figure) and the L2 misses (see the right
figure) of the base mergesort, tiled mergesort, and tiled mergesort with padding on a
simulated machine with the cache architecture of a Sun Ultra 5 using SimpleScalar.
On this machine, the L1 cache is direct-mapped and contains 16 KBytes, and the
L2 cache is 2-way associative holding 256 KBytes. The experiments show that the
padding reduces the L1 cache misses by about 23% compared with the base merge-

Misses per element

20

Improving Memory Performance of Sorting Algorithms . 7

L1 Misses Per Element

T T T
base mergesort
tiled mergesort
tiled mergesort with padding

L2 Misses Per Element

T T T T T T T

base mergesort
tiled mergesort
tiled mergesort with padding

Misses per element

4K 16K 64K 256K
Data set size (in elements)

M 4M 1K 4K

16K
Data set size (in elements)

64K

Fig. 2. Simulation comparisons of the L1 cache misses (left figure) and L2 misses (right figure)
of the mergesort algorithms on the Random data set on the simulated Sun Ultra 5. The L1 cache
miss curves (left figure) of the base mergesort and tiled-mergesort are overlapped.

sort and tiled mergesort. These misses are conflict misses that cannot be reduced
through tiling. The L2 cache miss reduction by tiled mergesort with padding is
almost the same as that by tiled mergesort, which shows that the padding is not
very effective in reducing L2 conflict misses on this machine. This is because the
2-way associativity in the L2 cache significantly reduces the percentage of conflict
misses, in comparison to the direct-mapped L1 cache.

Capacity misses in the second phase of the tiled mergesort are unavoidable with-
out a complex data structure, because the size of the working set (two subarrays
and a destination array) is normally larger than the cache size. As we have shown,
conflict misses can be reduced by padding in this phase. However, the padding may
not completely eliminate all conflict misses due to the randomness of the order in
the data sets. Nevertheless, our experimental results presented in Section 5 and
the appendix using the 9 different data sets consistently show the effectiveness of
the tiled mergesort with padding on the Sun Ultra 5.

3.2.2 Multimergesort with TLB padding. In the second phase of the multimerge-
sort algorithm, the multiple subarrays are completely sorted in a single pass. Mul-
tiple subarrays are used only once to complete the sorting of the entire data set to
effectively use the cache. This single pass makes use of a heap structure to hold the
head elements of the multiple subarrays. (Because of this structure, we will often
refer to these subarrays as lists.) However, since the heads come from all the lists
being multimerged, the working set is much larger than that of the base mergesort
(where only three subarrays are involved at a time). This large working set causes
TLB misses which degrade performance. (We will explain the TLB structure in
the following paragraph.) Our experiments indicate that multimergesort does sig-
nificantly decrease the number of data cache misses; however, it also increases the
TLB misses, which offsets the performance gain. Although a rise in the instruction

4M

8 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

Before Padlding After Padding
] L] 2] |
Daaaray LB Dataaray LB

Fig. 3. Padding for TLB: the data layout is modified by inserting a page space at multiple
locations, where K7pp = 1, and Ts = 8.

count leads to additional CPU cycles in multimergesort, this has a minimal effect.
The performance of the algorithm is degraded mainly from the high number of TLB
misses—memory accesses are far more expensive than CPU cycles.

The TLB (Translation-Lookaside Buffer) is a special cache that stores the most
recently used virtual-physical page translations for memory accesses. The TLB is
generally a small fully associative or set-associative cache. Each entry points to
a memory page of 4 to 64Kbytes, depending on the architecture. A TLB cache
miss forces the system to retrieve the missing translation from the page table in
the memory, and then to replace an existing TLB entry with this translation. The
TLB can hold a limited amount of data for sorting. When the data to be accessed
spans more memory pages mapping to the same TLB set than the TLB can hold,
TLB misses will occur. For example, the TLB cache of the Sun UltraSparc-IIi
processor holds 64 fully associative entries (Ts = 64), each of which points to a
page of 8 KBytes (P, = 1024 8-byte elements). The 64 pages in the TLB of the
Sun UltraSparc-IIi processor hold 64 x 1024 = 65536 elements, which represents
a small-sized data set for sorting. Furthermore, in practice we often have more
than one data array being operated on at a time. Some processors’ TLBs are not
fully associative, but set-associative. For example, the TLBs in the Pentium II and
Pentium III processors are 4-way associative (Krrp = 4).

In the second phase of multimergesort, we insert P, elements (or a page space)
to separate every sorted subarray in the data set in order to reduce or eliminate
the TLB cache conflict misses. The padding changes the base addresses of these
lists in page units to avoid potential TLB conflict misses.

Figure 3 exemplifies how padding for the TLB works; in this case the TLB is
a direct-mapped cache of 8 entries, and the number of elements in each list is a
multiple of 8 page elements. Before padding, each of the lists in the data set is
mapped to the same TLB entry. After padding, these lists are mapped to different
TLB entries. When multimergesort is run on a large data set, when the size of
each list is a multiple of Ty, the number of TLB misses per element is close to 1.
After the TLB padding, the average number of TLB misses per element for the
multimergesort algorithm becomes approximately

A

S 3
A+ KB ®)

where A = TQ is the number of average misses for each TLB set entry. The above

Misses per element

12

Improving Memory Performance of Sorting Algorithms . 9

L2 Misses Per Element TLB Misses Per Element

10

Fig. 4. Simulation comparisons of the L2 cache misses (left figure) and TLB misses (right figure)
of the mergesort algorithms on the Random data set on the simulated Pentium II.

approximation is further derived to

C
C+ Krrp xTs’)

Figure 4 shows the number of L2 misses and TLB misses for the five mergesort
algorithms on the Pentium II memory architecture as simulated using SimpleScalar,
where the L1 cache is 4-way set-associative with 16 KBytes, the L2 cache is 4-way
set-associative with 256 KBytes, and the TLB is a 4-way set-associative cache with
64 entries. The simulation shows that multimergesort and multimergesort with
TLB padding have the lowest L2 cache misses among the different algorithms (see
the left figure in Figure 4). Multimergesort also had the highest number of TLB
misses, but these misses are considerably reduced by the TLB padding. (see the
right figure in Figure 4).

Here is an example verifying the approximation in (4) of TLB misses of mul-
timergesort. Substituting the parameters of Pentium II to the approximation,
C =256, Krpp = 4, and Ts; = 64, we get 0.5 TLB misses per element for multi-
mergesort with TLB padding, which is very close to our experimental result, 0.47
(in the right figure of Figure 4). We will show in Section 5 that multimergesort
with TLB padding significantly reduces TLB misses and improves overall execution
performance.

3.3 Trade-offs relating to an instruction count increase and the performance gain

Figure 5 shows the instruction counts of the five mergesort algorithms and the per-
centage of total cycles saved by the four improved mergesort algorithms compared
to the base mergesort on the simulated Pentium II. The simulation shows that
multimergesort had the highest instruction count, while tiled mergesort had the
lowest instruction count. Taking advantage of the low number of L2 cache misses
in multimergesort and by reducing the TLB misses through padding, multimerge-

T T T T T T T T T T l T T T T T T T T T T T
base mergesort base mergesort
, tiled mergesort ------ tiled mergesort ------
tiled mergesort with padding --------] tiled mergesort with padding --------
) multi-mergesort - 08 | multi-mergesort - b
multi-mergesort with TLB padding —-—- multi-mergesort with TLB padding -~
5
5 osf .
[
o
o ; P
i § 04+ : L i
,,,,,, 0 L
,,,,,, S L
02+ 4
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
4K 16K 64K 256K M 4M 8M 1K 4K 16K 64K 256K M 4M 8M
Data set size (in elements) Data set size (in elements)

Instructions per element

800

700

600

500

400

200

100

10 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

Instructions Per Element Cycles Saved vs. Base Mergesort
T T T T T T T T T T T T B 80 T T T T T T T T
base mergesort - . tiled mergesort
L tiled mergesort -] tiled mergesort with padding ------
tiled mergesort with padding -------- o . multi-mergesort --------
multi-mergesort - . - 60 rmulti-mergesort with TLB padding -
"multi-mergesort with TLB padding -~]
o -
S
@
0
7]
o9
o
300) °
1 1 1 1 1 1 1 1 1 1 1 1 _20 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M 4M 8M 1K 4K 16K 64K 256K M
Data set size (in elements) Data set size (in elements)

Fig. 5. Simulation comparisons of the instruction counts (left figure) and saved cycles in percent-
age (right figure) of the mergesort algorithms on the Random data set on the simulated Pentium
II. The instruction count curves (left figure) of the base mergesort and the tiled mergesort are
overlapped.

sort with TLB padding saved cycles by about 40% on large data sets compared to
the base mergesort even though it has a relatively high instruction count. Tiled
mergesort with padding did not improve performance on the Pentium II. This is
because this machine has a 4-way set associative cache where conflict misses are
not major concerns.

4. CACHE-EFFECTIVE QUICKSORT

We first briefly assess the merits and limits of the two existing quicksort algo-
rithms, especially considering their cache locality. We present two new quicksort
alternatives for improving memory performance further. Experimental results will
be reported in the next section.

4.1 Memory-tuned quicksort and multiquicksort

LaMarca and Ladner in the same paper [4] present two quicksort algorithms for
cache optimization. The first one is called memory-tuned quicksort, which is a
modification of the base quicksort [9]. Instead of saving small subarrays to sort
in the end, the memory-tuned quicksort sorts these subarrays when they are first
encountered in order to reuse the data elements in the cache.

The second algorithm is called multiquicksort. This algorithm applies a single
pass to divide the full data set into multiple subarrays, with the hope that each
subarray will be smaller than the cache capacity.

The performance gain of these two algorithms from experiments reported in [4] is
modest. We implemented the two algorithms on simulated machines and on various
high-end workstations and obtained consistent performance. We also found that
the performance of quicksort and its cache-optimized alternatives are very sensitive
to the types of the data set being used. These algorithms were not efficient on

Improving Memory Performance of Sorting Algorithms . 11

unbalanced data sets.

4.2 New quicksort alternatives

In practice, the quicksort algorithms exploit cache locality well on balanced data.
A challenge is to make the quicksort perform well on unbalanced data sets. We
present two cache-optimized quicksort alternatives that work well on both balanced
and unbalanced data sets.

4.2.1 Flash Quicksort. Flashsort [6] is extremely fast for sorting balanced data
sets. The maximum and minimum values are first identified in the data set to
identify the data range. The data range is then evenly divided into classes to form
subarrays. The algorithm consists of three steps: “classification” to determine the
size of each class, “permutation” to move each element into its class by using a
single temporary variable to hold the replaced element, and “straight insertion” to
sort elements in each class by using Sedgewick’s insertion sort [9]. This algorithm
works very well on balanced data sets because the sizes of the subarrays after the
first two steps are similar and are small enough to fit in the cache. This makes
flashsort highly effective (O(IN)). However, when the data set is not balanced, the
sizes of the generated subarrays are disproportionate, causing ineffective usage of
the cache, and making flashsort as slow as insertion sort (O(/N?2)) in the worst case.

In comparison with the pivoting process of quicksort, the classification step of
flashsort is more likely to generate balanced subarrays, which favors better cache
utilization. On the other hand, quicksort outperforms insertion sort on unbalanced
subarrays. By combining the advantages of flashsort and quicksort, we present a
new quicksort alternative, flash quicksort, where the first two steps are the same as
in flashsort and the last step uses quicksort to sort the elements in each class.

4.2.2 Inplaced flash quicksort. To further improve overall performance, we em-
ploy another cache optimization to improve temporal locality in flash quicksort. We
call this alternative inplaced flash quicksort. In this algorithm, the first and third
steps are the same as in flash quicksort. In the second step, an additional array is
used as a buffer to hold the permuted elements. In the original flashsort, a single
temporary variable is used to hold the replaced element. A cache line normally
holds more than one element. The data structure of the single variable minimizes
the chance of data reusage. Using the additional array, we attempt to reuse ele-
ments in a cache line before their replacement and to reduce the instruction count
for copying data elements. Although this approach increases the required memory
space, it improves both cache and overall performance.

4.3 Simulation results

Figure 6 shows the instruction counts (left figure) and the L1 misses (right figure) of
memory-tuned quicksort, flashsort, flash quicksort, and inplaced flash quicksort, on
the Unbalanced data set on the simulated Pentium III memory architecture, which
has a higher memory latency and a larger L2 cache (512 KBytes) than the Pentium
I1. The instruction count curve of flashsort was too high to be presented in the left
figure of Figure 6. The same figure shows that the instruction count of memory-
tuned quicksort also increases rapidly as the data set size grows. In contrast,
the instruction counts of flash quicksort and inplaced flash quicksort change little

Instructions per element

12 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

Instructions Per Element (Unbalanced data set) L1 Misses Per Element (Unbalanced data set)

8 T T T T T T T T T T

4M

1000 T T T T T T T T T T T
memory-tuned quicksort memory-tuned quicksort
flashsort —————- 7L flashsort ------ 4
! flash quicksort -------- flash quicksort -~ /
800 [inplaced flash quicksort - b 6 inplaced flash quicksort - !
z /
9] |

600 | . § i 1

Gl |
,,,,,,,,,,,,,,, 8 ! .
e T Q !

400 - . g |
2 e .
p= -

200 + - -

0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M 4M 1K 4K 16K 64K 256K M

Data set size (in elements) Data set size (in elements)

Fig. 6. Simulation comparisons of the instruction counts (left figure) and the L1 misses (right
figure) of the quicksort algorithms on the Unbalanced data set on the simulated Pentium III. (The
instruction count curve of the flashsort was too high to be presented in the left figure).

as the data set size increases. The simulation also shows that the number of L1
misses increases much more rapidly as the size of the data set grows in the memory-
tuned quicksort and flashsort than in the flashsort and inplaced flashsort algorithms.
The simulation results are consistent with our algorithm analysis, and show the
effectiveness of our new quicksort alternatives on unbalanced data sets.

5. MEASUREMENT RESULTS AND PERFORMANCE EVALUATION

We have implemented and tested all the sorting algorithms discussed in the previ-
ous sections on all the data sets described in Section 2 on a SGI O2 workstation, a
Sun Ultra-5 workstation, a Pentium IT PC, and a Pentium III PC. The data sizes
we used for experiments are limited by the memory size available on the experi-
mental machines since we focus on cache-effective methods. We used “lmbench”
[5] to measure the latencies of the memory hierarchy at its different levels on each
machine. The architectural parameters of the four machines are listed in Table 1,
where all the L1 cache specifications refer to the L1 data cache; all the L2 caches
are uniform. The hit times of the L1 and L2 caches and the main memory measured
by lmbench have been converted to the corresponding number of CPU cycles.

We compared all our algorithms with the algorithms in [4] and [6]. The execution
times were collected by “gettimeofday()”, a standard Unix timing function. The
reported time unit is cycle per element (CPE):
execution time X clock rate

N
where ezecution time is the measured time in seconds, clock rate is the CPU speed
(in cycles per second) of the machine where the program is run, and N is the

number of elements in the data set.
Fach execution time reported in this paper represents the mean of 20 runs. The

CPE =

’

Improving Memory Performance of Sorting Algorithms . 13

Table 1. Architectural parameters of the 4 machines we have used for the experiments.

Workstations SGI 02 Sun Ultra 5 Pentium Pentium
Processor type R10000 | UltraSparc-IIi | Pentium II 400 | Pentium IIT Xeon 500
clock rate (MHz) 150 270 400 500
L1 cache (KBytes) 32 16 16 16
L1 block size (Bytes) 32 32 32 32
L1 associativity 2 1 4 4
L1 hit time (cycles) 2 2 2 3
L2 cache (KBytes) 64 256 256 512
L2 associativity 2 2 4 4
L2 hit time (cycles) 13 14 21 24
TLB size (entries) 64 64 64 64
TLB associativity 64 64 4 4
Memory latency (cycles) [208 76 68 67

variances range from 0.096 to 23.72 cycles? (corresponding to standard deviations
ranging from 0.31 to 4.87 cycles). As a result, the coefficients of variation calculated
by the ratio of the standard deviation to the mean is in a range of 0.00035 to 0.01.

The performance results on all the data sets are fairly consistent. Because of
this, we only present the performance results of the mergesort algorithms using the
Random data set on the four machines (plus performance results of the other data
sets on the Ultra 5 to show the effectiveness of the tiled mergesort with padding).
We present the performance results of the quicksort algorithms using the Random
and the Unbalanced data sets on the four machines.

5.1 Mergesort performance comparisons

We compared five mergesort algorithms: the base mergesort, tiled mergesort, mul-
timergesort, tiled mergesort with padding, and multimergesort with TLB padding.
Proportional to each machine’s memory capacity, we scaled the mergesort algo-
All our algorithms demonstrated
their effectiveness as the data set size grew. Figure 7 shows comparisons of cy-
cles spent per element for the five algorithms on the SGI O2 and the Sun Ultra 5.
Multimergesort with TLB padding performed the best on the 02, with execution
times reduced 55% compared to the base sort, 35% compared to tiled mergesort,
and 31% compared to multimergesort on 2M elements. On the other hand, tiled
mergesort with padding performed the best on the Ultra 5, reducing execution
times 45% compared to multimergesort, 26% to the base mergesort, and 23% to
tiled mergesort on 4M elements. Multimergesort with TLB padding on Ultra 5 also
did well, with a 35% improvement over multimergesort, 13% over the base merge-
sort, and 9% over tiled mergesort on 4M elements. The reason for the incredible
performance improvements on the Q2 is its long memory latency (208 cycles); this
makes the cache miss reduction techniques very effective in improving the overall
performance of the sorting algorithms. The L2 cache size of the SGI is relatively
small (64 KBytes) and the TLB is frequently used for memory accesses. Thus, the
TLB padding is very effective. In addition, both L1 and L2 caches are 2-way set
associative, where the padding is not as effective as on a direct-mapped cache. In

rithms from N=1K up to N=16M elements.

cycles per element

1600

1400

1200

1000

800

600

400

T T T T T T T T T T 2000 T T T T T T T T T
base mergesort base mergesort
tiled mergesort ------ 4 ! tiled mergesort ------
tiled mergesort with padding ------- tiled mergesort with padding --------
multi-mergesort - . multi-mergesort -
Imulti-mergesort with TLB padding -~ - 1500 | multi-mergesort with TLB padding -~ B
[9)
g £
o
[3)
R 4 5 1000
Q
0
_——7 o
- o
P -
b 500 |- Ao
200 == y
1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M 1K 4K 16K 64K 256K M

14 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

Mergesorts on 02 (Random data set)

Mergesorts on Ultra5 (Random data set)

data set size in elements data set size in elements

Fig. 7. Execution comparisons of the mergesort algorithms on SGI O2 and on Sun Ultra 5.

contrast, the Ultra 5’s L1 cache is direct-mapped and the L2 cache is 4 times larger
than that of the O2. On this platform the data cache padding is more effective
than the TLB padding.

In order to show the effectiveness of tiled-mergesort with padding on a cache
system with a low associativity, the performance curves of the five mergesort algo-
rithms from the Sun Ultra 5 on the other 8 data sets are provided in the Appendix.
Our experiments show that tiled-mergesort with padding consistently and signifi-
cantly outperforms the other mergesort algorithms on the Ultra 5. For example,
tiled mergesort with padding achieved 70%, 68%, and 54% reductions in execu-
tion time on the Zero data set compared with the base mergesort, tiled merge-
sort, and multimergesort, respectively. Using other data sets, tiled mergesort with
padding achieved 24% to 53% reductions in execution time compared with the base
mergesort, 23% to 52% reductions compared with tiled mergesort, and 23% to 44%
reductions compared with multimergesort.

Figure 8 shows the comparisons of cycles per element between the five mergesort
algorithms on the Pentium II 400 and the Pentium IIT 500. The measurements on
both machines show that multimergesort with TLB padding performed the best,
reducing execution times 41% compared with multimergesort, 40% compared with
the base mergesort, and 26% compared with tiled sort on 16M elements. The L1
and L2 caches of both machines are 4-way set associative so the issue of data cache
conflict misses is not a concern (as discussed in Section 3.1). Since TLB misses are
the main source of inefficiency in the multimergesort algorithm, the padding for the
TLB is very effective in improving the performance.

In summary, tiled mergesort with padding is highly effective in reducing con-
flict misses on machines with direct-mapped caches and multimergesort with TLB
padding performs very well on all types of architectures.

4M

cycles per element

cycles per element

1600

1400

1200

1000

800

600

400 7.

200

1400

1200

1000

800

600

200

Improving Memory Performance of Sorting Algorithms . 15

Mergesorts on Pentium 1400 (Random data set)

Mergesorts on Pentium Il 500 (Random data set)

T T T T T T T T T T T T T 1600 T T T T T T T T T T T T
base mergesort base mergesort
tiled mergesort ------ 4 1400 F tiled mergesort ------ 4
tiled mergesort with padding -~~~ tiled mergesort with padding --------
multi-mergesort - multi-mergesort -
I~ multi-mergesort with TLB padding -~ = 2 1200 - multi-mergesort with TLB padding ———-— 7
[9)
-] £E> 1000
[3)
g 5 800
o Q
. 8 600
[5}
2y
b 400
- - 200 F -
1 1 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M 4M 16M 1K 4K 16K 64K 256K M 4M 16M
data set size in elements data set size in elements
Fig. 8. Execution comparisons of the mergesort algorithms on Pentium IT and on Pentium III.
5.2 Quicksort performance comparisons
We present the results of quicksort algorithms on the 4 machines using the Random
data set and the Unbalanced data set. The 4 quicksort algorithms are: the memory-
tuned quicksort, flashsort, flash quicksort, and the inplaced flash quicksort.
Figure 9 shows the comparisons of cycles per element between the four quicksort
algorithms on the Random data set (left) and the Unbalanced data set (right) on the
SGI O2 machine. The performance results of the four quicksort algorithms using
the Random data set are comparable, with the memory-tuned algorithm slightly
Quicksorts on 02 (Random data set) Quicksorts on 02 (Unbalanced data set)
T T T T T T T T T T T 1400 T T T T T T T T T T
memory-tuned quicksort memory-tuned quicksort
flash sort ------ i 1200 F flash sort ------ i
flash quicksort -------- flash quicksort
inplaced flash quicksort - - inplaced flash quicksort -
- b = 1000 b
. c
[9)
5
g oo .
s
o 600 - 4
Q|
R e
P
400 ooy © 400 B
- g 200 F g
1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M 4M 1K 4K 16K 64K 256K M 4M

data set size in elements

data set size in elements

Fig. 9. Execution comparisons of the quicksort algorithms on the Random data set (left figure)
and on the Unbalanced data set (right figure) on the SGI O2. (The timing curve of the flashsort

is too high to be presented in the right figure).

cycles per element

16 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

Quicksorts on Ultra5 (Random data set) Quicksorts on Ultra5 (Unbalanced data set)
1400 T T T T T T T T T T T 1400 T T T T T T T T T T
memory-tuned quicksort memory-tuned quicksort
L flash sort ------ | L flash sort ————-
1200 flash quicksort -------- 1200 flash quicksort --------
inplaced flash quicksort - - inplaced flash quicksort -
1000 B = 1000
[0}
5
800 - - o 800
g
600 o 600F
8 .
400 o 400
200 B 200
0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M am 1K 4K 16K 64K 256K M
data set size in elements data set size in elements

Fig. 10. Execution comparisons of the quicksort algorithms on the Random data set (left figure)
and on the Unbalanced data set (right figure) on the Ultra 5. (The timing curve of the flashsort
is too high to be presented in the right figure).

outperforming the others. The performance results using the Unbalanced data set
are much different. As we expected, the number of cycles spent to sort each element
is relatively stable for flash quicksort and the inplaced flash quicksort as the size
of the data set increases, while the performance of memory-tuned quicksort and
flashsort greatly diminishes. The timing curves of flashsort are even too high to be
shown in the right figure in Figure 9.

Figure 10 shows the comparisons of cycles per element among the four quicksort
algorithms on the Random data set (left) and the Unbalanced data set (right)
on the Sun Ultra 5 machine. On the Ultra 5, all four algorithms showed little
difference in their execution times on the Random data set. On the other hand,
the flash and inplaced flash quicksorts exhibited much better performance on the
Unbalanced data set. For example, when the data set increased to 128K elements,
the execution time of flashsort is more than 10 times higher than that of the other
three algorithms (the curve is too high to be plotted in the figure). When the data
set is increased to 4M elements, the execution time of the memory-tuned quicksort
is more than 3 times higher than that of the flash quicksort and inplaced flash
quicksort, and the execution time of the flashsort is more than 100 times higher
than that of the others.

Figure 11 and Figure 12 show the comparisons of cycles per element between the
four quicksort algorithms on the Random data set (left) and the Unbalanced data set
(right) on the Pentium IT and the Pentium IIT machine respectively. On both Pen-
tiums using the Random data set, flashsort, flash quicksort, and inplaced flashsort
displayed similar execution performance and reduced execution times around 20%
compared to the memory-tuned quicksort on large data sets. Again, flash quicksort
and inplaced flash quicksort significantly outperformed the memory-turned quick-
sort algorithm on the Unbalanced data sets on the two Pentium machines.

cycles per element

cycles per element

Improving Memory Performance of Sorting Algorithms .

Quicksorts on Pentium 11400 (Random data set)

17

Quicksorts on Pentium 1400 (Unbalanced data set)

1400 T T T T T T T T T T T T 1400 T T T T T T T T T T T T T
memory-tuned quicksort memory-tuned quicksort
L flash sort ------ i L flash sort ————- i
1200 flash quicksort -------- 1200 flash quicksort --------
inplaced flash quicksort - inplaced flash quicksort -
1000 2 1000 E
[9)
5
800 - 8O- S B
g ,,,,,,,,,,,,,,,,,,,,,,,,
600 » 600 F R
@
S
400 o 400 E R
200 B 200 B
O 1 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M 4M 16M 1K 4K 16K 64K 256K M 4M 16M
data set size in elements data set size in elements
Fig. 11. Execution comparisons of the quicksort algorithms on the Random data set (left figure)
and on the Unbalanced data set on the Pentium II. (The timing curve of the flashsort is too high
to be presented in the right figure).
Quicksorts on Pentium 1l 500 (Random data set) Quicksorts on Pentium Il1 500 (Unbalanced data set)
1400 T T T T T T T T T T T T 1400 T T T T T T T T T T T T T
memory-tuned quicksort memory-tuned quicksort
L flash sort ------ i L flash sort ———- i
1200 flash quicksort -------- 1200 flash quicksort --------
inplaced flash quicksort - inplaced flash quicksort -
1000 E 2 1000 E
[9)
5
800 © 800 [B
g ,,,,,,,,,,,,,,,,
600 PR U e — R
@
- S
400 - o 400 - R
200 B 200 B
O 1 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M 4M 16M 1K 4K 16K 64K 256K M 4M 16M
data set size in elements data set size in elements
Fig. 12. Execution comparisons of the quicksort algorithms on the Random data set (left figure)

and on the Unbalanced data set on the Pentium III. (The timing curve of the flashsort is too high

to be presented in the right figure).

6. A PREDICTION MODEL OF PERFORMANCE TRADE-OFFS

The essential issue that must be considered when designing an algorithm that
has an efficient memory access pattern is the trade-off between the optimization
achievement—the reduction of cache misses, and the optimization effort—the in-
crement in the instruction count. The optimization objective is to improve overall
performance—to reduce the execution time of a base algorithm. This trade-off and
the objective can be quantitatively predicted through an execution timing model.

18 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

The execution time of an algorithm on a computer system based on Amdahl’s Law
[3] is expressed as

T = CPU cdlock cycles+memory stall cycles = IC x CPI+CAXxMRx MP, (5)

where IC is the instruction count of the algorithm, C'PI is the number of CPU
cycles per instruction for the algorithm, C'A is the number of cache accesses of
during the algorithm’s execution, M R is the cache miss rate of the algorithm, and
MP is the miss penalty in cycles of the system. The execution time for a base
algorithm, Tp4se, is expressed as

Thase = chase x CPI + CAbase X M Rpgse X MP7 (6)
and the execution time for an optimized algorithm, T5,, is expressed as
Topt = ICopt X CPI + CAopt X M Rope X M P, (7

where ICyqse and IC,, are the instruction counts for the base algorithm and the
optimized algorithm, C'Apqse and C'A,p: are the numbers of cache accesses of the
base algorithm and the optimized algorithm, and M Rq5. and M R,p; are the cache
miss rates of the base algorithm and the optimized algorithm, respectively.

In some optimized algorithms such as tiled mergesort and tiled mergesort with
padding, the total number of cache accesses may be nearly the same as for the
base algorithm. For this type of algorithms, we combine equations (6) and (7) with
CApgse = CAopr = CA to predict the execution time reduction rate of an optimized
algorithm as follows:

Tyase — Topt AMRXxCAx MP— AIC x CPI (8)
Tbase B ICbase X CPI+ CAbase X MRbase X MP’

where AMR = M Rp,se — M R, represents the miss rate reduction, and AIC =
IC,pt — IChqse represents the instruction count increment. In order to obtain a
positive reduction in execution time, the following must hold true:

AMRx CAx MP > AIC x CPI.

R=

This model describes the quantitative trade-off between the instruction count in-
crease and the miss rate reduction, and gives the condition for an optimized algo-
rithm to improve the performance of a base algorithm:

AIC CAx MP

AMR <~ CPI ©)
For multiphase optimized algorithms which have different cache access patterns
in each phase, such as multimergesort and multimergesort with TLB padding, we
combine equations (6) and (7) with C'Apgse # CAope to obtain the condition for an
optimized algorithm to improve the performance of a base algorithm:

AIC MP
A(MExCA) < CPI’

where A(MR x CA) = M Rpgse X CApgse — MRopt X CAgps.

There are architecture related and algorithm related parameters in this prediction
model. The architecture related parameters are CPI and M P which are machine-
dependent and can be easily obtained. The algorithm related parameters are IC,

(10)

Improving Memory Performance of Sorting Algorithms . 19

CA, and MR, which can be either predicted from algorithm analysis or obtained
from running the program on a simulated architecture, such as SimpleScalar. The
algorithm related parameters can also be predicted by running the algorithms on
relatively small data sets that are larger than the cache capacity on a target ma-
chine.

Using the prediction model and the parameters from the SimpleScalar simula-
tion, we are able to predict the execution time rate of reduction for the optimized
algorithms. Our study shows that the predicted results using the model are close
to the measurement results, with a 6.8% error rate.

7. CONCLUSION

We have examined and developed cache-effective algorithms for both mergesort
and quicksort. These algorithms have been tested on four representative processors
dating from 1995 to 1999 to show their effectiveness. We also use simulations to
provide additional evaluation of performance. We have shown that the memory
architecture plays the largest role in affecting the performance of various mergesort
algorithms, while the type of data set used affects quicksort algorithms the most.

Our techniques of padding, partitioning, and buffering can also be used for other
algorithms for optimizations directed at the cache. Whenever a program regularly
accesses to a large data set that cannot be entirely stored in the cache, the danger
of conflict misses exists, particularly when the algorithm partitions the data sets in
sizes that are a power of 2. Padding is effective for this type of program to eliminate
or reduce conflict misses. Examples include matrix accesses and manipulations and
data reordering and swapping between data sets. When a program sequentially and
repeatedly scans a large data set that cannot be stored in the cache in its entirety,
the program will suffer capacity cache misses. Partitioning the data set based on
the cache size to localize the memory used by a stage in execution is effective for
this type of program. Tiling for mergesort is one example where this is used; other
tasks where this optimization approach can be used include data accesses by loops
and data manipulations of a large data file in a sequential order. The buffering
technique is effective to reduce or eliminate conflict misses by using an additional
buffer to temporarily hold data elements for later reuse that would otherwise be
swapped out of the cache. Examples where this can be employed include programs
manipulating data in an inplaced fashion and programs where data accesses easily
cause conflict cache misses.

The only machine-dependent architecture parameters for implementing the four
methods we presented in this paper are the cache size (C), the cache line size (L),
cache associativity (K), the number of entries in the TLB cache, and a memory
page size (Ps). These parameters are becoming increasingly known to users. They
can be defined as variables in the programs, making migration from one platform
to another easy for a user. In this way, the programs are easily portable—all that
is required is the knowledge of the four required parameters.

There are several ways to provide sorting algorithms with architecture-dependent
parameters. One approach leaves the work to an informed user who is familiar with
the machine architecture; this user could simply input the required parameters into
the programs. A second possibility: users could conduct some brief executions using
a runtime library to obtain estimated architectural parameters for the program

20 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

optimizations. The overhead caused by this approach is normally acceptable [12].
ATLAS [11] uses a tool to first automatically determine architectural parameters by
extensive tests on the target machine. The program is then recompiled with these
parameters included. A third possibility would be to utilize the ATLAS approach
to support our sorting program optimizations, easing the burden on an end-user.

ACKNOWLEDGMENTS

Many students in the Advanced Computer Architecture class offered in Spring 1999
participated in discussions of cache-effective sorting algorithms and their implemen-
tations. Particularly, Arun S. Mangalam made an initial suggestion to combine
quicksort and flashsort. We also appreciate Alma Riska, Zhao Zhang, and Zhichun
Zhu for their comments and their help with the simulations. Finally, the comments
from the anonymous referees were constructive and helpful to us for improving the
quality and readability of the paper.

REFERENCES

[1] D. Burger and T. M. Austin, The SimpleScalar Tool Set, Version 2.0, TR 1342, Dept. of
Computer Sciences, U. of Wisconsin, Madison, June 1997.

[2] B. Bershad, D. Lee, T. Romer and B. Chen, “Avoiding conflict misses dynamically in large
direct-mapped caches,” Proc. 6th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VI), October 1994.

[3] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach, 2nd
ed. Morgan Kaufmann Publishers, Inc., 1996.

[4] A.LaMarca and R. E. Ladner, “The influence of caches on the performance of sorting,” Proc.
8th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODAY7), 1997, 370-379.

[5] L. McVoy and C. Staelin, “lmbench: portable tools for performance analysis,” Proc. USENIX
Technical Conference, San Diego, California, 1996, 279-295.

[6] K.-D. Neubert, “The Flashsortl algorithm”, Dr. Dobb’s Journal, February 1998, 123-125.

[7] S. Park and L. Leemis, Discrete-Event Simulation: A First Course, Lecture Notes, College

of William & Mary, Revised Version, January 1999. Preprint of a Prentice-Hall book,
August, 1999.

[8] C. Rivera and C.-W. Tseng, “Data transformations for eliminating conflict misses,” Proc.
SIGPLAN Conf. on Programming Language Design and Implementation, July 1998.

[9] R. Sedgewick, “Implementing quicksort programs,” Communications of the ACM 21, 10
(1978), 847-857.

[10] A. Srivastava and A. Eustace, “ATOM: a system for building customized program analysis
tool,” Proc. ACM Symposium on Programming Languages Design and Implementation,
1994, 196—205.

[11] R. C. Whaley and J. J. Dongarra, “Automatically Tuned Linear Algebra Software,” Proc.
Supercomputing’98, November 1998.

[12] Y. Yan, X. Zhang and Z. Zhang, “Cacheminer: a runtime approach to exploit cache locality
on SMP,” IEEE Trans. on Parallel and Distributed Systems 11, 4 (2000), 357-374.

[13] Z.Zhang and X. Zhang, “Cache-optimal methods for bit-reversals,” Proc. Supercomputing’99,
November 1999.

cycles per element

cycles per element

2000 ——— -
base mergesort
tiled mergesort ------
tiled mergesort with padding --------
multi-mergesort -
1500 - multi-mergesort with TLB padding -——-~- 4

1000

500

2000

1500

1000

500

Improving Memory Performance of Sorting Algorithms .

21

Appendix: Merge-sort performance comparisons on Ultra 5 using 8 different data sets

Mergesorts on Ultra5 (Equilikely data set)

cycles per element

2000

1500

1000

Mergesorts on Ultra5 (Bernoulli data set)

T T T
base mergesort
tiled mergesort
tiled mergesort with padding
multi-mergesort -
- multi-mergesort with TLB padding —-—-

500 E
1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M am 1K 4K 16K 64K 256K M am
data set size in elements data set size in elements
Fig. 13. Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Equilikely
data set (left figure) and the Bernoulli data set (right set).
Mergesorts on Ultra5 (Geometric data set) Mergesorts on Ultra5 (Pascal data set)
T T T T T T T T T T 2000 T T T T T T T T T T
base mergesort base mergesort
tiled mergesort ------ tiled mergesort ------
tiled mergesort with padding -~~~ tiled mergesort with padding --------
multi-mergesort - multi-mergesort -
- multi-mergesort with TLB padding ---- 1500 - multi-mergesort with TLB padding -~~~ b

16K 64K 256K
data set size in elements

M

Fig. 14.

4M

cycles per element

1000

500

data set (left figure) and the Pascal data set (right set).

16K 64K 256K
data set size in elements

M 4M

Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Geometric

cycles per element

cycles per element

22 . Li Xiao, Xiaodong Zhang, and Stefan A. Kubricht

Mergesorts on Ultra5 (Binomial data set) Mergesorts on Ultra5 (Poisson data set)
2000 T T T T T T T T T T 2000 T T T T T T T T T T
base mergesort base mergesort
tiled mergesort ------ tiled mergesort ------
tiled mergesort with padding ------- tiled mergesort with padding -------
multi-mergesort - - multi-mergesort -
1500 multi-mergesort with TLB padding -~ b 1500 - multi-mergesort with TLB padding ———-— b
5
S
Q9
()
1000 % 1000
Q
]
9o
Q
>
[8)
500 500
0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M 4M 1K 4K 16K 64K 256K M 4M
data set size in elements data set size in elements

Fig. 15. Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Binomial
data set (left figure) and the Poisson data set (right set).

Mergesorts on Ultra5 (Unbalanced data set) Mergesorts on Ultra5 (Zero data set)
2000 T T T T T T T T T T 3000 T T T T T T T T T T T
base mergesort base mergesort
) tiled mergesort ----—- tiled mergesort ------
tiled mergesort with padding -------- 2500 + tiled mergesort with padding -------- " ____-
) multi-mergesort - . e multi-mergesort - -
1500 |- mutt-mergesort with TLB padding -~ .] = multi-mergesort with TLB padding ---- J-----
’ @ 2000 - | B
£
Q@
[0}
1000 5 1500 B
Q .
0
@
o 1000 B
. 8]
500 - 0 e e
Z 500 -
O 1 1 1 1 1 1 1 1 1 1 1 O 1 1 1 1 1 1 1 1 1 1 1
1K 4K 16K 64K 256K M am 1K 4K 16K 64K 256K M am
data set size in elements data set size in elements

Fig. 16. Execution comparisons of the mergesort algorithms on Sun Ultra 5 using the Unbalanced
data set (left figure) and the Zero data set (right set).

