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Abstract

Bit-reversals are representative and important data reordering operations in many scientific computations. Perfor-

mance degradation is mainly caused by cache conflict misses. Bit-reversals are often repeatedly used as fundamental

subroutines for many scientific programs. Thus, in order to gain the best performance, cache-optimal methods and

their implementations should be carefully and precisely done at the programming level. This type of performance

programming for some special programs, such as the data reorderings, may significantly outperform an optimiza-

tion from an automatic tool, such as a compiler. In this paper, we examine different methods using techniques of

blocking, buffering, and padding for efficient implementations. We evaluate the merits and limits of each technique

and their application and architecture-dependent conditions for developing cache-optimal methods. We present two

contributions in this paper: (1) Our integrated blocking methods, which match cache associativity and TLB cache

size and which fully use the available registers are cache-optimal and fast. (2) We show that our padding methods

outperform other software oriented methods, and believe they are the fastest in terms of minimizing both CPU and

memory access cycles. Since the padding methods are almost independent of hardware, they could be widely used on

many uniprocessor workstations and SMP multiprocessors.

1 Introduction

With the rapid development of RISC and VLSI technology, the speed of processors has increased dramatically in the

past decade. Processor clock rates doubled every 2-3 years. Nevertheless, the speed of memories has increased at a

much slower pace. Therefore we have seen and will continue to see an increasing gap in speed between processor and

memory, and this gap makes performance of application programs on both uniprocessor and multiprocessor systems

rely more and more on effective usage of caches. Bit-reversals are important data reordering operations in many

scientific computations. Performance degradation is mainly caused by cache conflict misses. Bit-reversals are often

repeatedly used as fundamental subroutines for many scientific programs. Thus, in order to gain the best performance,

cache-optimal methods and their implementations should be carefully and precisely done at the programming level.

∗This work is supported in part by the National Science Foundation under grants CCR-9400719 and CCR-9812187, by the Air Force Office of

Scientific Research under grant AFOSR-95-1-0215, and by Sun Microsystems under grant EDUE-NAFO-980405.

1



2

This type of performance programming for some special programs, such as bit-reversals, may significantly outperform

an optimization from an automatic tool, such as a compiler.

A standard bit-reversal program is described as follows:

for i = 1, N

Y[i’] = X[i]

The values of array X in their sequential positions i are copied to array Y in their bit-reversal positions, i ′, for i =
1, ...,N, where N = 2n. The above program says that X is a bit-reversal reordering of Y . The indices of i and i′ of X

and Y are represented by a sequence of n binary digits. Positions i and its bit-reversal i ′ are defined in [5] as:

i =
n−1

∑
j=0

a j2 j and i′ =
n−1

∑
j=0

a j2n−1− j,

where a j is either 0 or 1. For example, a 5-bit reversal of i = 10010 is i ′ = 01001.

The bit-reversal operations have following unique characteristics: First, each element in an array is only used (read

or written) once for its copy operation. Thus, the reorderings have only spacial locality but no temporal locality for

elements. Second, the loops follow certain sequences with high spatial locality. Bit-reversals are highly sensitive to

problem sizes, cache sizes, and cache line sizes. Since the data array sizes are a power of two, multiple elements

stored in different memory locations could map to the same cache line, causing severe cache conflict misses and cache

thrashing. The reason is simple. Most commercial computers use direct-mapped or n-way associative caches where

the mapping functions of cache sizes are also related to powers of two.

We use an identical unit, called an ”element”, to represent the sizes of data arrays, caches and others such as

buffers and blocking. One element may represent a 4-byte integer, a 4-byte floating point number, or an 8-byte double

floating point number. Because the sizes of caches and cache lines are always a multiple of an element in practice,

this identical unit for all the sizes is practically meaningful for both architects and application programmers, and

makes the discussions straightforward. Here are the algorithmic and architectural parameters we will use to describe

cache-optimal methods of bit-reversals:

• C: data cache size, which could be further defined as CL1 and CL2 for data cache sizes of L1 and L2 respectively.

• L: the size of a cache line, which could be further defined as LL1 and LL2 for cache lines of L1 and L2 respec-

tively.

• K: cache associativity, which could be further defined as KL1 and KL2 for cache associativity of L1 and L2

respectively.

• KTLB: TLB cache associativity.

• Ts: number of entries in the TLB cache.

• N: the data size for the bit-reversal vector of size N = 2n, where n is the number bits used in the vector index.

• Bcache: blocking size of a B×B submatrix for cache.

• BT LB: blocking size for TLB.

• Ps: a memory page size.
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B
A 2-D Array equivalent Layout

Figure 1: Memory layout of a blocked bit-reversals, where B = Bcache.

In this paper, we examine different methods using techniques of blocking, buffering, and padding for efficient

implementations. We evaluate the merits and limits of each technique and their application and architecture-dependent

conditions for developing cache-optimal methods. Although our methods are developed for out-of-place bit-reversals,

they are also applicable to in-place bit-reversals where X and Y are the same array. We present two contributions in this

paper: (1) Our integrated blocking methods, which match cache associativity and TLB cache size and which fully use

the available registers are cache-optimal and fast. (2) We show that our padding methods outperform other software

oriented methods, and believe they are the fastest in terms of minimizing both CPU and memory access cycles.

Since the padding methods are almost independent of hardware, they could be widely used on many uniprocessor

workstations and SMP multiprocessors.

2 Blocking for bit-reversals

The blocked memory access patterns of bit-reversals can be easily viewed when we convert the one dimensional vector

to a 2-D equivalent array in Figure 1. All the reordering elements and elements in other groups will be allocated along

the column in the 2-D equivalent array forming a block.

In general, for a bit-reversal vector of N = 2n elements, the block size Bcache is a power of 2, denoted by Bcache = 2b.

Each of the Bcache elements in X has the address format of f g, where g is Bcache bits, and f has n− b bits. Each of

the corresponding Bcache elements in Y has the address format of g′ f ′. Therefore, the distance between two nearest

elements in the same group in Y is 2n−b = N/Bcache.

Choosing the cache line size as the minimum blocking size (Bcache = L), we can easily calculate the maximum Ns

for the bit-reversal vector based on different data cache sizes. For example, for a large cache of 2 MBytes, the blocking

technique is effective up to an 18-bit-reversal reordering which represents 268,144 data elements, where each element

is an 8-byte double type, and the cache line is 32 bytes. In practice, the data size of bit-reversals could easily be larger

than n = 20 [5].
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3 Blocking with buffers

As we have shown, the effectiveness of blocking is limited by the size of the data arrays. In theory, the smallest

blocking size could be 2× 2. A cache line in a modern processor usually holds more than 2 elements, i.e., is larger

than 16 bytes. If we choose a 2× 2 block, the data in a cache line will not be fully used before their replacement,

causing more cache misses in the reorderings. The bit-reversal reordering demands large cache space to make blocking

effective. In order to effectively use limited cache space, Gatlin and Carter [4] present an effective method using an

additional buffer to first hold the conflict-missed elements of a block in one array temporarily, and then copy the block

to their reordered positions in the other array.

3.1 Blocking with a software buffer and its limits

Because this buffer is defined in a reordering program, we call it “software buffer”. This buffer shares the allocation

space with the data arrays X and Y in the cache.

There are two major limits in this approach. First, the buffer itself may interfere with arrays of X and Y , causing

additional access conflicts. This interference is certain when the sizes of X and Y are larger than the size of the cache,

C. Each cache block or set is mapped from arrays X and Y more than once. No matter where the buffer is located in

the cache, it will interfere with them. The larger the buffer size, the more interference will occur.

The second limit is the additional copy overhead time involved in moving data from the array X to the buffer and

then in moving them to the target array in their reordered positions. This overhead exactly doubles the instruction

cycles for data copying. The data copy through a buffer is a worthy investment if the number of cycles lost from cache

misses is much higher than the additional CPU cycles for the data copy.

To overcome the two limits, we propose several alternatives to eliminate cache interference caused by the software

buffer and to reduce or eliminate the data copy time.

3.2 Cache structure dependent blocking

Blocking based on set associativity

The cache associativity, K, is an important factor to consider for blocking. If K ≥ L, an L×L or a K ×K blocking

methods for bit-reversals would effectively avoid conflict misses. Because the hit time is a less sensitive performance

factor than the cache misses in the L2 cache, a higher associativity of the L2 cache is more effective than that of L1.

If a cache line holds 4 double floating point elements, (L = 4 elements of 32 bytes in Pentium processors), a 4× 4

blocking method without any data buffer is able to fully use the cache associativity. The blocking method would gain

more benefit from caches of associativity higher than 4, such as a design in [11].

What would we do if the associativity is not sufficiently high for the blocking, or K < L? One solution is to make

a K ×L rectangular blocking. Unfortunately bit-reversals require an L×L blocking.

Supplement with registers

We may also consider using the available registers to supplement a low associativity cache. The number of registers

available to a user program are limited. Normally, a uniprocessor provides up to 16 registers to users. For example, for
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a 2-way associative cache, we need 8 registers to buffer two additional cache lines so that we could effectively make a

4×4 blocking as if we ran the program on a 4-way associative cache.

We develop a more efficient blocking method for bit-reversals, which requires only (L−K)×(L−K) registers. The

operation sequence of this method is in three steps: (1) The L−K cache lines of X are stored in K cache lines of Y and

accessed by copying its (L−K)×K elements to Y in the reordered positions, and copying the rest of (L−K)×(L−K)
elements to a buffer consisting (L−K)× (L−K) registers. (2) The rest of K lines of X are brought to the cache set,

and its K ×K elements are copied to Y in the reordered positions. (3) Finally, the (L−K)× (L−K) elements in the

register buffer and the rest of the (L−K)×K elements are copied to Y in their reordered positions. A cache set will

be used more than twice if K < L/2.

Besides the advantage of no access conflicts between the register buffer and the arrays of X and Y , there is another

advantage of using registers to buffer the data in a load/store processor. A data copy through the registers from X to

Y is equivalent to the two-step process of load and store, and thus there will be no additional overhead. We will show

our experimental performance in section 5.

Using registers as the buffer

If the cache is direct-mapped, we have to fully rely on a buffer for blocking. Here we discuss some ways to use

registers to serve the buffer in order to eliminate the potential cache conflicts and eliminate extra data copying by

taking advantage of the load/store operations. The number of registers for a buffer of L×L elements is determined by

the number of elements a cache line can hold. The length of a cache line of the L1 cache in some processors, such

as Sun SPARC Micro I and II, is L = 2 of 16 bytes, which holds only two floating point elements. The blocking size

could be as small as 2×2 using a buffer of 4 registers.

The cache line length of the L1 cache in many advanced workstations is 32 bytes, such as the Sun Ultra and Intel

Pentium processors, each of which holds 4 double floating point elements. In this case, we need a buffer of 4×4 = 16

registers for a blocking. This would be difficult due to the limited number of available registers. We have two solutions

for this. First, we only use the number of registers available to form a smaller buffer than it should be, which will

not make each cache line fully used and will cause additional cache misses. Our experiments show that this blocking

method of using a buffer of insufficient number of registers still achieves a reasonable performance improvement and

outperforms of the implementation using software a buffer.

The second method is to further reduce the size of the buffer, which reduces the required number of registers by

using our (L−K)× (L−K) blocking method.

L1 cache versus L2 cache

The main objective of building two-level caches is to make the L1 cache small enough to catch up to the cycle time

of the fast CPU, and to make the L2 cache large enough to capture as many accesses as possible [6]. In practice, the

data size of a bit-reversal is larger than the size of the L2 cache. L1 and L2 caches offer different sizes of the cache

line, L, and the associativity, K. Both of the following alternatives are effective for blocking. (1) Taking advantage of

a short cache line and fast hit time of the L1 cache, we could effectively use limited registers as the buffer, and make

a small L×L blocking effective. (2) Taking advantage of high associativity of the L2 cache, we could effectively use

both associativity and supplemental registers as the buffer, and make a large L×L blocking effective.
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Before paddingCache

X-array

Y-array

Cache

Y-array

X-array

After padding

N/B+L N/B+LN/B+L N/B

Figure 2: Data layout of a bit-reversal is modified by padding, where B = Bcache = L.

4 Blocking with padding

Padding is a technique that modifies the data layout of a program so that the conflict misses are reduced or eliminated.

The data layout modification can be done at run-time by system software [2, 10], or at compile-time by complier

optimization [8]. Sharing the same objective of compiler optimization to change the base addresses of potentially

conflicting cache blocks in the reorderings, we insert padding variables inside the data array. For example, in the FFT

computation, paddings can be combined with the copy operations in the last step of butterfly without additional cost.

Since the data arrays of bit-reversals form a vector whose size is power of 2, the padding is highly regular, inserting

L elements or a cache line space starting at the vector positions of N/L, 2×N/L, ..., and (L− 1)×N/L. Using L

elements or a section data of a cache line to separate the vector at these L points can completely eliminate the cache

conflicts caused by Murphy reordering. Again during execution, the reordering data copies are directly conducted

between the arrays X and Y without going through a data buffer. Another advantage is that the number of padding

elements needed is only L ×L or L cache lines, and is independent of the data array size, N. Compared with the

data size of bit-reversals, the number of padding elements is insignificant. Figure 2 shows how the data layout of a

bit-reversal vector is modified by padding so that conflict misses are eliminated.

Compiler optimization targets a large range of application programs, and automatically inserts padding variables

in the programs for users. An optimal padding is application program dependent. For example, padding positions are

different from different applications in order to effectively change base addresses of conflicting cache blocks. Based

on the unique nature of the data reordering, the optimal padding unit used by our methods for bit-reversals is a cache

line with L elements. In contrast, a compiler optimization normally uses an element as the basic padding unit. How

many padding units to use and where to pad in the data arrays are determined by some approximation models which

may not precisely fit the unique memory access patterns of each case. In addition, applying the padding technique to

bit-reversals embedded in applications would not increase complexity in the entire computation. For example, when a

padded bit-reversal is performed in a FFT computation, it has little effect on the neighboring butterfly operations.
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5 Blocking and padding for TLB

The TLB (Translation-Lookaside Buffer) is a special cache that stores the most recently used virtual-physical page

translations for memory accesses. The TLB is a small and usually fully associative cache. Each entry points to a

memory page of 4 KBytes to 64 KBytes. The page size is normally fixed at the level of operating systems, and cannot

be changed by user programs. A TLB cache miss will make the system retrieve the missing translation from the page

table in memory, and then to select a TLB entry to replace. When the data to be accessed in our blocking method is

larger than the amount of data of all the memory pages that the TLB can hold, we will have TLB thrashing.

5.1 Blocking for a fully associative TLB

Before giving a general model to show how the blocking size is affected by the TLB size, let’s go through an example

to show that a moderate N for bit-reversals would easily lead to TLB cache thrashing. The 64 pages in the TLB of the

Sun UltraSparc-II processor hold 64×1024 = 65536 elements, which represents a 16-bit-reversal of N = 2 16. Since

we have two vectors X and Y , the TLB can hold a 15-bit-reversal of N = 215 elements. This is also consistent with our

experiments on this machine, where execution time per element was a constant until n = 15, but sharply increased at

n = 16 bit-reversals caused by the TLB misses.

In our cache-optimal methods, we include an outer loop to form a blocking for TLB, whose size is denoted as

BT LB. The blocking size of BT LB for bit-reversals when N/L ≥ Ps is

BT LB ≤ Ts,

where Ps is the page size in elements, and Ts is the number of entries of the TLB. On the other hand, the BT LB should

be chosen as large as possible to make effective use of the page space.

5.2 Padding for a set-associative TLB

Some processors’ TLBs are not fully associative, but set-associative. For example, the TLB in the Pentium II 400

processor is 4-way associative (KTLB = 4). A simple blocking based on the number of TLB entries is not cache-

optimal, because multiple pages within a TLB-size-based blocking may map to the same TLB cache set and cause

TLB cache conflict misses.

If the size N of a bit-reversal vector is a multiple of Ts×Ps, where Ts is the number of TLB entries and Ps is the page

size in elements, and if KT LB < BT LB, then TLB cache conflict misses will occur. This could easily happen in practice.

For example, on the Pentium II 400, N is equal to 128K elements (one element = 8 bytes) for a 17-bit-reversal, and

this N is two times of the value Ts ×Ps of the machine, where Ts = 64, and Ps = 1024 elements.

In a way similar to the technique of padding for the data cache, we insert a page of elements or a page of space

starting at the vector positions of N/L, 2×N/L, ... and (L−1)×N/L to eliminate the conflict of TLB cache misses.

Figure 3 gives an example of the padding for TLB, where the TLB is a direct-mapped cache of 8 entries, blocking size

is BT LB = 4, and the number of elements of a row is a multiple of 8 page elements. Before padding, each of blocking

row is mapped to the same cache line of the TLB. After padding, these rows are mapped to different cache lines of the

TLB.

Combining padding for data cache and padding for TLB cache, we are inserting L+Ps elements or a page plus a

cache line space in L locations separated by a distance of N/L elements.
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Figure 3: Padding for TLB: the data layout is modified by inserting a page space at multiple locations, where B T LB = 4,

KT LB = 1, Ts = 8.

In practice, we selected more than N/L points to insert the padding variables to eliminate both data cache and TLB

conflict misses. This approach could effectively merge two nested paddings (one for data cache and the other one for

TLB) into a single one. An optimal number of inserting points can be easily determined experimentally based on the

size of the TLB cache.

6 Experimental Results and Performance Evaluation

We have implemented and tested all the bit-reversal methods discussed in the previous sections on an SGI O2 worksta-

tion, a Sun Ultra-5 workstation, a Sun SMP server E-450, a Pentium PC, and a Compaq XP1000 workstation. We used

“lmbench” [7] to measure the latencies of memory hierarchies at different levels on each machine. The architectural

parameters of the 5 machines are listed in Table 6.

We focus the performance evaluation on methods and implementations of bit-reversals in this paper. We compared

all our methods with the method of blocking with a software buffer which was recently published in [4]. We denote

this method as “bbuf-br” — blocking with buffer for bit-reversals. Two of our methods are experimentally compared:

“breg-br” — blocking with associativity and registers for bit-reversals, and “bpad-br” — blocking with padding for

bit-reversals. We have also applied blocking or padding technique for the TLB in these two methods based on the TLB

associativity.

All the programs use a standard subroutine to calculate the bit-reversal value for a given address. The execution

times were collected by “gettimeofday()”, a standard unix timing function. The reported time unit is cycles per element

(CPE):

CPE =
execution time× clock rate

N
,

where execution time is the measured time in seconds, clock rate is the CPU speed (cycles/second) of the machine

where the program is run, and N is the number of elements of the bit-reversal program. Besides the different methods

of bit reversals, we also measured the execution time of a program copying elements between X and Y . This program
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Workstations SGI O2 Sun Ultra 5 Sun E-450 Pentium XP1000

Processor type R10000 UltraSparc-IIi UltraSparc II Pentium II 400 Alpha 21264

clock rate (MHz) 150 270 300 400 500

L1 cache (KBytes) 32 16 16 16 64

L1 block size (Bytes) 32 32 32 32 64

L1 associativity 2 1 1 4 2

L1 hit time (cycles) 2 2 2 2 3

L2 cache (KBytes) 64 256 2048 256 4096

L2 block size (Bytes) 64 64 64 32 64

L2 associativity 2 2 2 4 1

L2 hit time (cycles) 13 14 10 21 15

TLB size (entries) 64 64 64 64 128

TLB associativity 64 64 64 4 128

Memory latency (cycles) 208 76 73 68 92

Table 1: Architectural parameters of the 5 workstations we have used for the experiments. All specifications on L1

cache refer to the L1 data cache, and all L2s are uniform. Each L2 cache block on UltraSPARC-IIi consists of 2

16-Byte sub-blocks. The hit times of L1, L2 and the main memory are measured by lmbench [7], and their units are

converted from nanosecond (ns) to their CPU cycles.

has the same number of data copying operations with a continuous memory access patterns. We use the execution time

of this program to provide a base line reference for bit-reversal programs and show how close a bit reversal execution

is to its ideal time. We denote this reference program as “base”. Each method is further divided into “float” data type

using 4 bytes to represent an element, and “double” type using 8 bytes to represent an element. The data type divisions

will show the performance impact of the cache line length.

For all experiments on different machines, the bit-reversal programs first call a routine to flush the cache to make

sure that all the data are allocated only in the memory. All experiments were repeated multiple times.

6.1 Effects of TLB and virtual memory

Before measuring and comparing the performance of different bit-reversal methods, we experimentally evaluated the

effects of TLB and virtual memory to confirm our assumptions and analyses.

Selection of TLB blocking size

The TLB blocking size is a sensitive performance parameter to be selected, which is determined by the size of the

TLB if it is fully associative. We executed program “bpad-br” (blocking with padding for bit-reversals) with n = 20

on a single node of Sun E-450 by changing the blocking sizes for TLB from 8 to 128. The TLB of the E-450 is a

fully associative cache with 64 entries. Figure 4 shows the measured cycles per element of the program of different

blocking sizes on the node. Our experimental results are consistent with our analyses in the previous section. When
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Figure 4: Changing the TLB blocking sizes on a single node of the Sun E450: when the blocking size for TLB was

larger than 32, the execution time curve was sharply increased.

the blocking size for TLB was 64, the execution time curve increased sharply. This is because arrays X and Y together

demanded more than 64 pages and caused TLB thrashing.

Virtual memory versus physical memory addresses

All our analyses are based on cache mappings between memory pages in the virtual address space and cache blocks

in the physical memory address space. This assumes that contiguous memory pages will be contiguously mapped to

the cache. This assumption is guaranteed for the virtual-address caches [3]. However, all our experiments have been

performed on machines with physical address L2 caches. Since the virtual-physical translations for L2 caches are

handled by operating systems, our assumptions may not be accurate sometimes. In order to show that many operating

systems attempt to map contiguous virtual pages to cache blocks contiguously so that our virtual-address-based study

is practically meaningful and effective, we conducted a simulation by using the SimOS [9] and measurements on

different workstations to observe how an operating system makes translations from virtual memory addresses to their

physical addresses.

The SimOS simulates a complete hardware of SGI machines and runs the IRIX 5.3 operating system in the simula-

tion. We executed a blocking-only program of bit-reversals using the cache line L as the blocking size. The bit-reversal

vector size was changed from n = 15 to n = 22. We measured the miss rates on array X . The cache size was set to 2

MBytes holding two double type arrays up to n = 18 in the virtual memory space. Figure 5 gives consistent results

from the SimOS simulation: when n > 18, the miss rate on array X was sharply increased to 100% from 12.5%.

From this experiment, we have observed that virtual-physical translations from the IRIX 5.3 operating system are
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Figure 5: Using the SimOS to observe the miss rates by changing the the size of the bit-reversal arrays of a blocking-

only program: when n > 18, the miss rate was sharply increased to 100%.

quite consistent to our assumption of “contiguous allocations”.

We have also run the similar experiments on different targeted workstations with different operating systems, such

as Linux and Solaris, to measure the changes of execution times when the data size is changed. Our measurements are

also consistent to the SimOS results, and indicate that the larger the data arrays to be used, the more likely an operating

system will allocate the pages contiguously. Because our study targets large data set, our analyses based on the virtual

memory space is reasonably accurate.

6.2 Performance comparisons on the SGI O2

The SGI O2 is a 1995 product using an R10000 processor of 150 MHz, 32 KB 2-way associative L1 cache, and 64 KB

2-way associative L2 cache. The cache line of L2 is 64 bytes. Since the associativity of L2 is low, and the cache line

of L2 is relatively long, it is difficult to do blocking with associativity and available registers. We only implemented

the blocking with padding method to compare with blocking with software buffer and the base reference.

We scaled bit-reversal methods from n = 16 to n = 21. Figure 6 shows the comparisons of cycles per element

among the three programs of both “float” type and “double” type on the SGI O2 machine. The measurements show that

the padding method slightly reduced the execution time compared with the method of blocking with software buffer.

The time reduction was up to 6%. The reason for the small performance improvement comes from the extremely long

memory latency (208 cycles) of the O2 machine. The reduction and saving of instruction cycles for data copies from

padding became less significant because memory latencies caused by the required cold misses in both methods were

dominant in execution.
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Figure 6: Execution comparisons on the SGI O2 workstation: “bbuf-br” represents the method of blocking with

software buffer; “bpad-br” represents the method of blocking with padding; and “base” represents the ideal base line

reference.

6.3 Performance comparisons on the Sun Ultra-5

The Sun Ultra-5 is a 1998 product using an UltraSparc-IIi processor of 275 MHz, 16 KB direct-mapped L1 cache, and

256 KB 2-way associative L2 cache. The cache line of L1 is 32 bytes consisting of two 16 byte subblocks, and L2 is

64 bytes long. Similar to the SGI O2, the associativity of L2 on the Ultra-5 is low, and the cache line of L2 is relatively

long, so it is difficult to do blocking with associativity and available registers. We only implemented the blocking with

padding method to compare with blocking with software buffer and the base reference.

We scaled the bit-reversal methods from n = 16 to n = 23. Figure 7 shows the comparisons of cycles per element

among the three programs of both “float” type and “double” type on the Ultra-5. The memory latency of the Ultra-5

(76 cycles) is significantly lower than that of the O2. We observed a more significant performance improvement from

the method of blocking with padding over that of blocking with software buffer. For example, using “float” type, the

padding program is 14% faster than that of blocking with buffer for n = 20 or larger. A L2 cache line of the Ultra-5

holds 16 “float” type elements (L = 16), and 8 “double” type elements (L = 8). The larger the L, the higher overhead

the blocking with software buffer will have. This has been confirmed by our comparative experiments between the

“float” and “double” types on the Ulta-5 shown in Figure 7.

6.4 Performance comparisons on the Sun E-450

The Sun E-450 is a 1998 4-processor SMP product. Each of the 4 nodes is an UltraSparc-2 processor of 300 MHz,

16 KB direct-mapped L1 cache, and 2 MB 2-way associative L2 cache. The cache line of L1 is 32 bytes consisting of

two 16 byte subblocks, and L2 is 64 bytes long. Due to the limited associativity and a relatively long L2 cache line,

we only implemented the blocking with padding method to compare with blocking with software buffer and the base
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Figure 7: Execution comparisons on the Sun Ultra-5 workstation: “bbuf-br” represents the method of blocking with

software buffer; “bpad-br” represents the method of blocking with padding; and “base” represents the ideal base line

reference.

reference.

We scaled the bit-reversal methods from n = 16 to n = 25. Figure 8 shows the comparisons of cycles per element

among blocking with software buffer, blocking with padding, and the base program on a single node of E-450, each

of which has both “float” type and “double” type. The memory latency of the Ultra-5 (73 cycles) is slightly lower

than that of Ultra-5. On this machine, we observed higher performance improvement from the method of blocking

with padding over that of blocking with software buffer. For example, using “float” type, the padding program is 22%

faster than that of blocking with buffer for n = 20 or larger. Our comparative experiments between the “float” and

“double” types on E-450 in Figure 8 also confirms that the larger the L, the higher performance the padding method

would achieve.

6.5 Performance comparisons on the Pentium II 400

The Pentium PC we used is a 1998 product using a Pentium-II 400 processor of 400 MHz, 8 KB direct-mapped L1

cache, and 256 KB 4-way associative L2 cache. The cache lines of of both L1 and L2 are 32 bytes. Since the L2

associativity is high, we are able to implement the method of blocking with associativity and available registers, L2

cache line L = 8 elements for a “float” type, and we need (L−K)(L−K) = 16 registers to supplement the 4-way

associative cache. An L2 cache line holds 4 “double” type elements (L = 4). Thus, we do not need any registers to

supplement, but simply make a 4×4 blocking. The TLB of the Pentium processor is a 4-way associative cache of 64

entries. We used our padding for the TLB technique to avoid TLB misses. We implemented the blocking with padding

method and the blocking with associativity and registers to compare with blocking with software buffer and the base

reference.

We scaled the bit-reversal methods from n = 16 to n = 24. Figure 9 shows the comparisons of cycles per element
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Figure 8: Execution comparisons on the Sun E-450 SMP: “bbuf-br” represents the method of blocking with software

buffer; “bpad-br” represents the method of blocking with padding; and “base” represents the ideal base line reference.

among the four programs. As we expected, the paddings for both cache and TLB were highly effective, and the

padding program performed the best. For example, using “float” type, the padding program is about 40% faster than

that of blocking with buffer for n = 22 or larger. We also show that the method using available registers to supplement

associativity is effective. Although it is not as good as the padding program due to the increase of the instructioncounts,

it still achieved up to 12% execution reduction over the blocking with software buffer program. As we expected, the

execution time of the method using the 4-way associative L2 cache without the supplement of registers to form a 4×4

blocking was delayed mainly by the longer L2 cache hit time. The performance of this method still outperformed the

method of blocking with a software buffer.

6.6 Performance comparisons on the Compaq XP-1000

The Compaq XP-1000 is a 1999 product using an Alpha 21264 processor of 500 MHz, 64 KB 2-way associative L1

cache, and 4 MB 2-way associative L2 cache. The cache lines of both L1 and L2 are 64 bytes long. Similar to the

SGI and Sun machines, the associativity of L2 on the XP 1000 is low, and the cache line of L2 is relatively long, so it

is difficult to do blocking with associativity and available registers. We only implemented the blocking with padding

method to compare with blocking with software buffer and the base reference.

We scaled the bit-reversal methods from n = 16 to n = 25. Figure 10 shows the comparisons of cycles per element

among the three programs of both “float” type and “double” type on the XP-1000 machine. As we expected, we

achieved better or comparable performance to the ones on the Sun machines. For example, using “float” type, for

n = 24 or larger, the padding program is 30% faster than that of blocking with buffer; and 15% faster for “double”

type.
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Figure 9: Execution comparisons on the Pentium II 4000 PC: “bbuf-br” represents the method of blocking with soft-

ware buffer; “bpad-br” represents the method of blocking with padding; “breg-br” represents the method of blocking

with associativity and registers; and “base” represents the ideal base line reference.

7 Conclusion

We have examined and developed cache-optimal methods for bit-reversal data reorderings. These methods have been

tested on 5 representative processors of 1995 to 1999 products to show their effectiveness. We summarize different

techniques and their merits and limits in Table 7, which gives a guideline for application users to choose a technique

based on the size of the problem and the machines available. We also attach the source code of the padding method in

the end of the paper.
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methods cross Instruction memory program comments

interference count space complexity

blocking only 0 limited by data sizes.

blocking with + + + 1 system independent.

software buffer

blocking with 1 limited by the number

register buffer of available registers.

blocking with works well on high

associativity 2 associativity caches.

and registers

blocking with + 1 works well on

padding all systems.

a TLB size dependent

blocking for TLB 0 outer loop, effective for

fully associative TLBs.

paddings by using L

padding for TLB + 1 pages, effective for

set associative TLBs.

Table 2: Summary of the blocking methods and their impact on the three aspects of performance (cross interference,

instruction count, and memory space) and on the program complexity. The performance of “blocking only” method

is the base line for comparisons. Note: + means that the method quantitatively increases the factor and hurt the

performance; and blank means it has no impact. The program complicity is subjective, and compared with the “block

only” method, with 1 being a slightly more complex, and 2 a moderately more complex.

/* This is a padded bit-reversal program for cache optimization. */

void bit_reversal()

{

int blk, blk_rev, i, i_rev, j, jump = PAD_LENGTH, k;

int D = N >> 2*b, d = n - 2*b;

DATA_TYPE *Xp[B];

DATA_TYPE *Yp, f0, f1, f2, f3;

for (i = 0; i < B; i ++)

Xp[i] = &X[bitrev_tbl[i]*jump];

for (blk = 0; blk < D; blk ++) {

bitrev(blk, blk_rev, d);

for (i = 0; i < B; i ++) {
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i_rev = bitrev_tbl[i];

k = (blk << b) + i;

Yp = &Y[(blk_rev<<b) + (i_rev<<(n-b))];

for (j = 0; j < B; j += 4) {

f0 = Xp[j][k];

f1 = Xp[j+1][k];

f2 = Xp[j+2][k];

f3 = Xp[j+3][k];

Yp[j] = f0;

Yp[j+1] = f1;

Yp[j+2] = f2;

Yp[j+3] = f3;

}

}

}

}


