
Array Data Layout for the Reduction of Cache Conflicts∗

Naraig Manjikian and Tarek S. Abdelrahman
Department of Electrical and Computer Engineering

The University of Toronto
Toronto, Ontario, Canada M5S 1A4

email: {nmanjiki,tsa}@eecg.toronto.edu

Abstract—The performance of applications on large-
scale shared-memory multiprocessors depends to a large ex-
tent on cache behavior. Cache conflicts among array ele-
ments in loop nests degrade performance and reduce the ef-
fectiveness of locality-enhancing optimizations. In this pa-
per, we describe a new technique for reducing cache conflict
misses. The technique, called cache partitioning, logically
divides cache capacity into equal parts, and allocates arrays
in memory such that each array maps into a separate parti-
tion in the cache. We present experimental results from KSR
and SGI machines to demonstrate the effectiveness of cache
partitioning in eliminating cache conflicts and in realizing
the full benefit of locality-enhancing techniques for both se-
quential and parallel execution.

1 Introduction

In recent years, large-scale shared-memory multiproces-
sors have emerged as viable platforms for a variety of super-
computing applications; example systems include the Stan-
ford Dash [?] and Flash [?], the Cray T3D [?], the Convex
Exemplar SPP [?], the Kendall Square Research KSR1/2 [?],
and the University of Toronto Hector [?] and NUMA-
chine [?]. These multiprocessors provide hardware support
for shared-memory parallel programming, even though the
memory is physically distributed throughout the system, as
shown in Figure ??. The access latency for remote mem-
ory is greater than the latency for local or nearby memory.
The effects of increased latency for remote memory are mit-
igated through the use of high-speed caches that reduce the
frequency of accessing memory, and reduce contention aris-
ing from concurrent memory accesses during parallel execu-
tion. Parallel application performance depends in large part
on locality in the cache.

Scientific applications often consist of loop nests that
sweep through large data arrays whose size exceeds the ca-
pacity of a processor’s cache, and hence incur a large num-
ber of memory accesses. Locality-enhancing transforma-

∗This research is supported by grants from NSERC (Canada) and ITRC
(Ontario). The use of the KSR2 was provided by the University of Michigan
Center for Parallel Computing.

Local
memory

Interconnection Network

Remote
memory

Remote
memory

Cache Cache Cache

Procr Procr Procr

Mem Mem Mem

Figure 1: Shared-memory multiprocessor architecture

tions such as loop fusion [?] and tiling [?] can be used to
exploit data reuse and reduce the number of memory ac-
cesses. However, cache conflicts among arrays in a loop nest
eject reusable data from the cache, and the resulting conflict
misses significantly reduce the effectiveness of locality en-
hancement [?]. The occurrence of conflicts is sensitive to
cache hardware parameters, array sizes, and data access pat-
terns in the loop nest. These factors make it difficult to guar-
antee that applying a given loop transformation will always
improve performance.

In this paper, we present a new technique called cache
partitioning that eliminates conflicts within a loop nest by
adjusting the memory layout of arrays to yield a conflict-
free mapping of data into the cache. Cache partitioning log-
ically divides the cache capacity into equal parts, and allo-
cates arrays in memory such that each array maps into a sep-
arate partition in the cache. Cache partitioning is effective in
maximizing the benefit of locality-enhancing loop transfor-
mations by ensuring that reusable data from different arrays
is mapped into nonconflicting portions of the cache. In this
manner, locality-enhancing transformations may be applied
with the assurance that the potential benefit will not be di-
minished by the occurrence of cache conflicts.

The remainder of this paper is organized as follows. In
Section ??, we introduce cache partitioning and present an
algorithm for deriving a cache-partitioned memory layout for
arrays referenced in a loop nest. In Section ??, we discuss the
application of cache partitioning for two important locality-
enhancing loop transformations, fusion and tiling. In Sec-

arrays

cache

Figure 2: Avoiding conflicts in the cache

tion ??, we present experimental results obtained from KSR
and SGI multiprocessors to demonstrate the importance and
effectiveness of cache partitioning. In Section ??, we discuss
related work. Finally, in Section ??, we conclude and give
future research directions.

2 Cache Partitioning

Conflicts occur when data from different arrays maps into
overlapping regions of the cache during the execution of a
loop nest. Cache partitioning removes these conflicts by ad-
justing the memory layout of the arrays. The basic idea is to
logically partition the cache into nonoverlapping regions, one
for each array, and then adjust the starting addresses of the
arrays in memory such that data from each array maps into a
different partition, as in Figure ??(b). The starting addresses
of the arrays are adjusted by inserting appropriately-sized
gaps between the arrays in memory. Note that cache parti-
tioning only affects the array starting addresses; no changes
are required to the array index expressions.

Cache partitioning is particularly beneficial in avoiding
the conflicts which eject reusable data from the cache. Data
reuse which can be exploited in the cache is commonly as-
sociated with uniform dependences within a loop nest [?, ?].
A pair of references A(f(�ı)), A(g(�ı)) to the same array A
within a loop nest with iteration vector �ı generate uniform
dependences if f(�ı) = hA ·�ı + cf and g(�ı) = hA ·�ı + cg.
The mapping hA : Z� �→ Zk is represented by a k ×
 ma-
trix, where k is the array dimensionality and
 is the loop
nest dimensionality, and cf , cg are constant vectors in Zk.
In the presence of uniformly-generated dependences, spatial
and temporal reuse of array data can be effectively exploited
in the cache. In the absence of this uniformity, any potential
reuse may be difficult to exploit [?].

In addition to the presence of uniform dependences, the
benefit of cache partitioning is maximized when the data
access patterns for the arrays referenced in a loop nest are
compatible. Intuitively, array accesses with the same stride
and direction are compatible. More formally, the references
for a pair of arrays A and B are compatible if hA = hB.
Compatibility ensures that once the mapping of array start-
ing addresses into the cache is made conflict-free with cache

cache cache

array

arrays
(a) (b)

Figure 3: Multidimensional cache partitioning

partitioning, the mapping for the remaining data will also be
conflict-free. During the execution of the loop nest, new data
from each array is loaded into separate portions of the cache.
The address mapping function causes new data from one ar-
ray to replace older data from another array. Hence, the par-
tition boundaries effectively move through cache. However,
compatibility ensures that contents of the partitions never
overlap.

Compatibility may seem to be a restrictive requirement,
but it is normally satisfied in the presence of uniform de-
pendences. If not, it is often possible to obtain compatibility
from uniform dependences with appropriate data transforma-
tions. For example, if hA and hB are identical except for a
permutation of rows, the array dimensions corresponding to
those rows in one of the arrays may be permuted to obtain
compatibility. If hA and hB differ in the stride for one di-
mension, array compression or expansion [?] along that di-
mension can be applied. If hA and hB differ in the sign
in one dimension, the storage order in that dimension can
be reversed for one of the arrays. In conjunction with code
transformations (e.g., loop permutation), such data transfor-
mations are also necessary to improve the utilization of cache
lines, i.e., exploit spatial reuse.

Because the cache capacity is limited, the partitions in the
cache may not hold the entire contents of each array. Only
a portion of each array may reside in the cache at any given
time, or equivalently, a restriction is placed on the number
of indices from one or more array dimensions. The simplest
case is one-dimensional cache partitioning, where a restric-
tion is placed on the number of indices from the outermost
array dimension. All indices from the remaining inner di-
mensions for a given index of the outermost dimension are
resident in a partition simultaneously. As a result, the data
from each array is contiguous, and so are the cache partitions
containing that data.

If the limit on the number of indices from the outermost
dimension is too small to exploit the reuse of data in the
outermost array dimension, it is necessary to perform mul-
tidimensional cache partitioning, which reduces the num-
ber of indices from other array dimensions and makes ad-

GREEDYMEMORYLAYOUT(A,c)::
na = |A| // A = set of arrays
sp = c/na // partition size (c = cache size)
P = {0, 1, . . . , na − 1} // available partitions
q = q0 // start of storage in memory
do

select a ∈ A // selection is arbitrary
mapped address = CACHEMAP(q)
foreach p ∈ P do // determine gaps

target address(p) = p · sp

gap(p) = target address(p)− mapped address
if target address(p) < mapped address then

gap(p) = gap(p) + c // “wraparound”
endif

endfor
select popt ∈ P where gap(popt) = min

p∈P
gap(p)

P = P \ {popt}
START(a) = q + gap(popt) // insert gap
q = START(a) + SIZE(a) // adjust start
A = A \ {a}

while A �= ∅

Figure 4: Layout algorithm for cache partitioning

ditional cache space available to accommodate a larger num-
ber of indices from the outermost dimension. In this case,
the data in each partition is no longer contiguous because re-
ducing the number of indices from inner dimensions skips
over portions of the array in memory. Since the data is not
contiguous in memory, the partitions containing this data
in the cache are not contiguous either, as shown in Fig-
ure ??(a). These noncontiguous partitions must be carefully
interleaved in the cache as shown in Figure ??(b) to ensure
that they do not overlap and cause conflicts. For simplic-
ity of presentation, the remainder of this section discusses
one-dimensional cache partitioning. Multidimensional parti-
tioning is described in [?].

In one-dimensional partitioning, the array dimension
along which to partition is the outermost one. As discussed
above, this approach results in contiguous partitions contain-
ing contiguous data from each array. Given na arrays with
dimensions N1 × N2 × · · · × Nk

1, and a cache capacity of
c elements, the size of each partition is sp = �c/na	 ele-
ments. Without loss of generality, we assume column-major
storage order, i.e., elements in a column are stored contigu-
ously in memory. For the given array dimensions, the N 1

elements in the first dimension comprise a column and are
stored contiguously. The outermost array dimension is k,
hence each partition contains a contiguous block of data with
dimensions N1 ×N2 × · · ·×Nk−1 ×Bk, where the limit on
the number of indices from the outermost dimension is given
by Bk = �sp/(N1 · N2 · · ·Nk−1)	.

1We assume for simplicity that all arrays are of equal size. This is typi-
cally the case in most target applications. The technique can be extended to
accommodate arrays of different sizes.

Within the cache, the na partitions must be separated by a
distance sp to ensure that they do not overlap. If the first par-
tition begins at address 0 in the cache, the starting addresses
in the cache for the partitions are 0, sp, 2·sp, . . . , (na−1)·sp.
Each array must be assigned to a unique partition, hence the
starting address of each array in memory must be adjusted
such that the memory starting address maps to one of the
valid partition starting addresses in the cache. Gaps between
arrays in memory must be introduced to force each array to
map into a separate partition of the cache. These gaps rep-
resent memory overhead which should be minimized. We
employ the greedy layout algorithm shown in Figure ?? to
reduce the size of these gaps when mapping arrays to par-
titions. The arrays are selected in an arbitrary order. A set
of available partitions P is maintained, and each array to be
placed in memory is assigned to a cache partition of size sp

which minimizes the distance between the starting address
required for that partition and the end of the array most re-
cently placed in memory. Although multiple memory ad-
dresses map into the selected partition, the address in free
memory closest to the end of the most recently placed ar-
ray is always used. Each partition selected in this manner
is removed from the set of available partitions to ensure that
two arrays are not assigned to the same partition. The algo-
rithm assumes a direct-mapped cache with a typical address
mapping function CacheMap(). The complexity of the al-
gorithm is O(n2

a), and the final layout guarantees a conflict-
free mapping. A straightforward analysis can show that the
overhead from the gaps introduced by this algorithm (mea-
sured as the increase in the amount of memory required) is
bounded by

om <
2 · c

na · d,

where c is the cache size in array elements, and d = N1 ·
N2 · · ·Nk, the size of each array. Hence, the overhead dimin-
ishes rapidly as the data size increases relative to the cache
size, which is the case in applications to which locality opti-
mizations are applied.

3 Applications of Cache Partitioning

A loop transformation designed to enhance locality in the
cache may produce a loop nest which references many ar-
rays, and may also require that data from different arrays
be retained in the cache across multiple loop iterations. A
large number of arrays increases the potential for conflicts
between arrays during the execution of the loop nest. These
conflicts eject reusable data from the cache, incurring costly
cache misses to reload the data into the cache. As a result,
the performance benefit of the loop transformation is dimin-
ished. However, such conflicts can be eliminated with cache
partitioning in order to maximize locality and yield consis-
tently higher performance. In this section, we discuss the use

do j=1,N
 do i=1,N
 b[i,j] = a[i,j] + a[i,j+1]
 c[i,j] = b[i,j] + b[i,j−1]
 end do
end do
 .
 .
 .
do j=1,N
 do i=1,N
 y[i,j] = c[i,j] + a[i,j]
 z[i,j] = y[i,j] + y[i−1,j]
 end do
end do

do j=1,N
 do i=1,N
 b[i,j] = a[i,j] + a[i,j+1]
 c[i,j] = b[i,j] + b[i,j−1]
 .
 .
 .
 y[i,j] = c[i,j] + a[i,j]
 z[i,j] = y[i,j] + y[i−1,j]
 end do
end do

Figure 5: Example of loop fusion

of cache partitioning with two important locality-enhancing
transformations, loop fusion and tiling.

3.1 Loop fusion

Fusion of loops from adjacent loop nests combines their
respective loop bodies into a single body and collapses their
respective iteration spaces into one combined space [?]. In
so doing, the number of iterations separating references to
the same array is reduced, and array reuse can then be ex-
ploited to enhance cache locality. When it is possible to fuse
a number of loop nests together, as illustrated in Figure ??,
the resulting loop nest may reference a large number of ar-
rays. Conflicts between these arrays lead to cache misses
which negate the locality benefit of fusion. These conflicts
occur not only when elements from different arrays are ref-
erenced for the first time (such as a[i, j] and b[i, j] in Fig-
ure ??), but also affect array elements which are reused in
later iterations of the same loop nest (such as b[i, j − 1] and
b[i, j] in Figure ??). Cache partitioning maps data from dif-
ferent arrays to separate regions of the cache, ensuring that
initial references to array elements do not conflict. More im-
portantly, cache partitioning guarantees that array elements
which are reused in later iterations of the fused loop nest do
not conflict with other array data and remain in the cache for
later use.

The algorithm to apply cache partitioning with loop fu-
sion is straightforward. Candidate loops for fusion are iden-
tified, and compatibility in the access patterns across the loop
nests is enforced with appropriate code and data transforma-
tions. The loop nests are then fused, with any necessary ad-
justments to ensure that the fusion is legal [?]. Finally, the
arrays referenced in the fused loop nest are identified, and
the algorithm presented in Figure ?? is used to derive the
memory layout for those arrays.

In some cases, it is not possible to fuse all candidate loop
nests which use the same set of arrays into a single loop nest
due to the presence of intervening code. As a result, there
may be a sequence of two or more separately-fused sets of

do t=1,T
 do j=1,N
 do i=1,N
 b[i,j] = a[i,j] + d[i,j]
 c[i,j] = b[i,j] + a[i,j]
 d[i,j] = d[i,j] + c[i,j]
 end do
 end do
end do

do jj=1,N,B
 do t=1,T
 do j=jj,min(jj+B−1,N)
 do i=1,N
 b[i,j] = a[i,j] + d[i,j]
 c[i,j] = b[i,j] + a[i,j]
 d[i,j] = d[i,j] + c[i,j]
 end do
 end do
 end do
end do

Figure 6: Example of tiling

loop nests which share a common set of arrays. It still is
possible to use cache partitioning to eliminate cache con-
flicts in each of the resulting fused loop nests. The first step
is to determine an appropriate number of partitions to use
throughout the entire sequence. This number may indeed ex-
ceed the maximum number of partitions needed in any of the
loop nests because array-to-partition assignments are fixed
throughout the sequence. A graph-coloring algorithm is then
used to assign the arrays to the partitions such that the arrays
used in each loop nest are assigned to different partitions.
The complete algorithm to apply cache partitioning for mul-
tiple loop nests is given in [?].

3.2 Tiling

Tiling is another important loop transformation for en-
hancing locality in the cache [?]. Tiling is most effective
in exploiting reuse carried by an outermost loop, as illus-
trated in Figure ??. In Figure ??(a), successive iterations of
the t loop completely reuse the contents of arrays a, b, c, and
d. However, the array data is unlikely to be found in the
cache when it is reused in the outer t loop because it is re-
placed during the execution of the inner i, j loops. The tiling
transformation strip-mines an inner loop, then performs loop
interchange to move the strip control loop outermost with re-
spect to the t loop, as shown in Figure ??(b), which produces
“tiles” of iterations with dimensions T × B × N . Each tile
references a sufficiently small portion from each array such
that reusable data from all four arrays can remain in the cache
without being replaced. Data is reused from the cache dur-
ing the execution of the t loop within each tile, dramatically
reducing the number of cache misses.

However, the benefit of tiling is diminished if conflicts
occur between the arrays referenced within a tile [?]. In
Figure ??, each of the four arrays contributes a portion of
reusable data of size N × B within each tile. If these array
portions map into overlapping regions of the cache, the re-
sulting conflicts incur costly cache misses to reload data on
each iteration of the t loop within a tile. The application of
cache partitioning to the loop nest in Figure ??(b) maps data
from each array into one of four nonoverlapping partitions
in the cache, eliminating conflicts for all T iterations of the t

loop. Note that the choice of B is constrained by 4·B·N ≤ c,
where c is the cache capacity, in order for the four partitions
to fit in the cache without overlapping.

The algorithm for applying cache partitioning with tiling
of a single inner loop is straightforward. Compatibility in the
access patterns of the loop nest to be tiled is enforced with
appropriate data transformations. The arrays referenced in
the loop nest are identified, and the algorithm presented in
Figure ?? is used to derive the memory layout for those ar-
rays. The size sp of each partition places an upper bound
on the step size B for the inner loop to be tiled. For arrays
with dimensions N1 × N2 × · · · × Nk, the number of in-
dices from the outermost dimension of each array is limited
to Bk = �sp/(N1 · N2 · · ·Nk−1)	. The step size B for the
tiled loop should be such that no more than Bk indices of
the outmost array dimension are referenced within a tile, i.e.,
B ≤ Bk. The loop nest is then tiled with the size of Bk.

Cache partitioning offers an important advantage for tiling
by simplifying the choice of the tile size B. The elimination
of conflicts allows the selection of the largest possible size.
Previous research has resorted to reducing the tile size or to
copying in order to prevent the occurrence of conflicts [?].
Such approaches result in a significant underutilization of
cache capacity or introduce execution overhead; both reduce
the benefit of tiling. By permitting the use of a large tile size
without conflicts and without resorting to copying, cache par-
titioning maximizes the locality benefit for tiling.

4 Experimental Results

In this section, we present experimental results to demon-
strate the effectiveness of cache partitioning for locality-
enhancing loop transformations. The majority of our experi-
ments are conducted on a KSR1 multiprocessor from Kendall
Square Research. Each KSR1 processor includes a hardware
performance monitor for measuring not only total execution
time, but also the number of cache misses and the time spent
servicing cache misses. The KSR1 processor implements
a 64-bit superscalar architecture, and has a 256-KByte data
subcache, which is 2-way set-associative with a random re-
placement policy2. The subcache line size is 64 bytes, and
the access latency is 2 processor cycles. A 32-Mbyte local
cache is also associated with each processor to implement
the cache-only memory architecture (COMA) of the KSR1
multiprocessor system. Misses in the subcache to access the
local cache incur a latency of 20-24 processor cycles. We
are interested in the impact of misses in the processor data
subcache. For brevity, all subsequent uses of the term cache
denote the KSR1 data subcache.

2The 2-way set associativity permits up to two different data elements
to map to the same cache location without conflicting, hence measured im-
provements from cache partitioning on the KSR represent a lower bound on
the benefit of the technique.

Table 1: Characteristics of loop nest sequences

Loop nest No. of No. of Array
sequence loop nests arrays size
Jacobi 2 2 500 × 500
calc 5 6 256 × 256
LL18 3 9 256 × 256

The code used in our experiments consists of three kernels
containing representative sequences of loop nests that are
candidates for loop fusion and tiling. We use the Jacobi loop
nest sequence used in the numerical solution of partial differ-
ential equations. From the Livermore Loops benchmark, we
consider Kernel 18, an excerpt from a hydrodynamics appli-
cation. Finally, from the application qgbox [?], which im-
plements a finite-difference vorticity equation in ocean mod-
elling, we consider a kernel of loop nests from the calc
subroutine. Table ?? summarizes the characteristics of the
code used in our experimentation.

Our results are obtained by manually transforming the
code and data for the loop nest sequences. To enable fusion
and tiling, subroutine inlining and loop interchange are used
where necessary to collect all loop nests together and ensure
compatibility. Fusion-preventing dependences are overcome
using the technique of shifting iteration spaces [?]. Legal
tiling following fusion is enabled by loop skewing [?]. All
code is instrumented to measure execution time and cache
misses. The array sizes are large, and hence, the entire
data set cannot be contained in the cache. Cache-partitioned
memory layouts are obtained using the techniques described
in Section ??. The memory overhead for layouts did not ex-
ceed 5% for the array sizes given in Table ??.

The first set of results demonstrates the predictable cache
behavior obtained with cache partitioning. We compare
cache partitioning with array padding [?], a well-known tech-
nique which attempts to reduce the occurrence of conflicts
by increasing array sizes to alter the mapping of data into
the cache. For the fused loops in LL18, Figure ??(a) com-
pares the number of misses obtained for various amounts of
array padding with the number of misses obtained from sim-
ply applying cache partitioning to the original arrays, whose
dimensions are powers of 2. Figure ??(b) compares the num-
ber of misses when tiling the fused loop nests in LL18. In all
our results, padding cannot guarantee the elimination of all
conflicts. The number of misses may not be reduced signifi-
cantly, and may actually increase, as in Figure ??(b). On the
other hand, cache partitioning directly results in the best per-
formance, realizing the full benefit of fusion and tiling with-
out the “guesswork” of padding. Consequently, the remain-
der of our results and comparisons for the KSR are based on
conflict-free cache-partitioned memory layout, and the im-
provements from locality enhancement reported below are
lower bounds since they include the benefit of cache parti-
tioning.

0

40000

80000

120000

160000

200000

1 3 5 7 9 11 13 15 17 19 21

M
is

se
s

Amount of padding

Fusion, padding
Fusion, cache partitioning

(a) Fusion

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

1 3 5 7 9 11 13 15 17 19 21

M
is

se
s

Amount of padding

Tiling, padding
Tiling, cache partitioning

(b) Tiling
Figure 7: Cache partitioning for LL18 on KSR

Table 2: Experimental results for fusion—execution time

Loop Before fusion After fusion
nest Exec. Exec.
sequence time (sec) time (sec) Speedup
Jacobi 0.286 0.214 1.34
calc 0.355 0.281 1.26
LL18 0.403 0.336 1.20

The next set of results demonstrates the performance im-
provement from fusion, and how cache partitioning ensures
that its full benefit is obtained. Table ?? presents the ex-
ecution times for each loop nest sequence, before and after
fusion, and the resulting speedup. Table ?? presents the mea-
sured number of cache misses and compares them to the es-
timated number of misses. Assuming that the bulk of the
misses are due to array references, the estimated number of
cache misses is determined from the number of times arrays
are expected to be loaded into the cache (assuming no con-
flicts), the array size, and the cache line. For example, fusion
for calc results in a single loop nest which sweeps through
the contents of 6 arrays. The array size is 256× 256, and the

Table 3: Experimental results for fusion—cache misses

Loop Before fusion After fusion
nest Meas. Est. Meas. Est.
sequence misses misses misses misses
Jacobi 125062 125000 63243 62500
calc 109821 107330 49677 49152
LL18 136041 132098 77570 74305

Table 4: Experimental results for tiling after fusion
Loop nest Meas. t tm Smax

sequence speedup (sec) (sec) (t
t−tm

)
Jacobi 2.27 0.286 0.172 2.51
LL18 (128) 1.55 0.403 0.175 1.77

cache line size is 8 elements. Hence, the expected number of
misses in this case is 6 · 256 · 256/8 = 49152. The agree-
ment of the measured result with the estimate demonstrates
the effectiveness of cache partitioning in obtaining the full
benefit of fusion by avoiding conflicts which would other-
wise increase the number of misses and reduce performance.

We now consider the application of tiling after fusion of
the loop nest sequences. Our results are limited to Jacobi and
LL18 because only these two kernels have surrounding outer
loops carrying reuse which can be exploited by tiling. Loop
skewing is required in both cases to enable legal tiling. Since
we only consider one-dimensional cache partitioning in this
paper, a smaller array size of 128 × 128 is used for LL18 to
allow tiling only one inner loop, as in Figure ??. The larger
array size of 256×256 requires tiling two inner loops in order
to exploit the reuse, which in turn requires two-dimensional
cache partitioning. Table ?? provides the measured speedup
after fusion and tiling with an outer loop of T = 100 itera-
tions, and compares the measured speedup with the absolute
bound on speedup. The KSR hardware performance mon-
itor isolates the time during which the processor is stalled
accessing memory due to misses in the cache. Subtracting
this memory access time tm for the unfused and untiled ex-
ecution from the total execution time t yields an estimate of
the time for computation tc = t − tm. The absolute bound
on speedup Smax is the ratio of the original execution time
to the computation time, which is the execution time assum-
ing that the tiling is successful in eliminating all memory ac-
cesses. In Table ??, the measured speedups are reasonably
close to this bound. Conflicts are not the source of the dis-
crepancy, since they are eliminated with cache partitioning in
both cases (the results in Figure ?? confirm this statement).
It is the need for loop skewing prior to tiling which limits
the actual speedup. Without skewing, each array element is
reused entirely within a single tile. However, skewing causes
an array element to be reused in more than one tile, increas-

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19 21

E
xe

cu
tio

n
tim

e
(s

ec
)

Amount of padding

Orig., padding
Fusion, padding
Tiling, padding

Orig., cache partitioning
Fusion, cache partitioning
Tiling, cache partitioning

Figure 8: Cache partitioning for LL18 on SGI Challenge

ing the number of cache misses above the ideal minimum for
tiling and reducing the measured speedup below the bound.
Regardless of the skewing, cache partitioning is required to
prevent conflicts between reusable portions of different ar-
rays. Failure to avoid such conflicts can dramatically reduce
performance, as indicated earlier in Figure ??.

As additional evidence for the effectiveness of cache par-
titioning on a different platform, we present results obtained
from repeating the experiments involving the LL18 kernel
on an SGI Challenge machine. We use a single Challenge
processor, which incorporates a 16-Kbyte first-level cache,
and a 1-Mbyte second-level cache with 128-byte cache lines.
Both levels of the cache are direct-mapped. We perform one-
dimensional partitioning to eliminate conflicts in the second-
level cache because the miss latency to memory is much
greater than the miss latency between the first and second
levels of the cache. However, the tiled code is modified to
exploit reuse in the first-level cache, i.e., a small tile size
is used. Figure ?? shows the execution times measured for
the original LL18 loop nest sequence, the fused version, and
the tiled version, comparing the effect of various amounts of
padding with a direct application of cache partitioning. As
before, only cache partitioning is able to guarantee the best
performance, even for the original loop nests prior to any lo-
cality enhancement.

Our final set of results demonstrate the effectiveness of
cache partitioning in parallel execution. Figure ?? shows the
speedup obtained on a KSR2 multiprocessor for the fused
LL18 loop nests with data size 512× 512. The results based
on cache partitioning are compared with results obtained for
some values of padding. As before, cache partitioning con-
sistently provides the best performance. Furthermore, as
more processors are used, the relative impact of misses due
to conflicts grows, and the importance of cache partitioning
increases.

In summary, our experimental results demonstrate the
effectiveness of cache partitioning for locality-enhancing
transformations for both sequential and parallel execution.

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

Sp
ee

du
p

Number of Processors

Cache partitioning
Padding = 11
Padding = 15

Figure 9: Speedup for fused LL18 loop nests on KSR

Given the current trend of increasing processor speeds rel-
ative to memory speeds, the potential improvements from
enhancing locality with transformations such as fusion and
tiling will be greater for future processors. Cache partition-
ing ensures that the full benefit is actually obtained.

5 Related Work

Array padding [?] is a data-reorganization technique
which increases the size of the array dimension aligned with
the storage order, and is most effective in reducing the occur-
rence of self-conflicts when the array dimensions are powers
of 2. However, the amount of padding which minimizes the
occurrence of conflicts between arrays is difficult to deter-
mine directly when data from different arrays must remain
cached for reuse. Hence, arbitrary use of padding cannot
guarantee the best performance.

Temam et al. [?] study conflicts arising from array refer-
ences in loop nests typical of scientific applications. They
analyze specific instances of self- and cross-conflicts, and
suggest the use of padding and careful placement of arrays
in memory. However, no detailed methodology is described
for resolving conflicts.

Bacon et al. [?] discuss a method to determine the amount
of padding needed to avoid cache and TLB mapping conflicts
among individual array references in the innermost loop of a
loop nest. Their method is heuristic, involving a search for an
appropriate value of padding for each array. The method has
been applied to one example resulting in a slight improve-
ment in performance. Furthermore, their approach is not ap-
propriate for locality-enhancing loop transformations, as it
does not consider data reuse in outer loops, and therefore
cannot prevent cache conflicts for reusable data.

Memory alignment [?] is another data-reorganization
technique which aligns data in memory to cache line bound-
aries in a effort to contain individual data items within a
single cache line whenever possible. While this can reduce
cache traffic and decrease the potential for conflicts for small

data sets, the impact is not significant for large data sets, such
as arrays in scientific loop nests, because the cache line size
is relatively small.

Lebeck and Wood [?] present a case study of improv-
ing performance through a variety of techniques including
data transformations such as padding and memory align-
ment. However, these transformations are discussed in the
context of programmer tuning of application performance.
There is no discussion of how such transformations may be
incorporated into a compiler.

6 Concluding Remarks

This paper has described cache partitioning, a technique
for eliminating cache conflicts among arrays referenced in
parallel loop nests. Eliminating conflicts is particularly im-
portant to maximize the benefit of locality-enhancing loop
transformations, which require that reusable data remain in
the cache. Failure to resolve conflicts can render such trans-
formations ineffective.

We presented experimental results from a KSR multipro-
cessor and an SGI Challenge machine. The results demon-
strated the effectiveness of cache partitioning in eliminating
cache conflicts and in realizing the full potential of two lo-
cality improvement techniques, loop fusion and tiling.

Cache partitioning is a significant improvement over pre-
vious approaches such as padding because it consistently en-
sures that conflicts are eliminated, including those conflicts
which diminish the benefit of exploiting data reuse carried by
outer loops. Furthermore, it simplifies the choice of locality
optimization parameters, such as tile size. Cache partitioning
is a suitable technique for inclusion in a compiler to ensure
that the full benefit from locality optimization is realized. It
requires no hardware support and incurs low memory space
overhead in most applications.

The technique of cache partitioning can be extended to
deal with multiple levels of cache by incorporating additional
constraints on array starting addresses to prevent conflicts in
all cache levels.

References

[1] D. F. Bacon, S. L. Graham, and O. J. Sharp. Com-
piler transformations for high-performance computing.
Tech. Rep. UCB/CSD-93-781, Computer Science Divi-
sion, University of California, Berkeley, 1993.

[2] D. F. Bacon et al. A compiler framework for restruc-
turing data declarations to enhance cache and TLB ef-
fectiveness. In CASCON’94, pages 270–282, Toronto,
Canada, 1994.

[3] Convex Computer Corporation. Convex Exemplar sys-
tem overview. Richardson, TX, USA, 1994.

[4] Cray Research GmbH. The Cray Research mas-
sively parallel processor system — Cray T3D. 80922
Munchen, Germany, 1993.

[5] D. Gannon, W. Jalby, and K. Gallivan. Strategies for
cache and local memory management by global pro-
gram transformation. Journal of Parallel and Dis-
tributed Computing, 5:587–616, 1988.

[6] M. Heinrich et al. The Stanford FLASH multiproces-
sor. In Proc. 21th Intl. Symp. on Computer Architecture,
pages 302–313, Chicago, IL., April 1994.

[7] Kendall Square Research. KSR1 Principles of opera-
tion. Waltham, Mass., 1991.

[8] M. Lam, E. Rothberg, and M. Wolf. The cache per-
formance and optimizations of blocked algorithms. In
Proc. ASPLOS-IV, pages 63–74, Santa Clara, CA.,
1991.

[9] A. Lebeck and D. Wood. Cache profiling and the
SPEC benchmarks: A case study. IEEE Computer,
27(10):15–26, 1994.

[10] D. Lenoski et al. The DASH prototype: Implemen-
tation and performance. In Proc. 19th Intl. Symp.
on Computer Architecture, pages 92–103, Gold Coast,
Australia, May 1992.

[11] N. Manjikian and T. Abdelrahman. Fusion of loops for
parallelism and locality. In Proc. 1995 Intl. Conf. on
Parallel Processing, August 1995. To appear.

[12] N. Manjikian and T. Abdelrahman. Reduction of cache
conflicts in loop nests. Tech. Rep. CSRI-318, Computer
Systems Research Institute, University of Toronto, On-
tario, Canada, March 1995.

[13] J. McCalpin. Quasigeostrophic box model–revision
2.3. Technical report, College of Marine Studies, Uni-
versity of Delaware, 1992.

[14] O. Temam, C. Fricker, and W. Jalby. Impact of cache
interferences on usual numerical dense loop nests. Pro-
ceedings of the IEEE, 81(8):1103–1115, 1993.

[15] Z. Vranesic et al. The NUMAchine multiprocessor.
Tech. Rep. CSRI-324, Computer Systems Research In-
stitute, University of Toronto, Canada, April 1995.

[16] Z. Vranesic, M. Stumm, D. Lewis, and R. White. Hec-
tor: A hierarchically structured shared-memory mul-
tiprocessor. IEEE Computer, 24(1):72–79, January
1991.

[17] M. Wolf and M. Lam. A data locality optimizing algo-
rithm. In Proc. ACM Conf. on Prog. Lang. Design and
Impl., pages 30–44, Toronto, Canada, 1991.

[18] M. Wolf and M. Lam. A loop transformation theory and
an algorithm to maximize parallelism. IEEE Trans. on
Parallel and Distributed Systems, 2(4):452–471, 1991.

