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Discrete-Event Control of Nondeterministic Systems
Michael Heymann and Feng Lin,Member, IEEE

Abstract—Nondeterminism in discrete-event systems occurs in
many practical situations and often as a result of partial observ-
ability of events. For the adequate description of nondeterministic
systems and nondeterministic phenomena, the trajectory-model
formalism was introduced in [6] and [7]. This formalism has been
used in [26] (also [14] and [15]) for obtaining various results
on supervisory control of nondeterministic systems subject to
language specifications. In the present paper we develop a theory
of supervisory control for nondeterministic discrete-event systems
subject to both language and trajectory-model specifications. We
further show how well-known algorithms for supervisory con-
trol (of deterministic systems) under partial observation can be
adapted for synthesis of supervisors for nondeterministic systems
subject to both language and trajectory-model specifications.

Index Terms—Discrete-event systems, nondeterminism, super-
visory control, trajectory model.

I. INTRODUCTION

M OST OF the published research on control of discrete-
event systems (DES) has focused on systems that

are modeled as deterministic finite state machines. For such
systems, an extensive theory has been developed [24]. A great
deal of attention was also given to the control of partially
observed DES’s [17], in which only a subset of the system’s
events are available for external observation. For such systems,
necessary and sufficient conditions for existence of supervisors
and algorithms for supervisor synthesis [3], [16]–[19], [23],
[24] for off-line as well as on-line implementation [2], [8]
have been obtained, and a wide variety of related questions
have been investigated.

Partially observed systems frequently exhibit nondetermin-
istic behavior. There are, however, situations in which the
system’s model is nondeterministic not because of partial
observation but, rather, because either the system is inherently
nondeterministic or because only a partial model of the system
is available and some or all of its internal activities are
unmodeled.

In contrast to deterministic DES’s, whose behaviors are
fully specified by their generated language, nondeterministic
systems exhibit behaviors whose description requires much
more refinement and detail. Further, while in the deterministic
case, legal behavior of a system can be adequately expressed in
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terms of a language specification, this is clearly not always true
when the system is nondeterministic. Indeed, to formally cap-
ture and specify legal behavior of the controlled system, it may
be necessary to state, in addition to the permitted language, the
degree of nondeterminism that the controlled system is allowed
to retain. The trajectory model formalism was introduced
in [6] and [7] as a semantic framework for modeling and
specification of nondeterministic behaviors, and it was shown
to adequately capture nondeterministic phenomena that one
might wish to discriminate and distinguish by discrete-event
control. Thus, for control purposes, nondeterministic DES’s
can be modeled either as nondeterministic automata (with
-transitions) or astrajectory models.1

In recent years, there has been increasing interest in ques-
tions associated with nondeterminism in connection with su-
pervisory control of DES’s. In [4], [5], and [13], nondeter-
ministic supervisors for DES’s are considered, and existence
conditions of supervisors are derived for various types of
deterministic or nondeterministic specifications. In [15] and
[26] the supervisory control problem is considered where the
supervised system is assumed (or permitted) to be nondeter-
ministic, while the specification is assumed to be determin-
istic (that is, a language specification) and the supervisor is
also assumed to be deterministic. Conditions for supervisor
existence are derived there, but no explicit algorithms for
synthesis of supervisors are presented. In [14] nonblocking
supervisory control of nondeterministic systems is considered
where a concept of trajectory-model nonblocking (that dif-
fers from language-model nonblocking) is introduced. On the
other hand, in [21] and [22], deterministic supervisors for
nondeterministic plants with nondeterministic specifications
are considered. They employ Hoare’sfailures semantics for
system specification and derive certain algorithms (of high
complexity) for supervisor synthesis. Indeed, it seems to be
quite evident from the work reported in [21] and [22] that
the direct supervisor synthesis for nondeterministic systems is
quite a difficult task.

Motivated by the above, we began an investigation [9]–[11]
of the connection between the supervisory control problem
for general nondeterministic systems and the corresponding
problem for partially observed deterministic systems. Our
investigation led us to the conclusion that there appears to
be neither a need, nor an advantage in developing a direct
algorithmic approach to synthesis of supervisors for nondeter-
ministic systems. In particular, we developed an approach to
synthesis of supervisors for nondeterministic systems in which

1Other formalisms for modeling nondeterministic behaviors have been pro-
posed in the literature, such as failures semantics and bisimulation semantics.
These are briefly discussed in relation to discrete-event control in [7].
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direct advantage is taken of the existing theory and algorithms
for control under partial observation of deterministic systems.

Our approach to the supervisor synthesis is based on the
following basic idea: we first synthesize from the given
system, by adding to it hypothetical transitions and hypothet-
ical uncontrollable and unobservable events, a deterministic
system whose partially observed image (in the sense that the
hypothetical events are obviously not observed) is the original
nondeterministic system. We call this procedurelifting. Before
performing the lifting, the legal (trajectory model) specification
is embedded in the original nondeterministic system model
in a way that can readily be dealt with in the corresponding
lifted deterministic system. The next step of the synthesis is
to construct a supervisor for the lifted system subject to the
(obvious) condition that the artificially added events are neither
observable nor controllable. Such a supervisor can readily be
constructed using the well-known theory and algorithms for
supervisory control of partially observed systems. It is self-
evident, and we show it formally, that a supervisor synthesized
in this way is applicable for the original nondeterministic
system and satisfies the specifications. Moreover, we show that
if the supervisor designed using this approach is optimal for the
lifted system, it is also the optimal supervisor for the original
system. Thus, since control under partial observation is well
known, we only have to, ultimately, focus on the auxiliary
steps of model lifting and specification embedding.

The simplest version of the supervisory control problem for
nondeterministic systems is the case when the model is given
as a nondeterministic automaton and the specification of legal
behavior is given by a set ofillegal states that must be avoided.
This case, in which we refer to the specification asstatic,
has been discussed in [10], and we review it here briefly for
the sake of completeness. Basically, the only algorithmic step
needed in the static case, prior to the employment of standard
synthesis algorithms, is the lifting algorithm (which, as was
shown in [10], can actually be sidestepped if one wishes to
do so).

In the present paper we focus attention on the case where
the specification is given as a trajectory model and where the
central issue is the trajectory-embedding. That is, the main
problem is the correct interpretation of the specification as
a restriction of permitted system behavior. This is done by
embeddingof the specification in the plant model so that we
can ultimately proceed, just as in the static case, using the
lifting technique.

We deal in the present paper only with safety specifications
and ignore the important question of liveness, or nonblocking,
issues that are addressed extensively in [9].

In Section II, we briefly review the relevant aspects of the
theory of supervisory control under partial observation, and in
Section III we review the main concepts of nondeterministic
DES’s and their representations and reexamine the relation
between the trajectory models and their corresponding nonde-
terministic automata. Also, a “lifting” formalism is presented
by which the nondeterministic system is translated (or lifted)
to a deterministic system, by introducing hypothetical events.
The lifted system is constructed so that its projection yields
the original nondeterministic system. In Section IV we discuss

the supervisory control of nondeterministic systems with static
specifications, in which the specification of legal behavior is
given as a subset of legal states. In Section V we investigate
in detail the problem of supervisory control with dynamic
trajectory-model specifications. We develop an algorithmic
framework for translation of the supervisory control problem
with dynamic specifications to an equivalent problem with
static specifications. Finally, in Section VI we conclude the
paper with a brief discussion of the methodology for supervisor
synthesis.

II. DETERMINISTIC SUPERVISORY

CONTROL UNDER PARTIAL OBSERVATION

In this section we briefly review the basic results of super-
visory control for deterministic systems under partial observa-
tion. The uncontrolled system is described by an (determinis-
tic) automaton with elements defined
in a usual way. The languages generated and marked by
are denoted by and , respectively. The event set
is partitioned into controllable (observable) and uncontrollable
(unobservable) disjoint subsets . A
supervisor is a disablement map (where

is the projection map that deletes the unobserved
events) such that, following an observed string ,

denotes the set of events that are disabled by the
supervisor. The languages generated by the supervised system
is denoted by which is given inductively as follows.

1)
2)

We say that is (prefix) closed if it equals its prefix closure
. We also define controllability and observability as follows

[17], [23].
Definition 1: A language is said to becontrol-

lable (with respect to ) if

Definition 2: A language is said to be -
observable(with respect to and ), and when
simply observable, if

The controllability and observability characterize the exis-
tence condition for a supervisor as proved in [17].

Theorem 1: Let be nonempty. Then there exists
a supervisor such that if and only if is
closed, controllable, and observable.

Another useful concept is normality which is defined as
follows [17].

Definition 3: A language is normal if

One important fact regarding the relation between observ-
ability and normality is given by the following proposition,
which is essential to the development in this paper [20].
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Proposition 1: If , then a language is controllable
and observable if and only if it is controllable and normal.

A nice property of controllable (normal) languages is that
they are closed under arbitrary union. So let ( ,

, respectively) denote the set of controllable (normal,
controllable and normal, respectively) sublanguages of, then
we have the following [16], [17], [23].

Proposition 2: The supremal elements ,
, and exist, and they preserve the property of

closedness.

III. N ONDETERMINISM

In this section we briefly review the trajectory-model for-
malism of [7] (see also [26]) which has been developed as
a basic tool for modeling and analysis of nondeterministic
DES’s.

Just as thetrace is a record of the string of
events executed in a given run of a system, the trajectory
is also a record associated with a run of. It is more detailed
than the trace in that it lists, in addition to the successfully
executed events, events that the system might have rejected
(or refused), if offered, after each successful event. Thus, a
trajectory is an object in of the form

where denotes the th executed event, and , the th
refusal, denotes the set of events refused after theth executed
event. Theinitial refusal is the set of events that are refused
before any event is executed. We call the integerthe length
of , denoted , and the trace associated withis defined as

A trajectory is calledvalid if for all (that
is, an event cannot be executed if it has just been refused).

Let be a trajectory given by

A trajectory is a prefix of , denoted , if

and . The set of all prefixes of is called the
prefix-closureof and is denoted .

A trajectory is said to bedominatedby , denoted ,
if it is of the form

with for and for . The
set of all trajectories dominated byis called thecompletion,
or dominance-closure, of and denoted .

Finally, we define theclosureof , denoted , as

and the closure of a set of trajectories, is given by

A set of trajectories is closed2 if

We say that a set of trajectories is saturated3 if the
following condition holds:

We are now in a position to define a (nondeterministic)
process through its associated set of trajectories. Intuitively, we
identify a process with the set of all trajectories associated
with possible runs of . More formally, we have the following.

Definition 4:4 A (possibly) nondeterministicprocess is
a closed and saturated subset of valid trajectories

.
The saturation condition on the set of trajectories of a

process implies that if an event is impossible it will be refused.
(We shall later see that while in nondeterministic processes
events need not be impossible to be refused, in deterministic
processes events are refused if and only if they are impossible.)

Let be a set of trajectories. We say that a trajectory
is dominant(in ) if there is no trajectory , , such
that . The set of all trajectories that are dominant in
is called thedominance-setof and is denoted .

The following proposition states that a processis com-
pletely characterized by its dominance set [7] (see also [26,
Th. 1]).

Proposition 3: Let be a process. Then .
We shall next examine how trajectory-model representations

of DES’s, as defined above, are related to their more traditional
representation as automata or state machines.

Let us consider a DES given by a nondeterministic finite
automaton (possibly with-transitions)

over the event set , with a nondeterministic transition func-
tion . Let us assume, further, that the
system is nondivergent, that is, that there are no unbounded-
paths (i.e., loops that consist of-transitions). To obtain the set
of trajectories associated with, we proceed as follows. First,
we associate with each state its maximal-refusal-set

, which is defined as

2A closed set of trajectories is always nonempty since it includes the null
trajectory(;; �).

3The term “saturated” as defined here differs from the way it was used in
[26].

4The above definition is a simplified version of [7, Definition 12.1] since we
deal here only with termination-free nondivergent processes. The concepts of
termination and divergence are discussed in detail in [7]. Intuitively, a process
is nondivergent if it cannot engage in an unbounded string of unobserved
transitions.



6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 1, JANUARY 1998

where , the -closureof , is defined inductively [12] as

and

With each path in ,
we associate a trajectory in the following way: first
we represent as a formal trajectory by replacing each
state in by its maximal refusal set. That is, we write

. (Note that in , some of
the ’s may be .) Then, to obtain the trajectory associated
with , we delete all epsilons from , and in the resulting
string we replace all consecutive refusal sets by their union.

A state is called -stableif , that is if .
The assumption that is nondivergent implies that, in a
nontrivial process (that is, with a nonempty state set), there
exists at least one-stable state in the-closure of each state.

Denoting the set of trajectories associated with all-stable
paths in by (a path
is -stableif is -stable), the trajectory model of (which
we also denote ) is obtained as .

Conversely, we recall [7] that we can construct a nondeter-
ministic state machine (represented as a transition graph with
transitions) directly from the set or, more specifically,
from the set defined as

We identify the state set of the nondeterministic state machine
with and construct the state-transition graph by induc-
tion on trajectory length as described in [7, Algorithm 12.1].5

(See also the construction presented in [26] that uses so-called
“saturated trajectories.”)

It is not difficult to see that if and are two processes
such that ( denotes the trace set, or the
language generated by), then we are justified in saying that

is more nondeterministicthan whenever (because
can be thought of as evolving into through -transitions

[7]).
We can now define adeterministicprocess in the trajectory

model setting.
Definition 5: A process is called deterministic if for

every trajectory and any

Thus, a process is deterministic whenever events are refused
if and only if they are impossible. (Compare this condition
with the saturation condition defined earlier.)

Now, let be a prefix-closed language (set of traces)
and consider the set of all trajectory models that shareas
their trace set. First, we need to convince ourselves that this
set is never empty. To this end we shall construct a specific

5The transition-graph constructed there has a loop-freetreestructure which
is infinite even when a finite transition graph exists, unlessdom(P) is finite.
The question of finiteness of the systemG that is associated with a process
P is related to the concept ofregular processes [7].

trajectory model in this set that we shall denote as
follows:

Algorithm 1 (Construction of )
.

Proceed by induction on string length:
For

and ,

The correctness of the above algorithm is stated in the
following proposition [7, Proposition 12.5].

Proposition 4: is deterministic and .
The following theorem summarizes our preceding discus-

sion and characterizes deterministic processes.
Theorem 2: Let be a process, and let be its trace

set. Then is deterministic if and only if for every process
such that

Thus a deterministic process is uniquely defined by its
associated trace set and, in fact, is the smallest process
associated with a given trace set.

The validity of the following proposition [7, Th. 12.1] is
easy to verify.

Proposition 5: The union of a nonempty set of processes
is a process.

In view of the above proposition the union of the set of
trajectory models that have as their trace set is also
a trajectory model. It is of course the most nondeterministic
trajectory model that has as its trace set and is denoted

. It can easily be constructed from as follows:

where , for
.

For each trajectory model, we can thus construct a corre-
sponding nondeterministic automaton with-transitions, using
the algorithm in [7]. Similarly, for each nondeterministic
automaton with -transitions, we can construct its trajectory
model by identifying each-stable state with a corresponding
dominant trajectory as discussed earlier [7]. Therefore, we
can use either of them to model a nondeterministic system.
Henceforth in this paper, so long as no confusion arises, we
shall use the same symbol to denote both the trajectory model
and its associated nondeterministic automaton. The languages
generated and marked by a nondeterministic automatonare
denoted by and , respectively.

Consider a nondeterministic automaton, possibly with-
transitions
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(a) (b) (c)

Fig. 1. Procedure Extend.

over the event set . We introduce now a procedure for
constructing a deterministic automaton

over an extended event set , such that .
That is, reduces to upon replacing by -transitions all
its transitions labeled by events in. The procedure is based
on first extending to a standard nondeterministic automaton
with -transitions and then replacing thelabels by labels from
the event set .

Procedure Extend ( )
1. ;
2. For each and

If , add one more state,
and add -transitions as follows:

;
;

;
else set

;
3. For each

replace the -transitions by transitions
labeled as follows:

If , then set
;

;
4. End of algorithm.

Using this procedure, we can “lift” a nondeterministic
process to a deterministic process whose projection is the
original nondeterministic process. This lifted process will be
used in the rest of the paper.

Proposition 6: The lifted process has the following prop-
erties.

1) The process is deterministic.
2) .

Proof: That 1) holds is an elementary consequence of
the construction.

To see that 2) holds, recall first that the trajectory model of a
(nondeterministic) finite automaton is completely determined
by its set of dominant trajectories, that is, by the set of
trajectories associated with the-stable paths of the automaton.
Thus, it will be sufficient to show that this set of trajectories is

the same in and in . The procedure Extend performs
two types of operations on , as illustrated in Fig. 1.

For the second type of operations, there is a one-
to-one correspondence between paths of the form

in 1(b) and paths of the form
in 1(c). Clearly, the projection

of the latter yields the former. It remains to be shown
that operations of the first type do not change the set
of dominant trajectories. Indeed, by operations of the
first type, paths of the form are
transformed to , .
The corresponding formal trajectories are of the form

and ,
respectively, and it is readily noted that they yield identical
trajectories after conclusion of the projection operation (since

).

IV. SUPERVISORYCONTROL WITH STATIC SPECIFICATIONS

Clearly, nondeterministic systems exhibit more complex
and more subtle behaviors than deterministic ones. It is not
surprising that their behavioral specification can therefore also
be more complex than that of deterministic systems. In the
present section we examine the supervisory control problem
of nondeterministic systems subject to very simplestatic (i.e.,
state-based) specifications wherein the system is restricted to
remain within a predetermined subset of its state set. The
more general case ofdynamicspecifications is discussed in
Section V.

Suppose that the system under consideration is modeled as
a nondeterministic automaton

and we are specified a subset of forbiddenstates that
the system is not allowed to visit. Naturally, we assume that

. Control is achieved by a supervisor, defined as
a function . Here, for , is the
set of (controllable) events that are disabled by the supervisor
after execution of . The static supervisory control problem
is to construct a supervisor such that the supervised system
satisfies the state restriction. To be more precise, let

be the restriction of the automaton to the subset of “good”
states ; where is defined
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as , that is

Our task is to synthesize a supervisorsuch that the super-
vised systems satisfies

We will derive an existence condition for such a supervisor.
When this condition cannot be satisfied, we will synthesize a
minimally restrictive supervisor that confines the supervised
system to good states . We will discuss the synthesis of the
minimally restrictive supervisor in Section VI.

In the above, the supervised system, denoted by, is
formally obtained as follows. First, the language ,
generated by , is given inductively as

1) ;
2)

.

Next, to obtain the trajectory model of the supervised
system, we recall [7] that the strict synchronous (parallel)
composition of two trajectory models,
and , is given as follows.6 A trajectory

if and only if and there exist
dominant trajectories

and

such that for all .
We can now prove the following.
Lemma 1: The trajectory model of the supervised

system is given by

Proof: After executing the strings ,
, the supervisor disables (refuses) events in ,

, respectively. Therefore, the dominant tra-
jectories of are of the form

where is a dominant trajec-
tory, and for .

For , denote

By Algorithm 1, the dominant trajectories of
are of the form

6This is a special case of the more general definition given in [7].

where . Therefore, a trajectory

if and only if , and
there exist dominant trajectories

and

such that for all ,

Comparing this trajectory model with , it is clear that

To proceed with our analysis, it is convenient to first embed
the specification in the process by considering the
automaton

where the specification is interpreted as the subautomaton
obtained by the restriction of to . Now we
lift by applying to it the procedure Extend to obtain the
deterministic automaton

where

The “legal” language is now defined to be the set
of all strings that visit only good states in, that is

In view of Proposition 6, it is clear that

and it is not difficult to prove the following.
Proposition 7:
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Proof: Denote

and

Then, clearly, is deterministic, and . Therefore,
if we can show that is a process obtained by the lifting of

(i.e., a lifted process of ), then, by Proposition 6

To show that is a lifted process of , we note that
is a subautomaton of , which, in turn, is a lifted process of

. We further note that is a subautomaton of . Therefore,
we only need to show that a path in visits a state in if
and only if the corresponding lifted path in visits a state
in . (A path in is the corresponding path of in ,
if it reduces to after deletion from it of all states in
and all events in . This implies, in particular, that the last
state of is in .)

Only If: Assume that a path
of visits a bad state . The

corresponding path in has the same form with possible
insertions of , where and . Hence the
corresponding path in also visits .

If: Consider a path in of the form
that visits a state . If , then the

projected path in also visits the state . If ,
then and by the definition of , the next state visited
by the path in must be in . This bad state will be visited
also by the projected path in

We can now prove the following theorem that provides the
theoretical justification for our proposed approach to control
of nondeterministic systems. Specifically, we shall state a
necessary and sufficient condition for the existence of a
supervisor. In the following theorem, observability is defined
for and , and the set of controllable
events is .

Theorem 3: For and given as above, there exists
a supervisor such that if and only if is
controllable and observable with respect to .

Proof: By the results of [17], is controllable and
observable with respect to if and only if there exists
a supervisor such that ,
where is the projection map. Therefore,
the proof of the theorem reduces to showing that there exists
a supervisor such that if and only if there exists
a supervisor such that .

If: Suppose that there exists a supervisor
such that . Since , and

since , we can define as
. Thus we obtain

where the first equality above follows from Proposition 6 and
the third equality follows from Proposition 7.

Only If: Suppose that there exists a supervisor
such that , and define

as . Thus, we have (with the aid of Propositions 6
and 7)

which, in view of the definition of , implies that

The above theorem shows that we can translate a supervi-
sory control problem of a nondeterministic system, subjected
to static specifications, into a supervisory control problem
under partial observation of a lifted deterministic system.
The supervisors for both systems are the same ( ). In
the next section we shall show how the same approach can
also be employed in the more complex setting of dynamic
specifications. Later, we shall turn to the algorithmic aspects
of supervisor synthesis.

V. SUPERVISORYCONTROL WITH DYNAMIC SPECIFICATIONS

In this section we again assume that the system under
consideration is a nondeterministic automaton

but the specification of legal behavior is adynamic specifi-
cation, given to us as another (generally nondeterministic)
automaton

This nondeterministic specification automaton is con-
structed so as to capture both the language constraints for
the controlled system and, more subtly, the nondeterministic
behaviors that the controlled system is allowed to retain.
We shall see later, through an example, some typical
nondeterministic control considerations.

Our goal is to design a supervisor(if possible) such that

For this to be possible, a precondition is that all the trajectories
in be physically possible in some subautomaton of. If this
precondition is not satisfied, then must be modified.

This is similar to the case of deterministic systems with
language specifications, where in order for a supervisorto
exist such that , the precondition is .
If this precondition is not satisfied, is modified by replacing
it with .

For nondeterministic systems, however, the situation is
much more complex. We cannot simply modify by taking

since, in particular, the intersection of two processes
is generally not even a process.

In this section, we will develop a procedure that will modify
correctly and, at the same time, translate the dynamic

specification into an equivalent static specification.
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As the first step in our procedure, we note that a trajectory
in whose trace is not in is definitely impossible in
(or any of its subautomata). Therefore, we first replaceby

It is not difficult to see that satisfies the constraint

and retains all the relevant nondeterministic aspects of.
Next, we note that imposes both a language constraint

and a trajectory-model constraint7

To consider the language constraints imposed by the speci-
fication, we construct the deterministic automaton

which we shall employ for our language specification. To this
end, we extend to an automaton

where , where is a new state that we call
the bad state, and is defined as

if is defined
otherwise.

We immediately note that and
.

Next we construct the automaton , which can
be represented as

We can now readily prove that the trajectory models of
and of coincide.

Proposition 8:

Proof: The result is an immediate consequence of the
fact that, since is deterministic and , a
trajectory is in if and only if it is of the form

(see Definition 5 and the discussion
preceding Lemma 1).

7We shall later see that when this specification cannot be met exactly, we
will be able to obtain its best approximation.

We also note at once that

Thus, the problem of synthesizing a supervisorthat max-
imizes subject to the constraint that
is equivalent to synthesizing a supervisorthat maximizes

subject to the constraint that . This
latter problem consists of synthesizing a minimally restrictive
supervisor such that all paths of are confined to the subset
of good states . This is clearly a supervisory
control problem with static specifications of the type discussed
in Section IV.

We now turn to the more restrictive aspect of our specifi-
cation, namely to the requirement that the supervised system
satisfy the trajectory-model specification .

However, before addressing the technical aspects of this
problem, it is in order to make a few observations regarding the
relation between the language specification and the trajectory-
model specification.

The language specification admits as “legal,” every trajec-
tory of the controlled system, so long as the associated trace is
an element of the specified language. Thus, every trajectory-
model that satisfies the condition that will
yield the same controlled system, provided only the language
constraint is employed. The largest such trajectory model is

, which is obtained as the union of all trajectory
models that share this language. Thus, we may think of the
language specification as a trajectory-model specification with
respect to the trajectory model . Since this
trajectory model is the most nondeterministic in its class, it
is clear that the language specification does not discriminate
between nondeterministic aspects of system behavior. It is
therefore the role of the trajectory-model specification to
delineate the nondeterministic behaviors that the controlled
plant is permitted to retain.

Again, in view of Proposition 8, we shall employ as our
plant model. Indeed, in this model we already marked the set

of all the “good” states such that . It
remains now only to determine the subset of these “good”
states that consists of all states that can be reached via
paths whose associated trajectories are in. (The trajectory
associated with a path has been defined in Section III.) More
precisely, we wish to construct from, the automaton

such that a path of

belongs to (in the sense that each of its states belongs to
) if and only if its associated trajectory . Thus,

is the largest subset of states in that can be reached by
paths in , whose associated trajectories are in. To this
end we employ the following algorithm that identifies in the
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process all paths whose associated trajectories are dominated
by (corresponding) trajectories of the specification

Algorithm 2 (Trajectory inclusion)
Input:

Plant automaton:
Specification automaton: .

satisfying .
Output:

Automaton: .

Preliminaries

Represent and as trajectory model automata
by augmenting each state labelwith its maximal
refusal set .
Set .
Set .
Set .
Set

Initialize algorithm

1. Set . If , set .
If , go toEnd.

2. Set .
3. Choose a state .
4. If , add to .
5. Remove from .
6. If , go to 3.
7. If , add to and to .
8. Remove from and from .
9. If , choose a state and go to 2.

Iterate

10. If go to End.
11. Choose a state and set

12. If , remove from and go to 10.
13. Choose a symbol and set

and

14. If , remove from and go to 12.
15. Choose a state and set .
16. Choose a state .
17. If , add to .
18. Remove from .
19. If go to 16.
20. If , add to and to .
21. Remove from and from and go to 14.

End.

The correctness of Algorithm 2 is stated in the following.
Theorem 4: For any path in , belongs to if and

only if .
Outline of Proof: We only give an outline of the proof

because its details are tedious and provide no additional
insight.

First, we note from the algorithm that a state if and
only if .

Next, it is not difficult to prove that a state satisfies
if and only if for every path

leading to and belonging to , there exists a path in

such that , and

Hence, a path

belongs to if and only if there exists a path in

such that

But this implies that , concluding the
proof.

The above theorem shows that we can always translate a
dynamic specification into an equivalent static specification.
Next we give an example to illustrate the preceding theory.

Example 1: The process in Fig. 2(a) represents, schemat-
ically, a message transmission system that sends messages
from a source (state 1) to a destination (state 7). The system
has at its disposal two terminals (represented by states 2 and
3) through which messages can be forwarded for transmission
(event ). Two communication channels are available for mes-
sage transmission: a secure channel and a nonsecure channel.
Transmission on the secure channel is denoted by event
and on the nonsecure channel by event. Upon completion
of successful transmission of a message, an acknowledgment
is sent from the destination to the source (event), thereby
permitting transmission of a new message. Three types of
messages can be sent in the system: top-secret messages that
are initially dispatched to terminal 2 (event), secret messages
that are also initially dispatched to terminal 2 (event), and
nonsecret messages that are initially dispatched to terminal 3
(event ). Messages can be transferred between the terminals
prior to their transmission (event). When a message is
forwarded for transmission (event) from terminal 2, it can
be transmitted controllably (at the discretion of the sender)
on either the secure or on the nonsecure channel. On the
other hand, when a message is forwarded from terminal 3,
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(a)

(b)

Fig. 2. A message transmission system.

the channel selection is nondeterministic, meaning that it is
not under control of the sender.

The specification for legal behavior of the transmission
system, given formally in Fig. 2(b), states that top-secret
messages must be sent only on the secure channel, that secret
messages can be sent controllably (that is, with control at the
disposal of the sender) on either channel,8 while no restriction
is imposed on the channel selection for the transmission of
nonsecret messages. More specifically, the specification states
that if has occurred, then following the occurrence of,
the event (and only ) must be possible next. Similarly,
if has occurred, then following the occurrence of, both

and must be deterministically possible. In contrast, if
has occurred, then after, either or can follow, but the
choice is permitted to be nondeterministic. That is, there is no
insistence that the channel selection be controllable.

It is noteworthy that the difference between the specification
for secret and nonsecret messages is not a language difference.
Indeed, the same event sequences are permitted in both cases.
There is, however, a behavioral difference that is captured by
the trajectory model as will be seen in detail later.

8This allows for the possibility of implementing an additional supervisor
to perform the channel selection.

(a)

(b)

Fig. 3. Modified specification for message transmission system.

Fig. 4. ^Hd.

It is further noteworthy that for the statement of the speci-
fication (expressed by the automaton), there is no need to
have a detailed model of the process. That is, need not
be, and in this example is not, a sublanguage of .

We proceed now with the analysis of our specification prob-
lem. First, we begin by constructing the modified specification
automaton

which together with is shown in Fig. 3.
Next we construct the modified process . The

process is given in Fig. 4 and the process is shown
in trajectory-model form, along with the trajectory-model
representation of , in Fig. 5.

The reader will note that the state marked by an unfilled
circle in (which is reached by the string ) is an illegal
state because it violates the language restriction imposed by
the specification .

We shall see in the next section that if we usewith this
as the only illegal state, an optimal (minimally restrictive)
supervisor can be obtained that guarantees satisfaction of the
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(a)

(b)

Fig. 5. Trajectory models of plant and specification.

language restriction imposed by. To obtain the trajectory
model specification as a static specification, we employ Al-
gorithm 2 to and . The resulting automaton is shown in
Fig. 6.

In this automaton, two types of illegal states appear: states
that violate the language constraints of the specification
(marked by an unfilled circle) and states that violate the
specification’s trajectory-model constraints (marked by an
encircled bullet).

The nondeterministic supervisory control problem with
trajectory-model specification can now be stated in the
following static framework: construct a supervisor (minimally
restrictive, if possible) such that no illegal state is ever visited.

In the next section we pursue this example further to obtain
the optimal supervisors and supervised plants.

We conclude this section with a discussion and elaborations
regarding some interesting special cases.

Deterministic Systems:First, let us consider the special
case where the process is deterministic. Suppose there
are two specifications and , such that and

. Since

Fig. 6. AutomatonP with static specification.

for every trajectory model satisfying , it
follows that , so that for every path in , the
associated trajectory is in if and only if it is in . This
is true, in particular, if , which is simply
the language specification. Thus, in the case of deterministic
systems, there is nothing to be gained by trajectory specifica-
tions beyond what can be specified and achieved by language
specifications. The Ramadge–Wonham framework, which has
been studied extensively in the literature, is complete and all
that is needed in this case.

Nondeterministic Systems with Language Specifications:
We have already seen earlier that the language restriction
imposed by a trajectory-model specification is embedded as a
component in the translation process to the equivalent static
specification framework and can be isolated as a separate
supervisor synthesis problem (that satisfies only the language
restriction). This will be demonstrated for our example in
the next section. A further noteworthy observation is that
if is a language specification, then is the
equivalent trajectory-model specification. That is,
as a trajectory-model specification, yields precisely the same
result as as a language specification.

However, if we are only concerned with language specifi-
cations, we can proceed directly along a different and much
simpler path.

We begin by lifting to and then letting

The supervisor synthesizing will satisfy the language spec-
ification. To show this, let us use the following.

Lemma 2: Given two languages and
. If , then

1) ;
2) is normal with respect to .

Proof: The proof is elementary.
Now we can prove the following.
Theorem 5: If the supervisor synthesizes , that is, if
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then

Proof:

The last equality is the consequence of Lemma 2 and the fact
that .

As shown in [18], since is normal, is controllable with
respect to if and only if is controllable with respect
to . Therefore, we have the following.

Corollary 1: For a nondeterministic system and a lan-
guage specification , there exists a supervisor such
that , if and only if is controllable with
respect to .

This corollary leads naturally to the results of [26], where
only language specifications are considered.9

VI. SUPERVISOR SYNTHESIS

In Section IV we have shown how a supervisor can be
synthesized for a nondeterministic system with static spec-
ifications using the lifting procedure Extend, in case the
legal language is controllable and observable. In Section V
we have shown that the supervisory control problem for a
nondeterministic system with dynamic specifications can be
translated to an equivalent problem with static specifications.

When the controllability and observability conditions are
not satisfied for the language, then no supervisor exists
that achieves the exact specification. In the present section
we focus our attention on obtaining the best approximation
of the optimal supervisor; that is, we shall show how we can
synthesize the minimally restrictive supervisor that confines
the supervised systems to its subset of good states.

We shall assume that the problem is already formulated
as one with static specifications. That is, we assume that the
system and specification are described by

where is the set of bad states that must be avoided.10

First we lift to using the procedure Extend and define
as in Section IV. If is not controllable and observable with
respect to , then we will find the largest sublanguage of
that is controllable and observable and synthesize a supervisor
based on that language.

As we will show, this largest sublanguage always exists
and is the supremal controllable and normal sublanguage of

. By synthesizing a supervisor based on this sublanguage,
9In [26], the system model has been allowed to include also “driven” as well

as unobservable events. Thus, our corollary relates only to their case where
driven and unobservable events are absent. The case where unobservable
events are present in the model is discussed for general trajectory-model
specifications in [9].

10The reader will note that in Section VI the subsetQ
t

of marked states
consisted of the good states so thatQ

b
= Q�Q

t
.

we allow to visit as many good states as possible without
violating the specification. The supervised system obtained this
way is described by the largest possible legal subautomaton
of . Since a larger subautomaton of projects to a larger
subautomaton of , the supervisor thus synthesized gener-
ates the largest possible legal subautomaton of, and the
corresponding supervisor is thus minimally restrictive.11

Our first design procedure is given by the following.
Algorithm 3 (Off-Line Synthesis):

1) Extend( ).
2) .
3) Design a supervisor off-line.

In Algorithm 3, Step 1) lifts to as described ear-
lier. Step 2) calculates the supremal controllable and normal
sublanguage of . A formula for calculating the supremal
controllable and normal sublanguage is given
in [1]. We note that since in , all controllable events are
observable ( ), controllability and observability
of a language is equivalent to controllability and normality of
that language. Step 3) designs a supervisor off-line in the usual
way [17]. Therefore, we can easily prove the following.

Proposition 9: Let be the supervisor synthesized by
Algorithm 3. Then

There is another approach that can be used for supervisor
synthesis, that is to design a supervisor on-line instead of
off-line. The advantage of the on-line approach is that the
computational complexity is linear at each step of event
execution [8].

Algorithm 4 (On-Line Synthesis):

1) Extend( ).
2) .
3) Design a supervisor on-line.

Step 1) is same as that of Algorithm 3. Step 2 calculates the
supremal controllable sublanguage of the legal language.
This can be done with linear complexity for a closed language

. All that needs to be done is to successively delete the states
from which can be reached via strings of uncontrollable
transitions

where

In Step 3), we design a supervisor on-line using the results
of [8]. The resulting supervisor will generate the supremal
controllable and normal sublanguage ofand hence allows
the system to visit as many legal states as possible. As shown
in [8], the complexity at each step of event execution is linear
in .

The correctness of the above algorithm can be easily proved
and is summarized in the following.

11Note that the trajectory model of the supervised system thus synthesized
is not, in general, a subset ofPs, the trajectory model of the specification.
This is because, in general, the trajectory model of a subautomaton is not a
subset of the trajectory model of the larger automaton.
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Proposition 10: Let be the supervisor synthesized by
Algorithm 4. Then

The supervisors thus obtained are “optimal” in the sense
that they are minimally restrictive, as stated below.

Theorem 6: The supervisors designed using Algorithms 3
and 4 are minimally restrictive and allow the supervised
system to visit as many legal states as possible.

Proof: By Propositions 9 and 10, the supervisors gener-
ate the supremal controllable and normal sublanguage of,

. Since all the unobservable eventsare artificial
and hence uncontrollable, by Proposition 1, controllability and
normality is equivalent to controllability and observability.
Therefore, the supremal controllable and normal sublanguage
of is also the supremal controllable and observable sublan-
guage of . Hence the supervisors generate the largest legal
sublanguage of and are minimally restrictive.

By the above theorem, the supervised (nondeterministic)
systems and are the same and are described by
the largest possible subautomaton of.

In view of the way is calculated [1], we can
modify Algorithm 3 by directly converting to a deterministic
automaton without adding the unobservable events. This
leads to the following direct approach.

Algorithm 5 (Direct Synthesis):

1) Convert( ).
2) .
3) Design a supervisor off-line.

Procedure Convert, that converts the nondeterministic au-
tomaton into a deterministic one , is standard [12]. Each
state in is now a subset of states in. We call such a state
“bad” if it includes a bad state of

where

Step 2) computes the supremal controllable sublanguage

where

Step 3) then designs a supervisor based on.
We will show that the resulting supervised systems using

Algorithms 3 and 5 are the same as far as strings inare
concerned.

Theorem 7: The supervisor designed using Algorithm 5 is
minimally restrictive and allows the supervised system to visit
as many legal states as possible.

Proof: Let and be the supervisors obtained from
Algorithms 3 and 5, respectively. In view of Theorem 6, it
suffices to prove that

By Proposition 9

By a formula in [1]

where denotes controllability with respect to . There-
fore, by Lemma 2

Again, by another formula in [1]

Now, it is clear that Step 1) of Algorithm 5 computes
, and Step 2) of Algorithm 5 computes

. Hence

which implies

Remark: The theory of the present paper was developed
under the assumption that the system under consideration
is nondivergent. However, the nondivergence assumption is
not essential for our theory and was made here primarily
to render the paper more accessible to the reader, since the
analysis of divergent systems is much more complicated. The
reader can consult [7] for details regarding trajectory models of
systems with divergence. Finally, although the assumption of
nondivergence is very reasonable in most practical cases, the
algorithmic framework presented in the present paper is valid
for systems with divergence (i.e., automata with-cycles) as
well.

We conclude this section with a continuation of Example 1.
Example 1—Continued:In Fig. 6 we have given the au-

tomaton with static specifications depicting both the con-
straints imposed by the language of (the only illegal state
being the unfilled circle) and the constraints imposed by
as a trajectory specification (the illegal states being the ones
marked by unfilled circles or encircled bullets).

When applying the procedure Extend to the automaton,
we obtain the automaton shown in Fig. 7.

When any of the above synthesis methods is used with
respect to the language specification of(that is, the state
marked by unfilled circles being the only illegal state), the
supervisor is obtained as

if
otherwise.
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Fig. 7. Lifted ~P with static specification.

Fig. 8. Controlled system for language specification.

Here and below we assume that all events
are controllable. The controlled system will then be obtained
as the automaton shown in Fig. 8.

For the trajectory specification of the supervisor is
obtained as

if
if
if
otherwise

and the controlled system is obtained as in Fig. 9.
The only restriction that the language specification imposes

is the prevention of the event from occurring after a string
that includes a recent. That is, it prevents top-secret messages
from being sent via the nonsecure channel. The reader will
note, however, that the (language) specification as discussed
here does not concern itself with the issue of deadlock.

Fig. 9. Controlled system for trajectory specification.

Therefore, it permits the possible occurrence of deadlock after
.12

The reader will note that with the trajectory specification,
the supervisor distinguishes between rather subtle differences
in requirements for the three types of messages. Specifically,
deadlock no longer occurs following the transmission of top-
secret messages because the supervisor disables transmission
of these messages altogether from terminal 3 (disablement of
following ). The supervisor also distinguishes between
secret and nonsecret messages. It disables transmission of
secret messages from terminal 3 while imposing no restrictions
on transmission of nonsecret messages. It should also be
noted that the restriction imposed on secret messages does not
curtail the generated language. Rather, it restricts the degree
of permitted nondeterminism in the controlled system.

VII. CONCLUSION

We studied the supervisory control for nondeterministic
DES’s subject to both language and trajectory-model specifi-
cations. We have shown that there is a close relation between
the problem of control of a nondeterministic system and
the problem of control under partial observation of related
deterministic system that can be derived from the original
process and specification. Thus, our approach was to translate
the given supervisory control problem into an equivalent
problem for partial observation systems. In view of this
relation, we developed a uniform theory for both deterministic
and nondeterministic systems that enables the application of
known results regarding control of partial observation systems
to the control of nondeterministic systems as well. This is
true especially with respect to supervisor synthesis methods
that are difficult to develop directly in the nondeterministic
setting. However, before this translation can be carried out,
the subtle differences between language specifications and
trajectory specifications (unique to nondeterministic systems)
had to be handled carefully. We demonstrated the subtleties of

12Nonblocking supervisory control of nondeterministic systems is investi-
gated in detail in [9].
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trajectory-model specifications by an example and developed
an algorithm for incorporating the trajectory-model specifica-
tion. Finally, while our theory was developed via a lifting
procedure, we have shown that the actual synthesis of a
supervisor can be carried out with or without lifting.
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