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ABSTRACT

The concept of attraction has been shown to play a basic role in the synthesis of
supervisors for stabilizing discrete-event processes. In this paper we define and
investigate optimal attraction - optimal in the sense that the cost (or distance) of
the convergence path is as small as possible with respect to some distance
measure. We find conditions for the existence of supervisors achieving optimal
attraction, and provide efficient algorithms for their synthesis.

Key words: discrete-event processes, supervisory control, stabilization, attraction, optimal
supervisors.

1. Introduction

The concept of attraction (or stabilization) was introduced in [1], where it was shown to
play an important role in the synthesis of supervisors for stabilizing discrete-event processes.
Intuitively, the notion of attraction is concerned with the possibility of driving a process
(modeled by a state machine or a directed graph) from arbitrary initial states to a prescribed
subset of the state set and then keeping it there indefinitely. A similar concept was introduced
independently in [2].

In this paper, we are interested in the problem of finding supervisors that achieves optimal
attraction in the sense that the cost (or the distance) of the convergence path is as small as
possible with respect to some distance measure. To this end, the digraph’s edges (representing
events) are assigned weights (lengths), and, roughly speaking, the cost is defined as that of the
most expensive execution which may be selected by the process (under control) in its progress
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from an initial state to a target state. It turns out that, in general, there need not exist a supervisor
that achieves minimal-cost attraction with respect to an arbitrary initial state. However, as will
be shown later, under suitable conditions (depending on the process’ structure and its edge
weights) such an optimal supervisor exists, and we shall provide efficient algorithms for its
synthesis.

The paper is organized as follows. In the remainder of this section we give some
terminology and notation. In section 2, we give an informal description of the optimal attraction
problem. Sections 3 and 4 deal with the existence and synthesis of optimal supervisors for
processes whose edge lengths are positive, whereas the general case (i.e., when negative lengths
are allowed) is discussed in section 5.

1.1 Processes and Supervisors

A detailed discussion of various aspects concerning attraction in discrete-event processes
appears in [1]. We recall here only facts needed for the ensuing development. bieea finite
alphabet. Aprocess overZ is modeled as a finite weighted directed graph (digraph) (V, E)
whereV is a set of states (vertices) aBd1V x = xV is a set of edges. An edge Gfis thus an
ordered triplee =(v,0,u) O E and it is said to be directed fromto u. Each edgee L E is
assigned a length(e). If (v, o, u) O E we say thaw is apredecessor of u andu is asuccessor of
v. ForvOV andQLL , let dg(v, Q) denote the set of al's successors thak can reach by
executing a transition labeledl[X2 . That is

o(v,Q)={VvOV|(v,o,v)OE OoX } . (1.1

For a singleton&€ = { o} we write dg(v, 0). The process is assumed to be deterministic in
the sense thatd(v, 0) | <1 for everyv 0V ando [X (here | denotes the cardinality of.

A path is a finite string of edges = (Vy, 01,V1)(V1,02,V2) - - (V-1 , On , V) With which
is associated the unique (statedjectory vy ,Vvq, -+, Vs A closed trajectory (i.ey, =V,) in
which no state (except the start and end states) appears more than once is cyitbd @
digraph without cycles is calledcyclic. The length of a patls, denoted (s), is the sum of its
edges’ lengths.

A statev is reachable from a stateu if there exists a path fromtov. A statev is said to be
reachable from a subset of stae8! V if vis reachable from at least one statedinThereach of
Ain G, denoted¢(A), is defined as the set of all statesGrthat are reachable fro. We say
that a statev is connected taA OV if there existsu [0 A such thatu is reachable fronv. The
processs is calledA —connected if eachv O V is connected t@\.

For a statev 0V, G-v denotes the subprocess @fobtained by deletingy and all edges
incident onv from G. If eis an edge irG, thenG-eis a subprocess @ obtained by deleting
(without its end states) fror®.

Let G =(V;,E),i=1,2 be two processes ove},i=1,2 respectively. Theoncurrent
composition of G; andG, is denoteds ||G», and defined as



G1lIG2=(V.E),

whereV =V, xV,, =% , and EOV x X xV satisfies the condition that

(V]_,O-,Ul)DE]_ and @Z,G,Uz)DEZ if ol 1022
((vy,v2),0,Us,ux))0E iff 4 (vi,0,uy) OE; andv, =u, if o -2, .
(V2,0,U2)|:|E2 andV]_:Ul if o 2—21

It can be shown that concurrent composition is an associative and commutative operator (up to
isomorphism due to permutation of labels in the composite state space).

As in [3-5] we assume thak = 2.[X ,; controlled and uncontrolled alphabets (events).
Clearly a similar classification is induced &n(i.e., E = E.JE,). A supervisor for G is a map

S:V- ZZC, and theclosed-loop processS/G, is defined as the subprocess, €°) of G satisfying
the condition that

(Oe=(v,o,u)0E) eDES iff oOS(V). (1.2)

In other words, at each statel] V the supervisor specifies a subset of controlled events that are
disabled.

1.2 Attraction

LetA,BOV,E'OE. The subseA is E'-invariant if there is no edge irE' leading out of
A. Ais astrong attractor for Bw.r.t. G, denotedA S B if the following conditions are satisfied:
(@ AisE-invariant.
(b) Each state [l rg(B) is connected té\.

(c) Ghasno cycles ing-_a(B).

G
The notion of strong attraction has the following interpretatiomA ifl B then G, initialized at

statev [ B, always reacheA within a finite number of state transitions and remainé.in

G

We say tha®\ is aweak attractor for Bw.r.t. G, denotedA — B, iff there exists a supervisor
SG

Ssuch thatA O B. It was shown in [1] that for eaclA LIV there exists a unique maximal set
weakly attracted byA. This maximal set is denote@c(A) and called theregion of weak
attraction of Aw.r.t. G. If Qg(A) =V, we say thafA is aglobal weak attractor.



2. Motivation and Problem Definition

Fix G =(V,E), A0V such thatG-Ais acyclic. Foreaclk O V-A, letLg(v, A) be the set
of all paths of G of the form s=(v,,01,Vv1)(V1,02,V2) - - (Vh-1,0n,Vs) Such thatv, =v,
v, OAandv; OAforalli=0,1,---,n-1. Thatis,s0Lg(v, A) iff sstarts atv, ends inA and
every state visited bg, except for its end state, is not & Thedistance of v from A w.r.t. G,
denoteddg(v, A) is defined as the length of a paglil Lg(v, A) whose length is maximal, i.e.

de(v,A)=max{l(s) |sOLg(v,A)} . (2.1)

Notice thatLg(v, A) is finite sinceG-A is acyclic. IfvOA, we definedg(v,A) =0, and if
Lg(v,A)= 0O we writedg(v, A) = oo,

Example 21 Let G=(V,E) be the process described in Figure 2.1. Here,
V={vy,V1,Vo,V3,Va} and E={(vy,d,vq),V1,Y,V,), --}. Associated with each
edgeeis a lengthl (e); thus, e.g.l((v2,V, V,)) = 1. With the former notation we have

La(vz, A) = {(v3,a,v1),(V3,B,V2)(V2,Y, Vo), (V3,0 V4)(V4,0,V2) (V2 , Y, Vo) }

and

ds(vs, A) =max{4, 2+1, 1+3+1} =5
O

Example 2.2 Consider a small manufacturing system, depicted schematically in Fig. 2.2,
consisting of two workstations (WS) and a Buffer (B). WSL1 (see Fig. 2.3(a)) takes a workpiece
(eventa,), and either successfully completes processing and passes the workpiece to the buffer
(event3;); or returns to its idle statel {) and discards the workpiece (even). WS2 (see

Fig. 2.3(b)) either takes a workpiece fraBnand discards it (eveng); or takes a workpiece for
processing (eventi,). In the latter case, the evefiy indicates that WS2 has successfully
completed processing. The one slot buffer (see Fig. 2.4) has three states: EMPTY(E), FULL(F)
and ERROR(ER). The current content of the buffer is suitable for further processing by WS2
only if it has been passed to the buffer while being in its EMPTY state. So, state ER indicates
that the current content of the buffer is faulty.

The concurrent operation of WS1, WS2 and B, denoted by the pr&&eég,E), is given
by G =WS1||B [|[WS2. The problem is to synthesize a superviSevhich guarantees th& will
always reach the target sét= {(l,,E,l,)} in minimal cost (or distance); in fact, we are
mainly concerned with the ‘recovery’ @ from error states (i.e.. states of the formgER ,-)). O

In general, we shall be interested in the following issues:

(1) Does there exist a supervis8r.V - 2= such that for eactv [0 c(A), dgg(v,A) is
minimal?



(2) If the answer for (1) is positive, does there exist a supervisdat solves it and is
minimally restrictive in the sense that for every superviSaolving (1),

OviX ¢(A), S(v)OS(v)

(3) When supervisors exist, find efficient algorithms.

We tackle these issues in the following section.

3. Existence of minimally restrictive optimal supervisors

In the sequel we assume (for simplicity) that every weak attractor is global. However the
results are readily extended for general weak attractors.

Fix AOV to be a global weak attractor, and defiteto be the set of all supervisors
SG

S: V- S™ such thatA is a global strong attractor w.r.tS/G (i.e., A O ). Notice thatW is
nonempty (sincé is a global weak attractor) and finite (sin¢geand are finite sets). For each
v OV, letm(v, A) denote theminimal distance of v from A, which can be obtained under control,
i.e.,

m(v,A) =min{ dgg(v,A) | SV } . (3.1)

The minimal distancan(v, A) is well defined since? is a nonempty finite set. A natural
guestion that arises is whether there ex&t3V such that

(OvOdOV) dgg(v,A)=m(v,A). (3.2)

Such a supervisor will be callemptimal.

In general, given a global weak attracfgrwe have the following attraction problems:

9SG
AP:  Synthesize a supervis&¥ (i.e. a supervisosatisfyingA O ).

G
OAP: Synthesize (if possible) an optimal superviSdaV (i.e.,A 0 andSsatisfies (3.2)).

SinceA is a global weak attractor, AP is obviously solvable. A solution for AP was given in [1],
and it is, in general, not unique. In what follows we show that OAP is solvable provided all edge
lengths are positive, which will be the case throughout this and the next section.

For eachv 00 Vlet S, be a supervisor such that

S /G
A DO {v} and dgc(v,A)=m(v,A). (3.3)

That is,S, achieves strong attraction wffrom A, with minimal distance. In this case we say that
S is optimal relative to v. Notice that it is not necessarily true tHgtis optimal relative to other

states inv. Define the supervis@:V - 2% according to



(OvOV) S(v) =S,(v) , (3.4)

whereS, satisfies (3.3). That isS selects the 'local’ evaluation &, at statev for eachv O V.
The following lemmas state thatis a global strong attractor w.r$/G, and thatSis optimal.

SG
Lemma3.1l. A QO .

Lemma3.2 Foreach/ OV,
dgg(v,A)=m(v,A).

The following proposition is an immediate consequence of lemmas 3.1 and 3.2.
Proposition 3.3 Assuming all edge lengths are positive, OAP is solvable.

It turns out that, in general, OAP, as well as AP, has many solutions. If, however, one
would prefer a minimally restrictive solution, in the sense that it disables as few events as
possible, OAP has such a solution, whereas AP does not necessarily have. To illustrate the latter

observation, letd be the set of all supervisolS:V - 2 and letW° W be the set of all

supervisors that solve OAP (notice that proposition 3.3 implies‘#ais nonempty). We define
the operation 0 (conjunction) ond as follows. For every,, S, 0P and everyw OV,

(S1 U S)(v) =S1(v) n S(v) .

Also define Efto be a partial order o satisfying the condition that

SigS: i (OvOV) Si(v)OSyv).

It is clear from (1.2) that if5; ﬁSz thenS; disables no more events than d&s Furthermore,
it can be shown thatP is a complete semilattice, partially ordered bﬁ gnd with meet

operation the conjunction of supervisors. The least eleme®t &, :V - 226, is given by

Ovay, Smin(W)= 0 .

Definition 3.4 A least element ofP(W¥°) will be called aminimally restrictive solution of AP
(OAP).

The following example shows that AP need not have a minimally restrictive solution.
Example 3.1 Let G be the process depicted in Figure 3.1,3¢tbe a supervisor that disablgs
at stateu, and letS, be a supervisor that disablBsat statev. Both S; andS, solve AP, but none

of them is minimally restrictive in the sense of definition 3.4. In f&, as well asS,, are
minimal elements oW (i.e., § satisfies the condition that for eve§y¥ , Sﬁs implies



S=§, i=1,2). Finally, notice that the conjunction supervis®r [0 S, is not a solution of
AP. [

As regards OAP, a minimally restrictive solution exists, as we show next. The following
lemma states that B; andS, are solutions of OAP then their conjunction is a solution of AP.

S/G
Lemma35 LetS;,S,suchthatfoi=1,2 AO and

(Ovav) dsic(v,A)=m(v,A).

Then

(S, 0S,)IG
A 0

The next lemma claims that the conjunction of two solutions of OAP is optimal, i.e.

Lemma3.6 LetS; andS, asinlemma 3.5. Then for evewllV

dis, o0syc(v,A)=m(v,A).

The consequence of proposition 3.3 and lemmas 3.5 and 3.6 is

Proposition 3.7 The class¥° of supervisors solving OAP is nonempty and closed under

Notice that contrary to proposition 3.%W, the class of all supervisors solving AP, is not
closed under O , as was shown in example 3.1. By proposition 3.7, the finite difshas a
least element, whence OAP has a minimally restrictive solution. In exampleS3,1the
supervisor that disableB at v and nothing elsewhere, is the minimally restrictive optimal
supervisor.

4. Effective Algorithm for Solving OAP (positive edge weights)

In developing an effective algorithm for solving OAP we need the following definitions.
LetV'OV. We say thav [1V is V'-attractable if v O V', v is a predecessor of a state\fh and
every uncontrolled edge @& leavingv ends inV', i.e., ifv O V-V' and

() V'ndg(v,5)#0O , and (4.1)

(i) dg(v,Z)200B v, =)0V . (4.2)

Also, we say thav 00 Vis (V',G)-directed if v 0 V-V' anddg(v,2) V', (i.e.vis a predecessor
of a state inV' and every edge o6 leavingv ends inV'). It is easily seen that it/ is V'-
attractable, there exists a supervi§such thatv is (V', S/G)-directed (i.e.dgg(v, Z)OV'). If



B,p[X . in example 2.1,v, and v are A-attractable, whereas only, is (A G)-directed.
Finally, letE(v) denote the set of all edges (@] leavingv. Then we have the following

Proposition 4.1 The following algorithm computes the minimal distancagv,A) and
synthesizes a solution for OAP.

Algorithm 4.1
(1) LetUgy=A let

)\(V):{o it vOA

if vOV-A
and let
S() = {oX ¢[0(v.0) T A} ff vOA 4.3)
0 if vIOV-A -

Iterate steps (2)-(4) untllj 1 = U;.

(2) For eachJ;-attractable state compute

_ | min { A(v)+ (e)[e=(v,0,v") DE(v),Vv' O U; } if EjnE(V)=10 (4.4a)
p(v) = max{ A(v')+l (e) |e=(v,o,v) O E, n E(V) } otherwise (4.4b)

(3) LetV; be the set of all stateg whosep(v) is minimal (with respect to all othel;-
attractable states).

(4) LetU;,,=U;0{V;},andforallvV; set A(v)=p(V);
SV)={0o[E .| Fe=(v,o,V)TE() s.t. A\(V)H(e)>A(V)} . (4.5)

(5) Upon terminationSis the optimal solution of OAP, anai(v, A) =A(v), OvOV.
L]

This algorithm terminates in at mosV| iterations, sa iterations. In each iteratiof a
U;-attractable state (with minimal valuep(v)) is chosen (step (3)). Thus it can be shown ([1,
section 5]) that upon terminatiob), = Qg(A) =V (since A is assumed to be a global weak
attractor). The following lemma states that the supervisor defined by (4.5) is a solution of AP.

9SG
Lemma4.2 Ais aglobal strong attractor w.r®¥G(i.e. A 0O ).

Next we show that solves OAP and that the minimal distances are givea(@y, v O V.
To this end, assume, throughout the following lemmas, that for allU; , j <k



m(v', A) = A(V")
=dgg(V',A).

whereSis the supervisor specified in step (4) of fxth iteration, and consider a state] V; (see
step (3)). The following lemma states ti&implementsi(v), i.e., A(v) is the distance o¥ from
Aw.r.t.S/G.

Lemma4.3

A(V) =dgg(v,A).

Next we claim that for eacl); - attractable states, p(w) is a lower bound on the distance
of any supervisor that conneatsto U; directly.

Lemma4.4 LetwbeaU j-attractable state. Then

ds/c(w, A) = p(w)

for any S' solving AP such that
63'/G(W, Z) O Uj .

Using lemmas 4.3 and 4.4, it can be shown th@f) is indeed the minimal distance of
fromA, i.e.,

Lemma45 LetvOV; (seestep (3)). Thep(v) =m(v, A).

Now proposition 4.1 follows from lemmas 4.2 and 4.5. According to proposition 4.1,
algorithm 4.1 provides a solutio8 for OAP. This solution, as we show below, is minimally
restrictive. Thatis, ifS' is another supervisor solving OAP then

(Ovav) S(v)dS(v).

We shall need the following lemma. Let){ } }‘:o , A\o=0,k < |V], be the sequence consisting
of the values\(v) of statesv chosen in step (3) of algorithm 4.1. That isyif] V; thenA; := A(v).

Lemma4.6 The sequence §; } |j(:0 is monotonic non-decreasing, i.e.

)\jS)\jﬂ_ , j=0,1,---,k—1.

Based on lemma 4.6, the following proposition is easily proved.

Proposition 4.7 The supervisolS constructed by algorithm 4.1 is the minimally restrictive
solution of OAP.
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Let us now consider the complexity of algorithm 4.1. As we pointed out above, this
algorithm terminates in at mos¥/| iterations. In each iteratiop p(v) is computed for eacbl;-
attractable stat® (see step (2)); then a statewith minimal valuep(v) is chosen. In fact, the
selectionv in step (3) will not change even ¥fis chosen from the set of all predecessors of states
in U; (which includes the set of all;-attractable states). Furthermore, one can use the value
Pj-1(v) (i.e., the valuep(v) in the ( -1) iteration) for computing the valug;(v) (i.e. the value
p(v) in the j-th iteration). Indeed, i¥' has been chosen in step (3) of the-1) iteration,p;(v)
may differ fromp; _1(v) only if there is an edge = (v,0, V') O E. Inthat case

N min{ pj-1(v) , Aj-1(v)+(e)} fE,NnEWNV) =10
Pilv) = max{pj-1(v) , Aj(v)+1(e)} otherwise

We assumed here th@&has no parallel edges since it makes no sense to have such edges. Since
V' has at most Y| predecessors, steps (3) and (2) can be completed inQi(h¥|). Thus, the

whole algorithm is o0 (|V|?) complexity.

Example 4.1 Consider the process described in Figure 4.1. If algorithm 4.1 is applied, the
selections in step (3) will be in the following orderz,v,,Vv, andvg. The distances from
V3, Vy,V, andy, from A are, respectively, 2, 10, 11 and 12. The supervisor specified by (4.5)
disablesx atv,, B atvy, datv,, andyatvs. [

Example 4.2 Consider again the manufacturing systéof example 2.2. Figure 4.2 shows
the closed-loop process/G, whereS is determined by (4.5) in algorithm 4.1. The numbers
attached to the states are the valhgg (see step (4)), indicating the minimal distances froto

A

5. Optimal Attraction and Negative Edge Weights

So far we assumed that the weights associated with the edgesue positive. However,
this may not be the case in certain application (e.g., wBanodels a discrete event process in
the area of economics). The question now of interest is whether previous sections results
concerning minimal restrictive optimal supervisors remain valid if negative weights are allowed.

It turns out that in contrary to the case of positive weights, a solution for OAP need not
exist. Consider the process of Figure 5.1. It is easily seennidat, A) =2 andm(v,, A) =3.
In fact, the supervisorS; andS,, described in Figure 5.2, implement these minimal distances,
separately. However, althoudh (S,) implement minimal distance attraction from(v,), there
is no optimal supervisor achievinm(v,, A) and m(v,, A) simultaneously. It is worth noting
that the conjunction supervisoB, 0 S, does not solve OAP, as well as AP; in fact,

The following proposition shows that the length®% cycles (the length of a cycle is the
sum of its edges’ length) is crucial in solving OAP.

Proposition 5.1 If the length of every cycle ifG-A is positive, OAP is solvable and has a
minimally restrictive solution.
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This restriction on the length db’'s cycles is not necessary, as it is shown in Figure 5.3.
Figure 5.3(a) is the proces3, whereas 5.3(b) is the closed-loop proc&s& with S being the
minimal restrictive optimal supervisor. This supervisor disaBlasv,; anda atv,.

Algorithm 4.1, which a natural extension of the algorithm in [1, section 5], is not applicable
if negative edge lengths are allowed; lemmas 4.2-4.4 still hold, but lemma 4.5 does not. Next, an
algorithm for synthesizing the minimally restrictive solution of OAP is described. it allows
negative edge lengths, but does not allow a cycle whose length is nonpositive.

Algorithm 5.2
(1) Let

a={0 VDA (5.1)
o  otherwise"

(2) Aslong as there is a statd ] A such thap(v) < A(v), where

_ | min{ A(V')+l(e) | e=(v,0,v') D E(V) } if E, n E(v)= 0 (5.2)
p(v) = max{A(v')+l(e) | e=(v,o,v') OE, n E(v)} otherwise (5.3)

let A(V) = p(v).
(3) Upon termination, let a supervisBbe determined as
OvOA, S\v)={oE ;|3 (vo,v)OE stV OA} . (5.4

OvOV-A, SNV)={o[X .| de=(v,o,V)OE s.t. A(V)<A(V)H ()} . (5.5)
L]

For our purposes+l = « for everyl U R.

For showing termination of algorithm 5.2, we need the following lemma. Adie the set
of all statesy whose value\(v) is finite at the end of thg-th iteration.

Lemma 5.3 For everyv OA; (i.e., A(v) is finite) there is a simple path fromto A whose
length isA(v).

Since each valua(v) corresponds to at least one simple path freito A, and since the
number of simple paths in a finite digraph is finite, the number of values possibl\piis
finite. Thus algorithm 5.2 must terminate.

There is a special relation between algorithms 5.2 and 4.1: the \@#igeof a state
v OV-A; (whereA is the current set of states whose values\(w) are finite) is finite iffv is
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A;-attractable. This relation is explained as follows.E[fn E(v) = O (i.e., no uncontrolled
transitions emanate), p(v) is finite iff (see (5.2))v has a successor #y iff (see (4.1) and (4.2))
vis A;-attractable. If, howeveE, n E(v)# 0 , p(v) is finite iff (5.3) iff dg(v,Z,) UA; iff vis A
attractable. The consequence of this relation is that thefgetbalgorithm 5.2 and the sets; of
algorithm 4.1 (or more precisely, the séis of the algorithm in [1, section 5]) are constructed
according to the same rule, namely, augment a new stat&/ —A; iff v is A;-attractable. Thus
we have:

Lemma5.4 Upon termination of algorithm 5.2, the set of all stateshose value\(v) is finite
is the region of weak attractioQg(A).

Recall thatA is assumed to be a global weak attractor (i®g(A)=V), and thus, if
algorithm 5.2 is applied to a proce&s we end up with a finite valug(v) for everyv V. Next
we claim thatS, the supervisor synthesized in step (3) of algorithm 5.2, indeed implements global
strong attraction. That is,

Lemmab.5 LetShe determined by (5.4) and (5.5). Then

SG
A0

The next lemma states th&8t(as determined by (5.4) and (5.5)) is an optimal supervisor,
and that each valug(v), v OV, is the minimal distance fromto A.

Lemmab5.6 Forevery 0V,
A(V) =dgc (v, A),

and

A(V)=m(v,A).

It follows by lemmas 5.5 and 5.6 that the superviSoronstructed by algorithm 5.2 is a
solution of OAP. Moreover, it is minimally restrictive since (see (5.5)) enabling any transition
e =(v,o, V"), with A(v) < A(V') +1(e), will violate the requirement of minimal distance attraction
fromv. Thus we have:

Proposition 5.7 AssumingG—A has no nonpositive length cycles, the supervisor synthesized
by algorithm 5.2 is the minimally restrictive solution of OAP.

For evaluating the complexity of algorithm 5.2 we assume that it is executed as follows.
Order the stateszq, vy, - -+, V|y-a|, Wherev; O V-A. Now perform step (2) by first checking
vy, then v,, etc.,, and improving the valuek(v;) accordingly. The computation op(v),

Ov OV, is of O(|E|) complexity. After the first sweep, go through additional sweeps, until an
entire sweep produces no improvement. By lemma 5.3, this process will terminate. Furthermore,
if in S/G (whereSis the supervisor synthesized by algorithm 5.2) a longest path fremA
consists ofn edges, then by the end of timeth sweep,\v will have its final value; this can be
proved by induction om. Sincen < |V|, the whole algorithm is of 0| - |E|) complexity.
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Moreover, if by the V|-th sweep any improvement of a label takes place tBe# contains a
negative length cycle.

Example 5.1 Consider the process of Figure 5.1. If algorithm 5.2 is executed as explained
above, the valuep(v) and A(v) will be as described in Table 5.5. Upon termination, the
supervisolS, determined by (5.5), disablesatv,, B andp atv4, d atv,, andgatvs. O

6. Conclusion

The problem of synthesizing optimal supervisors for attraction (or stabilization) of
discrete-event processes has been defined and investigated. Given a (XoaesspervisolS
stabilizingG and a stat®, a performance measure has been chosen to be the cost (or distance) of
the worst-case execution of the supervised proc®s3, initialized at statev. Conditions
guaranteeing the existence of optimal (and minimally restrictive) supervisors have been provided,
as well as efficient algorithms (4.1 and 5.2) for their synthesis. The first algorithm is based on the
synthesis procedure presented in [1], and it is suitable only for positive edge weights, whereas the
second allows negative weights in the expense of more computations.

Verification and synthesis procedures for related problems can be derived from this work.
For example, given a proce€sand a state in the region of strong attraction, the distance from
to the set of target states can be computed by a version of algorithm 4.1. In fact, this problem can
be solved by assuming that all events are uncontrolled and then using algorithm 4.1. Other
examples are synthesizing supervisors achieving optimal attraction within a prespecified region
of states (i.e., for each illegal initial state there is a subset of states Whinhy traverse in its
way to the target states), or optimal attraction in processes with state weights in addition to edge
weights. Solving the weighted attraction problem with respect to other optimality criteria (such
as average-case execution or most probable execution) is an interesting topic for further research.
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