gs of the 27th C
on Decision and Control
Austin, Texas ®» December 1988

TA7 - 11:00

FORMULATION AND CONTROL OF
REAL TIME DISCRETE EVENT PROCESSES

Y. Brave
Department of Electrical Engineering
Technion - Israel Institute of Technology
Haifa 32000 , Israel.
M. Heymzu'm1
Department of Computer Science
Technion - Israel Institute of Technology
Haifa 32000 , Israel.

Abstract

A discrete event process is modelled as a controlled state machine,
in the framework of Ramadge and Wonham. Their approach is extended
to model a class of real-time discrete event processes by means of a
special type of automaton, called a clock automaton. The clock
automaton is used for describing the real time behavior of processes,
controllers and real time specifications.

1. Introduction

Discrete-event processes (DEP) are processes in which state
transitions take place discretely, asynchronously (i.e. without reference
to a clock) and sometimes nondeterministically. Such processes are used
to describe computer communication networks, flexible manufacturing
systems, traffic networks and the like. Ramadge and Wonham (RW) in a
series of papers [1-3] introduced a framework for modeling and
controlling the behavior of DEPs. In their framework the DEP is
modeled as an automaton that executes asynchronous state transitions
some of which can be disabled by a suitable feedback control mechanism
50 as to confine the DEP’s behavior to within specified (legal) bounds.

In the present paper the RW approach is extended to model real
time discrete event processes (RTDEP), that is, to DEP’s whose state
transitions depend not only on the current state and transition symbol,
but also on the current value of a clock or counter (that represents, for
example, the time that elapsed since the current state was entered). A
more complete and precise discussion of the model is currently in
preparation [4].

2. Real-Time Processes

A RTDEP is modeled as a special type of automaton that we call a
clock automaton

P=(Q,2,8,4,,0n.C,u) .

Here, just as in RW, Q is a state set, Z is a transition alphabet, g, is the
initial state and Q,, a set of final or marker states. The new element is
C, a counter whose current value is ¢ € Z*, the set of nonnegative
integers. The counter is endowed with a counter update map which at
each "tick’ of the real-time clock updates the counter value as follows: If
a transition (o € I) is recorded (i.e., a state transition occurs) the counter
is reset to zero. Otherwise (denoted by the symbol t and termed the
null-event) the counter is incremented by a unit. It is assumed that the
'ticking’ of the clock is frequent enough so as to ensure that at most one
state transition can occur within a single time unit. Formally, the counter
operation is thus described by the update map u: (U { T })xZ* — Z*,

where
u(c,c)={

For abbreviation let Z;;=Zu { t}. We define the configuration of
P as the pair (c,q)e Z*xQ. The symbol & represents the state
transition function 8 : 2,xZ+xQ — @ . The transition function satisfies
the condition that &(t,c,q)=gq for all (c,q)e Z*xQ. In general,
however, 8 need not be defined for all (6,c ,q) € IXZ*XQ and, thus, is
a partial function. It is also convenient to define the configuration
transition function (partial function) g :ZIXZ'xQ —-Z*'xQ as

g(,c,q):=u(o.c), 8oc,c,q)) whenever §(c,c ,q) is defined.

c+1
0

if o=1
otherwise *

! Supported in part by the Technion Fund for Pr of R

88CH2531-2/88/0000-1131$1.00 © 1988 IEEE

1131

We interpret the RTDEP as a device that starts at configuration
(0,9,) and executes successive configuration transitions according to its
configuration transition function. Configuration transitions occur
instantaneously at (normalized) discrete times, and with each transition is
associated a symbol 6 € Z,.

Let Z; denote the set of all finite strings s of elements of z,
including the empty smng €. Then g : TXZ™Q — Z*xQ is extended
in a natural way to g : E; X Z*xQ — Z*xQ.

3. The Languages of P

3.1 Execution-language

Let Z, CZ'., denote the subset consisting of the empty string & and
all strings of Z, that end with a symbol 6 #1. A subset L c):, is called
an execution-language over X, and every string s € L is called an
execution-word. The execution-language generated by P, denoted L, (P),
is defined as

LP)={se€ f‘.:: 8(s,0,q,) isdefined} .

3.2 Event-language

It will be more convement to represent execution-words in the
following way. Lets e Z, be a nonempty execution-word, and partition
it into a sequence of successive nonempty substrings such that in every
substring there is exactly one symbol 6 # T which is the last element of

the substring. Each such substring is called an event, which alternatively
can be represented by e : =(c,c) € IXZ*, where ¢ is the number of t-
symbols in the substring. With this notation, an execution-word is a
finite string of events and it is readily verified that in each event (6,c)
the number ¢ is exactly the counter value just before the associated
configuration transition labeled ¢ occurs.

Let E = ExZ" be the set of all events, and let E* denote the set of
all finite strings of elements of E including the empty string €. A subset
L cE* is called an event-language over X and every string s € L is
called an event-word. The closure of L, denoted L, is the set of all
strings (in £*) that are prefixes of event-words of L. An event-language
L isclosedif L =L.

In standard fashion we can extend the transition function
0:ExQ — Q 10 8: E*xQ — Q . The event-language L (P) generated
by P is then defined as the subset of E* consisting of all strings s in E*
for which 8(s , ¢,) is defined.

The process P can also be interpreted as a device that starts at state
q, and executes state transitions, i.e. generates a sequence of events
according to its transition function. With our second interpretation we
can view P as a directed graph with node set Q. An edge ¢g—q’ exists
and is labeled e € E provided the triple (e ,q , ¢) satisfies the condition
that ¢’ =3(e , q).

To illustrate the expressive power of our real time discrete event
process model let us consider the following simple examples.

Example 3.1
Let P be aRTDEP over £= { c, B,y displayed below.

(0,)

93

a; B (0, 94

ol
Here the notation g—¢’, 6 € T, I < Z*, represent the fact that the
transition (6,4 ,¢”) can occur only if ¢ € I. Thus, the event y will
follow o provided o occurs within the first 100 ticks of the clock;
otherwise o will be followed by P.

Example 3.2
Let P be aRTDEP over £= { o, B,Y,A } displayed below.

In this example, the events vy and A can occur at any time after
entering state g, while 3 becomes possible only after 20 ticks of the
clock. Thus, the notation ©(¢y,¢y) can also model a minimal delay
between successive events. Suppose that § is an undesirable event and
that the event y can be forced by an extemal agent. Then in order to
prevent B from occurring a controller for P must enforce y within 20
time units unless A occurs within that time interval. In the following we
discuss the existence of appropriate controllers (and their structure) that
will satisfy such and other requirements. In addition, our real-time
model can be used for describing real-time specifications.

4. Control Mechanism

As in 5] we shall view the transition alphabet Z of a process P as
consisting of three subsets £, ,X, and I that are called, respectively,
the uncontrolled, controlled and forced alphabet of P. A spontaneous
transition labeled [6,71,0 € Z,UX,, I cZ* can be generated by P only
if ¢ € I, and can be disabled only if 6 € Z,. A transition labeled [c,/],
ce X,/ < Z*, will occur only if (and when) it is forced provided ¢ € I.
It is assumed that such transitions occur instantaneously (whenever they
are forced) and prevent any other event from occurring at the same time.

Formally let T < 2% be defined as

T={ve 2%:¢ithery=(o} forsome G e L or Z,oyeI,VE).

We interpret a element ye T as the 'next’ state transitions that may (or
must) occur within a time unit. Now we define a real-time control
pattern t0 be a map A: Z* —T that satisfies the condition that: for
given ¢ € Z*, Mc) is defined if and only if for no ¢’ e Z* such that
¢’'<c¢

Mc)={c} , ceX.

Let A denote the set of all real-time control patterns. With each
A e Ais associated a subset A, < E (=IXZ") defined as

M={e:=(cc):ecE ad oceMc)} .

The associated control pattern can be interpreted as the set of all possible
* 'next’ events in the evolution of the RTDEP.

5. Real-Time Supervisors

A real-time supervisor (RTS) S =(S,¢) consists of a clock
automaton § =X ,Z&x,.X,,.C ,u) together with a feedback map
¢ : X—A. The process P is constrained (and triggered) by the real-time
control determined by the states of §. The transitions of the closed loop

system S/P are given by

&(o,c,x),3(0,¢,9)

if o [9())c)
(C.c.x.q) > undefined

otherwise

whenever &(o,c,x), 8(c,c,q) and [¢(x)](c) are defined. Actually
we will be interested only in RTS whose transitions are defined
whenever they can occur in P and allowed by ¢. Further, we shall
require that whenever forced events are triggered in S they are defined in
P. SuchRTS are called well posed (with respect to P).

6. Real-Time Controllability

In this section we characterize the event-language that can be
generated by the closed loop S/P that consists of a given RTDEP P and a
well posed RTS §. Let K < E* be an arbitrary event-language. For each
s € K we define

Ex(s)={ee E=3xZ":se e K }

That is, Ex(s) is the set of all events of the form e:=(c,c) that are
possible afters in K.

Definition 6.1: An event language K cL(P) is called real time
controllable (RTC) if for all s € K there exists A € A such that

A NELpys)=Eg(s) and A, N (ExZ)c Eppys)

Thus, if we interpret L(P) as the physically possible behavior of a
RTDEP P, then an event-language K is RTC if every prefix s € X is
possible and for s € X either

(i) Eg(s) does not contain any forced event and every physically
possible string se, with e uncontrolled, is again in X; or

(ii) Eg(s) contains exactly one forced event ©f .cr)e):fo+, every
physically possible string se with e:=(o,c), 6€ L,, ¢ <cy is
againin X, and

(oc) ¢ Ex(s), O#0p,c=¢ of Ge Z,c>¢

Proposition 6.1
Let K ¢ L(P) be an event-language. There exists a well posed RTS §
such that L(S/P)=XK if and only if X is closed and RTC.

Other issues as controllability and timing information, minimally
restrictive RTS and altemative counter update maps are discussed in [4].
Related work on real time issues in control discrete event processes is the
work of Ostroff and Wonham [6] that deals with real time temporal logic
and the work of Yong and Wonham [7] that deals with communication
delays and simultaneity of events.

REFERENCES

[1] Ramadge, P. J. and W. M. Wonham, “Supervisory control of a class
of discrete event processes”, SIAM J. on Control and Optimization,
25(1), pp. 206-230,January 1987.

2] Ramadge, P.J. and W. M. Wonham, “Modular supervisory control
of discrete event systems”, Proc. 7th Int, Conf. on Analysis and
Optimization of Systems, Antibes, June 1986.

[3] Wonham, W. M. and P. J. Ramadge, “On the supremal controllable
sublanguage of a given language”, SIAM J. Control and
Optimization 25(3), pp. 637-659,May 1987.

[4] Brave,Y.and M. Heymann, “ Real time discrete event processes ”,
preprint 1988.

[5] Golaszewski, C.H. and P.J. Ramadge, “Control of discrete event
processes with forced events”, Proc. 26th IEEE Conf. on Decision
and Control, Los Angeles, pp. 247-251,December 1987.

[6] Ostroff, 1.S. and W. M. Wonham, “State machines, temporal logic
and control: a framework for discrete event systems”, Proc. 26th
IEEE Conf. on Decision and Control, IEEE Control Systems
Society, Los Angeles, pp. 656-657,December 1987.

[7] Yong,L.and W. M. Wonham, “On supervisory control of real-time
discrete event systems”, Proc. American Control Conference,
Minneapolois, pp. 1715-1720,June 1987.

1132

