Concurrency and Discrete Event

ABSTRACT: Much of discrete event control
theory has been developed within the frame-
work of automata and formal languages. This
tutorial paper presents an alternative ap-
proach inspired by the theories of process-
algebra as developed in the computer science
literature. The framework, which rests on a
new formalism of concurrency, can ade-
quately handle nondeterminism and can be
used for analysis of a wide range of discrete
event phenomena.

Introduction

Traditionally, control theory has dealt with
the dynamic behavior of processes whose
variables are numerical and whose evolution
can be modeled by differential or difference
equations. With the widening use of com-
puters as essential components of systems,
increasingly complex systems have emerged
that can no longer be adequately described
by conventional models. Indeed, in an in-
creasing number of processes states may have
not just numerical values, but symbolic or
logical values as well. State changes may
then occur in response to the occurrence of
discrete events that take place at discrete
times, frequently asynchronously and non-
deterministically. The control of such sys-
tems is of great practical importance and the-
oretical interest, and poses a wide range of
new and intriguing intellectual challenges.

The simplest processes that exhibit such
discrete behavior are discrete event pro-
cesses. These are processes whose behavior
can be modeled entirely within a state-event
framework, that is, processes whose states
are discrete and state changes take place only
in response to events that occur at discrete
and irregular intervals. Some of the more
common and familiar examples of such pro-
cesses are computer operating systems, man-
ufacturing systems, communication net-
works, traffic systems, resource (such as
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power or water) management systems, and
computer-based supervisory control systems
of complex plants.

A state transition and its associated event
constitutes the basic fragment of a discrete
event process. (Finite) state machines and
their associated state transition diagrams are
the simplest formal mechanism for collecting
much fragments into a whole. State machine
models are conceptually appealing because
of their inherent simplicity and the fact that
they can be described adequately by finite
automata and the theory of regular lan-
guages.

Recently, Ramadge and Wonham {45, 49,
50] initiated a pioneering effort of develop-
ing a control theory of discrete event pro-
cesses within the framework of state ma-
chines and formal languages. In their
framework all events are spontaneous and
process-generated. Some of the events,
called controllable events, possess a disable-
ment mechanism accessible to the environ-
ment, and the control problem is to suitably
interact with the process, by disabling of
controllable events, so as to confine its be-
havior to within specified legal bounds. The
mechanism examined in the work of Ra-
madge and Wonham for such interaction is
called feedback control and consists of cer-
tain mappings between the process under
consideration and a suitably formulated su-
pervisor. Process behavior is modeled by its
language, i.c., the set of event-strings that
the process can generate. Various control-
theoretic questions such as controllability
[45, 49], observability [28, 42, 37, 12], de-
centralized and hierarchical control [29, 51,
38] and stabilization [8, 36], as well as such
questions as computational complexity [43,
44] and others were studied in the Ramadge-
Wonham framework. Their research had a
profound impact on the control systems re-
search community and generated a growing
interest in control of discrete event processes
as evidenced by the expanding number of
research contributions to this subject (e.g.,
[11, 12, 22, 23, 25, 26, 48, 7, 8)).

In spite of their inherent simplicity and
corresponding attractiveness, state machines
have a weakness as models of complex pro-
cesses because they suffer from an exponen-
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tial explosion in the number of their states.
To be effective and useful, it is desirable that
a state/event modeling formalism have the
capability to somehow relax the requirement
that all states as well as all event sequences
be present explicitly in the model at all times.
Thus, one would like to be able to suppress
in such a model all aspects of its description
that are irrelevant in a particular context. This
can be achieved by event-internalization, or
partial observation, which leads to nonde-
terminism in process behavior (in the auto-
mata-theory sense) and to inadequacy of for-
mal languages as models of behavior. A
further aspect of effective modeling is the
ability to construct a process description from
individual components, thus introducing as
an integral element of the modeling frame-
work modularity and hierarchy. Also, to ob-
tain an effective description tool, it is im-
portant to have the capability of describing
behavior recursively. Finally, since all mod-
ules of the process must interact and cor-
rectly synchronize when operating in paral-
lel, a suitable mechanism for communication
and interaction between the various process
components must be formulated, one that in-
cludes a suitable formalism for control of
discrete event processes.

The importance of developing a frame-
work for modeling, specification, verifica-
tion and synthesis of discrete event pro-
cesses, with particular emphasis on computer
operating systems, data-base management,
concurrent programs, and distributed com-
puting, has been recognized in the computer
science community for well over a decade,
and a diverse and extensive literature has de-
veloped on this subject. Notable among the
various approaches that have been developed
are Petri-Net Theory [39], linear-time and
branching-time temporal logics 13, 31, 40,
24], and, of particular interest in the context
of the present paper, a number of (closely
related) algebras of concurrent processes that
were inspired by Hoare’s Communicating
Sequential Processes (CSP) [20] and Mil-
ner’s Calculus of Communicating Systems
(CCS) [33], and became widely known as
the theory of concurrency (9, 10, 18, 32, 34,
4, 5]. (The reader is referred to the two re-
cent volumes [2] and [3] for a broad over-
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view of the current literature.)

In spirit and in general philosophy, the
theory of concurrency is well suited for mod-
eling, analysis, and synthesis of discrete
event control systems. A central theme in
that theory is the description of the interac-
tion between discrete event processes and
their environment. Such interaction is mod-
eled by parallel composition with a specified
degree of event synchronization. While var-
ious formalisms of parallel composition have
been defined and investigated in the litera-
ture, they all rely on some framework of
strict synchronization. That is, specific
events of distinct processes must either
strictly synchronize or be completely inde-
pendent and interleave. These formalisms are
inherently inadequate for modeling the in-
teraction of discrete event processes in which
sponteneity of events is an essential behav-
ioral feature.

This article is a tutorial introduction to the
theory of concurrency and to the associated
process-algebra, and the suitability of such
a methodology for modeling and control of
discrete event processes is examined. It is
shown that the existing formalisms of syn-
chronization are inadequate for modeling the
interaction of (dynamic) discrete event pro-
cesses with the environment. Accordingly, a
new parallel composition operator, called
prioritized synchronous composition, that
can model a wide range of interactions
among discrete event processes, is intro-
duced. Aspects of the corresponding pro-
cess-algebra are examined. Finally, some
comments are made about aspects of con-
trollability within the framework of the new
methodology. A more detailed and formal
account of the new algebra of discrete event
processes can be found in [19].

Process Components and Operators

Following standard notation, let L be a
finite set of event labels and let £* denote
the set of all finite strings of elements of L,
including the empty string e. A discrete event
process (or DEP) P with events in L is then
a device that undergoes state transitions in
response to events in X. A local description
of P can be given in terms of individual state
transitions as follows. If p and p’ are states
of P, and ¢ is an event in L, then we shall
use the notation shown to express the pos-
sibility for process P to undergo transition
from state p to state p’ in response to the
event o:

P:p—-p'.

Similarly, we shall use the following nota-
tion to express the fact that when the process
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P is at state p, no state transition is possible
in response to the event a.

P:p—uv \.

At this stage we do not concern ourselves
with the mechanism of event generation.

We shall also find it convenient to refer
formally to P as the global process structure
consisting of its complete state transition
tree, or graph, and its designated initial state
po- This allows us to introduce the important
prefix operator (or prefix construction) by
defining the process Q as

Q:=0—P (§8)

That is, Q is the process that starts at its
initial state (say g,) and, in response to event
g, undergoes transition to P. For example,
if P = A, the deadlock-process (that cannot
undergo any state transitions), then (1) means
that Q is the process that can execute (or
respond to) event o and then deadlock.

Another important process-operator is the
controlled alternative operator +, which is
defined as follows. Let O, = ¢; — P, and
Q> = 0, = P, and assume that ¢, # o0,.
Then the following is the process that in its
initial state can either respond to ¢, and
undergo transition to P,, or respond to g, and
undergo transition to P,. The choice of the
initial event is at the disposal of the envi-
ronment:

0: =0+ Q@ =(o; > P) + (0, > Py).
(2)

An important element of nondeterministic
process behavior is provided by the uncon-
trolled alternative operator & . A simple il-
lustration of this operator is provided by the
following situation. If Q| = ¢ — P, and Q,
= ¢ = P,, then

Q=00 0, =(c>P) o (0P
=(c—~ P, & P,). 3)

This is the process that, in response to the
initial event o, undergoes transition either to
P, or to P,, but the choice is completely
nondeterministic.

Next we introduce the event-internaliza-
tion operator. Let P be a process with event
set L. By the internalization of an event ¢ €
E, we refer to the removal of all occurrences
of the event ¢ from external view so that all
state transitions associated with o become
silent, or unobserved, (denoted by €). We
denote the resultant process by P\ .

Example 1 Consider the process P\, in
Fig. 1 where P is given by

P=(@=b=8+(C~a. @

Po Po
a ¢ € ¢
D1 P2 P1 P2
b b
D3 p3
Process P Process P\ 4
Fig. 1.

Notice that the process P\, possesses non-
deterministic behavior in that the internal-
ized event can occur at any time without the
explicit knowledge of the observer. Thus we
may not know whether the process is at state
Do orat p.

Definition 1 A DEP P is called determin-
istic if it has no silent transitions and for
every state p of P and every event ¢ € L
there is at most one state p' such that
P:p—p.

An interesting and important question is
how the process P\, of Example 1 differs
from the deterministic process P := (b —
A) + (¢ — A) which generates the same
event-strings (or traces). We shall return to
this and related questions in some more de-
tail later but in the meantime we shall only
note that the following identity holds true:

((@a= b= A)+ (c = M)\,
= (b= A+ (c—A) e (b A).
®

P

Fig. 2.

Equation (5) means that the process P\ , can
be identified in some sense with the process
P' whose state transition graph is depicted
in Fig. 2. In the process P’ there is an initial
nondeterministic  (unobserved) transition
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from p}, to either p} or pj after which it be-
comes deterministic. The identification of
two distinct processes like that in (5) is at
the heart of a process-algebra and we shall
return: to this issue later.

We shall conclude this section with a brief
discussion of recursive equations for process
description. Consider an equation of the fol-
lowing form, where fis a function of (or an
operator on) P:

P = f(P). ©

Such an equation is a fixed-point equation,
which, under suitable conditions (see e.g.,
[30, 20}), has a recursive solution (for P).
Under appropriate restrictions this solution
is even unique. Fixed point equations are a
convenient way for process formulation. A
simple illustration is given by the following
example.

Example 2 The (recursive) solution to the
following fixed point equation is the process
whose transition graph is given in Fig. 3.

P=@—-b->P)+@c—P). (1

R Y
.

a

Fig. 3.

Formalisms of Concurrency

Processes interact with their environment
through communication. That is, they op-
erate in parallel with a specified degree of
event synchronization. Thus we speak of
parallel composition or concurrency of
DEPs. Various formalisms of concurrency
have been studied in the computer science
literature. The simplest form of concurrency
is parallel composition without synchroni-
zation, which is modeled by the interleaving
behavior of the component processes. We
shall denote this parallel composition by
(- ||@ -), where the subscript @J(S L) de-
notes the fact that the set of synchronized
events is empty. Thus, if P and Q are DEPs,
then the DEP P||,Q is the process obtained
from operating P and Q in parallel com-
pletely independently. The only assumption
that is generally made about this parallel op-
eration is that events of P and Q never co-
incide in time. (An exception to this as-
sumption can be found, e.g., in [32].) Using
our notational convention, we can thus de-
fine the operation of parallel composition
without synchronization, formally, by
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Fig. 4.

P:p > p' = Pl.0:(p. @) = (P, @)
¥

015 q' = Pl,0:(p. @ = (0. )
()]

As an example of process interleaving con-
sider the simple processes P and Q in Fig.
4. At the other extreme of the range of pos-
sible synchronizations, is the parallel com-
position with full synchronization, denoted
(- llg ). In this case the synchronization of
events is complete in that all events in the
event set L must be synchronized. Thus, if
P and Q are E-processes, i.e., processes over
the event set £, then an event in Pz Q can
take place if and only if it can take place
simultaneously (and synchronously) in both
processes. If one of the processes cannot
participate in an event initiated by the other,
the event will not take place in either pro-
cess. If no common events exist at a given
time, the composite process PlzQ dead-
locks. Parallel composition with full syn-
chronization is sometimes also called paral-
lel composition by intersection because the
trace set of P|zQ is easily seen to be pre-
cisely the intersection of the trace sets of P
and of Q. The operator can be defined for-
mally by expressions similar in form to those
in equations (8) and (9), but take into ac-
count event synchronization and the possi-
bility of deadlock.

An example of parallel composition with
full synchronization is given in Fig. 5. A
generalization of the synchronization con-
vention, that includes both parallel compo-
sition by interleaving and parallel composi-
tion with full synchronization as special
cases, is given by the operator P||,Q, where
A < X is an arbitrary subset called the syn-
chronization set. Informally, this is the pro-
cess obtained when P and Q run indepen-
dently in parallel, except that they must fully
synchronize their events in A. This operator
is defined formally by

Pp—-p &Qiq—q' = Pll.Q:(p, 9

= (. q) (10)
P:p—-p & Q:q—>\=Pl,0:(p. 9
p {(p’, q), ifogda
2
\, otherwise (11)
Q:g > q &P:p—>\=Pl0:(p, 9
s {(p, g), ifogd
\, otherwise. (12)

In the above operator the case A = & cor-
responds to parallel composition by inter-
leaving and A = L corresponds to parallel
composition by intersection. It is noteworthy
that equations such as the above are not being

Q Plls@Q

Fig. 5.

—-
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presented unnecessarily. Indeed, one of the
main points of the present paper is that DEPs
can be described by such (and other) equa-
tions and that these equations can be manip-
ulated, simplified and solved using the pro-
cess algebra.

An example of parallel composition with
partial synchronization is given in Fig. 6.

Process Models and Language-
Congruence

In the present section we discuss certain
questions regarding DEP modeling. The
main purpose of a mathematical model of a
DEP is to describe its behavior. We must,
therefore, require of a model to capture
enough detail about the DEP’s structure, so
as to ensure that its behavior is fully exhib-
ited in all circumstances. A model can be
regarded as efficient if it captures just enough
detail (for our purposes) but no more detail
than necessary. Thus, an efficient model
must not distinguish between DEPs that, in
a given framework, exhibit identical behav-
ior. Next we proceed to make these ideas
somewhat more precise.

As we have already seen earlier, in a DEP
modeling environment, DEPs are given by
algebraic expressions whose arguments are
also DEPs. The range of such algebraic
expressions is determined by the range of
algebraic operators that are defined in the
given framework. Let us denote such a
framework by & = O, - -+, O)), where
0,, - -+, O, are the operators under con-
sideration. In the context of the framework
exhibited thus far, the operators include the
prefix operator, the alternative operators, the
internalization operator, the recursion and,
most importantly, the operator of strict con-
currency.

By the behavior of a process P, we refer
to the language £(P) € L*, consisting of all
event strings, or traces, that P generates. Let
M denote a modeling framework for DEPs,
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so that IN(P) denotes a model for a DEP P.
Then I induces an equivalence relation, de-
noted &gy, on the class of all DEPs under
consideration. Specifically, we then say that
DEPs P and Q are equivalent, denoted
P&y Q, whenever M(P) = IM(Q). Clearly
then for the modeling framework 9 to be
adequate, we must require that if MN(P) =
M(Q), then P and Q must exhibit the same
behavior under all circumstances. This leads
us to the following.

Definition 2 An equivalence relation &g on
the class of DEPs is called a language-con-
gruence (with respect to @) if for every f €
@ and any two DEPs P and Q:

P&xQ = L(f(P)) = £(f(Q). (13)

In the above definition f(P) denotes an
expression with P as an argument. (We do
not preclude the possibility that f is an
expression in more than a single argument,
in which case our notation implies that the
other arguments are held fixed.)

Thus, in terms of the above definition, an
adequate modeling framework must induce
a language-congruence. But this, of course,
does not guarantee that the modeling frame-
work is efficient. Let C denote the set of all
equivalence relations on the class of DEPs
over a fixed event-alphabet L. If §;, &, € €
are two equivalence relations, we say that §,
is coarser than &,, denoted &, 2 §&,, if for
any pair of DEPs P and Q,

P&,Q = P&,Q.

It is casily seen that 2 constitutes a com-
plete partial order on DEPs [30]. We now
have the following.

Definition 3 A DEP modeling framework
is called efficient if it induces the coarsest
language-congruence with respect to Q.
Thus, a modeling framework is efficient if
it includes in the model of a DEP the least
amount of detail necessary to distinguish

—-

DEPs that differ in behavior, but identifies
all processes that cannot be distinguished be-
haviorally. It is important to realize that the
detail needed in the model is crucially de-
pendent on the operators that are included in
Q. As their expressiveness increases, the
complexity of the models must, in general,
increase as well.

Definition 4 A framework @ is called de-
terministically closed if for each fe @, f(P)
is deterministic whenever P is deterministic.

It can be shown that (see, e.g., [35]), if
Q@ is deterministically closed, then £(P) is
an adequate model for P. That is, £ itself
constitutes a language congruence. Ob-
viously £ is then the coarsest language con-
gruence. The reader can convince himself
without too much difficulty that @, =
@ — -, +, ‘|4, recursion) is determin-
istically closed. Thus, the behavior of deter-
ministic processes that interact only through
strict synchronization, can be adequately
modeled by their languages. (This fact has
been of key importance in the interesting
work of Smedinga [46] on control of discrete
events.)

We turn now to the case @; = Qo — -,
+, @, (*)\,, '|]A-, recursion). That is, G/
includes also the operators of uncontrolled
alternative and event internalization. Non-
determinism is now included in our frame-
work.

It is of interest, at this stage, to return to
the question raised in Example 1 of com-
paring the processes P = (b = A) + (¢ =
A) and P\, where P = (a = b = A) + (¢
— A), both of which generate the same lan-
guages. To this end, let us consider the fol-
lowing example that shows that processes
P and P\, are not language congruent.

Example 3 Consider the process R :=
Pz Q. where Q = (¢ — A). Using the def-
inition of parallel composition with full syn-
chronization as given by (10)-(12) with 4 =
L, we obtain

R = (c — A).

Next, consider the process R’ := P\ [z Q.
While in this simple example the computa-
tion of R’ can be performed directly without
difficulty, we shall take the opportunity to
demonstrate the use of process-algebra in
computational simplification. First we shall
use (5) to obtain

R = ({((b~ 4+ (c—4)
® (b~ A)lglc » 2. (14

Next we use the following identity (see, e.g.,
[1o)):
P o QR = Pl.R) & QR
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which together with (14) gives the following
where the last equality is obtained with the
aid of (10)-(12) (with 4 = L):

R = (b~ 2+ (c = dglc = a)
® (b~ dlsc ~ 4)
=(c—4) e A

Comparing R with R’, we see that R’ can
deadlock initially, while R cannot. Indeed,
the choice of whether R’ will initially dead-
lock or not, is completely nondeterministic.
This nondeterminism can best be understood
upon noting that P\, can undergo a silent
transition from p, to p; (see Fig. 1), and
there is no observable mechanism to guar-
antee that the event ¢ be offered by Q prior
to such transition.

The above example illustrates the fact that
the language model cannot adequately ex-
press the possibility of deadlock. This fact
motivated the introduction by [10] (see also
[9, 20, 34, 35]) of the more sophisticated
failures-model. This model, which is ob-
viously more detailed than the language
model, represents a process by its failures
set § = {(s, X)}, where a failure (s, X)
consists of a trace s, i.e., a string of events
that the process can execute, and a refusal
set X that consists of the events that the pro-
cess can reject (or refuse) after the execution
of 5. We shall not elaborate here on the fail-
ures model except for giving a simple illus-
trative example.

Example 4 The failures set of the process
P\, of Example 1 is given by

FP\) = {(e, @), (¢, {c}), (b, {b, c}),
(c, {b, ch}.

We give here only the failures with maximal
refusals.

Process Algebra

By process algebra we refer to a set of
algebraic identities between process expres-
sions. Such an algebra can then be used to
manipulate, combine and simplify process
expressions and perform a variety of com-
putations with processes symbolically rather
than explicitly. We have already encoun-
tered in the foregoing several algebraic pro-
cess identities, and a simple example of their
use in computational simplification was seen
in Example 3. The chief utility of a behav-
ioral (or semantic) modeling framework of
processes is in establishing the algebraic
identities. It is for this reason that we must
guarantee that the modeling framework con-
stitutes a behavioral (in our case, a language)
congruence. The derivation of these identi-
ties are beyond the scope of the present paper

June 1990

c d d{‘d /% d

s R=P|gS

Fig. 7.

but for illustrational purposes we give below
some representative examples of the type of
algebraic identities that are valid for the fail-
ures model with respect to @ (see e.g., [35]
for details):

P+Q +R=P+(@Q+R (19
(P+Q) ®R=(P &R +(Qe R(6)
PlQ @ R) = (PI,Q) ® PI,R) (17

((@a—>P)+ O\, =P\, 8 (P+Q)\,.
(18)

The Ramadge-Wonham Discrete-
Event Control Formalism

In their pioneering work on the control of
DEPs, Ramadge and Wonham (RW) [45,
49, 50] introduced the following formalism.
A DEP is modeled as a deterministic state-
machine or automaton, called generator,
which is given by a 4-tuple

G= (L Q.9 g 19)

Here Q is a set of states, L is a set of events,
6:L X @ — ( is a partial function called
the transition function, and ¢, is the initial
state. The statement that 6 is a partial func-
tion means that it need not be defined for all
pairs (o, ¢) € L X Q. (Actually, Ramadge
and Wonham have a somewhat more general
setting where a DEP is a S-tuple that in-
cludes also marker states, but these are ines-
sential to the present exposition.)

Control is introduced as follows. It is as-
sumed that all events occur in the process
spontaneously and asynchronously, but some
of the events have a mechanism for their
disablement at any time. Thus the event set
¥ is partitioned into two disjoint subsets

=%, UE. (20)

Here L, is the subset of events that can be
disabled, called controllable events, and I,
is the subset of events whose occurrence
cannot be disabled, called uncontrollable. A
control input for G is now defined as a subset
I' © L. of events that are disabled at any
instant of time. Control of a DEP consists

of switching the disablement set I' as the
process progresses in its run. With this event-
set partition and associated disablement
mechanism the DEP is called a controlled
DEP, or CDEP.

The control execution is performed by a
supervisor which can abstractly be thought
of as a map

h:£(G) - T. @n

Concretely, this means that after every event
that takes place in the process, a new event
set is supplied to the process for disable-
ment. Thus when the CDEP is supervised
by a supervisor 4, the generator G must be
modified by redefining the transition map 6
as &, where

. é(a, @),
(o, q) 1=

undefined,

ifoel
otherwise.

Let £(G) denote the language generated by
G under control, i.e., in closed loop. Then
it is clear that the domain of the map h can
be restricted to £.(G). In practice, it is con-
venient to use a state machine realization for
£.(G). Thus one defines S = (L, X, £, xp)
as the automaton realizing £(G). and the
map A is replaced by a feedback map ¢:X
— I such that for s € £(G)

B(E(s, X0)) = h(s). 22)

Here £(s, xg) is the standard extension of the
transition map to strings [21].

Strict Concurrency and Discrete
Event Control

A key element in the Ramadge-Wonham
control problem formulation is the introduc-
tion of what may be thought of as discrete-
event dynamics, where by dynamics we refer
to the presence of spontaneity, that is, the
existence of events whose occurrence cannot
be influenced by the environment.

Let us next examine the possibility of
modeling the control of discrete event pro-
cesses using the formalism of strict concur-
rency as described in Section III. To this end
consider first the simple control problem de-
scribed in Fig. 7.
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Here all events of the process P are con-
trollable, thatis L, = T = {a, b, c, d} and
L, = . The process S is to be thought of
as the supervisor for P, with supervision
achieved through concurrency with full syn-
chronization. Specifically, when P is at state
piand S is at state s;, then the possibility of
occurrence of an event, say a, in R = P|z§
at state r, = (p;, 5;), means that the event is
enabled by S and possible (subject to en-
ablement) in P. An event in R is, thus, in-
terpreted as enabled by S and occurring in
P, and the participation of both processes in
an event is essential for its occurrence. Thus,
when all events are controllable, we can
model control by strict concurrency with full
event synchronization.

.

R = P“(a.b.c)s

Fig. 8

As it turns out, this is not quite as straight-
forward when we introduce dynamics, or un-
controllable events. Let us first try to clarify
the synchronization status of the various
events. Clearly, the controllable events must
belong to the synchronization set as before,
because it takes the supervisor to enable an
event and the process to execute it. But what
about the uncontroliable events? If an un-
controllable event is possible both in P and
in S (at their respective states), its occurrence
in the concurrent process must be given the
physical interpretation as having been exe-
cuted in § in response to its (spontaneous)
occurrence in P. If it is possible only in P,
but not in S, it will still occur in P, and hence
in the concurrent process, because of its un-
controllability. But if an uncontrollable event
is possible only in S, it will not occur be-
cause § cannot initiate the event.

Let us reconsider the above example, but
this time assume that the event d is uncon-
trollable. Thus let £/ = {a, b, ¢} and I, =
{d}. Let us reexamine the process R = P|i3S
of Fig. 7. The event d appears in R after the
occurrence of b but not after a. This is phys-
ically incorrect because once a occurs, the
event d cannot be blocked by its absence in
the supervisor. If, on the other hand, we re-
move the uncontrollable events from the
synchronization set, and try to model con-
trolled behavior by R’ = P|z.S, we would
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obtain the process R’ as in Fig. 8, which is
unsatisfactory because it permits the occur-
rence of the event d without participation of
P, which is impossible in the physical pro-
cess.

Thus, it is clear that concurrency with strict
synchronization cannot be used as a satis-
factory framework for modeling the inter-
action of dynamical discrete-event processes
with their environment. More specifically,
strict concurrency is an inadequate formal-
ism for modeling control of discrete event
processes within the Ramadge-Wonham
framework (unless we impose special re-
strictive conditions on the supervisor such as
the condition of supervisor completeness
[45]).

Concurrency by Prioritized
Synchronization

In the present section we introduce a new
concurrency operator, called prioritized syn-
chronous composition that is suitable for
modeling a wide range of practical control
formalisms.

Let the event set be denoted by L and con-
sider two processes P and Q with events in
E. With each process we associate a subset
of special events, called its set of priority (or
blocking) events. These are events in whose
execution the given process must participate;
otherwise they cannot take place. Thus, let
A, B € X be the priority sets of P and Q,
respectively, and define the prioritized syn-
chronous composition of P and Q, denoted
P,ll5Q, as follows:

I

P & Q:q = q' = PylsQ:(p. @)
», 9 23)
P& Qg >N\ = PlsQ:(p, 9
{(p', q), ifo¢B

\,

ifoeB (24)
g o
Q:q > q &P:p =\ = Pill30:(p. @
(p.q). ifoga
\, if o € A. (25)
Expression (23) states that if, at their re-
spective states, both processes P and Q can
execute a given event o, then it will be ex-
ecuted concurrently (i.e., in synchroniza-
tion) in both processes. Both processes will
then undergo simultaneously their respective
state transitions. Notice that, when both pro-
cesses can execute an event concurrently, the
mathematical model does not distinguish

which process initiates the event. Indeed, as
we shall see shortly, this is a matter for the

P:p

la

la

P:p

ls

1

—

physical interpretation. Expressions (24) and
(25) define the concurrency operator in case
that an event is possible in (initiated by) one
of the processes but is not possible in the
other: In this case, the initiating process will
execute the event without participation of the
other, unless the event is in the priority set
of the latter. In this case the execution of the
event is blocked.

It is not difficult to see that the prioritized
synchronous composition operator partitions
the event set T into four distinct (and dis-
joint) subsets:

1) The set A N B of strict-synchronization
events. These events are either executed
by both processes concurrently or by
none.

The set L — A U B of broadcast syn-
chronization events. Each process can of-
fer these events for execution and the
other process will participate in their ex-
ecution synchronously if it can. But if it
cannot (i.e., if the event is impossible in
its current state), the initiating process
will execute the event by itself.

2

—

3) The set A — A N B of priority events of
process P. The execution of these events
will take place if and only if the process
P participates. The participation of the
process Q in these events will take place
whenever possible, i.e., whenever Q can
in its respective state. But lack of partic-
ipation by Q cannot block execution by
P.

4) The set B — A N B of priority events of
process Q. (Similar to 3) above.)

To illustrate the prioritized synchronous
composition, consider the following simple
example:

Example 5 Let L = {a, b, ¢} and consider
the parallel composition of processes P and
Q as described in Fig. 9, where 4 = {a, ¢}
and B = {a, b}. Observe that the event a
occurs only when both processes P and Q
participate in the execution taking R from
state 7, = (py, q)) to r3 = (py, q,). However
the event ¢ occurs in R either by participation
of both processes, for example in transition
from r; = (po, i) to r; = (py, qo), or by
execution of P alone, in case the event is not
available in Q, as for example in transition
from ry = (py, go) to r; = (1, go). Notice
also that the transition of process P from p,
to po never takes place when it runs concur-
rently with Q because the event b is in the
priority set of Q, but Q°is never at state g,
when P is at p,. The important property that
is demonstrated above and that distinguishes
prioritized synchronous composition from
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other concurrency operators, is the fact that
the behavior of the concurrent process with
respect to a given event, depends not just on
the event, but also on the context and event
availability.

We turn now to an examination of how
our prioritized synchronous composition can
model control of DEPs. First we remark that
DEPs frequently have other mechanisms for
interaction with the environment than the one
investigated by Ramadge and Wonham. For
example, the process may possess also driven
events that must be forced or triggered by
the environment in order to take place.
Driven events are then distinguished from
controllable events in that when they are
possible in the process and triggered by the
controller, they are guaranteed to take place
immediately and instantaneously.

We shall let P denote the process under
consideration, and let § denote the supervi-
sor. The controlled, or closed-loop, process
is then given by

R = (S/P) := P,|pS. (26)

The priority sets A and B are of course suit-
ably chosen so as to correctly model the
physical environment. The event set & will
be partitioned into three disjoint subsets

L=%, UL UZ,. @7

The subset I, is the set of uncontrollable

events, L, is the set of controllable events,
and I, is the set of driven events. Next we
consider an example in the Ramadge-Won-
ham framework, that is, L, = .

Example 6 Let the event set be £ = {a,
b, ¢, d, e}, and consider the simple pro-
cesses P and S of Fig. 10.

Suppose P is the controlled process and let
the subset of controllable events be . = {a,
b, c}, and the subset of uncontrollable events
be £, = {d, e}. Thus, the events in I, can
be disabled while the events in I, cannot.
Let us now see how we can model control
of process P by supervisor S through prior-
itized synchronous composition of P and S.
Since all events are assumed to be sponta-
neous events of the process P, its priority set
A must include them all, thatis, A = . The
uncontrollable events cannot be influenced
by the environment. Thus, the priority set B
(of the supervisor §) must not include any
uncontrollable event of P. This means that
uncontrollable events of P cannot be blocked
by the supervisor, but the supervisor may (if
the designer so wishes) execute concurrently
state transitions in response to their occur-
rence in P. The controllable events, how-
ever, will not occur in the process unless
they are enabled by the supervisor. Thus, the
controllable events must be in the supervi-
sor’s priority set B, and we have B = {a,
b, c}. Notice that in thiscase L — A U B

N P2 P3 P4

Process P

So

1 S2 53

Process §

Fig. 10.

June 1990

=g, ANB=L ., A-ANB=E,and
B-ANB=g.

In our example the controlled process R
:= P,lgS = Pgls.S is then obtained as
shown in Fig. 11 where ry = (py, s¢), 11 =
(p1, s1), 12 = (p3, o), and r3 = (pg, 53).
Notice that the controllable events a and ¢
are both enabled by S while the event b is
not. Hence in the controlled process R, the
event g is present and will occur if it occurs
in P. The events b and ¢ do not appear in
R; the first because it is not enabled by §
and the second because it is not possible in
P. The events d and e appear in R and occur
whenever they occur in P regardless of their
possibility (or lack of it) in S. Thus, if e
happens in P, then S participates synchron-
ously while if 4 happens in P, then S remains
in its initial state sg.

To

71 T2 T3

Process R = Pgfly S

Fig. 11.

We conclude this section with some re-
marks on control with driven events. Let P
and S be the process and supervisor with
priority sets A and B, respectively. The set
of driven events L, must then be included in
B in view of the fact that they will not take
place unless triggered by the supervisor.
However, they may or may not be included
in A, depending on the specific control
mechanism employed. Specifically, we shall
say that driven events are synchronized in
closed-loop, if they are included in the prior-
ity set A. In this case the supervisor S, that
initiates the driven events, waits for an ac-
knowledgement that the triggered event is
actually possible (and executed) before it
proceeds with further state transitions of its
own. Driven events that are not included in
A are said to be executed in open-loop. In
open-loop mode, the forcing process does
not wait for acknowledgement.

We can summarize the discussion of this
Section with a formal classification of the
events with respect to the priority sets 4 and
B as follows. First, we have the requirement
that

1. A
2. B

1V]

I, UL,
L, UL,
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The subset ;. := L, N A is then the set of
closed-loop driven events and the set £, : =
Ly — L4 is the set of open-loop driven
events.

1 T2 73 T4

Process 1%

Fig. 12.

The Trajectory Model and
Associated Algebra

As was stated earlier, we identify process
behavior with the language that it generates.
Thus, we must guarantee that we have a be-
havioral model for DEPs that constitutes a
language-congruence with respect to an al-
gebraic framework that includes prioritized
synchronous composition. We shall concern
ourselves with this question in the present
section.

We have seen in the previous section how
the prioritized synchronous composition op-
erator * Al| g* can be used to model a wide
range of parallel composition formalisms and
is, in particular, suitable for modeling dy-
namics and discrete-event control. We have
also mentioned that the failures model cap-
tures adequately deadlock phenomena in
nondeterministic behavior. It turns out, how-
ever, that in general, the failures model can-
not adequately account for the range of pos-
sible interleavings that can occur in the
framework of the operator - 4|+ when non-
determinism is also present. This is illus-
trated in the following simple example.

Example 7 Consider the two processes

P=(@—{c—>8)+(®—4)

®@ (a—>b—-d— A
P =(@—= ((c A +(b—d—4)
® (@ = b— A).

It is easily seen that P and P’ have the
same failures set which is given by (listing
again just the failures with maximal refus-
als):

F = {(e, {b, c. d}), (a, {a, d}),

@, {a, ¢, d}), (ac, {a, b, ¢, d}),
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(ab, {a, b, c}), (ab, {a, b, ¢, d}),
(abd, {a, b, ¢, d})}.

To see that they do not behave the same way
under prioritized synchronous composition,
let them have priority set 4 = {a, b, d} and
run them in parallel with the process Q with
priority set B = {a, b, ¢}, where

Q=a—>c—>b— A
We obtain distinct results:
R=Pillz0=@—c—n
® (a—>c—2b—->d— A,
R' = PisQ = (@~ c— 1)
® (a—>c—b— A

In view of the above, it is clear that the fail-
ures model is not a language congruence with
respect to @, = Qo = -, +, &, (*)\,,
- allg* . recursion).

We turn now to a brief discussion of a
model, called the trajectory-model, that is a
language-congruence with respect to @,, and
which has been examined in detail in [19] in
the framework of a complete axiomatic the-
ory. In the trajectory-model the process is
specified by its set of trajectories. A process
trajectory is a record of an ‘‘experiment’’
that describes an execution of a string of
events, and records in addition to the exe-
cuted events, also the events that the process
can reject (or refuse) after each successful
event. A typical trajectory is then an object
of the form

Xo, 01, Xy, 00, Xy 010 X))

Here g; denotes the ith successful event, X;
denotes the set of events that can be refused
after the ith executed event and X, denotes
the set of events that can be refused initially.
The following is an example of the trajectory
set of a process (listing only the trajectories
of maximal length with maximal refusal
sets).

Example 8 The set of trajectories of max-
imal length with maximal refusals of the pro-
cess P of Example 7 is given by

3(P) = {({b, ¢, d}, a, {a, d}, c.
{a, b, c,d}), ({b, c, d},
a, {a, d}, b. {a, b, c. d}).
({b, c.d}, a, {a, c, d}, b,
{a, b, ¢c,}, d, {a, b, c,dD}.

The set of trajectories of maximal length

(with maximal refusals) of the process P’ of

Example 7 is given by
3Py = {({b,c,d}, a, {a, d},c,
{a, b, ¢, d}),
({b, ¢, d}, a, {a, c, d}, b,
{a, b, c, d}),
({b. c.d}, a, {a, d}, b,
{a, b, ¢,}, d, {a, b, c, d})}.

Notice that the trajectory sets for the pro-
cesses P and P’ (both of which have the
same failures set) are distinct. This distinc-
tion accounts for their different behavior un-
der parallel composition that was evidenced
in Example 7.

It has been shown in [19] that a variety of
useful algebraic identities similar in form to
the examples given previously also hold for
the trajectory model with respect to @,. These
are beyond the scope of the present paper.

Aspects of Controllability

We conclude this paper with some remarks
about controllability in discrete event control
viewed within the framework of concur-
rency.

A behavioral specification for a DEP is,
typically, a statement about languages. If X,
< L is some event subset, than a local spec-
ification consists of a pair of languages X,,
X, < £¥ such that £(P\;_g), the lan-
guage of the process localized to L, satisfies
the constraint

X, S LP\;_p) € XK. (@28

Sometimes X, = ¢, and the specification
consists of the upper-bound constraint only.
If £, = £, we call the corresponding speci-
fication global.

We shall assume that E = L, U L, A4 :=
£, UZL.=ZXandB =L.IfSisa supervisor
for a process P, then

LIP) = L(Plle.S) € £&P). (29

We can now introduce within our frame-
work the concept of controllable languages.

Definition 5 Let X be a closed sublan-
guage of £(P). (A language is closed if it
includes all its prefixes [21].) & is said to
be controllable if and only if there exists a
supervisor S such that

X = £l 5. (30)

A characterization of controllability (that
was used as definition by Wonham and Ra-
madge in [45]) is the following easily proved
theorem that essentially states that a sublan-
guage X of £(P) is controllable if every
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event that is physically possible after a given
event-string in P but is not possible after the
same event-string in X is a controllable event
(since it must be eliminated by disablement):

Theorem 1 A closed sublanguage X <
L£(P) is controllable if and only if for all
strings to € £(P) such thatt € X and o €
T

tog X = g€l (€2))

A further result that can be proved using el-
ementary process identities is the following.

Proposition 1 Let P be a process. The class
of controllable sublanguages of £(P) is
closed under set union.

The significance of the proposition is that
it implies the existence of a unique supremal
controllable sublanguage of £(P) (Theorem
2 below).

Consider now a process P, and let A, the
deadlock process, serve as supervisor. The
controlled process is then given as

(A/IP) = Pgflz.A (32)

and it can be shown that if S is any super-
visor for P, then

£(A/P) S L(S/P). (33)

Thus, the language £(A/P) is the smallest
controllable sublanguage of P. We denote
this sublanguage by ‘U, and call it the un-
controllable or spontaneous language of P.

Theorem 2 Let P be a process. Let X <
&£ (P) be a nonempty closed sublanguage. If
Up € K, then X contains a unique (non-
empty) supremal controllable sublanguage.

Concluding Remarks

In this article we surveyed aspects of the
theory of concurrency and process-algebra
and showed how the theory can be adapted
to deal with issues of DEP modeling and
control. The proposed framework is suitable
for modeling a wide range of process-inter-
action formalisms and is capable of dealing
adequately with aspects of nondeterminism.

We believe that the algebraic approch to
DEP modeling and control proposed here can
alleviate some of the computational difficul-
ties caused by high dimensionality of prac-
tical DEPs.
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“...and so we come to the bottom line!"
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