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Abstract: The paper presents an agent based framework for control of conflict-free
scheduling and spacing of airport arrival and approach traffic. The proposed tool
incorporates a multi-agent conflict-resolution algorithm that guarantees to arriving
aircraft safe approach trajectories, and a dynamic prioritization mechanism that
aids in efficient utilization of the available airspace and arrivals runway capacity.
The approach can be employed by a central authority or autonomously by the
arriving aircraft.
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1. INTRODUCTION

A recent trend in Air Traffic Management (ATM)
research has been the development of various
decision support tools for monitoring and routing
en route air traffic as well as tools for sequencing
and scheduling of traffic in the terminal area so
as to increase overall capacity and efficiency of
operation.

In the present paper we describe a new ap-
proach to the airport arrival-sequencing, schedul-
ing, spacing and conflict resolution problems. The
approach is based on a multi-agent model for air
traffic management that was recently introduced
in (Resmerita et al., 2003), in which central ele-
ments are the multi-agent conflict detection and
resolution algorithms introduced in (Resmerita
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and Heymann, 2003), (Resmerita, 2003). In that
model, aircraft are viewed as agents and the
airspace is partitioned into cells. The required
separation between aircraft is satisfied by guar-
anteeing that at most one agent occupies a cell
(henceforth called a resource) at any time. Thus,
the resource system is modelled as an undirected
graph, where a vertex corresponds to a cell and
an edge represents an adjacency relation between
two cells. An agent travels from an initial vertex
to a destination vertex (both of which are specific
to each agent). An agent trajectory is a timed
directed path in the resource graph, starting at the
initial vertex and ending at the destination vertex.
Each edge (transition) in the path is labelled by
the time of residence in the preceding vertex (rep-
resenting the time of cell traversal). The number
of agents in the system is not fixed and generally
changes with time. An agent can enter the system
at any arbitrary (integer) instant of time and exits
the system upon arrival at its destination.



Each agent announces, upon entry, the finite set
of all its optimal paths (by some criteria), called
the agent’s model. To satisfy safety (i.e., legal
separation), an agent’s movements are restricted
to a legal subset of its model, called the agent’s
legal plan. Paths from legal plans of distinct agents
are conflict-free. Each agent is then allowed to
follow an arbitrary path in its legal plan.

At the heart of the framework proposed in
(Resmerita et al., 2003) is the mechanism by
which agents select their legal plans (Resmerita
and Heymann, 2003). The proposed methodol-
ogy consists of two algorithmic phases, preceded
by an initialization phase. First, each incoming
agent determines the subset of its optimal paths
that are conflict-free with the legal paths of all
active agents (that are already in the system).
Then, in the conflict resolution phase, the agent
resolves potential conflicts with paths of all other
incoming agents. The conflict resolution algorithm
finds a maximal solution; that is, a set of legal
plans for the incoming agents that satisfy the
condition that none of these legal plans can be
improved unilaterally (without creating conflicts
with the legal plan(s) of other agents). Finally,
in the accommodation phase, agents whose legal
plan remained empty after the conflict resolution
phase obtain resources (paths) from active agents
if possible. (The accommodation algorithm is not
relevant to the present paper.)

The conflict resolution problem is solved as a non-
cooperative game, with greedy agents that com-
pete for the conflicting resources. It is assumed
that disputed resources are prioritized over the
competing agents. The conflict resolution algo-
rithm yields a Nash-equilibrium; that is, a set
of agent strategies that always yield a maximal
solution.

In adapting the agent approach to the arrival air-
traffic control problem, two specific features of the
arrival airspace structure play an important role.
First, all aircraft are designated for arrival at a
single final vertex. Secondly, the arrival airspace
consists of a fixed geometric structure that in-
cludes all available control maneuvers that can be
employed towards efficient and safe (i.e., conflict-
free) scheduling, sequencing and spacing of the
arriving aircraft. The operational airspace model,
therefore, can be represented as a fixed resource
graph that includes a specified set of entrance ver-
tices (where traffic enters the controlled airspace
under consideration) and a single target vertex. To
compute the legal plans for all entering agents, the
conflict resolution algorithm is then employed. To
achieve efficient utilization of the arrival airspace
and the available landing capacity, in addition to
fair scheduling of all arriving traffic, a dynamic
resource prioritization mechanism is employed,

that constitutes the primary traffic-management
control tool.

A recent review of the literature on conflict res-
olution in ATM can be found in (Kuchar, 2000).
Collision avoidance strategies have been studied
in (Tomlin et al., 1996) (Menon, 1999). A token-
based framework was described in (Devasia et
al., 2002). More recent work on scheduling and
flow regulation of airport arrival traffic can be
found in (Bayen et al., 2003), (Bayen and Tom-
lin, 2003).

2. AGENT MODELS AND CONFLICT
DETECTION

Agent models are represented as timed automata
(with discrete time) whose vertices and edges are
derived from the underlying resource graph. For
example, consider two agents, hereby denoted by
R and S, with models in Figure 1. The different
paths in the two agents’ models are denoted
p1, ...p10.

2 1

a b

c d e

f g

c g

f a b

d e

2 2

2

1

1

1 1

1

1

2

2

2

2

i

h
1

h
21

i

2

j

j

1

k

1

k

2

4 2

3

2
4

1
3 1 1

1 5
2

3 1 2

3

2

1

2

3

3

3 2

25

3 1 1

2 3

3

2

p1

p2

p3

p4

p5

p6 p7

p8

p9
p10

q0R

q0S

ε

Agent R

Agent S

ε

Fig. 1. Agent models

If agent R follows the path p1, it stays 4 units
of time at its initial resource q0R before moving
to a. It stays 2 units of time at a and then
moves to b at which it resides 3 units of time
before leaving the system. The label ε denotes
task (path) termination (ε is not actually a vertex
of the resource graph). The numbers below the
vertices represent priorities, to be explained later.

Let V denote the set of vertices of the resource
graph. A disputed resource, or conflict, between
paths pi of agent i and pj of agent j is a pair
(τ, q) ∈ N × V such that both agents i and j
would occupy q at time τ if they followed pi and
pj , respectively, and at most one of i, j would
occupy q at τ −1. Thus, τ is the instant of conflict
occurrence between i and j at q. For example, in
Figure 1, (2, c) is a disputed resource between the
path p6 of S and the path p3 of R.



Conflicts are detected by computing the parallel
composition of the involved automata. For a de-
tailed discussion of efficient computation of the
conflict detection see (Resmerita, 2003).

For the airport-arrival problem, the arrival geome-
try is fixed and so is the associated resource graph.
To illustrate the creation of a resource graph for a
representative case, consider Figure 2 that shows
the typical arrival (and departure) traffic pattern
at San Francisco airport as recorded on the air-
traffic-controllers’ screen. The coordinates are in
nautical miles.

Fig. 2. San Francisco Airport Arrivals Airspace

The corresponding resource graph is depicted in
Figure 3. Notice the explicit representations of
certain delay maneuvers and holding patterns that
can be followed by the aircraft in order to achieve
various alternate arrival times (delays) that can be
employed towards conflict resolution, sequencing
and spacing. In practice, more extensive maneu-
vers are generally available and these must all be
accounted for in the resource graph so as to obtain
efficient airspace management.
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Fig. 3. San Francisco arrivals resource graph

Each aircraft enters the system at one of the entry
ports (vertices in the graph) and its available
arrival maneuvers are completely specified by its
entrance port. It follows that the agent model

is completely determined by the entrance port
and entrance time. To illustrate, Figure 4 shows
three agent models for aircraft entering the San
Francisco airspace (of Figure 3). Here the labels,
e.g., 3a0, etc., list for each vertex the time of entry
followed by its name. Notice that each of the agent
models displays the direct path and also delayed
paths. Obviously, more delayed paths could be
displayed for each agent, if so desired. Disputed
resources are circled. The numbers above them
will be explained shortly.
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Fig. 4. Agent models for San Francisco Arrivals

3. CONFLICT RESOLUTION

Suppose that n agents, referred to as agent 1, . . . ,
agent n, want to enter the system. We denote by
Pi the model of agent i. Let D denote the set
of all disputed resources among the n agents. In
the sequel, by resource, we shall frequently mean
disputed resource.

A prioritization of agents’ access to the disputed
resources is a map

π : D × {P1,P2, . . . ,Pn} −→ {1, 2, . . . , n},

given by

π(q,Pi) =
{

k ∈ {1, . . . , n}, if q is on a path in Pi;
undefined, otherwise.

such that π(q,Pi) �= π(q,Pj) whenever they are
defined, and i �= j. We assume that a larger
number means a higher priority.

The basic conflict resolution problem can be
formulated as follows. Given a multi-agent sys-
tem {P1, . . . ,Pn} and a prioritization π; find for



each agent a set of paths LPi ⊆ Pi (a legal
plan) such that (LP1, . . . , LPn) is conflict-free.
That is, no two paths belonging to distinct le-
gal plans have a disputed resource. A solution
(LP1, . . . , LPn) is less restrictive than another so-
lution (LP ′

1, . . . , LP ′
n) if LP ′

i ⊆ LPi for all i = 1, n
and the inclusion is strict for at least one agent. A
solution is least restrictive, or maximal, if no other
less restrictive solution exists. While maximal so-
lutions need not be unique, a maximal solution
means that no agent can unilaterally improve its
legal plan without creating a conflict with some
other agent’s legal plan (and thus violating the
safety constraint). An algorithm that always finds
a maximal solution is called optimal.

Our approach to optimal conflict resolution is
based on the following guidelines. An agent can
acquire a resource if and only if the following
conditions are simultaneously met:
(*) The agent has highest priority for the resource
among all agents that have legal access to it,
and (**) The agent can make successful use of
the resource, by completing a legal execution.
This, in particular, implies that an agent is not
permitted to acquire a resource (for which it may
have priority) if the acquisition cannot be applied
towards a successful task completion.

One can prove (Resmerita and Heymann, 2003)
that a solution based on the above principles is
conflict-free and maximal.

3.1 The Case of Two Agents

Consider two agents, denoted by R (with model
PR) and S (with model PS), and a prioritization
π of all disputed resources over R and S.

Outline of the procedure. The resolution algo-
rithm for the two-agent case, henceforth referred
to as DOR2, works on two sets of “unresolved”
paths, initialized with the paths of the models of
the two agents. These will be denoted by MP
(”my paths”) and OP (”opponent’s paths”). At
each iteration, paths which are determined as legal
are moved from the unresolved set to a “legal”
set. Legal sets are denoted by MLP (”my legal
paths”), and OLP (”opponent’s legal paths”).
Paths which are determined as illegal are elim-
inated from the unresolved sets. The algorithm
stops when the unresolved sets are empty, i.e.,
when each path in the initial models is marked
as either legal or illegal.

We say that an agent has legal access to a resource
q if it is not prevented by other agents from reach-
ing q, even if it may be prevented from completing
the execution (from q to the destination vertex).
Thus, an agent does not have legal access to q
only if each path p containing q also contains some
other resource q′p, preceding q, such that q′p is
acquired by some other agent. For example, both

agents R and S in Figure 1 have legal access to
resource i. Since R has priority for i and it can
complete a legal execution, it will acquire i. In
particular, this means that h is inaccessible to S.

At each iteration, the algorithm determines a set
of resources which are legally accessible in MP .
A path p in MP is then considered as legal if all
disputed resources on it are legally accessible and
MP has priority for the last disputed resource
on p. In this case, all the paths in OP having
disputed resources with p are illegal, and therefore
they are eliminated from OP . Such paths may
contain resources that are disputed with other
paths (beside p) in MP . These resources become
now undisputed, and this may give legal access to
resources in MP that were previously inaccessi-
ble. Hence, in the next iteration, new legal paths
may be found. Similar operations are executed by
reversing MP with OP (at each iteration). Thus,
the algorithm will yield the agent’s legal plan as
well as the opponent’s legal plan.

Example. Let us illustrate the algorithm by re-
solving the conflicts in the example of Figure 1.
All resources are disputed. The priorities for the
resources are as listed in the figure. Consider the
viewpoint of agent R. Initially, MP is R’s model
and OP is S’s model (as depicted in the figure).
In this example, for simplicity, we shall omit the
time component from a disputed resource (e.g.,
we shall use a instead of (5, a)). At the beginning
of the first iteration, the set of resources that are
legally accessible in MP is {a, b, i, c, d, j, f}. Of
these, R has priority only for a, c, and i. Since a
legal execution can be completed from i, it follows
that p2 is legal. Consequently p10 is illegal and
therefore resource h is available in MP . The path
p2 is moved from MP to MLP and p10 is removed
from OP . Each of the remaining paths in MP
(i.e., p1, p3, p4, p5) contains a disputed resource
for which R does not have priority. Therefore,
we turn now to check legality of paths in OP .
Since S has priority for j, and it can complete
a legal execution from j, it follows that p7 is
legal. Consequently, p4 is illegal which means that
resource k is available in OP . Now each path in
OP has a resource for which S does not have
priority. The algorithm proceeds to check legal
accessibility of resources in MP and then in OP .
Since a can be claimed in MP , it follows that b is
inaccessible in OP , which means that b is available
in MP . Hence, a and b can be acquired in MP .
Resource c can also be claimed in MP (it is legally
accessible and R has priority for it), causing g to
be inaccessible in OP and therefore to be available
in MP . However, in contrast to the case of b, g is
inaccessible in MP at this step (due to f). No new
legally accessible resource can be determined now
in MP , hence we turn to OP . Since e is inacces-
sible in MP , it will be acquired in OP (together



with d). At the beginning of the second iteration
MP = {p1, p3, p5} and OP = {p6, p8, p9}. The
second iteration begins with moving p1 from MP
to MLP , and deleting p8 from OP . Consequently,
f becomes undisputed in MP , which makes g
legally accessible. Therefore, p5 is legal, which
implies that p6 is illegal. Now MP contains only
p3 and OP only p9. Clearly, p9 is legal and hence
p3 is illegal. The algorithm stops. The maximal so-
lution obtained by agent R is MLP = {p1, p2, p5}
and OLP = {p7, p9}. Agent S executes the same
algorithm (this time MP is initialized with the
model of S and OP with the model of R) and
obtains the same solution (where MLPS = OLPR

and OLPS = MLPR).

3.2 The General Case

In the multiple (more than two) agent scenario,
there are two extreme situations: (1) The optimal
resolution, where all agents in the system are con-
sidered simultaneously, but where the computa-
tional complexity is maximal as well. (2) The sim-
plest resolution methodology where conflicts are
resolved pairwise, between all competing agents,
employing algorithm DOR2, the final result being
the intersection of the partial results. While the
pairwise approach is computationally more effi-
cient, the result is, in general, not maximal.

The optimal resolution algorithm is presented
in (Resmerita and Heymann, 2003), (Resmerita,
2003). The next example will be used to illus-
trate the pairwise resolution. Consider the agents
with models and prioritization given in Figure 5
(transition times are omitted for simplicity). The
algorithm DOR2 is employed as follows. R versus
T : since R has access to b, it will block b at T ,
therefore R can acquire b and c. Consequently,
the uppermost path of T is illegal and R can
also acquire a. T will acquire d, e, and f . The
solution is: MLP 1

R = {p1, p2}, MLP 1
T = {p7, p8}.

R versus S: MLP 2
R = ∅ and MLP 2

S = {p4, p5}
(because S has priority for a, b, and d over R). S
versus T : MLP 3

S = ∅ and MLP 3
T = {p6, p7, p8}.

The outcome is MLPR = MLP 1
R ∩ MLP 2

R = ∅,
MLPS = ∅, and MLPT = {p7, p8}, which is not
a maximal solution.

4. THE RESOURCE PRIORITIZATION
CONTROL TOOL

The employment of the conflict resolution algo-
rithm for the control of inbound air traffic, insures
that the legal plans for the entering agents will
be conflict free, for any resource prioritization.
Thus, agents that are allowed to enter the con-
trolled airspace, that is, agents that are assigned
a nonempty legal plan, will be sequenced and
scheduled for orderly and safe terminal arrival.
However, using the conflict resolution algorithm
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does not, in itself, insure efficient utilization of
the airspace, of the available airport arrival ca-
pacity, and delay-free agent arrivals. To achieve
efficient operation, a dynamic resource prioritiza-
tion mechanism is employed as delineated below.

Each entering agent has a nominal terminal ar-
rival time which is the time of arrival if the
agent follows its nominal direct flight-path (with-
out any controllers’ interference). All other flight
paths available to an entering agent in its agent-
model have delayed arrivals. Thus, each non-direct
flight path includes certain delay maneuvers so
that there are alternate paths that achieve, say,
1, 2, 3, ... units of delay, respectively. The total
accumulated delay for a set of entering agents, is
the sum of all their individual arrival delays (rel-
ative to their nominal arrival times). Clearly one
objective of an efficient operation of the arrival
system is to minimize the total delay.

However, there may be situations where the total
delay will be minimized at the expense of the
individual delay of certain specific agents. Thus,
an additional (or alternate) requirement of opti-
mal operation is to minimize the maximal agent
arrival delay. In our agent approach to the traf-
fic management problem we wish to develop a
mechanism that has some of the advantages of
both approaches. Specifically, we wish to reduce
as much as possible the total arrival delay while
insuring that individual agents are not unduly
penalized in achieving this goal.

Since our approach is based on a dynamic priority
assignment mechanism which is at present based
on heuristics, we cannot as yet insure that it will
achieve provable optimality. This begs the ques-
tion as to whether there exist priority assignments
for which an arrival planning methodology based
on the conflict resolution mechanism, will achieve



optimal safe arrival scheduling and planning. The
following elementary but important theorem sup-
ports the basic validity of our proposed approach.

Theorem 1. Suppose there are k agents in the ar-
rivals airspace. Let P = (p1, ..., pk) be any conflict-
free path assignment to the k agents. Then there
exists a resource prioritization for which the so-
lution of the conflict resolution algorithm will
include for each agent i, i = 1, ..., k, the path pi

in its legal-plan.

Proof. For each i let the resources along path
pi be given highest priority to agent i. This
can be done since the paths are conflict-free.
Then, a conflict resolution algorithm based on the
principles in Section 3 will assign pi to agent i.

To achieve our stated objectives, the proposed
prioritization mechanism is designed to have the
following properties.

1. If an available airport arrival resource (landing
time slot) is prioritized to a given agent, then all
resources of at least one path to this resource are
prioritized to this agent, whenever possible.
2. Each arrival resource, along with exactly one
fully prioritized path is removed from the dy-
namic prioritization and resolution system if
such a path to the arrival resource exists.
3. Delayed aircraft receive ”arrival prioritization
enhancement” that increases monotonically with
increasing delay.

Property 1) insures that the agent that was priori-
tized for arrival at a specific time, will be allocated
a conflict-free path to realize this arrival. Property
2) is geared for the implementation of recursive
control laws aimed at (cummulative) conflict-free
arrival-delay minimization. Property 3) is aimed
at insuring that individual agents be treated fairly
without undue arrival-delay.

5. EXAMPLE OF ARRIVALS RESOLUTION

Consider the case of the three agents shown in
Figure 4, where an assignment of priorities is given
by the numbers above the disputed resources. In
this example, the assignment is quite arbitrary
and is only aimed at demonstrating the procedure
and not at optimizing the outcome. The results
of the pairwise resolution are shown in the table
below.

Agent pairs Agent 1 Agent 2 Agent 3
{1, 2} {p1, p2} {p5, p6}
{1, 3} {p1, p2, p3} {p7, p8}
{2, 3} {p5, p6} {p7, p8, p9, p10}
The final results are obtained as the intersections
of the individual agents’ pairwise resolutions as
LP1 = {p1, p2}

⋂{p1, p2, p3} = {p1, p2}, LP2 =
{p5, p6}, LP3 = {p7, p8}. It is noteworthy that in

this case, although the resolution was performed
by the generally non-optimal pairwise algorithm,
the obtained solution is maximal. It is further
noteworthy that the solution does not minimize
the total delay. In particular, agent 2 did not get
its nominal trajectory with arrival time 12, an
arrival time that was allocated to agent 1. Had
agent 1 been given only its nominal trajectory 1
(with arrival time 10), agent 2 could have been
given its nominal trajectory without creating a
conflict.

In conclusion, we have seen that a particular
assignment π of priorities to the conflicting re-
sources resulted in particular conflict-free plans
for all agents. We are currently exploring ways to
recursively construct various control laws π for im-
plementing a variety of desired overall behaviors
of the air traffic.
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