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Abstract—Network Function Virtualization (NFV) is a new
networking paradigm where network functions are executed on
commodity servers located in small cloud nodes distributed across
the network, and where software defined mechanisms are used to
control the network flows. This paradigm is a major turning point
in the evolution of networking, as it introduces high expectations
for enhanced economical network services, as well as major
technical challenges. In this paper, we address one of the main
technical challenges in this domain: the actual placement of the
virtual functions within the physical network. This placement has
a critical impact on the performance of the network, as well as on
its reliability and operation cost. We perform a thorough study of
the NFV location problem, show that it introduces a new type of
optimization problems, and provide near optimal approximation
algorithms guaranteeing a placement with theoretically proven
performance. The performance of the solution is evaluated with
respect to two measures: the distance cost between the clients
and the virtual functions by which they are served, as well
as the setup costs of these functions. We provide bi-criteria
solutions reaching constant approximation factors with respect to
the overall performance, and adhering to the capacity constraints
of the networking infrastructure by a constant factor as well.
Finally, using extensive simulations, we show that the proposed
algorithms perform well in many realistic scenarios.

I. INTRODUCTION

In recent years we are observing several evolution trends
that have a considerable impact on the networking domain. The
first is the ongoing transition into all-IP networks (VoIP, LTE,
IP DSLAMs); and the second is the introduction of software
defined networks (SDN) ([4], [8]) and the separation of the
control and data planes. The third critical evolution is the
shift towards the cloud and the emergence of new applications
that are becoming the main way of communication for more
and more people (e.g., chat applications, replacing traditional
voice calls and email). The most recent development is the
introduction of network function virtualization (NFV) ([11],
[12]), an architecture in which network functions are executed
over commodity servers rather than on dedicated servers.

The combination of these developments creates a major
shift in network design, which is being recognized both by
manufactures ([15], [16], [17]) and operators ([14]). The new
NFV architecture, which is currently still in the making, will be
based on executing network functions on commodity servers
located in small cloud nodes that are distributed across the
network, as well as on the use of software defined mechanisms
for controlling the network flows.

Partly Supported by ISF grant 954/11 and BSF grant 2010426.

The new networking paradigm, sometimes referred to as
“distributed cloud networking”, introduces, in addition to the
high expectations for better and more economical network ser-
vices, also major technical challenges. In this paper we address
one of the main technical challenges in this domain: the actual
placement of virtual functions within the physical network.
This placement has a critical impact on the performance of
the network, its operational cost, and on network reliability.

We adopt the terminology used in the NFV forum docu-
mentation (see original white paper [11]), where a service is
composed of one or more network functions. The execution of
each of the functions requires resources (computing, memory,
storage, etc.) in one of the distributed server locations. In
some cases, the service is associated with a specific network
node and the network functions must be provided at this node.
This is the case, for example, for IMS services where the SIP
functionality must be performed at the edge of the operators
network. However, for some services such as DPI (Deep Packet
Inspection), the exact network location is not critical as long
as the flow is directed into a location where the service can
be performed. Moreover, there is no need to execute the entire
function on a single server. Several virtual machines (VMs)
can be usedł while the distribution and the routing of traffic
between them is performed using the SDN control mechanism.
The problem is then to allocate server resources to network
functions at various locations, such that all flows requiring a
service are satisfied, and the operational cost is minimized.

While this seems to be an appropriate model, in order to
study it rigorously one must define the exact metrics used
to determine operational costs. We follow the well-known
paradigm of facility location problems ([10]) and use two
cost measures: (1) the distance from clients to locations where
services are provided; and (2) the setup cost of services. The
overall cost is defined as the sum of the setup costs, reflecting
the cost of having VMs that execute a function, and the cost
of diverting traffic into the location of these servers. Note that
when the network is represented by a graph with a distance
metric between the nodes, the shortest distance from a given
path in that graph to a node is a metric as well. Thus (in
analogy with facility location terminology), we use the term
“client” to refer to a path of a relevant flow. Clearly, in our
simulations we measure the actual network distance between
a flow path and the locations where functions are executed.

Our goal here is to provide a profound understanding of
the issues related to the location of network functions within
the underlying network, while considering global network
measures and constraints. To this end we define and study
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a general model that captures the most important aspects of
network function virtualization, and then evaluate the advan-
tages of using our methodology in various practical use-cases.
In general, there is a set of clients that needs to be served
by a set of network functions, where each client requires a
subset of the functions. Locating the functions is performed in
a practical environment in which servers have limited space for
allocating functions (in a graph we refer to this constraint as
the node size), and our goal is to locate network functions in
a way that minimizes the overall network cost, while adhering
to the allocation size of the servers. We refer to this problem
as the NFV Location Problem.

The NFV location problem captures two well known NP-
hard optimization problems problems - the facility location
problem and the generalized assignment problem (GAP), both
of which received much attention in the last 50 years [10], [2].
The facility location problem asks for opening a set of facilities
to serve a set of clients in a graph. There is a distance function
defined over the graph and each client pays a connection
cost equal to the distance from the facility which provides
its service. Opening a facility at a node requires paying a
setup cost. The goal is to minimize the sum of the connection
costs and the setup costs. In some variants of the facility
location problem there is a capacity associated with each
facility, bounding the number of clients that can get service.
In the case of soft capacities more than one copy of a facility
can be opened at a node. The second optimization problem is
the generalized assignment problem in which we are given a
collection of jobs to be assigned to a set of machines. There
are size constraints on the machines and each job needs to be
assigned on exactly one machine. Each job is associated with
a size and a cost, and both are machine dependent. The goal
is to find an assignment of jobs to machines of minimum total
cost satisfying size constraints.

Coming back to the NFV location problem, suppose that
there are no size constraints at the nodes. This means that
the functions can be located at the nodes independently of
each other, and thus the problem of locating each function
becomes an instance of the facility location problem. In
contrast, suppose that all distances between clients and nodes
are equal. In the case where there are no capacity constraints
on the functions there is no need to open a function in more
than one location. Thus, we get an instance of the generalized
assignment problem in this case. To summarize, even the
simplest version of the NFV location problem, where there
are no capacity constraints on the functions, combines two
classic NP-hard problems.

We provide an in-depth theoretical analysis of the NFV
location problem. We start with the uniform demand ,case
where all clients have the same demand (unit demand without
loss of generality). First, we consider the basic version where
the functions are uncapacitated, i.e., a function at a node can
serve any number of clients. Then, we consider the capaci-
tated version. However, To accommodate more clients, several
copies of a function can be located at the nodes. We assume
that the capacity of a function is node independent. Finally,
we consider the most general version where demands can
vary between clients. All of our algorithms provide bicriteria
approximation factors. In all the different versions of the
problem we approximate the objective function by a constant

factor, while violating size constraints by a constant factor. The
specific constants vary between the versions.

The paper is organized as follows. Section II discusses
related work. The model is formally defined in Section III.
Sections IV & V contain our approximation algorithms for
both the uncapacitated and capacitated versions of the NFV
location problem. Section V-A considers the most general
case in which clients have non-uniform service demands.
The simulation study is presented in Section VI. Finally,
conclusions are discussed in Section VII.

II. RELATED WORK

To the best of our knowledge, the NFV location problem
presented in this paper has not been investigated before. It is
the combination of two well known optimization problems:
GAP (further elaborated on in Section III-B) and facility
location. The facility location problem has been widely inves-
tigated over the years, and many variants of it were studied.
The most basic variant of the problem is the uncapacitated
case (a facility can serve any number of clients) for which a
constant factor approximation is known (see e.g. [10]). The
capacitated version of this problem was investigated in [1],
where a constant approximation bicriteria result was given
for the case where there are hard non-uniform bounds on the
amount of demand that can be routed to any facility.

Another variant of this problem, closer to our setting and
called the multicommodity facility location, was studied in [9].
This model considers a natural extension of facility location
where there is a finite set of k commodities (corresponding to
functions in our terminology), and each client requires a subset
of those commodities. The location cost is then composed of a
fixed setup cost which is node dependent, and an incremental
cost which is commodity dependent. There are no allocation
(size) constraints at the nodes. The work in [9] presents an
O(log k) approximation algorithm for this problem.

There are very few works considering virtual functions
in the context of placement and multi-function services. A
work dealing with a multi-function service system is presented
in [7] for a totally different environment, considering police-
ambulance systems in an urban area. In the context of NFV and
SDN, [3] considers a single service (Deep Packet Inspection)
for which a placement heuristic is presented. A demonstration
of the placement of virtualized mobile core network functions
is presented in [6], where a network provider is required to
provide optimal cellular coverage in case of large “mega”
events. While not being close to our model, these works relate
to our general motivation. We are not aware of any work
modeling the NFV placement challenge as an optimization
problem, as well as providing proven theoretical results.

III. MODEL AND PRELIMINARIES

A. General model

We are given an undirected graph (or network) G = (V,E),
equipped with a distance function d(·, ·) between any pair of
nodes inducing a metric space. Given is a set of clients C ⊆
V . For a client c ∈ C, c indicates both the client and the
node where it resides. There is a set of network functions F ,
|F | = m, that need to be located at the nodes of V . For each
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client c ∈ C, f(c) denotes the set of functions in which c is
interested. We denote by U ⊆ V the set of nodes where the
functions of F can be located.

Each node u ∈ U has total size w(u), and each function
i ∈ F has size wi

u which is the size it occupies in case it is
located in u. The setup cost of locating a function i at u is
denoted by pi

u. In general, function i in node u can serve only
µi clients. (This bound is node independent.) To accommodate
more clients, several copies of function i can be located at node
u, however, each copy occupies size wi

u and pays cost pi
u.

In the NFV location problem we want to compute an
allocation of functions in F to nodes in U , as well as an
assignment of each client c ∈ C to the set f(c). The allocation
of functions to nodes should satisfy size constraints: the overall
size of the (copies of) functions located at each node u does
not exceed w(u). The assignment of clients to functions should
satisfy: (i) each client c is assigned to all the functions in the
set f(c); (ii) each copy of function i does not serve more than
µi clients. The goal is to compute an allocation and assignment
that minimizes the total system cost. This cost comprises of
the sum of the setup costs of the functions and the sum of the
distances between the clients and the nodes from which they
get service.

We formulate the NFV location problem as an integer linear
program. We denote by yi

u the number of copies of function i
located at node u, and by xi

cu the variable indicating whether
function i is used by client c at node u.

Min
∑
c∈C

∑
i∈f(c)

∑
u∈U

xi
cu · d(c, u) +

∑
u∈U

m∑
i=1

yi
u · pi

u

(NFV Location-LP)

s.t.
for each client c, function i ∈ f(c):∑

u∈U

xi
cu ≥ 1, (1)

for each client c, node u, function i:
xi

cu ≤ yi
u, (2)

for each node u:
m∑

i=1

yi
u · wi

u ≤ w(u), (3)

for each node u, function i:∑
c∈C

xi
cu ≤ yi

u · µi, (4)

for each function i, node u:
yi

u = 0 if wi
u > w(u). (5)

The NFV demand constraint (1) guarantees that each client
c gets service for each function i ∈ f(c). The setup cost
constraint (2) states that if client c is assigned to function
i at node u, then function i is indeed located at u. The size
constraint (3) states that the sum of the sizes of the functions
located at each node cannot exceed the size of the node. The
capacity constraint (4) states that each function i at node u
cannot serve more clients than its capacity.

Since our problem is NP-hard, we consider the linear relax-
ation of the above program. This means that the assignment of

a client to a function can be fractionally split between several
nodes, and also a function can only be fractionally located at
a node. The linear relaxation requires an additional constraint
(5), stating that a function cannot be fractionally assigned to
a node to which it cannot be fully allocated (which is clearly
the case for any integral feasible solution).

B. Generalized Assignment Problem

A basic procedure used in our solution is an approximation
algorithm for the generalized assignment problem (GAP). In
GAP we are given a collection of n jobs to be assigned to `
machines. Each job j = 1, . . . , n is to be assigned to exactly
one machine; if it is assigned to machine m then it has size
wmj and incurs a cost of pmj . The size of each machine m is
wm. The goal is to find a feasible assignment of minimum total
cost. We formulate the fractional version of GAP as a linear
program, where a job can be fractionally split between several
machine, and denote by λmj the fraction of job j located at
machine m.

Min
∑̀
m=1

n∑
j=1

λmjpmj (GAP-LP) (6)

s.t.
for each job j:

∑̀
m=1

λmj = 1, (7)

for machine m:
n∑

j=1

wmjλmj ≤ wm, (8)

for each job j, machine m:
λmj = 0 if wmj > wm. (9)

The first constraint (7) is the job demand constraint,
guaranteeing that the sum of the fractions of each job (assigned
perhaps to different machines) must be one. The second
constraint (8) states that the sum of the fractional sizes of
the jobs allocated at each machine cannot exceed the size of
the machine. Finally, the last constraint (9) states that a job
cannot be fractionally assigned to a machine to which it cannot
be fully allocated (which is clearly the case for any integral
feasible solution).

For completeness we describe the details of the approx-
imation algorithm for GAP ([10]) here. The approximation
algorithm is based on solving (GAP-LP) and then rounding the
fractional solution computed into an integral solution. Clearly,
an optimal solution to (GAP-LP) is a lower bound on the
optimal integral solution. The rounded integral solution has
the property that it does not exceed the cost of an optimal
fractional solution; however, it violates feasibility by allowing
each machine m to be allocated to at most twice its size.

The rounding reduces to computing a matching in a bipar-
tite graph derived from the fractional solution. We construct a
bipartite graph B = (J, S,E′) where one side consists of job
nodes J , and the other side of machine slots S. The fractional
solution λ assigns in total

∑n
j=1 λmj jobs to machine m. We

allocate km = d
∑n

j=1 λmje “slots” for machine m, and define
S = {(m, s) : m = 1, . . . , `, s = 1, . . . , km}. Note that
summing up the number of slots over all machines, we get
|S| ≥ |J |, due to constraint (7).
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The set of edges E′ of B is defined as follows. For a
machine m, sort the jobs assigned to it (fractionally) in non-
increasing order with respect to their size wmj . For ease
of presentation, we assume that wm1 ≥ wm2 ≥ wmn.
Now, consider the slot nodes (m, s) of machine m (where
s = 1, . . . , km) as bins of capacity 1, and consider the values
λmj , j = 1, . . . , n as pieces of the n jobs to be packed in
these bins. With respect to the non-increasing order, we place
the pieces into the bin corresponding to slot (m, 1) one by one,
until the bin overflows (above 1) as a result of placing piece j.
We then pack a fraction of j that equals the remaining space in
(m, 1), and pack the remaining fraction of j into the next bin
(that is, (m, 2)). We proceed with this packing procedure until
all pieces are packed into bins. Edge (j, (m, s)) ∈ E if only
if there is a positive value of job j packed into bin (m, s).
The cost of edge (j, (m, s)) is set to be pmj . It is easy to
see that by repeating this procedure for each machine m, and
adding the corresponding edges in B, yields a bipartite graph
with a fractional matching in which job nodes are completely
matched. The cost of the fractional matching is equal to the
optimal cost of (GAP-LP).

The rounding is performed by computing a minimum cost
integral matching which includes all job nodes in B. By
matching theory, such an integral matching is guaranteed to
exist. Moreover, it does not have higher cost than the fractional
solution (the optimal cost of (GAP-LP)). In [10] it is shown
that any integral matching that includes all job nodes of J
corresponds to an assignment of jobs to machines that exceeds
the size of each machine by at most a factor of 2. This is
based on the following observations. Consider a slot (m, s),
and focus on the jobs for which a positive value is packed
into the bin corresponding to this slot; let max(m, s) denote
the maximum size requirement wmj among these jobs. Then,
the total load assigned to machine m by any integral matching
in B is at most

∑km

s=1 max(m, s). Due to constraint (8), it
holds that max(m, 1) ≤ w(m), and it can be shown that∑km

s=2 max(m, s) ≤ w(m). Thus, the total load on machine
m is at most 2w(m).

Algorithm 1 The GAP Rounding Algorithm

1: Solve (GAP-LP), and build a bipartite graph B = (J, S,E′) as follows:
• Allocate for each machine km = d

Pn
j=1 λmje slots, and define

S as the set of all slots (over all machines).
• For each machine m, pack the job pieces λmj according to

the non-increasing ordering of their size wmj . Define an edge
(j, (m, s)) ∈ E′ of cost pmj if a positive value of job j is
allocated to slot (m, s).

2: Compute an integral complete matching in B defining the assignment of
jobs to machines, where job j is allocated to a single machine m.

IV. THE UNCAPACITATED NFV LOCATION PROBLEM

In the uncapacitated NFV location problem each function
i can serve an unlimited number of clients. The formula-
tion of the linear program for the problem is identical to
(NFV Location-LP), except that the capacity constraint (4)
becomes redundant. We refer to this LP formulation as (UNFV
Location-LP). We develop an (O(1), O(1)) bicriteria approxi-
mation algorithm for the uncapacitated NFV location problem.
Specifically, our algorithm achieves a 6-approximation factor,
while violating the size constraint of the nodes by at most a
factor of 4.

Our algorithm first solves (UNFV Location-LP) to opti-
mality. Let the optimal cost be C∗ = C∗d + C∗s , where C∗d
denotes the sum of the distances between the clients and the
nodes from which they get service, and C∗s denotes the sum
of the setup costs. We round the optimal fractional solution in
two phases. In the first one, for each function i (separately) we
compute a partition of the nodes in U into disjoint sets U i

Λ,
such that each set serves a disjoint set of clients Λ. The set U i

Λ
has the property that clients in Λ are oblivious to the choice
of which node from U i

Λ provides the service to them. In the
second phase, the disjoint sets U i

Λ, for all functions i ∈ F are
used to define an instance of GAP. The second phase applies
the rounding algorithm for GAP so as to get an approximate
solution to the (UNFV Location-LP) instance.

We begin by describing the first phase which is performed
separately for each function i ∈ F . For each client c ∈ C
we can think of a fractional solution to (NFV Location-LP)
as inducing a probability distribution over the locations from
which c gets its service of function i. Thus, denote by d̄i

c the
expected distance from c to the different locations of function
i providing service to it, i.e., d̄i

c =
∑

u∈U x
i
cu · d(c, u). Note

that C∗d =
∑

c∈C

∑
i∈f(c) d̄

i
c.

We define a ball B(c, r) with center c and radius r as
the set of nodes that are within distance r from c. Clearly,
at least half the service of function i that c gets is located
in a ball Bi

c = B(c, 2d̄i
c). (E.g., it follows from Markov’s

inequality.) That is,
∑

u∈B(c,2d̄i
c) x

i
cu ≥ 1/2. We now sort the

clients according to d̄i
c. We pick the ball Bi

c∗ with the smallest
radius and multiply by at most 2 the fractions of function i
inside it, so that they add up to 1. That is, we define x̃i

u ≤
2xi

cu ≤ 2yi
u, such that

∑
u∈Bc∗

x̃i
u = 1. We remove c∗ together

with all clients with balls intersecting Bi
c∗ ; each such client c

is said to be associated with Bi
c∗ . Observe that each client c

associated with Bi
c∗ can get (fractionally) its full service of

function i from nodes in Bi
c∗ . Also, the distance of c from

any node in Bi
c∗ is at most 2d̄i

c + 4d̄i
c∗ ≤ 6d̄i

c, since d̄i
c ≥ d̄i

c∗

and the ball B(c, 2d̄i
c) of client c intersects with B(c∗, 2d̄i

c∗).

We continue iteratively, until all clients either define a ball,
or are associated with some ball. Denote the balls generated
during the iterative process by Bi

c1
, . . . , Bi

cni
. Note that the

balls are disjoint, as well as the sets of clients associated with
each ball. Denote by Λi

c the clients associated with ball Bi
c.

Consider the fractional solution contained inside the balls
chosen during the iterative process, where the fraction of
function i located at node u is x̃i

u. It follows from the
discussion above that this is a feasible fractional solution. The
setup cost of this solution is at most 2C∗s , since x̃i

u ≤ 2yi
u.

As for distances, for each client c and function i ∈ f(c), the
distance between c and any node in the ball it is associated
with (or it defines) is at most 6d̄i

c.

We now turn to describe the second phase of our algorithm,
where we round the above fractional solution. We define a
GAP instance from the balls Bi

c1
, . . . , Bi

cni
(for all functions

i) as well as a fractional assignment solution. We round the
fractional assignment (as described in Section III-B) into an
integral solution, which in turn defines an approximate solution
to our NFV location instance.

We first define the GAP instance. The set of nodes cor-
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Fig. 1. Bic∗ with minimum d̄ic∗ . Client c ∈ Λic∗ , as Bic intersects with Bic∗ .

responds to the set of machines, and for each i ∈ F , each
ball in Bi

c1
, . . . , Bi

cni
corresponds to a job. For each i ∈ F ,

1 ≤ j ≤ ni, the fractional assignment of Bi
cj

to each machine
u ∈ Bi

cj
is x̃i

u. Denote by J = {1, . . . , n} the set of jobs (that
is, n =

∑
i∈F ni), by M = {1, . . . , `} the set of machines,

and by x̃mj the fractional assignment of job j to machine m.
Note that as a result of Phase 1 there could be several jobs
assigned to the same machine u, corresponding to balls of
different functions (u belonging to several balls). Recall that
balls defined by the same function are disjoint. For a node
u ∈ U , the size and cost of the machine corresponding to it in
the GAP instance are size are wu and pu, respectively. Sizes
and costs of jobs allocated to machines are also respectively
set to the values wi

u and pi
u of allocating function i to node u

(for all i and u). The next claim follows from the discussion.

Claim 4.1: The fractional solution defined by x̃mj is a
feasible solution to (GAP-LP), violating machine sizes by at
most a factor of 2.

Phase 2 is essentially an application of the rounding algorithm
for GAP to the solution x̃mj (see Section III-B). We thus end
up with an integral solution, where each job is assigned to a
single machine. The rounding does not increase the total setup
cost, but may violate feasibility by allocating each machine
to jobs having total size at most twice the total size of the
fractions allocated to the machine in x̃. Getting back to our
original NFV location problem, take for example a job j
corresponding to a ball Bi

c, where j is assigned in the rounded
solution to a machine m corresponding to node u ∈ Bi

c. This
means that function i is (integrally) located in node u. The
clients belonging to Λi

c (i.e., associated with Bi
c) get from u

their service of function i.

Summarizing our rounding procedure, the resulting approx-
imation factors are as follows. Consider a ball Bi

c: (i) in the
first phase, the distance of each client c′ ∈ Λi

c from any
node in the ball Bi

c is at most 6d̄i
c′ ; (ii) in the second phase,

c′ gets its service of function i from a node in Bi
c. Since

C∗d =
∑

c∈C

∑
i∈f(c) d̄

i
c, the final distance cost is at most 6C∗d .

In the first phase the setup cost increases to at most 2C∗s (due
to doubling the fractions within the balls). The setup costs are
not increased anymore in the second phase. We thus achieve a
total approximation factor of 6 for our objective function. The
size constraints at the nodes are violated by a factor of 4, due
to doubling the fractions in the first phase, and violating the
size of the nodes by a factor of 2 in the second phase.

V. THE CAPACITATED NFV LOCATION PROBLEM

We consider the capacitated version of the NFV location
problem, where each copy of function i can provide service

Algorithm 2 The Uncapacitated NFV-Location Algorithm
1: Solve (Uncapacitated NFV Location-LP).
2: For each function i, proceed with Phase 1 as follows:
3: Phase 1 [steps 3-4]. For each client c, compute d̄ic =

P
u∈U x

i
cu·d(c, u).

4: While there are still “unserved” clients:
• Pick the client c∗ with minimum d̄ic.
• For each node u within B(c∗, 2d̄ic∗ ), double the fractions xic∗u

and define x̃iu = 2xic∗u.
• Define the set of clients Λic∗ = {c∗}, add to Λic∗ all clients c

with ballsB(c, 2d̄ic) that intersect withB(c∗, 2d̄ic∗ ), and remove
these clients (as well as their fractions).

5: Phase 2 [steps 5-7]. Define an instance of GAP as follows:
• Define the set of balls created as output from Phase 1 (over all

functions) as a set of jobs J = {1, . . . , n}; and the set of nodes
with allocated fraction within these balls as a set of machines
M = {1, . . . , `}.

• Each job represents a ball, and thus corresponds to a specific
function i. Thus, sizes and prices of jobs allocated to machines
are set to the values wiu (size) and piu (price) of allocating
functions to nodes.

6: The fractional solution x̃mj defines a solution to (GAP-LP).
7: Apply the rounding algorithm for GAP (Algorithm ), yielding an integer

assignment, where job j is allocated to a single machine m.
8: Assume that in our original NFV location problem, j corresponds to Bic,

and m corresponds to u ∈ Bic. Then, function i is located at u, and
clients in Λic get their function i service from u.

to at most µi clients. (Note that this bound is uniform over all
nodes.). The fractional version of the problem is formulated in
(NFV Location-LP). As in Section IV, our solution is based
on rounding an optimal fractional solution, and it has three
phases. (We follow the notation of Section IV in this section.)

1) For each function i, independently, disjoints sets of
nodes si(1), si(2), . . . are constructed. Denote by Λi

j

the clients getting a fraction of function i from si(j).
The sets have the following properties:
• For each set si(j), the total sum of fractions

of function i located at nodes in the set is at
least 1/4. That is,

∑
u∈si(j) y

i
u ≥ 1/4.

• For each client c ∈ C, at least 1/4 of
its service of function i is obtained from
si(1), si(2), . . .

• For each client, reassigning the service it gets
between nodes belonging to the same set can
only increase the cost distance by a constant
factor.

2) For each function i, independently, round the frac-
tional service that clients get from the sets, so that
each client gets its full service from a single set.

3) Construct a GAP instance, together with a fractional
solution, and round it. The rounded solution defines
an integral solution to the capacitated NFV location
problem.

Phase 1. For each function i we construct the disjoint
sets of nodes as follows. The first set si(1) comprises of the
nodes within ball Bi

c1
= B(c1, 2d̄i

c1
), where c1 is the client

with minimum expected distance d̄i
c . We continue inductively.

Assume the sets si(1), . . . , si(j) are defined. Then, we remove
all clients that have already received at least a total service of
1/4 (of function i) from nodes in the sets si(1), . . . , si(j). We
next pick cj+1 to be the client with minimum expected distance
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d̄i
c among the remaining clients. The set si(j+1) comprises of

nodes within Bi
cj+1

= B(cj+1, 2d̄i
cj+1

) that are not included
in any of the other sets si(1), . . . , si(j), previously defined.
Clients associated with Bi

cj+1
are those clients that were not

removed before the time Bi
cj+1

was defined, and that receive
a fraction of the service of function i from nodes in si(j+ 1).
We denote this set of clients by Λi

j+1. Overall, for each client
c, we denote by αi

c the total fraction of service received from
all the sets defined. The following claims correspond to the
properties stated above.

Claim 5.1: For each set si(j), the total sum of fractions
of function i located at nodes in si(j) is at least 1/4.

The claim holds since the fractional service of function
i from nodes in si(j) received by client cj is at least 1/4.
This is true as client cj defined ball Bi

cj
. Originally, client cj

received at least half of its service of function i from Bi
cj

. By
construction, at most 1/4 of the service of function i that cj
receives can come from the sets si(1), . . . , si(j−1) (as cj was
not removed previously). Thus, the claim follows.

Claim 5.2: For each client c ∈ C, αi
c ≥ 1/4.

The claim follows directly from the way the sets are
defined. If a client is removed at some point of time, then
(by construction) it has already received at least a total service
of 1/4 from sets defined at that time. Else, a client defines
a set. By the argument given above (for the previous claim),
such a client gets service of at least 1/4 from the set it defines.

We say that for a client c ∈ Λi
j , service is (fractionally)

reassigned in a set si(j) if an ε-fraction of c’s service is
provided by node u′ ∈ si(j) instead of u ∈ si(j), as in
the fractional solution to (NFV Location-LP). (In our setting,
reassignment is always done within a set.) Reassigning of an
ε-fraction of service increases the distance cost by at most
ε · d(u, u′). The next claim provides an upper bound on the
increase in distance cost when reassigning service inside the
sets defined by the algorithm.

Claim 5.3: Suppose that all of the service of client c is
reassigned inside the sets si(j) (c 6= cj) for which c ∈ Λi

j .
Then, the distance cost of c increases by at most 4αi

cd̄
i
c.

Proof: Assume c gets a fraction xi
cu of service from node

u ∈ si(j). Since si(j) ⊆ Bi
cj

, the maximum distance between
any two nodes in the ball Bi

cj
is at most 4d̄i

cj
(its radius is

2d̄i
cj

). Also, d̄i
cj
≤ d̄i

c by construction (cj was chosen over c
when constructing si(j).) Thus, summing up over all sets of
function i from which c gets service, we get that the cost of
rerouting is at most

∑
{j|c∈Λi

j}

∑
{u∈si

j}

xi
cu · 4d̄i

cj
≤ 4d̄i

c

∑
{j|c∈Λi

j}

∑
{u∈si

j}

xi
cu

≤ 4αi
cd̄

i
c

Phase 2. For each function i, we represent the solution we
get from the first phase as a bipartite graph (depicted in Figure
2). The left side nodes correspond to clients, and the right side
nodes correspond to our disjoint sets of nodes. A client c is

Fig. 2. (a) client c gets a total fraction ≥ 1/4 from three different sets; (b)
flow problem defined in the bipartite graph.

connected to each set it either defined, or is associated with,
in Phase 1. We now round the solution so that each client
gets its full service from a single set only. First, for each set
si(j), we multiply by a factor of 4 the fraction of function i
in each node u ∈ si(j). This increases the total setup cost to
at most 4C∗s and violates node sizes by at most a factor of
4. Now, for each client c and node u ∈ si(j) it is feasible to
define x̃i

cu = (1/αi
c)xi

cu ≤ 4xi
cu. By Claim 5.2 it holds that

each client now gets a total service of 1 from all the sets it is
associated with.

We define a flow problem F as follows. We connect a
common source s to each left side client node by edges of
capacity 1. Each right side node, corresponding to a different
set si(j), is connected to a common sink t with an edge of
capacity equal to d

∑
{c|c∈Λi

j ,u∈si(j)} x̃
i
cue, i.e., the sum of all

fractions assigned to clients belonging to Λi
j . We round up in

order to get integral edge capacities, incurring at most a loss
of a factor of 2, since now the sum of the fractions in each set
is at least 1 (after multiplying by 4). The capacity of the edges
between clients and sets is set to 1. The edge costs are set as
follows. Edges adjacent to the source and sink have zero cost.
The cost of an edge between a client c and a set si(j) is equal
to the maximum distance from c to a node in si(j), so as to
take into account a possible reassignment of c to another node
in si(j) (as may happen later on in Phase 3).

Claim 5.4: Consider the solution where each edge between
client c and set si(j) is assigned a flow of

∑
u∈si(j) x̃

i
cu. This

solution is a feasible fractional solution to F , with total cost
of at most 8

∑
c∈C d̄

i
c ≤ 8C∗d .

By construction the solution is feasible. The distance cost
of the solution defined in the claim is the sum of two terms.
The first term is the distance cost resulting from scaling up the
service fractions for each client c by a factor of 1/αi

c ≤ 4. This
term is at most 4C∗d when summing up over all clients. The
second term is the increase in distance cost by reassigning the
service for each client c to the furthest away node in each set
from which c gets service. By claim 5.3 this term is at most
4αi

c · d̄i
c, and it needs to be multiplied by the scaler 1/αi

c,
yielding 4d̄i

c. Summing up over all clients we get at most
4

∑
c∈C d̄

i
c ≤ 4C∗d . Adding the two terms yields the bound

in the claim.
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Phase 2 ends by solving the min cost flow problem F . As
there exists an integral optimal solution (since all edges have
integral capacities), we get an integral assignment of cost at
most 8C∗d .

Algorithm 3 Capacitated NFV Location Algorithm
1: Solve (Capacitated NFV Location-LP).
2: For each function i, proceed with Phase 1 & Phase 2:
3: Phase 1 [steps 3-4]. For each client c, compute d̄ic =

P
u∈U x

i
cu·d(c, u).

Initialize C′ to be the full set of clients, initialize j = 0.
4: While there are clients in C′:

1) Pick cj+1 as the client with minimum d̄ic among clients in C′.
2) Define the set of nodes si(j + 1) as nodes in Bicj+1

=

B(cj+1, 2d̄
i
cj+1

), that are not included in any previous set
si(1), . . . , si(j).

3) Clients in C′ associated with si(j+1) are those getting service
from nodes in si(j + 1). Denote this set of clients by Λij+1.

4) Remove from C′ clients that get a total fraction of function i
of at least 1/4, over the sets si(1), . . . , si(j + 1).

5) Set j = j + 1.
5: Phase 2 [steps 5-7]. For each set of nodes si(j), and each client c

associated with it, multiply by 1/αic the fractions of c allocated at nodes
u ∈ si(j); define x̃icu = (1/αic)x

i
cu ≤ 4xicu.

6: Define a min cost flow problem F in a bipartite graph as follows.
• Left side nodes are clients, right side nodes are sets. Client c is

connected to the sets with which it is associated with edges of
capacity 1.

• A common source s is connected to the clients with edges
of capacity 1. A common sink t is connected to the sets.
The capacity of the edge from si(j) to t is set to be
d
P
{c|c→si(j),u∈si(j)} x̃

i
cue.

• Costs of links connected to s and t are set to 0. The cost of an
edge between client c and set si(j) is defined to be the distance
from c to the furthest away node in si(j).

7: Solve the min cost flow problem F , the output being an integral assign-
ment of clients to sets, such that each client gets a unit of service of
function i form a single set only. Note that this unit is still fractionally
split within the set.

8: Phase 3 [steps 8-11]. For each function i, set si(j), and node u ∈ si(j),
define ỹiu as the value of function i assigned to u following Phase 2„
ỹiu =

P
{c|c→si(j)} x̃

i
cu

µi

«
. Define ỹiu = (ỹiu mod 1) and update

w(u) appropriately.
9: Split each set si(j) into subsets si(j, 1), . . . , si(j, `), s.t. the sum of the

fractions ỹiu in the nodes in each subset si(j, k) adds up to precisely 1.
10: GAP: each set si(j, k) is a job and the nodes belonging to it are its

optional machines. The values ỹiu define a fractional assignment to GAP.
11: Compute an integral solution to GAP by rounding the fractional assign-

ment, the output comprising of integral copies of function i assigned to
the nodes of each set si(j).

12: For each function i and set si(j), connect each client associated to si(j)
(according to Phase 2) to a single node in the set.

Phase 3. We proceed by defining a feasible instance of the
general assignment problem. For each function i, we now have
an integral number of clients connected to each set of nodes
si(j), where for each node u ∈ si(j), we have a value of ỹi

u ≤
8 · yi

u (the 8 factor resulting from the fraction multiplication
and the round up performed in Phase 2). For each node u,
we subtract the maximum possible integral number from ỹi

u,
remaining with a fraction less than 1 (e.g., in case ỹi

u = 7.4,
only a fraction of 0.4 is left). The integral number removed
corresponds to an integral assignment of copies of function i
to node u, and we are now left with a fractional assignment
that remains to be rounded. Additionally, we update the size
of the node w(u) by subtracting the total size of the copies of
function i removed from u.

We split si(j) to subsets of nodes as follows. We arbitrarily
pick nodes, until the sum of their values ỹi

u adds up to one.
In case the last node picked causes the total amount to be
greater than one, we add it both to the current set as well as
the next one, with different values of ỹi

u (the fraction added
to the current set will bring the sum to exactly one, and the
value added to the next set will be its remaining fraction).

Assume we end up with subsets of nodes
si(j, 1), . . . , si(j, `), each subset comprising of nodes
with fractions adding up to precisely 1. The fractional
assignment of GAP is interpreted as follows. For each
function i, each subset si(j, k) is considered a job, and the
nodes within si(j, k) are its optional machines. The fraction
ỹi

u indicates the fractional assignment of the job to a machine
u ∈ si(j, k).

Claim 5.5: The fractional solution defined by ỹi
u is a

solution to (GAP-LP) violating the machine sizes by at most
a factor of 8.

The claim follows directly as ỹ is obtained by multiplying y
by at most a factor of 8; recall that the fractional assignment y
is an optimal solution to (NFV Location-LP) and thus adheres
to the size constraints of the machines (nodes).

We now perform the rounding algorithm of GAP, resulting
in an additional violation of node sizes by a factor of 2, while
distance and setup costs are not increased. For each function i
and set si(j, k), the resulting solution assigns an integral copy
of function i to a single node in the set. We now have integral
copies of function i for each node in the original set si(j)
(the subtracted copies plus the integral assignment resulting
from the rounding of GAP). Clients connected to this set (as
output from Phase 2), can now be integrally connected to one
node only, in order to get their unit of function i. Note that the
potentially increase in distance cost resulting from connecting
a client to a single node in a set is already taken care of by
the reassignment cost.

Summarizing the three phases of our rounding procedure,
the resulting approximation factors are as follows. Due to the
first phase, we obtain a distance cost of at most 8C∗d . The
second phase results in a setup cost of at most 8C∗s (due to
the multiplication of the allocated fractions within the sets by
4 and then rounding up the edge capacities in the min cost
instance). We thus achieve a total approximation factor of 8
for our objective function. The size constraints are violated by
a factor of 8 in the second phase and another factor of 2 in
the third phase, yielding a total violation by a factor of 16.

A. General Demands

In the previous sections, we considered the case where
clients have similar service demands of one unit with respect
to a function i. We turn to consider the case where clients
have general demands, denoting the demand of client c with
respect to function i by ri

c. An integral solution for the general
demands problem assigns a client to a single node for each
function i ∈ f(c). A client getting function i’s service from
node u reduces the capacity of i remaining at u by the amount
of service it gets. Assume yi

u copies of function i are allocated
at u. If client c gets its service from u, then the remaining
capacity of function i at node u is (yi

u · µi − ri
c). The linear
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program of this version is easily formulated by updating the
demand constraint (1) of (NFV Location LP) to be at least the
client’s demand.

The rounding algorithm of this variant is presented in
[19], and is omitted here due to lack of space. As in the
previous cases, it is based on rounding the LP fractional
solution. In the general demands case, the integrality gap of
the LP can be unbounded (see [19]). To avoid this behavior,
a pre-processing phase is performed, where the demands are
rounded, and original functions are mapped to new types
with rounded capacities. Accordingly, Algorithm 3 is adapted
to handle non-uniform demands; specifically, an unsplittable
min cost flow is computed over the bipartite graph generated
in the second phase. The resulting rounding algorithm is a
bicriteria approximation, with increased constant factors both
with respect to the objective function, as well as to the violation
of the size constraints.

VI. EXPERIMENTAL STUDY

In this section we evaluate the performance of the Ca-
pacitated NFV Location Algorithm 3 in realistic scenarios.
We consider the physical optical network of Cogent, a tier
1 Internet Service Provider [18]. This network covers 195
access locations (mostly within Europe and North America),
with about 260 links and almost 40 data centers. Cogent’s
structure, along the fact that its topology is publicly available,
make it a good candidate for testing our algorithm. We selected
200-400 random pairs of (source, destination), and determined
a shortest path between each source and destination, defining
the client flow. Each such flow is associated with 1-4 network
functions that were chosen randomly from a set comprising of
30 different functions. The size of a network function, which
represents the amount of resources it requires, corresponds in
this case to the number of VMs required by the function. The
capacity of each function represents the number of flows it can
handle. The nodes in Cogent’s topology represent data centers,
and each data center is associated with a size that corresponds
to the amount of VMs it can allocate. In our experiments, each
data center was set a randomly chosen size between the range
100− 500.

In order to evaluate the performance of Algorithm 3, we
compare it to a simple greedy algorithm. The greedy algorithm
considers the network functions by arbitrary order, and selects
for each function the best available remaining location in a
greedy way. Specifically, given a function i and a node location
u, the clients (i.e., the flow paths) requiring service from i
are sorted according to their distance from u. The potential
clients to be served in this case are the k closest clients to
u, where k is the function capacity. For each function, the
location selected is the location with minimum cost, where
the cost is the sum of the setup cost of function i at u, and
the distances between the k closest clients and u. Since our
algorithm is a bi-criteria algorithm allowing violation of the
size constraints of the nodes, we allow the greedy algorithm
to violate the nodes sizes by an equal factor. This way, we
achieve a fair comparison between the performance of the two
algorithms.

Figure 3 depicts the ratio of the costs achieved by Algo-
rithm 3 and the greedy algorithm, as a function of the average

capacity of a network function in the range of 20-220 (that is,
the number of flows that can be served by an instance of an
average function). All experiments were performed with 400
flows (routed between the clients and a set of 30 different types
of network functions). The curves in Figure 3 correspond to
experiments performed with different function sizes.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 50  100  150  200

Pe
rfo

rm
an

ce
 ra

tio

Average capacity size

Performance ratio vs. function capacity

Function size=300

Function size=420

Function size=470

Function size=500

Fig. 3. Performance ratio of the Capacitated NFV Location Algorithm and the greedy
algorithm with respect to average function capacity.

While in all cases our algorithm performs much better than
the greedy algorithm (60% − 950%), the performance ratio
is significantly increased when reducing the average function
capacity. This can be explained by the fact that when the
capacity decreases, more copies (instances) of each network
function are needed, and thus the placement problem becomes
harder and local considerations are no longer efficient.

Figure 4 depicts the ratio of the costs achieved by Algo-
rithm 3 and the greedy algorithm, with respect to the number of
different functions in the range of 4-31. Each curve in Figure
4 corresponds to simulations performed for a different value
of function capacity (10, 90, 170). For each capacity value,
experiments were performed over different function sizes, in
the range of 200-500. Each curve was computed as the average
of results for the different size values, considering a specific
function capacity.
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Fig. 4. Performance ratio of the Capacitated NFV Location Algorithm and the greedy
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It can be seen that as the function capacity decreases, the
performance ratio increases, as more function copies need to
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be allocated. In addition, increasing the number of functions
reduces the performance of the greedy algorithm as compared
to Algorithm 3, as a local placement decision for a single
function may prevent the efficient placement of other functions.
The extreme ratio point is thus achieved for a function capacity
of 10 and 31 different functions, leading to a performance ratio
of 19 between our algorithm and greedy.
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Fig. 5. Performance ratio of the Capacitated NFV Location Algorithm and the greedy
algorithm with respect to the number of clients.

Lastly, Figure 5 depicts the ratio of the costs achieved
by Algorithm 3 and the greedy algorithm, with respect to
the number of clients (i.e. flows). Each curve corresponds to
a different number of functions (10, 20, 30). Each curve is
computed as the average of experiment results for different
function capacities and sizes (range of capacities being 10-
150, and range of sizes 200-400). The performance of our
algorithm increases with the number of clients as compared to
greedy. Again, the larger the number of clients, the harder the
problem becomes as the connectivity decision taken for each
client influences the others.

VII. DISCUSSSION

The vast interest and the fast adoption of Network Function
Virtualization and SDN solutions introduce a new networking
paradigm with major challenges. In this paper we address one
of the main technical challenges in this domain: the actual
placement of the virtual functions within the network. We
conducted a thorough theoretical study of the NFV location
problem, for locating network functions with the goal of
minimizing the overall network cost, while adhering to the
size constraints of the network nodes.

We considered several variants of the problem up to
its most general version, where the functions have limited
capacity an can serve only a restricted number of clients, and
where demands can vary between clients. We note that even the
most basic version of the problem combines two classic NP-
hard problems. For all variants, we provided bicriteria results,
approximating the objective function by a constant factor while
violating the size constraint by a constant factor as well. Our
algorithms can all be implemented in the practical setting with
high efficiency.

We demonstrated the practical usefulness of these results
by evaluating the expected performance gain in several typical

networking scenarios. The results indicate that ***.

To the best of our knowledge, our work is one of the firsts
to tackle the NFV location setting. From the theoretical point
of view, the modeling of our setting introduces a new type
of optimization problems, combining network function setup
costs, connectivity costs of the clients, and size constraints of
the network nodes. Many more problems and future research
directions arise in the NFV context. Examples of such are ***.
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