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Abstract. We consider the problem of scheduling a set of jobs on a sys-
tem that offers certain resource, wherein the amount of resource offered
varies over time. For each job, the input specifies a set of possible schedul-
ing instances, where each instance is given by starting time, ending time,
profit and resource requirement. A feasible solution selects a subset of job
instances such that at any timeslot, the total requirement by the chosen
instances does not exceed the resource available at that timeslot, and at
most one instance is chosen for each job. The above problem falls under
the well-studied framework of unsplittable flow problem (UFP) on line.
The generalized notion of scheduling possibilities captures the standard
setting concerned with release times and deadlines. We present improved
algorithms based on the primal-dual paradigm, where the improvements
are in terms of approximation ratio, running time and simplicity.

1 Introduction

We study the classical scheduling setting of unsplittable flow problem on line
(UFP). Consider a system offering a certain resource as a service for executing
jobs. The total amount of the resource offered by the system may be different at
different points of time. Each job is specified as an interval consisting of a starting
time and an ending time, and requires a particular amount of the resource for
its execution. A feasible solution selects a subset of jobs for execution such
that at any point of time, the total amount of resource requirement does not
exceed the total amount of the resource available at that time point. Each job
is associated with a profit and the objective is to maximize the aggregate profit
of the scheduled jobs.

The problem is applicable in a variety of settings based on the resource under
consideration, examples of which include computational nodes, storage, electric-
ity and network bandwidth. We refer to prior work for real-life applications of

� Full version of the paper is available as Arxiv preprint.
�� Work was done while the author was at IBM Research - India

A. Schulz and D. Wagner (Eds.): ESA 2014, LNCS 8737, pp. 222–234, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



Improved Algorithms for Resource Allocation under Varying Capacity 223

the above job selection problem in parallel/distributed computing and network
management [22]. The terminology “unsplittable flow” arises from a more generic
graph theoretic framework and the above scheduling problem corresponds to the
case, wherein the graph is simply a path. We refer to the survey by Kolliopoulos
[24] for a discussion on the general graph theoretic framework.

In the setting considered so far, each job is specified by a single interval where
it must be scheduled. Consider a more general scenario where each job specifies
a set of possible time intervals and the job may be scheduled in any one of
those intervals. In other words, each job can be a viewed as a set (or bag) of job
instances of which at most one can be selected for execution. We allow different
instances of the same job to have different resource requirements, processing
times (interval length) and profits. The above generalization captures a variety
of scenarios. For example, consider the standard setting where time is divided
into discrete timeslots and each job is specified by a processing time and a window
consisting of release time and deadline. A job with release time r and deadline
d, and processing time p can be modelled as a bag containing (d − r − p + 1)
instances corresponding to the integer intervals of length p lying between r and
d. Motivated by such applications, the UFP problem with bag constraints (BagUFP)
has been well-studied. The problem is formally defined next.

BagUFP - Problem Definition: We assume that time is divided into discrete
timeslots 1, 2, . . . , T and let T = {1, 2, . . . , T } denote the set of all timeslots. For
each timeslot t, the input specifies an integer c(t), which is the capacity available
at the timeslot t. The input consists of a set of jobs J . Each job a ∈ J consists
of a set of job instances of which at most one can be selected for execution. Each
job instance u is associated with a starting timeslot s(u), an ending timeslot
e(u), a demand h(u) and a profit p(u). The interval [s(u), e(u)] is called the span
of u.

Let U denote the set of all job instances (over all jobs) and let n be the
total number of job instances. Given a set of job instances X ⊆ U , let p(X)
denote the cumulative profit

∑
u∈X p(u). A job instance u ∈ U is said to be

active at a timeslot t, if t belongs to the range [s(u), e(u)]; this is denoted using
the notation u ∼ t. A feasible solution is a set of job instances S ⊆ U such
that the following two constraints are satisfied. The first constraint (called the
capacity constraint) enforces that for any timeslot t, the cumulative demand of
job instances in S active at the timeslot t is at most the capacity c(t) available
at t:

∑
u∈S : u∼t h(u) ≤ c(t). The second constraint (called the bag constraint)

requires that at most one instance is picked from each job. The problem is to
find a feasible solution S having the maximum profit p(S). ��
Remark. Using preprocessing, we can modify the input capacities suitably so
that only the timeslots wherein some job instance starts or finishes is of relevance
and the other timeslots can be ignored (see [6]). In the rest of the paper, without
loss of generality, we assume that the number of timeslots is at most 2n.
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Special Cases of BagUFP: Prior work has addressed two important restrictions
of the BagUFP problem.

– Single job instance: In this setting, each job has exactly one job instance;
namely, the setting does not involve the bag constraint.

– No-bottleneck Assumption (NBA): In this setting, we assume that the maxi-
mum demand of any job instance is at most the minimum capacity available,
i.e., hmax ≤ cmin, where hmax = maxu∈U h(u) and cmin = mint∈T c(t).

The NBA setting is well-studied and arises in scenarios wherein the system
capacity is larger than the demand of any individual job instance.

By considering the combinations of the two restrictions, we get four different
special cases of the problem: (1) BagUFP - the most general case, where neither
restriction applies; (2) UFP - assumes that every job has only one job instance,
but does not impose NBA; (3) BagNbaUFP - requires NBA, but allows each job
to have arbitrary number of job instances; (4) NbaUFP - the most specialized case
that imposes both the restrictions.

Prior Work: Consider the simplest special case, where each job has only one
instance and furthermore, all the job instances have unit demand and all the
timeslots offer unit capacity. This is the same as the classical maximum weight
independent set problem on interval graphs, which can easily be solved optimally
via dynamic programming.

Spieksma [26] considered the above problem along with bag constraints, un-
der the name weighted job interval selection problem (WJISP). He showed that
the problem is NP-hard and APX-hard. Bar-Noy et al. [8] and independently,
Berman and Dasgupta [9] presented 2-approximation algorithms. Both these
algorithms are based on the local ratio technique. For the unweighted version
(wherein all the job instances have unit profit), Chuzhoy et al. [20] presented an
algorithm with an approximation ratio of 1.582.

Calinescu et al. [11] studied the case where each job has only one instance
and the capacity offered is uniform across all timeslots (however, the instances
can have arbitrary demands). They presented a 3-approximation algorithm via
the LP-rounding technique. For the above setting with bag constraints, Bar-Noy
et al. [7] designed a 5-approximation algorithm using the local ratio technique.

Let us now look at non-uniform capacity setting, viz NbaUFP, UFP, BagNbaUFP
and BagUFP. For the simplest case of NbaUFP, Chakrabarti et al. [16] provided
the first constant factor approximation algorithm. Subsequently, Chekuri et al.
[19] improved the ratio to 2 + ε (here and in the rest of the paper, ε would
refer to a constant ε > 0). Relaxing the NBA assumption, Chakrabarti et al. [16]
also presented an algorithm for UFP, with an approximation ratio of O(log hmax

hmin
),

where hmax and hmin are the maximum and minimum demands. For the same
problem, Bansal et al. [6] presented an O(log n)-approximation algorithm. In a
different paper, Bansal et al. [5] obtained a QPTAS. Recently Bonsma et al. [10]
gave the first constant factor polynomial time algorithm; their algorithm achieves
an approximation factor of 7 + ε. Subsequently, the ratio was improved to 2 + ε



Improved Algorithms for Resource Allocation under Varying Capacity 225

by Anagnostopoulos et al. [4]. The above algorithms are based on sophisticated
LP-rounding and dynamic programming strategies.

Chakaravarthy et al. [14] studied the notion of bag constraints and devised an
algorithm for BagUFP with an approximation ratio ofO(log cmax

cmin
), where cmax and

cmin are the maximum and minimum capacities, respectively. It remains an in-
teresting open question to design a constant factor approximation algorithm for
the BagUFP problem. However, this has been achieved under the NBA assump-
tion. Chakaravarthy et al. [13] presented a 120-approximation algorithm for the
BagNbaUFP problem, via a reduction from the non-uniform capacity setting to
the uniform capacity setting. Subsequently, Elbassioni et al. [21] improved the
factor to 65 using LP-rounding techniques.

The BagUFP problem has also been studied under distributed models and
constant factor approximation algorithms are known in the uniform capacity
setting, and logarithmic factor approximations in the non-uniform capacity set-
ting [25,15,12]. These algorithms are based on the primal-dual paradigm and
they also apply to the parallel setting.

Our Results: In this paper, we present improved algorithms for the BagUFP and
its special cases. The main tool used in our work is the primal-dual paradigm
(or equivalently the local ratio method), leading to simpler algorithms which
provide improvements in terms of approximation ratio and running time. In
contrast, prior work on the non-uniform setting predominantly use sophisticated
LP rounding and dynamic programming approaches. Furthermore, prior work
[12,15,25] has shown that the primal-dual method is more suitable for the par-
allel/distributed models, and so, the procedures developed in this paper may be
adaptable for these environments. We next state the main results of the paper.

– A 17-approximation algorithm for BagNbaUFP problem.
– An O(log n)-approximation algorithm for the BagUFP problem.

Both the algorithms are based on the primal-dual method and run in time O(n2).
The previously best known approximation ratios for the above two problems are
65 [21] and O(log cmax

cmin
) [14], respectively. The second ratio can be as high as

O(n) in the worst case. Furthermore, our algorithms are also more efficient in
terms of running time; both the previous algorithms go via LP-rounding and
need to solve linear programs.

The above two main results deal with the versions having the bag constraint.
The procedures developed as part of these results also provide an interesting
improvement for the versions devoid of the constraint. Recall that for the UFP

problem, Bonsma et al. [10] presented a (7+ ε)-approximation algorithm, which
was subsequently improved to (2 + ε) by Anagnostopoulos [4]. Both these algo-
rithms run in polynomial time, but the exponent of the polynomial is very high.
Bonsma et al. addressed the issue by presenting another algorithm having a faster
running time of O(n4), but with an increased approximation ratio of (25 + ε).
The above algorithm has two components based on LP-rounding and dynamic
programming, respectively. Of these, the first component can be replaced by
one of our procedures yielding a simpler algorithm with the same running time,
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but with a better approximation ratio of 13. We present a 13-approximation
algorithm for the UFP problem with a running time of O(n4).

Finally, consider NbaUFP, the most restricted special case. Chakrabarti et al.
[16] designed the first constant factor approximation algorithm for this prob-
lem via rounding a natural LP. In that context, they raised the question of
devising such an algorithm based on the primal-dual method. Our algorithm for
BagNbaUFP answers this question affirmatively.

2 Overview

In this section, we provide an overview of our algorithms, highlighting the main
components and place them in the context of prior work. Most prior work on
BagUFP and its variants go via classifying the job instances into two categories
based on their demands. Consider any job instance u ∈ U . Among all timeslots
in the span of u, let t be any timeslot having the minimum capacity (breaking
ties arbitrarily). The timeslot t is called the bottleneck timeslot for u (denoted
by bt(u)) and its capacity bottleneck capacity for u (denoted by bc(u)). Fix any
constant 0 < γ � 1. We say that the job instance u is γ-small, if h(u) � γbc(u);
otherwise, u is said to be γ-large. For the case where γ = 1/2, we shall drop the
prefix and simply write “small” and “large” to mean 1/2-small and 1/2-large
job instances, respectively.

Let Opt denote the optimal solution. Let Us and Ul denote the set of all small
and large job instances, respectively. Let Opts and Optl denote the optimal
solution considering only the small and large job instances, respectively. We
shall design two procedures that would produce solutions Ss and Sl such that
Ss is an f1-approximation to Opts and Sl is an f2-approximation to Optl, for
some f1, f2 � 1. The best of the two solutions is taken to be the final solution
S. It is easy to see that S is an (f1 + f2)-approximation to Opt.

Given the above aggregation result, we consider the small and the large job
instances separately. The core technical component of the paper is a simple and
fast primal-dual procedure for handling the small job instances, while guaran-
teeing a good approximation ratio.

Lemma 1 (PD-Small). Consider the BagUFP problem. There exists a procedure
that considers only the small job instances and outputs a solution S ⊆ Us such
that p(Opts) � 9 · p(S). The running time is O(n2).

The PD-Small lemma is proved in Section 3. Here we highlight certain key
aspects of the procedure given by the lemma. For the sake of clarity, we have
stated the lemma for the case of γ = 1/2. However, it can be extended for
any γ > 0, to derive an algorithm for handling γ-small job instances having
an approximation ratio of 1 + 4

1−γ . Prior work on BagNbaUFP [21] and NbaUFP

[19,18] also provide procedures for handling γ-small job instances. However, these
procedures yield a good approximation ratio only when γ is set to a small value.
In contrast, the PD-Small lemma achieves good approximation factors even for
large values of γ (such as γ = 1/2). The advantage is that the complementary
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problem of handling γ-large job instances can be solved more efficiently and with
better approximation ratios, leading to improved algorithms for BagUFP.

We note that the PD-Small lemma applies to the general BagUFP problem and
does not require the NBA assumption. Our next goal is to handle the large job
instances. For this purpose, we shall employ two different procedures, one for
the general case and a second one for the special case where NBA applies. The
lemma below deals with the general case.

Lemma 2. Consider the BagUFP problem. There exists a procedure that con-
siders only the large job instances and outputs a solution S ⊆ Ul such that
p(Optl) � 16 �log 2n	p(S). The procedure runs in time O(n2).

The above procedure exploits a combinatorial lemma regarding large job in-
stances, due to Bonsma et al. [10], that establishes a connection to the Maximum
Weight Independent Set of Rectangles (MWISR) problem: given a set of rectan-
gles with associated profits, find the maximum profit subset of non-overlapping
rectangles [2,23,17,1]. For our purposes, we consider a generalization involving
bag constraints and present a (4�log 2n	)-approximation algorithm running in
time O(n2), which may be of independent interest. Our algorithm goes via the
notion of sequential k-independent graphs, studied by Akcoglu et al. [3], and Ye
and Borodin [27]. Lemma 2 is proved in the full version.

Combining Lemma 2 with PD-Small lemma, we can get an (9 + 16�log 2n	)-
approximation to the overall optimal solution, establishing the following result.

Theorem 1. There exists an O(log n)-approximation algorithm for the BagUFP

problem having running time of O(n2).

The above result improves the previously best known approximation ratio
of O(log cmax

cmin
) [14]. Obtaining a constant factor approximation algorithm for

BagUFP remains an open question. The main issue arises in the handling of large
job instances. However, prior work has shown that in the NBA setting, the large
job instances can be handled via a simple reduction to the WJISP problem (see
[16,19,21]). The WJISP problem can be approximated with a factor of 2 via the
primal-dual method [7,9].

Lemma 3 ([21,7]). There exists a procedure for BagNbaUFP that considers only
the γ-large job instances and outputs a solution S ⊆ Ul such that p(Optl) �
f · p(S), where f = 4

γ (
1
γ − 1). The procedure runs in time O(n log n).

For the setting of γ = 1/2, the above lemma yields an 8-approximation pro-
cedure. Combining this with PD-Small lemma, we get an overall approximation
ratio of 17 for the BagNbaUFP problem, improving upon the previously best
known approximation ratio of 65 [21].

Theorem 2. There exists an algorithm for the BagNbaUFP problem having an
approximation ratio of 17. The algorithm runs in time O(n2).
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The PD-Small lemma provides an interesting corollary for the UFP problem.
Bonsma et al. [10] devised a (7+ ε)-approximation algorithm running in polyno-
mial time, albeit with a prohibitively large exponent in the polynomial. However,
they showed that the running time can be improved to O(n4), at the cost of in-
creasing the approximation ratio to (25 + ε). Their algorithm also employs the
strategy of classifying the input into small and large job instances, of which the
small job instances are handled via a complex procedure based on randomized
rounding. For the case of large job instances, they present a procedure that
achieves an approximation ratio of 2/γ, where γ is the largeness parameter; the
procedure runs in time O(n4). We can obtain an alternative algorithm for UFP by
employing PD-Small lemma in place of the former procedure. Setting γ = 1/2,
we get an approximation ratio of 13.

Theorem 3. There exists a 13-approximation algorithm for UFP running in time
O(n4).

3 Small Job Instances

Here, we establish Lemma 1 by presenting a 9-approximation algorithm for
BagUFP on small job instances. We ignore all the large job instances and as-
sume that the input set U consists only of small job instances. The algorithm is
based on the primal-dual paradigm and builds on prior work on on distributed
algorithms for the UFP problem [25,15,12]. However, the prior algorithms either
deal with the simpler uniform capacity setting (wherein the capacity across all
the timeslots is assumed to be the same) or provide logarithmic approximation
factor. All the above primal-dual algorithms consider the job instance in a partic-
ular order and the main feature of our approach is to employ a more appropriate
ordering. Our analysis exploits the new ordering in a crucial manner leading to
constant factor approximations for the generic non-uniform setting.

The LP relaxation and its dual are presented next.

max
∑

u∈U
x(u)p(u)

(∀t ∈ T )
∑

u : u∼t

h(u)x(u) � c(t)

(∀J ∈ J )
∑

u∈J

x(u) � 1

min
∑

J∈J
α(J) +

∑

t∈T
c(t)β(t)

α(Ju) + h(u)
∑

t : u∼t

β(t) � p(u)

(∀u ∈ U)

The primal includes a variable x(u) for each job instance u ∈ U . The capacity
and the bag constraints are enforced next. The dual includes a variable α(J)
corresponding to the bag constraint of J , for each job J . Moreover, for each
timeslot t ∈ T , the dual includes variable β(t) corresponding to the capacity
constraint at t. For each job instance u, we include a constraint corresponding
to the primal variable x(u), which we call the dual constraint of u. For a job
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instance u, let Ju denote the job to which the instance u belongs. All the primal
and dual variables are non-negative.

3.1 Algorithm

Our primal-dual algorithm uses a two-phase framework consisting of a forward
phase and a reverse phase. The forward phase would construct a set of job
instances R ⊆ U and a dual feasible solution α(·) and β(·). The set R may not
be a feasible solution. The reverse phase would delete certain job instances from
R and construct a feasible solution S ⊆ R.

Forward Phase: We start by initializing all the dual variables to be zero and
taking R to be the empty set. The algorithm would process the job instances in
particular order and raise the dual variables in an appropriate manner. The or-
dering is cardinal to our algorithm in that it dictates the performance guarantee.
We order the job instances in the decreasing order of their bottleneck capacities
bc(u) and among the job instances having the same bottleneck capacity, the
ordering is determined in the increasing order of ending timeslots (breaking ties
arbitrarily). We denote the above ordering as σ.

The forward phase works iteratively, where the ith iteration would process
the ith job instance in the ordering σ. Consider an iteration and let u be the job
instance under processing. We check if the dual constraint of u is already satisfied
and if so, we simply proceed to the next iteration. Otherwise, we shall raise
certain dual variables suitably so that the constraint is satisfied, as described
below. We first determine the slackness of the constraint, which is the difference
between the RHS and the LHS of the constraint:

slack(u) = p(u)−
(

α(Ju) + h(u)
∑

t : u∼t

β(t)

)

. (1)

We next select two specific timeslots t� and tr from the span of u, as follows.
Consider all the timeslots in the span of u having capacity at most 2bc(u) and
let t� be the left-most timeslot among them. Similarly, let tr be the right-most
timeslot among the timeslots satisfying the above property. Intuitively the span
in between the timeslots t� and tr is the essential span of the job instance u;
beyond these timeslots, there is enough capacity. Call t� and tr as the left and
right critical timeslots of u, respectively.

We shall suitably raise the dual variables α(Ju), β(t�) and β(tr) so that the
dual constraint is satisfied. Intuitively, we would like to satisfy two goals: (a)
The dual objective value is not raised by much (since the dual is a minimization
problem); (b) All the critical timeslots contribute an equal amount of increase
in the dual objective value. With the above goals in mind, the dual variables for
the critical timeslots are raised inversely proportional to the capacities at those
timeslots, conforming to the intuition that timeslots with higher capacities are
less critical. We choose a suitable value δ(u) and raise α(Ju) by δ(u), β(t�)

by 4 δ(u)
c(t�)

and β(tr) by 4 δ(u)
c(tr)

. The amount δ(u) is calculated so that the slack
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vanishes and the constraint becomes satisfied tightly i.e., LHS becomes equal to
RHS. Namely, compute δ(u) satisfying the following equation:

δ(u) ·
(

1 + 4h(u)

[
1

c(t�)
+

1

c(tr)

])

= slack(u). (2)

The job instance u is added to the set R. This completes an iteration of the first
phase. We say that all the job instances in R are raised.

Reverse Phase: We consider the job instances in reverse order in which they
were inserted into R and construct the solution S as follows. In any iteration
of this phase, we look at the next job instance u (in the reverse order) and add
u to S if doing so does not violate the capacity or the bag constraints. This
phase continues until all of the job instances in R have been considered. The
algorithm outputs the (feasible) solution S. This completes the description of
the algorithm. A pseudocode can be found in the full version.

3.2 Analysis

Let us calculate the objective value of the dual solution constructed by the
forward phase, denoted val(α, β) in terms of δ(·). For any job instance u ∈ R,
the dual variable α(Ju) is raised by δ(u) and this increases the dual objective
value by δ(u). Similarly, we raise the dual variables corresponding to the two

critical timeslots of u; namely, β(t�) is raised by 4δ(u)
c(t�)

and β(tr) is raised by
4δ(u)
c(tr)

. Therefore, for each job instance u ∈ R, the dual objective value raises

by an amount 9δ(u). It follows that val(α, β) = 9
∑

u∈R

δ(u) The lemma below

provides a comparable lowerbound on the profit of the output solution S.

Lemma 4. We have p(S) �
∑

u∈R δ(u).

The lemma implies that val(α, β) ≤ 9 · p(S). Coupled with the weak duality
theorem, we get that S is a 9-approximation to the optimal solution.

We proceed to Lemma 4. We shall associate a suitable quantity π(u) with
each job instance u ∈ R such that π(u) ≥ δ(u), and their overall sum satisfies∑

u∈R π(u) = p(S). Intuitively, π(u) is the contribution made by u towards p(S)
(irrespective of whether or not u got picked in the final solution S).

For two job instances u1, u2 ∈ R, we say that u1 is a predecessor of u2, if u1

appears before u2 in the ordering σ; in this case, u2 is said to be a successor
of u1. For a job instance u ∈ R, let pred(u) and succ(u) denote the set of all
predecessors and successors of u, respectively. We consider a job instance as both
predecessor and successor of itself.

Consider a job instance u ∈ S. Let LHS(u) be the variable denoting the LHS
of the dual constraint of u:

LHS(u) = α(Ju) + h(u)
∑

t : u∼t

β(t).
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The variable LHS(u) would be zero in the beginning of the forward phase and it
would keep increasing as the algorithm proceeds. At the end iteration in which
u is raised, LHS(u) would be equal to p(u) (since we ensured that the dual
constraint of u is satisfied tightly). Thus, by tracking the variable LHS(u), we
can derive a formula for p(u) in terms of δ(·) values of predecessors of u.

Consider a predecessor u′ ∈ pred(u). When u′ is raised, three dual variables
are increased, α(Ju′ ), β(t�) and β(tr), where Ju′ is the job to which u′ belongs,
and t� and tr are the left and right critical timeslots of u′. These increments will
reflect as an increase in LHS(u), if the dual constraint of u also shares one or
more of these variables. The increment in LHS(u) corresponding to the above
three types are as follows:

– Type 1: If both u′ and u belong to the same job, then the increment is δ(u′).

– Type 2: If u is active at t�, the increment is 4h(u)δ(u′)
c(t�)

.

– Type 3: If u is active at tr, the increment is 4h(u)δ(u′)
c(tr)

.

Notice that LHS(u) may increase via more than one type, in which case the total
increment would be given by corresponding sum; if none of the cases occur, then
the sum would be zero. We call the above sum as the contribution of u′ towards
u and denote it as λ(u′, u). The sum of contributions made by the predecessors
of u yields the value of LHS(u) (as it stood at the end of the iteration in which
u was raised), which is the same as p(u).

The above discussion focuses on a job instance and analyzes the contributions
made by the predecessors towards the instance. Conversely, we can fix a job
instance u and consider the aggregate contribution that u makes towards its
successors found in the solution S. We call the above aggregate quantity as
the total contribution of u and denote it as π(u): π(u) =

∑
u′∈succ(u)∩S λ(u, u′).

Notice that the profit p(S) is given by the sum
∑

u∈R π(u).
The quantity π(u) can be computed by considering the three types of contri-

butions discussed earlier. Let Ju be the job to which u belongs, and let t� and
tr be its left and right critical timeslots. Let X = S ∩ succ(u). Then,

π(u) =
∑

u′∈X : u′∈Ju

δ(u) +
∑

u′∈X : u′∼t�

4h(u′)δ(u)

c(t�)
+

∑

u′∈X : u′∼tr

4h(u′)δ(u)

c(tr)

We next establish a lowerbound on total contribution of any raised job instance.

Lemma 5. For any u ∈ R, π(u) ≥ δ(u).

The lowerbound implies Lemma 4. To prove the lowerbound, we fix a job instance
u ∈ R and analyze three cases. The first case is where u is picked in the solution
S. In this case, u would contribute δ(u) towards itself (Type 1) and hence,
π(u) ≥ δ(u). So, assume that the reverse phase did not pick u for inclusion in S.
This means that u could not be added to X , where X ⊆ S is the set of successors
of u found in S. The reason is that a bag constraint or a capacity constraint (or
both) gets violated when u is added to X . Consider the first scenario, wherein
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X contains some job instance u′ that belongs to the same job as u. In this case,
u would contribute δ(u) towards u′ (Type 1) and hence, π(u) ≥ δ(u).

We next analyze the last and the most interesting scenario, wherein the ca-
pacity constraint is violated at some timeslot t̂ found in the span of u, i.e.,

h(u) +
∑

u′∈X : u′∼̂t

h(u′) > c(t̂). (3)

If there are multiple such timeslots, choose the one having the minimum capacity
(breaking ties arbitrarily). This is denoted by t̂ and is called the conflict timeslot.

Let C ⊆ X be the set of job instances from X active at t̂; intuitively, C is the
set of job instances that conflict with X at t̂ and prevent it from being included
in X . Let t� and tr be the left and right critical timeslots of u. We next make
an important claim regarding any job instance u′ ∈ C.

Lemma 6. Any job instance u′ ∈ C must be active at t� or tr (or both).

The lemma is proved by exploiting the properties of the ordering σ. Intuitively,
the argument is that the timeslots in the span of u outside of the range [t�, tr]
have too high a capacity to cause capacity constraint violation and hence, t̂ must
lie within the range. Moreover, the ordering also implies that any job instance
in C must start before u or end after u. The above two statements put together
would imply the lemma. The lemma is proved in the full version.

Here, we assume the lemma and complete the proof of Lemma 5. Let A and
B be the job instances in C that are active at t� and tr, respectively. The lemma
implies that every job instance in C is included in at least one of the two sets.
Let us consider the quantity π(u) and focus only on the terms corresponding to
the job instances found in the two sets:

π(u) ≥
(

4δ(u)
∑

u′∈A

h(u′)

c(t�)

)

+

(

4δ(u)
∑

u′∈B

h(u′)

c(tr)

)

The capacity at t� and tr is at most twice the bottleneck capacity bc(u). So,

π(u) ≥ 2δ(u)

bc(u)

∑

u′∈C

h(u′). (4)

Since we are dealing with small job instances, h(u) ≤ bc(u)/2, which implies
that h(u) ≤ c(t̂)/2. From (3), we get that

∑

u′∈C

h(u′) ≥ c(t̂)/2 ≥ bc(u)/2.

Substituting in (4), we get that π(u) ≥ δ(u). The proof of Lemma 5 is completed.
We conclude that the algorithm achieves an approximation guarantee of 9. It

is not difficult to see that the algorithm can be implemented in time O(n2). This
completes the proof of PD-Small lemma.



Improved Algorithms for Resource Allocation under Varying Capacity 233

References

1. Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight indepen-
dent set of rectangles. In: FOCS (2013)

2. Agarwal, P., Kreveld, M., Suri, S.: Label placement by maximum independent set
in rectangles. Computational Geometry 11(3-4), 209–218 (1998)

3. Akcoglu, K., Aspnes, J., Dasgupta, B., Kao, M.: Opportunity cost algorithms
for combinatorial auctions. In: Kontoghiorghes, E., Rustem, B., Siokos, S. (eds.)
Applied Optimization: Computational Methods in Decision-Making (2000)

4. Anagnostopoulos, A., Grandoni, F., Leonardi, S., Wiese, A.: A mazing 2 + ε ap-
proximation for Unsplittable Flow on a Path. In: Proceedings of the Symposium
on Discrete Algorithms, SODA 2014 (2014)

5. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-PTAS for unsplit-
table flow on line graphs. In: STOC (2006)

6. Bansal, N., Friggstad, Z., Khandekar, R., Salavatipour, M.: A logarithmic approx-
imation for unsplittable flow on line graphs. In: SODA (2009)

7. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., Schieber, B.: A unified approach
to approximating resource allocation and scheduling. Journal of the ACM 48(5),
1069–1090 (2001)

8. Bar-Noy, A., Guha, S., Noar, J., Schieber, B.: Approximating the throughput of
multiple machines in real-time scheduling. SICOMP 31(2), 331–352 (2001)

9. Berman, P., Dasgupta, B.: Multi-phase algorithms for throughput maximization
for real-time scheduling. J. of Comb. Opt. 4, 307–323 (2000)

10. Bonsma, P., Schulz, J., Wiese, A.: A constant factor approximation algorithm for
unsplittable flow on paths. In: FOCS (2011)

11. Calinescu, G., Chakrabarti, A., Karloff, H., Rabani, Y.: Improved approximation
algorithms for resource allocation. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 401–414. Springer, Heidelberg (2002)

12. Chakaravarthy, V., Choudhury, A., Roy, S., Sabharwal, Y.: Distributed algorithms
for scheduling on line and tree networks with non-uniform bandwidths. In: IPDPS
(2013)

13. Chakaravarthy, V., Choudhury, A.R., Sabharwal, Y.: A near-linear time con-
stant factor algorithm for unsplittable flow problem on line with bag constraints.
In: FSTTCS (2010)

14. Chakaravarthy, V., Pandit, V., Sabharwal, Y., Seetharam, D.: Varying bandwidth
resource allocation problem with bag constraints. In: IPDPS (2010)

15. Chakaravarthy, V., Roy, S., Sabharwal, Y.: Distributed algorithms for scheduling
on line and tree networks. In: PODC (2012)

16. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms
for the unsplittable flow problem. Algorithmica 47(1), 53–78 (2007)

17. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: SODA
(2009)

18. Chekuri, C., Ene, A., Korula, N.: Unsplittable flow in paths and trees and
column-restricted packing integer programs. In: Dinur, I., Jansen, K., Naor, J.,
Rolim, J. (eds.) Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques. LNCS, vol. 5687, pp. 42–55. Springer, Heidelberg
(2009)

19. Chekuri, C., Mydlarz, M., Shepherd, F.: Multicommodity demand flow in a tree
and packing integer programs. ACM Trans. on Algorithms 3(3) (2007)



234 V.T. Chakaravarthy et al.

20. Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job
interval selection problem and related scheduling problems. In: FOCS (2001)

21. Elbassioni, K., Garg, N., Gupta, D., Kumar, A., Narula, V., Pal, A.: Approximation
Algorithms for the Unsplittable Flow Problem on Paths and Trees. In: FSTTCS
(2012)

22. Erlebach, T., Spieksma, F.: Interval selection: Applications, algorithms, and lower
bounds. J. Algorithms 46(1), 27–53 (2003)

23. Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling
and packing. In: SODA (1998)

24. Kolliopoulos, S.: Edge-disjoint paths and unsplittable flow. In: Gonzalez, T.
(ed.) Handbook of Approximation Algorithms and Metaheuristics, Chapman and
Hall/CRC (2007)

25. Panconesi, A., Sozio, M.: Fast primal-dual distributed algorithms for scheduling
and matching problems. Distributed Computing 22(4), 269–283 (2010)

26. Spieksma, F.: On the approximability of an interval scheduling problem. J. of
Scheduling 2, 215–227 (1999)

27. Ye, Y., Borodin, A.: Elimination graphs. ACM Transactions on Algorithms 8(2),
14 (2012)


	Improved Algorithms for Resource Allocation
under Varying Capacity

	1 Introduction
	2 Overview
	3 Small Job Instances
	3.1 Algorithm
	3.2 Analysis

	References




