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Talk Outline

• Finding Paths/Cycles of Length �
• Random Orientations

• Random Colorings

• Derandomization

• Counting Paths of Length �
• Finding Cycles in Minor-Closed Families of Graphs



Finding Paths of Length 

Input: Directed or Undirected Graph � � ��, ��, integer �.

Output: A simple path 	 ∈ � of length 	 � �, if one exists.

First Attempt: Using �’s adjacency matrix, �
:

���,� � �� �, � ∈ �
� 	����							

Claim: �
� �,� is exactly the number of paths � ⇢ � of length � in �.

Proof: By induction.

Algorithm: 1. Compute �
� .

2. Check if any entry is non-zero.



Problems with Adjacency Matrix

Multiplication Approach

1. Not immediately obvious how to get the path from �
� .

2. The paths “counted” by �
� �,� are not necessarily simple!

Example:  
�:

Clearly no simple paths of length greater than 1; however…

�
 � 0 1
1 0

�
# � 1 0
0 1

21



Finding Paths of Length 

Input: Directed or Undirected Graph � � ��, ��, integer �.

Output: A simple path 	 ∈ � of length 	 � �, if one exists.

Second Attempt: Consider easy cases of the problem and use them.

Example: if � is a DAG (Directed Acyclic Graph) – linear-time Algorithm.



Finding Longest Path in a DAG

1 2 3 4 5 6 n

1. Topologically sort �. Now WLOG, all edges ��, �� have � $ �.

2. For each vertex % compute & % , the length of a longest path 

starting at %, computing from the last to first vertex, using the 

formula: & % � �0																																															 '()* % � 0
1 + max	/& 0 : %, 0 ∈ �1 2342														

3. To compute a path of length �, find a vertex with & % � � and 

continue to a neighbor 0 with & 0 � � 5 1, and so on.



Finding Paths of Length 

As observed: if � is a DAG – linear-time Algorithm.

Idea: Let’s turn � into a DAG! 

For an undirected graph, we direct edges in the following manner:

1. Choose some random permutation of the vertices, 6 ∈ 78.

2. Direct edge /0, %1 from 0 to % if and only if 6 0 $ 6�%�.

For directed graphs, remove all edges �0, %� with 6 0 9 6�%�.
(this just generalizes the undirected case)



Random Orientations

Random Acyclic Orientation:
1. Choose some random permutation of the vertices, 6 ∈ 78.
2. Direct/leave edge 0% from 0 to % if and only if 6 0 $ 6�%�.
Denote the resulting graph by �:. 

• �: is a DAG.

• If there exists a path of length � in �:, the same path exists in �.

Problem:
If there exists a path of length � in �, there might be no (directed) 

path of length � in �:.

Example: �

�: 21 34



Random Orientations: 

Probability of Success

Lemma:
Let � be a directed graph containing a simple path of length �, denoted

by 	. Let �: be as described above. Then ;< 	 ∈ �: � =
�>= !	.

Proof: Fix 6|A∉C.

• There exist � + 1 ! permutations that agree with 6|A∉C.

• Given 6|A∉C, all of these permutations have the same probability.

• Only one of these permutations  leaves 	 in �:. 

• Therefore ;< 	 ∈ �:	 	6|A∉C � 6DE � =
�>= !

• From the law of total probability ;< 	 ∈ �: � =
�>= !

Lemma 2: Similarly, for undirected �, ;< 	 ∈ �: � #
�>= !



Random Orientations: 

Probability of Success

Alternative Proof
Lemma:
Let � be a directed graph containing a simple path of length �,

denoted by 	. Let �: be as described above. Then ;< 	 ∈ �: � =
�>= !	.

Proof: There exist F! permutations. How many have 	 ∈ �:?
• WLOG, 	 � 1 5 2 5 ⋯ 5 � 5 �� + 1�. 
• To choose a permutation for which 	 ∈ �:, we have F options for 

6�F�, for which we have F 5 1 options for 6�F 5 1�, …, for which 
we have � + 2 options for 6�� + 2�, for which we have exactly one

choice for 6 1 , 6 2 , … , 6�� + 1�.
• All in all, Pr 	 ∈ �: � 8⋅ 8M= ⋅…⋅ �># ⋅=

8! � =
�>= !

Lemma 2: Similarly, for undirected �, ;< 	 ∈ �: � #
�>= !



Random Algorithms

Random Algorithms come in two main flavors:

1. Las Vegas Algorithms: The algorithm always outputs correct 
solution, but the running time is a random variable.

Example: QuickSort.

2. Monte Carlo Algorithms: The algorithm’s running time is bounded, 
but it has a probability of error.

Examples:
The algorithm we are devising.
Many Primality Testing Algorithms, etc’…



Monte-Carlo Algorithms

Amplification

A Monte-Carlo algorithm which is always correct when it outputs “true”, 
as in our case, is said to be true-biased. This is a particular case of 
algorithms with one-sided errors. 

In such a case, if the algorithm answers “false”, there is a chance of at 
most �1 5 1/O� that the answer is incorrect, for some O. 

Repeating the algorithm O times (independently) and answering “true” if 
one of the runs output “true” guarantees a probability of a false negative 
at most 

1 5 1
O

*
P 1/2 $ 1/2

In fact, repeating the algorithm 100 ⋅ O times guarantees a probability of 
an incorrect answer is less than 1/2=QQ.



Random Orientation: 

An Algorithm

Algorithm:
1. Repeat � + 1 ! times:

1. Choose a random acyclic orientation of �, �:.

2. Compute the longest path in �:, 	.
3. If 	 � �, output it and terminate.

Running Time:
� + 1 ! iterations of R���-time algorithm. Total: R� � + 1 ! ⋅ ��.

Correctness: From all the above discussion, our algorithm has a 
one-sided error, with a probability of a false negative at most

1 5 =
�>= !

Thus, repeating the algorithm � + 1 ! times we have a probability 
of at most 1/2 of getting an incorrect answer.



Talk So Far
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• Random Colorings
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Random Colorings

Assume � has its vertices colored with � colors, S: � → /1,2, … , �1.
Definition: We call a path a colorful path if each of its vertices is 
colored with a distinct color.

Note that a colorful path is also a simple path.

Question: What is the probability of a path 	 of length � 5 1
becoming colorful under a random coloring S: � → /1,2, … , �1?
Answer: Fix the colors of vertices % ∉ 	. For every such coloring,

there exist �� different colorings of the vertices % ∈ 	.
�! of these colorings make 	 colorful. 

Therefore, Pr 		V2SWX24	SW3W<Y03 � �!
�Z 9 �

[
� /�� � 2M�.

				 				 		



Finding Colorful Paths

Input: A graph � � �, � and a coloring S: � → /1,2, … , �1
Output: A colorful path of length � 5 1 in �, if one exists.

Alon et al.’s solution: Dynamic Programming. 

We’ll give another formulation of their algorithm, which will hopefully 
give us more insight.

Idea: Again, build a DAG. But which one?



Finding Colorful Paths:

A Reduction

Idea: keep 2� 	5 1 copies of �, each “recalling” what colors have 
been observed “so far”.

Formally: Build the following graph: �D � �′, �D ,	with	
�D � a �b

cdb⊆f�E

with �b � � %b % ∈ �1																										 if 7 9 1   
	 %b % ∈ �, S % ∈ 7 								 if 7 � 1					

and �D � �0b, %b∪/h A 1�: |0% ∈ �, S�%� ∉ 7

Example,
for � � 3: �/#1

�/=1

�/j1

�/=,j1

�/=,#1

�/#,j1

�/=,#,j1



Finding Colorful Paths:

The Reduction Graph

What is the size of the graph we built?

�D P 2�|�|
�D P 2�|�|

Claim: The graph used in our reduction is a DAG.
Proof: Every edge goes from a copy of � tagged with some 7 ⊆ f�E

to a vertex tagged with a larger subset of f�E.
Claim: we can find longest paths in this graph in R�2� � + � � time.
Proof: corollary of the above.

�/#1

�/=1

�/j1

�/=,j1

�/=,#1

�/#,j1

�/=,#,j1



Finding Colorful Paths:

A Reduction (Correctness)

Finally, we claim that all paths in �′ correspond to colorful paths in �, 
and every colorful path in � corresponds to a path in �′.
Claim: � has a colorful path of length � ⇔ �′ has  a path of length �.
Furthermore, given a path of length � in �′, a colorful path of length �
in � can be computed in linear time.
Proof: Next slide.

Corollary: We can find the longest colorful path in � in R�2� ⋅ �� time.

�/#1

�/=1

�/j1

�/=,j1

�/=,#1

�/#,j1

�/=,#,j1



Finding Colorful Paths:

A Reduction (Correctness)

Claim: � has a colorful path of length � ⇔ �′ has  a path of length �.
Proof: ⇒ Let 	 � %=%# … %� be the colorful path of length � in �.

Then, if we define 7� � /S %� : � P �1, we notice that 

	D � %=bm%#bn … %�bZ ∈ �′

⇐ Let 	D � %=pm%#pn … %�pZ be a path in �′. Then:

q� � /S %� : � P �1 (by induction)

and the path 	 � %=%# … %� exists in � and is colorful.

�/#1

�/=1

�/j1

�/=,j1

�/=,#1

�/#,j1

�/=,#,j1



Random Coloring: 

An Algorithm

Algorithm:

1. Repeat 2� times:
1. Choose a random coloring S: � → f�E
2. Compute the longest colorful path in �, 	.
3. If 	 � � 5 1, output it and terminate.

Running Time:

2� iterations of R�2� ⋅ ��-time algorithm. Total: R� 22 � ⋅ ��.
Correctness: As the probability of a path of length � 5 1 becoming 

colorful is at least 1/2�, the probability of a false negative is at most 

1 5 1/2�
Repeating the process 2� times yields a probability of error 
at most 1/2.



Finding Cycles of Length 

Input: Directed or Undirected Graph � � ��, ��, integer �.

Output: A simple cycle q ∈ � of length �, if one exists.

Observation: Our reduction can 
be modified to allow us to find 
all vertices at the end of paths of 
length � 5 1 starting at a specific
vertex s ∈ �. 

A cycle is a path of length � 5 1 from some 4 ∈ �, to another vertex %
such that %, 4 ∈ �.

This immediately yields a 2s � ⋅ � ⋅ � time algorithm.

�/#1

�/=1

�/j1

�/=,j1

�/=,#1

�/#,j1

�/=,#,j1
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Derandomization

All the algorithms we’ve shown so far have a certain (arbitrarily
small) probability of giving a false positive. Can we do better?

Consider the Random Coloring Algorithm. How can we guarantee 
that a path 	 of length � is found?

First Attempt: Let’s go over all possible colorings of S: � → f�E. 
Every path becomes colorful in at least one of these colorings. 
For each coloring, search for a colorful path and return any length-�
path found.

Problem: �8 possible colorings ⇒ not R�Y � ⋅ 	W3t F �



Derandomization

Second Attempt

All we need is some subset of the possible colorings, u, which 
guarantees for every subset of vertices 7 ⊆ � of size 7 � � that 
all vertices of 7 get distinct colors for some coloring in u.

Such a family is called a �-perfect family of hash-functions.

Theorem: There exists a �-perfect family of hash functions from

� to f�E of size 2s � log �, computable in 2s���� log �
time.

Corollary: Can find path of length � in time 2s � ⋅ � ⋅ log �, if exist.



Random Coloring: 

Deterministic Algorithm

Algorithm:
1. Compute a �-perfect family of hash functions, u.
2. For each coloring S ∈ u:

1. Compute the longest colorful path in �, 	.
2. If 	 � � 5 1, output it and terminate.

3. Return “no path of length � � 5 1”.

Running Time:

Step 1: 2s � � log � time.

Step 2: 2s � log � iterations of R�2� ⋅ ��-time algorithm. 

Total: R�2s � ⋅ � ⋅ log �� time.
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Counting Paths of Length 

Input: Directed or Undirected Graph � � ��, ��, integer �.

Output: The number of simple paths in � of length �.

Bad News: This problem is not only y;-Hard, but even zf1E-Hard, so 
we (probably) cannot hope to find an efficient FPT algorithm for it.

Definition: We say an algorithm � approximates a counting problem by 
a multiplicative factor { 9 1	 if for every input |, the algorithm’s 
output, ��|�, satisfies

y�|�/{ P � | P { ⋅ y | , 
where y�|� is the exact output of the counting problem for |.



Counting Colorful Paths

We will again want to color � with � colors and then try to solve our 
problem. Let us begin again by assuming that � is colored with � colors.

Input: Directed or Undirected Graph � � ��, ��, with function S: � → f�E.
Output: The number of colorful paths in � of length �.

Recall our first attempt using adjacency matrix exponentiation. This 
failed due to the possible existence of non-simple paths of length �. 

But what if � is a DAG? 
Answer: In that case, all paths are simple!



Counting Colorful Paths (1)

First Method:
1. build the DAG �′ from our previous algorithms, which had at most 

2�|�| vertices. Let � be its adjacency matrix.

2. Compute ��. 

3. Sum all entries of ��.

Step 1 takes R�2� ⋅ �� time.

Step 3 takes R�4� ⋅ �#� time.

Step 2 can be done naïvely in R �2� ⋅ � j ⋅ �� � R�8� ⋅ �j	⋅ �� time, by 

using naïve matrix multiplication � 5 1 times.
Possible Improvements:

1. use fast matrix multiplication ⇒ total time R �2� ⋅ � � ⋅ ��
2. replace the iterative multiplications by repeated squaring,

thus replacing the factor of � by log �.

�/#1

�/=1

�/j1

�/=,j1

�/=,#1

�/#,j1

�/=,#,j1



Counting Colorful Paths

Second (Faster) Method:
1. Build the DAG �′ from our previous algorithms.
2. Compute number of paths of length � using dynamic programming, 

similar to algorithm computing
paths of length � in �D. *

Both steps take R�2� ⋅ �� time.

* Every vertex has a pair of values & % , #f%E, with &f%E the length of the longest 

path starting at % and #f%E the number of paths of length &f%E starting at %.

�/#1

�/=1

�/j1

�/=,j1

�/=,#1

�/#,j1

�/=,#,j1



(Approximately)

Counting Paths of Length 

Definition: We say a family of functions from fFE to f�E is a {-balanced 
�F, ��-family of hash functions if for every subset 7 ⊆ fFE of 
size 7 � �, the number of functions that are 1-1 on 7 is 
between �/{ and { ⋅ � for some constant �.

Theorem: There exists such a family of size R�2�>s ���� � log F�, 
computable in R�2�>s ���� � F log F� time.

Algorithm: 1. Compute a {-balanced � � , ��-family, u.
2. For every coloring S ∈ u, count the number of 

colorful paths of length � in �, S. 
3. Divide the sum of these values by �.

Correctness: Every path becomes colorful anywhere between 
�/{ and { ⋅ � times, so ��|� holds y�|�/{ P � | P { ⋅ y | .
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Finding Cycles of Length 

(Revisited)

Input: Undirected Graph � � ��, ��, integer �.

Output: A copy of q� (a simple cycle of length �) in �, if one exists.

Recall that we have shown FPT algorithms for this problem on general 
graphs. We will therefore look for faster algorithms for this problem for 
graphs � from a minor-closed family of graphs.



Minors

Definition: We say a family of graphs u is minor-closed if for every 
graph � ∈ u, and for every sequence of the following 
operations

1. Vertex Removals
2. Edge Removals
3. Edge Contractions

the resulting graph �D holds �D ∈ u. 

Example of contraction:

2

3

4

1

5

9

8

7

6



Minors

Definition: We say a family of graphs u is minor-closed if for every 
graph � ∈ u, and for every sequence of the following 
operations

1. Vertex Removals
2. Edge Removals
3. Edge Contractions

the resulting graph �D holds �D ∈ u. 

Example of contraction:

2

3

4

1

5

9

8

7

6

2

3

1

4,5

9

8

7

6



Example: Planar Graphs

Definition: A graph which can be drawn in the plane with no edges 
crossing is called a planar graph.

Planar graphs, are a minor-closed family of graphs.

Some Useful Properties of Planar Graph: 
1. 	 � P 3 � 5 6.
2. 	R���-time algorithm to compute an embedding in the plane.
3. 	Many basic problems solvable in linear-time on planar graphs.



Planar Graph: Example

This map of Manhattan proves that Manhattan’s road network is a 
planar graph.



Perhaps not Planar?



Back to Cycle-Finding

Theorem: For every non-trivial minor-closed family of graphs, u, there 
exists some constant '� such that every � ∈ u has some vertex % with 
' % P '�.

For Example: For u � 	3�F�<	�<�	�4, '� P 5. (why?)

Definition: We say a graph � is '-degenerate if there exists an acyclic 
orientation of � such that for every % ∈ �, '()* % P '.

Theorem: For every non-trivial minor-closed family of graphs, u, there 
exists some constant '� such that every � ∈ u is '�-degenerate.



-degenerate graphs

Theorem: There exists a linear-time algorithm that given a '-degenerate 
graph � finds an acyclic orientation of � such that % ∈ �, '()* % P '.

Proof: Very similar to algorithm for topological sorting. We will illustrate it 
for minor-closed families.

1. For � � 1, … , F
1. Let % be a vertex with ' % P ' (guaranteed to exist)
2. y % ← �. ( % is the �-th vertex in the ordering )
3. Remove % from �.

2. Direct all edges 0% from 0 to % if and only if y 0 $ y�%�.



Random Colorings

and Cycles

Assume � has its vertices colored with � colors, S: � → /1,2, … , �1.
We say a cycle is well-colored if its vertices are consecutively 
colored 1,2, … , �.

Note that a well-colored cycle is a simple cycle.

Question: What is the probability of a cycle q of length � becoming 
well-colored under a random coloring S: � → /1,2, … , �1?
Answer: Fix the colors of vertices % ∉ q. For every such coloring,

there exist �� different colorings of the vertices % ∈ q,
and for 2� of these colorings q is well-colored. 

Therefore Pr q	�4	�233 5 SW3W<2' � 2�/�� � 2/��M=

	2	2	1	1 	4	4	3	3 	�	�		5		5



Finding a Well-Colored Cycle

Let %=%# … %� be the well-colored cycle’s vertices, with S %� � �.

As we are only concerned with well-colored cycles, we drop edges not 
colored by consecutive colors (modulo �). Next, we do the following:

�. Compute an acyclic orientation of � such that % ∈ �, '()* % P '.

��. For all % ∈ �,	assign arbitrary (distinct) indices 1,2, … , ' to each 
edge leaving %.

WLOG, the edge %�M=%� edge was directed from %�M= to %�
and has index �.

	2	2	1	1 	4	4	3	3 	�	�				
%�%�M=%= %# %j %�



Finding a Well-Colored Cycle:

Observations

The edge %�M=%� was directed in step � from %�M= to %� and has index �.

If we remove edges 0% with S 0 � S %�M= � � 5 1 and S % � S %� � �
that disagree with the orientation of %�M=%� and/or its index, �, the graph 
of vertices colored � 5 1 or � is made up of stars:

	2	2	1	1 	4	4	3	3 	�	�				

2

3

4

1

	5	5

9

8

7

6
Colored 

� 5 1

Colored 

� 5 1
S 5 � �

S 4 � �



Finding a Well-Colored Cycle:

Second Observation

What happens if we contract each star from previous observation to a 
single vertex with color � 5 1?

Color: � 5 2 � 5 1 � 							1

		

Call the resulting colored graph �D.	We observe:
1. 	�D ∈ u .
2. 	�′ has a well-colored q�M=.
3. 	If � has no well-colored q�, �′ has no well-colored q�M=.

4

5

6

3

8

7
1

2

⋮ ⋮
2 	%	%

1

8

7

⋮ ⋮

� 5 2 � 5 1 1



Finding a Well-Colored Cycle

Recursive Algorithm

�.   Compute an acyclic orientation of � such that % ∈ �, '()* % P '.
��.  Assign arbitrary indices to edges leaving every %: 1,2, … , '.
���. Randomly guess a direction for edges 0%, with S 0 � � 5 1 and    

S % � �, and an index � ∈ f'E.
��. Remove edges 0%, with S 0 � � 5 1, S % � � which do not 

agree with guess.
�. Contract stars made of vertices colored � 5 1 and � and give the 

new vertices color � 5 1. 
��. Recursively search for a well-colored q�M= in new colored graph.
���. If found cycle %=%# … %�M#|%= in �, output %=%# … %�M#%�M=%�%=,      

with %�M= and %� vertices that were contracted "into" | with
neighbors %�M# and %=, repectively.



Finding a Well-Colored Cycle:

Recursion Bottom + Running Time

Recursion Bottom:
Theorem: There exists an R � -time algorithm to find a copy of qj in
� ∈ u for any minor-closed family u.

Note that a qj is necessarily well-colored in �.
⇒ If we reach � � 3 we use an R���-time algorithm to find qj in �.

Running Time:
Every level of the recurrence we perform R � � R��� work. Therefore
the total running time is R�� ⋅ ��.



Finding a Well-Colored Cycle:

Probability of Success

If � has no well-colored cycle, none of the graphs in our algorithm will
have a well-colored cycle, and the algorithm will not output a cycle.

Assume that � has a well-colored cycle q � %=%# … %�%=.

The probability that we guessed both the direction and the index of
%�M=%� correctly is at least 1/2'. In such a case the colored graph in
the next recursive call will have a well-colored cycle.

The probability of all recursive calls "succeeding" is at least 1/ 2' �.

	2	2	1	1 	4	4	3	3 	�	�				



Finding a Cycle:

Probability of Success

The probability of a copy of q� becoming well-colored is 2/��M=.

The probability of finding a well-colored cycle is at least 1/ 2' �.

All in all, if � has a q�, the probability of finding it is at least

1/ 2' ���M= .

Running the algorithm 2' ���M= times give a probability of
failure at most 1/2.

		 				

	2	2	1	1 	4	4	3	3 	�	�				



Finding Cycles in Minor-Closed 

Families: Algorithm

Algorithm:

1. Repeat 2' ���M= times:
1. Choose a random coloring S: � → f�E.
2. Search for well-colored q� in �. If found, output and halt.

Running Time:

2' ���M= iterations of R����-time algorithm. Total: R� 2'� � ⋅ ��.



Cycles in Minor-Closed Families

Derandomization

Given a coloring of � with some copy of q� well-colored, we can
derandomize the randomness due to our "guesses" of direction of
edge �%�M=, %�� and index.
This increases the running time of finding a well-colored copy of q�
by a factor of �2'��, as in every one of the � levels of the recursion
we consider all 2' options.

The randomness due to our choice of a random coloring can be

replaced by exhausting a list of �s � log � colorings for which every
sequence %=, %#, … , %� ∈ � is consecutively colored by 1,2, … , �.

All in all this yields a 2'� ��s � � log �	time deterministic 
algorithm for finding cycles of length � in a graph � ∈ u.



Summary

• Finding Paths/Cycles of Length �
• Random Orientations

• Random Colorings

• Derandomization

• Approximately Counting Paths of length �
• Finding Cycles in Minor-Closed Families of Graphs



Color-Coding: A User's Guide

Given a graph �, we would like to find some induced 

subgraph of � isomorphic to some graph � of size � � �.

1. Randomly color the graph.

2. Show that Pr SW	t	WY	�	V2SWX2	"SW3W<Y03" � 1/Y���
3. Devise FPT algorithm for finding "colorful" copy of �
4. Repeat algorithm of step 3 O�Y � � times.

5. (Derandomize if necessary)



Some More Examples

• Finding (sub-)forests of size �
� Can be done in R�2s � �� time with probability of 

error at most 1/2.

� R�2s � � ⋅ log ��-time deterministic algorithm.

• Finding induced subgraphs of size � and treewidth O
� Can be done in R�2s � �*>=� time with probability 

of error at most 1/2.

� R�2s � �*>= ⋅ log ��-time deterministic algorithm. 



Questions?



Thank You.
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