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IMPROVED APPROXIMATION ALGORITHMS
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Abstract. We develop the algorithmic theory of vertex separators and its relation to the embed-
dings of certain metric spaces. Unlike in the edge case, we show that embeddings into L1 (and even
Euclidean embeddings) are insufficient but that the additional structure provided by many embed-
ding theorems does suffice for our purposes. We obtain an O(

√
logn) approximation for minimum

ratio vertex cuts in general graphs, based on a new semidefinite relaxation of the problem, and a tight
analysis of the integrality gap which is shown to be Θ(

√
logn). We also prove an optimal O(log k)-

approximate max-flow/min-vertex-cut theorem for arbitrary vertex-capacitated multicommodity flow
instances on k terminals. For uniform instances on any excluded-minor family of graphs, we improve
this to O(1), and this yields a constant-factor approximation for minimum ratio vertex cuts in such
graphs. Previously, this was known only for planar graphs, and for general excluded-minor families
the best known ratio was O(logn). These results have a number of applications. We exhibit an
O(

√
logn) pseudoapproximation for finding balanced vertex separators in general graphs. In fact,

we achieve an approximation ratio of O(
√

log opt), where opt is the size of an optimal separator,
improving over the previous best bound of O(log opt). Likewise, we obtain improved approximation
ratios for treewidth: in any graph of treewidth k, we show how to find a tree decomposition of width
at most O(k

√
log k), whereas previous algorithms yielded O(k log k). For graphs excluding a fixed

graph as a minor (which includes, e.g., bounded genus graphs), we give a constant-factor approxima-
tion for the treewidth. This in turn can be used to obtain polynomial-time approximation schemes
for several problems in such graphs.
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1. Introduction. Given a graph G = (V,E), one is often interested in finding a
small “separator” whose removal from the graph leaves two sets of vertices of roughly
equal size (say, of size at most 2|V |/3) with no edges connecting these two sets.
The separator itself may be a set of edges, in which case it is called a balanced edge
separator, or a set of vertices, in which case it is called a balanced vertex separator.
In the present work, we focus on vertex separators.

Balanced separators of small size are important in several contexts. They are
often the bottlenecks in communication networks (when the graph represents such a
network) and can be used in order to provide lower bounds on communication tasks
(see, e.g., [37, 35, 9]). Perhaps more importantly, finding balanced separators of small
size is a major primitive for many graph algorithms and, in particular, for those that
are based on the divide and conquer paradigm [39, 9, 36].
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630 U. FEIGE, M. HAJIAGHAYI, AND J. R. LEE

Certain families of graphs always have small vertex separators. For example,
trees always have a vertex separator containing a single vertex. The well-known
planar separator theorem of Lipton and Tarjan [39] shows that every n-vertex planar
graph has a balanced vertex separator of size O(

√
n) and, moreover, that such a

separator can be found in polynomial time. This was later extended to show that
more general families of graphs (any family of graphs that excludes some minor) have
small separators [25, 2]. However, there are families of graphs (for example, expander
graphs) in which the smallest separator is of size Ω(n).

Finding the smallest separator is an NP-hard problem (see, e.g., [15]). In the
current paper, we study approximation algorithms that find vertex separators whose
sizes are not much larger than the optimal separator of the input graph. These
algorithms can be useful in detecting small separators in graphs that happen to have
small separators, as well as in demonstrating that an input graph does not have any
small vertex separator (and hence, for example, does not have serious bottlenecks for
routing).

Much of the previous work on approximating vertex separators piggy-backed on
work for approximating edge separators. For graphs of bounded degree, the sizes of
the minimum edge and vertex separators are the same up to a constant multiplica-
tive factor, leading to a corresponding similarity in terms of approximation ratios.
However, for general graphs (with no bound on the degree), the situation is different.
For example, every edge separator for the star graph has Ω(n) edges, whereas the
minimum vertex separator has just one vertex. One can show that approximating
vertex separators is at least as hard as approximating edge separators (see [15]). As
to the reverse direction, it is known only that approximating vertex separators is at
least as easy as approximating edge separators in directed graphs (a notion that will
not be discussed in this paper).

The previous best approximation ratio for vertex separators is based on the work
of Leighton and Rao [36]. They presented an algorithm based on linear programming
that approximates the minimum edge separator within a ratio of O(log n). They ob-
served that their algorithm can be extended to work on directed graphs and hence
gives an approximation ratio of O(log n) also for vertex separators, using the algo-
rithm for (directed) edge separators as a black box. More recently, Arora, Rao, and
Vazirani [7] presented an algorithm based on semidefinite programming that approx-
imates the minimum edge separator within a ratio of O(

√
log n). Their remarkable

techniques, which are a principal component in our algorithm for vertex separators,
are discussed more in the following section.

In the present work, we formulate new linear and semidefinite program (SDP)
relaxations for the vertex separator problem and then develop rounding algorithms
for these programs. The rounding algorithms are based on techniques that were
developed in the context of edge separators, but we exploit new properties of these
techniques and adapt and enhance them to the case of vertex separators. Using this
approach, we improve the best approximation ratio for vertex separators to O(

√
log n).

In fact, we obtain an O(
√

log opt) approximation, where opt is the size of an optimal
separator. (An O(log opt) approximation can be derived from the techniques of [36].)
In addition, we derive and extend some previously known results in a unified way,
such as a constant factor approximation for vertex separators in planar graphs (a
result originally proved in [5]), which we extend to any family of graphs excluding a
fixed minor.

Before delving into more details, let us mention two aspects in which edge and
vertex separators differ. One is the notion of a minimum ratio cut, which is an
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important notion used in our analysis. For edge cuts, all “natural” definitions of such
a notion are essentially equivalent. For vertex separators, this is not the case. One
consequence of this is that our algorithms provide a good approximation for vertex
expansion in bounded degree graphs but not in general graphs. This issue will be
discussed in section 2. Another aspect where there is a distinction between edge
and vertex separators is that of the role of embeddings into L1 (a term that will be
discussed later). For edge separators, if the linear program or SDP relaxations happen
to provide such an embedding (i.e., if the solution is an L1 metric), then they in fact
yield an optimal edge separator. For vertex separators, embeddings into L1 seem to
be insufficient, and we give a number of examples that demonstrate this deficiency.
Our rounding techniques for the vertex separator case are based on embeddings with
small average distortion into a line, a concept that was first systematically studied by
Rabinovich [41].

As mentioned above, finding small vertex separators is a basic primitive that is
used in many graph algorithms. Consequently, our improved approximation algo-
rithm for minimum vertex separators can be plugged into many of these algorithms,
improving either the quality of the solution that they produce or their running time.
Rather than attempting to provide in this paper a survey of all potential applications,
we shall present one major application, that of improving the approximation ratio for
treewidth, and discuss some of its consequences.

1.1. Some related work. An important concept that we shall use is the ratio
of a vertex separator (A,B, S). Given a weight function π : V → R+ on vertices and
a set S ⊆ V which separates G into two disconnected pieces A and B, we can define
the sparsity of the separator by

π(S)

min{π(A), π(B)} + π(S)
.

Indeed, most of our effort will focus on finding separators (A,B, S) for which the
sparsity is close to minimal among all vertex separators in G.

In the case of edge separators, there are intimate connections between approxi-
mation algorithms for minimum ratio cuts and the theory of metric embeddings. In
particular, Linial, London, and Rabinovich [38] and Aumann and Rabani [8] show
that one can use L1 embeddings to round the solution to a linear relaxation of the
problem. For the case of vertex cuts, we will show that L1 embeddings (and even
Euclidean embeddings) are insufficient but that the additional structure provided by
many embedding theorems does suffice. This structure corresponds to the fact that
many embeddings are of Fréchet type; i.e., their basic component takes a metric space
X and a subset A ⊆ X and maps every point x ∈ X to its distance to A. This
includes, for instance, the classical theorem of Bourgain [14].

The seminal work of Leighton and Rao [36] showed that, in both the edge and
vertex cases, one can achieve an O(log n) approximation algorithm for minimum ratio
cuts, based on a linear relaxation of the problem. Their solution also yields the first
approximate max-flow/min-cut theorems in a model with uniform demands. The
papers [38, 8] extend their techniques for the edge case to nonuniform demands. Their
main tool is Bourgain’s theorem [14], which states that every n-point metric space
embeds into L1 with O(log n) distortion.

Recently, Arora, Rao, and Vazirani [7] exhibited an O(
√

log n) approximation for
finding minimum ratio edge cuts, based on a known semidefinite relaxation of the
problem, and a fundamentally new technique for exploiting the global structure of
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the solution. This approach, combined with the embedding technique of Krauthgamer
et al. [32], has been extended further to obtain approximation algorithms for mini-
mum ratio edge cuts with nonuniform demands. In particular, using [7, 32] and the
quantitative improvements of Lee [34], Chawla, Gupta, and Räcke [17] exhibit an
O(log n)3/4 approximation. More recently, Arora, Lee, and Naor [6] have improved
this bound almost to that of the uniform case, yielding an approximation ratio of
O(

√
log n log log n).

On the other hand, progress on the vertex case has been significantly slower. In
the sections that follow, we attempt to close this gap by providing new techniques for
finding approximately optimal vertex separators.

Since the initial (conference) publication of this manuscript, we have learned of
two other papers which contain some independently discovered, overlapping results.
All three papers first appeared in STOC 2005. In particular, the work of Agarwal
et. al. [1] gives an O(

√
log n)-approximation for a directed version of the Sparsest

Cut problem which implies a similar result for vertex cuts by a well-known reduction
(see, e.g., [36]). Their algorithm is also based on rounding an SDP (though they use
a different relaxation). Second, the paper of Chekuri, Khanna, and Shepherd [18]
shows that the max-multicommodity-flow/min-vertex-cut gap for product demands
in planar graphs is bounded by a universal constant. As discussed later, we prove this
theorem not only for planar graphs but also for any excluded-minor family of graphs.

1.2. Results and techniques. In section 2, we introduce a new semidefinite
relaxation for the problem of finding minimum ratio vertex cuts in a general graph.
In preparation for applying the techniques of [7], the relaxation includes so-called
triangle inequality constraints on the variables. The program contains strictly more
than one variable per vertex of the graph, but the SDP is constructed carefully to lead
to a single metric of negative type1 on the vertices that contains all the information
necessary to perform the rounding.

In section 3, we exhibit a general technique for rounding the solution to opti-
mization problems involving “fractional” vertex cuts. These are based on the ability
to find line embeddings with small average distortion, as defined by Rabinovich [41]
(though we extend his definition to allow for arbitrary weights in the average). In [41],
it is proved that one can obtain line embeddings with constant average distortion for
metrics supported on planar graphs. This is observed only as an interesting structural
fact, without additional algorithmic consequences over the known average distortion
embeddings into all of L1 [42, 31]. For the vertex case, we will see that this additional
structure is crucial.

Using the seminal results of [7], which can be viewed as a line embedding (see
section A.2), we then show that the solution of the semidefinite relaxation can be
rounded to a vertex separator whose ratio is within O(

√
log n) of the optimal sep-

arator. For the SDP used in [7] for approximating minimum ratio edge cuts, only
a constant lower bound is known for the integrality gap. Recent work of Khot and
Vishnoi [30] shows that in the nonuniform demand case, the integrality gap must tend
to infinity with the size of the instance. In contrast, we show that our analysis is tight
by exhibiting an Ω(

√
log n) integrality gap for the SDP in section 5. Interestingly, this

gap is achieved by an L1 metric. This shows that L1 metrics are not as intimately
connected to vertex cuts as they are to edge cuts and that the use of the structural

1A metric space (X, d) is said to be of negative type if d(x, y) = ||f(x) − f(y)||2 for some map
f : X → L2.
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theorems discussed in the previous paragraph is crucial to obtaining an improved
bound.

We exhibit an O(log k)-approximate max-flow/min-vertex-cut theorem for general
instances with k commodities. The best previous bound of O(log3 k) is due to [22]
(they actually show this bound for directed instances with symmetric demands, but
this implies the vertex case). The result is proved in section 4. A well-known reduction
shows that this theorem implies the edge version of [38, 8] as a special case. Again,
our rounding makes use of the general tools developed in section 3 based on average-
distortion line embeddings. In sections 4.2 and 4.4, we show that any approach based
on low-distortion L1 embeddings and Euclidean embeddings, respectively, must fail
since the integrality gap can be very large even for spaces admitting such embeddings.
Using the improved line embeddings for metrics on graphs which exclude a fixed
minor [41] (based on [31] and [42]), we also achieve a constant-factor approximation
for finding minimum ratio vertex cuts in these families. This answers an open problem
asked in [19].

By improving the approximation ratios for balanced vertex separators in general
graphs and graphs excluding a fixed minor, we improve the approximation factors for
a number of problems relating to graph-theoretic decompositions such as treewidth,
branchwidth, and pathwidth. For instance, we show that in any graph of treewidth k,
we can find a tree decomposition of width at most O(k

√
log k). This improves upon

the O(log n)-approximation of Bodlaender et al. [11] and the O(log k)-approximation
algorithm of Amir [4]. A result of Seymour and Thomas [44] shows that a decompo-
sition of width 1.5k can be found efficiently in planar graphs. We offer a significant
generalization by giving an algorithm that finds a decomposition of width O(k) when-
ever the input graph excludes a fixed minor. See section 6.3 and Theorem 6.4 and
Corollary 6.5 for a discussion of these problems, along with salient definitions, and a
list of the problems to which our techniques apply.

Improving the approximation factor for treewidth in general graphs and graphs
excluding a fixed minor to O(

√
log n) and O(1), respectively, answers an open problem

of [19] and leads to an improvement in the running time of approximation schemes and
subexponential fixed parameter algorithms for several NP-hard problems on graphs
excluding a fixed minor. For instance, we obtain the first polynomial-time approxima-
tion schemes (PTASs) for problems like minimum feedback vertex set and connected
dominating set in such graphs (see Theorem 6.6 for more details). Finally, our tech-
niques yield an O(g)-approximation algorithm for the vertex separator problem in
graphs of genus at most g. It is known that such graphs have balanced separators of
size O(

√
gn) [25] and that these separators can be found efficiently [28] (earlier, [3] gave

a more general algorithm which, in particular, finds separators of size O(
√

g3/2n)).

Our approximation algorithms thus find separators of size O(
√
g3n), but when the

graph at hand has a smaller separator, our algorithms perform much better than the
worst-case bounds of [25, 3, 28].

2. A vector program for minimum ratio vertex cuts. Let G = (V,E) be a
graph with nonnegative vertex weights π : V → [1,∞). For a subset U ⊆ V , we write
π(U) =

∑
u∈U π(u). A vertex separator partitions the graph into three parts, S (the

set of vertices in the separator), A, and B (the two parts that are separated). We
use the convention that π(A) ≥ π(B). We are interested in finding separators that
minimize the ratio of the “cost” of the separator to its “benefit.” Here, the cost of a
separator is simply π(S). As to the benefit of a separator, it turns out that there is
more than one natural way in which one can define it. The distinction between the
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various definitions is relatively unimportant whenever π(S) ≤ π(B), but it becomes
significant when π(S) > π(B). We elaborate on this below.

In analogy to the case of edge separators, one may wish to take the benefit to be
π(B). Then we would like to find a separator that minimizes the ratio π(S)/π(B).
However, there is evidence that no polynomial-time algorithm can achieve an ap-
proximation ratio of O(|V |δ) for this problem (for some δ > 0). See section A.1 for
details.

For the use of separators in divide and conquer algorithms, the benefit is in the
reduction in size of the parts that remain. This reduction is π(B) + π(S) rather than
just π(B), and the quality of a separator is defined to be

π(S)

π(B) + π(S)
.

This definition is used in the introduction to our paper and in some other earlier work
(e.g., [5]).

As a matter of convenience, we use a slightly different definition. We shall define
the sparsity of a separator to be

απ(A,B, S) =
π(S)

π(A ∪ S) · π(B ∪ S)
.

Under our convention that π(A) ≥ π(B), we have that π(V )/2 ≤ π(A∪S) ≤ π(V ),
and the two definitions differ by a factor of Θ(π(V )).

We define απ(G) to be the minimum over all vertex separators (A,B, S)
of απ(A,B, S). The problem of computing απ(G) is NP-hard (see [15]). Our goal is
to give algorithms for finding separators (A,B, S) for which απ(A,B, S) ≤
O(

√
log k)απ(G), where k = |supp(π)| is the number of vertices with nonzero weight

in G.
Let us pause for a moment to discuss an aspect of approximation algorithms for

απ(G) that is often overlooked. The optimal solution minimizing απ(A,B, S) is in-
deed a nontrivial separator in the sense that both A and B are nonempty (unless
the underlying graph G is a clique). However, when π(S) is large relative to π(B)
in the optimal separator, sets S′, B′ that only approximately minimize απ(A′, B′, S′)
might correspond to trivial separators in the sense that B′ is empty. Hence approx-
imation algorithms for απ(G) might return trivial separators rather than nontrivial
ones. Whenever this happens, we assume as a convention that the algorithm instead
returns a minimum weight vertex cut in G. These cuts are nontrivial and can be
found in polynomial time (see section 3 for example), and the corresponding value
of απ(A,B, S) is not larger than that for any trivial separator. (In fact, for trivial
separators απ(A,B, S) = 1/π(V ), whereas for every nontrivial separator, whether
optimal or not, one always has απ(A,B, S) ≤ 1/π(V ).)

Before we move on to the main algorithm, let us define

α̃π(A,B, S) = π(S)/[π(A) · π(B ∪ S)].

Note that απ(A,B, S) and α̃π(A,B, S) are equivalent up to a factor of 2 whenever
π(A) ≥ π(S). Hence in this case it will suffice to find a separator (A,B, S) with
απ(A,B, S) ≤ O(

√
log k) α̃π(G). Allowing ourselves to compare απ(A,B, S) to α̃π(G)

rather than απ(G) eases the formulation of the semidefinite relaxations that follow.
When π(S) > π(A), α̃ no longer provides a good approximation to α. However,
in this case π(S) > π(B), and returning a minimum weight vertex cut provides a
constant-factor approximation to απ(G).
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2.1. The quadratic program. We present a quadratic program for the problem
of finding minimum ratio vertex cuts. All constraints in this program involve only
terms that are quadratic (products of two variables). Our goal is for the value of
the quadratic program to be equal to α̃π(G). Let G = (V,E) be a vertex-weighted
graph, and let (A∗, B∗, S∗) be an optimal separator according to α̃π(·), i.e., such that
α̃π(G) = α̃π(A∗, B∗, S∗).

With every vertex i ∈ V , we associate three indicator 0/1 variables, xi, yi, and
si. It is our intention that for every vertex exactly one indicator variable will have
the value 1 and that the other two will have value 0. Specifically, xi = 1 if i ∈ A∗,
yi = 1 if i ∈ B∗, and si = 1 if i ∈ S∗. To enforce this, we formulate the following two
sets of constraints.

Exclusion constraints. These force at least two of the indicator variables to be 0:

xi · yi = 0, xi · si = 0, yi · si = 0 for every i ∈ V.

Choice constraints. These force the nonzero indicator variable to have value 1:

x2
i + y2

i + s2
i = 1 for all i ∈ V.

The combination of exclusion and choice constraints implies the following inte-
grality constraints, which we formulate here for completeness, even though they are
not explicitly included as part of the quadratic program: x2

i ∈ {0, 1}, y2
i ∈ {0, 1},

s2
i ∈ {0, 1} for all i ∈ V .

Edge constraints. This set of 2 |E| constraints expresses the fact that there are
no edges connecting A and B:

xi · yj = 0 and xj · yi = 0 for all (i, j) ∈ E.

Now we wish to express the fact that we are minimizing α̃π(A,B, S) over all
vertex separators (A,B, S). To simplify our presentation, it will be convenient to
assume that we know the value K = π(A∗) · π(B∗ ∪ S∗). We can make such an
assumption because the value of K can be guessed (since eventually we will need only
to know K within a factor of 2, say, there are only O(log π(V )) different values to try).
Alternatively, the assumption can be dropped at the expense of a more complicated
relaxation.

Spreading constraint. The following constraint expresses our guess for the value
of K:

1
2

∑
i,j∈V

π(i)π(j)(xi − xj)
2 ≥ K.

Notice that (xi − xj)
2 = 1 if and only if {xi, xj} = {0, 1}.

The objective function. Finally, we write the objective we are trying to minimize:

minimize
1

K

∑
i∈V

π(i)s2
i .

The above quadratic program computes exactly the value of α̃π(G) and hence is
NP-hard to solve.
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2.2. The vector relaxation. We relax the quadratic program of section 2.1 to
a “vector” program that can be solved up to arbitrary precision in polynomial time.
The relaxation involves two aspects.

Interpretation of variables. All variables are allowed to be arbitrary vectors
in R

d, rather than in R. The dimension d is not constrained and might be as large as
the number of variables (i.e., 3n).

Interpretation of products. The original quadratic program involved products
over pairs of variables. Every such product is interpreted as an inner product between
the respective vector variables. The exclusion constraints merely force vectors to be
orthogonal (rather than forcing one of them to be 0), and the integrality constraints
are no longer implied by the exclusion and choice constraints. The choice constraints
imply (among other things) that no vector has norm greater than 1, and the edge
constraints imply that whenever (i, j) ∈ E, the corresponding vectors xi and yj are
orthogonal.

2.3. Adding valid constraints. We now strengthen the vector program by
adding more valid constraints. This should be done in a way that will not violate
feasibility (in cases where the original quadratic program was feasible) and, moreover,
that preserves polynomial-time solvability (up to arbitrary precision) of the resulting
vector program. It is known that this last condition is satisfied if we add only con-
straints that are linear over inner products of pairs of vectors, and this is indeed what
we shall do. The reader is encouraged to check that every constraint that we add is
indeed satisfied by feasible 0/1 solutions to the original quadratic program.

The 1-vector. We add the additional variable v to the vector program. It is our
intention that variables whose value is 1 in the quadratic program will have value
equal to that of v in the vector program. Hence v is a unit vector, and we add the
constraint v2 = 1.

Sphere constraints. For every vector variable z we add the constraint z2 = v · z.
Geometrically, this forces all vectors to lie on the surface of a sphere of radius 1

2
centered at v

2 because the constraint is equivalent to (z − v
2 )2 = 1

4 .

Triangle constraints. For every three variables z1, z2, z3 we add the constraint

(z1 − z2)
2 + (z2 − z3)

2 ≥ (z1 − z3)
2.

This implies that every three variables (which are points on the sphere S( v2 ,
1
2 )) form

a triangle whose angles are all at most π/2. We remark that we shall eventually use
only those triangle constraints in which all three variables are x variables.

Removing the si vectors. In the upcoming sections we shall describe and
analyze a rounding procedure for our vector program. It turns out that our rounding
procedure does not use the vectors si—only the values s2

i = 1 − x2
i − y2

i . Hence we
can modify the choice constraints to

x2
i + y2

i ≤ 1

and remove all explicit mention of the si vectors, without affecting our analysis for
the rounding procedure. The full vector program follows.
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minimize 1
K

∑
i∈V π(i)(1 − x2

i − y2
i )

subject to xi, yi, v ∈ R
2n, i ∈ V,

x2
i + y2

i ≤ 1, i ∈ V,
xi · yi = 0, i ∈ V,
xi · yj = xj · yi = 0, (i, j) ∈ E,
v2 = 1,
v · xi = x2

i , v · yi = y2
i , i ∈ V,

1
2

∑
i,j∈V π(i)π(j)(xi − xj)

2 ≥ K,

(xi − xj)
2 ≤ (xi − xh)2 + (xh − xj)

2, h, i, j ∈ V.

In the following section, we will show how to use this SDP to obtain a solution which
is within an O(

√
log k) factor of the best vertex separator. In section 5, we show

that this analysis is tight, even for a family of stronger (i.e. more constrained) vector
programs.

3. Algorithmic framework for rounding. In this section, we develop a gen-
eral algorithmic framework for rounding solutions to optimization problems on vertex
cuts.

3.1. Capacities and demands. In the vector program of section 2, vertices
have weights π. These weights served two purposes. One was as a measure of cost
for the separator (we are charged π(S) in the numerator of απ). The other was
as a measure of benefit of the separator (we get credit of π(A ∪ S)π(B ∪ S) in the
denominator). Here, we shall not insist on having one weight function serving both
purposes. Instead, we allow the cost to be measured with respect to one weight
function (say, π1), and the benefit to be measured with respect to another weight
function (say, π2). It is customary to call these functions capacity and demand. Let
us provide more details.

Vertices are assumed to have nonnegative capacities {cv}v∈V ⊆ N. For simplicity
of presentation, we are assuming here that capacities are integer, but all results of
this paper can also be extended to the case of arbitrary nonnegative capacities. For
a subset S ⊆ V , we define cap(S) =

∑
v∈S cv.

In its most general form, we have a demand function ω : V × V → R+ which is
symmetric, i.e. ω(u, v) = ω(v, u). In interesting special cases, this demand function is
induced by weights π2 : V → R+ via the relation ω(u, v) = π2(u)π2(v) for all u, v ∈ V .

Given a capacity function and a demand function, we define the sparsity of
(A,B, S) by

αcap,ω(A,B, S) =
cap(S)∑

u∈A∪S

∑
v∈B∪S ω(u, v)

.

We define the sparsity of G by αcap,ω(G) = min{αcap,ω(A,B, S)} where the minimum
is taken over all vertex separators. Note that απ(A,B, S) = αcap,ω(A,B, S) when
cv = π(v) and ω(u, v) = π(u)π(v) for all u, v ∈ V .

3.2. Line embeddings and distortion. A key feature of the vector program is
that its solution is a set of vectors in high dimensional Euclidean space R

2n. Moreover,
the triangle constraints imply that for the xi vectors, the square of their Euclidean
distance also forms a metric. Technically, such a metric is said to be of negative type.
Our rounding framework is based on properties of metric spaces.
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Let (X, d) be a metric space. A map f : X → R is called 1-Lipschitz if, for all
x, y ∈ X,

|f(x) − f(y)| ≤ d(x, y).

Given a 1-Lipschitz map f and a demand function ω : X × X → R+, we define its
average distortion under ω by

avdω(f) =

∑
x,y∈X ω(x, y) · d(x, y)∑

x,y∈X ω(x, y) · |f(x) − f(y)| .

We say that a weight function ω is a product weight if it can be written as
ω(x, y) = π(x)π(y) for all x, y ∈ X, for some π : X → R+. We now state three
theorems which give line embeddings of small average distortion in various settings.
The proofs of these theorems are sketched in section A.2.

Theorem 3.1 (Bourgain [14]). If (X, d) is an n-point metric space, then for
every weight function ω : X × X → R+, there exists an efficiently computable 1-
Lipschitz map f : X → R with avdω(f) = O(log n).

Theorem 3.2 (Rabinovich [41]). If (X, d) is any metric space supported on a
graph which excludes a Kr-minor, then for every product weight ω0 : X ×X → R+,
there exists an efficiently computable 1-Lipschitz map f : X → R with avdω0

(f) =
O(r2).

Theorem 3.3 (Arora, Rao, and Vazirani [7]). If (X, d) is an n-point metric
of negative type, then for every product weight ω0 : X × X → R+, there exists an
efficiently computable 1-Lipschitz map f : X → R with avdω0(f) = O(

√
log n).

We also recall the following classical result.
Lemma 3.4. Let (Y, d) be any metric space and X ⊆ Y . Given a 1-Lipschitz

map f : X → R, there exists a 1-Lipschitz extension f̃ : Y → R, i.e., such that
f̃(x) = f(x) for all x ∈ X.

Proof. One defines

f̃(y) = sup
x∈X

[f(x) − d(x, y)]

for all y ∈ Y .

3.3. Menger’s theorem. The following classical theorem is an important in-
gredient in our rounding framework.

Theorem 3.5 (Menger’s theorem). A graph G = (V,E) contains at least k
vertex-disjoint paths between two nonadjacent vertices u, v ∈ V if and only if every
vertex cut that separates u from v has size at least k.

It is well known that a smallest vertex cut separating u from v can be found
in polynomial time (in the size of G) by deriving Menger’s theorem from the max-
flow/min-cut theorem (see, e.g., [45]).

Suppose that, in addition to a graph G = (V,E), we have a set of nonnegative
vertex capacities {cv}v∈V ⊆ N. (For simplicity, we are assuming here that capacities
are integers.) For a subset S ⊆ V , we define cap(S) =

∑
v∈S cv. We have the following

immediate corollary.
Corollary 3.6. Let G = (V,E) be a graph with vertex capacities. Then for any

two nonadjacent vertices u, v ∈ V , the following two statements are equivalent:
1. Every vertex cut S ⊆ V that separates u from v has cap(S) ≥ k.
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2. There exist u-v paths p1, p2, . . . , pk ⊆ V such that for every w ∈ V ,

#{1 ≤ i ≤ k : w ∈ pi} ≤ cw.

Furthermore, a vertex cut S of minimal capacity can be found in polynomial time.
Proof. The proof is by a simple reduction. From G = (V,E) and the capaci-

ties {cv}v∈V , we create a new uncapacitated instance G′ = (V ′, E′) and then apply
Menger’s theorem to G′.

To arrive at G′, we replace every vertex v ∈ V with a collection of representatives
v1, v2, . . . , vcv (if cv = 0, then this corresponds to deleting v from the graph). Now
for every edge (u, v) ∈ E, we add edges {(ui, vj) : 1 ≤ i ≤ cu, 1 ≤ j ≤ cv}. It is
not hard to see that every minimal vertex cut takes either all representatives of a
vertex or none, giving a one-to-one correspondence between minimal vertex cuts in
G and G′.

Furthermore, given such a capacitated instance G = (V,E), {cv}v∈V , along with
u, v ∈ V , it is possible to find, in polynomial time, a vertex cut S ⊆ V of minimal
capacity which separates u from v.

3.4. Line embeddings and vertex separators. Having presented the tools
that we shall be using (line embeddings, Menger’s theorem), we present here an
algorithmic framework based on an arbitrary line embedding f : V → R for finding a
vertex cut. Different instantiations of this algorithm may use different line embeddings
f . The analysis of this algorithm will use, among other things, Menger’s theorem.
It will also involve a certain cost function cost : V → R+ that is left unspecified
in this section. However, in later sections (e.g., section 3.5) the cost of a vertex
will be instantiated to be the contribution of the vertex to the objective function
of a relaxation of the minimum vertex separator problem (e.g., π(i)(1 − x2

i − y2
i ) in

the vector program). The key technical property of the algorithm is summarized in
Lemma 3.7, and it relates the cost (which is the value of the relaxation) to the sparsity
of the cut found by the algorithm. Hence Lemma 3.7 can be used in order to analyze
the approximation ratio of algorithms that use this algorithmic framework.

Let G = (V,E) be a graph with vertex capacities {cv}v∈V and a demand function
ω : V × V → R+. Furthermore, suppose that we have a map f : V → R. We give the
following algorithm, which computes a vertex cut (A,B, S) in G.

Algorithm FindCut(G, f)

1. Sort the vertices v ∈ V according to the value of f(v): {y1, y2, . . . , yn}.
2. For each 1 ≤ i ≤ n,
3. Create the augmented graph Gi = (V ∪ {s, t}, Ei) with

Ei = E ∪ {(s, yj), (yk, t) : 1 ≤ j ≤ i, i < k ≤ n}.
4. Find the minimum capacity s-t separator Si in Gi.
5. Let Ai ∪ {s} be the component of G[V ∪ {s, t} \ Si] containing s, and let

Bi = V \ (Ai ∪ Si).
6. Output the vertex separator (Ai, Bi, Si) for which αcap,ω(Ai, Bi, Si) is minimal.

The analysis. Suppose that we have a cost function cost : V → R+. We say
that the map f : V → R is edge-compatible with the cost function cost if, for any
(u, v) ∈ E, we have

(1) |f(u) − f(v)| ≤ cost(u) + cost(v)

2
.

We now move on to the main lemma of this section.
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Lemma 3.7 (charging lemma). Let G = (V,E) be any capacitated graph with
demand function ω : V × V → R+. Suppose additionally that we have a cost function
cost : V → R+ and an edge-compatible map f : V → R. If α0 is the sparsity of the
minimum ratio vertex cut output by FindCut(G, f), then

∑
v∈V

cv · cost(v) ≥ α0

∑
u,v∈V

ω(u, v)|f(u) − f(v)|.

Proof. Recall that we have sorted the vertices v according to the value of f(v):
{y1, y2, . . . , yn}. Let Ci = {y1, . . . , yi} and εi = f(yi+1) − f(yi). First we have the
following lemma which relates the size of the separators found to the average distance
under f , according to ω.

Lemma 3.8.

n−1∑
i=1

εi cap(Si) ≥ α0

∑
u,v∈V

ω(u, v)|f(u) − f(v)|.

Proof. Using the fact that α0 is the minimum sparsity of all cuts found by
FindCut(G, f),

cap(Si) ≥ α0

∑
u∈Ai∪Si

∑
v∈Bi∪Si

ω(u, v)

≥ α0

∑
u∈Ci

∑
v∈V \Ci

ω(u, v).

Note that the second inequality follows from the fact in FindCut(G, f) that since Ci

contains Ai and V \Ci contains Bi, Ai ∪ Si contains Ci and Bi ∪ Si contains V \Ci.
Multiplying both sides of the previous inequality by εi and summing over i ∈

{1, 2, . . . , n− 1} prove the lemma.
Now we come to the heart of the charging argument which relates the cost function

to the capacity of the cuts occurring in the algorithm.
Lemma 3.9 (charging against balls).

∑
v∈V

cv · cost(v) ≥
n−1∑
i=1

εi cap(Si).

Proof. We first present an interpretation of the quantity
∑n−1

i=1 εi cap(Si). Con-
sider a nonnegative function g defined on the line segment [f(y1), f(yn)] whose value
at point z is defined as g(z) = cap(Si), where i is the unique value such that z is in

the half open interval [f(yi), f(yi+1)). Then
∑n−1

i=1 εi cap(Si) is precisely
∫

R
g.

Now, for every v, we present an interpretation of cv · cost(v). Consider a nonneg-
ative function gv whose value is cv on the interval [f(v) − 1

2cost(v), f(v) + 1
2cost(v)]

and 0 elsewhere. Then cv · cost(v) is precisely
∫

R
gv. We shall refer to the support of

gv as the ball of v (as it is a ball centered at f(v) of radius 1
2cost(v)).

Lemma 3.9 can now be rephrased as
∫

R

g(z) dz ≤
∑
v

∫
R

gv(z) dz.

We shall prove this inequality pointwise.
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Consider an arbitrary point z, belonging to an arbitrary interval [f(yi), f(yi+1)).
Since Si is a minimum capacity s-t separator, applying Menger’s theorem yields a
family of s-t paths p1, . . . , pm (where m = cap(Si)) which use no vertex v ∈ V more
than cv times. We view each of these paths as contributing 1 to the value of g(z), and
hence fully accounting for the value g(z) = cap(Si). We now consider the contribution
of these paths to the functions gv.

Consider an arbitrary such path pj . Since it crosses from Ci to V \ Ci, there
must exist two consecutive vertices along the path (say, u and v) such that u ∈ Ci

and v ∈ V \ Ci. The fact that f is edge-compatible with cost implies that the
union of the balls of u and v covers the interval [f(u), f(v)] that includes the interval
[f(yi), f(yi+1)). Hence z is in at least one of these two balls (say, the ball of v), and
then we have pj contribute one unit to gv(z). Note that the total contribution of the
m disjoint paths to gv(z) can be at most cv, because v can occur in at most cv of
these paths.

In summary, based on the disjoint paths, we provided a charging mechanism that
accounts for all of g(z), and charges at least as much to

∑
v gv(z) without exceeding

the respective values cv. This completes the proof of Lemma 3.9.
Combining Lemmas 3.8 and 3.9 finishes the proof of Lemma 3.7.

3.5. Analysis of the vector program. We now continue our analysis of the
vector program from section 2.3. Recall that π(i)(1 − x2

i − y2
i ) is the contribution of

vertex i to the objective function. For every i ∈ V , define cost(i) = 4(1 − x2
i − y2

i ).
We will consider the metric space (V, d) given by d(i, j) = (xi − xj)

2 (note that this
is a metric space precisely because every valid solution to the SDP must satisfy the
triangle inequality constraints). The following key proposition allows us to apply the
techniques of sections 3.4 and 3.2 to the solution of the vector program.

Proposition 3.10. For every edge (i, j) ∈ E, (xi − xj)
2 ≤ cost(i)+cost(j)

2 .
Proof. Since (i, j) ∈ E, we have xi · yj = xj · yi = 0, and recall that xi · yi =

xj · yj = 0. It follows that

(xi − xj)
2 ≤ 2[(xi + yi − v)2 + (xj + yi − v)2] ≤ 2[(1 − x2

i − y2
i ) + (1 − x2

j − y2
i )].

Note that the first inequality above follows from the fact that (xi−xj)
2 = ((xi + yi−

v)− (xj +yi−v))2 and the inequality (x−y)2 ≤ 2(x2 +y2). Substitute x = xi +yi−v
and y = xj +yi−v. Then the second inequality follows from the constraints vxi = x2

i

and vyi = y2
i .

Putting yj instead of yi in the above equation gives (xi−xj)
2 ≤ 2[(1−x2

i − y2
j )+

(1 − x2
j − y2

j )]. Summing these two inequalities yields

(2) 2(xi − xj)
2 ≤ 4[(1 − x2

i − y2
i ) + (1 − x2

j − y2
j )] = cost(i) + cost(j).

Now, let U = supp(π) = {i ∈ V : π(i) 
= 0}, and put k = |U |. Finally, let
f : (U, d) → R be any 1-Lipschitz map, and let f̃ : V → R be the 1-Lipschitz
extension guaranteed by Lemma 3.4.

Then for any edge (u, v) ∈ E, we have

|f̃(u) − f̃(v)| ≤ d(u, v) = (xu − xv)
2 ≤ cost(u) + cost(v)

2
,

where the final inequality is from Proposition 3.10. We conclude that f̃ is path-
compatible with cost.
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Defining a product demand by ω(i, j) = π(i)π(j) for every i, j ∈ V and capacities
ci = π(i), we now apply FindCut(G, f̃). If the best separator found has sparsity α0,
then by Lemma 3.7,

1

K

∑
i∈V

π(i)(1 − x2
i − y2

i ) =
1

4K

∑
i∈V

ci · cost(i) ≥ α0

4K

∑
i,j∈V

ω(i, j) · |f̃(i) − f̃(j)|

=
α0

4K

∑
i,j∈U

ω(i, j) · |f(i) − f(j)|

≥ α0

2
·
∑

i,j∈U ω(i, j) · |f(i) − f(j)|∑
i,j∈U ω(i, j) · d(i, j)

=
α0

2 · avdω(f)
.

It follows that α̃π(G) ≥ α0/(2 · avdω(f)). Since the metric (V, d) is of negative
type and ω(·, ·) is a product weight, we can achieve avdω(f) = O(

√
log k) using The-

orem 3.3. Using this f , it follows that FindCut(G, f̃) returns a separator (A,B, S)
such that απ(A,B, S) ≤ O(

√
log k) α̃π(G), completing the analysis.

Theorem 3.11. Given a graph G = (V,E) and vertex weights π : V → R+, there
exists a polynomial-time algorithm which computes a vertex separator (A,B, S) for
which

απ(A,B, S) ≤ O(
√

log k)απ(G),

where k = |supp(π)|.
In the next section, we extend this theorem to more general weights. This is

necessary for some of the applications in section 6.3.

3.6. More general weights. An important generalization of the minimum ratio
vertex cut introduced in section 2 is when a pair of weight functions π1, π2 : V → R+

is given and one wants to find the vertex separator (A,B, S) which minimizes

απ1,π2
(A,B, S) =

π1(S)

π2(A ∪ S) · π2(B ∪ S)
,

where, as a convention, π2(B) ≤ π2(A). We let απ1,π2
(G) denote the minimum value

of απ1,π2(A,B, S) in graph G. Under a common interpretation, π1 denotes vertex
capacities, π2 induces a demand (one needs to route π2(u)π2(v) units of flow between
vertices u and v), and then the value of απ1,π2(G) serves as an upper bound on the
fraction of demand that can be routed subject to the capacity constraints on the
vertices.

In analogy to the discussion in section 2, call a separator trivial if π2(B) = 0 (and,
in particular, when B is empty). Unlike the case in section 2, when π1 differs from π2

it may happen that απ1,π2(G) is obtained by a trivial separator. Hence in the current
section, algorithms that minimize (or approximately minimize) απ1,π2

(A,B, S) are
allowed to return a trivial separator.

We now explain how our approximation algorithm can be extended to give an
O(

√
log k) approximation for απ1,π2(G), where here k = |supp(π2)|.
Let

α̃π1,π2(A,B, S) = π1(S)/[π2(A) · π2(B ∪ S)],
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where π2(A) ≥ π2(B). Also define απ1,π2
(G) and α̃π1,π2

(G) as before. By changing the
vector program so that K is defined in terms of π2 and the objective is to minimize
1
K

∑
i∈V π1(i)(1 − x2

i − y2
i ), it becomes a relaxation for α̃π1,π2(G). The rounding

analysis goes through unchanged to yield a separator (A,B, S) with

απ1,π2
(A,B, S) ≤ O(

√
log k) α̃π1,π2

(G).

One difficulty still remains. It may happen that for the optimal separator (A∗, B∗,
S∗), π2(S

∗) ≥ π2(A
∗), and then the values απ1,π2(A

∗, B∗, S∗) and α̃π1,π2(A
∗, B∗, S∗),

are not within a factor of 2 of each other. In this case we show how to output
a (possibly trivial) separator that approximates απ1,π2(G) within constant factors.
Observe that in this case

π1(S
∗)

π2(S∗)2
≤ 4απ1,π2

(G).

Hence it suffices to find an approximation for a different problem, that of finding a
subset S ⊆ V which minimizes the ratio π1(S)/π2(S)2. This problem can be solved
in polynomial time; see section A.3.

Theorem 3.12. Given a graph G = (V,E) and vertex weights π1, π2 : V → R+,
there exists a polynomial-time algorithm which computes a vertex separator (A,B, S)
for which

απ1,π2(A,B, S) ≤ O(
√

log k)απ1,π2
(G),

where k = |supp(π2)|.

4. Approximate max-flow/min-vertex-cut theorems. Let G = (V,E) be
a graph with capacities {cv}v∈V on vertices and a demand function ω : V ×V → R+.
For every pair of distinct vertices u, v ∈ V , let Puv be the set of all simple u-v paths
in G. For s, t ∈ V , an s-t flow in G is a mapping F : Pst → R+ where for p ∈ Pst,
F (p) represents the amount of flow sent from s to t along path p.

For any simple path p in G, let p0 and p1 denote the initial and final nodes of
p, respectively. By convention, we will assert that for such a flow F and for every
p ∈ Pst, the flow path p uses up 1

2F (p) of the capacity of p0 and p1 and uses up F (p)
of the capacity of all other nodes in p. Intuitively, one can think of the loss in capacity
for flowing through a vertex to be charged half for entering the vertex and half for
exiting; hence the initial and final vertices of a flow path are only charged half. This
is made formal in the linear program (LP) that follows. We remark that this choice
(as opposed to incurring a full loss of capacity in the initial and final nodes) is only
for simplicity in the dual linear program; it is easily seen that all the results in this
section hold for the other setting, with a possible loss of a factor of 2. To simplify
notation, we also define, for any p ∈ Puv and w ∈ p, the number κp(w) to be 1 if w
is an intermediate vertex of p and 1

2 if w is the initial or final vertex of p.

The maximum concurrent vertex flow of the instance (G, {cv}v∈V , ω) is the max-
imum constant ε ∈ [0, 1] such that one can simultaneously route an ε fraction of each
u-v demand ω(u, v) without violating the capacity constraints. For each p ∈ Puv, let
puv denote the amount of the u-v commodity that is sent from u to v along p. We
now write an LP that computes the maximum concurrent vertex flow:
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maximize ε

subject to
∑

p∈Puv

puv ≥ ε · ω(u, v), u, v ∈ V,

∑
u,v∈V

∑
p∈Puv :w∈p

κp(w)puv ≤ cw, w ∈ V,

puv ≥ 0, u, v ∈ V, p ∈ Puv.

We now write the dual of this LP with variables {sv}v∈V and {	uv}u,v∈V :

minimize
∑
v∈V

cvsv

subject to
∑
w∈p

κp(w)sw ≥ 	uv, p ∈ Puv, for all u, v ∈ V,

∑
u,v∈V

ω(u, v)	uv ≥ 1,

	uv ≥ 0, sv ≥ 0, u, v ∈ V.

Finally, define

dist(u, v) = min
p∈Puv

∑
w∈p

κp(w)sw.

By setting 	uv = dist(u, v), we see that the above dual LP is equivalent to the following:

minimize
∑
v∈V

cvsv

subject to
∑
u,v

ω(u, v) · dist(u, v) ≥ 1.

Remark 4.1. We remark that the distance function dist(u, v) is a metric which
can be alternatively defined as follows: For any u, v ∈ V , dist(u, v) is precisely the
(edge-weighted) shortest-path distance in G between u and v where the weight of the
edge (u, v) ∈ E is 1

2 (su + sv).

4.1. Rounding to vertex separators. Any vertex separator (A,B, S) yields
an upper bound on the maximum concurrent flow in G via the following expression:

(3)
cap(S)∑

u∈A,v∈B ω(u, v) +
∑

u,v∈S ω(u, v) + 1
2

∑
u∈S

∑
v∈A∪B ω(u, v)

.

The numerator is the capacity of the separator. Every unit of demand served between
u ∈ A and v ∈ B must consume at least one unit of capacity from S. Likewise, every
unit of demand served between u ∈ S and v ∈ S must consume at least one unit of
capacity from S. Finally, every unit of demand served between u ∈ S and v ∈ A ∪B
must consume at least half a unit of capacity from S. Hence the denominator is
a lower bound on the amount of S’s capacity burned by every unit of concurrent
flow. We observe that the quantity (3) is bounded between αcap,ω(A,B, S) and 2 ·
αcap,ω(A,B, S).
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We will write α = αcap,ω if the capacity and demands are clear from context. For
a graph G, we will write α(G) for the minimum of α(A,B, S), where this minimum is
taken over all vertex separators in G. We wish to study how tight the upper bound
of 2 · α(G) is. In order to do so, we take the dual of the maximum concurrent-flow
LP from the previous section and round it to a vertex separator. The increase in
cost incurred by the rounding provides an upper bound on the worst possible ratio
between α(G) and the maximum concurrent flow.

We note that the dual LP is a relaxation of the value 2 · α(G), since every vertex
separator (A,B, S) gives a feasible solution, where sv = 1/λ if v ∈ S and sv = 0
otherwise. In this case dist(u, v) ≥ 1/(2λ) if u ∈ A ∪ S and v ∈ B ∪ S or vice-versa,
so that setting λ =

∑
u∈A∪S,v∈B∪S ω(u, v) yields a feasible solution.

4.2. The rounding. Before presenting our approach for rounding the LP, let us
recall a typical rounding approach for the case of edge-capacitated flows. In the edge
context [38, 8], one observes that the dual LP is essentially integral when dist(·, ·) forms
an L1 metric. To round in the case when dist(·, ·) does not form an L1 metric, one uses
Bourgain’s theorem [14] to embed (V, dist) into L1 (with O(log n) distortion, which
translates to a similar loss in the approximation ratio), and then rounds the resulting
L1 metric (where rounding the L1 metric does not incur a loss in the approximation
ratio). This approach is not as effective in the case of vertex separators, because
rounding an L1 metric does incur a loss in the approximation ratio (as the example
below shows), and hence there is not much point in embedding (V, dist) into L1 and
paying the distortion factor.

The discrete cube. Let G = (V,E) be the d-dimensional discrete hypercube
{0, 1}d. We set cv = 1 for every v ∈ V , and ω(u, v) = 1 for every pair u, v ∈ V . It is
well known that α(G) = Θ(1/(2d

√
d)) [27]. On the other hand, consider the fractional

separator (i.e., dual solution) given by sv = 10· 4−d

d . Note that dist(u, v) is proportional
to the shortest-path metric on the standard cube, and hence

∑
u,v dist(u, v) ≥ 1,

yielding a feasible solution which is a factor Θ(
√
d) away from α(G). It follows that

even when (V, dist) is an L1 metric, the integrality gap of the dual LP might be as
large as Ω(

√
log n).

Rounding with line embeddings. The rounding is done as follows. Let
{sv}v∈V be an optimal solution to the dual LP, and let dist(·, ·) be the corresponding
metric on V . Suppose that the demand function ω : V × V → R+ is supported on a
set S, i.e., ω(u, v) > 0 only if u, v ∈ S, and that |S| = k. Let f : (S, dist) → R be the
map guaranteed by Theorem 3.1 with avdω(f) = O(log k), and let f̃ : (V, dist) → R

be the 1-Lipschitz extension from Lemma 3.4.
For v ∈ V , define cost(v) = sv. Then since f̃ is 1-Lipschitz, for any edge (u, v) ∈

E, we have

|f̃(u) − f̃(v)| ≤ dist(u, v) =
su + sv

2
=

cost(u) + cost(v)

2
;

hence f̃ is path-compatible with cost.
We now apply FindCut(G, f̃). If the best separator found has sparsity α0, then

by Lemma 3.7,∑
v

cvsv =
∑
v

cv · cost(v) ≥ α0

∑
u,v∈V

ω(u, v) |f̃(u) − f̃(v)|

= α0

∑
u,v∈S

ω(u, v) |f(u) − f(v)|
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≥ Ω

(
α0

log k

) ∑
u,v∈V

ω(u, v) dist(u, v) ≥ Ω

(
α0

log k

)
.

Theorem 4.1. For an arbitrary vertex-capacitated flow instance, where the de-
mand is supported on a set of size k, there is an O(log k)-approximate max-flow/min-
vertex-cut theorem. In particular, this holds if there are only k commodities.

4.3. Excluded minor families. Recall that by Remark 4.1, we can view the
metric dist arising from the LP dual as an edge-weighted metric on the graph G. A
consequence of this is that if the graph G excludes some fixed graph H as a minor,
then the metric dist is an H-excluded metric.

It follows that applying Theorem 3.2 yields a better result when G excludes
a minor and the demand function ω(u, v) is uniform on a subset of the vertices.
This special case will be needed later when we discuss treewidth and follows from
the following theorem (because product demands include as a special case demand
functions that are uniform on a subset of the vertices).

Theorem 4.2. When G is an H-minor-free graph, there is an O(|V (H)|2)-
approximate max-flow/min-vertex-cut theorem with product demands. Additionally,
there exists an O(|V (H)|2) approximation algorithm for finding minimum quotient
vertex cuts in G.

4.4. More integrality gaps for uniform demands.

Expanders. Our analysis for the integrality gap of the dual LP is tight. Just
as in the edge case, constant-degree expander graphs provide the bad example. If
G = (V,E) is such a graph, with uniform vertex capacities and uniform demands,
then α(G) = 1/Θ(n), while the dual LP has a solution of value 1/Ω(n log n) (by
setting sv = 1/Ω(n2 log n) for every v ∈ V ).

Euclidean metrics. Even if the vertex-weighted distance function returned by
the LP is equivalent to a Euclidean metric, up to a universal constant, there may

still be an integrality gap of Ω(
√

logn
log log n ). We sketch the argument here. The idea

is to take a fine enough “mesh” on a high-dimensional sphere so that the shortest-
path distance along the mesh approximates the Euclidean distance. Using standard
isoperimetric considerations on high-dimensional spheres, we are able to determine
the structure of the near-optimal vertex separators. Here we will only sketch the
proof; one may refer to [40] for a more detailed argument along these lines.

Let Sd be the d-dimensional sphere, let ε = 1/Θ(d), and let V be an ε-net on
the sphere Sd. (An ε-net in a metric space X is a subset N ⊆ X such that x, y ∈
N =⇒ d(x, y) ≥ ε, and X ⊆

⋃
x∈N B(x, ε).) Standard arguments show that n =

|V | ≤ O(d)d. Define a graph G with vertex set V and an edge between u, v ∈ V
whenever ‖u− v‖2 ≤ 10 ε. We claim the following facts without proof (see [40] for a
similar argument).

Claim 4.3. The following three assertions hold true:

1. α(G) = 1/Θ(n
√
d).

2. Setting sv = 1/Θ(n2d) in the dual LP yields a feasible solution with value
1/Θ(nd).

3. The (vertex-weighted) shortest path metric on G with weights given by {sv}v∈V

is equivalent (up to a universal constant) to a Euclidean metric (V, d). (Namely,
the metric given by d(u, v) = ‖u− v‖2/n

2, recalling that V ⊆ Sd.)

It follows that the integrality gap is at least Θ(
√
d) = Θ(

√
log n

log log n ).
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5. An integrality gap for the vector program. Consider the hypercube
graph. Namely, the n vertices of the graph (where n is a power of 2) can be viewed as
all vectors in {±1}logn, and edges connect two vertices that differ in exactly one coor-
dinate. Every vertex separator (A,B, S) has α(A,B, S) ≥ 1/O(n

√
log n). This follows

from standard vertex isoperimetry on the cube [27]. We show a solution to the vector
program with value of O(n/ log n), proving an integrality ratio of Ω(

√
log n) for the

vector program, and implying that our rounding technique achieves the best possible
approximation ratio (relative to the vector program), up to constant multiplicative
factors.

In the solution to the vector program, we describe for every vertex i the associated
vectors xi and yi. The vectors si will not be described explicitly, but are implicit,
using the relation si = v−xi−yi. Note that the exclusion constraints si ·xi = si ·yi = 0
are implied by the exclusion constraints xi · yi = 0 and the sphere constraints. Each
vector will be described as a vector in 1 + n log n+ 2(n− 1) dimensions (even though
n dimensions certainly suffice). Our redundant representation in terms of the number
of dimensions helps clarify the structure of the solution.

To describe the vector solution, we introduce two parameters, a and b. Their
exact value will be determined later and will turn out to be a = 1/2−Θ(1/ log n) and
b = Θ(1/

√
n log n). We partition the coordinates into three groups of coordinates:

G1. Group 1 contains one coordinate. This coordinate corresponds to the direc-
tion of vector v (which has value 1 in this coordinate and 0 elsewhere). All
xi and yi vectors have value a on this coordinate.

G2. Group 2 contains n identical blocks of logn coordinates. The coordinates
within a block exactly correspond to the structure of the hypercube. Within
a block, each xi is a vector in {±b}log n derived by scaling the hypercube label
of vertex i (which is a vector in {±1}log n) by a factor of b. Vector yi is the
negation of vector xi on the coordinates of Group 2.

G3. Group 3 contains two identical blocks of n− 1 coordinates. The coordinates
within a block arrange all the xi vectors as vertices of a simplex. This is done
in the following way. Let Hn be the n by n Hadamard matrix with entries ±1,
obtained by taking the (logn)-fold tensor product [16] of the 2 by 2 matrix
H2 that has rows (1, 1) and (1,−1). The inner product of any two rows of
Hn is 0, the first column is all 1, and the sum of entries in any other column
is 0. Remove the first column to obtain the matrix H ′

n. Within a block, let
vector xi be the ith row of H ′

n, scaled by a factor of b. Hence within a block,
xixi = b2(n− 1), and xixj = −b2 for i 
= j. Vector yi is identical to xi on the
coordinates of Group 3.

We now show that the triangle constraints are satisfied by our vector solution.
Recall (see section 2) that there is some flexibility in the choice of which triangle
constraints to include in the vector program (and likewise for many other constraints
that are valid for 0/1 solutions but are not used in our analysis). We shall address
here a subset of the triangle constraints that is larger than that actually used in the
analysis of our rounding algorithm.

There are five sets of vectors from which we can take the three vectors that
participate in a triangle constraint: X (the xi vectors), Y (the yi vectors), S (the
si vectors), v, and 0. In our analysis we used only triangle constraints over vectors
from X. Here we show that all the triangle constraints that involve only vectors from
X

⋃
Y are satisfied. All vectors in X

⋃
Y have the identical value a in their first

coordinate, and in every other coordinate they take only values from ±b. Hence every
quadratic constraint that holds for all ±1 vectors (including, but not limited to, the
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triangle constraints) is satisfied on every coordinate separately, which implies that it
is satisfied for all xi and yi vectors.

We let K =
∑

i,j∈V (xi − xj)
2 = Θ(n3b2 log n). The value of the parameters a

and b is governed by the following three constraints:
1. The exclusion constraints imply that

a2 − nb2 log n + 2b2(n− 1) = 0.

2. The edge constraints (and the fact that edges connect vertices of Hamming
distance 1) imply that

a2 − nb2(log n− 2) − 2b2 = 0.

3. The sphere constraints imply that

a = a2 + nb2 log n + 2b2(n− 1).

Hence we have a system of three equalities in two unknowns (a and b). This
system is consistent, because the first two equalities are in fact identical (due to our
careful choice of number of blocks in each group). They both give

a2 + (−n log n + 2n− 2)b2 = 0.

By setting b = a/
√
n log n− 2n + 2 the first two equalities are satisfied. The third

equality now reads a = a2(2 + ε) for some ε = Θ(1/ log n). This equality is satisfied
by taking a roughly equal to 1/2 − ε/4, which is 1/2 − Θ(1/ log n).

It follows that in the vector solution all s2
i = 1 − x2

i − y2
i is O(1/ log n) for every

i ∈ V . Hence our vector solution has value

1

K

∑
i∈V

s2
i =

1

Θ(n log n)
.

Finally, we note that rather than having only one coordinate in Group 1, we can
have (a/b)2 = n log n − 2n + 2 coordinates, and give the x and y vectors values b in
these coordinates. Then all x and y vectors become vertices of a 2n log n-dimensional
hypercube (of side length b). We see that even in this special case, the integrality gap
remains Ω(

√
log n).

6. Balanced separators and applications.

6.1. Reduction from minimum ratio cuts to balanced separators. In this
section, we sketch a pseudoapproximation for finding balanced vertex separators in a
graph G = (V,E). Let W ⊆ V be an arbitrary subset of V . For δ ∈ (0, 1), we say
that a subset X ⊆ V is a δ-vertex separator (with respect to W ) if every connected
component C of G[V \ X] has |C ∩W | ≤ δ|W |. Our goal in this section is to show
that we can find a 3

4 -vertex separator X ⊆ V whose size is within an O(β) factor
of the optimal 2

3 -vertex separator of G, whenever we can find approximate minimum
ratio cuts in G within factor β. This technique is standard (see [36]).

The algorithm. Let m = |W |, and for any subset U ⊆ V , define |U |
W

= |U∩W |.
Let π1(v) = 1 for every v ∈ V , and π2(v) = 1 if v ∈ W and π2(v) = 0 otherwise. These
are the weights for the numerator and denominator, respectively; i.e., we assume that
we have a β-approximation for απ1,π2(·). We maintain a vertex separator S ⊆ V .
Initially, S = ∅. As long as there exists some connected component U ⊆ V in G[V \S]
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with |U |
W

≥ 3
4 |W |, we use our β-approximation to find a minimum ratio vertex cut

S′ in G[U ] which is within β of optimal. We then set S ← S ∪ S′ and continue.
The analysis. Let S be the final vertex separator. By construction, it is a

3
4 -vertex separator since every connected component U of G[V \S] has |U |

W
< 3

4 |W |.
Let T ⊆ V be an optimal 2

3 -vertex separator.
Claim 6.1. |S| ≤ O(β)|T |.
Proof. The fact that T is a 2

3 -vertex separator with respect to W implies that
the vertices in V \ T can be partitioned into two disjoint sets AT , BT ⊆ V such that
|AT ∪ T |

W
, |BT ∪ T |

W
≥ 1

3 |W |, with no edges between AT and BT . Suppose we are
at a step where |U |

W
≥ 3

4 |W |. Let (A′, B′, S′) be the vertex separator in G[U ] that
we find by running our minimum quotient cut algorithm with ratio β, and suppose
that |A′|

W
≥ |B′|

W
. We know that

|S′|
|A′ ∪ S′|

W
· |B′ ∪ S′|

W

≤ β
|T |

|(AT ∪ T ) ∩ U |
W

· |(BT ∪ T ) ∩ U |
W

≤ 18β|T |
m2

,

where the final inequality follows because |U |
W

≥ 3m
4 . It follows that

|S′| ≤ 18β|T |(|B′|
W

+ |S′|
W

)

m
.

To see that |S| ≤ O(β)|T |, it suffices to see that when we sum |B′|
W

+ |S′|
W

over all
iterations, the value is at most O(m). But since we throw away the vertices of B′∪S′

in every iteration (and recurse only on A′), the sum is clearly at most m.

6.2. Getting an O(
√

log opt) approximation for vertex separators. In
this section, we sketch a proof of how one can obtain an O(

√
log opt) pseudoapproxi-

mation for finding balanced vertex separators. In other words, given a graph G with
a 2

3 -vertex separator of size m, we find a 3
4 -vertex separator whose size is at most

(m
√

logm). The method is based on the following enhancement of Theorem 3.3.
Theorem 6.2. Let C > 0 be a universal constant. Let (X, d) be an n-point

metric space of negative type, and let ω0 : X ×X → R+ be any product weight. If∑
x,y ω0(x, y) d(x, y)∑

x,y ω0(x, y)
= 1,

and there exists an ε-net N ⊆ X with |N | ≤ m and ε ≤ 1/(C
√

logm), then there
exists an efficiently computable map f : X → R with avdω0

(f) = O(
√

logm).
Proof. Assume that ω0(x, y) = π(x)π(y) for all x, y ∈ X. As in the proof

of Theorem 3.3 (see section A.2), if there exists some point x0 ∈ X for which
π(B(x0,

1
4n2 )) ≥ 1

2π(X), then we achieve a map f : X → R with avdω0(f) = O(1). If
no such x0 exists, then it must be the case (see the proof of [7, Lemma 14]) that there
exists a set S ⊆ X × X of pairs for which

∑
(x,y)∈S π(x)π(y) ≥ Ω(1)

∑
x,y ω0(x, y),

and d(x, y) ≥ 1
100 for (x, y) ∈ S.

We construct a new weight function π∗ : N → R+ on N as follows. Since N is
an ε-net, we have X ⊆

⋃
y∈N B(y, ε). For every point x ∈ X, put x into a set Sy for

some net point y ∈ N with d(x, y) ≤ ε (so that {Sy}y∈N is a partition of X). Define
π∗(y) =

∑
x∈Sy

π(x) for every y ∈ N .
We now consider the quantity

d̄N =

∑
x,y∈N π∗(x)π∗(y) d(x, y)∑

x,y∈N π∗(x)π∗(y)
=

∑
x,y∈N

∑
u∈Sx,v∈Sy

π(u)π(v) d(x, y)∑
x,y ω0(x, y)

.
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We claim that d̄N = Ω(1). But this follows since

∑
x,y∈N

∑
u∈Sx,v∈Sy

π(u)π(v) d(x, y) ≥
∑

x,y∈N

∑
u∈Sx,v∈Sy,(u,v)∈S

π(u)π(v) d(x, y)

≥
∑

x,y∈N

∑
u∈Sx,v∈Sy,(u,v)∈S

π(u)π(v) (d(u, v) − 2ε)

≥ 1

2

∑
(u,v)∈S

π(u)π(v) d(u, v) = Ω(1)
∑
x,y

ω0(x, y).

As discussed in section A.2, the techniques of [7] now show that there exist two
subsets L,R ⊆ N for which d(L,R) ≥ 1/O(

√
logm) and π∗(L), π∗(R) ≥ 1

10π
∗(X).

Construct sets

L′ = {x ∈ X : x ∈ Sy for some y ∈ L} and R′ = {x ∈ X : x ∈ Sy for some y ∈ R}.

Note that π(L′) = π∗(L) and π(R′) = π∗(R); hence π(L′), π(R′) ≥ 1
10π(X). Finally,

for any points xL ∈ L′, xR ∈ R′, let yL, yR be such that xL ∈ SyL
and xR ∈ SyR

, and
notice that

d(xL, xR) ≥ d(yL, yR) − d(xL, yL) − d(xR, yR) ≥ 1
O(

√
logm)

− 2ε ≥ 1
O(

√
logm)

,

where the last inequality holds for C > 0 chosen sufficiently large (and hence ε
chosen sufficiently small). Now one simply takes the map f(x) = d(x, L′), which
has avdω0

(f) = O(
√

logm).
Next, we make an observation about solutions to the SDP of section 2.3.
Lemma 6.3. If {xi, yi} is a solution to the SDP with W =

∑
i∈V (1 − x2

i − y2
i ),

then in the metric space ({x1, . . . , xn}, d) where d(i, j) = (xi − xj)
2, there exists an

ε-net N ⊆ {x1, . . . , xn} with |N | ≤ O(W/ε).
Proof. For each i ∈ V , define w(i) = 1−x2

i−y2
i . For a subset S ⊆ V , define w(S) =∑

x∈S w(x). Let G = (V,E) be the original graph, and let dG(i, j) = minp∈Pij w(p),
where we recall that Pij is the set of all simple i-j paths. We claim first that d(i, j) ≤
4 dG(i, j). Indeed, let i = i1, i2, . . . , ik = j be a minimum weight path in G; then

d(i, j) = (xi − xj)
2 ≤

k−1∑
h=1

(xih − xih+1
)2(4)

≤ 2

k−1∑
h=1

(
(1 − x2

ih
− y2

ih
) + (1 − x2

ih+1
− y2

ih+1
)
)

(5)

= 2

k−1∑
h=1

(w(ih) + w(ih+1))

≤ 4 dG(i, j),

where (4) follows from the squared triangle inequalities, and (5) follows from line (2)
in Proposition 3.10.

Thus it will suffice to find an ε/4-net N in the metric dG, and the rest of the proof
refers to this metric on X = {x1, . . . , xn}. Choose a maximal set Y ⊆ {x1, . . . , xn}
among all points x ∈ X for which w(BdG

(x, ε/8)) ≥ ε/16, subject to the constraint
that x, y ∈ Y =⇒ d(x, y) > ε/8. By construction, the balls BdG

(x, ε/8) are disjoint
for x ∈ Y ; hence |Y | ≤ 16W/ε, recalling that W = w(X).
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So we are done once we prove that Y is an ε/4-net in (X, dG). For the sake of
contradiction, suppose there is a point x ∈ X with dG(x, Y ) > ε/4. Let y ∈ Y be
such that dG(x, y) = dG(x, Y ), and consider any shortest-path x = y1, . . . , yk = y
in G. Letting P = {y1, . . . , yk}, we know that w(P ) = dG(x, y) > ε/4. If we set
P ′ = {u ∈ P : dG(y, u) > ε/8}, then w(P ′) > w(P )−ε/8 ≥ ε/8, and for every u ∈ P ′,
we have dG(u, Y ) > ε/8. So if there exists any point u ∈ P ′ with w(u) ≥ ε/16, then
we could add u to Y , contradicting its maximality. Thus we may assume that for
every u ∈ P ′, we have w(u) < ε/16. But now let z ∈ P ′ be the point of P ′ which is
closest to y. Then dG(z, x) = w(P ′) > ε/8; hence we know that

w(BdG
(z, ε/8)) ≥ w(BdG

(z, ε/8) ∩ P ′) ≥ ε/16,

because the first point along P ′ not included in BdG
(z, ε/8) (which must exist) must

be further than ε/8 away from z but also have weight at most ε/16. We again conclude
that Y is not maximal, completing the proof.

Combining Theorem 6.2 and Lemma 6.3, along with the analysis of section 3,
yields an O(

√
logm)-approximation to vertex sparsest cut where m is the number

of vertices in an optimal 2
3 -vertex separator. Now applying the transformation of

section 6.1 yields the desired O(
√

log opt) pseudoapproximation for finding balanced
vertex separators.

6.3. Applications. The notion of treewidth was introduced by Robertson and
Seymour [43] and plays an important role in their fundamental work on graph minors.
In addition, it has numerous practical applications (see, e.g., [10]). A large amount
of effort has been put into determining treewidth, which is NP-complete even when
the input graph is severely restricted (see the discussion in [21] for a brief history).

From the approximation viewpoint, Bodlaender et al. [11] gave an O(log n)-
approximation algorithm for treewidth on general graphs. Amir [4] improved the
approximation factor to O(log opt), where opt is the actual treewidth of the graph.
Constant-factor approximations for treewidth were obtained on asteroidal triple–free
(AT-free) graphs [13, 12] and on planar graphs [44]. The approximation for planar
graphs is a consequence of the polynomial-time algorithm given by [44] for comput-
ing the parameter branchwidth, whose value approximates treewidth within a factor
of 1.5. Recently, [5] obtained a new approximation algorithm for treewidth in planar
graphs with a constant factor slightly worse than 1.5, and the authors of [21] derived
a polynomial-time algorithm for approximating treewidth within a factor of 1.5 for
single-crossing minor-free graphs and generalizations of planar graphs. A well-known
open problem is whether treewidth can be approximated within a constant factor.

Using our new approximation algorithms for vertex separators, we improve the
approximation ratio for treewidth, both in general graphs and in some special families
of graphs. Our improvements and some of their implications will be presented after
we formally define the notion of treewidth.

Treewidth. The notion of treewidth involves a representation of a graph as a
tree, called a tree decomposition. More precisely, a tree decomposition of a graph
G = (V,E) is a pair (T, χ) in which T = (I, F ) is a tree and χ = {χi | i ∈ I} is a
family of subsets of V (G) such that (1)

⋃
i∈I χi = V ; (2) for each edge e = {u, v} ∈ E,

there exists an i ∈ I such that both u and v belong to χi; and (3) for all v ∈ V , the
set of nodes {i ∈ I | v ∈ χi} forms a connected subtree of T . To distinguish between
vertices of the original graph G and vertices of T in the tree decomposition, we call
vertices of T nodes and their corresponding χi’s bags. The maximum size of a bag in
χ minus one is called the width of the tree decomposition. The treewidth of a graph G,
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which we denote by tw(G), is the minimum width over all possible tree decompositions
of G. A tree decomposition is called a path decomposition if T = (I, F ) is a path. The
pathwidth of a graph G is the minimum width over all possible path decompositions
of G.

Now we are ready to state our approximation result for treewidth.
Theorem 6.4. There exist polynomial time algorithms that find a tree decom-

position of width at most O(
√

log tw(G) tw(G)) for a general graph G and at most
O(|V (H)|2 tw(G)) for an H-minor-free graph G.

Proof. The proof follows by plugging our improved approximation ratios for
balanced vertex separators into the known approximation algorithms for treewidth.
Specifically, the algorithm of [11] finds a tree decomposition by recursively using a
balanced vertex separator algorithm. The vertex separator algorithm is applied to
subgraphs of the original graph, in a product demand setting. It turns out that the
approximation ratio obtained for treewidth is at most a constant factor worse than
that of the underlying vertex separator algorithm. Using our bounds from section 6.2
one obtains the first part of Theorem 6.4, and using Theorem 4.2 one obtains the
second part of Theorem 6.4.

Improving the approximation factor of treewidth improves the approximation
factor for several other problems. We refer the reader to [11] for a discussion of these
implications and the relevant definitions.

Corollary 6.5. There exist O(
√

log opt) (resp., O(|V (H)|2)) approximation
algorithms for branchwidth, minimum front size, and minimum size of a clique in a
chordal supergraph of a general (resp., H-minor-free) graph G. Additionally, there are
O(

√
log opt log n) (resp., O(|V (H)|2 log n)) approximation algorithms for pathwidth,

minimum height elimination order tree, and search number in a general (resp., H-
minor-free) graph G.

We also note that Theorem 3.12 with general weights π1, π2 is useful for cer-
tain hypergraph partitioning problems [36]. Improving the approximation factor for
treewidth has a direct improvement on the running time of approximation schemes
and subexponential fixed parameter algorithms for several NP-hard problems on graph
families which exclude a fixed minor. In such algorithms finding the tree decompo-
sition of almost minimum width, on which we can run dynamic programming, plays
a very important role. More precisely, Demaine and Hajiaghayi [20, 19] introduced
the concept of (contraction/minor) bidimensional parameters for planar graphs and
more generally for excluded-minor families. Examples of bidimensional parameters
include number of vertices, diameter, and the size of various structures, e.g., feed-
back vertex set, vertex cover, minimum maximal matching, face cover, a series of
vertex-removal parameters, dominating set, edge dominating set, r-dominating set,
connected dominating set, connected edge dominating set, connected r-dominating
set, and unweighted Traveling Salesman tour (a walk in the graph visiting all ver-
tices).

They show how one can obtain PTASs for almost all bidimensional parameters
on planar graphs, single-crossing minor-free graphs, and bounded genus graphs. In
fact, as they mentioned, their approach can be extended to work on apex-minor-free
graphs for contraction-bidimensional parameters and on H-minor-free graphs, where
H is a fixed graph for minor-bidimensional parameters (see [20, 19] for appropriate
definitions). However, currently they obtain quasi-polynomial-time approximation
schemes for these general settings. The only barrier to obtaining PTASs for these
general settings is obtaining a constant-factor polynomial-time approximation algo-
rithm for treewidth of an H-minor-free graph for a fixed H (this is posed as an open



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMUM WEIGHT VERTEX SEPARATORS 653

problem in [20]). Using Theorem 6.4, we overcome this barrier and obtain PTASs
for contraction-bidimensional parameters in apex-minor-free graphs and for minor-
bidimensional parameters in H-minor-free graphs for a fixed H. As an immediate
consequence, we obtain the following theorem (see [20, 19] for the exact definitions of
the problems mentioned below).

Theorem 6.6. There are PTASs for feedback vertex set, vertex cover, minimum
maximal matching, and a series of vertex-removal problems in H-minor-free graphs
for a fixed H. Also, there are PTASs for dominating set, edge dominating set, r-
dominating set, connected dominating set, connected edge dominating set, connected
r-dominating set, and clique-transversal set in apex-minor-free graphs.

Among the problems mentioned above, PTASs for vertex cover and dominating
set (but not its other variants) using a different approach were known before (see,
e.g., [26]).

Appendix.

A.1. A note about approximating vertex expansion. In the case of edge
cuts, the value of the sparsest cut (under uniform weights) corresponds to edge ex-
pansion of the graph G. Thus it is perhaps more natural to consider finding the
vertex separator (A,B, S) which minimizes the ratio |S|/|B|, where, by convention,
|B| ≤ |A|.

We now show that having the |S| term in the denominator, i.e., |S|/(|B| + |S|),
is crucial to obtaining polylogarithmic approximation ratios. We present here an
argument (essentially due to Shimon Kogan) that demonstrates this fact.

Consider the problem of a balanced bipartite independent set (BBIS). The input
is a bipartite graph G(U

⋃
V,E) with |U | = |V | = n, and the goal is to find the

maximum value of t and sets A ⊂ U , B ⊂ V with |A| = |B| = t with no edges between
A and B. It is known that when t is small compared to n, approximating this problem
(the value of t) within a ratio of nδ for some δ > 0 will have some major algorithmic
consequences [23, 24], including subexponential algorithms for all NP problems [29].
Now modify G by making U into a clique and V into a clique, obtaining a graph G′.
The set S of vertices not in the maximum BBIS provides a vertex separator (A,B, S)
for G′. The ratio |S|/|B| for this separator is the minimum possible up to constant
factors. (For every separator (A′, B′, S′), side U cannot contain vertices both from A
and from B. Hence |S′| = Ω(n) unless both A′ and B′ are of size nearly n. When
t is known to be small, this implies that |S′| = Θ(n) for all separators. Hence the
ratio |S′|/|B′| of any separator in G′ is governed by |B′| rather than by |S|. The
value of |B′| is maximized by taking the separator (A,B, S).) This implies that for
the minimum balanced vertex separator the quantity |S|/|B| cannot be approximated
within a ratio of nδ (unless NP has subexponential algorithms).

Remark. For a set B of vertices, let N(B) denote the set of vertices not in B that
are neighbors of vertices in B. Then the expansion of B is |N(B)|/|B|. The expansion
of a graph is the minimum over all sets B up to a certain size of the ratio |N(B)|/|B|.
The restriction on the size of B is necessary so as to avoid B being the whole graph,
giving expansion 0. For bounded degree graph, one typically requires |B| ≤ n/2. For
graphs of unbounded degree, such a requirement is insufficient, as it always bounds
the expansion by 1 (taking B to be half the graph), whereas one would like to allow
for much higher expansions. A possible restriction on B in this case is to require it to
be the smaller side of an (A,B, S)-vertex separator. Under this definition of vertex
expansion, the above argument shows that vertex expansion cannot be approximated
within a factor of nδ unless NP has subexponential algorithms.
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A.2. Line embedding theorems. We now sketch how the following three the-
orems follow from their respective sources. We begin with Bourgain’s theorem.

Theorem A.1 (Bourgain [14]). If (X, d) is an n-point metric space, then for
every weight function ω : X × X → R+, there exists an efficiently computable map
f : X → R with avdw(f) = O(log n).

In [14], it is shown that every n-point metric (X, d) space embeds into a Hilbert
space with distortion O(log n), but Bourgain actually shows something stronger. He
proves that there exists a probability space (Ω, μ) on random subsets Aτ ⊆ X, τ ∈ Ω,
satisfying the following property: For every x, y ∈ X,

EΩ [|d(x,Aτ ) − d(y,Aτ )|] ≥
d(x, y)

O(log n)
.

To show how this implies the theorem, note that by linearity of expectation

EΩ

⎡
⎣ ∑
x,y∈X

ω(x, y) · |d(x,Aτ ) − d(y,Aτ )|

⎤
⎦ ≥ 1

O(log n)

∑
x,y∈X

ω(x, y) · d(x, y).

Hence there must exist some subset Aτ ⊆ X for which the map f : X → R given
by f(x) = d(x,Aτ ) has avdω(f) = O(log n). An efficient randomized algorithm for
sampling Aτ is given in [38].

Theorem A.2 (Rabinovich [41]). If (X, d) is any metric space supported on a
graph which excludes a Kr-minor, then for every product weight ω0 : X ×X → R+,
there exists an efficiently computable map f : X → R with avdω0

(f) = O(r2).

In [41], Rabinovich proves precisely this fact, although only for the uniform weight
function ω0(x, y) = 1 for all x, y ∈ X. It is easy to see that we can assume arbitrary
product form for ω0 without loss of generality. Suppose that we have vertex weights
π : V → R+. We can replace X by the pseudometric where each copy of x ∈ X occurs
π(x) times. Then applying the analysis of [41] immediately yields the desired result.

Theorem A.3 (Arora, Rao, and Vazirani [7]). If (X, d) is an n-point metric
of negative type, then for every product weight ω0 : X × X → R+, there exists an
efficiently computable map f : X → R with avdω0(f) = O(

√
log n).

Assume that ω0(x, y) = π(x)π(y) for all x, y ∈ X. We will “mentally” replace
every copy of x by π(x) copies, but we will ensure that this increase in the number
of points does not affect the quality of our map f . Also, suppose that (by scaling)
( 1∑

x,y ω0(x,y) )
∑

x,y∈X ω0(x, y) · d(x, y) = 1.

Suppose there exists some point x0 ∈ X for which π(B(x0,
1
4 )) ≥ 1

2π(X). In this
case, the map f(x) = d

(
x,B(x0,

1
4 )
)

has avdω0(f) = O(1) (see, e.g., [7, Lemma 14]).

Otherwise, the techniques of [7] show that there exist two subsets L,R ⊆ X for
which d(L,R) ≥ 1/O(

√
log n) and π(L), π(R) ≥ 1

10π(X). The fact that the number of
copies of a point x ∈ X does not affect the analysis is somewhat technical and relies
on the fact that an “(ε, δ)-cover” has size which is lower-bounded by the number
of distinct points that it contains. In this latter case, one simply takes the map
f(x) = d(x, L), which has avdω0(f) = O(

√
log n). A simpler algorithm for computing

the map f (which consists of choosing a few random hyperplanes) is given in [34].

A.3. Approximating the “densest subgraph.” To orient the reader arriving
at this section from section 3.6, let us remark that π and ω below can correspond to
π1 and a product distribution π2 × π2 in section 3.6.
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Given a set V = {v1, . . . , vn} with a positive rational weight function π on V and
a nonnegative rational weight function ω on V × V , we need to find a set S ⊆ V of
maximum density, where the density of a set is defined as

(6) Δ(S) ≡
∑

i,j∈S ω(i, j)

π(S)
.

This is a weighted version of the densest subgraph problem and can be solved in
polynomial time (see, for example, Chapter 4 in [33]). For completeness, we sketch
the algorithm.

Construct a bipartite graph with sides U and W , where U has n vertices labeled
{u1, . . . un}, and W has n2 vertices labeled wij for 1 ≤ i, j ≤ n. For every i, connect
vertex ui to the vertices wij and wji (for all j). All these edges have infinite capacity.
Add two special vertices, s and t, to the graph. For every i, connect vertex ui to s
by an edge of capacity kπ(i), where k is a parameter whose value will be optimized
later. For every 1 ≤ i, j ≤ n, connect vertex wi,j to t by an edge of capacity ω(i, j).
Now compute the minimum capacity (s, t)-cut in the resulting capacitated graph (a
problem that can be solved in polynomial time by using flow techniques).

We now analyze the above algorithm. Observe first that the minimum (s, t)-cut
contains only edges that are connected to either t or s, as other edges have infinite
capacity. Furthermore, observe that if the parameter k is sufficiently large, then the
minimum (s, t)-cut contains exactly those edges connected to t. (Here we used our
assumption that π(i) > 0 for all i, but we remark that this assumption can be made
without loss of generality, because all vi with π(i) = 0 can be placed in S.) How low
should k be so that the cut also cuts edges connected to s? This may happen only
when k ≤ Δ (and will necessarily happen when k < Δ), where Δ = minS Δ(S). The
reason is the following. Cutting a set S ⊂ U from s costs kπ(S). This needs to be
offset by a gain on the t side, resulting from the fact that edges between t and vertices
of W labeled by S×S no longer need to be cut. This gives a saving of

∑
i,j∈S ω(i, j).

The saving equals the cost precisely when k = Δ.

Using the above analysis, it follows that by performing a search over the parameter
k, one can find the value of Δ and the densest set S achieving this value.
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