
IRIT

Ver. 13 User’s Manual

A Solid modeling Program

(C) Copyright 1989-2023 Gershon Elber

EMail: gershon@cs.technion.ac.il

Join IRIT mailing list: gershon@cs.technion.ac.il
Mailing list: irit-mail@cs.technion.ac.il
Bug reports: irit-bugs@cs.technion.ac.il

WWW Page: http://gershon.cs.technion.ac.il/irit

This manual is for IRIT Ver. 13.

Contents

1 Introduction 1

2 Copyrights 1

3 Command Line Options and Set Up 1
3.1 IBM PC OS2 Specific Set Up . 4
3.2 Window 95/98/NT/2000/XP/7/10 Specific Set Up . 4
3.3 Unix Specific Set Up . 5

4 First Usage 5

5 Line Editing 6

6 Data Types 6

7 Commands summary 7

8 Functions and Variables 10

9 Language description 13

10 Operator overloading 15
10.1 Overloading + . 15
10.2 Overloading − . 15
10.3 Overloading ∗ . 16
10.4 Overloading / . 17
10.5 Overloading ˆ . 17
10.6 Overloading Equal (Assignments) . 17
10.7 Comparison operators ==, ! =, <, >, <=, >= . 18
10.8 Logical operators &&, ‖‖, ! . 18
10.9 Geometric Boolean Operations . 18
10.10Priority of operators . 21
10.11Grammar . 22

11 Function Description 22
11.1 NumericType returning functions . 22

11.1.1 ABS . 22
11.1.2 ACOS . 22
11.1.3 AREA . 23
11.1.4 ASIN . 23
11.1.5 ATAN . 23
11.1.6 ATAN2 . 23
11.1.7 COS . 23
11.1.8 CLNTEXEC . 23
11.1.9 CPOLY . 24
11.1.10DSTPTLN . 24
11.1.11DSTPTPLN . 24
11.1.12DSTLNLN . 24

11.1.13EXP . 24
11.1.14 FLOOR . 24
11.1.15 FMOD . 24
11.1.16 LN . 25
11.1.17 LOG . 25
11.1.18MESHSIZE . 25
11.1.19POWER . 25
11.1.20RANDOM . 25
11.1.21 SIN . 25
11.1.22 SIZEOF . 26
11.1.23 SQRT . 26
11.1.24TAN . 26
11.1.25THISOBJ . 26
11.1.26VOLUME . 26

11.2 GeometricType returning functions . 27
11.2.1 ACCESSANLZ . 27
11.2.2 ALGPROD . 27
11.2.3 ALGSUM . 28
11.2.4 AMFIBER3AXIS . 29
11.2.5 ANALYFIT . 30
11.2.6 ANIMEVAL . 30
11.2.7 ANTIPODAL . 30
11.2.8 AOFFSET . 31
11.2.9 ARC . 31
11.2.10ARC360 . 32
11.2.11AREPARAM . 33
11.2.12BBOX . 33
11.2.13BELTCURVE . 33
11.2.14BFROM2IMG . 34
11.2.15BFROM3IMG . 35
11.2.16BFZEROS . 35
11.2.17BLND2SRFS . 36
11.2.18BLHERMITE . 36
11.2.19BLSHERMITE . 37
11.2.20BLOSSOM . 38
11.2.21BOOLONE . 39
11.2.22BOOLSUM . 39
11.2.23BOUNDARY . 41
11.2.24BOX . 41
11.2.25BSCTCONCN2 . 42
11.2.26BSCTCONCON . 42
11.2.27BSCTCONCYL . 43
11.2.28BSCTCONLN . 43
11.2.29BSCTCONPL . 43
11.2.30BSCTCONPT . 44
11.2.31BSCTCONSPR . 44
11.2.32BSCTCYLCYL . 45
11.2.33BSCTCYLPL . 45

11.2.34BSCTCYLPT . 45
11.2.35BSCTCYLSPR . 46
11.2.36BSCTPLNLN . 46
11.2.37BSCTPLNPT . 47
11.2.38BSCTSPRLN . 47
11.2.39BSCTSPRPL . 47
11.2.40BSCTSPRPT . 48
11.2.41BSCTSPRSPR . 48
11.2.42BSCTTRSPT . 48
11.2.43BSCTTRSSPR . 49
11.2.44BZR2BSP . 50
11.2.45BSP2BZR . 50
11.2.46C2CONTACT . 51
11.2.47CALPHASECTOR . 51
11.2.48CANGLEMAP . 52
11.2.49CARCLEN . 52
11.2.50CAREA . 53
11.2.51CARRANGMNT . 54
11.2.52CARNGMNT2 . 54
11.2.53CBEZIER . 56
11.2.54CBIARCS . 57
11.2.55CBISECTOR2D . 57
11.2.56CBISECTOR3D . 59
11.2.57CBSPLINE . 60
11.2.58CCINTER . 61
11.2.59CCRVTR . 63
11.2.60CCRVTR . 64
11.2.61CCRVTREVAL . 65
11.2.62CCUBICS . 65
11.2.63CDERIVE . 65
11.2.64CDIVIDE . 66
11.2.65CEDITPT . 66
11.2.66CENVOFF . 68
11.2.67CEVAL . 68
11.2.68CEXTREMES . 69
11.2.69CFNCRVTR . 69
11.2.70CHELIX . 70
11.2.71CIEXTREME . 70
11.2.72CINFLECT . 71
11.2.73CINTEG . 72
11.2.74CINTERP . 72
11.2.75CINTERP2 . 73
11.2.76CIRCLE . 74
11.2.77CIRCPACK . 74
11.2.78CIRCPOLY . 75
11.2.79CLNTCRSR . 76
11.2.80CLNTREAD . 76
11.2.81CMAT2D . 77

11.2.82CMESH . 77
11.2.83CMOEBIUS . 77
11.2.84CMORPH . 78
11.2.85CMULTIRES . 79
11.2.86CNORMAL . 80
11.2.87CNRMLCRV . 80
11.2.88CNVXHULL . 81
11.2.89COERCE . 81
11.2.90COFFSET . 82
11.2.91COMPOSE . 83
11.2.92CON2 . 84
11.2.93CONE . 85
11.2.94CONICSEC . 85
11.2.95CONTOUR . 87
11.2.96CONVEX . 87
11.2.97COORD . 88
11.2.98COVERISO . 89
11.2.99COVERPT . 90
11.2.100CPINCLUDE . 91
11.2.101CPOWER . 91
11.2.102CRAISE . 92
11.2.103CRC2CRVTAN . 93
11.2.104CREDUCE . 93
11.2.105CREFINE . 94
11.2.106CREGION . 95
11.2.107CREPARAM . 95
11.2.108CROSSEC . 96
11.2.109CRV2TANS . 96
11.2.110CRVBUILD . 97
11.2.111CRVC1RND . 99
11.2.112CRVCOVER . 100
11.2.113CRVKERNEL . 100
11.2.114CRVNET2TILE . 102
11.2.115CRVLNDST . 102
11.2.116CRVPTDST . 103
11.2.117CRVPTTAN . 104
11.2.118CSINE . 106
11.2.119CSPIRAL . 106
11.2.120CSURFACE . 106
11.2.121CSRFPROJ . 108
11.2.122CTANGENT . 110
11.2.123CTLPT . 110
11.2.124CTRIMSRF . 111
11.2.125CTRLCYCLE . 111
11.2.126CMESH . 112
11.2.127CUBICCRVS . 112
11.2.128CVIEWMAP . 112
11.2.129CVISIBLE . 113

11.2.130CYLIN . 114
11.2.131CZEROS . 114
11.2.132DEPTHPEEL . 115
11.2.133DIST2FF . 116
11.2.134DITHERWIRE . 116
11.2.135DTRBYCRVS . 118
11.2.136DUALITY . 118
11.2.137DVLPSTRIP . 119
11.2.138ELLIPSE3PT . 119
11.2.139EUCOFSTONSRF . 120
11.2.140EUCSPRLONSRF . 121
11.2.141EVOLUTE . 121
11.2.142EXPLODE . 123
11.2.143EXTRUDE . 124
11.2.144FFCMPCRVS . 125
11.2.145FFCOMPAT . 125
11.2.146FFCTLPTS . 126
11.2.147FFEXTEND . 126
11.2.148FFEXTREMA . 127
11.2.149FFEXTREME . 127
11.2.150FFGTYPE . 127
11.2.151FFKNTLNS . 128
11.2.152FFKNTVEC . 128
11.2.153FFMATCH . 128
11.2.154FFMERGE . 129
11.2.155FFMESH . 129
11.2.156FFMSIZE . 129
11.2.157FFORDER . 130
11.2.158FFPOLES . 130
11.2.159FFPTDIST . 130
11.2.160FFPTTYPE . 131
11.2.161FFSPLIT . 131
11.2.162FFSPLTPOLES . 132
11.2.163FITPMODEL . 132
11.2.164FINDATTR . 133
11.2.165FIXPLGEOM . 133
11.2.166FIXPLNRML . 134
11.2.167FLATTENHIER . 134
11.2.168GBOX . 134
11.2.169GEAR2DSWEEP . 135
11.2.170GETATTR . 136
11.2.171GETLINE . 137
11.2.172GETNAME . 137
11.2.173GGINTER . 137
11.2.174GPOINTLIST . 138
11.2.175GPOLYGON . 139
11.2.176GPOLYLINE . 139
11.2.177HAUSDORFF . 140

11.2.178HAUSDRPTS . 140
11.2.179HERMITE . 141
11.2.180HOBERMAN . 141
11.2.181ILOFFSET . 142
11.2.182IMAGEFUNC . 142
11.2.183IMPLCTRANS . 143
11.2.184INSTANCE . 143
11.2.185IRITSTATE . 143
11.2.186ISGEOM . 147
11.2.187ISOCLINE . 147
11.2.188JIGSAWPUZZLE . 148
11.2.189KNOTCLEAN . 148
11.2.190KNOTREMOVE . 149
11.2.191LINTERP . 149
11.2.192LOFFSET . 150
11.2.193LOWBZRFIT . 150
11.2.194MATDECOMP . 151
11.2.195MATDECOMP2 . 151
11.2.196MATRECOMP . 151
11.2.197MAXEDGELEN . 152
11.2.198MBEZIER . 152
11.2.199MBISECTOR . 152
11.2.200MBSPLINE . 154
11.2.201MDERIVE . 155
11.2.202MDIVIDE . 155
11.2.203MDLFILLET . 155
11.2.204MERGEPLLN . 157
11.2.205MERGEPOLY . 157
11.2.206MERGETYPE . 158
11.2.207MEVAL . 159
11.2.208MFROM2IMG . 159
11.2.209MFROM3IMG . 160
11.2.210MFROMMESH . 161
11.2.211MFROMMV . 161
11.2.212MICROBREPSTRCT . 161
11.2.213MICROSLICE . 162
11.2.214MICROSTRCT . 163
11.2.215MICROTILE . 168
11.2.216MICROVMSTRCT . 174
11.2.217MMERGE . 176
11.2.218MOFFSET . 176
11.2.219MOMENT . 177
11.2.220MPOWER . 178
11.2.221MRAISE . 178
11.2.222MRCHCUBE . 179
11.2.223MREFINE . 180
11.2.224MREGION . 181
11.2.225MREPARAM . 182

11.2.226MREVERSE . 182
11.2.227MSCIRC . 182
11.2.228MSCONE . 183
11.2.229MSSPHERE . 183
11.2.230MUNIVZERO . 183
11.2.231MVCONTACT . 184
11.2.232MVEXPLICIT . 184
11.2.233MVINTER . 185
11.2.234NCCNTRPATH . 185
11.2.235NCPCKTPATH . 186
11.2.236MZERO . 186
11.2.237MPROMOTE . 187
11.2.238NIL . 187
11.2.239OFFSET . 187
11.2.240ORTHOTOMC . 189
11.2.241PATTRIB . 190
11.2.242PCIRCLE . 190
11.2.243PCIRCAPX . 191
11.2.244PCRVTR . 191
11.2.245PDOMAIN . 191
11.2.246PINTERP . 192
11.2.247PIMPRTNC . 192
11.2.248PLANE . 192
11.2.249PLANECLIP . 192
11.2.250PLN3PTS . 192
11.2.251PLYROUND . 193
11.2.252PMORPH . 193
11.2.253PNORMAL . 194
11.2.254POINT . 194
11.2.255POLARSIL . 194
11.2.256POLY . 194
11.2.257POLYMESH2TV . 195
11.2.258POLYHOLES . 196
11.2.259PPINCLUDE . 196
11.2.260PPINTER . 197
11.2.261PPROPFTCH . 197
11.2.262PRINTER . 198
11.2.263PRISA . 198
11.2.264PSUBDIV . 199
11.2.265PT3BARY . 199
11.2.266PTHMSPR . 200
11.2.267PTLNPLN . 200
11.2.268PTPTLN . 200
11.2.269PTREGISTER . 201
11.2.270PTS2PLLN . 201
11.2.271PTS2PLYS . 201
11.2.272PTSLNLN . 201
11.2.273QUADCRVS . 202

11.2.274QUADRIC . 202
11.2.275RAYTRAPS . 203
11.2.276RFLCTLN . 203
11.2.277ROCKETFUEL . 205
11.2.278RRINTER . 205
11.2.279RULEDFIT . 206
11.2.280RULEDSRF . 207
11.2.281RULEDTV . 210
11.2.282RULEDVMDL . 210
11.2.283SACCESS . 211
11.2.284SADAPISO . 212
11.2.285SASPCTGRPH . 213
11.2.286SASYMPEVAL . 213
11.2.287SBEZIER . 214
11.2.288SBISECTOR . 214
11.2.289SBSPLINE . 215
11.2.290SCINTER . 217
11.2.291SCRVTR . 217
11.2.292SCRVTREVAL . 218
11.2.293SDDMMAP . 219
11.2.294SDERIVE . 220
11.2.295SDIVCRV . 220
11.2.296SDIVIDE . 221
11.2.297SDVLPCRV . 222
11.2.298SELFINTER . 223
11.2.299SETCOVER . 223
11.2.300SEDITPT . 224
11.2.301SEVAL . 224
11.2.302SFLECNODAL . 224
11.2.303SFOCAL . 225
11.2.304SFXCRVTRLN . 225
11.2.305SFROMCRVS . 226
11.2.306SGAUSS . 227
11.2.307SILHOUETTE . 228
11.2.308SINTERP . 229
11.2.309SINTPCRVS . 230
11.2.310SKEL2DINT . 231
11.2.311SLINTER . 231
11.2.312SMEAN . 232
11.2.313SMERGE . 233
11.2.314SMESH . 234
11.2.315SMOEBIUS . 234
11.2.316SMOOTHNRML . 235
11.2.317SMOMENTS . 235
11.2.318SMORPH . 236
11.2.319SNORMAL . 236
11.2.320SNRMLSRF . 237
11.2.321SPARABOLC . 237

11.2.322SPHERE . 238
11.2.323SPLITLST . 238
11.2.324SPHEREPACK . 238
11.2.325SPOWER . 239
11.2.326SRADCRVTR . 239
11.2.327SRAISE . 240
11.2.328SRAYCLIP . 240
11.2.329SREFINE . 240
11.2.330SREGION . 241
11.2.331SREPARAM . 241
11.2.332SREVERSE . 242
11.2.333SRF2TANS . 243
11.2.334SRF3TANS . 243
11.2.335SRFFFORM . 245
11.2.336SRFLNDST . 246
11.2.337SRFKERNEL . 246
11.2.338SRFORTHONET . 247
11.2.339SRFPTDST . 248
11.2.340SRINTER . 248
11.2.341SSINTER . 249
11.2.342SSINTR2 . 249
11.2.343STANGENT . 250
11.2.344STRIMSRF . 250
11.2.345STRIVAR . 251
11.2.346SURFPREV . 251
11.2.347SURFPREV2 . 252
11.2.348SURFREV . 252
11.2.349SURFREVAXS . 252
11.2.350SURFREV2 . 253
11.2.351SURFREVAX2 . 253
11.2.352SVISIBLE . 254
11.2.353SVOLUME . 255
11.2.354SWEEPSRF . 256
11.2.355SWEEPTV . 257
11.2.356SWPSCLSRF . 258
11.2.357SWPSCLTV . 260
11.2.358SWUNGASUM . 262
11.2.359SYMBCPROD . 264
11.2.360SYMBDIFF . 264
11.2.361SYMBDPROD . 264
11.2.362SYMBIPROD . 265
11.2.363SYMBPROD . 266
11.2.364SYMBSUM . 266
11.2.365TADAPISO . 267
11.2.366TBEZIER . 267
11.2.367TBOOLONE . 268
11.2.368TBOOLSUM . 269
11.2.369TBSPLINE . 271

11.2.370TCRVTR . 272
11.2.371TDEFORM . 272
11.2.372TDERIVE . 273
11.2.373TDIVIDE . 274
11.2.374TEDITPT . 274
11.2.375TEVAL . 275
11.2.376TEXT2GEOM . 275
11.2.377TEXTLAYSHP . 276
11.2.378TEXTGEOM . 277
11.2.379TEXTWARP . 278
11.2.380TFROMSRFS . 279
11.2.381TILEPACK . 280
11.2.382TINTERP . 281
11.2.383TINTPSRFS . 283
11.2.384TMORPH . 283
11.2.385TNSCRCR . 284
11.2.386TOFFSET . 284
11.2.387TORUS . 287
11.2.388TPINCLUDE . 287
11.2.389TRAISE . 288
11.2.390TREFINE . 288
11.2.391TREGION . 289
11.2.392TREPARAM . 290
11.2.393TREVERSE . 291
11.2.394TRIANGL . 291
11.2.395TRIMSRF . 291
11.2.396TRMSRFS . 292
11.2.397TRUSSLATTICE . 293
11.2.398TSBEZIER . 295
11.2.399TSBSPLINE . 296
11.2.400TSDERIVE . 296
11.2.401TSEVAL . 297
11.2.402TSGREGORY . 297
11.2.403TSNORMAL . 298
11.2.404TVADJCNT . 298
11.2.405TVCRVS2IMP . 299
11.2.406TVFILLET . 299
11.2.407TVIMPJACOB . 299
11.2.408TVJACOBIAN . 300
11.2.409TVLOAD . 300
11.2.410TVPREV . 301
11.2.411TVPREV2 . 301
11.2.412TVOLUME . 301
11.2.413TVREV . 302
11.2.414TVREV2 . 302
11.2.415TVS2FILLET . 303
11.2.416TVTTFILLET . 304
11.2.417TVZRJACOB . 304

11.2.418UNITETEXTURE . 305
11.2.419UNSTRCTGRID . 306
11.2.420UNTRIM . 310
11.2.421UVPOLY . 311
11.2.422VMBLENDPLN . 311
11.2.423VMBLENDPT . 312
11.2.424VMDLFILLET . 313
11.2.425VMDLREV . 313
11.2.426VMDLSWP . 314
11.2.427VMENCFIELD . 315
11.2.428VMSLICE . 315
11.2.429VOXELIZE . 317
11.2.430VOXELOPER . 317
11.2.431ZCOLLIDE . 318
11.2.432ZTEXTRUDE . 319

11.3 Object transformation functions . 319
11.3.1 HOMOMAT . 320
11.3.2 MAP3PT2EQL . 320
11.3.3 MATPOSDIR . 321
11.3.4 PROJMAT . 321
11.3.5 PSELFINTER . 321
11.3.6 PRULEDALG . 322
11.3.7 RFLCTMAT . 322
11.3.8 ROTV2V . 323
11.3.9 ROTVEC . 323
11.3.10ROTX . 323
11.3.11ROTY . 323
11.3.12ROTZ . 323
11.3.13ROTZ2V . 323
11.3.14ROTZ2V2 . 323
11.3.15 SCALE . 324
11.3.16TRANS . 324

11.4 General purpose functions . 324
11.4.1 ADWIDTH . 324
11.4.2 ATTRIB . 324
11.4.3 ATTRPROP . 325
11.4.4 ATTRVPROP . 325
11.4.5 AWIDTH . 325
11.4.6 CHDIR . 325
11.4.7 CLNTCLOSE . 326
11.4.8 CLNTWRITE . 326
11.4.9 COLOR . 326
11.4.10COMMENT . 327
11.4.11CPATTR . 327
11.4.12DITHERIMAGE . 327
11.4.13ERROR . 328
11.4.14EXEC . 328
11.4.15EXIT . 328

11.4.16 FOR . 329
11.4.17HELP . 329
11.4.18 FNFREE . 329
11.4.19 FREE . 329
11.4.20 FUNCTION . 330
11.4.21 IF . 331
11.4.22 INCLUDE . 331
11.4.23 INSERTPOLY . 332
11.4.24 INTERACT . 332
11.4.25 IQUERY . 333
11.4.26 LIST . 333
11.4.27 LOAD . 333
11.4.28 LOGFILE . 333
11.4.29MSLEEP . 334
11.4.30NREF . 334
11.4.31NRMLCONE . 335
11.4.32NTH . 335
11.4.33PAUSE . 335
11.4.34PRINTF . 335
11.4.35 FPRINTF . 336
11.4.36 FPRINTFILE . 336
11.4.37PROCEDURE . 337
11.4.38RESET . 337
11.4.39RMATTR . 337
11.4.40 SAVE . 338
11.4.41 SETNAME . 339
11.4.42 SNOC . 340
11.4.43 SYSTEM . 340
11.4.44TIME . 340
11.4.45VARLIST . 340
11.4.46VECTOR . 341
11.4.47VERIFYSTATE . 341
11.4.48VIEW . 341
11.4.49VIEWOBJ . 342
11.4.50VIEWSET . 342
11.4.51WHILE . 343

11.5 System variables . 344
11.5.1 AXES . 344
11.5.2 DRAWCTLPT . 344
11.5.3 FLAT4PLY . 344
11.5.4 MACHINE . 344
11.5.5 POLY APPROX OPT . 344
11.5.6 POLY APPROX UV . 344
11.5.7 POLY APPROX TOL . 344
11.5.8 POLY APPROX TRI . 345
11.5.9 POLY MERGE COPLANAR . 345
11.5.10PRSP MAT . 345
11.5.11RESOLUTION . 345

11.5.12VIEW MAT . 345
11.6 System constants . 345

11.6.1 AMIGA . 345
11.6.2 APOLLO . 345
11.6.3 BEZIER TYPE . 345
11.6.4 BLACK . 346
11.6.5 BLUE . 346
11.6.6 BSPLINE TYPE . 346
11.6.7 CLIENTS ALL . 346
11.6.8 COL . 346
11.6.9 CTLPT TYPE . 346
11.6.10CURVE TYPE . 346
11.6.11CYAN . 346
11.6.12CYGWIN . 346
11.6.13DEBUG EXE . 346
11.6.14DEPTH . 346
11.6.15E1 . 346
11.6.16E2 . 346
11.6.17E3 . 347
11.6.18E4 . 347
11.6.19E5 . 347
11.6.20E6 . 347
11.6.21E7 . 347
11.6.22E8 . 347
11.6.23E9 . 347
11.6.24 FALSE . 347
11.6.25GEOM CONST . 347
11.6.26GEOM LINEAR . 347
11.6.27GEOM CIRCULAR . 347
11.6.28GEOM PLANAR . 347
11.6.29GEOM SPHERICAL . 347
11.6.30GEOM SRF OF REV . 348
11.6.31GEOM EXTRUSION . 348
11.6.32GEOM RULED SRF . 348
11.6.33GEOM DEVELOP SRF . 348
11.6.34GEOM SWEEP . 348
11.6.35GREEN . 348
11.6.36GREGORY TYPE . 348
11.6.37HP . 348
11.6.38 IBMOS2 . 348
11.6.39KV DISC OPEN . 348
11.6.40KV FLOAT . 348
11.6.41KV OPEN . 348
11.6.42KV PERIODIC . 348
11.6.43 LINUX . 349
11.6.44 LIST TYPE . 349
11.6.45MACOSX . 349
11.6.46MAGENTA . 349

11.6.47MATRIX TYPE . 349
11.6.48MSDOS . 349
11.6.49MODEL TYPE . 349
11.6.50MULTIVAR TYPE . 349
11.6.51NUMERIC TYPE . 349
11.6.52OFF . 349
11.6.53ON . 349
11.6.54P1 . 349
11.6.55P2 . 350
11.6.56P3 . 350
11.6.57P4 . 350
11.6.58P5 . 350
11.6.59P6 . 350
11.6.60P7 . 350
11.6.61P8 . 350
11.6.62P9 . 350
11.6.63PARAM CENTRIP . 350
11.6.64PARAM CHORD . 350
11.6.65PARAM NIELFOL . 350
11.6.66PARAM UNIFORM . 350
11.6.67PI . 351
11.6.68PLANE TYPE . 351
11.6.69POINT TYPE . 351
11.6.70POLY TYPE . 351
11.6.71POWER TYPE . 351
11.6.72RED . 351
11.6.73ROW . 351
11.6.74 SGI . 351
11.6.75 STRING TYPE . 351
11.6.76 SURFACE TYPE . 351
11.6.77 SUN . 351
11.6.78TRIMSRF TYPE . 351
11.6.79TRISRF TYPE . 351
11.6.80TRIVAR TYPE . 352
11.6.81TRUE . 352
11.6.82UNDEF TYPE . 352
11.6.83UNIX . 352
11.6.84UNTRIMMED TYPE . 352
11.6.85VECTOR TYPE . 352
11.6.86VMODEL TYPE . 352
11.6.87WINDOWS . 352
11.6.88WHITE . 352
11.6.89YELLOW . 352

12 Animation 352
12.1 How to create animation curves in IRIT . 353
12.2 A more complete animation example . 355
12.3 Another complete animation example . 356

13 Display devices 357
13.1 Command Line Options . 359
13.2 Configuration Options . 362
13.3 Interactive mode setup . 364
13.4 Basic Attributes . 367
13.5 Animation Mode . 367
13.6 Advanced (Programmable) Hardware Graphics Support 368

13.6.1 HDDM (Hardware Deformation Displacement Mapping) 368
13.6.2 HFFD (Hardware Free Form Deformation) . 369

13.7 Specific Comments . 370
13.8 Examples . 372

14 Utilities - General Usage 372

15 Poly3d-h - Hidden Line Removing Program 373
15.1 Introduction . 373
15.2 Command Line Options . 374
15.3 Configuration . 374
15.4 Usage . 375

16 Illustrt - Simple line illustration filter 375
16.1 Introduction . 375
16.2 Command Line Options . 375
16.3 Usage . 377

17 Aisoshad - Simple line illustration filter 378
17.1 Introduction . 378
17.2 Command Line Options . 378
17.3 Usage . 380

18 IZebra - Simple zebra style, parallel curve based rendering 381
18.1 Introduction . 381
18.2 Command Line Options . 382
18.3 Usage . 383

19 LineShad - Simple line illustration filter 383
19.1 Introduction . 383
19.2 Command Line Options . 383
19.3 Usage . 386

20 ihidden - Hidden Curve Removing Program 387
20.1 Introduction . 387
20.2 Command Line Options . 387
20.3 Configuration . 388
20.4 Usage . 388

21 Irender - Simple Scan Line Renderer 389
21.1 Introduction . 389
21.2 Command Line Options . 389
21.3 Configuration . 391
21.4 Usage . 391
21.5 Advanced Usage . 391

22 3DS2Irit - AutoCad 3DS Data To IRIT file filter 398
22.1 Command Line Options . 398
22.2 Usage . 398

23 Dat2Bin - Data To Binary Data file filter 399
23.1 Command Line Options . 399
23.2 Usage . 399

24 Dat2Irit - Data To IRIT file filter 399
24.1 Command Line Options . 399
24.2 Usage . 399

25 Dxf2Irit - DXF (Autocad) To IRIT filter 400
25.1 Command Line Options . 400
25.2 Usage . 400

26 IGS2Irit - IGES Data To IRIT file filter 400
26.1 Command Line Options . 400
26.2 Usage . 401

27 Irit23js - Irit to ThreeJS filter 401
27.1 Command Line Options . 401
27.2 Usage . 401
27.3 Advanced Usage . 402

28 Irit23mf - Irit to 3MF (3D Manufacturing Format) filter 403
28.1 Command Line Options . 403
28.2 Usage . 404

29 Irit2Dxf - Irit to DXF (Autocad) filter 404
29.1 Command Line Options . 404
29.2 Usage . 404

30 Irit2Hgl - Irit to HPGL filter 405
30.1 Command Line Options . 405
30.2 Usage . 405

31 Irit2IGS - Irit to IGES filter 406
31.1 Command Line Options . 406
31.2 Usage . 406

32 Irit2inp - IRIT to INP finite element data filter 406
32.1 Command Line Options . 406
32.2 Usage . 407

33 Irit2Iv - IRIT to SGI’s Inventor filter 407
33.1 Command Line Options . 407
33.2 Usage . 408

34 Irit2msh - IRIT to MSH finite element data filter 408
34.1 Command Line Options . 408
34.2 Usage . 408

35 Irit2Nff - IRIT to NFF filter 409
35.1 Command Line Options . 409
35.2 Usage . 409
35.3 Advanced Usage . 410

36 Irit2obj - Irit to Wavefront OBJ filter 411
36.1 Command Line Options . 411
36.2 Usage . 411

37 Irit2Off - Irit to OFF filter 411
37.1 Command Line Options . 412
37.2 Usage . 412

38 Irit2Plg - Irit to PLG (REND386) filter 412
38.1 Command Line Options . 412
38.2 Usage . 413

39 Irit2pov - Irit to POVRAY raytracer filter 413
39.1 Command Line Options . 413
39.2 Usage . 414
39.3 Advanced Usage . 415

40 Irit2Ps - Irit to PS filter 417
40.1 Command Line Options . 417
40.2 Usage . 418
40.3 Advanced Usage . 419

41 Irit2Ray - Irit to RAYSHADE filter 420
41.1 Command Line Options . 420
41.2 Usage . 421
41.3 Advanced Usage . 422

42 Irit2Scn - Irit to SCENE (RTrace) filter 423
42.1 Command Line Options . 423
42.2 Usage . 424
42.3 Advanced Usage . 424

43 Irit2Stl - Irit to STL filter 425
43.1 Command Line Options . 425
43.2 Usage . 426

44 Irit2unity - Irit to UNITY filter 426
44.1 Command Line Options . 426
44.2 Usage . 427
44.3 More on Usage . 427

45 Irit2Wrl - Irit to IGES filter 427
45.1 Command Line Options . 427
45.2 Usage . 428

46 Irit2Wgl - Irit to WGL filter 428
46.1 Command Line Options . 428
46.2 Usage . 429
46.3 Runtime Usage . 429
46.4 Browser Support . 430
46.5 Usefull Links . 430

47 Irit2Xfg - Irit to XFIG filter 430
47.1 Command Line Options . 430
47.2 Usage . 431

48 Obj2irit - Wavefront OBJ format To IRIT data files 431
48.1 Command Line Options . 431
48.2 Usage . 432

49 Off2irit - Geom View Off format To IRIT data files 432
49.1 Command Line Options . 432
49.2 Usage . 432

50 Stl2Irit - Stl (stereo lithograph) data To IRIT file filter 432
50.1 Command Line Options . 432
50.2 Usage . 432

51 Data File Format 433

52 Bugs and Limitations 442

IRIT Solid modeler G. Elber 1

1 Introduction

IRIT is a solid modeler developed for educational purposes. Although small, it is now powerful enough
to create quite complex scenes.

IRIT started as a polygonal solid modeler and was originally developed on an IBM PC under
MSDOS. Version 2.0 was also ported to X11 and version 3.0 to SGI 4D systems. Version 3.0 also
includes quite a few free form curves and surfaces tools. See the UPDATE.NEW file for more detailed
update information. In Version 4.0, the display devices were enhanced, freeform curves and surfaces are
more extensively supported, functions can be defined, and numerous improvement and optimizations
are added.

2 Copyrights

BECAUSE IRIT AND ITS SUPPORTING TOOLS AS DOCUMENTED IN THIS DOCUMENT ARE
LICENSED FREE OF CHARGE (FOR NON COMMERCIAL USE), I PROVIDE ABSOLUTELY NO
WARRANTY, TO THE EXTENT PERMITTED BY APPLICABLE STATE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING, I GERSHON ELBER PROVIDE THE IRIT PROGRAM
AND ITS SUPPORTING TOOLS ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THESE PROGRAMS IS WITH YOU. SHOULD
THE IRIT PROGRAMS PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW WILL GERSHON ELBER, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY LOST PROFITS, LOST MONIES, OR
OTHER SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR A
FAILURE OF THE PROGRAMS TO OPERATE WITH PROGRAMS NOT DISTRIBUTED BY
GERSHON ELBER) THE PROGRAMS, EVEN IF YOU HAVE BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

IRIT is a freeware solid modeler. It is not public domain since we hold copyrights on it. However,
unless you are to sell or attempt to make money from any part of this code and/or any model you
made with this solid modeler, you are free to make anything you want with it. In order to use IRIT
commercially, you must license it first - please contact us in such a case.

IRIT can be compiled and executed on numerous Unix/Linux systems as well as Windows 98/NT/2000/XP/Vist
Mac, OS2, and AmigaDOS. Also, under Windows, IRIT must be installed at a directory/path with no
spaces.

You are not obligated to me or to anyone else in any way by using IRIT. You are encouraged to share
any model you made with it, but the models you made with it are yours, and you have no obligation
to share them. You can use this program and/or any model created with it for non commercial and
non profit purposes only. An acknowledgement on the way the models were created would be nice but
is not required.

3 Command Line Options and Set Up

The IRIT program reads a file called irit.cfg each time it is executed. This file configures the system.
It is a regular text file with comments, so you can edit it and properly modify it for your environment.

IRIT Solid modeler G. Elber 2

This file is being searched for in the directory specified by the IRIT PATH environment variable. On
Windows 64 bits compilation IRIT PATH64 will be searched first, with a fall back to IRIT PATH. For
example ’setenv IRIT PATH /u/gershon/irit/bin/’. If the variable is not set only the current directory
is being searched for irit.cfg.

In addition, if it exists, a file by the name of iritinit.irt will be automatically executed before any
other ’.irt’ file. This file may contain any IRIT command. It is the proper place to put your predefined
functions and procedures, if you have any. This file will be searched much the same way irit.cfg is.
The name of this initialization file may be changed by setting the StartFile entry in the configuration
file. This file is far more important starting at version 4.0, because of the new function and procedure
definition that has been added, and which is used to emulate BEEP, VIEW, and INTERACT, for
example.

The solid modeler can be executed in text mode (see the .cfg and the -t flag below) on virtually
any system with a C compiler.

Under all systems the following environment variables must be set and updated:

IRIT BIN IPC If set, uses binary Inter Process Communication.
IRIT DISPLAY The graphics driver program/options. Must be in path.
IRIT DISPLAY64 The graphics driver program/options for IRIT’s 64 bits

version (windows only). Must be in path.
IRIT LOCALE If set, specifies the language locale. I.e. ”Hebrew”

or ”English” or ”en-US”.
IRIT PARALLEL Should be set to a positive number to enable parallel

execution of IRIT, positive number that also controls
the maximal number of threads to be used.

IRIT PATH Directory with config., help and IRIT’s binary files.
On windows this access the 32 bit version of IRIT.

IRIT PATH64 Directory with config., help and IRIT’s 64 bits version
(windows only)

path Add to path the directory where IRIT’s binaries are.

For example,

set path = ($path /u/gershon/irit/bin)

setenv IRIT_PATH /u/gershon/irit/bin/

setenv IRIT_DISPLAY "xgldrvs -s-"

setenv IRIT_BIN_IPC 1

setenv IRIT_LOCALE English

setenv IRIT_PARALLEL 4

to set /u/gershon/irit/bin as the binary directory and to use the sgi’s gl driver. If IRIT DISPLAY
is not set, the server (i.e., the IRIT program) will prompt and wait for you to run a client (i.e., a
display driver). if IRIT PATH is not set, none of the configuration files, nor the help file will be found.

If IRIT BIN IPC is not set, text based IPC is used, which is far slower. There is no real reason not
to use IRIT BIN IPC, unless it does not work for you, for some reason.

In addition, the following optional environment variables may be set.

IRIT Solid modeler G. Elber 3

IRIT MALLOC If set, apply dynamic memory consistency testing.
Programs will execute much slower in this mode.

IRIT MALLOC ID Sets the allocation unique ID when program will scream
(abort) once this pointer is allocated, if IRIT MALLOC
is set.

IRIT NO SIGNALS If set, no signals are caught by IRIT.
IRIT SERVER HOST Internet Name of IRIT server (used by graphics driver).
IRIT SERVER PORT Used internally to the TCP socket number. Should not

be set by users.
IRIT TIME OUT Integer (seconds) for timing out when trying

to execute a display device from IRIT. Default is 10
seconds.

IRIT INCLUDE A semicolon separated list of directories, in which to
look for the irt files to include. See INCLUDE command.

LD LIBRARY PATH If shared libraries are created, this variable must be
updated to point to the shared libraries’ directory.

For example,

setenv IRIT_MALLOC 1

setenv IRIT_MALLOC_ID 1234567890

setenv IRIT_NO_SIGNALS 1

setenv IRIT_SERVER_HOST irit.cs.technion.ac.il

setenv IRIT_INCLUDE "/d2/gershon/irit/irit/scripts;/tmp"

IRIT MALLOC is useful for programmers, or when reporting a memory fatal error occurrence.
This variable, when set as a non zero value, will activate the following (hexadecimal bit settings with
any combination of the following):

0x01 A test for overwriting before the dynamic memory
is allocated or immediately after it. Cheap in time.

0x02 Savings of all allocated objects in a table for the
detection of freeing unallocated objects and consistency
of the entire dynamic memory. Time expensive.

0x04 Zeros every freed object, once it is freed.
0x08 On Windows environments - enables CrtCheckMemory checks

every malloc/free, in debug compilation modes.
0x10 On Windows environments - enables CrtCheckMemory checks

every 16 mallocs/frees, in debug compilation modes.
0x20 On Windows environments - keeps complete call stack info

on every malloc, in debug compilation modes.

IRIT NO SIGNALS is also useful for debugging when contorl-C is used within a debugger. The
IRIT SERVER HOST/PORT controls the server/client (IRIT/Display device) communication.

IRIT SERVER HOST and IRIT SERVER PORT are used in the unix and Window version of IRIT.
See the section on graphics drivers for more details.
A session can be logged into a file as set via LogFile in the configuration file. See also the LOGFILE

command.
The following command line options are available:

IRIT Solid modeler G. Elber 4

IRIT [-t] [-s] [-g] [-q] [-i] [-z] {[-m ...]} [file.irt]

-t Puts IRIT into text mode. No graphics will be displayed and
the display commands will be ignored. This is useful when
one needs to execute an IRIT file to create data on a tty
device...

-s Run a Script and quit without prompting to stdin.
-g IRIT under GUI mode. Should not be used by end users.
-q Quiet mode with no regular output to stdout.
-i IRIT under Interactive mode. Should not be used by end users.
-z Prints usage message and current configuration/version

information.
-m Optional option... If IRIT is compiled for debugging, allows

setting three addition parameters of trap pointer, search
pointer, and abort counter.

file.irt A file to invoke directly instead of waiting to input from
stdin.

3.1 IBM PC OS2 Specific Set Up

Under OS2 the IRIT DISPLAY environment variable must be set (if set) to os2drvs.exe without any
option (-s- will be passed automatically). os2drvs.exe must be in a directory that is in the PATH envi-
ronment variable. IRIT BIN IPC can be used to signal binary IPC which is faster. IRIT PARALLEL
should all be set in a similar way to the Unix specific setup. Here is a complete example:

set IRIT_PATH=c:\irit\bin\

set IRIT_DISPLAY=os2drvs -s-

set IRIT_BIN_IPC=1

set IRIT_LOCALE=English

set IRIT_PARALLEL=4

assuming the directory specified by IRIT PATH holds the executables of IRIT and is in PATH.
If IRIT BIN IPC is not set, text based IPC is used which is far slower. There is no real reason not

to use IRIT BIN IPC unless it does not work for you, for some reason.
The OS2 executables are typically built using the EMX port of gnu C compiler. The distribution

of the executables does not include the EMX run time library and any attempt to run IRIT will fail.
You will get an error message such as ”File EMX does not exist”. You can get the run time from

ftp to ftp-os2.nmsu.edu (aliased also as hobbes.NMSU.Edu) cd to os2/unix/emx09c (or a newer
version number/level) get emxrt.zip and place its dlls in a place they would be found.

3.2 Window 95/98/NT/2000/XP/7/10 Specific Set Up

The windows version uses sockets and is, in this respect, similar to the Unix port. The envirnoment
variables IRIT DISPLAY, IRIT SERVER HOST, IRIT BIN IPC, and IRIT PARALLEL should all be
set in a similar way to the Unix specific setup. As a direct result, the server (IRIT) and the display
device can run on different hosts. For example, the server might be running on a windows system while
the display device will be running on an SGI4D, exploiting the graphic’s hardware capabilities. Here
is a complete example:

IRIT Solid modeler G. Elber 5

set IRIT_PATH=c:\irit\bin\

set IRIT_DISPLAY=wntgdrvs -s-

set IRIT_BIN_IPC=1

set IRIT_LOCALE=English

set IRIT_PARALLEL=4

Also, under Windows, IRIT must be installed in a directory/path with no spaces.

3.3 Unix Specific Set Up

Under UNIX using X11 (x11drvs driver), add the following options to your .Xdefaults. Most are self
explanatory. The Trans attributes control the transformation window, while the View attributes control
the view window. SubWin attributes control the subwindows within the transformation window.

#if COLOR
irit*Trans*BackGround: NavyBlue
irit*Trans*BorderColor: Red
irit*Trans*BorderWidth: 3
irit*Trans*TextColor: Yellow
irit*Trans*SubWin*BackGround: DarkGreen
irit*Trans*SubWin*BorderColor: Magenta
irit*Trans*Geometry: =150x500+500+0
irit*Trans*CursorColor: Green
irit*View*BackGround: NavyBlue
irit*View*BorderColor: Red
irit*View*BorderWidth: 3
irit*View*Geometry: =500x500+0+0
irit*View*CursorColor: Red
irit*MaxColors: 15
#else
irit*Trans*Geometry: =150x500+500+0
irit*Trans*BackGround: Black
irit*View*Geometry: =500x500+0+0
irit*View*BackGround: Black
irit*MaxColors: 1
#endif

4 First Usage

Commands to IRIT are entered using a textual interface, usually from the same window from which
the program was executed.

Some important commands to begin with are:
1. include(”file.irt”); - will execute the commands in file.irt. Note include can be recursive up to

10 levels. To execute the demo (demo.irt) simply type ’include(”demo.irt”);’. Another way to run the
demo is by typing demo(); which is a predefined procedure defined in iritinit.irt.

2. help(””); - will print all available commands and how to get help on them. A file called irit.hlp
will be searched as irit.cfg is being searched (see above), to provide the help.

IRIT Solid modeler G. Elber 6

3. exit(); - close everything and exit IRIT.
Most operators are overloaded. This means that you can multiply two scalars (numbers), or two

vectors, or even two matrices, with the same multiplication operator (∗). To get the on-line help on
the operator ’∗’, type ’help(”∗”);’

The best way to learn this program (as any other program...) is by trying it. Print the manual and
study each of the commands available. Study the demo programs (∗.irt) provided, as well.

The ”best” mode in which to use IRIT is via the emacs editor. With this distribution an emacs
mode for IRIT files (irt postfix) is provided (irit.el). Make your .emacs load this file automatically.
Loading file.irt will switch emacs into an IRIT mode that supports the following keystrokes:

Meta-E Executes the current line
Meta-R Executes the current Region (Between Cursor and Mark)
Meta-S Executes a single line from input buffer
Meta-H Prints IRIT help on the current WORD the point is on using ’help(”WORD”);’

The first time one of the above keystrokes is hit, emacs will fork an IRIT process so that IRIT’S stdin
is controlled via the above commands. This emacs mode was tested under various Unix environments,
under OS2 2.x/3.x, and under Windows 95/98/NT/2000/XP/7/10.

5 Line Editing

The IRIT interpreter provides full line editing capabilities. The following are the available control
options:

^a Beginning of line
^e End of line
^f Forward one character
^b Backward one character
^d Delete current character
^h (Backspace) Delete backward one character
^i (Tab) Toggles overwrite/insert mode
^k Kill to end of line
^p Get previous history line
^n Get next history line
^j (LineFeed) Done with this line

Only lines entered from stdin will enter the history queue. The above control capabilities are fully
configurable via the irit.cfg configuration file.

6 Data Types

These are the Data Types recognized by the solid modeler. They are also used to define the calling
sequences of the different functions below:

IRIT Solid modeler G. Elber 7

ConstantType Scalar real type that cannot be modified.
NumericType Scalar real type.
VectorType 3D real type vector.
PointType 3D real type point.
CtlPtType Control point of a freeform curve or surface.
PlaneType 3D real type plane.
MatrixType 4 by 4 matrix (homogeneous transformation matrix).
PolygonType Object consists of polygons.
PolylineType Object consists of polylines.
CurveType Object consists of curves.
SurfaceType Object consists of surfaces.
TrimSrfType Object consists of trimmed surfaces.
TriSrfType Object consists of triangular surfaces
TrivarType Object consists of trivariate functions.
MultivarType Object consists of multivariate functions.
FreeformType One of CurveType, SurfaceType, TrimSrfType,

TrivarType, MultivarType, TriSrfType.
GeometricType One of Polygon/lineType, FreeformType.
InstanceType Object with a GeometryType and a Transformation.
GeometricTreeType A list of GeometricTypes or GeometricTreeTypes.
StringType Sequence of chars within double quotes - ”A string”.

Current implementation is limited to 80 chars.
AnyType Any of the above.
ListType List of (any of the above type) objects. List

size is dynamically increased, as needed.

Although points and vectors are not the same, IRIT does not distinguish between them, most of
the time. In this future this might change.

7 Commands summary

These are all the commands and operators supported by the IRIT Solid Modeler:

IRIT Solid modeler G. Elber 8

+ BSCTCYLSPR CNRMLCRV DUALITY HOMOMAT
− BSCTPLNLN CNVXHULL DVLPSTRIP IF
∗ BSCTPLNPT COERCE ELLIPSE3PT ILOFFSET
/ BSCTSPRLN COFFSET ERROR IMAGEFUNC
^ BSCTSPRPL COLOR EUCOFSTONSRF IMPLCTRANS
= BSCTSPRPT COMMENT EUCSPRLONSRF INCLUDE
== BSCTSPRSPR COMPOSE EVOLUTE INSERTPOLY
! = BSCTTRSPT CON2 EXEC INSTANCE
< BSCTTRSSPR CONE EXIT INTERACT
> BSCTTRSTRS CONICSEC EXP IQUERY
<= BSP2BZR CONTOUR EXPLODE IRITSTATE
>= BZR2BSP CONVEX EXTRUDE ISGEOM
ABS C2CONTACT COORD FFCMPCRVS ISOCLINE
ACCESSANLZ CALPHASECTOR COS FFCOMPAT JIGSAWPUZZLE
ACOS CANGLEMAP COVERISO FFCTLPTS KNOTCLEAN
ADWIDTH CARCLEN COVERPT FFEXTEND KNOTREMOVE
ALGPROD CAREA CPATTR FFEXTREMA LINTERP
ALGSUM CARRANGMNT CPINCLUDE FFEXTREME LIST
AMFIBER3AXIS CARNGMNT2 CPOLY FFGTYPE LN
ANALYFIT CBEZIER CPOWER FFKNTLNS LOAD
ANIMEVAL CBIARCS CRAISE FFKNTVEC LOFFSET
ANTIPODAL CBISECTOR2D CRC2CRVTAN FFMATCH LOG
AOFFSET CBISECTOR3D CREDUCE FFMERGE LOGFILE
ARC CBSPLINE CREFINE FFMESH LOWBZRFIT
ARC360 CCINTER CREGION FFMSIZE MAP3PT2EQL
AREA CCRVTR CREPARAM FFORDER MATDECOMP
AREPARAM CCRVTR1PT CROSSEC FFPOLES MATDECOMP2
ASIN CCRVTREVAL CRV2TANS FFPTDIST MATRECOMP
ATAN CCUBICS CRVBUILD FFPTTYPE MATPOSDIR
ATAN2 CDERIVE CRVC1RND FFSPLTPOLES MAXEDGELEN
ATTRIB CDIVIDE CRVCOVER FFSPLIT MBEZIER
ATTRPROP CEDITPT CRVKERNEL FITPMODEL MBISECTOR
ATTRVPROP CENVOFF CRVLNDST FINDATTR MBSPLINE
AWIDTH CEVAL CRVNET2TILE FIXPLGEOM MDERIVE
BBOX CEXTREMES CRVPTDST FIXPLNRML MDIVIDE
BELTCURVE CFNCRVTR CRVPTTAN FLATTENHIER MDLFILLET
BFROM2IMG CHDIR CSINE FLOOR MERGEATTR
BFROM3IMG CHELIX CSPIRAL FMOD MERGELIST
BFZEROS CIEXTREME CSRFPROJ FNFREE MERGEPLLN
BLND2SRFS CINFLECT CSURFACE FOR MERGEPOLY
BLHERMITE CINTERP CTANGENT FPRINTF MERGETYPE
BLSHERMITE CINTERP2 CTLPT FREE MESHSIZE
BLOSSOM CINTEG CTRIMSRF FUNCTION MEVAL
BOOLONE CIRCLE CTRLCYCLE GBOX MFROM2IMG
BOOLSUM CIRCPACK CUBICCRVS GEAR2DSWEEP MFROM3IMG
BOUNDARY CIRCPOLY CVIEWMAP GETATTR MFROMMESH
BOX CLNTCLOSE CVISIBLE GETLINE MFROMMV
BSCTCONCN2 CLNTCRSR CYLIN GETNAME MICROBREPSTRCT
BSCTCONCON CLNTEXEC CZEROS GGINTER MICROSLICE
BSCTCONCYL CLNTREAD DEPTHPEEL GPOINTLIST MICROSTRCT
BSCTCONLN CLNTWRITE DIST2FF GPOLYGON MICROTILE
BSCTCONPL CMAT2D DITHERIMAGE GPOLYLINE MICROVMSTRCT
BSCTCONPT CMESH DITHERWIRE HAUSDORFF MMERGE
BSCTCONSPR CMOEBIUS DSTPTLN HAUSDRPTS MOFFSET
BSCTCYLCYL CMORPH DSTPTPLN HELP MOMENT
BSCTCYLPL CMULTIRES DSTLNLN HERMITE MPOWER
BSCTCYLPT CNORMAL DTRBYCRVS HOBERMAN MPROMOTE

IRIT Solid modeler G. Elber 9

MRAISE PRULEDALG SETCOVER SURFPREV2 TREPARAM
MRCHCUBE pSELFINTER SETNAME SURFREV TREVERSE
MREFINE PSUBDIV SEVAL SURFREVAXS TRIANGL
MREGION PT3BARY SFLECNODAL SURFREV2 TRIMSRF
MREPARAM PTHMSPR SFOCAL SURFREVAX2 TRMSRFS
MREVERSE PTLNPLN SFROMCRVS SVISIBLE TRUSSLATTICE
MSCIRC PTPTLN SFXCRVTRLN SVOLUME TSBEZIER
MSLEEP PTREGISTER SGAUSS SWEEPSRF TSBSPLINE
MSCONE PTS2PLLN SILHOUETTE SWEEPTV TSDERIVE
MSSPHERE PTS2PLYS SIN SWPSCLSRF TSEVAL
MUNIVZERO PTSLNLN SINTERP SWPSCLTV TSGREGORY
MVCONTACT QUADCRVS SINTPCRVS SWUNGASUM TSNORMAL
MVEXPLICIT QUADRIC SIZEOF SYMBCPROD TVADJCNT
MVINTER RANDOM SKEL2DINT SYMBDIFF TVCRVS2IMP
MZERO RAYTRAPS SLINTER SYMBDPROD TVFILLET
NCCNTRPATH RFLCTLN SMEAN SYMBIPROD TVIMPJACOB
NCPCKTPATH RFLCTMAT SMERGE SYMBPROD TVJACOBIAN
NIL NREF RESET SMESH SYMBSUM TVLOAD
NRMLCONE RMATTR SMOEBIUS SYSTEM TVPREV
NTH ROCKETFUEL SMOMENTS TADAPISO TVPREV2
OFFSET ROTVEC SMOOTHNRML TAN TVOLUME
ORTHOTOMC ROTV2V SMORPH TBEZIER TVREV
PATTRIB ROTX SNOC TBOOLONE TVREV2
PAUSE ROTY SNORMAL TBOOLSUM TVS2FILLET
PCIRCLE ROTZ SNRMLSRF TBSPLINE TVTTFILLET
PCIRCAPX ROTZ2V SPARABOLC TCRVTR TVZRJACOB
PCRVTR ROTZ2V2 SPHERE TDEFORM UNITETEXTURE
PDOMAIN RRINTER SPHEREPACK TDERIVE UNSTRCTGRID
PINTERP RULEDFIT SPLITLST TDIVIDE UNTRIM
PIMPRTNC RULEDSRF SQRT TEDITPT UVPOLY
PLANE RULEDTV SRADCRVTR TEVAL VARLIST
PLANECLIP RULEDVMDL SRAISE TEXTGEOM VECTOR
PLN3PTS SACCESS SRAYCLIP TEXT2GEOM VERIFYSTATE
PLYROUND SADAPISO SREFINE TEXTLAYSHP VIEW
PMORPH SASPCTGRPH SREGION TEXTWARP VIEWOBJ
PNORMAL SASYMPEVAL SREPARAM TFROMSRFS VIEWSET
POINT SAVE SREVERSE TILEPACK VMBLENDPLN
POLARSIL SBEZIER SRF2TANS TINTERP VMBLENDPT
POLY SBISECTOR SRF3TANS TINTPSRFS VMDLFILLET
POLYHOLES SBSPLINE SRFFFORM TIME VMDLREV
POLYMESH2TV SCALE SRFLNDST THISOBJ VMDLSWP
POWER SCINTER SRFKERNEL TMORPH VMENCFIELD
PPINCLUDE SCRVTR SRFORTHONET TNSCRCR VMSLICE
PPINTER SCRVTREVAL SRFPTDST TOFFSET VOLUME
PPROPFTCH SDDMMAP SRINTER TOOLSWEP VOXELIZE
PRINTER SDERIVE SSINTER TORUS VOXELOPER
PRINTF SDIVCRV SSINTR2 TPINCLUDE WHILE
PRINTFILE SDIVIDE STANGENT TRAISE ZCOLLIDE
PRISA SDVLPCRV STRIMSRF TRANS ZTEXTRUDE
PROCEDURE SEDITPT STRIVAR TREFINE
PROJMAT SELFINTER SURFPREV TREGION

IRIT Solid modeler G. Elber 10

8 Functions and Variables

This section lists all the functions supported by the IRIT system according to their classes - mostly,
the object type they return.

Functions that return a NumericType:

ABS COS EXP POWER THISOBJ
ACOS CLNTEXEC FLOOR RANDOM VOLUME
AREA CPOLY FMOD SIN
ASIN DSTPTLN LN SIZEOF
ATAN DSTPTPLN LOG SQRT
ATAN2 DSTLNLN MESHSIZE TAN

Functions that return a GeometricType:

IRIT Solid modeler G. Elber 11

ACCESSANLZ CANGLEMAP COORD FFEXTEND MATDECOMP2
ALGPROD CARCLEN COVERISO FFEXTREMA MATRECOMP
ALGSUM CAREA COVERPT FFEXTREME MAXEDGELEN
AMFIBER3AXIS CARRANGMNT CPINCLUDE FFGTYPE MBEZIER
ANALYFIT CARNGMNT2 CPOWER FFKNTLNS MBISECTOR
ANIMEVAL CBEZIER CRAISE FFKNTVEC MBSPLINE
ANTIPODAL CBIARCS CRC2CRVTAN FFMATCH MDERIVE
AOFFSET CBISECTOR2D CREDUCE FFMERGE MDIVIDE
ARC CBISECTOR3D CREFINE FFMESH MDLFILLET
ARC360 CBSPLINE CREGION FFMSIZE MERGEATTR
AREPARAM CCINTER CREPARAM FFORDER MERGELIST
BBOX CCRVTR CROSSEC FFPOLES MERGEPLLN
BELTCURVE CCRVTR1PT CRV2TANS FFPTDIST MERGEPOLY
BFROM2IMG CCRVTREVAL CRVBUILD FFPTTYPE MERGETYPE
BFROM3IMG CCUBICS CRVC1RND FFKNTLNS MEVAL
BFZEROS CDERIVE CRVCOVER FFSPLIT MFROM2IMG
BLND2SRFS CDIVIDE CRVKERNEL FITPMODEL MFROM3IMG
BLHERMITE CEDITPT CRVLNDST FINDATTR MFROMMESH
BLSHERMITE CENVOFF CRVNET2TILE FIXPLGEOM MFROMMV
BLOSSOM CEVAL CRVPTDST FIXPLNRML MICROBREPSTRCT
BOOLONE CEXTREMES CRVPTTAN FLATTENHIER MICROSLICE
BOOLSUM CFNCRVTR CSINE GBOX MICROSTRCT
BOUNDARY CHELIX CSPIRAL GEAR2DSWEEP MICROTILE
BOX CIEXTREME CSRFPROJ GETATTR MICROVMSTRCT
BSCTCONCN2 CINFLECT CSURFACE GETLINE MMERGE
BSCTCONCON CINTERP CTANGENT GETNAME MOFFSET
BSCTCONCYL CINTERP2 CTLPT GGINTER MOMENT
BSCTCONLN CIRCLE CTRIMSRF GPOINTLIST MPOWER
BSCTCONPL CIRCPACK CTRLCYCLE GPOLYGON MPROMOTE
BSCTCONPT CIRCPOLY CUBICCRVS GPOLYLINE MRAISE
BSCTCONSPR CLNTCRSR CVIEWMAP HAUSDORFF MRCHCUBE
BSCTCYLCYL CLNTREAD CVISIBLE HAUSDRPTS MREFINE
BSCTCYLPL CMAT2D CYLIN HERMITE MREGION
BSCTCYLPT CMESH CZEROS HOBERMAN MREPARAM
BSCTCYLSPR CMOEBIUS DIST2FF ILOFFSET MREVERSE
BSCTPLNLN CMORPH DITHERWIRE IMAGEFUNC MSCIRC
BSCTPLNPT CMULTIRES DTRBYCRVS IMPLCTRANS MSCONE
BSCTSPRLN CNORMAL DUALITY INSTANCE MSSPHERE
BSCTSPRPL CNRMLCRV DVLPSTRIP IRITSTATE MUNIVZERO
BSCTSPRPT CNVXHULL ELLIPSE3PT ISGEOM MVCONTACT
BSCTSPRSPR COERCE EUCOFSTONSRF ISOCLINE MVEXPLICIT
BSCTTRSPT COFFSET EUCSPRLONSRF JIGSAWPUZZLE MVINTER
BSCTTRSSPR COMPOSE EVOLUTE KNOTCLEAN MZERO
BSCTTRSTRS CON2 EXPLODE KNOTREMOVE NCCNTRPATH
BSP2BZR CONE EXTRUDE LINTERP NCPCKTPATH
BZR2BSP CONICSEC FFCMPCRVS LOFFSET NIL
C2CONTACT CONTOUR FFCOMPAT LOWBZRFIT
CALPHASECTOR CONVEX FFCTLPTS MATDECOMP

IRIT Solid modeler G. Elber 12

OFFSET RFLCTLN SMOEBIUS SWPSCLSRF TRIMSRF
ORTHOTOMC ROCKETFUEL SMOMENTS SWPSCLTV TRMSRFS
PATTRIB RRINTER SMOOTHNRML SWUNGASUM TRUSSLATTICE
PCIRCLE RULEDFIT SMORPH SYMBCPROD TSBEZIER
PCRVTR RULEDSRF SNORMAL SYMBDIFF TSBSPLINE
PDOMAIN RULEDTV SNRMLSRF SYMBDPROD TSDERIVE
PINTERP RULEDVMDL SPARABOLC SYMBIPROD TSEVAL
PIMPRTNC SACCESS SPHERE SYMBPROD TSGREGORY
PLANE SADAPISO SPHEREPACK SYMBSUM TSNORMAL
PLANECLIP SASPCTGRPH SPLITLST TADAPISO TVADJCNT
PLN3PTS SASYMPEVAL SRADCRVTR TBEZIER TVFILLET
PLYROUND SBEZIER SRAISE TBOOLONE TVIMPJACOB
PMORPH SBISECTOR SRAYCLIP TBOOLSUM TVJACOBIAN
PNORMAL SBSPLINE SREFINE TBSPLINE TVLOAD
POINT SCINTER SREGION TCRVTR TVPREV
POLARSIL SCRVTR SREPARAM TDEFORM TVPREV2
POLY SCRVTREVAL SREVERSE TDERIVE TVOLUME
POLYMESH2TV SDDMMAP SRF2TANS TDIVIDE TVREV
POLYHOLES SDERIVE SRF3TANS TEDITPT TVREV2
PPINCLUDE SDIVCRV SRFFFORM TEVAL TVS2FILLET
PPINTER SDIVIDE SRFLNDST TEXTGEOM TVTTFILLET
PPROPFTCH SDVLPCRV SRFKERNEL TEXT2GEOM TVZRJACOB
PRINTER SEDITPT SRFORTHONET TEXTLAYSHP UNITETEXTURE
PRINTFILE SELFINTER SRFPTDST TEXTWARP UNSTRCTGRID
PRISA SETCOVER SRINTER TFROMSRFS UNTRIM
PROCEDURE SEVAL SSINTER TILEPACK UVPOLY
PRULEDALG SFLECNODAL SSINTR2 TINTERP VMBLENDPLN
pSELFINTER SFOCAL STANGENT TINTPSRFS VMBLENDPT
PSUBDIV SFROMCRVS STRIMSRF TMORPH VMDLFILLET
PT3BARY SFXCRVTRLN STRIVAR TNSCRCR VMDLREV
PTHMSPR SINTPCRVS SURFPREV TOFFSET VMDLSWP
PTLNPLN SGAUSS SURFPREV2 TOOLSWEP VMENCFIELD
PTPTLN SILHOUETTE SURFREV TORUS VMSLICE
PTREGISTER SINTERP SURFREVAXS TPINCLUDE VOXELIZE
PTS2PLLN SINTPCRVS SURFREV2 TRAISE VOXELOPER
PTS2PLYS SKEL2DINT SURFREVAX2 TREFINE ZCOLLIDE
PTSLNLN SLINTER SVISIBLE TREGION ZTEXTRUDE
QUADCRVS SMEAN SVOLUME TREPARAM
QUADRIC SMERGE SWEEPSRF TREVERSE
RAYTRAPS SMESH SWEEPTV TRIANGL

Functions that create linear transformation matrices:

HOMOMAT PROJMAT ROTV2V ROTZ SCALE
MAP3PT2EQL RFLCTMAT ROTX ROTZ2V TRANS
MATPOSDIR ROTVEC ROTY ROTZ2V2

Miscellaneous functions:

IRIT Solid modeler G. Elber 13

ADWIDTH DEPTHPEEL IF NTH VARLIST
ATTRIB DITHERIMAGE INCLUDE PAUSE VECTOR
ATTRPROP ERROR INSERTPOLY PRINTF VERIFYSTATE
ATTRVPROP EXEC INTERACT PROCEDURE VIEW
AWIDTH EXIT IQUERY RESET VIEWOBJ
CHDIR FNFREE LIST RMATTR VIEWSET
CLNTCLOSE FPRINTF LOAD SAVE WHILE
CLNTWRITE FOR LOGFILE SETNAME
COLOR FREE MSLEEP SNOC
COMMENT FUNCTION NREF SYSTEM
CPATTR HELP NRMLCONE TIME

Variables that are predefined in the system:

AXES POLY APPROX OPT POLY MERGE COPLANAR
DRAWCTLPT POLY APPROX UV PRSP MAT
FLAT4PLY POLY APPROX TOL RESOLUTION
MACHINE POLY APPROX TRI VIEW MAT

Constants that are predefined in the system:

AMIGA E8 OFF RED
APOLLO E9 ON ROW
BEZIER TYPE FALSE P1 SGI
BLACK GREEN P2 STRING TYPE
BLUE GREGORY TYPE P3 SURFACE TYPE
BSPLINE TYPE HP P4 SUN
CLIENTS ALL IBMOS2 P5 TRIMSRF TYPE
COL KV DISC OPEN P6 TRISRF TYPE
CTLPT TYPE KV FLOAT P7 TRIVAR TYPE
CURVE TYPE KV OPEN P8 TRUE
CYAN KV PERIODIC P9 UNDEF TYPE
CYGWIN LINUX PARAM CENTRIP UNIX
DEPTH LIST TYPE PARAM CHORD UNTRIMMED TYPE
E1 MACOSX PARAM NIELFOL VECTOR TYPE
E2 MAGENTA PARAM UNIFORM VMODEL TYPE
E3 MATRIX TYPE PI WINDOWS
E4 MSDOS PLANE TYPE WHITE
E5 MODEL TYPE POINT TYPE YELLOW
E6 MULTIVAR TYPE POLY TYPE
E7 NUMERIC TYPE POWER TYPE

9 Language description

The front end of the IRIT Solid Modeler is an infix parser that mimics some C language behavior. The
infix operators that are supported are plus (+), minus (-), multiply (*), divide (/), and power (^), for
numeric operators, with the same precedence as in C.

IRIT Solid modeler G. Elber 14

However, unlike the C language, these operators are overloaded, 1 or different action is taken, based
upon the different operands. This means that one can write ’1 + 2’, in which the plus sign denotes
a numeric addition, or one can write ’PolyObj1 + PolyObj2’, in which case the plus sign denotes the
Boolean operation of a union between two geometric objects. The exact way each operator is overloaded
is defined below.

In this environment, reals, integers, and even Booleans, are all represented as real types. Data are
automatically promoted as necessary. For example, the constants TRUE and FALSE are defined as
1.0 and 0.0, respectively.

Each expression is terminated by a semicolon. An expression can be as simple as ’a;’ which prints
the value of variable a, or as complex as:

for (t = 1.1, 0.1, 1.9,

cb1 = csurface(sb, COL, t):

color(cb1, green):

snoc(cb1, cb_all)

);

While an expression is terminated with a semicolon, a colon is used to terminate mini-expressions
within an expression.

Once a complete expression is read in (i.e., a semicolon is detected) and parsed correctly (i.e. no
syntax errors are found), it is executed. Before each operator or a function is executed, parameter type
matching tests are made to make sure the operator can be applied to these operand(s), or that the
function gets the correct set of arguments.

The parser is totally case insensitive, so Obj, obj, and OBJ will refer to the same object, while
MergePoly, MERGEPOLY, and mergePoly will refer to the same function.

Objects (Variables, if you prefer) need not be declared. Simply use them when you need them.
Object names may be any alpha-numeric (and underscore) string of at most 30 characters. When
assigned to an old object, the old object will be automatically deleted and if necessary, its type will be
modified on the fly.

Example:

V = sin(45 * pi / 180.0);

V = V * vector(1, 2, 3);

V = V * rotx(90);

V = V * V;

will assign to V a NumericType equal to the sine of 45 degrees, the VectorType (1, 2, 3) scaled by
the sine of 45, rotate that vector around the X axis by 90 degrees, and finally a NumericType which is
the dot (inner) product of V with itself.

The parser will read from stdin, unless a file is specified on the command line or an INCLUDE
command is executed. In both cases, when the end of file is encountered, the parser will again wait for
input from stdin. In order to execute a file and quit at the end of the file, put an EXIT command as
the last command in the file.

1In fact the C language does support overloaded operators to some extent: ’1 + 2’ and ’1.0 + 2.0’ implies invocation
of two different actions.

IRIT Solid modeler G. Elber 15

10 Operator overloading

The basic operators +, −, ∗, /, and ^ are overloaded. This section describes what action is taken by
each of these operators depending on its arguments.

10.1 Overloading +

The + operator is overloaded above the following domains:

NumericType + NumericType -> NumericType

PointType + PolygonType -> PolygonType (Point polyline profiling)

PointType + CurveType -> CurveType (Prepend point to curve)

VectorType + VectorType -> VectorType (Vector addition)

MatrixType + MatrixType -> MatrixType (Matrix addition)

PolygonType + PolygonType -> PolygonType (Polygonal Boolean UNION operation)

PolygonType + SurfaceType -> PolygonType (Polygonal Boolean UNION operation)

PolygonType + TrimSrfType -> PolygonType (Polygonal Boolean UNION operation)

CurveType + CurveType -> CurveType (Curve curve profiling)

CurveType + PointType -> CurveType (Append point to curve)

CurveType + CtlPtType -> CurveType (Append point to curve)

CtlPtType + CtlPtType -> CurveType (Create a linear curve)

ListType + ListType -> ListType (Append lists operator)

StringType + StringType -> StringType (String concat)

StringType + RealType -> StringType (String concat, real as int string)

ModelType + ModelType -> ModelType (Freeform Boolean UNION operation)

SurfaceType + ModelType -> ModelType (Freeform Boolean UNION operation)

TrimSrfType + ModelType -> ModelType (Freeform Boolean UNION operation)

VModelType + vModelType -> VModelType (Vol model Boolean UNION operation)

Note: Boolean UNION of two disjoint objects (no common volume) will result in the two objects
being combined. It is the USER’s responsibility to make sure that the non intersecting objects are also
disjoint - this system only tests for no intersection. Boolean UNION of two polyline objects will merge
the list of polylines.

10.2 Overloading −
The − operator is overloaded above the following domains:

As a binary operator:

NumericType - NumericType -> NumericType

VectorType - VectorType -> VectorType (Vectoric difference)

MatrixType - MatrixType -> MatrixType (Matrix difference)

PolygonType - PolygonType -> PolygonType (Polygonal Boolean SUBTRACT op.)

PolygonType - SurfaceType -> PolygonType (Polygonal Boolean SUBTRACT op.)

PolygonType - TrimSrfType -> PolygonType (Polygonal Boolean SUBTRACT op.)

CurveType - CurveType -> CurveType (2D (XY) Boolean subtraction)

ModelType - ModelType -> ModelType (Freeform Boolean SUBTRACT op.)

SurfaceType - ModelType -> ModelType (Freeform Boolean SUBTRACT op.)

TrimSrfType - ModelType -> ModelType (Freeform Boolean SUBTRACT op.)

VModelType - VModelType -> VodelType (Vol model Boolean SUBTRACT op.)

IRIT Solid modeler G. Elber 16

As a unary operator:

- NumericType -> NumericType

- PointType -> PointType (Scale vector by -1)

- VectorType -> VectorType (Scale vector by -1)

- CtlPtType -> CtlPtType (Scale vector by -1)

- PlaneType -> PlaneType (Scale vector by -1)

- StringType -> StringType (Reverse the order of string’s characters)

- MatrixType -> MatrixType (Scale matrix by -1)

- PolygonType -> PolygonType (Boolean NEGATION operation)

- CurveType -> CurveType (Curve parameterization is reversed)

- SurfaceType -> SurfaceType (Surface parameterization is reversed)

- TrimSrfType -> TrimSrfType (Trim surface parameterization is reversed)

- ModelType -> ModelType (Model inside/outside flip)

- VModelType -> VModelType (Volumetric Model inside/outside flip)

Note: Boolean SUBTRACT of two disjoint objects (no common volume) will result in an empty
object. For both a curve and a surface parameterization, reverse operation (binary minus) causes the
object normal to be flipped as a side effect.

10.3 Overloading ∗
The ∗ operator is overloaded above the following domains:

NumericType * NumericType -> NumericType

VectorType * NumericType -> VectorType (Vector scaling)

VectorType * CurveType -> CurveType (Inner product projection)

VectorType * SurfaceType -> SurfaceType (Inner product projection)

VectorType * VectorType -> NumericType (Inner product)

PlaneType * MatrixType -> PlaneType (Plane transformation)

MatrixType * NumericType -> MatrixType (Matrix Scaling)

MatrixType * PointType -> PointType (Point transformation)

MatrixType * CtlPtType -> CtlPtType (Ctl Point transformation)

MatrixType * VectorType -> VectorType (Vector transformation)

MatrixType * MatrixType -> MatrixType (Matrix multiplication)

MatrixType * GeometricType -> GeometricType (Object transformation)

MatrixType * ListType -> ListType (Object hierarchy transform.)

PolygonType * PolygonType -> PolygonType (Polygonal Boolean INTER. op.)

PolygonType * SurfaceType -> PolygonType (Polygonal Boolean INTER. op.)

PolygonType * TrimSrfType -> PolygonType (Polygonal Boolean INTER. op.)

CurveType * CurveType -> CurveType (2D (XY) Boolean intersection)

InstanceType * MatrixType -> InstanceType (Transform of Instance’s matrix)

ModelType * ModelType -> ModelType (Freeform Boolean INTER. op.)

SurfaceType * ModelType -> ModelType (Freeform Boolean INTER. op.)

TrimSrfType * ModelType -> ModelType (Freeform Boolean INTER. op.)

VModelType * VModelType -> VModelType (Vol model Boolean INTER. op.)

Note: Boolean INTERSECTION of two disjoint objects (no common volume) will result in an empty
object. Object hierarchy transform transforms any transformable object (GeometricType) found in the

IRIT Solid modeler G. Elber 17

list recursively. Boolean INTERSECTION of two planar (XY plane) polyline objects will compute the
intersection points of the two lists of polylines. Be aware that a plane multiplied by a matrix does not
always do what you might expected.

10.4 Overloading /

The / operator is overloaded above the following domains:

NumericType / NumericType -> NumericType

PointType / PointType -> PolyType (Polyline between two pts)

PointType / PolygonType -> PolygonType (Point polyline profiling)

PolygonType / PolygonType -> PolygonType (Polygonal Boolean CUT operation)

PolygonType / SurfaceType -> PolygonType (Polygonal Boolean CUT operation)

PolygonType / TrimSrfType -> PolygonType (Polygonal Boolean CUT operation)

ModelType / ModelType -> ModelType (Freeform Boolean CUT operation)

SurfaceType / ModelType -> ModelType (Freeform Boolean CUT operation)

TrimSrfType / ModelType -> ModelType (Freeform Boolean CUT operation)

Note: Boolean CUT of two disjoint objects (no common volume) will result with an empty object.

10.5 Overloading ˆ

The ^ operator is overloaded above the following domains:

NumericType ^ NumericType -> NumericType

VectorType ^ VectorType -> VectorType (Cross product)

MatrixType ^ NumericType -> MatrixType (Matrix to the (int) power)

PolygonType ^ PolygonType -> PolygonType (Boolean MERGE operation)

CurveType ^ CurveType -> CurveType (2D (XY) Boolean union)

StringType ^ StringType -> StringType (String concat)

StringType ^ RealType -> StringType (String concat, real as real string)

SurfaceType ^ ModelType -> ModelType (merge srf into model)

TrimSrfType ^ ModelType -> ModelType (merge trimmed srf into model)

ModelType ^ ModelType -> ModelType (merge two models into a new model)

Note: Boolean MERGE simply merges the two sets of polygons without any intersection tests.
Matrix powers must be positive integers or -1 or -2, in which case the matrix inverse (if it exists) or
transpose is computed.

10.6 Overloading Equal (Assignments)

Assignments are allowed as side effects, in any place in an expression. If ”Expr” is an expression, then
”var = Expr” is the exact same expression with the side effect of setting Var to that value. There is
no guarantee of the order of evaluation, so using Vars that are set within the same expression is a bad
practice. Use parentheses to force the order of evaluation, i.e., ”(var = Expr)”.

IRIT Solid modeler G. Elber 18

10.7 Comparison operators ==, ! =, <, >, <=, >=

The conditional comparison operators can be applied to the following domains (o for a comparison
operator):

NumericType o NumericType -> NumericType

StringType o StringType -> NumericType

PointType o PointType -> NumericType

VectorType o VectorType -> NumericType

PlaneType o PlaneType -> NumericType

CtlPtType o CtlPtType -> NumericType

MatrixType o MatrixType -> NumericType

CurveType o CurveType -> NumericType

SurfaceType o SurfaceType -> NumericType

TrivarType o TrivarType -> NumericType

TriSrfType o TriSrfType -> NumericType

MultivarType o MultivarType -> NumericType

The returned NumericType is non-zero if the condition holds, or zero if not. The comparison
operators other than == and ! = can be used on NumericTypes and StringType only.

10.8 Logical operators &&, ‖‖, !
Complex logical expressions can be defined using the logical and (&&), logical or (||) and logical not
(!). These operators can be applied to NumericTypes that are considered Boolean results. That is,
true for a non-zero value, and false otherwise. The returned NumericType is true if both operands
are true for the and operator, at least one is true for the or operator, and the operand is false for the
not operator. In all other cases, a false is returned. To make sure logical expressions are readable, the
and and or operators are defined to have the same priority. Use parentheses to disambiguate a logical
expression and to make it more readable.

10.9 Geometric Boolean Operations

The IRIT Solid Modeling System supports Boolean operations between polyhedra objects. Freeform
objects will be automaticaly converted to a polygonal representation when used in Boolean operations.
The +, ∗, and − are overloaded to denote Boolean union, intersection and subtraction when operating
on geometric entities. − can also be used as an unary operator to reverse the object orientation inside
out.

IRIT supports Boolean operations on polyhedra models. A polyhedra based model is simply a
collection of polygons. While a polyhedra is simply a set of polygons, this set must conform to certain
conditions:

• Every polygon has known adjacent polygons, for all its edges.

• The model must be a 2-manifold. That is every edge is shared by exactly two polygons.

• The model is expected to be closed. Actually only the resulting intersection curves must be closed
and the objects participating in the Boleans might be open in unintersecting regions.

• Every polygon has a normal that points into the model. That normal is inside/outside consistent
with its adjacent polygons.

IRIT Solid modeler G. Elber 19

In other words, for every polygon, one can locally determine the inside or the outside of the model.
Moreover, every polygon has neighbors for all its edges, forming a closed object that consistently
delineates inside from outside, globally.

If your input geometry does not adhere to the above constrains, the Boolean operation is likely
to fail. You can enable a special intersection-curves mode that only compute the intersection curves
between the two input objects and does not form the output object. This special model is insensitive
to many of the above constraints so you could use this model to examine the intersection curves and
make sure there are indeed forming closed loops. You can enable this intersection-curves mode via
’iritstate(”intercrv”, true);’. See also IRITSTATE command.

The Boolean operations are set operations conducted between two such models, M1 and M2, that
delineate inside from outside. Boolean Union, Boolean Intersection and Boolean Subtraction are the
three common operations that resemble the exact semantic that is expected, when treating M1 and
M2 as three-dimensional point sets.

Certain attributes are propegated between input and output geometry, when processed through
the Boolean operations module. If the vertices of the input geometry have normals, uv parametric
coordinates (”uvvals” attribute), or rgb colors (”rgb” attribute), they will be propertly propagated
and interpolated through the Booleans. Similarly, an integer ”ID” attribute that is placed on an input
object will propagate into its polygons and all polygons in the output that are part of the input objects
will be carrying this ”ID” attribute.

The Boolean operations can be formulated into a binary tree structure also known as a Constructive
Solid Geometry (CSG) tree. See, for example, Figure 1 for a sequence of Boolean operations on
polyhedra model, defining a Constructive Solid Geometry (CSG) tree.

Example:

resolution = 20;

B = box(vector(-1, -1, -0.25), 2, 1.2, 0.5);

C = con2(vector(0, 0, -1.5), vector(0, 0, 3), 0.7, 0.3);

D = convex(B - C);

E = convex(C - B);

F = convex(B + C);

G = convex(B * C);

tr = rotx(-90) * roty(40) * rotx(-30);

All = list(D * tr * trans(vector(0.6, 0.5, 0.0)),

E * tr * trans(vector(3.0, 0.0, 0.0)),

F * tr * trans(vector(-2.0, 0.0, 0.0)),

G * tr * trans(vector(0.7, -1.0, 0.0)))

* scale(vector(0.25, 0.25, 0.25))

* trans(vector(-0.1, -0.3, 0.0));

view_mat = rotx(0);

view(list(view_mat, All), on);

save("booleans", list(view_mat, All));

This is a complete example of how to compute the union, intersection and both differences of a box
and a truncated cone. The result of this example can be seen in Figure 2 with its hidden lines removed.

IRIT Solid modeler G. Elber 20

B1 C1

S1 = B1 + C1

B2

S2 = S1 −B2 C2

S3 = S2 − C2

Figure 1: A simple example of a polyhedra model, computed as a sequence of several Boolean operation,
presented as a CSG tree.

IRIT Solid modeler G. Elber 21

Figure 2: Geometric Boolean operations between a box and a truncated cone. Shown are union (left),
intersection (bottom center), box minus the cone (top center), and cone minus the box (right).

Special cases can be very difficult to handle when considering Boolean operations. Consider an axes
parallel bounding cube. Consider a second cube rotated α degrees from the first cube. At large angles,
the Boolean operations are fairly simple to compute. Nevertheless, as alpha approaches zero, the
almost coplanar planes of the two intersecting cubes make it very difficult to robustly and consistently
compute their intersection. Figure 3 shows three such examples for α = 10, 1, 0.1 degrees, computed
using IRIT. IRIT itself fails to return a valid result at α = 10−6, complaining about theye inconsistency
of its computation. Proper handling of coplanarity and almost tangent faces, in a robust manner, are
one of the most challenging tasks in computing the Boolean operations.

There are several flags to control the Boolean operations. See IRITSTATE command for the
”InterCrv”, ”InterUV”, ”Coplanar”, and ”PolySort” states.

10.10 Priority of operators

The following table lists the priority of the different operators.

Lowest Operator Name of operator
priority , comma

: colon
&&, || logical and, logical or
=,==, ! =, <=, >=, <,> assignment, equal, not equal, less

equal, greater equal, less, greater
+, - plus, minus
*, / multiply, divide

Highest ^ power
priority -, ! unary minus, logical not

IRIT Solid modeler G. Elber 22

α = 10 degrees α = 1 degree α = 0.1 degrees

Figure 3: Examples of robustness of Boolean Intersection operation. As the rotation anlge approaches
zero, the coplanarity of the intersecting models puts very difficult constraints on the robustness of the
result. In this specific example, using IRIT, the operation fails at angles of 10e-6 and below.

10.11 Grammar

The grammar of the IRIT parser follows guidelines similar to those of the C language for simple
expressions. However, complex statements differ. See the IF, FOR, FUNCTION, and PROCEDURE
below for the usage of these clauses.

11 Function Description

The description below defines the parameters and returned values of the predefined functions in the
system, using the notation of functions in ANSI C. All the functions in the system, in alphabetic order,
are listed are according to their classes.

11.1 NumericType returning functions

11.1.1 ABS

NumericType ABS(NumericType Operand)

returns the absolute value of the given Operand.

11.1.2 ACOS

NumericType ACOS(NumericType Operand)

returns the arc cosine value (in radians) of the given Operand.

IRIT Solid modeler G. Elber 23

11.1.3 AREA

NumericType AREA(PolygonType Object)

or

NumericType AREA(CurveType Object)

returns the area of the given Object (in object units).

11.1.4 ASIN

NumericType ASIN(NumericType Operand)

returns the arc sine value (in radians) of the given Operand.

11.1.5 ATAN

NumericType ATAN(NumericType Operand)

returns the arc tangent value (in radians) of the given Operand.

11.1.6 ATAN2

NumericType ATAN2(NumericType Operand1, NumericType Operand2)

returns the arc tangent value (in radians) of the given ratio: Operand1 / Operand2, over the
whole circle.

11.1.7 COS

NumericType COS(NumericType Operand)

returns the cosine value of the given Operand (in radians).

11.1.8 CLNTEXEC

NumericType CLNTEXEC(StringType ClientName)

Initiate communication channels to a client named ClientName. ClientName is executed by
this function as a sub process. Two communication channels are opened between the IRIT server
and the new client, for read and write. See also CLNTCRSR, CLNTREAD, CLNTWRITE, and
CLNTCLOSE. If ClientName is an empty string, the user is provided with the new communication
port to be used and the server blocks for the user to manually execute the client after setting the proper
IRIT SERVER HOST/PORT environment variables.

Example:

h1 = CLNTEXEC("");

h2 = CLNTEXEC("nuldrvs -s-");

executes two clients, one named nuldrvs while the other one is prompted for by the user. As a
result of the second invokation of CLNTEXEC, the user will be prompted with a message similar to:

IRIT Solid modeler G. Elber 24

Irit: Startup your program - I am waiting...

setenv IRIT_SERVER_PORT 2182

and he/she will need to set the proper environment variable and execute their client manually.

11.1.9 CPOLY

NumericType CPOLY(PolygonType Object)

returns the number of polygons in the given polygonal Object.

11.1.10 DSTPTLN

NumericType DSTPTLN(PointType Pt, PointType LineOrig, VectorType LineRay)

returns the distance between a given point Pt and line LineOrig, LineRay. See also PTPTLN.

11.1.11 DSTPTPLN

NumericType DSTPTPLN(PointType Pt, PlaneType Plane)

returns the distance between a given point Pt and plane Plane.

11.1.12 DSTLNLN

NumericType DSTLNLN(PointType Line1Orig, VectorType Line1Ray,

PointType Line2Orig, VectorType Line2Ray)

returns the distance between two lines defined by point LineiOrig and ray LineiRay. See also
PTSLNLN.

11.1.13 EXP

NumericType EXP(NumericType Operand)

returns the natural exponential value of the given Operand.

11.1.14 FLOOR

NumericType FLOOR(NumericType Operand)

returns the largest integer not greater than the Operand.

11.1.15 FMOD

NumericType FMOD(NumericType Operand, NumericType Mod)

returns the floating point remainder of the division of the Operand by Mod.

IRIT Solid modeler G. Elber 25

11.1.16 LN

NumericType LN(NumericType Operand)

returns the natural logarithm value of the given Operand.

11.1.17 LOG

NumericType LOG(NumericType Operand)

returns the base 10 logarithm value of the given Operand.

11.1.18 MESHSIZE

NumericType MESHSIZE(FreeformType Freeform, ConstantType Direction)

returns the size of the Freeform’s mesh in a Direction, which will be COL, ROW or DEPTH.
For the case of a multivariate Freeform, the Direction is an integer value starting from 0. See also
FFMSIZE. Examples:

Len = MESHSIZE(Crv, COL);

RSize = MESHSIZE(Sphere, ROW);

CSize = MESHSIZE(Sphere, COL);

TVSize = MESHSIZE(TV, COL) * MESHSIZE(TV, ROW) * MESHSIZE(TV, DEPTH);

MVSize1 = MESHSIZE(MV, 1);

11.1.19 POWER

NumericType POWER(NumericType Operand, NumericType Exp)

returns the Operand to the power of Exp.

11.1.20 RANDOM

NumericType RANDOM(NumericType Min, NumericType Max)

returns a randomized value between Min and Max. See also ”RandomInit”, in the IRITSTATE
function.

11.1.21 SIN

NumericType SIN(NumericType Operand)

returns the sine value of the given Operand (in radians).

IRIT Solid modeler G. Elber 26

11.1.22 SIZEOF

NumericType SIZEOF(PointTypr Pt | VectorType Vec | PlaneType Pln |

CtlPtType CtlPt | ListType List | PolygonType Poly |

CurveType Crv | StringType Str)

returns the size of a point, vector, plane, or control point (negative size if rational) or the length of
a list if List, the number of polygons if Poly, the length of the control polygon if Crv, or the number
of characters in string if Str. If, however, only one polygon is in Poly, it returns the number of vertices
in that polygon.

Example:

len = SIZEOF(list(1, 2, 3));

numPolys = SIZEOF(axes);

numCtlpt = SIZEOF(circle(vector(0, 0, 0), 1));

will assign the value of 3 to the variable len, set numPolys to the number of polylines in the axes
object, and set numCtlPt to 9, the number of control points in a circle.

11.1.23 SQRT

NumericType SQRT(NumericType Operand)

returns the square root value of the given Operand.

11.1.24 TAN

NumericType TAN(NumericType Operand)

returns the tangent value of the given Operand (in radians).

11.1.25 THISOBJ

NumericType THISOBJ(StringType Object)

returns the object type of the given name of an Object. This can be one of the constants,

UNDEF TYPE PLANE TYPE CTLPT TYPE MODEL TYPE
POLY TYPE MATRIX TYPE LIST TYPE VMODEL TYPE
NUMERIC TYPE CURVE TYPE TRIVAR TYPE MULTIVAR TYPE
POINT TYPE SURFACE TYPE TRISRF TYPE
VECTOR TYPE STRING TYPE TRIMSRF TYPE

This is also a way to ask if an object by a given name exists (if the returned type is UNDEF TYPE
or not).

11.1.26 VOLUME

NumericType VOLUME(PolygonType Object)

returns the volume of the given Object (in object units). It returns the volume of the polygonal
object, not the volume of the object it might approximate.

This routine decomposes all non-convex polygons to convex ones, as a side effect (see CONVEX).

IRIT Solid modeler G. Elber 27

11.2 GeometricType returning functions

11.2.1 ACCESSANLZ

AnyType ACCESSANLZ(NumericType Operation, ListType Params)

This function performs patch (sub-surface) ray accessilibty operations based on the first Operation
parameter and the given direction and surface(s), etc. parameters in Params.

If Operation is 1, the analysis is initialized. The Params in this case are a list, containing a list
of surfaces followed by the requested size for the patch subdivision, the minimum size for the patch
subdivision, the requested normal cone span of the patch, and the cropping applied to the surfaces (in
paramteric domain values).

Size refers to the longest dimension of the sub-surface bounding box. The result is that the supplied
surfaces will be subdivided into patches with a size that is between the maximum and minimum sizes,
and unless the minimum size is reach will have a normal cone span that is less than the requested
value. The returned value is the number of patches created.

If Operation is 2, all the create patches (subsurfaces) are retrieved. The returned value are the
patches. Params is nil here.

For Operation equal 3, all accessible patches from a given direction (and paramters) are retrieved.
In this operation, Params are first the direction, which is the ’up’ axis from which accessiblity is
determined, folowed by an angular span, and position span. The angular span means all rays in a cone
(with the given angle) are checked, the position span adds all rays emenating from a circle with the
given radius (aligned to the direction) are also tested. The returned value are the accessible patches.

Finally, if Operation is 9, all auxiliary data is freed. Params is nil and Zero is returned.
Example:

Operation = 1: Initializes accessibility - subdivide the input surfaces.

Parameter list(Srfs, RequestSize, MinimalSize, NormalAngluarSpan,

CropSrfBndryEps)

A = AccessAnlz(1, list(AlphaSrf, 0.05, 5.0, 0.01, 0.0));

Operation = 2: Inspect all subdivided patches.

Parameter list() (empty list)

AllPatches = AccessAnlz(2, nil());

Operation = 3: Query the qaccessible patches from the prescribed direction.

Parameter list(AccessDir, RotationDeviation, TranslationDeviation)

Also moves the accessible patches a tad in v to avoid Z fighting:

v = vector(0, 0, 1);

AllAccessiblePatches1 = AccessAnlz(3, list(v, 0.1, 0.01)) *

trans(v * sc(0.002));

Operation = 9: Free all allocations and data structure.

Parameter list() (empty list)

A = AccessAnlz(9, nil());

11.2.2 ALGPROD

SurfaceType ALGPROD(CurveType Crv1, CurveType Crv2)

IRIT Solid modeler G. Elber 28

or

TrivarType ALGPROD(CurveType Crv1, SurfaceType Srf2)

Given two curves (or a curve and a surface), computes a surface (trivariate) that is their algebraic
product:

S(u, v) = C1(u) ∗ C2(v) (1)

or
T (u, v, w) = C1(u) ∗ S2(v,w) (2)

Example:

c1 = circle(vector(0.0, 0.0, 0.2), 0.7);

c2 = ctlpt(E3, -0.2, -0.5, -1.5) + ctlpt(E3, 0.2, 0.5, 1.5);

s = algprod(c1, c2);

11.2.3 ALGSUM

SurfaceType ALGSUM(CurveType Crv1, CurveType Crv2)

or

TrivarType ALGSUM(CurveType Crv1, SurfaceType Srf2)

Given two curves (or a curve and a surface), computes a surface (trivariate) that is their algebraic
sum:

S(u, v) = C1(u) + C2(v) (3)

or
T (u, v, w) = C1(u) + S2(v,w) (4)

Example:

c1 = circle(vector(0.0, 0.0, 0.0), 0.7);

c2 = ctlpt(E3, -0.2, -0.5, -1.5) + ctlpt(E3, 0.2, 0.5, 1.5);

s1 = algsum(c1, c2);

c2 = cbspline(3,

list(ctlpt(E3, 0.0, 0.0, 0.0),

ctlpt(E3, 0.0, 0.0, 0.7),

ctlpt(E3, 0.0, 1.5, 1.0),

ctlpt(E3, 0.0, 0.0, 1.3),

ctlpt(E3, 0.0, 0.0, 2.0)),

list(KV_OPEN));

s2 = algsum(c1, c2);

creates two algebraic sum surfaces, one in the shape of a cylinder as a sum of a line and a circle,
and one circular sweep like. See Figure 4.

IRIT Solid modeler G. Elber 29

Figure 4: An algebraic sum of a circle and a line creating a cylinder (left) and a general sweep like
surface (right), both using ALGSUM.

11.2.4 AMFIBER3AXIS

ListType AMFIBER3AXIS(CurveType FiberCrv | ListType FiberCrvs,

CurveType AmbientCrv | ListType AmbientCrvs,

NumericType MinDist, NumericType Accuracy,

NumericType PrintRadius, NumericType ExtXYRadius,

NumericType ExtAngle, NumericType ZOffset,

NumericType Invert)

computes proper ordering of 3D printing of ambient print path curves along with (strengthening)
fibers. FiberCrv(s) holds the input fiber print paths, where as AmbientCrv(s) holds the ambient
print path curves. MinDist sets the minimal distance to allow between fiber and ambient curves when
we subtract the fiber volume from the ambient curves. Accuracy controls the accuracy of the space
subdivision process. PrintRadius defines the radius of the extruded materials while ExtXYRadius
defines the bottom width of the extruder bounding frustum (for accessibility considerations). ExtAn-
gle sets the extruders’ bounding frustum angle. ZOffset sets the Z vertical offset of the extruder above
the deposited material. Finally, Invert TRUE will return only the regions of the ambient curves that
were subtracted from the fiber curves, for mostly debugging purposes.

Example:

TPath = AMFiber3Axis(FiberCrvs, AmbientCrvs, SubWidth, Accuracy,

PrintRadius, XYRadius, Angle, ZOffs, Invert);

IRIT Solid modeler G. Elber 30

11.2.5 ANALYFIT

ListType ANALYFIT(ListType UVPts, ListType EucPts,

NumericType FirstAtOrigin, NumericType Degree)

computes a surface fit to the given paraametrized points data. The fitted surface will be of bi-degree
Degree, fitting points EucPts at parameters UVPts. Needless to say EucPts and UVPts should
be lists of points of similar length. If FirstAtOrigin is TRUE, all points are translated so the first
point in EucPts is at the origin. Only the first coordinates of UVPts are used.

Example:

Fitting = nil();

Eps = 1e-2;

PtPln = nil():

for (i = 1, 1, 100,

snoc(point(random(-1, 1), random(-1, 1), random(-Eps, Eps)),

PtPln));

BilinCoefs = ANALYFIT(PtPln, PtPln, 0, 1));

fits a bilinear to the given planar data with noise. See also the COERCE function from POWER TYPE
to BEZIER TYPE, and FITPMODEL.

11.2.6 ANIMEVAL

AnyType ANIMEVAL(NumericType Time, AnyType Object, NumericType EvalMats)

evaluates the animation curves in Object at time Time. The transformations for time Time are
saved at the respective sub objects of Object as ”animation mat” matrices, if EvalMats is TRUE.
If, however, EvalMats is FALSE, the evaluated/mapped geometry is returned directly.

For example,

mov_x = cbezier(list(ctlpt(E1, 0.0), ctlpt(E1, 1.0)));

attrib(axes, "animation", list(mov_x));

axes2 = ANIMEVAL(0.5, axes, true);

and axes2 will have a matrix in attribute ”animation mat” of translation in x of 1/2.

11.2.7 ANTIPODAL

ListType ANTIPODAL(CurveType Crv, NumericType SubdivTol,

NumericType NumerTol)

or

ListType ANTIPODAL(SurfaceType Srf, NumericType SubdivTol,

NumericType NumerTol)

IRIT Solid modeler G. Elber 31

computes distinct antipodal pairs on curve Crv or on surface Srf. An antipodal pair defines two
distinct locations on Crv or on Srf that a line through the two locations is orthogonal to the tangent
space of the shape, at thouse locations. In other words, the normals to the freeform shape at those two
locations are along the line connecting the locations. SubdivTol and NumerTol control the tolerance
of the computation as in MZERO.

Examples:

A = ANTIPODAL(Srf, 1e-3, -1e-12);

11.2.8 AOFFSET

CurveType AOFFSET(CurveType Crv, NumericType OffsetDistance,

NumericType Epsilon, NumericType TrimLoops,

NumericType BezInterp)

or

CurveType AOFFSET(CurveType Crv, CurveType OffsetDistance,

NumericType Epsilon, NumericType TrimLoops,

NumericType BezInterp)

computes an offset of OffsetDistance with a globally bounded error (controlled by Epsilon). The
smaller Epsilon is, the better the approximation to the offset. The bounded error is achieved by
adaptive refinement of the Crv. If OffsetDistance is a (scalar) curve, the curve’s first coordinate is
used to prescribe a variable offset amount along the curve. Both Crv and OffsetDistance must share
the same parametric domain. If TrimLoops is TRUE or on, the regions of the object that self-intersect
as a result of the offset operation are trimmed away. If BezInterp is TRUE, each curve’s segment is
interpolated instead of approximated.

Example:

OffCrv1 = AOFFSET(Crv, 0.5, 0.01, FALSE, FALSE);

OffCrv2 = AOFFSET(Crv, 0.5, 0.01, TRUE, FALSE);

computes an adaptive offset to Crv with OffsetDistance of 0.5 and Epsilon of 0.01 and trims
the self intersection loops in the second instance. See also OFFSET, TOFFSET, LOFFSET, and
MOFFSET. See Figure 5.

11.2.9 ARC

CurveType ARC(VectorType StartPos, VectorType Center, VectorType EndPos)

constructs an arc between the two end points StartPos and EndPos, centered at Center. THe
arc will always be less than 180 degrees, so the shortest circular path from StartPos to EndPos is
selected. The case where StartPos, Center, and EndPos are collinear is illegal, since it attempts to
define a 180 degrees arc. The arc is constructed as a single rational quadratic Bezier curve.

Example:

Arc1 = ARC(vector(1.0, 0.0, 0.0),

vector(1.0, 1.0, 0.0),

vector(0.0, 1.0, 0.0));

IRIT Solid modeler G. Elber 32

Figure 5: Adaptive offset approximation (thick) of a B-spline curve (thin). On the left, the self
intersections in the offset computed in the right are eliminated. Both offsets were computed using
AOFFSET. (See also Figure 77.)

Figure 6: A 90 degree arc constructed using the ARC constructor (left) and a 280 degrees arc (right)
constructed using the ARC360 constructor.

constructs a 90 degrees arc, tangent to both the X and Y axes at coordinate 1. See Figure 6 (a).
See also ARC360

11.2.10 ARC360

CurveType ARC360(VectorType Center, NumericType Radius,

NumericType StartAngle, NumericType EndAngle)

constructs an arc between the two angles (degrees) StartAngle and EndAngle, centered at Cen-
ter. The arc will always be less than 360 degrees. The arc is constructed as a rational quadratic
B-spline curve.

Example:

Arc2 = ARC360(vector(0.0, 0.0, 0.0), 1.0, 75, 355);

IRIT Solid modeler G. Elber 33

constructs a 280 degrees arc. See Figure 6 (b). See also ARC.

11.2.11 AREPARAM

AnyType AREPARAM(AnyType Obj, NumericType Min, NumericType Max)

Updates the time domain of the animation embedded in Obj to be from Min to Max. This
function has an effect only if Obj has animation(s) set for it. See the Animation section and ATTRIB
to set animation attributes on objects.

Example:

ASrf = AREPARAM(Srf, 0, 2);

Sets the animation time to be from zero to two time units.

11.2.12 BBOX

ListType BBOX(GeometricTreeType Geom)

Given a (tree of) geometry, Geom computes its bounding box and return it as a list of six numbers:
XMin/Max, YMin/Max, ZMin/Max, in this order.

Example:

B1 = BBOX(axes);

11.2.13 BELTCURVE

ListType BELTCURVE(PolyType Pulleys, NumericType Thickness,

NumericType BoundingArcs, NumericType ReturnCrvs)

Computes a belt for a given set of Pulleys defined as point list of the form (x, y, r) for each Pulley.
Positive r designates a CW pulley whereas a negative r designates a CCW pulley. The thickness of the
belt is defined by Thickness. BoundingArcs is usually zero but if not, prescribes two bounding arcs
for each linear segment of the belt. ReturnCrvs should be TRUE to simply return the two boundary
curves of the belt or FALSE to return a list of arcs/lines of the belt.

Example:

B1 = BeltCurve(list(vector(0, 0, 0.6),

vector(1, 3, -0.24),

vector(3, 3, -0.24),

vector(3, 1, 0.4),

vector(3, -1, 0.3),

vector(1, -1, 0.3),

BeltThickness, CreateBoundingArcs, ReturnCrvs),

See Figure 7 for the result of this example.

IRIT Solid modeler G. Elber 34

Figure 7: A belt defined using the BELTCURVE function.

11.2.14 BFROM2IMG

ListType BFROM2IMG(StringType Img1, StringType Img2,

NumericType DitherSize, NumericType MatchWidth,

NumericType Positive, NumericType AugmentContrast,

NumericType SpreadMethod, NumericType SphereRadius)

Constructs a 3D dithering cloud of blobs that looks like Img1 from one view direction and like
Img2 from another view direction. DitherSize sets the 3D dithering size - 2, 3, or 4 for 2x2x2,
3x3x3 or 4x4x4. MatchWidth constraints the (bipartitte graph) matching between two rows in the
two different images and is measured in pixels. If Positive is true, the images are processed as is.
If false, the images are negated first. AugmentContrast allows control over contrast at the cost of
more computation, or zero to disable. SpreadMethod is typically true to allow random spreading.
SphereRadius sets the radius of the constructed blobs.

IRIT Solid modeler G. Elber 35

Figure 8: A 3D dithering of two (three) images that creates a cloud of 3D points using the BFROM2IMG
(BFROM3IMG) function. Herzl is seen from one view and Ben Gurion from another view.

See Figure 8 for the result of this example.
Example:

PTS = BFrom2Img("BenGurion.ppm", "Herzl.ppm",

2, 21, true, 0, 2, 0.0);

constructs a could of points that looks like Herzl from one view and Ben Gurion from another. See
also BFROM3IMG, MFROM2IMG, MFROM3IMG, and DTRBYCRVS and DITHER.

11.2.15 BFROM3IMG

ListType BFROM3IMG(StringType Img1, StringType Img2, StringType Img3,

NumericType DitherSize, NumericType MatchWidth,

NumericType Positive, NumericType AugmentContrast,

NumericType SpreadMethod, NumericType SphereRadius)

Constructs a 3D dithering cloud of blobs that looks like Img1 from one view direction, like Img2
from another view direction, and like Img3 from a third view direction. DitherSize sets the 3D
dithering size - 2, 3, or 4 for 2x2x2, 3x3x3 or 4x4x4. MatchWidth constraints the (bipartitte graph)
matching between two rows in the two different images and is measured in pixels. If Positive is true,
the images are processed as is. If false, the images are negated first. AugmentContrast allows control
over contrast at the cost of more computation, or zero to disable. SpreadMethod is typically true to
allow random spreading. SphereRadius sets the radius of the constructed blobs.

Example:

PTS = BFrom2Img("BenGurion.ppm", "Herzl.ppm", "Rabin.ppm",

2, 21, true, 0, 2, 0.0);

constructs a could of points that looks like Herzl from one view, Ben Gurion from another, and
Rabin from a third view. See also BFROM2IMG, MFROM2IMG, and MFROM3IMG.

11.2.16 BFZEROS

ListType BFZEROS(CurveType Crv, NumericType Axis, NumericType RInit,

NumericType NumericTol, NumericType SubdivTol)

IRIT Solid modeler G. Elber 36

computes the zeros of the given univariate Bezier Crv in direction Axis by factoring out t and (1-t)
at the found roots. NRInit can be 0 in which case initial roots are set at the middle of the domain,
while 1 and 2 starts with initial roots by intersection of the control polygon. With 1 the most middle
initial root is used. With 2 the first found initial root is used.

Example:

Zrs = bfzeros(Crv, 1, 0, 1e-10, 1e-4);

computes the zeros of Crv in the X axis. See also MZERO.

11.2.17 BLND2SRFS

SurfaceType BLND2SRFS(SurfaceType Srf1, SurfaceType Srf2,

NumericType BlendDegree, NumericType TanScale)

constructs a new surface that blends Srf1 at UMin and Srf2 at UMax. BlendDegree can be 2
in which case the blending surface is C0 continuous (to Srf1 and Srf2) or 4 to achieve C1 continuity.
Finally TanScale controls the strength of the tangential field, if C1 is sought.

Example:

BSrf = BLND2SRFS(Srf1, Srf2, 4, 1.0);

See also HERMITE, BLHERMITE and BLSHERMITE

11.2.18 BLHERMITE

SurfaceType BLHERMITE(CurveType Bndry1, CurveType Bndry2,

CurveType Tan1, CurveType Tan2,

CurveType Sctn, CurveType Nrml)

computes a Hermite blend surface that supports an arbitrary cross section. This constructs a
surface between Bndry1 and Bndry2 so that the first derivative continuity constraints, as prescribed
by Tan1 at Bndry1 and Tan2 at Bndry2, are preserved. In addition, the interior between Bndry1
and Bndry2 will follow the shape of planar cross section curve Sctn and will be oriented along the
vector field prescribed by Nrml. Cross section Sctn is a planar curve that must start at (-1, 0) and
end at (1, 0), and have zero speed at the ends (first control point equals the second and is the same at
the end).

Example:

c1 = ctlpt(e3, 0, 0, 0) + ctlpt(e3, 0, 1, 0);

c2 = ctlpt(e3, 1, 0, 0) + ctlpt(e3, 1, 1, 0);

d1 = ctlpt(e3, 1, 0, 1) + ctlpt(e3, 1, 0, 0.1);

d2 = ctlpt(e3, 1, 0, -0.1) + ctlpt(e3, 1, 0, -1);

s1 = hermite(c1, c2, d1, d2);

color(s1, red);

cSec = cbspline(3,

list(ctlpt(e2, -1, 0),

ctlpt(e2, -1, 0),

IRIT Solid modeler G. Elber 37

ctlpt(e2, -0.14, 0.26),

ctlpt(e2, -0.65, 0.51),

ctlpt(e2, 0, 0.76),

ctlpt(e2, 0.65, 0.51),

ctlpt(e2, 0.14, 0.26),

ctlpt(e2, 1, 0),

ctlpt(e2, 1, 0)),

list(kv_open));

n = ctlpt(e3, 0, 0, 1) + ctlpt(e3, 0, 0, 1);

s2 = BLHERMITE(c1, c2, d1, d2, cSec2, n);

color(s2, yellow);

constructs a regular Hermite surfaces s1 and a blending Hermite that follows the cross section cSec.
See also HERMITE and BLSHERMITE. See Figure 9 (a).

11.2.19 BLSHERMITE

SurfaceType BLSHERMITE(SurfaceType Srf, CurveType PCrv,

CurveType Sctn, NumericType TanScale,

AnyType Width, AnyType Height)

computes a Hermite blend surface on Srf along parametric curve of Srf, PCrv, the cross section
Sctn, a tangent field scale control TanScale, and the width and height control of Width and Height.
Width and Height can be either a numeric value of expected width and height or a scalar field curve
prescribing the expected width and height along the constructed blend.

The constructed surface, which is C1 continuous to Srf, is positioned along PCrv, a curve in the
parametric domain of Srf. The cross section Sctn is a planar curve that must start at (-1, 0) and end
at (1, 0), and have zero speed at the ends (first control point equals the second and is the same at the
end). TanScale controls how rapid the change in the tangent is, as we move away from the surface.

Example:

cSec = cbspline(3,

list(ctlpt(e2, -1, 0),

ctlpt(e2, -1, 0),

ctlpt(e2, -0.5, 0.2),

ctlpt(e2, -0.7, 0.3),

ctlpt(e2, 0, 0.5),

ctlpt(e2, 0.7, 0.3),

ctlpt(e2, 0.5, 0.2),

ctlpt(e2, 1, 0),

ctlpt(e2, 1, 0)),

list(kv_open));

s = -surfPRev(cregion(pcircle(vector(0, 0, 0), 1),

0, 2) * rx(90));

s1 = BLSHERMITE(s, ctlpt(E2, 0, 1) + ctlpt(E2, 4, 1),

cSec, 1, 0.2, 0.5);

IRIT Solid modeler G. Elber 38

Figure 9: Blending Hermite with a prescribed cross section (left) using BLHERMITE and blending
Hermite with a prescribed cross section on a surface (right) using BLSHERMITE.

s2 = BLSHERMITE(s, ctlpt(E2, 0, 1.5) + ctlpt(E2, 4, 1.5),

cSec, 0.1, 0.2, 0.5);

s3 = BLSHERMITE(s, ctlpt(E2, 0, 0.3) + ctlpt(E2, 4, 0.3),

cSec, 1.5, 0.2, 0.5);

places three Hermite blend surfaces s1, s2, s3 using the cross section cSec on a unit sphere s. See
also HERMITE and BLHERMITE. See Figure 9 (b).

11.2.20 BLOSSOM

CtlPtType BLOSSOM(CurveType Crv, ListType BlossomVals)

or

CtlPtType BLOSSOM(SurfaceType Srf, ListType BlossomVals)

computes the blossom of the given Crv or Srf and the given blossom values BlossomVals. For
a Crv, BlossomVals is expected to hold a linear list of blossom values. For a Srf, BlossomVals is
expected to hold two linear lists (for u and v) of blossom values.

Example:

c1 = cbezier(list(ctlpt(E2, 1.7, 0.0),

ctlpt(E2, 0.7, 0.7),

ctlpt(E2, 1.7, 0.3),

ctlpt(E2, 1.5, 0.8),

ctlpt(E2, 1.6, 1.0)));

IRIT Solid modeler G. Elber 39

Figure 10: A Boolean sum of a circle creates a disk (left) using BOOLONE and a general Boolean sum
of four curves (right) using BOOLSUM.

BLOSSOM(c1, list(0, 0, 0, 0)) == coord(c1, 0) &&

BLOSSOM(c1, list(0, 0, 0, 1)) == coord(c1, 1) &&

BLOSSOM(c1, list(0, 0, 1, 1)) == coord(c1, 2) &&

BLOSSOM(c1, list(0, 1, 1, 1)) == coord(c1, 3) &&

BLOSSOM(c1, list(1, 1, 1, 1)) == coord(c1, 4);

extracts the control points of an quadric Bezier curve via blossoming and compares this to the
results obtained via a traditional extraction approach (via the COORD function).

11.2.21 BOOLONE

SurfaceType BOOLONE(CurveType Crv)

Given a closed curve, the curve is subdivided into four segments equally spaced in the parametric
space that are fed into BOOLSUM. This is useful if a surface should ”fill” the area enclosed by a closed
curve.

Example:

Srf = BOOLONE(circle(vector(0.0, 0.0, 0.0), 1.0));

creates a disk surface containing the area enclosed by the unit circle. See Figure 10. See also
BOOLSUM and TBOOLONE

11.2.22 BOOLSUM

SurfaceType BOOLSUM(Mode,

CurveType Crv1, CurveType Crv2,

CurveType Crv3, CurveType Crv4)

IRIT Solid modeler G. Elber 40

The Mode parameter indicates which variant of this operator to use. For regular ruling operator,
it should be 0. The regular operator constructs a surface using the provided two or four curves as its
two/four boundary curves. Curves do not have to have the same order or type, and will be promoted
to their least common denominator. In the case of two curves, Crv1 and Crv2 should share an end
point and in this case, Crv3 and Crv4 should be a non-curve objects. In the case of four curves, the
four curves should form a topological square and match end points and, in principle, be oriented as
Left, Right, Top and Bottom boundaries in order. Practically, the curve ordering is not relevant - Crv1
will be picked as Left and the rest three curves will be matched accordingly. Matching of end points is
required.

For Kernel-based Boolean sum operator, which is used to construct valid planar Boolean sum surface
(aiming to ensure positive Jacobian throughout the domain, the Mode parameter should be a list of
five numeric values: (Op, DistRatio, Limit, SubEps, IsSingular), where

• Op is either 0 or 1 for adding DOFs using degree raising or knot insertion, respectively.

• DistRatio is a number in [0, 1] to set how far to move internal control points toward the kernel.
If 1 the points are moved to the kernel point.

• Place a Limit on the number of knots to add or the maximal degree in degree raising.

• SubEps is the Subdivision epsilon. 0.01 is a reasonable start for a unit size geometry.

• IsSingular can be: TRUE to allow singularity at the kernel point. FALSE all the surface is
regular.

Example:

Cbzr1 = cbezier(list(ctlpt(E3, 0.1, 0.1, 0.1),

ctlpt(E3, 0.0, 0.5, 1.0),

ctlpt(E3, 0.4, 1.0, 0.4)));

Cbzr2 = cbezier(list(ctlpt(E3, 1.0, 0.2, 0.2),

ctlpt(E3, 1.0, 0.5, -1.0),

ctlpt(E3, 1.0, 1.0, 0.3)));

Cbsp3 = cbspline(4,

list(ctlpt(E3, 0.1, 0.1, 0.1),

ctlpt(E3, 0.25, 0.0, -1.0),

ctlpt(E3, 0.5, 0.0, 2.0),

ctlpt(E3, 0.75, 0.0, -1.0),

ctlpt(E3, 1.0, 0.2, 0.2)),

list(KV_OPEN));

Cbsp4 = cbspline(4,

list(ctlpt(E3, 0.4, 1.0, 0.4),

ctlpt(E3, 0.25, 1.0, 1.0),

ctlpt(E3, 0.5, 1.0, -2.0),

ctlpt(E3, 0.75, 1.0, 1.0),

ctlpt(E3, 1.0, 1.0, 0.3)),

list(KV_OPEN));

Srf1 = BOOLSUM(0, Cbzr1, Cbzr2, Cbsp3, Cbsp4);

Srf2 = BOOLSUM(0, Cbzr1, Cbsp3, 0, 0);

See also BOOLONE and TBOOLSUM

IRIT Solid modeler G. Elber 41

Left = cbezier(

ist(ctlpt(E2, -1., -1.),

ctlpt(E2, -1.165, -0.689),

ctlpt(E2, -1.979, 0.5),

ctlpt(E2, -1.797, 0.821),

ctlpt(E2, -1., 1.)));

Right = cbezier(

list(ctlpt(E2, 1., -1.),

ctlpt(E2, 1.403, -0.346),

ctlpt(E2, 0.205, 0.366),

ctlpt(E2, 0.96, -0.277),

ctlpt(E2, 1., 1.)));

Top = cbezier(

list(ctlpt(E2, -1., -1.),

ctlpt(E2, -0.982, -0.007),

ctlpt(E2, -0.139, -0.778),

ctlpt(E2, 0.202, -1.867),

ctlpt(E2, 1., -1.)));

Bottom = cbezier(

list(ctlpt(E2, -1., 1.),

ctlpt(E2, -0.986, 0.909),

ctlpt(E2, -0.819, 1.822),

ctlpt(E2, -0.105, 1.939),

ctlpt(E2, 1., 1.)));

Srf1 = BOOLSUM(0, Left, right, top, bottom);

Srf2 = BOOLSUM(list(0, 1.0, 8, 0.01, FALSE),

Left, right, top, bottom) * tx(-3);

constructs a planar Boolean sum surface upon the four quatric Bezier input curves, Left, Right, Top
and Bottom. The naive construction causes self intersection. By using the kernel-based Boolean sum
operator, the self intersection can be resolved. After adding degree of freedoms to the input curves
using either degree raising operator or refinement. In the given example the operator successed after 8
iteration of degree raising.

11.2.23 BOUNDARY

AnyType BOUNDARY(AnyType Obj)

Given a geometric object Obj, let it be a surface, a trimed surface, or a polygonal model, returns
the boundary of the shape.

Example:

CBndry = BOUNDARY(Srf);

returns CBndry.

11.2.24 BOX

PolygonType BOX(VectorType Point,

NumericType Dx, NumericType Dy, NumericType Dz)

IRIT Solid modeler G. Elber 42

creates a BOX polygonal object, whose boundary is coplanar with the XY , XZ, and Y Z planes.
The BOX is defined by Point as base position, and Dx, Dy, Dz as BOX dimensions. Negative
dimensions are allowed.

Example:

B = BOX(vector(0, 0, 0), 1, 1, 1);

creates a unit cube from 0 to 1 in all axes.

11.2.25 BSCTCONCN2

SurfaceType BSCTCONCN2(PointType ConeApx1, VectorType ConeDir1,

NumericType ConeAngle1,

PointType ConeApx2, VectorType ConeDir2,

NumericType ConeAngle2)

computes the bisector surface of two cones in general position. The cones’ apexes can be found in
ConeApx1 and ConeApx2 with axes directions ConeDir1 and ConeDir2 and spanning angles of
ConeAngle1 and ConeAngle2.

Example:

BisectSrf = BSCTCONCN2(Apx1, Dir1, Ang1, Apx2, Dir2, Ang2);

See also BSCPCONCON, BSCTCONCYL, BSCTCYLCYL, BSCTCONLN, BSCTCONPL, BSCT-
CONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR,

11.2.26 BSCTCONCON

SurfaceType | ListType BSCTCONCON(VectorType ConeDir1, NumericType ConeAngle1,

VectorType ConeDir2, NumericType ConeAngle2,

NumericType Size)

computes the bisector surface of two cones that share the same apex. The cones’ directions are
ConeDir1 and ConeDir2 and the spanning angles of ConeAngle1 and ConeAngle2. ConeDir1
and ConeDir2 must be in the northern hemisphere; i.e. their Z coefficient must be positive. Size
controls the portion of the (infinite) bisector actually represented.

Example:

BisectSrf = BSCTCONCON(vector(0, 0, 1), 50,

vector(0, 0, 1), 20, 1.0);

computes the bisector of two concentric cones, which is also a cone. See also BSCTCONLN, BSCT-
CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCPCONCON, BSCTCONCN2, BSCT-
CONCYL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN, BSCTPLNPT, BSCTSPRLN, BSCTSPRPL,
BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CALPHASECTOR, CBISECTOR2D,
CBISECTOR3D, SBISECTOR

IRIT Solid modeler G. Elber 43

11.2.27 BSCTCONCYL

SurfaceType BSCTCONCYL(PointType ConeApx1, VectorType ConeDir1,

NumericType ConeAngle1,

PointType CylPt2, VectorType CylDir2,

NumericType CylRad2)

computes the bisector surface of a cone and a cylinder in general position. The cones apex is
in ConeApx1 with axes direction of ConeDir1 and spanning angles of ConeAngle1. The second
cylinder starts at CylPt2, in direction CylDir2 and radius CylRad2.

Example:

BisectSrf = BSCTCONCYL(Apx1, Dir1, Ang1, Pt2, Dir2, Rad2);

See also BSCPCONCON, BSCTCONCN2, BSCTCYLCYL, BSCTCONLN, BSCTCONPL, BSCT-
CONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR

11.2.28 BSCTCONLN

SurfaceType | ListType BSCTCONLN(VectorType ConeDir, NumericType ConeAngle,

VectorType LineDir, NumericType Size)

computes the bisector surface of a cone and a line through its apex. The cone’s direction isConeDir
and its spanning angle is ConeAngle. ConeDir and LineDir must be in the northern hemisphere;
i.e. their Z coefficient must be positive. Size controls the portion of the (infinite) bisector actually
represented.

Example:

BisectSrf = (vector(0, 0, 1), 45, vector(0, 0.1, 1), 1);

computes the bisector surface of a cone along the Z axis with spanning angle of 45 degrees, and a
line through its apex in direction (0, 0.1, 1).

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONPL, BSCT-
CONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR,

11.2.29 BSCTCONPL

SurfaceType | ListType BSCTCONPL(PointType ConeApex, VectorType ConeDir,

NumericType ConeAngle, NumericType Size)

computes the bisector surface of a general cone and the XY plane (Z = 0 plane). The cone’s apex
is at ConeApex, the cone’s direction is ConeDir and its spanning angle is ConeAngle. Dir must
be in the northern hemisphere; i.e. their Z coefficient must be positive. Size controls the portion of
the (infinite) bisector actually represented.

Example:

BisectSrf = BSCTCONPL(point(0, 0, -0.3), vector(1, 1, 1), 20, 1);

IRIT Solid modeler G. Elber 44

computes the bisector surface of a cone with its apex at (0, 0, -0.3) along the axis (1, 1, 1) with
spanning angle of 20 degrees, and the plane Z = 0.

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

11.2.30 BSCTCONPT

SurfaceType | ListType BSCTCONPT(PointType ConeApex, VectorType ConeDir,

NumericType ConeAngle, PointType Pt,

NumericType Size)

computes the bisector surface of a cone in a general position and a point, Pt. The cone’s apex is
at ConeApex, the cone’s direction is ConeDir and its spanning angle is ConeAngle. Size controls
the portion of the (infinite) bisector actually represented.

Example:

Bisect = BSCTCONPT(point(0, 0, 0), vector(0, 0, 1), 22,

point(0, 0.2, 0.7), 1);

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPL, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

11.2.31 BSCTCONSPR

SurfaceType | ListType BSCTCONSPR(PointType ConeApex, VectorType ConeDir,

NumericType ConeAngle, PointType SptCntr,

NumericType SprRadius, NumericType Size)

computes the bisector surface of a cone and a sphere. The cone’s apex is at ConeApex, the cone’s
direction is ConeDir and its spanning angle is ConeAngle. The sphere is centered at SptCntr and
has a radius of SprRadius. Size controls the portion of the (infinite) bisector actually represented.

Example:

BisectSrf = BSCTCONSPR(point(0, 0, 0), vector(0, 0, 1),

45, point(0, 0, 1), 0.5, 2.0);

computes the bisector between a cone along the Z axis with a 45 degree spanning angle and a sphere
at (0, 0, 1) of radius 0.5.

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPL, BSCTCONPT, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

IRIT Solid modeler G. Elber 45

11.2.32 BSCTCYLCYL

SurfaceType BSCTCYLCYL(PointType CylPt1, VectorType CylDir1,

NumericType CylRad1,

PointType CylPt2, VectorType CylDir2,

NumericType CylRad2)

computes the bisector surface of two cylinders in a general position. The cylinders start at CylPt1
and CylPt2 and follow the directions CylDir1 and CylDir2. They have radii of CylRad1 and
CylRad2.

Example:

BisectSrf = BSCTCYLCYL(Pt1, Dir1, Rad1, Pt2, Dir2, Rad2);

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONLN, BSCTCONPL, BSCT-
CONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

11.2.33 BSCTCYLPL

SurfaceType | ListType BSCTCYLPL(PointType CylPos, VectorType CylDir,

NumericType CylRadius, Size)

computes the bisector surface of a a cylinder and the XY plane (plane Z = 0). The cylinder is
located at CylPos, in the direction of CylDir which also sets the length of the cylinder. The radius
of the cylinder is CylRadius. Size controls the portion of the (infinite) bisector actually represented.

Example:

Pt = point(0.1, 0, 0.2);

BisectSrf = BSCTCYLPL(point(0, 0, 0.5), vector(0, 0, 1), 0.2, 1);

computed the bisector surface between a cylinder of radius 0.2 along the Z axis and the XY plane.
See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-

CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

11.2.34 BSCTCYLPT

SurfaceType | ListType BSCTCYLPT(PointType CylPos, VectorType CylDir,

NumericType CylRadius, PointType Pt,

NumericType Size)

computes the bisector surface of a a cylinder and a point, Pt. The cylinder is located at CylPos,
in the direction of CylDir which also sets the length of the cylinder. The radius of the cylinder is
CylRadius. Size controls the portion of the (infinite) bisector actually represented.

Example:

Pt = point(0.1, 0, 0.2);

BisectSrf = BSCTCYLPT(point(0, 0, 0.5), vector(0, 0, 1), 0.2, Pt, 1);

IRIT Solid modeler G. Elber 46

computes the bisector surface between a cylinder of radius 0.2 along the Z axis and a point at (0.1,
0, 0.2).

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLSPR, BSCTPLNLN, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR

11.2.35 BSCTCYLSPR

SurfaceType | ListType BSCTCYLSPR(PointType CylPos, VectorType CylDir,

NumericType CylRadius, PointType SprCntr,

NumericType SprRadius, NumericType Size)

computes the bisector surface of a cylinder and a sphere. The cylinder is located at CylPos, in the
direction of CylDir which also sets the length of the cylinder. The radius of the cylinder is CylRadius.
The sphere is centered at SptCntr and has a radius of SprRadius. Size controls the portion of the
(infinite) bisector actually represented.

Example:

BisectSrf = BSCTCYLSPR(point(0, 0, 1.5), vector(0, 0, 3), 0.2,

point(0, 0, 0), 0.7, 3);

computed the bisector surface between a cylinder of radius 0.2 along the Z axis and a sphere at the
origin with radius 0.7.

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTPLNLN, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

11.2.36 BSCTPLNLN

SurfaceType | ListType BSCTPLNLN(VectorType LineDir, NumericType Size)

computes the bisector surface of the XY plane (plane Z = 0) and a line in direction LineDir. The
plane and the line are assumed to intersect at the origin. Size controls the portion of the (infinite)
bisector actually represented.

Example:

BisectSrf = BSCTPLNLN(vector(0, 0, 1), 1);

computes the bisector of the XY plane and the Z axis (a cone).
See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-

CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

IRIT Solid modeler G. Elber 47

11.2.37 BSCTPLNPT

SurfaceType | ListType BSCTPLNPT(PointType Pt, NumericType Size)

computes the bisector surface of the XY plane (plane Z = 0) and a point Pt. This surface is a
paraboloid of revolution. Size controls the portion of the (infinite) bisector actually represented.

Example:

BisectSrf = BSCTPLNPT(point(0, 0, 1), 1);

computes the bisector surface of the XY plane and the point (0, 0, 1).
See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-

CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

11.2.38 BSCTSPRLN

SurfaceType | ListType BSCTSPRLN(PointType SprCntr, NumericType SprRadius,

NumericType Size)

computes the bisector surface of a sphere and the Z axis line. The sphere is centered at SptCntr
and has a radius of SprRadius. Size controls the portion of the (infinite) bisector actually represented.

Example:

BisectSrf = BSCTSPRLN(vector(2, 0, 0), 0.7, 1);

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNPT,
BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

11.2.39 BSCTSPRPL

SurfaceType | ListType BSCTSPRPL(PointType SprCntr, NumericType SprRadius,

NumericType Size)

computes the bisector surface of the XP plane (the plane Z = 0) and a sphere. This bisector surface
is a paraboloid of revolution. The sphere is centered at SptCntr and has a radius of SprRadius.
Size controls the portion of the (infinite) bisector actually represented.

Example:

BisectSrf = BSCTSPRPL(point(0, 0, 1.5), 0.7, 0.5);

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN,
BSCTPLNPT, BSCTSPRLN, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR. See Figure 11.

IRIT Solid modeler G. Elber 48

11.2.40 BSCTSPRPT

SurfaceType | ListType BSCTSPRPT(PointType SprCntr, NumericType SprRadius

PointType Pt)

computes the bisector surface of a sphere and a point, Pt. The sphere is centered at SptCntr and
has a radius of SprRadius.

Example:

Pt = point(0, 0, 1);

BisectSrf = BSCTSPRPT(point(0, 0, 0), 0.7, Pt);

computes the bisector of a sphere of radius 0.7 centered at the origin, and the point (0, 0, 1).
See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-

CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN,
BSCTPLNPT, BSCTSPRLN, BSCTSPRPL, BSCTSPRSPR, BSCTTRSPT, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

11.2.41 BSCTSPRSPR

SurfaceType | ListType BSCTSPRSPR(PointType Spr1Cntr, NumericType Spr1Radius

PointType Spr2Cntr, NumericType Spr2Radius)

computes the bisector surface of two spheres. The spheres are centered at Spt1Cntr and Spt2Cntr
and have a radii of Spr1Radius and Spr2Radius, respectively.

Example:

BisectSrf = (point(0, 0, 0), 0.7, point(1, 0, 0), 0.2);

compute the bisectors of a sphere at the origin with radius 0.7, and a sphere at (1, 0, 0) with a
radius of 0.2.

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN,
BSCTPLNPT, BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTTRSPT, BSCTTRSSPR, CALPHA-
SECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

11.2.42 BSCTTRSPT

SurfaceType | ListType BSCTTRSPT(PointType TrsPos, VectorType TrsDir,

NumericType TrsMjrRad, NumericType TrsMnrRad,

PointType Pt)

computes the bisector surface of a torus and a point, Pt. The torus is located at TrsPos, with its
axis of symmetry TrsDir, a major radius of TrsMajorRad and a minor radius pf TrsMinorRad.

Example:

BisectSrf = BSCTTRSPT(point(0.0, 0.0, 0.0), vector(0.0, 0.0, 1.0),

0.7, 0.7, Pt);

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN,
BSCTPLNPT, BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

IRIT Solid modeler G. Elber 49

Figure 11: Bisectors of many CSG primitives such as points, lines, planes, spheres, cones, cylin-
ders, and torii are rational. In (left), the rational bisector of a line and a sphere is shown while
(right) shows the bisector of a sphere and a torus tangent to each other. See BSCTCONCON,
BSCTCONLN, BSCTCONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCT-
CYLSPR, BSCTPLNLN, BSCTPLNPT, BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR,
BSCTTRSPT, BSCTTRSSPR, BSCTTRSTRS.

11.2.43 BSCTTRSSPR

SurfaceType | ListType BSCTTRSSPR(PointType TrsPos, VectorType TrsDir,

NumericType TrsMjrRad, NumericType TrsMnrRad,

PointType SprCntr, NumericType SprRadius)

computes the bisector surface of a torus and a sphere. The torus is located at TrsPos, with its
axis of symmetry TrsDir, a major radius of TrsMajorRad and a minor radius pf TrsMinorRad.
The sphere is centered at SptCntr and has a radius of SprRadius.

Example:

BisectSrf = BSCTTRSSPR(point(0.0, 0.0, 0.0), vector(0.0, 0.0, 1.0),

0.7, 0.7, point(0.7, 0.0, 0.0), 0.7);

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN,
BSCTPLNPT, BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSPT, CALPHA-
SECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR. See Figure 11.

SurfaceType BSCTTRSTRS(PointType Trs1Pos, VectorType Trs1Dir,

NumericType Trs1MjrRad,

PointType Trs2Pos, VectorType Trs2Dir,

NumericType Trs2MjrRad,

NumericType Alpha)

IRIT Solid modeler G. Elber 50

computes the bisector surface between two torii. The torii are located at TrsiPos, with axis of
symmetry TrsiDir, a major radius of TrsMajorRad and a minor radius pf TrsMinorRad.

Example:

BisectSrf = BSCTTRSTRS(point(0, 0, 0), vector (0, 0, 1), 1,

point(-1, 1, 0), vector (1, 1, 0), 1, 0.5);

See also BSCPCONCON, BSCTCONCN2, BSCTCONCYL, BSCTCONCON, BSCTCONLN, BSCT-
CONPL, BSCTCONPT, BSCTCONSPR, BSCTCYLPL, BSCTCYLPT, BSCTCYLSPR, BSCTPLNLN,
BSCTPLNPT, BSCTSPRLN, BSCTSPRPL, BSCTSPRPT, BSCTSPRSPR, BSCTTRSSPR, CAL-
PHASECTOR, CBISECTOR2D, CBISECTOR3D, SBISECTOR.

11.2.44 BZR2BSP

CurveType BZR2BSP(CurveType Crv)

or

SurfaceType BZR2BSP(SurfaceType Srf)

creates a B-spline curve or a B-spline surface from the given Bezier curve or Bezier surface. The B-
spline curve or surface is assigned an open end knot vector(s) with no interior knots, in the parametric
domain of zero to one.

Example:

BspSrf = BZR2BSP(BzrSrf);

11.2.45 BSP2BZR

CurveType | ListType BSP2BZR(CurveType Crv)

or

SurfaceType | ListType BSP2BZR(SurfaceType Srf)

creates Bezier curve(s) or surface(s) from a given B-spline curve or a B-spline surface. The B-spline
input is subdivided at all internal knots to create Bezier curves or surfaces. Therefore, if the input
B-spline does have internal knots, a list of Bezier curves or surfaces is returned. Otherwise, a single
Bezier curve or surface is returned. The returned Beziers will have BspDomainMin/Max attributes
with the original Bspline domain of the Bezier.

Example:

BzrCirc = BSP2BZR(circle(vector(0.0, 0.0, 0.0), 1.0));

would subdivide the unit circle into four 90 degrees Bezier arcs returned in a list.

IRIT Solid modeler G. Elber 51

Figure 12: The precise configuration space (three axes for the three degrees of freedom - XY motion and
rotation in the plane) is shown on the right for the two curves on the left. The specific configuration
on the left is designated as a point on the right. Computed by mapping the contacts formulation into
algebraic constraints and solving them.

11.2.46 C2CONTACT

CurveType C2CONTACT(CurveType C1, CurveType C2, NumericType StepSizeTol,

NumericType SubdivTol, NumericType NumericTol)

computes precise 2-contact planar motion of one curve against the other, building the configura-
tion space of the possible motions. See also ”High-Precision Continuous Contact Motion for Planar
Freeform Geometric Models”, Graphical Model, Vol 76, pp 580-592, 2014, by Yong-Joon Kim, Gershon
Elber, and Myung-Soo Kim.

Example:

MotionPath = C2CONTACT(c1, c2, 1e-3, 1e-3, 1e-8);

See Figure 12 for one example.
See also MZERO and MUNIVZERO, MFROMMESH.

11.2.47 CALPHASECTOR

SurfaceType CALPHASECTOR(ListType TwoCrvs, NumericType Alpha)

or

{CurveType | SurfaceType} CALPHASECTOR(ListType CrvPt, NumericType Alpha)

computes the alpha sector for TwoCrvs of E3 type or between a curve and a point, CrvPt.
Alpha varies between zero and one. An alpha-sector is created where for Alpha equals zero, the
created surface will contain the first curve, and whereas for Tolerance equals one, the created surface

IRIT Solid modeler G. Elber 52

will contain the second curve. For CrvPt case, if the Crv is E2, the alpha sector is a curve and if it is
E3, the alpha sector is a surface. See also CBISECTOR2D, CBISECTOR3D.

Example:

c1 = creparam(pcircle(vector(0.0, 0.0, 0.0), 1), 0, 1);

c2 = cbezier(list(ctlpt(E3, -1.0, 0.0, 1.0),

ctlpt(E3, 1.0, 0.0, -1.0)));

c1 = coerce(c1, E3);

AlphaSect = CALPHASECTOR(list(c1, c2), 0.2);

interact(list(c1, c2, AlphaSect));

computes the alpha sector surface between the two curves c1 and c2 for alpha equals 0.2.

11.2.48 CANGLEMAP

CurveType CANGLEMAP(CurveType Crv, NumericType SubdivTol,

NumericType Angle, NumericType DiagSpan)

or

SurfaceType CANGLEMAP(CurveType Crv, NumericType SubdivTol,

NumericType Angle, NumericType DiagSpan)

computes the angular map of planar curve Crv. This bivariate map corresponds pairs of locations
inCrv with tangents that areAngle degrees apart. If, for example, Angle is 90 degrees, locations with
orthogonal tangents are identified. The zero set of this bivariate map provides the actual correspondence
and this zero set is computed with SubdivTol accuracy. If SubdivTol is negative the function whose
zero set is the angular map is returned instead. If DiagSpan is non zero, the angular diagonal span is
sampled DiagSpan samples and is computed instead. The DiagSpan will provide for each parameter
t the forward and backward step that could be taken before hitting an angular span of Angle degrees
for the first time.

Example:

AM = cAngleMap(Crv, 0.01, Angle, false);

ADS = cAngleMap(Crv, 0.01, Angle, 300);

computes the Angular map of curve Crv ay angle Angle with subdivison tolerance 0.01 and then
extract the angular diagonal span with the same parameters and 300 samples.

Figure 13 provides some insight curve, with three angular maps of 30, 60 and 90 degrees. The
angular diagonal span is also drawn in dark thin lines.

See also CVIEWMAP, CVISIBLE, CARRANGMNT.

11.2.49 CARCLEN

NumericType CARCLEN(CurveType Crv, NumericType Fineness, NumericType Order)

or

CurveType CARCLEN(CurveType Crv, NumericType Fineness, NumericType Order)

IRIT Solid modeler G. Elber 53

Figure 13: Angular maps computed for the given planar curve on the left, at 30, 60, and 90 degrees,
using CANGLEMAP. Also show is the angular diagonal span in thin dark color.

Estimates arc length or compute an arc length approximated curve to the given curve. If Order
== -1 or 0, the arc length of Crv is computed to within tolerance Fineness, in two different ways.
If Order == 2, only the knot vector (if B-spline curve) is adjusted to better reflect and arc-length
parameterizations. If Order ¿ 2, approximates an arc length curve out of the given curve Crv. The
new approximated curve is sampled with tolerance that is governed by Fineness and will be of order
Order. The returned curve is not guaranteed to share the exact same trace as the original curve Crv.

Example:

c2 = carclen(c, 1e-4, 3);

approximates c as a quadratic arc length curve c2 by sampling the original curve with tolerance
1e-4.

11.2.50 CAREA

CurveType CAREA(CurveType Crv)

computes the integral area curve, ACrv, of the given curve Crv, up to a sign. If Crv is a closed
curve with domain t0 to t1, then the difference of ACrv(t1) - ACrv(t0) is the requested area.

The integral area curve C(t) = (x(t), y(t)) is computed as the following integral:

1

2

∫ t2

t1
−x′(t)y(t) + x(t)y′(t)dt

Example:

Crv = pcircle(vector(0, 0, 0), 1);

ACrv = CAREA(Crv);

Pi = abs(coord(ceval(ACrv, 4), 1) - coord(ceval(ACrv, 0), 1));

is yet another way of approximating the value of Pi. See also SMOMENTS, SVOLUME and TVOL-
UME.

IRIT Solid modeler G. Elber 54

11.2.51 CARRANGMNT

CurveType CARRANGMNT(CurveType Crvs, NumericType Eps,

NumericType Operation, PointType CenterPt)

computations over the given arrangment of planar curves Crvs upto accuracy that is governed by
Eps. Operation can be one of:

• 1 - computes all the curve curve intersection locations in the arrangment and keep the results in
”InterPts” attributes on the returned curves.

• 2 - computes all the curve curve intersection locations in the arrangment and split all curves at
all those intersections.

• 3 - computes Y-minimum lower envelop for this curves’ arrangement.

• 4 - computes radial lower envelop around point Center Pt.

CenterPt is ignored if Operation is not equal to 4.
Example:

LinearLowEnv = carrangmnt(Crvs, 1e-12, 3, 0);

computes the Y-minimum envelop of curve Crvs.
Figure 14 show one example of Y-minimum envelop of curves.
See also CVIEWMAP, CVISIBLE, CANGLEMAP, CARNGMNT2.

11.2.52 CARNGMNT2

CurveType CARNGMNT2(CurveType Crvs, NumericType Operation,

ListType Params)

computations over the given arrangment of planar curves Crvs upto accuracy. Operation can be
one of:

• 1 - create a new arrangment. Params contains four items: (Tolerance for equality of end points,
Planarity tolerance to consider arrangement planar, TRUE to project all curves to be on computed
plane, Mask for input type to consider: 0x01 to handle polylines. 0x02 to handle curves. 0x04
to handle trimming curves in trimmed surfaces).

• 2 - copy an arrangement. Params contains no items.

• 3 - filter duplications in the input arrangement. Params contains two items: (Epsilon to consider
the curves the same, TRUE to update end points to be the same).

• 4 - filter duplications in the tangential input arrangement. Params contains one item: (Epsilon
angle in degrees to consider two curves with the same tangent).

• 5 - Splits curves at special points, Params contains two items: (Mask for splitting type to
consider: 0x01 to split at inflection pts — 0x02 to split at max curvatures — 0x04 to split at C1
disconts, Tolerance of splitting computation).

• 6 - Split piecewise curves at large angular deviation of adjacent edges. Params contains one
item: (Angular deviation (in degrees) to split linear curves at).

IRIT Solid modeler G. Elber 55

Figure 14: Y-minimum envelop for a set of curves, computed using CARRANGMNT. The lower envelop
is shown in thick lines.

• 7 - Split curves at intersection locations. Params contains one item: (Intersection computation
tolerance).

• 8 - Splits curve near prescribed points. Params contains two items: (A list object of pts to
examine and split if near them, Tolerance to consider a point near/on a curve).

• 9 - Merge adjacent curves. Params contains one item: (Angular deviation (in degrees) to merge
C1 discont. curves at).

• 10 - Least square fit linear curves. Params contains one item: (Fitting Parameter to fit smooth
quadratic C1 curves to linear curves. Higher order curves are not affected. If Param positive,
the fitted curve size is set to InputCrvSize * FitC1Crv / 100 (i.e. Param serves as percetange of
input size). If Param negative, the Fitted curve size is simply set to ABS(Param))

• 11 - Evaluate the curve arrangement. I.e. loops, hanging edges, etc. Params contains no item.

• 12 - Classify the curve arrangement. This returns nothing. Params contains no item.

IRIT Solid modeler G. Elber 56

• 13 - Report the result. Params contains one item: (A mask of desired report: 0x01 to dump
info on crvs — 0x02 to also dump the crvs — 0x04 to report end pts in arrangment if evaluated
— 0x08 to report regions in arrangment if evaluated).

• 14 - Dumps to stdout information on the arrangement. Params contains three item: (Style of
expected output: 1 for individual crv segs in each region (loop etc.) or 2 for merged curves so
every region is one curve or 3 for topology as an ordered list of curve segments and each region is
a list of indices into the first list. A negative -i index means index i but a reversed crv. 101, 102,
103: same as 1,2,3 but pt is evaluated at 1/13 of curve parameteric domain to identify orientation,
Tolerance of topology reconstruction (in case 3 only), Zoffset in Z for the i’th region, by amount
i*ZOffset).

• 15 - Free a curve arrangement. Params contains no item.

Example:

ca1 = carngmnt2(crvs2, CA_CREATE, list(1e-2, 1e-2, TRUE, 7));

ca2 = carngmnt2(ca1, CA_BREAK_INTER, list(1e-6));

ca3 = carngmnt2(ca2, CA_EVAL_CA, list(TRUE));

dm = carngmnt2(ca3, CA_CLASSIFY, nil());

CAFinal2 = carngmnt2(ca3, CA_OUTPUT, list(2, 1e-2, 0.02));

dm = carngmnt2(ca3, CA_REPORT, list(1));

dm = carngmnt2(ca3, CA_REPORT, list(2));

dm = carngmnt2(ca3, CA_REPORT, list(4));

dm = carngmnt2(ca3, CA_REPORT, list(8));

Creates a curves’ arrangment from crvs2 and classify into closed loops after breaking at all crv-crv
intersections.

See also CARRANGMNT.

11.2.53 CBEZIER

CurveType CBEZIER(ListType CtlPtList)

creates a Bezier curve out of the provided control point list. CtlPtList is a list of control points,
all of which must be of type (E1-E9 P1-P9), or regular PointType defining the curve’s control polygon.
The curve’s point type will be of a space which is the union of the spaces of all points. The created
curve is polynomial (or rational),

C(t) =
k∑

i=0

PiBi(t), (5)

where Pi are the control points CtlPtList, and k is the degree of the curve, which is one less than the
number of points.

Example:

s45 = sin(pi / 4);

Arc90 = CBEZIER(list(ctlpt(P2, 1.0, 0.0, 1.0),

ctlpt(P2, s45, s45, s45),

ctlpt(P1, 1.0, 1.0)));

constructs an arc of 90 degrees as a rational quadratic Bezier curve.
See also CBSPLINE, CPOWER and SBEZIER.

IRIT Solid modeler G. Elber 57

11.2.54 CBIARCS

ListType CBIARCS(CurveType Crv, NumericType Tol, NumericType MaxAngle)

computes bi-arc fitting to a given curve Crv, with a tolarence Tol in L-infinity sense, and a
maximum angular span of each arc of at most MaxAngle degrees. Returned is a list of arcs as
rational Bezier curves with an arc ”center” point attribute to ease the reconstruction of the analytic
representation of the geometry.

Example:

C1 = cbspline(4,

list(ctlpt(E3, -0.287, -0.286, 0),

ctlpt(E2, 0.0272, -0.425),

ctlpt(E2, 0.265, -0.0839),

ctlpt(E2, 0.607, -0.165),

ctlpt(E2, 0.832, -0.205),

ctlpt(E2, 0.737, 0.042),

ctlpt(E2, 0.357, 0.103),

ctlpt(E2, 0.508, 0.298),

ctlpt(E2, 0.814, 0.649),

ctlpt(E2, 0.692, 0.775),

ctlpt(E2, 0.411, 0.391),

ctlpt(E2, 0.301, 0.315),

ctlpt(E2, 0.625, 0.945),

ctlpt(E2, 0.49, 1.03),

ctlpt(E2, 0.369, 0.829),

ctlpt(E2, 0.185, 0.384),

ctlpt(E2, 0.194, 0.518),

ctlpt(E2, 0.243, 1.09),

ctlpt(E2, 0.0653, 1.13),

ctlpt(E2, 0.0644, 0.381),

ctlpt(E2, 0.00925, 0.496),

ctlpt(E2, -0.0113, 0.943),

ctlpt(E2, -0.202, 0.954),

ctlpt(E2, -0.147, 0.644),

ctlpt(E2, -0.162, 0.208),

ctlpt(E2, -0.337, -0.156)),

list(kv_periodic));

C1 = coerce(C1, kv_open);

Arcs = CBIARCS(Crv, 0.01, 90);

computes bi-arcs fitting to a given curve in the shape of a human hand, with arcs with at most 90
degrees and tolerance of 0.01. See Figure 15. See also QUADCRVS, CUBICCRVS.

11.2.55 CBISECTOR2D

CurveType CBISECTOR2D(CurveType Crv,

NumericType ZeroSet,

NumericType BisectFunc,

IRIT Solid modeler G. Elber 58

Figure 15: Bi-arcs are fitted to the given curve in the shape of a human hand, at two different tolerances,
using CBIARCS.

NumericType Tolerance,

NumericType NumerImprove,

NumericType SameNormal)

or

CurveType CBISECTOR2D(ListType TwoCrvs,

NumericType ZeroSet,

NumericType BisectFunc,

NumericType Tolerance,

NumericType NumerImprove,

NumericType SameNormal)

or

SurfaceType CBISECTOR2D(ListType CrvPt,

NumericType ZeroSet,

NumericType UseNrmlTan,

NumericType Tolerance,

NumericType NumerImprove,

NumericType SameNormal)

computes the self bisector curve(s) for Crv or the bisector(s) of TwoCrvs or the bisector of a curve
and a point, CrvPt. If ZeroSet is TRUE, the zero-set surface is computed and is used mainly for
displaying the zero-set. If it is FALSE, the bisector is returned. The zero-set is computing using the

IRIT Solid modeler G. Elber 59

functions F1, F2 and F3 in the paper Gershon Elber and Myung Soo Kim, “Bisector Curves of Planar
Rational Curves,” CAD, Vol 30, No 14, pp 1089-1096, December 1998 which is determined by the Bi-
sectFunc parameter. If BisectFunc = 1, then F1 is used and so on. Tolerance controls the accuracy
of the computation, with 0.01 as a good starting value. If Tolerance is negative, NumerImprove can
be either TRUE or FALSE, allowing or disabling a final numerical improvement stage. SameNormal
can also assume a TRUE or FALSE value, selecting only opposite facing normals, if TRUE. The bisec-
tor curve of a curve (E2) and a point CrvPt is computed analytically. Other parameters are ignored.
See also CBISECTOR3D, CALPHASECTOR, SBISECTOR.

Example:

c1 = cbezier(list(ctlpt(E2, -0.5, -0.2),

ctlpt(E2, 0.0, -0.2),

ctlpt(E2, 0.6, 0.6)));

c2 = cbezier(list(ctlpt(E2, 0.3, -0.7),

ctlpt(E2, -0.2, -0.7),

ctlpt(E2, 0.7, 0.6)));

BisectCrvs = CBISECTOR2D(list(c1, c2), TRUE, 1, 0.01, true, false);

All = list(c1, c2, BisectCrvs);

interact(list(All, view_mat2d));

computes the bisector for planar curves as a set of bisector curves. See Figure 16.

11.2.56 CBISECTOR3D

SurfaceType CBISECTOR3D(ListType TwoCrvs, NumericType BisectFunc)

or

SurfaceType CBISECTOR3D(ListType CrvPt, NumericType BisectFunc)

or

SurfaceType CBISECTOR3D(ListType TwoCrvsSrf, NumericType BisectFunc)

or

SurfaceType CBISECTOR3D(ListType CrvPtSrf, NumericType BisectFunc)

computes the bisector surface TwoCrvs or the bisector surface of a curve and a point, CrvPt, in
R3. The BisectFunc determines the function to be used for generating the bisector surface between
the two E3 curves. If 1, a 3-space bisector surface is generated to the given curves or a curve and a
point. If 4, a surface whose zero set prescribes the bisectors of the given curves is returned. if 2, and
a surface is also attached to the list (last two option above) the geometry (curves/point) is assume in
the domain of the surface and the bisector curve is computed in the surface. See also CBISECTOR2D,
CALPHASECTOR, SBISECTOR.

Example:

c1 = creparam(pcircle(vector(0.0, 0.0, 0.0), 1), 0, 1);

IRIT Solid modeler G. Elber 60

Figure 16: (left) Bisectors of two quadratic Bezier curves in the plane. (right) A bisector surface of a
line and a circle in three space. See the CBISECTOR2D and CBISECTOR3D functions respectively.

c2 = cbezier(list(ctlpt(E3, -1.0, 0.0, 1.0),

ctlpt(E3, 1.0, 0.0, -1.0)));

c1 = coerce(c1, E3);

BisectSrf = CBISECTOR3D(list(c1, c2), 1);

interact(list(c1, c2, BisectSrf));

computes a bisector surface of a Z parallel line and a circle in the XY plane. See Figure 16.

11.2.57 CBSPLINE

CurveType CBSPLINE(NumericType Order, ListType CtlPtList,

ListType KnotVector)

creates a B-spline curve out of the provided control point list, the knot vector, and the specified
order. CtlPtList is a list of control points, all of which must be of type (E1-E9 P1-P9, or regular
PointType defining the curve’s control polygon. The curve’s point type will be of a space which is
the union of the spaces of all points. The length of the KnotVector must be equal to the number
of control points in CtlPtList plus the Order. If, however, the length of the knot vector is equal
to #CtlPtList + Order + Order - 1, the curve is assumed to be periodic. The knot vector list
may be specified as either list(KV OPEN), list(KV FLOAT) or list(KV PERIODIC) in
which a uniform open, uniform floating or uniform periodic knot vector with the appropriate length is
automatically constructed.

IRIT Solid modeler G. Elber 61

The created curve is the piecewise polynomial (or rational),

C(t) =
k∑

i=0

PiBi,τ (t), (6)

where Pi are the control points CtlPtList and k is the degree of the curve, which is one less than the
Order or number of points. τ is the knot vector of the curve.

Example:

s45 = sin(pi / 4);

HalfCirc = CBSPLINE(3,

list(ctlpt(P3, 1.0, 1.0, 0.0, 0.0),

ctlpt(P3, s45, s45, s45, 0.0),

ctlpt(P3, 1.0, 0.0, 1.0, 0.0),

ctlpt(P3, s45, -s45, s45, 0.0),

ctlpt(P3, 1.0, -1.0, 0.0, 0.0)),

list(0, 0, 0, 1, 1, 2, 2, 2));

constructs an arc of 180 degrees in the XZ plane as a rational quadratic B-spline curve.
Example:

c = CBSPLINE(4,

list(ctlpt(E2, 0.5, 0.5),

ctlpt(E2, -0.5, 0.5),

ctlpt(E2, -0.5, -0.5),

ctlpt(E2, 0.5, -0.5)),

list(KV_PERIODIC));

color(c, red);

viewobj(c);

c1 = cregion(c, 3, 4);

color(c1, green);

c2 = cregion(c, 4, 5);

color(c2, yellow);

c3 = cregion(c, 5, 6);

color(c3, cyan);

c4 = cregion(c, 6, 7);

color(c3, magenta);

viewobj(list(c1, c2, c3, c4));

creates a periodic curve and extracts its four polynomial domains as four open end B-spline curves.
See Figure 17.

See also CBEZIER, CPOWER and SBSPLINE.

11.2.58 CCINTER

ListType CCINTER(CurveType Crv1, CurveType Crv2, NumericType Epsilon,

NumericType SelfInter)

IRIT Solid modeler G. Elber 62

Figure 17: A cubic periodic curve created using KV PERIODIC end conditions.

or

SurfaceType CCINTER(CurveType Crv1, CurveType Crv2, NumericType Epsilon,

NumericType SelfInter)

compute the intersection point(s) of Crv1 and Crv2 in the XY plane. Since this computation
involves numeric operations, Epsilon controls the accuracy of the parametric values of the result.
It returns a list of PointTypes, each containing the parameter of Crv1 in the X coordinate, and
the parameter of Crv2 in the Y coordinate. If, however, Epsilon is negative, a scalar field surface
representing the square of the distance function is returned instead. If SelfInter is TRUE, Crv1 and
Crv2 can be the same curve, and self intersection points are searched for instead.

Example:

crv1 = cbspline(3,

list(ctlpt(E2, 0, 0),

ctlpt(E2, 0, 0.5),

ctlpt(E2, 0.5, 0.7),

ctlpt(E2, 1, 1)),

list(KV_OPEN));

crv2 = cbspline(3,

list(ctlpt(E2, 1, 0),

ctlpt(E2, 0.7, 0.25),

IRIT Solid modeler G. Elber 63

Figure 18: A intersection point of two freeform curve computed using CCINTER.

ctlpt(E2, 0.3, 0.5),

ctlpt(E2, 0, 1)),

list(KV_OPEN));

inter_pts = CCINTER(crv1, crv2, 0.0001, FALSE);

computes the parameter values of the intersection point of crv1 and crv2 to a tolerance of 0.0001.
See Figure 18.

11.2.59 CCRVTR

ListType CCRVTR(CurveType Crv, NumericType Epsilon, NumericType Operation)

or

CurveType CCRVTR(CurveType Crv, NumericType Epsilon, NumericType Operation)

computes the curvature field’s magnitude square of Crv in the XY plane if Operation is 1, or its
extreme points if Operation equals 2. This set includes not only points of maximum (convexity) and
mimumum (concavity) curvature, but also points of zero curvature locations, such as inflection points.
A list of parameter value(s) of the location(s) with extreme curvature along the Crv is returned in the
latter case. Since this operation is partially numeric, Epsilon is used to set the needed accuracy. If,
however, Operation is 3, the input curve is being split at the extreme curvature location and a list of
curve segments is returned instead.

IRIT Solid modeler G. Elber 64

This function computes the (square of the) curvature scalar field for planar curves as,

κ(t) =
x′(t)y′′(t)− x′′(t)y′(t)

((x′(t))2 + (y′(t))2)
3
2

, (7)

and computes (the square of) kN for three-dimensional curves as the following vector field,

κ(t)N(t) = κ(t)B(t)× T (t) =
C ′ × C ′′

‖C ′‖3 × C ′

‖C ′‖ =
(C ′ × C ′′)× C ′

‖C ′‖4 . (8)

The extremum values are extracted from the computed curvature field. This (square of the) curva-
ture field is a high order curve, even if the input geometry is of low order. This is especially true for
rational curves, for which the quotient rule for differentiation is used and almost doubles the degree in
every differentiation.

See also CCRVTREVAL, CINFLECT, CNRMLCRV, CZEROS, CEXTREMES, and SCRVTR.
Example:

crv = cbezier(list(ctlpt(E2, -1.0, 0.5),

ctlpt(E2, -0.5, -2.0),

ctlpt(E2, 0.0, 1.0),

ctlpt(E2, 1.0, 0.0))) * rotz(30);

crvtr = CCRVTR(crv, 0.001, 2);

pt_crvtr = nil();

pt = nil();

for (i = 1, 1, sizeof(crvtr),

(pt = ceval(crv, nth(crvtr, i))):

snoc(pt, pt_crvtr)

);

interact(list(crv, pt_crvtr));

finds the extreme curvature points in Crv and displays them all with the curve. See Figure 19.

11.2.60 CCRVTR

PolyType CCRVTR1PT(CurveType Crv, NumericType CtlPtIdx, NumericType Min,

NumericType Max, NumericType SubdivTol, NumericType NumerTol,

NumericType Operation)

or

MultivarType CCRVTR1PT(CurveType Crv, NumericType CtlPtIdx, NumericType Min,

NumericType Max, NumericType SubdivTol, NumericType NumerTol,

NumericType Operation)

computes the topology changes in the curvature field of curve Crv as control point index CtlPtIdx
in the curve is moving. The motion of the control points is limited to be between Min and Max in X
and Y. See MZERO for the meaning of the SubdivTol and NumerTol. The returned value depends
on Operation: If Operation is 0, a multivariate of dim(Crv) + 1 that is representing the curvature
topology field is returned. If Operation is 1, the marching cubes of Operation == 0 is computed
and returned as a polygonal surface. If Operation is 2 the silhouette of 1 is computed and returned
and if Operation is 3 the result of 2 is evaluated back into Euclidean space.

Example:

IRIT Solid modeler G. Elber 65

Figure 19: Extreme curvature locations on a freeform curve computed using CCRVTR.

MV = CCRVTR1PT(Crv, 4, Min, Max, 0.01, 1e-10, 1);

11.2.61 CCRVTREVAL

NumericType CCRVTREVAL(CurveType Curve, NumericType t)

computes the curvature of curve Curve at parameter t.
Example:

k = CCRVTREVAL(Crv, 0.5);

See also CCRVTR.

11.2.62 CCUBICS

CurveType CCUBICS(CurveType Crv, NumericType Tolerance)

returns a list of cubic curves approximating the given curve Crv to within Tolerance.
Example:

Crv = CCUBICS(Crv, 0.01);

See Figure 20.
See also CUBICCRVS, QUADCRVS, and CBIARCS.

11.2.63 CDERIVE

CurveType CDERIVE(CurveType Curve)

returns a vector field curve representing the differentiated curve, also known as the Hodograph
curve.

Example:

IRIT Solid modeler G. Elber 66

Figure 20: A piecewise cubic fit to a given general curve, at three different tolerances, using CCUBICS.

Circ = circle(vector(0.0, 0.0, 0.0), 1.0);

Hodograph = CDERIVE(Circ);

See Figure 21. See also CINTEG, SDERIVE, TDERIVE, and MDERIVE

11.2.64 CDIVIDE

ListType CDIVIDE(CurveType Curve, NumericType Param)

subdivides a curve into two sub-curves at the specified parameter value. Curve can be either a
B-spline curve in which Param must be within the Curve’s parametric domain, or a Bezier curve in
which Param can be arbitrary, extrapolating if not in the range of zero to one.

It returns a list of the two sub-curves. The individual curves may be extracted from the list using
the NTH command.

Example:

CrvLst = CDIVIDE(Crv, 1.3);

Crv1 = nth(CrvLst, 1);

Crv2 = nth(CrvLst, 2);

subdivides the curve Crv at the parameter value of 0.5. See Figure 22. See also SDIVIDE,
TDIVIDE, and MDIVIDE

11.2.65 CEDITPT

CurveType CEDITPT(CurveType Curve, CtlPtType CtlPt, NumericType Index)

provides a simple mechanism to manually modify a single control point number Index (base count
is 0) in the Curve, by substituting CtlPt instead. CtlPt must have the same point type as the control
points of the Curve. If, however, CtlPt is not a control point object, control point number Index is
deletedfrom the input curve. The original curve Curve is not modified.

Example:

CPt = ctlpt(E3, 1, 2, 3);

NewCrv = CEDITPT(Curve, CPt, 1);

constructs a NewCrv with the second control point of Curve being CPt.

IRIT Solid modeler G. Elber 67

Figure 21: The Hodograph (thick) of a B-spline circle (thin) constructed as four 90 degrees rational
Bezier arcs, computed using CDERIVE.

Figure 22: A B-spline curve is subdivided into two distinct regions using CDIVIDE.

IRIT Solid modeler G. Elber 68

Figure 23: The envelope offset of a freeform planar curve computed using CENVOFF.

11.2.66 CENVOFF

SurfaceType CENVOFF(CurveType Curve,

NumericType Height, NumericType Tolerance)

or

ListType CENVOFF(CurveType Curve, NumericType Height, NumericType Tolerance)

computes the offset envelope of a given planar curve Curve. The offset envelope is the envelope
of cones with apex on point on Curve in the Z direction. Height is the height of the cone which
also equals the offset distance or the width of the cones. Tolerance controls the accuracy of the offset
approximation.

If the Curve is closed, two surfaces are created in the offset envelope, one for the inside and another
for the outside. If Curve is open, a single envelope offset surface is computed, wrapping around both
sides.

Example:

c1 = cbezier(list(ctlpt(E2, -0.8, 0.0),

ctlpt(E2, -0.2, 1.0),

ctlpt(E2, 0.2, 0.0),

ctlpt(E2, 0.8, 0.6)));

s1 = CENVOFF(c1, 0.5, 0.01);

computes an envelope offset surface for a cubic Bezier curve c1 of Height of 0.5 and Tolerance
of 0.01. See Figure 23.

11.2.67 CEVAL

CtlPtType CEVAL(CurveType Curve, NumericType Param)

evaluates the provided Curve at the given Param value. Param should be in the curve’s para-
metric domain if the Curve is a B-spline curve, or between zero and one if the Curve is a Bezier
curve. The returned control point has the same point type as the control points of the Curve.

Example:

CPt = CEVAL(Crv, 0.25);

evaluates Crv at the parameter value of 0.25. See also SEVAL, MEVAL, TEVAL.

IRIT Solid modeler G. Elber 69

Figure 24: The X local extremums of a freeform curve are isolated using CEXTREMES.

11.2.68 CEXTREMES

ListType CEXTREMES(CurveType Crv, NumericType Epsilon, NumericType Axis)

computes the extreme set of the given Crv in the given axis (1 for X, 2 for Y, 3 for Z). Since this
computation is numeric, an Epsilon is also required to specify the desired tolerance. It returns a list
of all the parameter values (NumericType) in which the curve takes an extreme value.

Example:

extremes = CEXTREMES(Crv, 0.0001, 1);

computes the extreme set of curve crv, in the X axis, with error tolerance of 0.0001. See also
CZERO. See Figure 24.

11.2.69 CFNCRVTR

CurveType CFNCRVTR(CurveType E2Crv, NumericType Samples,

NumericType Order, NumericType ArcLen)

or

CurveType CFNCRVTR(CurveType CrvtrE1Crv, NumericType Accuracy,

NumericType Order, NumericType Periodic)

computes the curvature field of planar curve E2Crv in the first form, and reconstructs an E2 planar
curve from the given curvature field CrvtrE1Crv in the second form. In the first form, Samples
defines the numer of samples to use along the input curve while if ArcLen TRUE the samples are also
made along the arc length of E2Crv. In the second form, a planar curve is reconstructed from the

IRIT Solid modeler G. Elber 70

Figure 25: Approximates a helical curve using CHELIX.

curvature field of CrvtrE1Crv, with Accuracy to control the accuracy. If the reconstructed curve is
suppose to be closed, set Periodic to TRUE. In both forms, Order sets the order of the return curve.

Example:

CrvtrField = CFNCRVTR(Crv, 1000, 2, TRUE);

11.2.70 CHELIX

CurveType CHELIX(NumericType NumLoops, NumericType Pitch,

NumericType Radius, NumericType Samples,

NumericType CtlPtsPerLoop)

constructs a polynomial approximation of a helical curve ofNumLoops loops and specifiedRadius
and Pitch. The curve is approximated as a least sqaures fit of Samples samples and CtlPtsPerLoop
control points per loop.

Example:

HelixcalCrv = chelix(3, 0.333, 0.444, 100, 6);

See Figure 25 for this helix 3 loops. See also CSPIRAL, CSIN

11.2.71 CIEXTREME

ListType CIEXTREME(SurfaceType Srf, NumericType Dir,

NumericType SubdivTol, NumericType NumerTol)

computes the X- or Y-extreme values of the implicit univariate defined as the zero set of Srf. In
addition, this function also detects hyperbolic tangent contact of Srf with the plane Z = 0. Dir
specified the desired direction of the extremum to extract, one of COL or ROW. See MZERO for the
meaning of the SubdivTol and NumerTol.

Example:

ViewMap = CIEXTREME(Srf, col, 0.01, 1e-9);

See Figure 26.

IRIT Solid modeler G. Elber 71

Figure 26: An example of computing the X- and Y-extreme locations of this implicit curve defined as
the zero set of the surface. Also detected surface tangency contacts with the plane Z = 0.

11.2.72 CINFLECT

ListType CINFLECT(CurveType Crv, NumericType Epsilon, NumericType Operation)

or

CurveType CINFLECT(CurveType Crv, NumericType Epsilon,

NumericType Operation)

computes and returns a scalar field (the numerator of the curvature field, the sign of the curvature
field if you like) whose zeros are the inflection points of Crv in the XY plane, if Operation is 1.
If Operation is 2, the inflection points are derived and returned as list of all the parameter values
(NumericType) in which the curve has an inflection point. Since this computation is partially numeric,
an Epsilon is also required to specify the desired tolerance. If, however, Operation is 3, the input
curve Crv is being split at all the inflection points and the different, inflection free, curve segements
are returned in a list.

The sign of curvature scalar field is equal to,

σ(t) = x′(t)y′′(t)− x′′(t)y′(t). (9)

Example:

inflect = CINFLECT(crv, 0.001, 2);

pt_inflect = nil();

pt = nil();

for (i = 1, 1, sizeof(inflect),

pt = ceval(crv, nth(inflect, i)):

snoc(pt, pt_inflect)

);

interact(list(axes, crv, pt_inflect));

IRIT Solid modeler G. Elber 72

Figure 27: The Inflection points of a freeform curve can be isolated using CINFLECT.

computes the set of inflection points of curve crv with error tolerance of 0.001. This set is then
scanned in a loop and evaluated to the curve’s locations which are then displayed with the crv. See
also CZEROS, CEXTREMES, and CCRVTR. See Figure 27.

11.2.73 CINTEG

CurveType CINTEG(CurveType Crv);

returns a vector field curve representing the integral curve. See also CDERIVE.

11.2.74 CINTERP

CurveType CINTERP(ListType PtList, NumericType Order, NumericType Tol,

NumericType C1Discont, NumericType Periodic, NumericType EndPtInterp)

or

CurveType CINTERP(ListType PtList, NumericType Order, NumericType Size,

ConstantType Params, NumericType Periodic, NumericType EndPtInterp)

or

CurveType CINTERP(CurveType Crv, NumericType Order, NumericType Size,

ListType Params, NumericType Periodic, NumericType EndPtInterp)

computes a B-spline curve that interpolates or approximates the list of (control) points in PtList
or a given curve Crv. The B-spline curve will have order Order and either Size control points (if
integer) or automatically computed Tol (if is/has a fraction) in L-infinity norm of the deviation of the
curve from the given list of (control) points. If Tol is used, C1Discont sets the cosine of the maximal
angle to consider as C1 discontinuity (or -1 to disable). The created curve will be periodic if periodic
is non zero. The knots will be spaced according to Param which can be one of PARAM UNIFORM,
PARAM CHORD, PARAM CENTRIP, PARAM NEILFOL, or lists of parameter values and knots
(see below). The PARAM UNIFORM prescribes a uniform knot sequence, PARAM CHORD specifies
knot spacing according to the chord length and PARAM CENTRIP according to the square root of the
chord length. Finally, PARAM NEILFOL takes into consideration the angles between three consecutive
points. A periodic curve will be coerced to have a PARAM UNIFORM knot sequence. If Params is
a list object, it should contain preciely two item: 1. The first item is typically a list containing the
parameter values at which to approximate or interpolate the data points. Hence, the length of this list

IRIT Solid modeler G. Elber 73

must equal the length of the PtList data. However, this item can also be either PARAM UNIFORM
or PARAM CHORD for parameters to be automatically set unitformally or at chord length. 2. The
second item is a list specifies the knot vector of the construct B-spline curve. Use of Periodic end
conditions can create cases with degenerated linear systems (determinant equal zero). Increase or
decrease of the Order of the B-spline by one might resolve the problem. All points in PtList must be
of type (E1-E9, P1-P9) control point, or regular PointType. If Size is equal to the number of points
in PtList, the resulting curve will interpolate the data set. Otherwise, if Size is less than the number
of points in PtList, the point data set will be least square approximated. At no time can Size be
lower than Order. Size of zero forces interpolation by selecting Size to be the size of the data set. If
EndPtInterp TRUE, then the end points of the fitted curve will interpolate the first and last point
in PtList. All interior knots will be distinct, preserving maximal continuity.

Example:

pl = nil();

for (x = 0, 1, 100,

snoc(point(cos(x / 5), sin(x / 5), x / 50 - 1), pl)

);

attrib(nref(pl, 1), "C0Bndry", true);

c = CINTERP(pl, 3, 21, PARAM_UNIFORM, false, false);

samples a helical curve at 100 points and least square fit of a quadratic B-spline curve with 21 points
to the data set. The curve will have a uniform knot spacing and is not periodic. See also Figure 28.
Another example, having pl as a list of 11 points:

c2 = cinterp(pl, 3, 11,

list(list(0.0, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9, 1),

list(0.0, 0.0, 0.0, 0.1, 0.2, 0.4, 0.4,

0.6, 0.6, 0.8, 0.9, 1.0, 1.0, 1.0)),

0, 1);

interpolates the points in pl while using the sepcified knot vector and interpolaion parameters. See
also SINTERP, TINTERP and LINTERP.

See also CINTERP2.

11.2.75 CINTERP2

CurveType CINTERP2(CurveType Crv, NumericType InflectStretch)

Computes a quadratic interpolating curve to the control polygon of the given curve Crv, directly.
No linear system is created/solved and the interpolation is ensured by adjusting the spacings between
knots. InflectStretch afftects the way inflection locations in Crv are affected. A value of 1.0 is a
good start for InflectStretch.

Example:

c = cbspline(2,

list(point(0, 0, 0),

point(1, 0, 0),

point(1, 1, 0),

IRIT Solid modeler G. Elber 74

Figure 28: A Helix, sampled at 100 locations, is least square fitted using CINTERP by a quadratic
B-spline curve and 21 control points.

point(2, 1, 0)),

list(kv_open));

ci1 = CINTERP2(c, 1.0);

ci2 = CINTERP2(c, 0.5);

ci3 = CINTERP2(c, 0.25);

Fits three quadratic B-spline curves, Cij, through the control polygon of Crv, with different inflec-
tion location tension.

See also CINTERP.

11.2.76 CIRCLE

CurveType CIRCLE(VectorType Center, NumericType Radius)

constructs a circle at the specified Center with the specified Radius. The returned circle is a
B-spline curve of four piecewise Bezier 90 degree arcs. The construced circle is always parallel to the
XY plane. Use the linear transformation routines to place the circle in the appropriate orientation and
location.

11.2.77 CIRCPACK

CurveType CIRCPACK(CurveType Boundary,

NumericType Radius,

NumericType NumIter,

NumericType NumerTol,

NumericType SubdivTol)

IRIT Solid modeler G. Elber 75

Figure 29: A dense packing of circles inside a freeform container, using CIRCPACK.

Computes a dense packing of circles of Radius inside a two dimensional container specified by its
Boundary. A perturbation approach is adopted which simulates shaking of container under gravity.
NumIter specifies the maximum iterations to elapse without making progress. The numeric tolernace
and subdivision tolerances are specified by NumerTol and SubdivTol, respectively. The function
returns a list of circles.

Example:

circlelist = CIRCPACK(C, 0.06, 15, 1e-9, 5e-2);

See Figure 29.

11.2.78 CIRCPOLY

PolygonType CIRCPOLY(VectorType Normal, VectorType Trans, NumericType Radius)

IRIT Solid modeler G. Elber 76

defines a circular polygon in a plane perpendicular to Normal that contains the Trans point. The
constructed polygon is centered at Trans. RESOLUTION vertices will be defined with Radius from
distance from Trans.

Alternative ways to construct a polygon are manual construction of the vertices using POLY, or
the construction of a flat ruled surface using RULEDSRF.

11.2.79 CLNTCRSR

ListType CLNTCRSR(NumericType TimeOut)

reads the mouse coordinates as well as mouse events from displace devices, or times out after
TimeOut miliseconds. A list object of two sub-objects, a points and a vector, named ” PickCrsr ” is
returned. These point and vector define the three-dimensional line of the mouse in object space.

Mouse events are typically processed by the display device. However, by the command ”CLNT-
PICKCRSR” (in iritinit.irt) which sends a ”PICKCRSR” request to the display devices, mouse events
will be sent to the server. The server can be requested to keep mouse events for ”CLNTCRSR” to be
read via the IritState command and the ”CursorKeep” attribute.

Both the point and the vector will have a numeric attribute of ”EventType” that will have the
following meaning:

1 Mouse motion event
2 Mouse down event
5 Mouse up event

In case of a time out the returned list object will be empty and will have the name ” PickFail ”.
Example:

ClntPickCrsr(clients_all);

IritState("CursorKeep", 1);

Quit = 0;

for (i = 0, 1, 10,

CLNTCRSR(10000));

ClntPickDone(clients_all);

IritState("CursorKeep", 0);

asks all clients to send mouse events to the server, asks the server to keep mouse events, and then
reads 10 mouse events.

11.2.80 CLNTREAD

AnyType CLNTREAD(NumericType Handler, NumericType Block)

reads one object from a client communication channel. Handler contains the index of the commu-
nication channel opened via CLNTEXEC. If no data is available in the communication channel, this
function will block for at most Block milliseconds until data is found or timeout occurs. In the latter,
a single StringType object is returned with the content of ”no data (timeout)”. If Handler equals -1,

IRIT Solid modeler G. Elber 77

the regular display device (forked via, for example, VIEWOBJ command) is used. See also VIEWSET,
CLNTWRITE, CLNTCLOSE, and CLNTEXEC.

Example:

h2 = clntexec("xmtdrvs -s-");

.

.

Model = CLNTREAD(h2);

.

.

clntclose(h2,TRUE);

reads one object from client through communication channel h2 and saves it in variable model.

11.2.81 CMAT2D

CurveType CMAT2D(CurveType Crv, NumericType SubdivTOl, NumericType NumerTol)

computes the medial axis transform of a give closed palanar curve Crv. Not supported.
Example:

MAT = CMAT2D(Crv, 1e-3, 1e-10);

11.2.82 CMESH

CurveType CMESH(SurfaceType Srf, ConstantType Direction, NumericType Index)

returns a single ROW or COLumn as specified by the Direction and Index (base count is 0) of
the control mesh of surface Srf.

The returned curve will have the same knot vector as Srf in the appropriate direction. See also
CSURFACE.

This curve is not necessarily in the surface Srf. It is equal to,

C(t) =
m∑
i=0

PijBi(t), (10)

and similar for the other parametric direction.
Example:

Crv = CMESH(Srf, COL, 0);

extracts the first column of surface Srf as a curve. See also CSURFACE. See also SMESH,
MFROMMESH.

11.2.83 CMOEBIUS

CurveType CMOEBIUS(CurveType Crv, NumericType Ratio)

rebalances the weights of a rational curve using the Moebius transformation. The shape of the
curve remains identical while the speed is modified. Ratio controls the ratio between the last and the
first weights. If Ratio = 0, the first and last weights are made equal.

See also SMOEBIUS.

IRIT Solid modeler G. Elber 78

11.2.84 CMORPH

CurveType CMORPH(CurveType Crv1, CurveType Crv2,

NumericType Method, NumericType Blend)

or

ListType CMORPH(CurveType Crv1, CurveType Crv2,

NumericType Method, NumericType Blend)

create a new curve which is a metamorph of the two given curves. The two given curves must
be compatible (see FFCOMPAT) before this blend is invoked. This is very useful if a sequence that
”morphs” one curve to another is to be created. Several metamorphosis methods are supported ac-
cording to the value of Method,

0 Simple convex blend.
1 Corner/Edge cutting scheme, scaled to same curve length.
2 Corner/Edge cutting scheme, scaled to same bounding box.
3 Same as 1 but with filtering out of tangencies.
4 Same as 2 but with filtering out of tangencies.
5 Multiresolution decomposition based metamorphosis. See CMULTRES.

In Method 1, Blend is a number between zero (Crv1) and one (Crv2) defining the similarity to
Crv1 and Crv2, respectively. A single curve is returned.

InMethods 2 to 5, Blend is a step size for the metamorphosis operation and a whole list describing
the entire metamorphosis operation is returned.

Examples:

for (i = 0, 1, 300,

c = CMORPH(crv1a, crv1b, 0, i / 300.0):

color(c, yellow):

viewobj(c)

);

crvs = CMORPH(crv1a, crv1b, 2, 0.003);

snoc(crv1b, crvs);

for (i = 1, 1, sizeof(crvs),

c = nth(crvs, i):

color(c, yellow):

viewobj(c)

);

Turtle2 = ffmatch(Wolf, Turtle, 20, 100, 2, false, 2);

ffcompat(Wolf, Turtle2);

for (i = 0, 1, 25,

c = CMORPH(Wolf, Turtle2, 0, i / 25):

color(c, yellow):

viewobj(c)

);

IRIT Solid modeler G. Elber 79

Figure 30: A morphing sequence using convex blend (top left), edge cutting (top right), and using
FFMATCH and convex blend (bottom).

creates three metamorphosis animation sequences, one that is based on a convex blend, and two that
are based on corner/edge cutting schemes. See also PMORPH, SMORPH, TMORPH, and FFMATCH.
See Figure 30.

11.2.85 CMULTIRES

ListType CMULTIRES(CurveType Crv, NumericType Discont,

NumericType LeastSquares)

computes a multiresolution decomposition of curveCrv using least squares approximation, if Least-
Squares is TRUE, or using B-Wavelets if LeastSquares is FALSE. The latter is optimal but slower.
The resulting list of curves describes an hierarchy of curves in linear subspaces of the space in which
Crv lay. If LeastSquares is TRUE, the curves could be summed algebraically to form Crv. Each
of the curves in the hierarchy is a least squares approximation of Crv in the subspace in which it is
defined. If LeastSquares is FALSE, a list of orthogonal projections of the Crv onto the prescibed
subspaces (by the knot sequences) is provided. Finally, Discont is a Boolean flag that controls the
way tangent discontinuities are preserved throughout the decomposition. If, however, Discont is -1,
LeastSquares will indicate the index of the knot in Crv to compute its BWavelet function.

Example:

MRCrv = CMULTIRES(Animal, false, true);

sum = nth(MRCrv, 1);

MRCrvs = list(sum * tx(3.0));

for ((i = 2), 1, sizeof(MRCrv),

sum = symbsum(sum, nth(MRCrv, i)):

IRIT Solid modeler G. Elber 80

Figure 31: A multiresolution decomposition of a curve of an animal using least squares. The original
curve is shown on the left.

snoc(sum * tx((3 - i) * 1.5), MRCrvs)

);

All = MRCrvs * sc (0.25);

view(All, on);

computes a multiresolution decomposition to curve CrossSec as MRCrv and displays all the
decomposition levels by summing them all up. The use of none as on object name allows one to
display an object in the display device without replacing the previous object in the display device,
carrying the same name.

This creates two metamorphosis animation sequences, one based on a convex blend and one based
on a corner/edge cutting scheme. See Figure 31.

11.2.86 CNORMAL

VectorType CNORMAL(CurveType Crv, NumericType TParam)

computes the normal vector to curve Crv at the parameter values TParam. The returned vector
has a unit length.

Example:

Normal = CNORMAL(Crv, 0.5);

computes the normal to Crv at the parameter value 0.5. See also CNRMLCRV, CTANGENT.

11.2.87 CNRMLCRV

CurveType CNRMLCRV(CurveType Crv)

symbolically computes a vector field curve representing the non-normalized normals of the given
curve. That is, a normal vector field, evaluated at t, provides a vector in the direction of the normal of
the original curve at t. The normal curve once computed is in fact equal to kN where k is the curvature
of Crv and N is its normal.

Example:

NrmlCrv = CNRMLCRV(Crv);

See also CCRVTR.

IRIT Solid modeler G. Elber 81

Figure 32: A convex hull of a set of points and of a freeform B-spline curve. The left show a convex
hull of a set of points. The right shows the convex hull (thick line) of a freeform curve.

11.2.88 CNVXHULL

PolygonType CNVXHULL(PolygonType Poly | PolylineType Poly,

NumericType FineNess);

or

CurveType CNVXHULL(CurveType Crv, NumericType FineNess);

compute the convex hull of the given set of Poly or Curve with tolerance for curves only, which is
governed by the polygon subdivision accuracy as set via FineNess. FineNess is ignored for polylines.
For curves, the result might be partial if the curve is not closed or periodic. See also CRV2TANS and
CRVPTTAN.

Example:

Pts1 = nil();

Pts2 = nil();

for (i = 0, 1, 7,

R = 0.2 + fmod(i, 2) / 2:

Pt = ctlpt(E2, R * cos(i * 2 * pi / 8), R * sin(i * 2 * pi / 8)):

snoc(Pt, Pts1):

snoc(coerce(Pt, point_type), Pts2));

Crv = coerce(cbspline(4, Pts1, list(KV_PERIODIC)), KV_OPEN);

CHPts = CNVXHULL(poly(Pts2, 0), 0);

CHCrv = CNVXHULL(Crv, 10);

computes the convex hull of a given control polygon and freeform curve. See Figure 32.

11.2.89 COERCE

AnyType COERCE(AnyType Object, ConstantType NewType)

IRIT Solid modeler G. Elber 82

provides a coercion mechanism between different objects or object types. PointType, VectorType,
PlaneType, and CtlPtType can be all coerced to each other by using the NewType of POINT TYPE,
VECTOR TYPE, PLANE TYPE, or one of E1-E9, P1-P9 (CtlPtType). Similarly, CurveType, Sur-
faceType, TrimSrfType, TriSrfType, TrivarType, and MultivarType can all be coerced to hold different
CtlPtType control points, or even different open end conditions from KV PERIODIC to KV FLOAT
to KV OPEN. Freefroms can be coerced to a Power, Bezier or a B-spline type via the NewType
of POWER TYPE, BEZIER TYPE or the BSPLINE TYPE. If a scalar (E1 or P1) curve is coerced
to E2 or P2 curve or a scalar (E1 or P1), the surface is coerced to an E3 or P3 surface, and the Y
(YZ) coordinate(s) is (are) updated to hold the parametric domain of the curve (surface). That is
X = U (Y = V). Curves, Surfaces, and Trivariates can be coerced to/from Multivariates using the
CURVE TYPE, SURFACE TYPE, TRIVAR TYPE and MULTIVAR TYPE. Trimmed B-spline sur-
faces can ve coerced to trimmed Bezier surfaces via a BEZIER TYPE coercion and to untrimmed tensor
product pieces using UNTRIMMED TYPE. Models can be coerced to surfaces and trimmed surfaces,
and VModels can be coerced to trimmed surfaces, to Models, or to individual volumetric elements that
are trimmed trivariates (VElements of VModels), when coerced to themselves (to VModels). Surfaces
and trimmed surfaces can be coerced to Models and VModels (if closed) and trivariates (possibly with
”Model” attribute of a Boundary model) can be coerced to VModels. The coercion of geometry to its
own type has no effect except for SurfaceType where duplicated surfaces are removed. VElements of
VModels can be further subdivided into Bezier trimmed trivariates if coerced to BEZIER TYPE.

Example:

CrvE2 = COERCE(Crv, E2);

MultiVar == COERCE(COERCE(MultiVar, surface_type), multivar_type);

BzrSrfs = COERCE(BspSrf, bezier_type);

coerces Crv to a new curve that will have an E2 CtlPtType control points. Coerction of a projective
curve (P1-P9) to a Euclidean curve (E1-E9) does not preseve the shape of the curve. The second
example coerces a bivariate MultiVar into a Srf and back and compares the result to the original
multivariate MultiVar... The third example coerces a B-spline surface BspSrf to a Bezier form,
returning one or more Bezier surfaces representing the same geometry as BspSrf.

11.2.90 COFFSET

AnyType COFFSET(CurveType Crv, Numericype Offset,

Numericype Operation, Numericype Eps)

computes an offset approximation of a planar curve Crv, by offset amount Offset, to an accuracy
of Eps, that relates to the square distance between Crv and its offset. Eps can be negative, to request
a return of the clipped curve segments. Operation can be one of:

0 return valid curve segments in original curve.
1 return valid curve segments as offset curves
2 merge the offset curve segments (as in Operation = 1)

into one final offset curve.

Example:

ofstC = coffset(c, 0.1, 2, 0.001):

See also OFFSET, AOFFSET, TOFFSET, LOFFSET, and MOFFSET.

IRIT Solid modeler G. Elber 83

11.2.91 COMPOSE

CurveType COMPOSE(CurveType Crv1, CurveType Crv2)

or

CurveType COMPOSE(SurfaceType Srf, CurveType Crv)

CurveType COMPOSE(SurfaceType Srf, CurveType Crv, NumerType Periodic)

or

SurfaceType COMPOSE(SurfaceType Srf1, SurfaceType Srf2)

or

CurveType COMPOSE(TrivarType TV, SurfaceType Crv)

or

SurfaceType COMPOSE(TrivarType TV, SurfaceType Srf)

or

SurfaceType COMPOSE(MultivarType MV1, MultivarType MV2)

SurfaceType COMPOSE(MultivarType MV1, MultivarType MV2, ListType DimMap)

symbolically compute the composition curve or surface. In the above first form of Crv1(Crv2(t),
Crv1 can be any curve while Crv2 is assumed to be a one-dimensional curve that is either E1 or P1
(higher dimensions are ignored). In the above second form of Srf(Crv(t)), the Srf can be any surface,
while the Crv is assumed to be a two-dimensional curve, that is either E2 or P2 (higher dimensions
are ignored). If a third optional parameter Periodic is specified, it sets if the surface is considered
periodic in its domain (if TRUE) or not. If this parameter is not specified periodicity is not assumed.
In the above third form of Srf1(srf2(u, v)), Srf2 can be any surface, while it is assumed to be a
two-dimensional surface, that is either E2 or P2 (higher dimensions are ignored). Srf1 is a Bezier.
In the above fourth form of TV(Crv(t)), the Crv can be any curve, while it is assumed to be a
three-dimensional curve, that is either E3 or P3 (higher dimensions are ignored). TV is a Bezier.
In the above fifth form of TV(Srf(u, v)), the Srf can be any surface, while it is assumed to be a
three-dimensional surface, that is either E3 or P3 (higher dimensions are ignored). TV is a Bezier. In
the sixth form of MV1(MV2), two general multivariates are composed. It is allowed for the range
of MV2 to be a sub-domain of MV1, in which case DimMap is a list object of dimensions in MV1
to map the range of MV2 into. In other words, the range of MV2 is of size sizoef(DimMap). The
second freeform must always be fully contained in the first freeform’s parametric domain, up to the
periodicity described above.

Example:

srf = sbezier(list(list(ctlpt(E3, 0.0, 0.0, 0.0),

ctlpt(E3, 0.0, 0.5, 1.0),

ctlpt(E3, 0.0, 1.0, 0.0)),

list(ctlpt(E3, 0.5, 0.0, 1.0),

IRIT Solid modeler G. Elber 84

Figure 33: A circle in the parametric space of the freefrom surface is composed to create a closed loop
curve on the surface using COMPOSE.

ctlpt(E3, 0.5, 0.5, 0.0),

ctlpt(E3, 0.5, 1.0, 1.0)),

list(ctlpt(E3, 1.0, 0.0, 1.0),

ctlpt(E3, 1.0, 0.5, 0.0),

ctlpt(E3, 1.0, 1.0, 1.0))));

crv = circle(vector(0.5, 0.5, 0.0), 0.4);

comp_crv = COMPOSE(srf, crv);

composes a circle Crv to be on the surface Srf. See Figure 33 and also Figure 116. See also
TDEFORM.

11.2.92 CON2

PolygonType CON2(VectorType Center, VectorType Direction,

NumericType Radius1, NumericType Radius2,

NumericType Caps)

creates a truncated CONE geometric object, defined by Center as the center of the main base of
the CONE, with the Direction as both the CONE’s axis and the length of CONE, and the two radii
Radius1/2 of the two bases of the CONE. If Caps equals zero, no caps are created. If Caps equal
one (two), only the bottom (top) cap is created. If Caps equal three, both the top and the bottom
caps are created.

Unlike the regular cone (CONE) constructor which inherits discontinuities in its generated normals
at the apex, CON2 can be used to form a (truncated) cone with continuous normals. See RESOLUTION
for the accuracy of the CON2 approximation as a polygonal model. See also CONE. See IRITSTATE’s
”PrimRatSrfs” and ”PrimRatSrfs” state variables.

Example:

IRIT Solid modeler G. Elber 85

Figure 34: A cone (left) can be constructed using the CONE constructor and a truncated cone (right)
using the constructor CONE2.

Cone2 = CON2(vector(0, 0, -1), vector(0, 0, 4), 2, 1, 3);

constructs a truncated cone with bases parallel to the XY plane at Z = −1 and Z = 3, and with
radii of 2 and 1 respectively. Both caps are created. See Figure 34.

11.2.93 CONE

PolygonType CONE(VectorType Center, VectorType Direction,

NumericType Radius, NumericType Caps)

creates a CONE geometric object, defined by Center as the center of the base of the CONE,
Direction as the CONE’s axis and height, and Radius as the radius of the base of the CONE.
If Caps equals zero, no cap is created. If Caps equal one, the bottom (top) cap is created. See
RESOLUTION for accuracy of the CONE approximation as a polygonal model.

Example:

Cone1 = CONE(vector(0, 0, 0), vector(1, 1, 1), 1, 1);

constructs a cone based in an XY parallel plane, centered at the origin with radius 1 and with
tilted apex at (1, 1, 1). Only the bottom cap is created.

See IRITSTATE’s ”PrimRatSrfs” and ”PrimRatSrfs” state variables. See also CON2. See Fig-
ure 34.

11.2.94 CONICSEC

CurveType CONICSEC(ListType ABCDEF,

NumericType ZLevel,

PointType StartPoint,

PointType EndPoint)

IRIT Solid modeler G. Elber 86

or

{PolygonType | SurfaceType } CONICSEC(ListType TwoCurves,

NumericType ZLevel,

NumericType Dist,

NumericType EvalCurve)

In the first form, this will construct a quadratic form that represents the planar conic section
prescribed by the list of six coefficients ABCDEF as:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0, (11)

The conic will be parallel to the XY plane at Z level of Zlevel. The section of the curve will be from
StartPoint to EndPoint, or alternatively, unlimited by specifying ’off’ for StartPoint and End-
Point. The conic might be rational (for circles and ellipses, for example) or intergral (for parabolas).

Alternatively, in the second form, if the first list object parameter contains two planar curves in the
XY plane, a piecewise linear curve at Z level of Zlevel is computed that presents the elliptic/hyperbolic
distance Dist from the given two curves. The elliptic distance refers to the sum of distance (that equal
Dist) to the two curves, while hyperbolic distance refers to the difference of distances. Finally, if
EvalCurve = 0, the surface whose zero set is the desired curve, is returned instead. If EvalCurve
= 1, distance curves are returned in the parametric space as correspondence between the two curves’
parameters. If EvalCurve = 2, the conic curves themselves are returned. Note only elliptic surfaces
are compact and are reconstructed in whole.

Example:

Circ2 = CONICSEC(list(1, 0, 1, 0, -0.5, -1), 0.0,

point(1.0, 0.0, 0.0) * ty(0.25),

point(-0.707, -0.707, 0.0) * ty(0.25));

Elp1 = CONICSEC(list(1, 2, 4, 0.5, 2, -0.2), 0.0, off, off);

Prb1 = CONICSEC(list(0.1, 0, 0, 0, 1, -1), 2, off, off) * sc(0.1);

constructs a (portion of a) circle, an ellipse and a parabola as conic sections, and,

c1 = cbspline(3,

list(ctlpt(E2, -1, -1),

ctlpt(E2, 1, -1),

ctlpt(E2, 1, 1),

ctlpt(E2, -1, 1)),

list(KV_OPEN));

c2 = -c1 * sx(-1) * tx(5);

view(list(c1, c2), 1);

resolution = 15;

DistCrvE = list(CONICSEC(list(c1, c2), 1.0, 10, 2),

CONICSEC(list(c1, c2), 1.0, 9, 2),

CONICSEC(list(c1, c2), 1.0, 8, 2),

CONICSEC(list(c1, c2), 1.0, 7, 2),

IRIT Solid modeler G. Elber 87

CONICSEC(list(c1, c2), 1.0, 6, 2));

color(DistCrvE, green);

computes the conic distance to the two curves c1 and c2 at distances of 6, 7, 8, 9, and 10.
See also QUADRIC.

11.2.95 CONTOUR

PolygonType CONTOUR(SurfaceType ContouredSrf, PlaneType ContourPlane,

NumericType SubdivTol)

or

PolygonType CONTOUR(SurfaceType ContouredSrf, PlaneType ContourPlane,

NumericType SubdivTol, SurfaceType MappedSrf)

or

PolygonType CONTOUR(SurfaceType ContouredSrf, PlaneType ContourPlane,

NumericType SubdivTol, SurfaceType MappedSrf,

ListType ValidatePt)

contours surface ContouredSrf by intersecting plane ContourPlane with ContouredSrf. If
SubdivTol ¡ 1, the contours are derived using the multivariate solver and SubdivTol controls the
subdivision accuracy. If SubdivTol ¿ 1 a polygonal approximating of ContouredSrf is first derived
and then polygon-polygon intersections are computed. If ContouredSrf is a scalar field surface of
type E1 or P1 and MappedSrf is provided, ContouredSrf is contoured above its parametric domain
(U is X, V is Y) and the resulting parametric curve is composed with MappedSrf to yield the returned
value. Further, if ValidatePt is prescribed, it should contain two elements, a vector, V, and an angle,
A, in degrees. Only the contour points for which the normal of surface MappedSrf there has less than
A degrees from V are returned.

Example:

resolution = 20;

nglass = snrmlsrf(glass) * vector(1, 1, 1);

sils = contour(nglass, plane(1, 0, 0, 0), 1e-3, glass);

color(sils, cyan);

attrib(sils, "dwidth", 4);

view(list(axes, glass, sils), on);

computes the normal field of the surface glass, projects it onto the viewing direction of (1, 1, 1) and
contours the resulting scalar field with the plane X = 0, to extract the silhouette curves from viewing
direction (1, 1, 1). See Figure 35.

11.2.96 CONVEX

PolygonType CONVEX(PolygonType Object)

IRIT Solid modeler G. Elber 88

Figure 35: Computes the silhouette of a freeform glass surface from viewing direction (1, 1, 1). On the
left, the original view is seen. On the right, a different, general, view is provided.

or

ListType CONVEX(ListType Object)

convert non-convex polygons in Object, into convex ones. New vertices are introduced into the
polygonal data during this process. The Boolean operations require the input to have convex polygons
only (although it may return non convex polygons...) and it automatically converts non-convex input
polygons into convex ones, using this same routine.

However, some external tools (such as irit2ray and poly3d-h) require convex polygons. This function
must be used on the objects to guarantee that only convex polygons are saved into data files for these
external tools.

Example:

CnvxObj = CONVEX(Obj);

save("data", CnvxObj);

converts non-convex polygons into convex ones, so that the data file can be used by external tools
requiring convex polygons.

11.2.97 COORD

AnyType COORD(AnyType Object, NumericType Index)

extracts an element from a given Object, at index Index. From a PointType, VectorType, Plane-
Type, CtlPtType and MatrixType. A NumericType is returned with Index 0 for the X axis, 1 for the
Y axis etc. Index 0 denotes the weight of CtlPtType. For a PolygonType that contains more than
one polygon, the Indexth polygon is returned. For a PolygonType that contains a single Polygon, the
Indexth vertex is returned. For a freeform object (curve, surface, etc.), the Indexth CtlPtType is
returned. For a ListType, COORD behaves like NTH and returns the Indexth object in the list. For
a StringType, the Indexth character is returned as its ASCII numeric code.

Example:

IRIT Solid modeler G. Elber 89

a = vector(1, 2, 3);

vector(COORD(a, 0), COORD(a, 1), COORD(a, 2));

a = ctlpt(P2, 6, 7, 8, 9);

ctlpt(P3, coord(a, 0), coord(a, 1), coord(a, 2), coord(a, 3));

a = plane(10, 11, 12, 13);

plane(COORD(a, 0), COORD(a, 1), COORD(a, 2), COORD(a, 3));

constructs a vector/ctlpt/plane and reconstructs it by extracting the constructed scalar components
of the objects using COORD.

See also COERCE.

11.2.98 COVERISO

CurveType COVERISO(TrivarType TV,

NumericType NewOfStrokes,

NumericType StrokeType,

PointType MinMaxPwrLen,

NumericType StepSize,

NumericType IsoVal,

VectorType ViewDir)

computes a coverage for an iso surface of a trivariate function TV, using curves. NewOfStrokes
strokes are distributed on the iso surface with a length that is set via MinMaxPwrLen. MinMax-
PwrLen is a triplet of the form (Min, Max, Power) that determines the length of the strokes as,

Avg =
Max+Min

2
, Dev =

Max−Min

2
, (12)

or,
Length = Avg +Dev ∗Random(0, 1)Pwr. (13)

StepSize controls the steps size of the piecewise linear approximation formed and should typically be
smaller than Min. StrokeType can be one of,

1 Draw strokes along minimal principal curvature.
2 Draw strokes along maximal principal curvature.
3 Draw strokes along both principal curvatures.
4 Draw strokes along constant X planes.
5 Draw strokes along constant Y planes.
6 Draw strokes along constant Z planes.

IsoVal controls the constant value of the iso surface level. See also SADAPISO, COVERPT,
MRCHCUBE, TVLOAD. Finally, ViewDir is the direction of view, used for silhouette computation.

Example:

IsoVal = 0.12;

Cover = CoverIso(ThreeCyls, 500, 1, vector(3, 10, 1.0), 0.2, IsoVal);

draws 500 strokes on the iso surface of trivariate ThreeCyls at iso value IsoVal and step size of
0.2. Strokes are drawn in length of 3 to 10 along lines of curvatures of minimal curvature. See Figure 36
and also Figure 75.

IRIT Solid modeler G. Elber 90

Figure 36: A uniform coverage of 500 curved strokes of an iso surface of a trivariate function, computed
using COVERISO command.

11.2.99 COVERPT

PolygonType COVERPT(PolygonType Model,

NumericType NumOfPts,

VectorType ViewDir)

computes a uniform point distribution on the given polygonal Model. Approximately NumOfPts
points are uniformly distributed on the model’s surface, provided ViewDir is the zero vector. If
ViewDir is a non zero vector, the distribution is made to be uniform from this given viewing direction.
In all cases, NumOfPts is an upper bound of the the real number of distributed points, which will be
in the same order.

See also SADAPISO, COVERISO, FFPTDIST.
Example:

Pts1 = CoverPt(solid1, 1000, vector(0, 0, 0));

Pts2 = CoverPt(solid1, 3000, vector(0, 0, -1));

computes two uniform distributions of 1000 and 3000 points on Solid1. Pts1 is uniform in three
space, while Pts2 is viewed uniform from the -Z direction.

See Figure 37.

IRIT Solid modeler G. Elber 91

Figure 37: A uniform coverage of 1000 and 3000 points of a polygonal model in three space, computed
using the COVERPT command. On the left, the distribution is directional, from the viewing direction,
while on the right, shows a point distribution that is uniform in 3-space. Distant points are smaller,
emulating point depth cueing.

11.2.100 CPINCLUDE

NumericType CPINCLUDE(CurveType Crv, PointType Pt, NumericType Tol)

tests if a point Pt is inside a 2D closed curve Crv. Returns +1 if inside, -1 if outside, and 0 if on
the boundary to within Tol. Tol governs the tolerance of the computations.

Example:

if (CPINCLUDE(Crv, pt) > 0,

...);

See also PPINCLUDE.

11.2.101 CPOWER

CurveType CPOWER(ListType CtlPtList)

creates a polynomial/rational curve out of the provided control point list. The created curve is
employing the monomial power basis. CtlPtList is a list of control points, all of which must be of
type (E1-E9 P1-P9), or regular PointType defining the curve’s control polygon. The curve’s point type
will be of a space which is the union of the spaces of all points. The created curve is the polynomial
(or rational),

C(t) =
k∑

i=0

Pit
i, (14)

where Pi are the control points CtlPtList, and k is the degree of the curve, which is one less than the
number of points.

IRIT Solid modeler G. Elber 92

Figure 38: Raises a 90 degrees corner quadratic Bezier curve to a quintic using CRAISE. The control
polygons are also shown.

Example:

c = CPOWER(list(ctlpt(E3, 0, 1, 0),

ctlpt(E3, 1, 0, 0),

ctlpt(E3, 0, 0, 1)));

c == coerce(coerce(c, bezier_type), power_type);

constructs a quadratic power basis curve, coerces it to a Bezier form, coerces the Bezier form back
to the power basis, and then compares the result for equality.

See also CBEZIER, CBSPLINE and SPOWER.

11.2.102 CRAISE

CurveType CRAISE(CurveType Curve, NumericType NewOrder)

Raise Curve to the NewOrder Order specified.
Example:

Crv = cbezier(list(ctlpt(E2, -0.7, 0.3),

ctlpt(E2, 0.0, 1.0),

ctlpt(E2, 0.7, 0.0)));

Crv2 = CRAISE(Crv, 5);

raises the 90 degrees corner Bezier curveCrv to be a quadratic. See Figure 38. See also CREDUCE,
TRAISE, SRAISE, and MRAISE.

IRIT Solid modeler G. Elber 93

Figure 39: Computes all the bi-tangent circles to the given two curves via the CRC2CRVTAN function.

11.2.103 CRC2CRVTAN

ListType CRC2CRVTAN(CurveType Crv1, CurveType Crv2,

NumericType Radius, NumericType Tol)

computes all circles that are bi-tangent to the given two curves Crv1 and Crv2. The circles
will posses a radius of Radius. The accuracy of the computation is governed by the tolerance Tol.
Returned is a list center point locations with ”Params” attributes of parameter values of the tangent
locations at the two curves.

Example:

Cntrs = CRC2CRVTAN(c1, c2, R, 1e-3);

computes all the circles of radius 0.1 that are bi-tangent to the two curves c1 and c2. Tolerance of
computation is 1e-3. See Figure 39. See also SKEL2DINT, CRV2TANS, TNSCRCR, CRVC1RND.

11.2.104 CREDUCE

CurveType CREDUCE(CurveType Curve, NumericType NewOrder)

reduces the Curve to the NewOrder Order specified. This function approximates the lower order
curve in the infinity norm sense, minimizing the maximal deviation between the original curve Curve

IRIT Solid modeler G. Elber 94

Figure 40: Refines a 90 degrees corner quadratic Bezier curve at three interior knots (the result is a
B-spline curve) using CREFINE. The control polygons are also shown.

and the low order curve NewOrder. NewOrder will identify with Curve only if Curve was degree
raised before.

Example:

Crv = cbezier(list(ctlpt(E2, -0.7, 0.3),

ctlpt(E2, 0.0, 1.0),

ctlpt(E2, 0.7, 0.0)));

Crv2 = CREDUCE(craise(Crv, 5), 3);

Crv == Crv2;

Should restore the original quadratic order. I.e. Crv2 should identify with Crv and ”Crv ==
Crv2;” should return TRUE.

See also CRAISE.

11.2.105 CREFINE

CurveType CREFINE(CurveType Curve, NumericType Replace, ListType KnotList)

provides the ability to Replace a knot vector of Curve, or refine it. KnotList is a list of knots at
which to refine Curve. All knots should be contained in the parametric domain of the Curve. If the
knot vector is replaced, the length of KnotList should be identical to the length of the original knot
vector of the Curve. If Curve is a Bezier curve, it is automatically promoted to be a B-spline curve.

Example:

Crv2 = CREFINE(Crv, FALSE, list(0.25, 0.5, 0.75));

refines Crv and adds three new knots at 0.25, 0.5, and 0.75. See Figure 40. See also SREFINE,
TREFINE, and MREFINE.

IRIT Solid modeler G. Elber 95

Figure 41: Extracts a sub region from a curve using CREGION.

11.2.106 CREGION

CurveType CREGION(CurveType Curve, NumericType MinParam,

NumericType MaxParam)

extracts a region from the Curve between MinParam and MaxParam. Both MinParam and
MaxParam should be contained in the parametric domain of the Curve, except for Bezier curves
when MinParam and MaxParam can be arbitrary (extrapolating if not between zero and one).

Example:

SubCrv = CREGION(Crv, 0.3, 0.6);

extracts the region from the Crv from the parameter value 0.3 to the parameter value 0.6. See
Figure 41. See also SREGION, TREGION, and MREGION.

11.2.107 CREPARAM

CurveType CREPARAM(CurveType Curve, NumericType MinParam,

NumericType MaxParam)

reparametrizes the Curve over a new domain from MinParam to MaxParam. This operation
does not affect the geometry of the curve and only affine transforms its knot vector. A Bezier curve
will automatically be promoted into a B-spline curve by this function.

If MinParam equals MaxParam and both equates with one of the parameterization keywords of
PARAM UNIFORM, PARAM CENTRIP, PARAM CHORD, or PARAM NIELFOL, then that parametriza-
tion is approximated for the curve, by changing the knot sequence. Note this last operation affects the
geometry of the curve.

Example:

IRIT Solid modeler G. Elber 96

arc1 = arc(vector(0.0, 0.0, 0.0),

vector(0.5, 2.0, 0.0),

vector(1.0, 0.0, 0.0));

crv1 = arc(vector(1.0, 0.0, 0.75),

vector(0.75, 0.0, 0.7),

vector(0.5, 0.0, 0.85)) +

arc(vector(0.5, 0.0, 0.75),

vector(0.75, 0.0, 0.8),

vector(1.0, 0.0, 0.65));

arc1 = CREPARAM(arc1, 0, 10);

crv1 = CREPARAM(crv1, 0, 10);

sets the domain of the given two curves to be from zero to ten. The Bezier curve arc1 is promoted
to a B-spline curve. See also SREPARAM, TREPARAM, and MREPARAM.

11.2.108 CROSSEC

PolygonType CROSSEC(PolygonType Object)

This feature is NOT implemented.

11.2.109 CRV2TANS

ListType CRV2TANS(CurveType Crv, NumericType FineNess)

or

ListType CRV2TANS(ListType TwoCrvs, NumericType FineNess)

computes all the self bi-tangents of a Crv or all bi-tangents between TwoCrvs, in the XY plane.
That is, all lines that are tangent to Crv at two different locations. A list of points with X and Y
coefficients representing the two parametric locations on Crv or on TwoCrvs of the bi-tangent is
returned. FineNess controls the numerical accuracy (sploution separation) of the computation. A
value of 0.01 will provide a good start and the smaller this number is, the better the accuracy will be.
See also CRVPTTAN and CNVXHULL.

Example:

Tans = nil();

Crv2Tns = Crv2Tans(Crv, 0.01);

for (i = 1, 1, sizeof(Crv2Tns),

pt = nth(Crv2Tns, i):

snoc(ceval(Crv, coord(pt, 0)) +

ceval(Crv, coord(pt, 1)), Tans));

finds the bi-tangents of Crv and converts them to a set of line segments. See Figure 42. See also
CRC2CRVTAN, TNSCRCR, SKEL2DINT.

IRIT Solid modeler G. Elber 97

Figure 42: Computes the bi-tangents of a freeform curve, using CRV2TANS.

11.2.110 CRVBUILD

CurveType CRVBUILD(NumerticType BuildOp, ListType Params)

Constructs a planar B-spline curve incrementally, specifying one (control) point at a time. BuildOp
specifies the next incremental curve build operation whereas Params prescribes the parameters of that
specific BuildOp.

In the following, all angles are in degrees. Some operations add new points relative to previous ones
- if no previous location is set yet, (0, 0) is asssumed.

The different BuildOp operations are:

IRIT Solid modeler G. Elber 98

0 INIT - Initialized the incremental construction.
No parameters are expected.

1 XY - Appends a new XY location. Expects (X, Y) as Params.
2 X - Appends a new XY location. Expects (X) as Params (Y

is same as last point).
3 Y - Appends a new XY location. Expects (Y) as Params (X

is same as last point).
4 DELTA XY - Appends a new XY location. Expects

(DeltaX, DeltaY) as Params, as relative locations to
previous location.

5 DELTA X - Appends a new XY location. Expects (DeltaX) as
Params, as relative location to previous X location.
Y is same as last point.

6 DELTA Y - Appends a new XY location. Expects (DeltaY) as
Params, as relative location to previous Y location.
X is same as last point.

7 DELTA X AND Y - Appends a new XY location. Expects
(DeltaX, Y) as Params. A new Y location and a relative
X location to previous X.

8 DELTA Y AND X - Appends a new XY location. Expects
(X, DeltaY) as Params. A new X location and a relative
Y location to previous Y.

9 DIST ALPHA - Appends a new XY location. Expects
(d, Alpha) as Params. A new XY location relative to last
location in polar coordinates as (d cos(Alpha), d sin(Alpha)).

10 DIST DELTA ALPHA - Appends a new XY location. Expects
(d, DeltaAlpha) as Params. A new XY location relative to
last location in polar coordinates as
(d cos(LastAlpha + DeltaAlpha), d sin(LastAlpha + DeltaAlpha).

11 DELTA X DELTA ALPHA - Appends a new XY location. Expects
(DeltaX, DeltaAlpha) as Params. Seeks a new XY location
in direction LastAlpha + DeltaAlpha until it intersects
the line X = LastX + DeltaX.

12 DELTA Y DELTA ALPHA - Appends a new XY location. Expects
(DeltaY, DeltaAlpha) as Params. Seeks a new XY location
in direction LastAlpha + DeltaAlpha until it intersects
the line Y = LastY + DeltaY.

13 ALPHA LINE - Appends a new XY location. Expects
(Alpha, X2, Y2, Alpha2) as Params. Seeks a new XY location
in direction Alpha from current location at the intersection
with the linedefined by (X, Y) in direction Alpha2.

14 ARC - Modifies the last XY location. Expects (R, F) as Params.
Replaces the last segment with an arc that ends at the two
end points of the segment. Positive R(ad) for an arc on the
left, Negative on the right. If F(lipped) is non zero, the
other left/right arc is provided (note there are four ways
to connect two points with C/CW arcs).

15 ADD INTERMEDIATE - Modifies last XY location. Expects
(A, D, W) as Params. Adds interior (control) points to the
last segment. A is between zero and one setting the
distance along the segment (A = 0 starting point,
1 end point). D is the signed distance (positive for the
left size) orthogonal to the line segment. Finally W sets
the weight of the new (control) points.

IRIT Solid modeler G. Elber 99

Example:

CAGD_CRV_INC_CNSTRCT_INIT = 0:

CAGD_CRV_INC_CNSTRCT_XY = 1:

CAGD_CRV_INC_CNSTRCT_X = 2:

CAGD_CRV_INC_CNSTRCT_Y = 3:

CAGD_CRV_INC_CNSTRCT_DELTA_XY = 4:

CAGD_CRV_INC_CNSTRCT_DELTA_X = 5:

CAGD_CRV_INC_CNSTRCT_DELTA_Y = 6:

CAGD_CRV_INC_CNSTRCT_DELTA_X_AND_Y = 7:

CAGD_CRV_INC_CNSTRCT_DELTA_Y_AND_X = 8:

CAGD_CRV_INC_CNSTRCT_DIST_ALPHA = 9:

CAGD_CRV_INC_CNSTRCT_DIST_DELTA_ALPHA = 10:

CAGD_CRV_INC_CNSTRCT_DELTA_X_DELTA_ALPHA = 11:

CAGD_CRV_INC_CNSTRCT_DELTA_Y_DELTA_ALPHA = 12:

CAGD_CRV_INC_CNSTRCT_ALPHA_LINE = 13:

CAGD_CRV_INC_CNSTRCT_ARC = 14:

CAGD_CRV_INC_CNSTRCT_ADD_INTERMEDIATE = 15:

CAGD_CRV_INC_CNSTRCT_ROUND_LAST = 16:

CAGD_CRV_INC_CNSTRCT_CHAMFER_LAST = 17:

CAGD_CRV_INC_CNSTRCT_CURVE_PARAMS = 18:

CAGD_CRV_INC_CNSTRCT_CLOSE = 19:

CAGD_CRV_INC_CNSTRCT_DEBUG = 20;

CrvBuild(CAGD_CRV_INC_CNSTRCT_INIT, nil());

CrvBuild(CAGD_CRV_INC_CNSTRCT_XY, list(0, 0));

CrvBuild(CAGD_CRV_INC_CNSTRCT_ROUND_LAST, list(0.1));

CrvBuild(CAGD_CRV_INC_CNSTRCT_Y, list(1));

CrvBuild(CAGD_CRV_INC_CNSTRCT_X, list(2));

CrvBuild(CAGD_CRV_INC_CNSTRCT_CHAMFER_LAST, list(0.45));

CrvBuild(CAGD_CRV_INC_CNSTRCT_Y, list(0));

Crv2 = CrvBuild(CAGD_CRV_INC_CNSTRCT_CLOSE, list(-3, 0.2));

Builds a closed round rectangle spanning (0, 0) to (2, 1), rounded with radius 0.1 at the original,
chamfered at (2, 1), and then globally rounded to radius 0.2.

11.2.111 CRVC1RND

CurveType CRVC1RND(CurveType Crv, NumerticType CornerType, NumericTyle Radius)

Give a planar curve Crv with C1 discontinuities, round (if CornerType is 2) or chamfer (if
CornerType is 3) the C1 discontinuities. Radius controls the rounding (champering) size. If size is
too large to fit, no rounding will take place.

Example:

RndCrv = CRVC1RND(Crv, 2, 0.05);

See Figure 43. See also SKEL2DINT, CRV2TANS, TNSCRCR, CRC2CRVTAN.

IRIT Solid modeler G. Elber 100

Figure 43: Computes the roundings (middle) and chamfers (right) of the C1 discontinuous curve on
the left, using CRVC1RND.

11.2.112 CRVCOVER

CurveType CRVCOVER(CurveType DomainBoundary,

CurveType InitialCurve,

NumericType CoveringTolerance,

NumericType NumerTol,

NumericType SubdivTol,

NumericType NumNewPointsPerIter,

NumericType NewPointDistThreshold,

NumericType RefinementStrategy)

Covers the given two dimensional domain specified by DomainBoundary by a random-looking
covering curve, upto CoveringTolerance, so that all points in the domain are at a distance, at
most, CoveringTolerance from the computed covering curve. The numeric tolernace and subdi-
vision tolerances are specified by NumerTol and SubdivTol respectively. The maximum number
of new points to use in order to refine the covering curve in each iteration is specified by Num-
NewPointsPerIter. Alternately, one may specify a distance threshold so that only points farther
than NewPointDistThreshold from the covering curve are used in refining the curve. The param-
eterNewPointDistThreshold is used only if NumNewPointsPerIter is negative. The parameter
RefinementStrategy specifies whether to use interpolation or approximation or a blend of the two
while refining the covering curve. A value of 1 implies interpolation while 0 implies approximation.
Any value in between leads to a blend of the two methods.

Example:

CrvCvr = CRVCOVER(C, 0, 1.50 1e-9, 2e-2, 15, 0.45, 0.5);

See Figure 44.

11.2.113 CRVKERNEL

PolyType | TrivarType | ListType

CRVKERNEL(CurveType Crv | ListType CrvList,

NumericType Gamma, NumericType Euclid,

NumericType | ListType KrnlParam, NumericType Mode)

IRIT Solid modeler G. Elber 101

Figure 44: Random covering of a freeform 2D domain with a curve, using CRVCOVER. Boundary is
shown in red and the covering curve is shown in blue.

Computes the (gamma) kernel of a given planar curve Crv, or a list of curves CrvList when
Mode == 3. If Gamma is zero, the regular kernel is computed. Else, the gamma kernel of Gamma
degrees is being computed. If Euclid is TRUE, then the result is returned in the Euclidean space,
or if zero, in the parametric space (not used in Mode == 3). Mode can be 0 for a (gamma) kernel
solution, 1 to extract silhouette sampling only out of the trivariate function, and 2 for the gamma
kernel surface/trivariate functions themselves to be returned. If Mode is 3, a list of kernel points or a
convex hull of these points are computed using the inequality constraints, if any.

KrnlParam is a list of control parameters that is specified differently in each mode. When Mode
== 0, KrnlParam is either a single numeric value or a list of three numeric values that set the
number of knots to insert into the (x,y,t) trivariate functions, t being Crv parameterization, and x,
y paramterizes the XY plane as a bbox around Crv. When Mode == 1, KrnlParam is specified
as list(SubdivTol, NumericTol), which prescribes the subdivision and numeric tolerances, of the kernel

IRIT Solid modeler G. Elber 102

point/silhouette extraction process (See MZERO for their meaning), respectively. When Mode ==
2, KrnlParam is the number value that controls the extent of the surfaces/trivariates. When Mode
== 3, KrnlParam is specified as list(SubdivTol, OnePt, PreciseBBox, NumTanSamples, CnvxHull),
where SubdivTol prescribes the subdivision tolerance, OnePt determines whether to compute only a
single kernel point of maximum domain size, or all kernel points, PreciseBBox determines whether
to use precise bounding box (when PreciseBBox ¿ 0, the numeric value of PreciseBBox is used as
the tolerance of the bounding box computation), NumTanSamples controls the sampling ratio of the
tangent lines, which help purging non-kernel domains during subdivision, and CnvxHull determines
the form of output. The function returns a list of kernel points if CnvxHull is FALSE, and the convex
hull of the kernel points, which is also included in the kernel of the curve(s), otherwise.

Examples:

Krnl = CrvKernel(Crv, 0, 0, list(2, 3, 1), 0);

computes the regular kernel of curve Crv with a refinement of (2, 3, 1) in the three (x, y, t) axes
of the computed trivariate constraint function.

Krnl = CrvKernel(Crv, 0, 1, list(0.01, 0, 0, 20, TRUE), 3);

computes the convex hull of the regular kernel points by subdividing the normalized domain in the
bounding box of Crv with the subdivision tolerance of 0.01. To purge non-kernel domains during the
subdivision, 20 tangent lines are sampled along Crv.

See also SRFKERNEL.

11.2.114 CRVNET2TILE

AnyType CRVNET2TILE(ListType CrvList, NumericType DfltOffset,

NumericType Tol, NumericType ExtrudeAmount,

NumericType OutType)

Constructs a tile to be used in (2D) lattices/microstructures from a list of curves CrvList that
intersect. The curves are offseted DfltOffset in both directions (left and right) and all offset curves
are intersected, only to build a tiles from this arrangment of curves. Curves in CrvList can have offset
curves under them, as attribute ”OfstFld”, to override the default offsets amount and hence also allow
variable distance offset. Tol controls the tolerance of the computation. ExtrudeAmount sets the
Z extrusion amount if OutType is trivariate tiles (see below). OutType can be one of 0 to return
curves in the plane, 1 for surfaces in the plane and 2 for extruded surfaces into trivariates.

Example:

CrvTile = CRVNET2TILE(Crvs, 0.03, 0.01, 0.01, 2);

See Figure 45.
See also TDEFORM, MICROSTRCT, MICROTILE.

11.2.115 CRVLNDST

NumericType CRVLNDST(CurveType Crv, PointType PtOnLine, VectorType LnDir,

NumericType IsMinDist, NumericType Epsilon)

or

IRIT Solid modeler G. Elber 103

Figure 45: Given the input curves on the left, the middle shows the curves-based tile whereas the right
shows a surface-based result, all using the CRVNET2TILE function.

ListType CRVLNDST(CurveType Crv, PointType PtOnLine, VectorType LnDir,

NumericType IsMinDist, NumericType Epsilon)

compute the closest (if IsMinDist is TRUE, farthest if FALSE) point on the Curve to the line
specified by PtOnLine and LnDir as a point on the line and a line direction. Since this operation is
partially numeric, Epsilon is used to set the needed accuracy. It returns the parameter value of the
location on Crv closest to the line. If, however, Epsilon is negative, -Epsilon is used instead, and all
local extrema in the distance function are returned as a list (both minima and maxima). If the line
and the curve intersect, the point of intersection is returned as the minimum.

Example:

Param = CRVLNDST(Crv, linePt, lineVec, TRUE, 0.001);

finds the closest point on Crv to the line defined by linePt and lineVec. See Figure 46.

11.2.116 CRVPTDST

NumericType CRVPTDST(CurveType Crv, PointType Point, NumericType IsMinDist,

NumericType Epsilon, NumericType Cache)

or

ListType CRVPTDST(CurveType Crv, PointType Point, NumericType IsMinDist,

NumericType Epsilon, NumericType Cache)

compute the closest (if IsMinDist is TRUE, farthest if FALSE) point on Crv to Point. Since this
operation is partially numeric, Epsilon is used to set the needed accuracy. It returns the parameter
value of the location on Crv closest to Point. If, however, Epsilon is negative, -Epsilon is used
instead, and all local extrema in the distance function are returned as a list (both minima and maxima).
If Cache is 1, a cache of precomputed data is prepared following by many point distance evaluations
for the SAME CURVE with Cache = 0 that take advantage of this caching, only to terminate and
free the cache, when Cache = 2. Cache = 0 should also used when no cache is required.

Example:

Param = CRVPTDST(Crv, Pt, FALSE, 0.0001, 0);

finds the farthest point on Crv from point Pt. See Figure 47.

IRIT Solid modeler G. Elber 104

Figure 46: Computes the locations on the freeform curve with local extreme distance to the given line,
using CRVLNDST.

11.2.117 CRVPTTAN

ListType CRVPTTAN(CurveType Crv, PointType Pt, NumericType FineNess)

computes all the tangents to Crv that go through point Pt, all in the XY plane. A list of points
with X and Y coefficients representing the parametric locations on Crv of the bi-tangent is returned.
FineNess controls the numerical accuracy of the computation. A value of 0.01 will provide a good
start, and the smaller this number is, the better the accuracy will be. See also CRV2TANS and
CNVXHULL.

Example:

Tans = nil();

Pt = point(2, 0, 0);

CrvPtTns = CrvPtTan(Crv, Pt, 0.01);

for (i = 1, 1, sizeof(CrvPtTns),

snoc(ceval(Crv, nth(CrvPtTns, i)) + coerce(Pt, e3), Tans));

finds the tangents of Crv through Pt and converts them to a set of line segments. See Figure 48.

IRIT Solid modeler G. Elber 105

Figure 47: Computes the locations on the freeform curve with local extreme distance to the given
point, using CRVPTDST.

Figure 48: Computes the tangents of a freeform curve through a point, using CRVPTTAN.

IRIT Solid modeler G. Elber 106

Figure 49: Approximates a sine wave curve using CSINE.

11.2.118 CSINE

CurveType CSINE(NumericType NumCycles, NumericType Samples,

NumericType CtlPtsPerVCycle)

constructs a polynomial approximation of a sine wave planar curve of NumCycles cycles. The
curve is approximated as a least sqaures fit of Samples samples and CtlPtsPerVCycle control points
per loop.

Example:

SineW = csine(3, 100, 16);

See Figure 49 for this sine wave of 3 loops. See also CHELIX, CSPIRAL

11.2.119 CSPIRAL

CurveType CSPIRAL(NumericType NumLoops, NumericType Pitch,

NumericType Samples, NumericType CtlPtsPerLoop)

constructs a polynomial approximation of a spiral planar curve of NumLoops loops and specified
Pitch. The curve is approximated as a least sqaures fit of Samples samples and CtlPtsPerLoop
control points per loop.

Example:

Spiral = cspiral(5, 0.7, 500, 6);

See Figure 50 for this spiral of 5 loops. See also CHELIX, CSIN

11.2.120 CSURFACE

CurveType CSURFACE(SurfaceType Srf, ConstantType Direction,

NumericType Param)

IRIT Solid modeler G. Elber 107

Figure 50: Approximates a spiral curve using CSPIRAL.

or

CurveType CSURFACE(TrimSrfType Srf, ConstantType Direction,

NumericType Param)

or

CurveType CSURFACE(TriSrfType Srf, ConstantType Direction,

NumericType Param)

extract an isoparametric curve out of Srf in the specified Direction (ROW or COL (or DEPTH
for triangular surface) at the specified parameter value Param. Param must be contained in the
parametric domain of Srf in Direction direction. The returned curve is in the surface Srf. if Srf
isa trimmed surface, the trimming informatin is ignored and a full isoparametric curve is returned
regardless. For a tensor product surface, it is equal to,

C(t) = S(t, v0) =
m∑
i=0

n∑
j=0

PijBi(t)Bj(v0) =
m∑
i=0

⎛
⎝ n∑

j=0

PijBj(u0)

⎞
⎠Bi(t) =

m∑
i=0

QiBi(t), (15)

where Qi =
∑n

j=0 PijBj(u0) are the coefficients of the returned curve, and similar to the other para-
metric direction S(u0, t). Param of CSURFACE is v0 in equation (15)

IRIT Solid modeler G. Elber 108

For a triangular Bezier surface of degree n, it is equal to,

C(v) =
∑
i,j,k

n!

i!j!k!
ui0v

jwkPijk

=
∑
i,j

n!

i!j!(n − i− j)!
ui0v

j(1− u0 − v)n−i−jPijk

=
∑
i

n!

i!(n − i)!
ui0

∑
j

(n− i)!

j!(n − i− j)!
vj(1− u0 − v)n−i−jPijk

=
∑
i

n!

i!(n − i)!
ui0(1− u0)

n−i
∑
j

(n− i)!

j!(n − i− j)!

(
v

1− u0

)j

(1− v

1− u0
)n−i−jPijk

as i + j + k = n, and u+ v + w = 1.0. Hence, the resulting isoparametric curve is a weighted sum of
n+1 Bezier curves of varying degrees n− i formed by the different rows/cols/depths of the triangular
mesh. Param of CSURFACE is u0 in equation (16)

Example:

Crv = CSURFACE(Srf, COL, 0.45);

extracts an isoparametric curve in the COLumn direction at the parameter value of 0.15 from
surface Srf. See also CMESH, COMPOSE, FFKNTLNS, STRIVAR, and MFROMMV. See Figure 51.

11.2.121 CSRFPROJ

ListType CSRFPROJ(CurveType Crv, SurfaceType Srf,

NumericType Tol, NumericType ProjType)

or

ListType CSRFPROJ(CurveType Crv, TrimSrfType TSrf,

NumericType Tol, NumericType ProjType)

Computes the orthogonal project of 3-space curve CRv onto 3-space surface Srf or trimmed surface
TSrf, to within tolerance Tol. ProjType can be one of:

IRIT Solid modeler G. Elber 109

Figure 51: Extracts an isoparametric curve from the given surface, using CSURFACE.

ProjType Description
0 assumes the curve is not on surface and return the projected

curve in the surface’s parametric domain.
1 assumes the curve is not on surface and return the projected

curve in Euclidean space.
20 assumes the curve is on the surface (or very close) and

returns projected curve in surface parametric domain, by
projecting curve sampled points in Srf.

21 same as 20 but employs incremental numeric tracing along
the proejcted curve, to speed up the computation.

3 assumes the curve is on the surface (or very close) and
returns projected curve in surface parametric domain,
by solving for zeros in the derivatives of the distance
field with respect to the surface parameters.

412/413/423 assumes the curve is on the surface (or very close) and
returns projected curve in surface parametric domain
by solving zeros of distance field in XY if 412, in XZ
if 413, and YZ if 423.

4123 assumes the curve is on the surface (or very close) and
returns projected curve in surface parametric domain
by solving zeros of distance field in XYZ, using three
equations in the subdivision stage, only XY distance in
the numeric stage.

IRIT Solid modeler G. Elber 110

Figure 52: Projects a 3-space curve (in red) on the given surface, using CSRFPROJ. Four disjoint
compoenets result in this case.

Example:

ProjCrvs = CSRFPROJ(Crv, Srf, 1e-2, 1);

Computes the projection of Crv onto Srf and return the result in Euclidean space. Note this
projection is not one-to-one and hence several disjoint curves may result. See Figure 52.

11.2.122 CTANGENT

VectorType CTANGENT(CurveType Curve, NumericType Param, NumericType Normalize)

computes the tangent vector to the Curve at the parameter value Param. The returned vector
will have a unit length, if Normalize is TRUE.

Example:

Tang = CTANGENT(Crv, 0.5, true);

computes the unit tangent vector to Crv at the parameter value of 0.5. See also CNORMAL,
CNRMLCRV.

11.2.123 CTLPT

CPt = CTLPT(ConstantType PtType, NumericType Coord1, ...)

constructs a single control point to be used in the construction of curves and surfaces. Points can
have from one to five dimensions, and may be either Euclidean or Projective (rational). Point type
is set via the constants E1 to E9 and P1 to P9. The coordinates of the point are specified in order;
weight is first if rational.

Examples:

IRIT Solid modeler G. Elber 111

Figure 53: Extracts the trimming curves in Euclidean space (middle) and parametric space (right) of
a trimmed surface (left), using CTRIMSRF.

CPt1 = CTLPT(E3, 0.0, 0.0, 0.0);

CPt2 = CTLPT(P2, 0.707, 0.707, 0.707);

constructs an E3 point at the origin and a P2 rational point with a weight of 0.707. The Projective
Pi points are specified as CTLPT(Pn, W, W X1, ... , W Xn).

11.2.124 CTRIMSRF

ListType CTRIMSRF(TrimSrfType TSrf, NumericType Parametric)

extracts the trimming curves of a trimmed surface TSrf. If Parametric is not zero, then the
trimming curves are extracted as parametric space curves of TSrf. Otherwise, the trimming curves
are evaluated into Euclidean space as curves on the surface TSrf.

Example:

TrimCrvs = CTRIMSRF(TrimSrf, FALSE);

extracts the trimming curves of TrimSrf as Euclidean curves on TrimSrf. See Figure 53. See also
STRIMSRF.

11.2.125 CTRLCYCLE

ListType CTRLCYCLE(CurveType Crv, NumericType CycleLength,

NumericType SubdivTol, NumericType NumericTol)

Computes a control cycle of the given CycleLength around the given control Crv. Solution is
computed by mapping the problem to an algebraic set of constraints. See MZERO for the meaning of
SubdivTol and NumericTol.

Example:

IRIT Solid modeler G. Elber 112

Figure 54: Cycles of length three (in black) to a linear control curve (left) and a cubic control curve
(right), computed using CTRLCYCLE.

CyclePts = CTRLCYCLE(CtrlCrv, 3, 0.001, 1e-8);

computes a cycle of length 3 to curve CtrlCrv. See Figure 54.

11.2.126 CMESH

11.2.127 CUBICCRVS

ListType CUBICCRVS(CurveType Crv, NumericType Tolerance, NumericType MaxLen)

approximates given curve Crv using piecewise cubic curves upto the prescribed tolerance Toler-
ance. If MaxLen is positive it is used to limit the arc length of the cubic curves’ segments.

Example:

PCubicCrvs = CUBICCRVS(Crv, 0.01, 0.5);

creates a piecewise cubic approximation to curve Crv upto tolerance 0.01 and maximal arc length
of cubic segments of 0.5. See also QUADCRVS, CBIARCS, and CCUBICS.

11.2.128 CVIEWMAP

PolygonType CVIEWMAP(CurveType Crv, CurveType ViewCrv,

NumericType SubdivTol, NumericType NumerTol,

NumericType TrimInvisible)

computes algebraic constraints that reflects the visible domain of planar curve Crv as seen from
direction prescribed by planar vector curve ViewCrv. ViewCrv is typically a unit circle curve,
parametrizing all possible (360 degrees) planar views. See MZERO for the meaning of the SubdivTol
and NumerTol tolerances. If TrimInvisible is FALSE, the return set prescribes the 2D silhouette lo-
cations on Crv from the specific view direction. If TrimInvisible is TRUE, attempt ismade to remove
the invisile portions. Result is returned as 3D polylines, in (t, v, r) space where t and r parametrize

IRIT Solid modeler G. Elber 113

Figure 55: The visibility of the given curve on the left is sampled along its 360 degrees to create
a visibility atlas of the curve on the right, using CVISIBLE. Then SETCOVER is used to find the
minimal set that can see the entire curve, esselntially solving the so-called art-gallery problem.

Crv and v parametrizes ViewCrv. This, since a silhouette point Crv(t) could hide a independent
curve location Crv(r).

Example:

ViewMap = CVIEWMAP(Crv, pcircle(vector(0, 0, 0), 1), 0.1, 1e-6, 0);

See also CANGLEMAP, CVISIBLE, CARRANGMNT.

11.2.129 CVISIBLE

PolygonType CVIVISIBLE(CurveType Crv, PointType Pt, NumericType Eps)

or

PolygonType CVIVISIBLE(CurveType Crv, VectorType Dir, NumericType Eps)

computes the visible regions of planar curve Crv as seen from either view point Pt or from view
direction Dir. Eps controls the accuracy of the computation. Dir must have its Z components zero,
whereas Pt’s Z coefficient must be one.

Example:

Crvs = CVISIBLE(c, Pt, 1e-5);

See Figure 55 for an example. See also CANGLEMAP, CVIEWMAP, CARRANGMNT, SET-
COVER.

IRIT Solid modeler G. Elber 114

Figure 56: A cylinder primitive can be constructed using the CYLIN constructor.

11.2.130 CYLIN

PolygonType CYLIN(VectorType Center, VectorType Direction,

NumericType Radius, NumericType Caps)

creates a CYLINder geometric object, defined byCenter as the center of the base of the CYLINder,
Direction as the CYLINder’s axis and height, and Radius as the radius of the base of the CYLINder.
If Caps equals zero, no caps are created. If Caps equal one (two), only the bottom (top) cap is created.
If Caps equal three, both the top and the bottom caps are created.

See RESOLUTION for the accuracy of the CYLINder approximation as a polygonal model. See
IRITSTATE’s ”PrimRatSrfs” and ”PrimRatSrfs” state variables.

Example:

Cylinder1 = CYLIN(vector(0, 0, 0), vector(1, 0, 0), 10, 3);

constructs a cylinder with two caps of radius 10 along the X axis from the origin to X = 1. See
Figure 56.

11.2.131 CZEROS

ListType CZEROS(CurveType Crv, NumericType Epsilon, NumericType Axis)

computes the zero set of the given Crv in the given axis (1 for X, 2 for Y, 3 for Z). Since this
computation is numeric, an Epsilon is also required to specify the desired tolerance. It returns a list
of all the parameter values (NumericType) the curve is zero.

Example:

xzeros = CZEROS(cb, 0.001, 1);

pt_xzeros = nil();

pt = nil();

for (i = 1, 1, sizeof(xzeros),

pt = ceval(cb, nth(xzeros, i)):

IRIT Solid modeler G. Elber 115

Figure 57: Computes the zero set of a given freeform curve, in the given axis, using CZEROS.

snoc(pt, pt_xzeros)

);

interact(list(axes, cb, pt_xzeros), 0);

computes the X zero set of curve cb with error tolerance of 0.001. This set is then scanned in
a loop and evaluated to the curve’s locations, which are then displayed. See also CINFLECT. See
Figure 57.

11.2.132 DEPTHPEEL

DEPTHPEEL(AnyType PolyObj, StringType Path, RealType Tesselate)

Peels the depth layers of some polygonal object PolyObj and outputs the sequence of images in
path. if Tesselate is set to TRUE, outputs a tesselation of the depth layers. otherwise outputs the
number of layers.

Output buffer size.

attrib(Polygonal, "resolution", "1280 x 720");

The near-far tolerance, keep it small, prevents minor clipping.

attrib(Polygonal, "epsilon", 1e-4);

The XY domain.

attrib(Polygonal, "DmnBBox", "(-1, -1)x(1, 1)");

DepthPeel(Polygonal, "out.png", TRUE);

IRIT Solid modeler G. Elber 116

Peels Polygonal using the provided parameters and outputs into out0.png, out1.png,, outN.png
additionally returns a polygonal object that contains the tesselation of all layres.

11.2.133 DIST2FF

SurfaceType DIST2FF(CurveType Crv1, CurveType Crv2, NumericType DistType)

or

MultivarType DIST2FF(CurveType Crv1, SurfaceType Srf2, NumericType DistType)

or

MultivarType DIST2FF(SurfaceType Srf1, SurfaceType Srf2, NumericType DistType)

computes the distance function between the two given freeform shapes. The returned variety is
bi-variate, tri-variate, or a four-variate, depending on the dimensionality of the input, in order. Based
on DistType, the following distance functions could be used:

DistType Value Description
0 Computes the distance vector function, (V1 - V2).
1 Computes the distance square function, (V1 - V2)^2.
2 Projection of the distance vector onto the normal

field of the first varietly, ¡ V1 - V2, N1 ¿.
3 Projection of the distance vector onto the normal

field of the second varietly, ¡ V1 - V2, N2 ¿.

In cases 2 and 3, the normal field is not a unit field.
Example:

Crv1 = cbezier(list(ctlpt(E1, .2),

ctlpt(E2, 0.5, 4),

ctlpt(E2, 1.3, 0.05))) * sy(0.2);

Crv2 = cbezier(list(ctlpt(E1, -.2),

ctlpt(E2, 0.25, 1.9),

ctlpt(E2, 1.3, 0.05))) * ty(0.3) * sx(1.5);

bb = bbox(dist2ff(Crv1, Crv2, 1));

computes a bound on the minimal and maximal distance square between the given two curves, by
computing a bounding box on this scalar distance square field.

11.2.134 DITHERWIRE

PolyType DitherWire(NumericType Method,

StringType Img1, StringType Img2,

StringType Proj1, StringType Proj2,

ListType Parameters)

IRIT Solid modeler G. Elber 117

Figure 58: An examples of dithering two images simultaneously by 3D wires, using the DITHERWIRE
function.

Constructs a 3D, wires only, dithering that looks like Img1 from one view direction and like Img2
from another view direction and saves the projections in Proj1 and Proj2 as images.

Method controls the dithering approach as:

1 - Combinatorial, where in iteration, it goes through all possible line in space (between pins on
the edges of the cube) and chooses the best one. Grey level. VERY slow.

2 - Combinatorial version of 1 but Colored. VERY slow.

3 - Stochastic, when in iteration, randomly generates N lines and picks the best. Lines spanned
an entire cube. Grey level.

4 - Stochastic unbound (meaning that line segments will lay inside a cube). Grey level.

5 - Stochastic, when in iteration, randomly generates N lines and picks the best. Lines spanned
an entire cube. Colored.

6 - Stochastic unbound (meaning that line segments will lay inside a cube). Colored.

Parameters is a list containing numerical parameters for the dithering method as follows: 1. number
of lines to draw, 2. number of pins (relevant for combinatorial methods only), 3. line intensity, 4.
weight of feature importance (score multiplier for pixels that lay on edges), 5. Weight of the first
image, 6. Weight of the second image, optional 7. Number of random trials per wire, in stochastic
methods). Returned is a list of 3D lines (and the image projections are asved in Proj1/Proj2.

Example:

Lines = DitherWire(3, "image1.png", "image2.png,

"projection1.png", "projection2.png",

list(4500, 0, 0.04, 3, 1, 1));

Creates 3D wire dithering with 4500 lines, using stochastic grey level method, and equal weights to
both input images. See Figure 59. See also DITHERIMAGE and DTRBYCRVS.

IRIT Solid modeler G. Elber 118

Figure 59: An examples of dithering two images simultaneously by 3D wires, using the DTRBYCRVS
function.

11.2.135 DTRBYCRVS

CurveType DTRBYCRVS(ListType ImageNames, StringType CrvDBFileName,

NumericType FloydStein, NumericType Noise,

NumericType MergeRows, NumericType DiskShape)

creates a 3D model cosisting of 3-space curves that dithers two or three images from two or three
different view directions. Each curve will serve as a multi directional voxel in 3-space. ImageNames
privides a list of two or three image file names. CrvDBFileName specifies a file name that holds a
data base of different curves that creates different shading levels from different directions. FloydStein
is TRUE to employ Floyd Steinberg error diffusion, or FALSE to ignore. Noise a positive value will
add white noise to the images, or zero to disable. If MergeRows is TRUE, all curves in one row will
be merged into one object. If FALSE, all curves will reside as individual objects. If DiskShape is
TRUE, the created model will be in a disk, or, if FALSE, in a square.

Example:

CrvMdl = DTRBYCRVS(list("data/Herzel80.ppm",

"data/BenGurion80.ppm"),

"data/DB10x10.itd", TRUE, 0.1, FALSE, FALSE);

creates a model of space curves that dithers the two given PPM images from two views, using the
data base DB10x10.itd. Floyd Steinberg is used, some noise (0.1) is added and no rows are merged in
the square model that is created. See Figure 59. See also DITHERIMAGE and DTRBYCRVS.

11.2.136 DUALITY

CurveType DUALITY(CurveType Curve)

or

SurfaceType DUALITY(SurfaceType Srf)

computes the dual curve/surface to the given curve/surface. The dual shape is a mapping of every
point to a line (plane) in R2 (R3).

Example:

IRIT Solid modeler G. Elber 119

Figure 60: Two examples of a dual curve (left) and a dual surface (right) computed using the DUALITY
function. The duals are shown in thin black color.

Ellipsoid = sphereSrf(1.1) * sx(2) * sy(1.2);

DualEllip = DUALITY(Ellipsoid);

See Figure 60.

11.2.137 DVLPSTRIP

SurfaceType DVLPSTRIP(PointType Pos1, VectorType Tan1, VectorType Nrml1,

PointType Pos2, VectorType Tan2, VectorType Nrml2,

NumericType OtherScale, NumericType Tension,

NumericType DOFs)

computes a developable surface betweek two orientation frames, (Posi, Tani, Nrmli), i = 1, 2.
OtherScale controls the other parametrization direction scale where as Tension control the tightness
of the shape between the two frame. DOFs controls the number of degrees of freedom (positive value)
in the approximated shape or zero to disable additional degrees of freedom.

Example:

DvlpStrip(Pos1, Tan1, Nrml1, Pos2, Tan2, Nrml2, 0.01, 2, 0);

See also SDVLPCRV, PRISA and PRULEDALG

11.2.138 ELLIPSE3PT

ListType ELLIPSE3PT(PointType Pt1, PointType Pt2, PointType Pt3,

NumericType Offset)

IRIT Solid modeler G. Elber 120

computes the 6 coefficients A-F of,

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0, (16)

defining the ellipse of minimal area that bounds these 3 points Pti. computation is conducted in the
XY plane, with Z ignored. If Offset is not zero, the ellipse is offset approximated by Offset amount.

Example:

Pt1 = point(random(-0.5, 0.5), random(-0.5, 0.5), 0);

Pt2 = point(random(-0.5, 0.5), random(-0.5, 0.5), 0);

Pt3 = point(random(-0.5, 0.5), random(-0.5, 0.5), 0);

EllImp = ELLIPSE3PT(Pt1, Pt2, Pt3, 0);

Ell = ConicSec(EllImp, 0, off, off);

color(Ell, yellow);

adwidth(Ell, 2);

creates three random points in the XY plane and compute the implicit minimal area ellipse for these
three points. the Ellipse is realized geometrically using the ConicSec function. See also CONICSEC,
IMPLCTTRANS, QUADRIC, MAP3PT2EQL.

11.2.139 EUCOFSTONSRF

CurveType EUCOFSTONSRF(CurveType Crv, NumericType IsUVCrv, SurfaceType Srf,

NumericType OfstDist, NumericType StepTol,

NumericType SubdivTol, NumericType NumerTol,

NumericType Orient, NumericType TrimOfst,

NumericType LSFit)

computes offset approximation to Crv on Srf by offset distance OfstDist. If IsUVCrv TRUE,
Crv is assumed a curve in the UVspace of Srf. Otherwise, Crv is assumed in the Euclidean space.
StepTol, SubdivTol, and NumerTol control the tolerances of the multivariate solver (see MZERO).
Orient can be either -1 or +1, hinting on the desired offset on the left or right of Crv, or 0 to seek
both offsets. If TrimOfst TRUE, self intersections in the offset are trimmed away. Finally, LSFit, if
not zero, also applies a least square fit with this many control points to get an LS approximation of
the result.

c = pcircle(vector(0, 0, 0), 1);

s = surfPRev(cregion(c, 1.3, 2.7) * rx(90));

cs = compose(s, c, true);

OfstCrv = EucOfstOnSrf(cs, FALSE, s, 0.2, 0.1, 0.1,

1e-10, 0, FALSE, 50));

See Figure 61. See also EUCSPRLONSRF.

IRIT Solid modeler G. Elber 121

Figure 61: Offset approximation (in dark yellow) of a freeform curve (in green) over a freeform surface,
computed using EUCOFSTONSRF.

11.2.140 EUCSPRLONSRF

CurveType EUCSPRLONSRF(SurfaceType Srf, NumericType Dir,

NumericType Pitch, NumericType StepTol,

NumericType SubdivTol, NumericType NumerTol,

NumericType OutputType)

computes a spiral approximation curve on Srf in Dir (U or V), spiraling by amount Pitch between
one spiral to the next. Note Srf isexpected to be closed in the other direction as each spiral must be
connected to the next (via the closed boundary). StepTol, SubdivTol, and NumerTol control the
tolerances of the multivariate solver (see MZERO). Finally, OutputType can be either 0 for UVT
parameteric space output, 1 for curves in Euclidean space, or 2 for merged curves in Euclidean space
(adjacent spiral that are continuous are merged).

SpiralCrv = EucSprlOnSrf(s2, col, 0.5, 0.02, 0.01, 1e-10, 2);

See Figure 62. See also EUCOFSTONSRF.

11.2.141 EVOLUTE

CurveType EVOLUTE(CurveType Curve)

IRIT Solid modeler G. Elber 122

Figure 62: Spiral covering curve approximation over a freeform surface, computed using EUCSPR-
LONSRF.

or

SurfaceType EVOLUTE(SurfaceType Srf)

compute the evolute of a curve or a surface. For curves, the evolute is defined as,

E(t) = C(t) +
N(t)

κ(t)
, (17)

where N(t) is the unit normal of C(t) and k(t) is its curvature.

E(t) is computed symbolically as the symbolic sum of C(t) and N(t)
κ(t) where the latter is,

N(t)

κ(t)
=

κ(t)N(t)

k2(t)

=
(C ′(t)× C ′′(t))× C ′(t)

‖C ′(t)‖4
‖C ′(t)‖6

(C ′(t)× C ′′(t))2

=
((C ′(t)× C ′′(t))× C ′(t)) ‖C ′(t)‖2

(C ′(t)× C ′′(t))2
(18)

For surfaces, this function computes the mean evolute which is equal to,

E(u, v) = S(u, v) +
n(u, v)

2H(u, v)
, (19)

IRIT Solid modeler G. Elber 123

Figure 63: The evolute (thick) of a freeform curve (thin) can be computed using EVOLUTE.

where n(u, v) is the unit normal of S(u, v) and H(u, v) is the mean curvature.
E(u, v) is computed symbolically.
The result of this symbolic computation is exact (upto machine precision), unlike similar operations

such as OFFSET or AOFFSET, that are only approximated.
Example:

crv = cbspline(3,

list(ctlpt(E3, -1.0, 0.1, 0.2),

ctlpt(E3, -0.1, 1.0, 0.1),

ctlpt(E3, 0.1, 0.1, 1.0),

ctlpt(E3, 1.0, 0.1, 0.1),

ctlpt(E3, 0.1, 1.0, 0.2)),

list(KV_OPEN));

cev = EVOLUTE(Crv);

See Figure 63. See also SMEAN.

11.2.142 EXPLODE

ListType EXPLODE(ListType Object, NumericType ExpType, VectorType ExpCenter,

NumericType ExpAmount, VectorType ExpDir,

NumericType AnimCrvs)

@

Translates the elements of a given list object geometry bf Object in different directions: spherically
from ExpCenter if ExpType is FALSE, or cylindrically along ExpDir if TRUE. The amount of
the explosion is governed by ExpAmount. Only the top level elements of list geometry Object are
affected by this function. If AnimCrvs is TRUE, animation curves are added to Object, or if FALSE,
transformation matrices.

Example:

GeomExp = EXPLODE(Geom, FALSE, vector(0, 0, 0), 0.35,

vector(0, 0, 0), FALSE);

Radially (spherically) explodes all sub-elements in list object Geom, around the origin.

IRIT Solid modeler G. Elber 124

11.2.143 EXTRUDE

!EXTRUDE

PolygonType EXTRUDE(PolygonType Object, VectorType Dir, NumericType Caps)

or

SurfaceType EXTRUDE(CurveType Object, VectorType Dir, NumericType Caps)

or

VModelType EXTRUDE(TrimSrfType Object, VectorType Dir, NumericType Caps)

or

TrivarType EXTRUDE(SurfaceType Object, VectorType Dir, NumericType Caps)

or

TrivarType EXTRUDE(ListType Object, VectorType Dir, NumericType Caps)

Creates an extrusion of the given Object. If the Object is a PolygonObject, its first polygon is
used as the base for the extrusion in Dir direction. If the Object is a CurveType, an extrusion surface
is constructed. If the Object is a SurfaceType, an extrusion trivariate is constructed. If the Object
is a TrimSrfType, an extrusion VModelType is constructed. If the Object is a ListType, a list of
extruded objects is created for the objects found in Object. If Caps equals zero, no caps are created.
If Caps equal one (two), only the bottom (top) cap is created. If Caps equal three, both the top and
the bottom caps are created. Note that caps are created for a closed Object only, so the Object must
be either a polygon or a closed curve for caps to be generated. Direction Dir cannot be coplanar with
the polygon plane. The curve may be nonplanar.

Example:

Cross = cbspline(3,

list(ctlpt(E2, -0.018, 0.001),

ctlpt(E2, 0.018, 0.001),

ctlpt(E2, 0.019, 0.002),

ctlpt(E2, 0.018, 0.004),

ctlpt(E2, -0.018, 0.004),

ctlpt(E2, -0.019, 0.001)),

list(KV_OPEN));

Cross = Cross + -Cross * scale(vector(1, -1, 1));

Napkin = EXTRUDE(Cross * scale(vector(1.6, 1.6, 1.6)),

vector(0.02, 0.03, 0.2),

0);

constructs a closed cross section Cross by duplicating one half of it in reverse and merging the two
sub-curves. Cross is then used as the cross section for the extrusion operation. See Figure 64. See
also ZTEXTRUDE, RULEDSRF, RULEDTV, and RULEDVMDL.

IRIT Solid modeler G. Elber 125

Figure 64: An extrusion of a freeform curve using EXTRUDE to create a freeform surface.

11.2.144 FFCMPCRVS

FFCMPCRVS(CurveType Crv1, CurveType Crv2, NumericType Tolerance)

compares the given two curves, Crv1 and Crv2 for an identical trace. Curves could have identical
trace while with different degrees (via degree raising of one of them), differet knot sequences (by
applying refinements to either curves or both), or even different speed (via composition). This function
reduces both curves to a canonical representation by reverse engineering unnecessary degree raising,
refinements, or composition and then compare the two curves upto the given tolerance Tolerance.
Returned is a list of 5 numeric values. The first number equals 1 if the curves are the same, 2 if the are
the same but domain is not exactly the same, or 3 f the curves are different. The other four numbers
in the list are the domains of the two given curves that overlap as (Start1, End1, Start2, End2).

Example:

Similarity = FFCMPCRVS(Crv1, Crv2, 1e-6);

11.2.145 FFCOMPAT

FFCOMPAT(CurveType Crv1, CurveType Crv2)

or

FFCOMPAT(SurfaceType Srf1, SurfaceType Srf2)

make the given two curves or surfaces compatible by making them share the same point type,
the same curve type, the same degree, and the same continuity. The same point type is gained by
promoting a lower dimension into a higher one, and non-rational to rational points. Bezier curves are
promoted to B-spline curves if necessary, for curve type compatibility. Degree compatibility is achieved
by raising the degree of the lower order curve. Continuity is achieved by refining both curves to the
space with the same (unioned) knot vector. This function returns nothing and compatibility is made
in place.

Example:

IRIT Solid modeler G. Elber 126

FFCOMPAT(Srf1, Srf2);

See also CMORPH and SMORPH.

11.2.146 FFCTLPTS

ListType FFCTLPTS(FreeformType Freeform);

returns all the control points of the given Freeform in a single list. See Also FFPTTYPE, FFG-
TYPE, FFKNTVEC, FFMSIZE, FFORDER.

Example:

Ctls = FFCTLPTS(Srf1);

11.2.147 FFEXTEND

CurveType FFEXTEND(CurveType Crv, ListType Ends, ListType ExtendEps,

Numeric RemoveExtraKnots)

or

SurfaceType FFEXTEND(SurfaceType Srf, ListType Ends, ListType ExtendEps,

Numeric RemoveExtraKnots)

or

TrivarType FFEXTEND(TrivarType TV, ListType Ends, ListType ExtendEps,

Numeric RemoveExtraKnots)

or

MultivarType FFEXTEND(MultivarType MV, ListType Ends, ListType ExtendEps,

Numeric RemoveExtraKnots)

If a Crv, extends the given Crv in either one of its two ends as is specified by the list Ends
of two Booleans parameters, an amount equals to ExtendEps. If a Srf, extends the given Srf in
either one of its four sides as is specified by the list Ends of four Booleans parameters, an amount
equals to ExtendEps. If a TV, extends the given TV in either one of its six faces as is specified by
the list Ends of six Booleans parameters, an amount equals to ExtendEps. If an MV, extends the
given MV of dimension n, in either one of its 2n faces as is specified by the list Ends of 2n Booleans
parameters, an amount equals to ExtendEps. If RemoveExtraKnots is true redundant knots are
removed. The extension is computed so that the new entity will preserve the original domain and
hence will be identical for the original domain, to the input. In all cases, an ”ExtntScl” attribute with
a factor different than one can be placed on the geometry in whcih case the extended geometry will be
scaled following thsi factor. When relevant (surfaces and trivariates), also ”ExtntSclU”, ”ExtntSclV”,
and ”ExtntSclW” can be used to affect the scale in that direction. Note that scaling the extension will
also affect the size (number of control points) of the resulting geometry.

Example:

C1ext = FFEXTEND(c1, list(true, true), list(0.1), true);

extends curve c1 at both its ends by 0.1.

IRIT Solid modeler G. Elber 127

11.2.148 FFEXTREMA

ListType FFEXTREMA(CurveType Crv, NumericType Euclidean)

or

ListType FFEXTREMA(SurfaceType Srf, NumericType Euclidean)

or

ListType FFEXTREMA(trivarType TV, NumericType Euclidean)

computes and returns the parameter locations of local extrema values of given scalar freeform (a
curve, surface, or trivariate). Returned is a list of parameter locations where the extreme is taking place
(interior location, boundary location or possibly C1 discontinuity location. However, if Euclidean is
true, the results are mapped to Euclidean space.

Example:

Extrema = FFEXTREMA(Srf, false);

computes a list of all parameter locations where Srf assumes local extrema. See also FFEXTREME

11.2.149 FFEXTREME

CtlPtType FFEXTREME(CurveType Crv, NumericType Minimum)

or

CtlPtType FFEXTREME(SurfaceType Srf, NumericType Minimum)

or

CtlPtType FFEXTREME(trivarType TV, NumericType Minimum)

compute a bound on the extreme values a curves Crv or surface Srf or trivariate TV can assume.
Returned control point provides a bound on the minimum (maximum) values that can be assumed if
Minimum is TRUE (FALSE).

Example:

Bound = FFEXTREME(Srf, false);

computes a bound on the maximal values Srf can assume. See also FFEXTREMA

11.2.150 FFGTYPE

NumericType FFGTYPE(FreeformType Freeform)

returns the geometric type (BEZIER TYPE, BSPLINE TYPE etc.) of the given freeform. See
Also FFGTYPE, FFCTLPTS, FFKNTVEC, FFMSIZE, FFORDER, PDOMAIN.

IRIT Solid modeler G. Elber 128

11.2.151 FFKNTLNS

CurveType FFKNTLNS(SurfaceType Srf, NumericType Pllns)

or

PolyType FFKNTLNS(SurfaceType Srf, NumericType Pllns)

returns all isoparametric curves that are at an interior knot of the surface Srf. If, however, Pllns
is true, the result is converted to a piecewise linear approximation (i.e. polylines).

Example:

KntCrvs = FFKNTLNS(Srf, false);

See also GPOLYLINE, CSURFACE and CMESH.

11.2.152 FFKNTVEC

ListType FFKNTVEC(FreeformType Freeform)

returns all the knot vector(s) of the given Freeform in a list of knot vector(s). See Also FFPT-
TYPE, FFGTYPE, FFCTLPTS, FFMSIZE, FFORDER.

Example:

KVs = FFKNTVEC(Srf1);

11.2.153 FFMATCH

FFMATCH(CurveType Crv1, CurveType Crv2, NumericType Reduce,

NumericType Samples, NumericType ReparamOrder,

NumericType Rotate, NumericType NormType, NumericType MaxError)

computes a reparametrization to Crv2 so it fits Crv1, the best under some prescribed norm,
NormType. Currently the following norms are valid for NormType

Value Description
1 Suitable for ruled and blended curves, for modeling.

See RULEDSRF.
2 Suitable for metamorphosis of curves. See CMORPH.
3 Distance norm in ”walking the dog” notion.
4 Bisector (skeleton) matching norm for two curves.
5 Another variant for ruled and blended curves, for

modeling. See RULEDSRF.

Whenever negative norms can result (for example, in cases were self intersection cannot be prevented
in ruled surface constructions), one can allow negativity with no extra penalty by applying negative
NormType. Use of positive-only norms would yield no output at all if no matching with positive
weights can be established, whereas allowing negative norm values would result in a globally optimal
result, but with possible self intersectiions.

IRIT Solid modeler G. Elber 129

The reparametrization is computed by sampling a fixed set of size Samples off both curves, and
fitting a B-spline curve of length Reduce as the reparametrization curve. Hence, Reduce must be
less than or equal to Samples. The reparametrization curve will have order of ReparamOrder. If
Rotate is TRUE or ON, then attempt is made to rotate the reparametrization of the curves. Rotation
can be used on closed curves only. if MaxError is TRUE the maximal error is minimized. Otherwise,
the error’s sum over the entire domain is minimized.

See RULEDSRF and CMORPH for examples.

11.2.154 FFMERGE

CurveType FFMERGE(ListType E1Curves, NumericType PointType)

or

SurfaceType FFMERGE(ListType E1Surfaces, NumericType PointType)

or

MultivarType FFMERGE(ListType E1Multivars, NumericType PointType)

merge the scalar curves/surfaces/multivariates in the list of curves E1Curves or list of surfaces
E1Surfaces or list of multivariates E1Multivars to one vector curve/surface/multivariate of point
type PointType.

Example:

Srf = FFMERGE(list(SrfW, SrfX, SrfY), P2);

merges three scalar surfaces into a single surface with point type P2. See also FFSPLIT.

11.2.155 FFMESH

ListType FFMESH(FreeformType Freeform)

returns the control mesh/polygon of the given Freeform in a list. See Also FFCTLPTS, FFKNTVEC,
FFORDER, FFPTTYPE, FFMSIZE.

Example:

SrfMesh = FFMESH(Srf);

11.2.156 FFMSIZE

ListType FFMSIZE(FreeformType Freeform)

returns the size of the control mesh/polygon of the given freeform in a list. See Also MESHSIZE,
FFMESH, FFPTTYPE, FFGTYPE, FFCTLPTS, FFKNTVEC, FFORDER, PDOMAIN.

Example:

MSizes = FFMSIZE(Srf1);

IRIT Solid modeler G. Elber 130

11.2.157 FFORDER

ListType FFORDER(FreeformType Freeform)

returns all the orders of the given Freeform in a single list. See Also FFPTTYPE, FFGTYPE,
FFCTLPTS, FFKNTVEC, FFMSIZE, PDOMAIN.

Example:

Orders = FFORDER(Srf1);

11.2.158 FFPOLES

NumericType FFPOLES(FreeformType Freeform);

returns TRUE if the given Freeform has poles, FALSE otherwise. Poles are zeros in the weights
of rational functions.

Example:

HasPoles = FFPOLES(Srf1);

See also FFSPLTPOLES

11.2.159 FFPTDIST

ListType FFPTDIST(CurveType Crv, NumericType Param, NumericType NumOfPts)

or

ListType FFPTDIST(SurfaceType Srf, NumericType Param, NumericType NumOfPts)

compute a uniform point distribution for Crv or Srf. If Param is FALSE, the distribution is
selected to be uniform in the Euclidean space; otherwise if TRUE, the distribution is made uniform in
the parametric space. NumOfPts sets the number of points in the distribution.

The returned list of points prescribes parameter values in the freeforms. For Crv, the returned list
is a list of reals, in the parameter space of Crv. For Srf, the returned list is a list of points, whose X
and Y coefficients hold the U and V parameters of Srf. See also COVERPT.

Example:

c1 = cbezier(list(ctlpt(E2, -1.0, 0.0),

ctlpt(E2, -1.0, 0.1),

ctlpt(E2, -0.9, -0.1),

ctlpt(E2, 0.9, 0.0)));

color(c1, magenta);

pts = FFPTDIST(c1, true, 300);

e2pts = nil();

for (i = 1, 10, sizeof(pts),

pt = ceval(c1, coord(nth(pts, i), 0)):

snoc(pt, e2pts)

);

IRIT Solid modeler G. Elber 131

Figure 65: (top) A distribution of 30 points uniformly in Euclidean space. (bottom) A distribution of
30 points uniformly in parameteric space. Both examples were computed using FFPTDIST.

interact(list(e2pts, c1));

pts = FFPTDIST(c1, false, 300);

e2pts = nil();

for (i = 1, 10, sizeof(pts),

pt = ceval(c1, coord(nth(pts, i), 0)):

snoc(pt, e2pts)

);

interact(list(e2pts, c1));

computes the distribution of 100 points in curve c1 which has highly nonuniform speed charac-
teristics. Two distributions are computed, one to be uniform in the parametric space and one to be
uniform in the Euclidean space. See Figure 65.

11.2.160 FFPTTYPE

NumericType FFPTTYPE(FreeformType Freeform)

returns the point type (E2, P4 etc.) of the given freeform. See Also FFGTYPE, FFCTLPTS,
FFKNTVEC, FFMSIZE, FFORDER, PDOMAIN.

11.2.161 FFSPLIT

ListType FFSPLIT(CurveType Crv)

or

ListType FFSPLIT(SurfaceType Srf)

or

ListType FFSPLIT(MultivarType MV)

split the given curve Crv or surface Srf or multivariate MV into its scalar components that are
returned as a list of scalar curves/surfaces/multivariates.

Example:

E1Srfs = FFSPLIT(circle(vector(0, 0, 0), 1));

splits the circle which is a curve in P3 into four scalar curves (W, X, Y, Z) that are returned in a
single list. See also FFMERGE, FFPTTYPE.

IRIT Solid modeler G. Elber 132

11.2.162 FFSPLTPOLES

ListType FFSPLTPOLES(CurveType Crv, NumericType SubdivTol,

NumericType NumericTol, NumericType Offset,

NumericType Option)

or

ListType FFSPLTPOLES(SurfaceType Srf, NumericType SubdivTol,

NumericType NumericTol, NumericType Offset,

NumericType Option)

If Option = 0, the domain locations of the poles, locations were the denominator vanish (points in
the case of rational input Crv, curves in the case of rational input Srf), is computed. If Option = 1,
splits the given rational Crv or Srf at its poles. In the case of surfaces, the result is a list of trimmed
surfaces as the poles are not necessarily isoparameteric. If Offset is not zero, the neighborhood of the
pole is clipped as well upto a distance offset in the parametric domain from the pole. If Option = 2,
and only in the case of Srf, subdivides the given Srf up to SubdivTol, to patches that are poles-free
and return only poles-free such patches.

Example:

Crvs = FFSPLTPOLES(crv, 0.01, 1e-10, 0.001, 1);

See also FFPOLES.

11.2.163 FITPMODEL

ListType FITPMODEL(PolygonType PlObj, NumericType FitType,

NumericType Tol, NumericType NumIters)

fits a primitive object to the given polygonal model, PlObj. The numeric fitting process is controled
via a bound on the number of iterations NumIters and the resulting tolerance of the fit that is required,
Tol. Returned is a list of numeric values with the error of the fit as the first value. The rest of the list
numeric values are the coefficients of the algebraic fitted form (see table below). FitType can be one
of:

0 A Planar face. Returned list holds (A, B, C, D), the four
coefficients of the plane equation.

1 A Sphere. Returned list holds (Xcntr, Ycntr, Zcntr, Radius)
of the fitted sphere.

2 A Cylinder. Returned list holds (Xcntr, Ycntr, Zcntr,
Xdir, Ydir, Zdir, Radius) of the fitted cylinder.

3 A Circle. Returned list holds (Xcntr, Ycntr, Radius) of
the fitted circle.

4 A Cone. Returned list holds (Xcntr, Ycntr, Zcntr,
Xdir, Ydir, Zdir, Radius) of the fitted cone.

Example:

IRIT Solid modeler G. Elber 133

resolution = 20;

x1 = triangl(sphere(vector(1, 2, 3), 4), 1);

SprParams = FitPModel(x1, 1, 0.01, 100);

Computes a fitted sphere to a polygonal approximation of a sphere. See also ANALYFIT.

11.2.164 FINDATTR

ListType FINDATTR(ListType Objs, StringType AttrName, AnyType AttrVal,

NumericType LeavesOnly, NumericType Negate)

Filters only objects in Objs that have attributes named AttrName and value AttrVal. AttrVal
can be nil() for filtering only based onAttrName. If LeavesOnly is TRUE, only leaves in the hierZchy
of Objs are searched for a match. If Negate is TRUE, only objects that do not have AttrName (and
value AttrVal) are considered as matched.

Example:

Mf = FindAttr(M, "BzrIndex", "0,0,3", true, true);

extracts all leave elements in M that have a ”BzrIndex” attribute and attribute value ”0,0,3”.
See also ATTRIB, ATTRPROP, ATTRVPROP, CPATTR, GETATTR.

11.2.165 FIXPLGEOM

PolygonType FIXPLGEOM(PolygonType PlObj, NumericType Oper, NumericType Eps)

or

ListType FIXPLGEOM(ListType Obj, NumericType Oper, NumericType Eps)

cleans polygonal geometry. based on Oper, the following will be conducted:

0 Remove identical duplicated polygons.
1 Remove zero length edges.

The clean up of an object will be applied individually to each part found in the object list Obj.
Example:

Obj2 = FIXPLGEOM(Obj, 0);

Obj3 = FIXPLGEOM(Obj2, 1);

Obj4 = FIXPLNRML(Obj3, 2);

cleans duplicated polygons, zero length edges, and then reorient the result. See also FIXPLNRML.

IRIT Solid modeler G. Elber 134

11.2.166 FIXPLNRML

PolygonType FIXPLNRML(PolygonType PlObj, NumericType TrustInfo)

or

ListType FIXPLNRML(ListType Obj, NumericType TrustInfo)

corrects inconsistencies in polygonal geometry, between normals of polygons and normals at the
vertices based on TrustInfo. As a side effect also allow the split of a polygonal models with disjoint
parts, into the disjoint parts. That is, every connected component in the input will be returned as a
separated object. If TrustInfo is

0 Trust the normals at the vertices.
1 Trust the normals of the polygons.
2 Reorient all the polygon’s normals and vertices

normals to follow the orientation of first polygon.
3 Same as 2 but also splits disjoint part in the

input object to different objects.

The computation on an object will be applied individually to each part found in the object list
Obj. Option 2 of TrustInfo will correct cases where adjacent polygons are not oriented the same,
based on detection of adjacencies.

Example:

Obj2 = FIXPLNRML(Obj, 2);

See also FIXPLGEOM and SMOOTHNRML.

11.2.167 FLATTENHIER

ListType FLATTENHIER(ListType List)

Flatten a hierachy of objects in a single list object of elements, all of which are leaves.
See also MERGEATTR, MERGELIST, MERGEPOLY, MERGEPLLN, MERGETYPE, SPLITLST.

11.2.168 GBOX

PolygonType GBOX(VectorType Point,

VectorType Dx, VectorType Dy, VectorType Dz)

or

TrivarType GBOX(PointType P000, PointType P001,

PointType P010, PointType P011,

PointType P100, PointType P101,

PointType P110, PointType P111)

or

IRIT Solid modeler G. Elber 135

TrivarType GBOX(VectorType UMinVec, VectorType UMaxVec,

VectorType VMinVec, VectorType VMaxVec,

VectorType WMinVec, VectorType WMaxVec)

The first form creates a polygonal parallelepiped - a generalized BOX polygonal object, defined by
a Point as its base position, and Dx, Dy, Dz as 3 3D vectors to define the 6 faces of this generalized
BOX. The regular BOX object is a special case of GBOX where Dx = vector(Dx, 0, 0), Dy = vector(0,
Dy, 0), and Dz = vector(0, 0, Dz). Dx, Dy, Dz must all be independent in order to create an object
with positive volume.

The second form creates a generalized box trivariate - given the eight corner points of the desired
generalized box as Pxxx. The third form also creates a generalized box trivariate - given six desired
(not necessarily unit) normals of the six faces of the box, as xMinVec/xMaxVec. Since this third
form is in a vector space, the resulting cube is positioned around the origin and in [−1, 1]3;

Note that in the second and third forms, the faces will not necessarily be planar (and hence the
normals requested are only approximated).

Example:

GB = GBOX(vector(0.0, -0.35, 0.63), vector(0.5, 0.0, 0.5),

vector(-0.5, 0.0, 0.5),

vector(0.0, 0.7, 0.0));

See Figure 66.

11.2.169 GEAR2DSWEEP

NumericType GEAR2DSWEEP(NumericType FuncType, ListType Params)

or

CurveType GEAR2DSWEEP(NumericType FuncType, ListType Params)

computes 2D gears, given a teeth wheel geometry, not necessarily circular. FuncType can be one
of

1 To compute the conjugate wheel. Here Params is a
list of two parameters (Wheel1Crv, SolverStepSize).

2 To arrange teeth. Here Params is a list of
three parameters (Wheel2Crv, ToothLength, NumTeeth).

3 To derive the centrode. Here Params is a list of
two parameters (WheelSurface, SolverStepSize).

4 To employ uniform motion in the forecoming gear computations.
Here Params is a list of two parameters
(GearDistance, SolverStepSize).

5 To employ non uniform motion in the forecoming gear computations.
Here Params is a list of three parameters
(GearDistance, SolverStepSize, Wheel1Crv).

6 To handle oblong motion in the forecoming gear computations. Here
Params is a list of six parameters (GearDistance, ToothLength,
NumTeeth, NumTeethCirc, NumTeethLinear, InverseMotion).

7 to derive the inverse motion.

IRIT Solid modeler G. Elber 136

Figure 66: A warped box in a general position can be constructed using the GBOX constructor.

Example:

Gear2DSweep(GEAR2D_UNIFORM_MOTION, list(GearDist, SolverStepSize));

CrvH0 = Gear2DSweep(GEAR2D_CONJUGATE, list(CrvG0, SolverStepSize));

Gear2DSweep(GEAR2D_UNIFORM_MOTION, list(GearDist, SolverStepSize));

CrvG1 = Gear2DSweep(GEAR2D_CONJUGATE, list(CrvH0, SolverStepSize));

computes the gear with uniform motio nas the conjugate of the input wheel bf CrvG0, as CrvH0,
only to derive the conjugate to CrvH0, as CrvG1.

11.2.170 GETATTR

AnyType GETATTR(AnyType Obj, StringType Name)

provides a mechanism to fetch an attribute named Name from object Obj.
Example:

attrib(axes, "test", 15);

a = GETATTR(axes, "test");

will set the value of a to be 15.

IRIT Solid modeler G. Elber 137

11.2.171 GETLINE

AnyType GETLINE(NumericType RequestedType)

provides a method to get input from the keyboard within functions and or subroutines. Request-
edType can be a NUMERIC TYPE, E2, POINT TYPE, VECTOR TYPE, or PLANE TYPE in
which the entered line will be parsed into one, two, three, or four numeric values (operated by either
spaces or commas) and the proper object will be created and returned. RequestedType can also be
CTLPT TYPE in which case as many numeric values in the line are read into an En control point (up
to the maximal dimension of a control point). In any other case, including failure to parse the numeric
input, a STRING TYPE object will be constructed from the entered line.

Example:

Pt = GETLINE(point_type);

to read one point (three numeric values) from stdin.

11.2.172 GETNAME

StringType GETNAME(ListType ListObj, NumericType Index)

gets the name of a sub object of index Index in list object ListObj. Index of the first element is
one.

Example:

A = list(XX, Second, C);

GETNAME(A, 1);

returns the name of the second element, ”Second”.
See also SETNAME.

11.2.173 GGINTER

ListType GGINTER(CurveType Srf1Axis, CurveType Srf1Rad,

CurveType Srf2Aixs, CurveType Srf2Rad,

NumericType SubdivTol, NumericType ZeroSetFunc)

computes the intersection curves of the given two ring surfaces, defined as spine surfaces with axis
SrfiAxis, i = 1, 2 and circular cross section along the normal plane of the axis curve with radii SrfiRad.

The ring ring intersection (RRI) problem is tranformed into a zero set finding on another function.
If ZeroSetFunc is true, the function whose zero set provides the RRIsolution is returned. Otherwise, if
ZeroSetFunc is false, the RRI solution itself is returned. The zero set is computed via numerical zero
set finding methods and Tolerance controls the fineness of the approximated solution. See Figure 67.

Example:

s1 = cylinSrf(4, 1) * tz(-2);

c1 = cbezier(list(ctlpt(E3, 0.0, 0.0, -1.0),

ctlpt(E3, 0.0, 0.0, 1.0)));

r1 = cbezier(list(ctlpt(E1, 1.0)));

IRIT Solid modeler G. Elber 138

Figure 67: Computation of the intersection curve between two ring surfaces via the GGINTER com-
mand. On the left, the zero set function is displayed while on the right, the computed intersection
between two ocylinders is shown.

s2 = cylinSrf(4, 1) * tz(-2) * rx(90) * tx(0.5);

c2 = cbezier(list(ctlpt(E3, 0.5, -1.0, 0.0),

ctlpt(E3, 0.5, 1.0, 0.0)));

r2 = cbezier(list(ctlpt(E1, 1.0)));

ZeroSetSrf = coerce(GGINTER(c1, r1, c2, r2, 0.1, true), e3)

* rotx(-90) * roty(-90);

resolution = 100;

ZeroSet = contour(ZeroSetSrf, plane(0, 0, 1, 0));

interact(list(ZeroSetSrf * sz(0.1), ZeroSet, axes));

c = nth(GGINTER(c1, r1, c2, r2, 0.03, false), 1);

interact(list(s1, s2, c));

constructs two cylinders as s1 and s2, defines the same two cylinders as a ring surface with axes
spines of c1 and c2 and a constant radius, one in r1 and r2, and computes the zero set of the intersection
and the intersection curve itself. See also RRINTER, SSINTER and SSINTR2.

11.2.174 GPOINTLIST

PolylineType GPOINTLIST(GeometryTreeType Object, NumericType Optimal,

NumericType Merge)

converts all Curves(s), (Trimmed) Surface(s), and Trivariate(s) Object into pointlists using the
RESOLUTION variable. The larger the RESOLUTION is, the finer the resulting approximation will
be. Returns a single pointlist object if Merge is TRUE.

IRIT Solid modeler G. Elber 139

If Optimal is false, the points are sampled at equally spaced intervals in the parametric space. If
Optimal true, a better, more expensive computationally algorithm is used to derive optimal sampling
locations so as to minimize the maximal distance between the curve and piecewise linear approximation
(L infinity norm).

Example:

Pts = GPOINTLIST(list(Srf1, Srf2, Srf3, list(Crv1, Crv2, Crv3)),

true, true);

See also GPOLYGON, GPOLYLINE.

11.2.175 GPOLYGON

PolygonType GPOLYGON(GeometryTreeType Object, NumericType Normals)

approximates all Surface(s)/Trimmed surface(s)/Trivariate(s) in Object with polygons using the
POLY APPROX OPT, POLY APPROX TRI, POLY MERGE COPLANAR, RESOLUTION and FLAT4PLY
variables. If POLY APPROX OPT is FALSE, RESOLUTION vaguely prescribes the number of uni-
form (in parametric space) samples to sample the surface in each direction. If POLY APPROX OPT is
TRUE, POLY APPROX TOL prescribes the maximal deviation of the polygonal approximation from
the original surface, in object space coordinates. IF POLY APPROX TRI is TRUE, only triangles
are generated on the output set. POLY MERGE COPLANAR controls the way coplanar adjacent
polygons are merged into one (or not.) FLAT4PLY is a Boolean flag controlling the conversion of an
(almost) flat patch into four (TRUE) or two (FALSE) polygons. Normals are computed to polygon
vertices using surface normals, so Gouraud or Phong shading can be exploited. It returns a single
polygonal object.

If Normals is set, surface normals will be evaluated at the vertices. Otherwise flat shading and
constant normals across polygons are assumed.

Example:

Polys = GPOLYGON(list(Srf1, Srf2, Srf3), off);

converts to polygons the three surfaces Srf1, Srf2, and Srf3 with no normals. See also GPOINTLIST,
GPOLYLINE, POLY APPROX OPT, POLY APPROX TOL, POLY APPROX TRI, POLY APPROX UV,
POLY MERGE COPLANAR, RESOLUTION and FLAT4PLY.

11.2.176 GPOLYLINE

PolylineType GPOLYLINE(GeometryTreeType Object, NumericType Method)

converts all Curves(s), (Trimmed) Surface(s), and Trivariate(s) Object into polylines using the
RESOLUTION variable.

If Method is 0, the points are sampled at equally spaced (uniform) intervals in the parametric
space. If Method is 1, a better, more expensive computationally algorithm is used to derive adaptive
optimal sampling locations so as to minimize the maximal distance between the curve and piecewise
linear approximation (L infinity norm). If Method is equal to 2, 2D curvature based approach is
used, for planar curves. RESOLUTION sets the sampling rate for uniform (Methd = 0) sampling
and is several dozens typically. For Method ¿ 0, RESOLUTION is tolerance related and is typically
a faction.

Example:

IRIT Solid modeler G. Elber 140

resolution = 50;

Polys1 = GPOLYLINE(list(Srf1, Srf2, Srf3, list(Crv1, Crv2, Crv3)),

0);

resolution = 0.01;

Polys2 = GPOLYLINE(list(Srf1, Srf2, Srf3, list(Crv1, Crv2, Crv3)),

1);

converts to polylines the three surfaces Srf1, Srf2, and Srf3 and the three curves Crv1, Crv2,
and Crv3. See also GPOINTLIST, GPOLYGON, RESOLUTION and FLAT4PLY.

11.2.177 HAUSDORFF

ListType HAUSDORFF(PointType Obj1, CurveType Obj2,

NumericType Eps, NumericType OneSided)

or

ListType HAUSDORFF(CurveType Obj1, CurveType Obj2,

NumericType Eps, NumericType OneSided)

computes the Hausdorff distance between Obj1 and Obj2, with Eps as the tolerance of the com-
putation. Note obj1 or Obj2 can be either a point, a curve, and to a certain extent a surface. If
OneSided is TRUE, the one sided Hausdorff distance from Obj1 to Obj2 is computed. Returned is
a list of two items, the first prescribes the parameter location of the Hausdorff distance event on the
Obj1 and the second prescribes the parameter location of the Hausdorff distance event on Obj2.

Example:

HDRes = hausdorff(O1, O2, Eps, false);

11.2.178 HAUSDRPTS

NumericType HAUSDRPTS(SurfaceType Srf1, SurfaceType Srf2, ListType Params)

or

NumericType HAUSDRPTS(CurveType Crv1, CurveType Crv2, ListType Params)

Computes an Hausdorff distance estimate between the given two surfaces Srf1 and Srf2 or curves
Crv1 andCrv2. Params is a list of two numeric values as (NumPts, HausdorffDir). The Hausdorff
distance is estimated by sampling NumPts points on both freeforms and computing distances between
the points. HausdorffDir sets the distance direction computation: 1 for Hausdorff distance from first
freeform to second freeform, 2 for Hausdorff distance from second freeform to first freeform, and 3 for
a symmetric estimate.

Example:

HD = HAUSDRPTS(Srf1, Srf2, list(100, 3));

IRIT Solid modeler G. Elber 141

11.2.179 HERMITE

SurfaceType HERMITE(CurveType Bndry1, CurveType Bndry2,

CurveType Tan1, CurveType Tan2)

or

CurveType HERMITE(PointType Bndry1, PointType Bndry2,

VectorType Tan1, VectorType Tan2)

construct a cubic fit between Bndry1 and Bndry2 so that first derivative continuity constraints,
as prescribed by Tan1 at Bndry1 and Tan2 at Bndry2, are preserved.

It returns either a curve or a surface, according to type of input parameters.
Example:

h00 = HERMITE(point(0, 0, 0),

point(1, 1, 0),

vector(1, 0, 0),

vector(1, 0, 0));

constructs a curve in the shape of the first basis function of the cubic Hermite basis functions. See
also BLHERMITE, BLSHERMITE and BLND2SRFS.

11.2.180 HOBERMAN

ListType HOBERMAN(CurveType Crv, NumericType HType, NumericType Offset,

NumericType NumOfScissors, NumericType CrvRefCyl,

VectorType PinHoleDiams, NumericType Thickness,

NumericType RelWidth, NumericType RoundRad,

NumericType AddClrCodes, NumericType Tol)

constructs a 2D Hoberman-like scissors structure around a given planar curve Crv. HType can
either be 0 for a constact radius Hoberman structure or 1 for a constant angle structure. Offset sets
the offset amount to apply to Crv to create a second curve to build a 2D strip (band) between the curve
and its offset, in which the scissors will reside. NumOfScissors sets the number of scissor structures
to create along the curve and CrvRefCyl controls how many global refinement cycles to apply to
Crv to improve the offset accuracy or zero to disable. PinHoleDiams is a vector of 3 numbers to
sets (PinDim, PinExpndDim, HoleDim) where PinDim ¡ HoleDim while the top of the pin can be a
bit expanded than HoleDim so the parts can be simply snapped together. Thickness controls the Z
thickness of the created 2D scissors. RelWidth controls the relative width of the scissor, with a value
of one as reasonable or neutral width. The scissors could be rounded aound C1 following RoundRad
radius or zero to disable. If AddClrCodes is TRUE, color codes are added the each scissor, for
identification - in general, in non circular, shapes, all scissors are different! Finally, Tol controls the
tolerances of the computation.

Example:

C = pcircle(vector(0, 0, 0), 0.15);

Hob = HOBERMAN(C, 0, 0.1, 12, 0, vector(0.0025, 0.003, 0.0026),

0.0025, 0.6, 0.0, FALSE, 0.0005);

IRIT Solid modeler G. Elber 142

Figure 68: A Hoberman structure around a circular curve, using the HOBERMAN function.

creates a circular Hoberman structure with 12 scissors and pin diameters of 0.0025, holes 0.003 and
pin tips expansion of 0.0026. No rounding and no color codes are applied. See Figure 68.

11.2.181 ILOFFSET

NumericType ILOFFSET(CurveType Crv, CurveType OffsetCrv)

or

NumericType ILOFFSET(SurfaceType Srf, SurfaceType OffsetSrf)

examines if the offset curve OffsetCrv or offset surface OffsetSrf has local self-intersections with
respect to the original input curve Crv or surface Srf. Returns TRUE if local self intersections is
detected, FALSE otherwise.

Example:

SelfInterTst = iloffset(cpawn, cpawnOffset);

11.2.182 IMAGEFUNC

VectorType IMAGEFUNC(StringType ImageFileName,

NumericType X, NumericType Y)

treats ImageFileName that is an image file, as an explicit function. If ImageFileName is a
non-zero length strings it is loaded. Otherwise, the last loaded image is evaluated at location (X,
Y) in the image that is assumed normalized or [0, 1]2. Returned is a vector of the RGB values, also
normalized to [0, 1]3

Example:

Img = IMAGEFUNC("test.png", 0, 0);

V1 = IMAGEFUNC("", 0.5, 0.5);

reads ”test.pmg” and then evaluate it at the center.

IRIT Solid modeler G. Elber 143

11.2.183 IMPLCTRANS

ListType IMPLCTRANS(1, ListType ImplicitConicSec, MatrixType Mat)

or

ListType IMPLCTRANS(2, ListType ImplicitQuadric, MatrixType Mat)

transforms a given conic section as the 6 coefficients A-F of:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0, (20)

in which case 6 coefficients are expected in ImplicitQuadric or transforms a given quadric section
given as the 10 coefficients A-J,

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0, (21)

using the given transformation matrix Mat.
Example:

ImplicitMappedEllipse = IMPLCTRANS(1, ImplicitEllipse, Mat);

See also CONICSEC, QUADRIC, ELLIPSE3PT, MAP3PT2EQL.

11.2.184 INSTANCE

InstanceType INSTANCE(StringType GeomName, MatrixType Mat);

creates an instance of the geometry prescribed by GeomName to be related to a different position
as specified by matrix Mat.

The use of instances is advantageous where the same geometry is to be displayed/processed in
several different locations in space. A modification of the original geometry Geom will affect all
instances that reference it. The reference is by the original object’s name. The original object can be
a single object or a whole hierarchy of objects.

Example:

Tea1 = INSTANCE("Teapot", tx(10));

Tea2 = INSTANCE("Teapot", tx(20));

Tea3 = INSTANCE("Teapot", tx(30));

viewobj(list(Teapot, Tea1, Tea2, Tea3));

will display four teapots 10 units apart along X.

11.2.185 IRITSTATE

AnyType IRITSTATE(StringType State, AnyType Data)

sets a state variable in the IRIT Solid Modeller and returns the old value, if applicative. Current
supported state variables are:

IRIT Solid modeler G. Elber 144

State Name Data Type Comments

BBoxPrecise NumericType TRUE for precise freeform bboxes, FALSE for
approximations based on control polygons/meshs.

BoolClip2Trim NumericType TRUE to clip the trimmed surfaces to the domain
as prescribed by the trimming curves.

BoolCrvMerge NumericType TRUE to merge resulting curve segments in curve
booleans to closed loops (so loop is one curve).

BoolCrvTol NumericType Numeric tolerance to use in curves’ Booleans.
BoolPerturb NumericType Controls epsilon-pertubation in Booleans. Zero

value to disable.
BoolFreeform VectorType Sets the tolerances used by the freeform

Boolean operations among models as triplet
(Subdivision Tol, Numeric Tol, Trace Tol).

BoolFFNormalize NumeircType COntrols if freeform Booleans are nomralizing
the domains based on real arclength orders.

CmpObjEps NumericType Sets the epsilon to use to compare two objects.
BspProdMethod NumericType 1 for B-spline sym. products via

interpolation, 2 for blossoming B-spline based
product, and 0 for B-spline sym. products
via Bezier decomposition.

CnvxPl2Vrtcs NumericType TRUE to try and split non convex polygons toward
vertices, which is usually more efficient.

Coplanar NumericType If TRUE, Coplanar polygons are handled by
the Boolean operations.

CursorKeep NumericType If TRUE, keep mouse events reported by the
display devices for CLNTCRSR to read.

DebugMalloc StringType If ”Reset”, memory allocation is cleared/reset.
No ”Free unallocated pointer” test after
”Reset”. If ”Print”, all allocated blocks are
printed. Otherwise, used as ”address, n”: ptr
address to search for with abort() called after
n mallocs.

DebugFunc NumericType > 0 user func. debug information. > 2 print params
on entry, ret. val. on exit. > 4 global var. list
operations.

Dependency NumericType 0 for no object dependency propagations, 1 for
automatic dependency propagation, in evaluation.

DoGraphics NumericType TRUE to enable any graphics display thru the
display devices. FALSE to disable it.

DumpLevel NumericType Bitmask to control the way variables/expressions
are dumped. Only object names/types if all 0.
Scalars and vectors are dumped if 0x01.
Curves and Surfaces are dumped if 0x02.
Polygons/lines are dumped if DumpLvl 0x04.
List objects are traversed recursively if 0x10.
List objects are dumped verbatim if 0x20.
Dependency information is dumped if 0x40.

IRIT Solid modeler G. Elber 145

EchoSource NumericType If TRUE, IRIT scripts are echoed to stdout.
FastPolys NumericType If 0x01, surface polygons are computed fast and

are only approximated. If 0x02, surface normals
are computed fast and are only approximated. If
0x01 — 0x02, both are fast and approximated.

FlatLoad NumericType If TRUE, the hierarchy of loaded objects is
flattened into a linear list.

FloatFrmt StringType Specifies a new printf floating point format.
GMEpsilon NumericType Controls the epsilon of the basic geometry

processing computation (point on plane etc.)
HierarchyVisible NumericType If TRUE, insert all sub objects into Irit’s

DB, when an object is inserted to the DB.
See also IritState’s PropagateNames.

InterCrv NumericType If positive, Boolean operations creates only
intersection curves. If zero, full Boolean
operation results. If positive, for model
Booleans, 1,2,3 will result is UV of first
surface, UV of second surface, or Euclidean
curve, respectively.

InterUV NumericType If TRUE, Boolean operations creates only UV
intersection curves (if InterCrv is set).

LoadFont StringType Specifies a new IRIT font file to use in
TEXTGEOM commands.

MdlInterDscnt NumericType If TRUE, aims to handle intersections, in MODEL
Booleans, along C1 discontinuities and
boundaries.

MVBivarCrnrs NumericType Sets the way bivariate solution are processing
corners by the multivariate solver (see MZERO
and MUNIVZERO).

MVBivarPllns NumericType Sets the way bivariate solution are returned
by the multivariate solver (see MZERO and
MUNIVZERO). Either triangles or polylines.

MvDecompose NumericType zero for no decomposition,
one for decomposition via composition,
two for decomposition via point tracing.

MvDmnExt NumericType Positive to extend domains of multivariates
by this relative-to-SubdivTol value to
ensure catching zeros on the boundaries.
Zero to disable.

MvDmnReduce NumericType TRUE to use domain reduction in multivariate
zero set finding, FALSE to disable.

MvGradPrecond NumericType TRUE to apply gradient preconditioning in the
multivariate zero set finding, FALSE to disable.

MvHPlnTst NumericType TRUE to use hyperplane tests in multivariate
zero set finding, FALSE to disable.

MvNConeTst NumericType TRUE to use normal cone tests in multivariate
zero set finding, FALSE to ignore such tests.

MvNormalize NumericType TRUE to normalize the constraints throughout
the recursive subdivision process.

MVSbdvTolAction NumericType Controls the behaviour of the multivariate
solver (See MZERO and MUNIVZERO) when reaching
the subdivision tolerance.

MvSnglrPts NumericType TRUE to also dump out singular solutions,
FALSE to ignore singularities.

IRIT Solid modeler G. Elber 146

PrimRatSrfs NumericType TRUE for rational exact primitive surfaces,
FALSE for approximated polynomial (integral)
surfaces. See also PrimType.

PrimType NumericType 0 for primitive construction as polygonal
objects,
1 for freeform surfaces,
2 for freeform model objects,
3 for freeform volumetric trivariates,
4 for freeform singular (having locations
with zero Jacobian on the boundary)
volumetric trivariates,
5 for freeform V-Models trimmed-trivariates.
6 for singular (having locations with zero
Jacobian on the boundary) V-Models
trimmed-trivariates.
See also PrimRatSrfs.

PropagateNames NumericType If true, sub objects are assigned unique
names derived from their parent name.
See also IritState’s HierarchyVisible.

RandomInit NumericType Initialize the seed random number generator
in IRIT. See also the RANDOM function.

SrfNrmlConeOpt NumericType Controls the use of normal cones for surfaces.
FALSE for fast and less optimal cones, TRUE
for an optimal but slower computation. See
also the NrmlCone command.

TCrvsManage NumericType if d¡2, trimming curves, when processed,
are left as is.
if d==2, when processed trimmed surfaces,
all (higher order ¿ d) trimming curves are
converted to (piecewise) linear approximation.
if d¿2, linear trimming curves are approximated
using higher order polynomials of degree d.

TrimCrvs NumericType If positive, sets the tolerance of the piecewise
linear approximation in which higher order
trimmed curves are sampled at. If negative,
-NumericType is setting the uniform sampling
rate of the higher order trimming curves.
If zero, computed symbolically as composition.

UVBoolean NumericType If TRUE, Boolean between surfaces returns UV
instead of Euclidean curves.

VMdlSubdPrdc NumericType If TRUE, Split periodic VModels into non-
periodic suring subdivision.

Example:

IRITSTATE("DebugFunc", 3);

IRITSTATE("FloatFrmt", "%8.5lg");

IRIT Solid modeler G. Elber 147

To print parameters of user defined functions on entry, and return value on exit. Also selects a
floating point printf format of ”

11.2.186 ISGEOM

ListType ISGEOM(AnyType Obj, NumericType GeomType, NumericType Eps)

verifies if the given freeform geometry in Obj is a line, circle, plane, sphere, surface of revolution,
extrusion, ruled surface, or a sweep surface, upto some tolerance Eps. GeomType prescribes the
type to check for as one of the GEOM LINE/CIRCLE etc. constants. The return value is a list of
two objects. The first is a numeric value with the success/failure of the result. A zero is returned in
a failure case whereas non zero value hints on the direction relevant. As an example a ruled surface
along U will return 1 and a ruled surface along V will return a 2. The second object is a list with the
construction entities of Obj, if any. For example, for a detected sphere, the center and radius will be
returned.

Example:

b = nth(ISGEOM(Crv, GEOM_LINE), 1) ||

nth(ISGEOM(Crv, GEOM_CIRCLE), 1);

checks if Crv is either line or a circle, ignoring the construction entities.

11.2.187 ISOCLINE

SurfaceType ISOCLINE(SurfaceType Srf, VectorType ViewDir,

NumericType Theta, NumericType SubdivTol,

NumericType Euc, NumericType Mode)

computes the isocline edges of the given Srf from the prescribed viewing direction ViewDir.
Isocline curves are curves on the surface at which location the surface normal forms a fixed angle,
Theta, in degrees, with the prescribed viewing direction, ViewDir. The selection of 90 degrees for
Theta results in the extraction of silhouette edges. The end result is a piecewise linear approximation
of the exact isocline edges, and its accuracy is controlled via the RESOLUTION variable. If Mode is
zero, the isoclines are simply computed and returned. If Mode is either -1 or +1, the surface regions
with normals with angles of less than or great than Theta are returned as trimmed surfaces. If Mode
is either -2, the surface regions with normals with angles of less than than Theta are returned along
with ruled surface that are stitched along the removed region. This -2 mode is useful in mold design.
SubdivTol controls the accuracy of the computation. If Euc is TRUE, the isocline edges are returned
on the surface, in Euclidean space. Otherwise, the isocline edges are returned in the parametric space
of Srf.

Example:

Resolution = 10;

Isocs = ISOCLINE(glass, vector(1, -2, 1), 80, 0.01, true, 0);

computes the isocline edges forming 80 degrees between the surface normal and the given viewing
direction (1, -2, 1) for surface glass, and returns the isocline edges in the Euclidean space. See also
SILHOUETTE.

IRIT Solid modeler G. Elber 148

11.2.188 JIGSAWPUZZLE

SurfaceType JIGSAWPUZZLE(AnyType Shape, AnyType Tiles,

VectorType Params, VectorType Tols,

NumericType MergedTrimmedTiles)

computes a 3D jigsaw puzzle over Shape, using puzzle tiles in form of Tiles. Shape can be either
a single surface or a model consisting of several trimmed surfaces. Shape can have a string attribute
”Steps” to control the tiling that sets the desired min/max steps of the tiling as (MinU, MinV, MinW,
MaxU, MaxV, MaxW), all integers, or optionally additional 3 float parameters (StepU, StepV, StepW),
9 parameters in all (while the W direction is ignored). If attribute ”Steps” is ”AllTiles”, then InputTile
is assumed to hold the full set of tiles for the entire domain but normalized to domain [0, 1]2. Tiles
can be a single tile to use, consisting of a closed periodic curve, or multiple curves. Alternatively,
Tiles can be a list of tiles in which case each element in list must have tile position ”TileBndryType”
attribute - interior tile or one of the Min/Max U/V/W boundaries (See UserPackTileBndryType in
C). An interior tile will be used instead of missing boundary tile(s). Tile can optionally have tiling
translation vectors, as ”vec1”, ”vec2”, and ”vec3”, defaulting to X, Y, Z if none. Params will contain
three numeric values as (TileThickness, TesselationTolerance, SrfExtntScale), where TileThickness
can be -1 to convert the tiles to zero thickness polygonal representation or -2 to convert the tiles to zero
thickness trimmed surface. SrfExtntScale controls how much to extend closed/periodic surfaces along
the closed/periodic boundary. Tols will also contain three numeric values as (SubdivTol, NumerTol,
TraceTol) for the different numeric computations along trimming edges/surfaces. Set all to zero to use
defualt tolerances. Finally, MergedTrimmedTiles sets the relative overlap (between zero and one)
to merge two adjacent trimmed puzzle tiles along shared triiming curve.

Example:

Resolution = 10;

Puz = JIGSAWPUZZLE(Vase, Tile, Tiles, vector(0.025, 0.0005, .93),

vector(0, 0, 0), 0.0);

computes a jigsaw puzzle for a Vase surface, using tiles Tile. See Figure 69.

11.2.189 KNOTCLEAN

CurveType KNOTCLEAN(CurveType Crv)

or

SurfaceType KNOTCLEAN(SurfaceType Srf)

cleans unnecessary knots from the given Crv or Srf. The returned geometry is identical
to the given geometry, but in, possibly, a sub space with less knots. Note this function
can undo refinement operations.

c1 = pcircle(vector(0, 0, 0), 1);

c1r1 = crefine(c1, FALSE, list(0.1, 0.3, 0.7, 1.5, 1.7, 1.7, 1.7, 1.7,

2.3, 2.3, 2.7, 3.5, 3.5, 3.5));

c1r2 = KNOTCLEAN(c1r1);

c1 == c1r2;

IRIT Solid modeler G. Elber 149

Figure 69: A Jigsaw puzzle is created over a freeform using the JIGSAWPUZZLE function.

refines a polynomial circle approximation and then restores the original curve via the
KNOTCLEAN operation. The last line validates this cleaning. See also KNOTREMOVE.

11.2.190 KNOTREMOVE

CurveType KNOTREMOVE(CurveType Crv, NumericType Tolerance)

or

SurfaceType KNOTREMOVE(SurfaceType Srf, NumericType Tolerance)

removes knots from Crv or Srf so as to keep the global error less than the given
Tolerance.

c1r = KNOTREMOVE(c1, 0.01);

curve c1r is the curve with the minimum number of knots possible such that the global
error (distance between c1 and c1r) is less than 0.01. See also KNOTCLEAN.

11.2.191 LINTERP

ListType LINTERP(ListType PtList)

computes a least squares fit of a line to a list of points, PtList. A list of three elements,
a point on the fitted line, a unit vector in the direction of the line and the average distance
between a point and the fitted line, is returned.

Example:

IRIT Solid modeler G. Elber 150

R = 10;

Rx = Random(-1, 1);

Ry = Random(-1, 1);

Rz = Random(-1, 1);

Pts = nil();

Len = 1.0;

NumPts = 100;

for (i = 1, 1, NumPts,

Pt = ctlpt(E3, (Random(-R, R) + Rx * i * 2) / NumPts,

(Random(-R, R) + Ry * i * -5) / NumPts,

(Random(-R, R) + Rz * i * Pi) / NumPts):

snoc(Pt, Pts));

Pts = Pts * trans(vector(random(-10, -10),

random(-10, -10),

random(-10, -10)));

LnFit = LINTERP(Pts);

LnPos = nth(LnFit, 1);

LnDir = nth(LnFit, 2);

LnErr = nth(LnFit, 3);

randomly samples 100 points to be approximately along a line and computes a least
squares fit of a line to this data. LnPos, LnDir, and LnErr contain a point on the fitted
line, the unit direction of the fitted line and the average distance between a point and
the line, respectively. See also CINTERP and SINTERP.

11.2.192 LOFFSET

CurveType LOFFSET(CurveType Crv, NumericType OffsetDistance,

NumericType NumOfSamples, NumericType NumOfDOF,

NumericType Order)

approximates an offset of OffsetDistance by sampling NumOfSamples samples along
the offset curve and least square fitting them using a B-spline curve of order Order and
NumOfDOF control points.

Example:

OffCrv1 = LOFFSET(Crv, -0.4, 100, 10, 4);

See also OFFSET, TOFFSET, AOFFSET, and MOFFSET.

11.2.193 LOWBZRFIT

ListType LOWBZRFIT(ListType Freeforms, NumericType NewOrder)

Approximates the given (hierarchy) of freeforms (curves, surfaces, trimmed surfaces,
trivariates) in Freeforms as lower order Bezier functions of order(s) NewOrder. NewOrder
can be either 3 (quadratic) or 4 (cubic). If the input freeform is lower order than

IRIT Solid modeler G. Elber 151

NewOrder, it is still approximated as such. This approximation ensures the interpolation
of end/corner points, and end/corner tangents whenever possible, and has no bound on
the error in the middle of the freeform.

Example:

srf4 = LowBzrFit(srf, 4);

Approximates surface Srf as a bi-cubic Bezier surface Srf4.

11.2.194 MATDECOMP

ListType MATDECOMP(MatrixType Mat);

decomposes a given homogeneous transformation into its scaling and translation vec-
tors, and a pure (orthogonal) rotation matrix.

Example:

MATDECOMP(rx(45) * sy(3) * sx(2) * tx(5) * ty(7));

would result in the ”(2, 3, 1)” scaling vector, ”(5, 7, 0)” translation vector and a
rotation around X matrix of 45 degrees, all in one returned list object. See also MAT-
DECOMP2 and MATRECOMP

11.2.195 MATDECOMP2

ListType MATDECOMP2(MatrixType Mat);

decomposes a given homogeneous transformation into its three Euler rotation angles,
RotX, RotY, RotZ, unifrom scale factor, and three translation factors, and returns a list
of these seven numeric coefficients.

Example:

MATDECOMP2(rx(90) * sc(3) * tx(5) * ty(7));

would result in the numeric list of ”(Pi/2, 0, 0, 3, 5, 7, 0)”. See also MATDECOMP
and MATRECOMP

11.2.196 MATRECOMP

MatrixType MATRECOMP(ListType MatCoeffs);

Recomposes the seven numeric coeffcients of (RotX, RotY, RotZ, Scale, TransX,
TransY, TransZ) to an homogeneous matrix.

Example:

MATRECOMP(list(Pi/2, 0, 0, 3, 5, 7, 0));

would result in an homogeneous matrix that rotates by 90 degrees in x, scales by a
factor of 3 and translates by 5 and 7 in x and y, respectively. See also MATDECOMP
and MATDECOMP2.

IRIT Solid modeler G. Elber 152

11.2.197 MAXEDGELEN

PolyType MAXEDGELEN(PolyType Pl, NumericType MaxLen);

splits all triangles in polygonal object Pl to triangles with edges no greater than
MaxLen in length.

Example:

PlNew = MAXEDGELEN(Pl, 0.5);

See also TRIANGL

11.2.198 MBEZIER

MultivarType MBEZIER(ListType Orders, ListType CtlPts)

creates a Bezier polynomial/rational multivariate out of the provided control mesh.
Orders is a list of orders whose size define the number of dimensions that the multivariate
has. CtlPts is a linear list of control points. All control points must be of type (E1-E9,
P1-P9), or regular PointType defining the multivariate’s control mesh. The multivariate’s
point type will be of a space which is the union of the spaces of all points.

Example:

MV = MBEZIER(list(4),

list(ctlpt(E3, -1, 0.5, 2),

ctlpt(E1, 3),

ctlpt(E3, 0, -1.5, 0),

ctlpt(E2, -1, 3.5)));

constructs a univariate cubic multivariate object. See also MPOWER and MBSPLINE

11.2.199 MBISECTOR

ListType MBISECTOR(MultivarType MV1, MultivarType MV2, NumericType RetType,

NumericType SubdivTol, NumericType NumerTol)

computes the bisector surface in R3 of two surfaces or a curve and a surface, posed as
multivariate functions.

The returned results depend upon the value of RetType. If RetType = 1, the algebraic
constraints are returned as a list of multivariates. If RetType = 2, a list of points in R3
on the bisector sheet(s) is returned. If RetType = 3, a list of points in (u, v, x, y, z) space,
as E5 points, is returned, where (u, v) are the respective parameter locations of the (must
be) surface MV1. These E5 points can then directly be employed by SINTERP through
which to fit a surface. Finally, if RetType = 4, marching cubes is applied to extract a
piecewise linear approximation of the solution, in Euclidean space.

This bisector problem is posed as a set of two multivariate algebraic constraints with
three variables. The simultaneous solution of these constraints is computed using the
MZERO function. See MZERO for the meaning of the SubdivTol and NumerTol toler-
ances.

Example:

IRIT Solid modeler G. Elber 153

s1 = sbezier(

list(list(ctlpt(E3, 0, 0, 0),

ctlpt(E3, 2, 0, 0)),

list(ctlpt(E3, 0, 2, 0),

ctlpt(E3, 2, 2, 0)))) * tx(-1) * ty(-1);

color(s1, red);

s2 = sbezier(

list(list(ctlpt(E3, 0, 0, 2),

ctlpt(E3, 1, 0, 1),

ctlpt(E3, 2, 0, 2)),

list(ctlpt(E3, 0, 1, 1),

ctlpt(E3, 1, 1, 0),

ctlpt(E3, 2, 1, 1)),

list(ctlpt(E3, 0, 2, 2),

ctlpt(E3, 1, 2, 1),

ctlpt(E3, 2, 2, 2))))* tx(-1) * ty(-1);

color(s2, magenta);

ms1 = coerce(s1, multivar_type);

ms2 = coerce(s2, multivar_type);

mb1 = MBISECTOR(ms1, ms2, 3, 0.3, -0.001);

b1 = sinterp(mb1, 3, 3, 4, 4, PARAM_UNIFORM);

mb2 = MBISECTOR(ms1, ms2, 2, 0.3, -0.001);

interact(list(s1, s2, mb2, b1));

c = cbezier(list(ctlpt(E3, 0, 0, 0),

ctlpt(E3, 0, 0, 2)));

color(c, red);

mc = coerce(c, multivar_type);

mb1 = MBISECTOR(mc, ms1, 3, 0.2, -0.001);

b1 = sinterp(mb1, 3, 3, 8, 8, PARAM_UNIFORM);

mb2 = MBISECTOR(mc, ms1, 2, 0.2, -0.001);

interact(list(c, s1, mb2, b1));

computes two examples of a bisector between a plane and a biquadratic surface and
between a plane and a line. The cloud of points is computed twice, once interpolated by
a surface, and also displayed as is. See Figure 70.

IRIT Solid modeler G. Elber 154

Figure 70: A bisector between two surfaces (left) and a plane and a line (right) computed using
MBISECTOR.

11.2.200 MBSPLINE

MultivarType MBSPLINE(ListType Lengths, ListType Orders,

ListType CtlPts, ListType KVLst)

creates a Bspline polynomial/rational multivariate out of the provided control mesh of
lengths Lengths and orders Orders in each axis. The sizes of Lengths and Orders define
the number of dimensions that the multivariate has. CtlPts is a linear list of control
points. All control points must be of type (E1-E9, P1-P9), or regular PointType defining
the multivariate’s control mesh. The multivariate’s point type will be of a space which is
the union of the spaces of all points. KVLst is a list of knot sequences of the new Bspline
multivariate.

Example:

MV = MBSPLINE(list(3, 3), list(3, 3),

list(ctlpt(E1, 0),

ctlpt(E2, 0.25, 1),

ctlpt(E3, 0.5, 0.25, 2),

ctlpt(E3, 0.5, -1, 3),

ctlpt(E3, 0.75, 0.25, 4),

ctlpt(E3, 1, -0.5, 5),

ctlpt(E3, 1, 0, 6),

ctlpt(E3, 1.25, 1, 7),

ctlpt(E3, 1.3, 0.25, 8)),

list(list(kv_open),

IRIT Solid modeler G. Elber 155

list(kv_open)));

constructs a bivariate quadratic multivariate object. See also MPOWER and MBEZIER.

11.2.201 MDERIVE

MultivarType MDERIVE(MultivarType MV, NumericType Dir)

returns a vector field multivariate representing the differentiated multivariate MV, in
the given direction. Evaluation of the returned multivariate at a given parameter value
will return a vector tangent to TV in Dir at that parameter value.

DMV = MDERIVE(MV, 2);

computes the partial derivative of the multivariate MV with respect to its second
variable. See also CDERIVE, SDERIVE, and TDERIVE.

11.2.202 MDIVIDE

MultivarType MDIVIDE(MultivarType MV, ConstantType Direction,

NumericType Param)

subdivides a multivariate into two at the specified parameter value Param in the
specified Direction. MV can be either a B-spline multivariate in which Param must be
contained in the parametric domain of the multivariate, or a Bezier multivariate in which
Param can be arbitrary, extrapolating if not in the range of zero to one.

It returns a list of the two sub-multivariates. The individual multivariates may be
extracted from the list using the NTH command.

Example:

MvDiv = MDIVIDE(Mv2, 3, 0.3);

Mv2a = nth(MvDiv, 1) * tx(-2.2);

Mv2b = nth(MvDiv, 2) * tx(2.0);

subdivides Mv2 at the parameter value of 0.3 in the direction 3 and then extracts the
two subdivided multivariate. See also CDIVIDE, SDIVIDE, and TDIVIDE.

11.2.203 MDLFILLET

ModelType MDLFILLET(TrivarType TV1, TrivarType TV2,

NumericType Bndry1, NumericType Bndry2,

NumericType RailDist, NumericType R1Orient,

NumericType R2Orient, NumericType TanScale,

NumericType CtlPts, NumericType Tol,

NumericType NumerTol, NumericType FilletingMethod)

Constructs a B-rep model from the boundary surfaces of a (list of) fillet
trivariate(s) that fill the space between the specified boundary surfaces of TV1 and

TV2. The fillet meets with the boundary surfaces of TV1 and TV2 with G1 continuity, and
it is bounded in between their intersection curve and two rail curves, that are computed as

IRIT Solid modeler G. Elber 156

an approximate Euclidean offest of the intersection curve on each of the surfaces. Bndry1
and Bndry2 specify the boundary surfaces of TV1 and TV2 to construct a fillet in between
(0,1,2,3,4,5 for UMin, UMax, VMin, VMax, WMin and WMax, respectively, and 6 to
take a list of all six boundary surfaces). R1Orient and R2Orient specify the orientations
of the two rail curves ((+/-)1), or can be set to zero to choose the orientation resulting
with the maximal arc length rail curve. TanScale specifies the magnitude of the fillet’s
tangets that connect it with Srf1 and Srf2.

CtlPts controls the number of control points used to approximate some of the curves
computed during the filleting algorithm. Tol and NumerTol specify the tolerances used
during the filleting algorithm. FilletingMethod specifies the used filleting method (0 for
the ruled volume method and 1 for the volumetric boolean sum method).

Example:

Teapot = load("vteapot2htr_tvs");

VBody = nth(Teapot, 1);

VSpout = nth(Teapot, 3);

filletMdl = MDLFILLET(VBody, VSpout, 5, 5, 0.3, 1, -1, 0.25, 20,

5e-2, 1e-10, 0);

\begin{verbatim}

See also VMDLFILLET, TVS2FILLET, TVTTFILLET.

\subsubsection{MERGEATTR}

\begin{verbatim}

AnyType MERGEATTR(ListType List, StringType AttrName, NumericType Options)

given a list object List, all elements in the list that contain AttrName] attribute, and
share the same attribute type and value are merged into one new object. If Options
equals 1, a new list object is returned with the collected elements. If Options equals 2,
similar geometry type (curves or polygons, etc.) are merged into one object of that type.

Example:

OnlyWithRGB = MERGEATTR(List, "rgb", 1);

\begin{verbatim}

Extracts and merges into a new list that is returned, only elements in

{\bf List} that have an "rgb" attribute.

See also MERGELIST, MERGEPOLY, MERGEPLLN, MERGETYPE, SPLITLST, FLATTENHIER.

\subsubsection{MERGELIST}

\begin{verbatim}

AnyType MERGELIST(ListType List)

merges a list (of lists recursively) of objects of one single (leaf) type in List into a
single object type (where a linked list of such objet may result.

Example:

IRIT Solid modeler G. Elber 157

Crvs = MERGELIST(ListOfListOfCrv);

See also MERGEATTR, MERGEPOLY, MERGEPLLN, MERGETYPE, SPLITLST, FLAT-
TENHIER.

11.2.204 MERGEPLLN

PolygonType MERGEPLLN(PolygonType PolyList, NumericType Eps)

or

PolygonType MERGEPLLN(ListType PolyList, NumericType Eps)

merges a set of polylines/polyline objects in PolyList to larger polyline object. All
elements in the PolyList in the second form must be of PolygonType type. This function
merges two polylines if their end point is the same upto Eps.

Example:

Vrtx1 = vector(-3, -2, -1);

Vrtx2 = vector(3, -2, -1);

Vrtx3 = vector(3, 2, -1);

Vrtx4 = vector(-3, 2, -1);

Polys = list(poly(list(Vrtx1, Vrtx2), true),

poly(list(Vrtx3, Vrtx2), true),

poly(list(Vrtx3, Vrtx4), true),

poly(list(Vrtx1, Vrtx4), true));

Polys = MERGEPLLN(Polys, 1e-6);

will merge the four 2-vertices polylines into one polyline prescribing a square. Note poly-
lines might be reversed in the merging process. See also MERGEATTR and MERGE-
POLY, MERGELIST, MERGETYPE, SPLITLST.

11.2.205 MERGEPOLY

PolygonType MERGEPOLY(ListType PolyList)

merges a set of polygonal objects in the PolyList list to a single polygonal object. All
elements in the ObjectList must be of PolygonType type. This function performs the
same operation as the overloaded ^ operator would, but may be more convenient to use
under some circumstances.

Example:

Vrtx1 = vector(-3, -2, -1);

Vrtx2 = vector(3, -2, -1);

Vrtx3 = vector(3, 2, -1);

Vrtx4 = vector(-3, 2, -1);

Poly1 = poly(list(Vrtx1, Vrtx2, Vrtx3, Vrtx4), false);

IRIT Solid modeler G. Elber 158

Figure 71: Individual polygons can be merged into a complete model using MERGEPOLY.

Vrtx1 = vector(-3, 2, 1);

Vrtx2 = vector(3, 2, 1);

Vrtx3 = vector(3, -2, 1);

Vrtx4 = vector(-3, -2, 1);

Poly2 = poly(list(Vrtx1, Vrtx2, Vrtx3, Vrtx4), false);

Vrtx1 = vector(-3, -2, 1);

Vrtx2 = vector(3, -2, 1);

Vrtx3 = vector(3, -2, -1);

Vrtx4 = vector(-3, -2, -1);

Poly3 = poly(list(Vrtx1, Vrtx2, Vrtx3, Vrtx4), false);

PolyObj = MERGEPOLY(list(Poly1, Poly2, Poly3));

See Figure 71. See also INSERTPOLY, SPLITLST, MERGELIST.

11.2.206 MERGETYPE

ListType MERGETYPE(ListType Obj, ConstantType MergeType,

NumericType Tol, NumericType Dir)

Traverses the list object Obj and fetches all objects of type MergeType from. Mer-
geType can be one of point type, vector type, ctlpt type, poly type, curve type, sur-
face type, trimsrf type, trivar type, model type, multivar type. Then, aim to merge the
objects along their shared boundaries, if possible, and when Tol sets the accuracy for
deciding if two boundaries are the same and hence shared. For types of more than one
dimension (i.e. surfaces or trivariates), Dir sets the direction along which to try and
merge.

Example:

M = splitlst(MERGETYPE(M, trivar_type, 1e-5, depth));

Aims to merge all trivariates in M along depth. Since MERGETYPE returns a single
trivariate object with a list of trivariate, splitlst is used to return a list object of objects

IRIT Solid modeler G. Elber 159

with a single trivariate in each. See also MERGEATTR, MERGEPOLY, MERGEPLLN,
MERGELIST, SPLITLST.

11.2.207 MEVAL

CtlPtType MEVAL(MultivarType MV, ListType Params)

evaluates the provided multivariate MV at the given Params values. Params is a
list of NumericTypes of length equal to the dimension of the multivariate that must be
contained in the multivariate parametric domain, if MV is a B-spline multivariate, or all
between zero and one if MV is a Bezier multivariate. The returned control point has the
same type as the control points of MV.

Example:

CPt = MEVAL(MV1, list(0.1, 0.25, 0.22, 0.7));

evaluates the four-variate MV1 at the parameter values of (0.1, 0.25, 0.22, 0.7). See
also CEVAL, SEVAL, TEVAL.

11.2.208 MFROM2IMG

CurveType MFROM2IMG(StringType Img1, StringType Img2,

NumericType DoTexture, GeometricType Blob,

NumericType BlobSpread, NumericType BlobColor,

NumericType Resolution, NumericType Negative,

NumericType Intensity, NumericType MinIntensity,

NumericType MergePolys)

Constructs a 3D model of numerous tiny blobs that looks like Img1 from one view
direction, like Img2 from another view direction. DoTexture TRUE adds UV paramter-
ization to the geometry so it can be used with textures. If Blob cis a geometric object,
it is used as the (tiny) blob element. Otherwise a cross blob is employed. Blob must be
normalized in size to [0, 1]3 unit cube. If blob coloring methods are used, it must be a
list of three different geometries to be used for the three different axes. BlobSpread sets
the blobs spreading methods to be used. 0 for random placement and 1 to 7 for seven
different placements along 3D diagonal planes. Set BlobColor to 0 for no color, 1 for gray
levels, and 2 for colored blobs. Resolution sets the number of blobs to position in each
axes of the three dimensional cube of blobs. If Negative TRUE, dark blobs are positioned
over light background. If FALSE, light blobs over dark background is used. Intensity
controls the gray scaling factor. MinIntensity prescribes the minimal level. if zero, blobs
might be scaled to zero in one diemsion which will make it difficult to manufacture this
model. Set MinIntensity to TRUE to merge all polygons in the different blobs into one
object.

Example:

resolution = 6;

Blob = sphere(vector(0, 0, 0), 0.35);

M1 = MFrom2Img("BenGurion.ppm", "Herzel.ppm",

FALSE, Blob, 0, 0, 25, FALSE, 1.0, 0.01, TRUE)

See Figure 72.
See also MFROM3IMG, BFROM2IMG and BFROM3IMG.

IRIT Solid modeler G. Elber 160

Figure 72: A 3D model consisting of many small spherical blobs mimics one image from one view and a
different image from an orthogonal view. Model constructed using the MFROM2IMG command. Left
image shows Ben Gurion, right image shows Herzl and the middle image is a general view of the 3D
model.

11.2.209 MFROM3IMG

CurveType MFROM3IMG(StringType Img1, StringType Img2, StringType Img3,

NumericType DoTexture, GeometricType Blob,

NumericType BlobSpread, NumericType BlobColor,

NumericType Resolution, NumericType Negative,

NumericType Intensity, NumericType MinIntensity,

NumericType MergePolys)

Constructs a 3D model of numerous tiny blobs that looks like Img1 from one view
direction, like Img2 from another view direction, and like Img3 from a third view direc-
tion. DoTexture TRUE adds UV paramterization to the geometry so it can be used with
textures. If Blob cis a geometric object, it is used as the (tiny) blob element. Otherwise
a cross blob is employed. Blob must be normalized in size to [0, 1]3 unit cube. If blob
coloring methods are used, it must be a list of three different geometries to be used for
the three different axes. BlobSpread sets the blobs spreading methods to be used. 0 for
random placement and 1 to 7 for seven different placements along 3D diagonal planes.
Set BlobColor to 0 for no color, 1 for gray levels, and 2 for colored blobs. Resolution sets
the number of blobs to position in each axes of the three dimensional cube of blobs. If
Negative TRUE, dark blobs are positioned over light background. If FALSE, light blobs
over dark background is used. Intensity controls the gray scaling factor. MinIntensity
prescribes the minimal level. if zero, blobs might be scaled to zero in one diemsion which
will make it difficult to manufacture this model. Set MinIntensity to TRUE to merge all
polygons in the different blobs into one object.

Example:

M2 = MFrom3Img("BenGurion.ppm", "Herzel.ppm", "Rabin.ppm",

FALSE, FALSE, 1, 1, 40, FALSE, 1.0, 0.01, 1);

See also MFROM2IMG, BFROM2IMG and BFROM3IMG.

IRIT Solid modeler G. Elber 161

11.2.210 MFROMMESH

MultivarType MFROMMESH(MultivarType MV, MumericType Dir, NumericType Index)

extracts a multivariate out of a multivariate, MV, as the Index’s plane of the control
mesh of MV in direction Dir.

Example:

cmesh(s, row, 2) ==

coerce(MFROMMESH(coerce(s, multivar_type), 1, 2), curve_type);

coerces surface s to a multivariate, extracts a one-dimensional-less multivariate (a
curve) from the second direction (first direction is direction zero), at index 2 and compares
the result for equality to the curve extracted using cmesh from s.

11.2.211 MFROMMV

MultivarType MFROMMV(MultivarType MV, NumericType Dir, NumericType Param)

extracts a multivariate of one lower dimension from multivariate MV by extracting an
iso-variate of MV in direction Dir at parameter value Param.

Example:

MVFirst = MFROMMV(MV, 0, FirstParam);

extracts a multivariate for one less dimension than MV as the constant first parameter
of MV at parameter value FirstParam. See also STRIVAR, CSURFACE.

11.2.212 MICROBREPSTRCT

ListType MICROBREPSTRCT(SurfaceType Srf | TrimSrfType TrimSrf |

ModelType Mdl | VModelType VMdl | PolygonType Poly,

ListType Tiles, TrivarType TileCage,

ListType TileParam)

Construct microtiles in a B-rep macro object. The first parameter represents the
boundary of the B-rep macro object, which can be one of the following types: a spline
surface, a trim surface, a Model, a V-Model, or a polygonal model. Tiles is a list of
microtiles constructed using the MICROSTRCT command and the trivariate TileCage
that typically will conatins the input B-rep object, serving as its cage. Microtiles must be
constructed by the regular tiling option in MICROSTRCT. Each tile consists of trivari-
ates, surfaces, or curves. Among the microtiles, only the tiles that are fully inside the
B-rep macro object are kept and other tiles, that are either fully outside the macro object
or intersecting with the boundary of the macro object, are purged. For each inside tile,
anchors are identified from the boundary elements of the tiles and bridged to the closest
location on the macro B-reps, using bridging tiles. Surface anchors are used in trivariate
and surface tiles and point anchors are used in curve tiles.

TileParam is a list of parameters used in constructing bridging tiles, which connect
anchors to the macro B-reps. TileParam is specified as list(NrmScale, NrmBlendingRatio,
OutletSrfScale), as folows:

IRIT Solid modeler G. Elber 162

1. NrmScale is a scale parameter that controls the length of
start and end direction vectorss of the sweeping axes of
bridging tiles. The length of directions is equal to the
distance between start and end points multiplied by NrmScale.

2. NrmBlendingRatio is a scale parameter that controls the
direction of sweeping axis curves of the bridging tiles. If 0,
then the starting direction of an axis curve derives from the
derivative of the trivariate adjacent to the anchor. If 1, the
direction derives from the surface normal of the anchor.
Only used in trivariate tiles.

3. OutSrfScale is a scale parameter to scale the surfaces of
bridging tiles with respect to inlet anchors. Only used in
trivariate and surface tiles.

The output is a list of two lists, where the first list is a list of tiles that are fully inside
the macro object (originated from input Tiles) and the second list is a list of bridging
tiles.

Example:

MacroObj = load("Model.stl"); # A Brep polygonal model

Tiles = MicroStrct(TV, 1, list(Tile1, 0, 0, True, list(5,5,5),

True, 0, 1.0, 4, False, False));

TilesBRep = MicroBrepStrct(MacroObj, Tiles, TV, list(0.3, 0, 0.8));

loads the polygonal macro model ”MacroObj”, and construct microtiles filling a defor-
mation map TV with the regular tiling, and select the tiles inside MacroObj and connect
them to the boundary of MacroObj with bridging tiles. (Assume Tile1 is a trivariate tile,
the start direction of each sweeping axis curve derives from the derivative of adjacent tile
trivariate and the length of the direction is the distance between the start and end points
multiplied by 0.3. The outlet surfaces of bridging tiles are scaled from the inlet anchor
surfaces by 0.8.)

See also: MICROSTRCT, MICROTILE, MICROVMSTRCT

11.2.213 MICROSLICE

PolyType MICROSLICE(NumericType NumLevels,

VectorType ZRange,

TrivarType DeformTrivariate,

ListType Params,

ListType LevelParams,

ListType Tolerances)

Computes planar slices of a computed (recursive) microstructure. The generation of
the microstructure is handled by the parameters DeformTrivariate, Params, and Level-
Params. DeformTrivariate is as in the MICROSTRCT command’s deformation function
that is used to deform the resulting microstructure. While this function constructs regular
microstructures in the same way MICROSTRCT does, it does so recursively (hierarchi-
cally) and a lazy way, due to memory constraints, and as needed per planaer slice. That

IRIT Solid modeler G. Elber 163

is, after operating as MICROSTRCT, and creating a number of microstructure cells,
each cell is (recursively) used as the new DeformTrivariate of a new regular microstru-
ture, recursively. Params are again the same as in MICROSTRCT, and are used as the
default value for microstructure parameters. LevelParams allow setting specific Params
parameters for each recursive level of the microstructuring process. Each element in
LevelParams is a tuple with the level number and the specific Params paramters for that
level. NumLevels determines the number of recursive microstructure levels. ZRange is a
vector with the first (ZRange[0]), last (ZRange[2]), and delta (ZRange[1]), z coordinate
values at which the microstruture will be sliced. At each slicing level (z = values) the
outline of the microstructure will be determined using the intersection of the boundary
surfaces of the microstructure’s hierarchy and the z = value plane.

Finally, the tolerances used by the solver in this case are determined by the last
Tolerances parameter, ordered as (numeric, subdivision, tracing, and angular deviation)
toleraces. The outline will be returned as a polygonal object (set set of planar polylines).
Note that this piecewise linear output will be pruned to the elimination of adjacent edges
with small angles’ deviations in the parametric domain.

Example:

S = MICROSLICE(2, vector(0.0001, 1.0002, 0.249), UnitTV,

list(Cn, True, vector(1, 2, 1),

true, 0.5, false, 1.0, 3, false),

list(0, list(Cn, True, vector(1, 2, 1),

true, 0.5, false, 1.0, 3, false),

1, list(Boxes, True, vector(2, 2, 2),

true, 0.5, false, 1.0, 3, false)),

list(0.001, 0.0005, 1e-10, 0.02));

constructing slices between (almost) zero and (almost) one in steps of (almost) 1/4,
in a two-levels hierarchy.

See also VMSLICE

11.2.214 MICROSTRCT

AnyType MICROSTRCT(TrivarType DeformTrivariate,

NumericType TilingType,

ListType Params)

Computes a microstructure by tiling the domain and then deforming the same using
DeformTrivariate. The parameter TilingType determines whether to apply regular tiling
(TilingType = 1), functional tiling (TilingType = 2 NOT supported via the IRIT scripting
langauge - only in C code, random grid tiling (TilingType = 3), implicit and random
tiling with bifurcation (TilingType = 4) or regular tiling with bifurcation (TilingType =
5). Other parameters for tiling are supplied via Params.

For regular tiling (TilingType = 1), Params includes the following parameters:

IRIT Solid modeler G. Elber 164

1 The first parameter is the tile which is repeated within the domain
of DeformTrivariate. The tile may be a polyline, a curve,
a surface, a trimmed surface, a polygon, or a trivariate, or a mix
of these. The tile must fit the unit cube, [0, 1]3.
If, however, the tile is a list object and the 1st parameter is a
number n, as list(n, T1, ..., Tn) with n= 2,3 additional objects
in the list, these tiles are used in order, in the W direction of the
DeformTrivariate. if n = 2, exactly two tiles are to be placed
in the w direction. If n = 3, three or more tiles are to be placed in
the w direction with first tile in the list is first in w, middle tile
is interior to the microstructure and last tile in the list is a
terminating tile in w.
Further, if the tile is a list object with six sub-objects and the
first, second, fourth and/or fifth parameters is a string, the tile
is considered parameteric in the form defined in MICROTILE,
TileType 1. Here, the first, second, fourth, and/or fifth parameters
can be strings, in which case they prescribe an arbitrary function
in UVW (the domain of DeformTrivariate) and/or xyz (Euclidean
locations). The locally evaluated value of the function (i.e. outer
radius) serves to prescribed the local geometry of the tile.

2 Shelling and/or capping may be applied to the boundary of the
microstructure, as specified by bits in ShellBits, as follows
(lsb to msb): CapUMin, CapUMax, CapVMin, CapVMax, CapWMin, CapWMax,
ShellUMin, ShellUMax, ShellVMin, ShellVMax, ShellWMin, ShellWMax,
where Cap means close any opening in the tile on that boundary and
shell means close the entire face as a complete shell.
If, however, This capping info equals -1, automatic capping to
tiles that are either SURFACE TYPE or MODEL TYPE will be aimed.

3 If shelling is specified by one or more bits of the 2nd parameters
then the thickness of the wall (in parameter space’s tile unit cube)
is set here.

4 This parameter specifies the interpretation of the repetition rates
of tiles in three different directions within each Bezier domain
of DeformTrivariate. A value of TRUE means number of tiles’
repetition and a value of FALSE means displacements in UVW doamin,
in parameter space, and can be fractional.

5 This parameter, which is a list of size three of either integers/
reals or list-of-integers/reals specifies either repetition rates or
displacements of tiles within the domain, as directed by the previous
parameter. In any direction, integers/reals or the
list-of-integers/reals, Vi, specify the tiles repetition counts
(dispacements) for different Bezier patches (i,e, for every knot
interval), as (V1, V2, ..., Vn), for n different knot intervals.
If only an integer/real is specified, it is used for all knot
intervals in that direction.
Note that if a direction has ¿ n intervals, each Vi value will
be affecting a larger zone than a single knot interval.

6 Specifies whether the trim-curves of trimmed surfaces in the tiles
should be approximated first as piecewise linear curves.

7 Specifies the scaling in the w-direction in case of trivariate tiles
with G0-discontinuity. In the case of such tiles, the repetition
factor gets multiplied by the number of G0-discontinuities in u and
v directions, at each level in w-direction. A set of refinement
matrices are returned for each discontinuity, as an

IRIT Solid modeler G. Elber 165

Notes on the regular tiling:

• Created tiles in the microstructure will have the following attributes: ”MSTileID”
which will hold unique integer ID (starting from one). ”BzrIndex” as a string at-
tribute that holds the Bezier domain indices in the global (possibly B-spline) input
deformation mapping, like ”0,0,0” for the first domain (or the only domain if global
B-spline deformation function). ”MSIndex” as a string attribute that holds the tile
indices in the local (Bezier polynomial) deformation function, starting from zero,
like ”0,0,0”, and, ”DmnBBox” that will hold the domain of this local polynomial
deformation function in the global (possibly B-spline) input deformation function.
The domain of an individual tile in the global deformation function can be deduced
from the above, as the ”MSIndex” is uniformly dividing ”DmnBBox”.

• If the tiles are trivariates and Cap* bits are set, two additional types of attributes are
going to be set for trivariates that are on the boundary of the deformation mapping.
An integer attribute ”MSDfrmTVBndryU”, and/or ”MSDfrmTVBndryV”, and/or
”MSDfrmTVBndryW”, if this trivariate is on the U/V/W boundary and the integer
value will be 0 to 5, denoting the UMin, UMax, VMin ... WMax of the deformation
function.

Further, if attribute(s) ”MSDfrmTVBndryU”, or ”MSDfrmTVBndryV”, or ”MSD-
frmTVBndryW” is/are set, a second corresponding set of attributes (that U/V/W
correspond to the ”MSDfrmTVBndryU/V/W” attributes) of ”MSLclTVBndryU”,
or ”MSLclTVBndryV”, or ”MSLclTVBndryW” will be defined in local trivariate
with integer value of 0 to 5, denoting the UMin, UMax, VMin ... WMax boundary
of this local trivariate that is on the boundary of the deformation TV.

Finally, dim and light RGB colors will be set for these min/max U/V/W boundaries,
respectively (i.e. R for U, G for V, and B for W) of the, deformation function on
each such boundary trivariates.

Example for regular tiling:

M = MICROSTRCT(DefMap, 1,

list(Tile, 0, 0, True, list(2, 2, 2, 2),

True, 0, 1.0, 0, False, False));

See Figure 73.
For random tiling in a uniform grid (TilingType = 3), each cell in the grid is assigned

a scalar (randomized) trivariate, and the tile’s geometry is the zero set of the trivariate,
and presents the necessary continuity. Params includes seven parameters:

IRIT Solid modeler G. Elber 166

Figure 73: A microstructure constructed inside a square-cross-section torus (left) and a 3D cross-like
tile (middle). The torus on the left is a trivariate and the tile is a MODEL - a Boolean operation
between. three surfaces. The microstructure result is shown on the right.

1 Number of the tiles at each parametric direction (a vector of three
numbers).

2 The orders of trivariate at each direction (a vector of three numbers).
3 The number of the control coefficients of the trivariate at each

direction (vector of three).
4 The minimal trivariate coefficient value.
5 The maximal trivariate coefficient value.
6 A Boolean value (true of false) that states if the connectivity

between the tiles should be C1 continuous (true) or C0 (false).
7 A boolean value that states if to use a graph consisting of two

spanning trees that determines the connectivity between the tiles,
and ensures inter- and intra-connectivity of the tiles.

Example for random tiling of a grid of eight tiles at each direction, and using trivariate
of order three (quadratic) at each direction and having six control coefficients at each
direction, whose values are randomly set from the range [-1,1]. The tiles are C1 continuous,
and connectivity graph is used:

MRandom = MICROSTRCT(DefMap, 3,

list(vector(8, 8, 8), vector(3, 3, 3),

vector(6, 6, 6), -1, 1, true, true));

For implicit bifurcation tiling (TilingType = 4), the parametric space is adaptively
subdivided into boxes, such that the length of the edges of the box in the Euclidean space
doesn’t exceed a given threshold. Each tile in the non uniform adaptive grid is assigned
a scalar trivariate, and the tile geometry is the zero set of the trivariate. Bifurcation
tiles are automatically generated to connect tiles with different neighboring topologies.
Params includes four parameters:

IRIT Solid modeler G. Elber 167

1 The orders of the trivariate at each direction (vector of three) for
each tile.

2 The number of the control coefficents of the trivariate at each
direction (vector of three). (For bifurcation tiles, there will be
more).

3 The subdivision threshold.
4 A number between 0 and 1, which controls the randomness of the tiles.

0 means no randomness (the basic tile is a tubical cross) and 1 is
fully random (except at places where connectivity should be ensured).

Example for random tiling with implicit bifurcation, using trivariate of order 3 and
8 control points at each direction for the basic tile. The subdivision threshold in the
Euclidean space is 0.7, and the randomness factor is 0.1:

MRandom = MICROSTRCT(DefMap, 4,

list(vector(3, 3, 3), vector(8, 8, 8),

0.7, 0.1));

For regular tiling bifurcation tiling (TilingType = 5), the basic tile and the bifurca-
tion tiles should be provided. The parametric space is adaptively subdivided into boxes
(restricted to the provided bifurcation topologies). The supported bifurcation topologies
are: 1x1, 1x2, 1x4, 2x2. and the bifurcation is restricted to be along one direction only.
Params includes four parameters:

1 The subdivision direction - 0 for u, 1 for v, and 2 for w.
2 The subdivision threshold.
3 Approximation lower order. 0 to disable, 3 or 4 for tri-quadratic

or tri-cubic lower order approximations of the resulting geometry.
4 A list of tile objects, organized in the following order:

(basic tile, 1 to 2 bifurcation tile, 1 to 4 bifurcation tile,
2 to 2 bifurcation tile). Except for the basic tile, the other tiles
can be nil() if that bifurcation topology will not be encountered.
The tiles can be of any (combination of any) geometry type.

5 Indicates whether a free-form deformation approximtion is to be
applied instead of precise functional composition of tiles.

Notes on the design of the bifurcation tiles:

• The orientation of the bifurcation tiles should match the bifurcation direction pro-
vided in the first parameter in the param list.

• The bifurcation tiles have branch in and branch out boundaries. These boundaries
should be designed such that each branch out boundary should match the branch
in boundary exactly after scaling to the same size and aspect ratio. For example,
examining a 1x2 bifurcation surface tile, which has a circular boundary branch in
and branch out curves. The branch out curves should be an ellipse which is the
branch in circle scaled by (0.5, 1) in the (u,v) directions, respectfully. The position
of the boundary also should match, such that it will have the same position relative
to the containing box in the parametric space.

IRIT Solid modeler G. Elber 168

• In case of 1X2 and 1X4 bifurcation tiles, the split of the geometry (towards the
branch out boundaries) should be along the next parametric direction after the bi-
furcation direction. For example, for 1X2 bifurcation tile, if the bifurcation direction
is along the w direction, then the two branch out boundaries should be along the u
direction, such that the boundary of the two branch outs should have the same v
and w values, and only translated along the u direction.

Example for random tiling with regular bifurcation, allowing bifurcation in the w di-
rection with subdivision threshold in the Euclidean space of 0.7, and no lower order
approximations:

MRandom = MICROSTRCT(DefMap, 5,

list(2, 0.7, 0,

list(Tile11p, Tile12p, Tile14p, Tile22p),

true));

See also MICROBREPSTRCT, MICROTILE and MICROVMSTRCT.

11.2.215 MICROTILE

PolyType MICROTILE(NumericType TileType, ListType Params)

generates a tile, compatible with the tiles needed by the MICROSTRUCT command
interface, in [0, 1]3. TileType controls the type of tyle generated while Params controls
the parameteris, as follows:

If TileType == 1, a 3D Cross tile is created with faces in all six directions (+/-
U, +/-V, +/-W). Params includes a list of six faces parameters, corresponding to the
expected UMin, UMax, VMin, VMax, WMin, WMax faces, in this order and a last 7th
parameter that if TRUE, requests to also synthesize the negative (free) space in the tile.
The negative space is supported only if the tile is solid (inner radius is zero) and no
boundary. Each face parameters is, in itself, a list of eight parameters as follows:

IRIT Solid modeler G. Elber 169

1 Outer radius of branch on the face.
2 Inner radius of branch on the face. Can be Zero to make solid.
3 A Yscale factor of the face cross section, assuming in the XY

plane, creating an elliptic instead of circular face cross section.
4 Boolean flag - TRUE for a circular cross section, FALSE for

rectangular.
5 A bounday rounding shape control. A number between zero and one

to affect how the geometry is rounded going into the face.
6 A list of four numbers as expected skin thickness at these four

corners of that face. If all four values are zero, or this list
is empty (nil()), no skin geometry is generated.

7 A list of three center location points, in, [0, 0.5]2, to shift
the center joints on the respective face, or nil() to disable.
A very large negative coordinate value, ¡-1e6, will force the
branch to be straight (vertical in Z, for example).

8 A list of three numeric parameters, requesting a helical arm with
(NumberLoops, MajorRadius. MinorRadius) as the parameters of the
created helical arm.
If all three parameters are zero, or the list is nil(), then this
option is disabled.

Notes:

• Tile will consist of complete tensor product trivariates only.

• A tile can be either completely hollowed or completely solid (that is, all Inner Radii
are zero or all are positive, but not necessarily the same).

• A tile can have a full face skin in one face or two (opposite) faces only.

Example:

FacePrm = list(0.125, 0.1, 1.0, true, 0.5, nil(), nil()):

Tile = MICROTILE(1,

list(FacePrm, FacePrm, FacePrm,

FacePrm, FacePrm, FacePrm, FALSE));

creates a hollowed tile with rounded cross sections and no skin, in all six faces and no
negative space.

If TileType == 2, a bifurcation tile is created with one main branch in ZMin and two
branches in ZMax. Params starts with lists of parameters of three faces, corresponding
to the expected ZMin, ZMax1, ZMax2 faces, in this order. Each list of face parameters
is, in itself, the same as the face parameters of TileType of type 1, up to the last pa-
rameter that does not exist. The three last parameters, control, in order, the gap size
between the branching out faces (between ZMax1 and ZMax2), the rounded shape of the
saddle between them, and whether to return tensor product trivariates (TRUE) or tensor
product surfaces (FALSE).

Example:

IRIT Solid modeler G. Elber 170

ZMinFacePrm = list(0.2, 0.0, 1.0, false, 0.0, nil(), nil());

ZMaxFacePrm = list(0.125, 0.1, 1.0, true, 0.5, nil(), nil());

Tile = MICROTILE(2, list(ZMinFacePrm, ZMaxFacePrm, ZMaxFacePrm,

0.25, 0.05, true));

creates a hollowed bifurcation tile with rectangle cross sections, as of trivariates.
If TileType == 3, a shell lattice tile is created using a semi regular tesselation. Params

is a list of three parameters as (SemiRegType, TileGeomType, TileSize), where SemiReg-
DualType is one of 848, 1246, 4346, 6363, 12312, 33336, 44333, 43433, TileGeomType can
be one of:

0 univariate planar curves tiles.
1 bivariate planar surfaces tiles.
2 trivariate extruded into 3D tiles.

TileSize sets a scaling factor on the tile.
Example:

D12312 = microtile(3, list(12312, 2, 0.15));

\end{verbatim

If {\bf TileType} == 4, a shell lattice tile is created using dual

semi regular tesselation. {\bf Params} is a list of five parameters

as

(SemiRegDualType, TileGeomType, TileSize, Indent, CrvAmt,

RectangularTiling, NormalizeRectangle),

where {\bf SemiRegDualType} is one of 848, 1246, 4346, 6363, 12312,

33336, 44333, 43433, {\bf TileGeomType} can be one of:

\smallskip

\begin{center}

\begin{tabular}{||l|l||} \hline \hline

0 & univariate closed planar curves tiles. \\

1 & univariate open planar curves tiles. \\

2 & bivariate planar surfaces tiles. \\

3 & trivariate extruded into 3D tiles. \\

4 & \\

5 & \\

\hline

\end{tabular}

\end{center}

\smallskip

IRIT Solid modeler G. Elber 171

{\bf TileSize} sets a scaling factor on the tile, {\bf Indent}

([0, 1] prescribes the fraction of a tile edge that is used in

the dual synthesized geometry, {\bf CrvAmt} controls the curvature

of the constructed geometry.

{\bf RectangularTiling} and {\bf NormalizeRectangle} are optional.

The parameter {\bf NormalizeRectangle} is used only if

{\bf RectangularTiling} is TRUE.

RectangularTiling is TRUE to create (if possible) a rectangular

repeatable macro tile (FALSE by default).

{\bf NormalizeRectangle} is TRUE to normalizes extracted rectangle

to unit square / cube.

Example:

\begin{verbatim}

D12312 = microtile(4, list(12312, 2, 0.15, 0.8, 0.5));

\end{verbatim

If {\bf TileType} == 5, a spring flexible tile where {\bf Params}

includes four items, as

(SpringOrder, Point(SpringWidth, SpringTrans, SpringScale),

list(UMinArmWidth, UMaxArmWidth, VMinArmWidth, VMaxArmWidth),

ArmsHeight)

where {\bf SpringOrder} is the spline order of the spring and can be

2 (linear) or 3 (quadratic), {\bf SpringWidth}, {\bf SpringTrans],

{\bf SpringScale} controls the width (typically < 0.3), extent

([-0.5, 0] for linear springs, [-0.5, 0.9] for quadratic springs),

and size ([0.1 to 2]) of the spring. The size {\bf *ArmWidth}

control the XY crosses ([0.01, 1.9]), and {\bf ArmsHeight} the height

of these XY crosses.

Example:

\begin{verbatim}

Tile = microtile(5, list(3, point(0.2, 0.4, 1.2),

list(0.4, 0.4, 0.4, 0.4), 0.15));

If TileType == 6, a unit tile is created with diagonal edges. That is, no edges are
horizontal in the tile, a tile that hence can be used toward 3D printing without sup-
port. Params contains five values: (CentralJointSize, CornerSizesList, CornerVertScale,
SmoothingFactor, SkinInfo), where CentralJointSize is the size of the central cuboid ele-
ments. CornerSizesList is a list of edge sizes, The list can have 1, 3, 8 or 10 numbers. If
1 or 8 numbers, 8 diagonal edges are created from the center of the tile to the 8 corners
of the tile with homogoneous thickness (if 1) or different thicknesses (if 8). If 3 or 10
numbers are specified, the two additional numbers (above the 1 or 8) signal a need to also
add a central vertical up and/or central vertical down rods. A thickness of zero disables
that rod. If negative, the rod is twsited 45 degrees to be axis parallel. In addition, Cor-

IRIT Solid modeler G. Elber 172

nerVertScale can control the vertical scale of the corner’s boxes, with zero to completely
disable the creation of corner boxes. Then, SmoothinFactor controls the rounded of the
diagonal edges, if any, or zero to disable (have linear edges). Finally, Skin holds a pair
of numeric values to control an option of a skin in Y/ZMin and/or Y/ZMax. If either is
positive, a frame is cconstructed and if either is negative, a full skin is created. Zero to
disable Skin/Frame.

Example:

LinDiagTile = microtile(6, list(0.15, list(0.1),

1.0, 0.0, list(0, 1)));

If TileType == 7, an Auxetic parametric tile is cleated. Params includes eight items,
with the first six are lists controlling the (XMin, XMax, YMin, YMax, ZMin, ZMax)
different faces of the tile. This face list parameters are (HasOutJoint, InnerJointDiameter,
{ PossionRatio }) where HasOutJoint can be 0, 1, or 2 to control the creation of a joint
to the neighboring tile. If 0, no joint to a neighboring tile is created, for 1, a rigid joint is
created, and for 2, a flexible joint. Flexible joints can be created in XY directions only.
InnerJointDiameter is a positive parameter, setting the diameter of this faces’ bars, and
PossionRatio sets the desired Possion ratio of this specific faces (in [-1, 1] range but
also depends on the thicknesses of the bars). The last two items in the parameter list
controls: CircularBars the shapes of the bars that can be either circular or rectangle, and
FlexClipRatio that (in [0.0, 0.5 range) sets the range of flexibility that is desired in the
horizonal bars of the tile, at its two ends.

Example:

Wdt = 0.15;

AuxTile = microtile(7, list(list(1, Wdt, 0.2),

list(1, Wdt, 0.2),

list(2, Wdt, -0.2),

list(2, Wdt, -0.2),

list(1, Wdt),

list(0, Wdt),

true, 0.15));

creates tile AuxTile with connecting joints toward all neighbors but ZMax, with a
Possion’s value of 0.2 in X and -0,2 in Y, with circular bars of width Wdt, and flexible
ratios in the bars of 0.15.

If TileType == 8, a bistable tile is created, meaning a tile that on impact, can switch
state. Can be a 2D planar tile with some thickness or a full 3D tile. For a 3D tile, Params
includes six items as (FrameSize, WeightRodsThickness, WeightRodsSpring, WeightRod-
sAngle, ClipFlexcRatio, CntrWgtSizes) FrameSize controls the thickness of the outer
rectangle frame in the [0.0, 0.25] range. WeightRodsThickness controls the thicknesses of
the rods from the frame to the weight, in the [0.0, FrameSize] range. WeightRodsSpring
is zero for straight joint, and positive for a springy joint (larger value, larger spring).
WeightRodsAngle sets the angle, in degrees, to position the weights’ rods, in the [-45,
45] range. The large this angle, the larger the neede impact to change the state. Flex-
ClipRatio controls how much of the weight’s rods are flexible and what portion is rigid,
in the [0.0, 0.5] range. Finally, CenterWeightSizes holds the dimensions of the central
weight in X, Y, Z. For a 2D tile, Params includes seven items as (FrameSize, FrameGap,

IRIT Solid modeler G. Elber 173

WeightRodsThickness, WeightRodsSpring, WeightRodsAngle, ClipFlexcRatio, CntrWgt-
Sizes) where the additional 2nd parameter FrameGap adds optional hotizontal gap in the
frame, on the left and right sides, if positive, that FrameGap amount.

Example:

BistableTile3D = microtile(8, list(0.15, 0.0, 0.02, 0.0, -5, 0.0,

list(0.2, 0.2, 0.5));

creates a 2D bistable tile.
If TileType == 9, a 4 sided texture rag tile which is a hollowed cube with one face re-

moved, with texture maps (texture0.png to texture4.png) on the five remaining faces. The
options get three parameters: (WallThickness, DiagEdge, RetSrfObj) where (WallThick-
ness defines the wall thickness, DiagEdge selects between diagonal and horizontal front
edges and RetSrfObj selects if the returned tile is a surface object or a list object with
surface objects in it.

Example:

WallWidth = 0.1;

RagTile1 = microtile(9, list(WallWidth, false, true));

If TileType == 10, a skew/shear tile is created. The options gets six number val-
ues: (BaseHeight, RodWidth, RodSpace, XTwistShift, MidRodScl, ElasticFrac) where
BaseHeight controls the height of the bottom and top bases, RodWidth sets the width of
the diagonal rods and RodSpace prescribes the distances between parallel rods. XTwist-
Shift controls the diagonal X shift amount, per rod, and MidRodScl allows the scale of
the thickness of the rods, in the middle. Finally, ElasticFrac sets the relative regions in
the ends of the rod that are defined as flexible material. BaseHeight, RodWidth, and
ElasticFrac are in the [0.0, 0.5] range and RodSpace and MidRodScl in [0.0, 1.0]. Then,
XTwistShift can be in [-1.0, 1.0].

Example:

SkewTile = microtile(10, list(0.1, 0.1, 0.2, 0.2, 0.5, 0.25));

If TileType == 11, a bending tile is created, in either X or XY. The options gets four
number values: ((FlexHeight, FlexWidth), RigidLength, BendXY, Merged) where
FlexWidthHeight is a list of two numeric vlaues that sets the dimensions of the central
zone of the flexible width (in X) and height (in Y), in (0, 1) ranges, and RigidLength sets
the length of the left/right rigid zone, in (0, 1) range. Then, BendXY is TRUE for a tile
that bends in both X and Y, FALSE for only X, and finally, Merged is TRUE to return
one geometric object or FALSE to return two parts of the rigid parts and the flexible
one.

Example:

BendTile = microtile(11, list(list(0.9, 0.1), 0.2, true, false));

If TileType == 12, a collapsing bistable tile is created, in either X or XY. The options
gets five number values: (FrameThickness, JointsSize, SideJointLevel, FlexClipRatio,
HelicalArms) where FrameThickness controls the thickness of the created geometry,
in (0, 1) range, and JointsSize sets the length of the left/right/top/bottom joints to

IRIT Solid modeler G. Elber 174

neighboring tiles, again in (0, 1) range. SideJointLevel allows control on the Y level of
the left/right joints. FlexClipRatio prescribes the ratio of the flexible materials in the
flexing arms in (0, 0.5) range. Finally, HelicalArms can be nil() for regular arms or be
a list of three parameters to control the (NumLoops, MnrRad, MjrRad) of the helical
arms.

Example:

CollapsingTile = microtile(12, list(0.15, 0.25, 0.5, 0.25, nil()));

If TileType == 13, a collapsing bistable tile in both X and Y is created. The options
gets three numeric values: (FrameThickness, JointsSize, FlexClipRatio) where Frame-
Thickness controls the thickness of the created geometry, in (0, 1) range, and JointsSize
sets the length of the left/right/top/bottom joints to neighboring tiles, again in (0, 1)
range. FlexClipRatio prescribes the ratio of the flexible materials in the flexing arms.

Example:

CollapsingXYTile = microtile(13, list(0.15, 0.25, 0.25));

See also CRVNET2TILE, MICROSTRCT, MICROVMSTRCT and MICROBREP-
STRCT.

11.2.216 MICROVMSTRCT

ListType MICROVMSTRCT(NumericType Oper, ListType Params)

constructs micorstructures in a VModel that undergos a sequence of volumetric Boolean
operations, tiling micro-elements inside trimmed trivariates (VCells). Oper can be:

1 Intializes the process, before volumetric Boolean operations take
place. Here, Param has no effect and can be nil().

2 Creates the microstructure and return it as a list of micro-elements.
Here, Params is list(VModel, NormalScale, NormalBlendingRatio,
SaddleRatio, BoundryMarginRatio,
CheckingJacobian);
See below for the meaning of these parameters.

The parameters in Params, if Oper is 2, are:

VModel: the resulting model of the volumetric Booleans

NormalScale: This scale parameter controls the shape of sweeping axis curve in a
bridging tile. The length of the start and end directions of the sweeping axis curve is
determined as the distance between the start and end points of the curve multiplied
by NormalScale.

NormalBlendingRatio: This parameter determines the direction of deviation of a
bridging tile with respect to its anchoring face. If 0, the direction of a bridging tile
comes from the derivative of the trivariate adjacent to the inlet anchoring face. If 1,
the directions come from the surface normal of the anchoring faces. Otherwise, the
two directions are blended with NormalBlendingRatio.

IRIT Solid modeler G. Elber 175

SaddleRatio: This parameter determines the size of saddle in each base trivariate in
a bifurcation tile. It determines the size of top surface of the base trivariate

BoundryMarginRatio: If not 0, then additional margin is allowed in the tile mem-
bership test. Larger value makes more inside tiles be classified as intersecting and
be purged away.

CheckingJacobian: If TRUE, the bridging tiles are constructed to be positive Ja-
cobian as much as possible. In this case, some parts of the existing tiles might be
further eliminated with the new anchoring faces detected.

Each trivariate/primitive participating in the Booleans must contain the following
attribute information, before it is employed in the Booleans:

attrib(Prim, "MVMSInfo",

list(Tile,

TileRepeatsList({ XList, X }, { YList, Y }, { ZList, Z }),

PrimPriority);

where Tile is the tiles to use for this primitive (different primitives can use different
tiles), TileRepeatsList constains lists of repetition in U, V and W (as in MICROSTRCT)
either as a single number of how many tiles per knot interval, or as a list of number for
tiles per specific knot interval. Finally, PrimPriority sets a numeric priority to control
which primitive trivariate is more important when have VCells of multiple trivariates (e.g.
Union), and hence its full sets of microstructure will be employed. Smaller PrimPriority
value means higher priority.

Returned tiles are color-coded as follows:
If CheckJacobian is FALSE, then each trivariate is colored based on its membership

with respect to the macro shape Model:

Green - the trivariate originates from an ”inside” tile.
Yellow - the trivariate originates from a ”to-be-bridged” tile,

which is to be connected using bridging tiles.
Red - the trivariate originates from a ”bridging” tile.

If CheckJacobian is TRUE, then each trivariate is colored based on its margin al-
lowance for positive Jacobian:

Blue - the trivariate is positive Jacobian as it is.
Green - the trivariate is positive Jacobian when the 0.5%

of the parametric domain is clipped in the trivariate
Cyan - positive Jacobian with 1% margin clipping
Red - positive Jacobian with 1.5% margin clipping
Magenta - positive Jacobian with 2.5% margin clipping
Brown - positive Jacobian with 5% margin clipping
Lightgrey - fail to ensure positive Jacobian even with 5% margin

clipping

A full example:

IRIT Solid modeler G. Elber 176

Iritstate("PrimType", 4);

CylA = cylin(vector(-0.5, 0, 0), vector(1, 0, 0), 0.25, 3);

CylB = coerce(CylA, vmodel_type) * ry(90) * sc(1.1);

FacePrm = list(0.125, 0.0, 1.0, true, 0.2, nil());

Tile = microtile(1, list(FacePrm, FacePrm, FacePrm,

FacePrm, FacePrm, FacePrm));

attrib(CylA, "MVMSInfo", list(Tile, list(4, 4, 8), 1.0));

attrib(CylB, "MVMSInfo", list(Tile, list(4, 4, 8), 2.0));

MICROVMSTRCT(1, nil());

MacroV = CylA + CylB;

MS = MICROVMSTRCT(2, list(MacroV, 0.3, 0.5, 0.1, 0, 0));

Computes a microstructure for a union of two cylinder, where CylA has higher priority.
See also Figure 74, for this example.

See also MICROTILE and MICROSTRCT.

11.2.217 MMERGE

MultivarType MMERGE(MultivarType MV1, MultivarType MV2, NumericType Dir,

NumericType Discont)

merges MV1 and MV2 together into one multivariate along the direction Dir. The first
direction starts from zero. If Discont, the merge is assumed to be along a discontoinuous
edge.

Example:

MVFirst = MMERGE(M1, M2, 2, false);

merges M1 and M2 along the third direction. See also SMERGE.

11.2.218 MOFFSET

CurveType MOFFSET(CurveType Crv, NumericType OffsetDistance,

NumericType AngularError)

computes an offset of OffsetDistance with a globally bounded error (controlled by
AngularError). The smaller the AngularError is, the better the approximation to the
offset. The bounded error is achieved by adaptive refinement of the Crv. The offset is
computed via matching of the tangent fields of the given curve Crv and an arc spanning
the same angular domain. Further, AngularError measures the angular deviation allowed
between the two tangent fields.

Example:

OffCrv1 = MOFFSET(Crv, -0.4, 10);

OffCrv2 = MOFFSET(Crv, -0.4, 5);

computes an offset approximation to Crv with OffsetDistance of -0.4 and AngularError
of 10 and 5 degrees, respectively. See also OFFSET, TOFFSET, AOFFSET, LOFFSET,
and FFMATCH.

IRIT Solid modeler G. Elber 177

Figure 74: A microstructure constructed inside a VModel that is the union of two cylinders, using
the MICROVMSTRCT command. The regular tiles are shown in green, the bridging tiles (inbetween
primitives) in red and the regular tiles connected to the bridging tiles, in yellow.

11.2.219 MOMENT

PointType MOMENT(CurveType Crv, 0);

or

VectorType MOMENT(CurveType Crv, 1);

approximate the zero and first moments of curve Crv.
Example:

a = circle(vector(0, 0, 0), 1);

a = cregion(a, 0, 1);

IRIT Solid modeler G. Elber 178

p = moment(a, 0);

v = moment(a, 1);

view(list(a, p, v), on);

a = cregion(a, 0, 1) * rz(45);

p = moment(a, 0);

v = moment(a, 1);

view(list(a, p, v), on);

computes and displays the zero and first moments of a quarter of a circle in two
orientations. See also SMOMENTS, SVOLUME and TVOLUME.

11.2.220 MPOWER

MultivarType MPOWER(ListType Orders, ListType CtlPts)

creates a polynomial/rational multivariate out of the provided control mesh. Orders
is a list of orders whose size define the number of dimensions that the multivariate has.
The created multivariate employs the monomial power basis. CtlPts is a linear list of
control points. All control points must be of type (E1-E9, P1-P9), or regular PointType
defining the multivariate’s control mesh. The multivariate’s point type will be of a space
which is the union of the spaces of all points.

Example:

MV = MPOWER(list(4),

list(ctlpt(E3, -1, 0.5, 2),

ctlpt(E3, 3, -1.5, 0),

ctlpt(E3, 0, -1.5, 0),

ctlpt(E3, -1, 3.5, 0)));

constructs a univariate cubic multivariate object. See also MBEZIER and MBSPLINE.

11.2.221 MRAISE

MultivarType MRAISE(MultivarType TV,

ConstantType Direction,

NumericType NewOrder)

raises Srf to the specified NewOrder in the specified Direction.
Example:

MV2 = MRAISE(MRAISE(MV2, 0, 4), 1, 4);

raises multivariate MV1 to a cubic in the first and second directions. See also TRAISE,
SRAISE, and CRAISE.

IRIT Solid modeler G. Elber 179

11.2.222 MRCHCUBE

PolygonType MRCHCUBE(ListType VolumeSpec,

PointType CubeDim,

NumericType SkipFactor,

NumericType IsoVal)

applies (a variation of) the marching cubes algorithm (see W. E. Lorensen and H.
E. Cline. ”Marching Cubes: A High Resolution 3D Surface Construction Algorithm.”
Computer Graphics (SIGGRAPH ’87 Proceedings), Vol. 21, No. 4, pp 163-169, July
1987.) to the given volumetric data set or trivariate. VolumeSpec can be a list of images
or two, four or five objects as follows:

1 a list of image file names as
list(list(ImageName1, ..., ImageNameN))

2 a pair of entries of the form (ImplctMSInfo, SamplingRate)
4 a 4-tuple of the form

(TrivarType TV, NumericType Axis, NumericType SamplingFactor,
NumericType TVNormal)

5 a 5-tuple of the form
(StringType FileName, NumericType DataType, NumericType Width,
NumericType Height, NumericType Depth)
or a 5-tuple of the form
(TrivarType TV, NumericType Axis, NumericType SamplingFactor,
NumericType TVNormal, NumericType AddColors)

In the first case, the list of images are considered slices in the volume. All images are
read in and stacked together to form the volume. The RGB colors are converted into
a gray scale values. In the second case, ImplctMSInfo holds the implicit microstructure
definition as created by the MICROSTRCT script command for an implicit tile. In the
third case, the trivariate TV is iso surface contoured at level IsoVal along the prescribed
Axis (Note a trivariate need not be a scalar function, whereas Marching Cubes assumes
a scalar function). The sampling rate of the trivariate is governed by SamplingFactor
with SamplingFactor equal 1.0 sets sampling rate that equates with the dimensions of
the trivaariate (control mesh volume size). The higher this number, the more sampling.
If TVNormals is not zero, much more accurate normals are derived using the trivariate
function though it is also slower. Otherwise, first order differencing on the cubes is
employed for normal estimation. If the tuple of a trivariate is a 5-tuple and the fifth
entry is not zero, the input TV should be in E4 space as (IsoLevel, R, G, B) and colors
are assigned from it to the resulting polygonal approximation.

In the fourth case, the volume file prescribed by FileName is loaded and iso surface
contoured. The file is assumed to hold Width * Height * Depth (Width first, Depth order
last) scalar numeric values of type DataType:

IRIT Solid modeler G. Elber 180

1 Regular float or int ASCII (separated by white spaces)
2 Two bytes short integer.
3 Four bytes long integer.
4 One byte (char) integer.
5 Four bytes float.
6 Eight bytes double.

Beware of the little vs big Endian problem! We assume here that you have read the
volume in the same machine type in which this file was written.

CubeDim allows the user to prescribe the real cell size (not necessarily cubical). Skip-
Factor allows the skipping of data in large data sets. SkipFactor = 1 skips nothing.
SkipFactor = 2, skips every other scalar value, reducing in half all dimensions, etc. Last
but not least, IsoVal sets the iso surface level.

See also COVERISO, TVLOAD, MICROSTRUCT and TMORPH.
Examples:

IMS = microstrct(WingRGB, 6, list(TV1, list(1, 1, 1)));

MS = mrchcube(list(IMS, 1), point(1.0, 1.0, 1.0), 1, 0.0);

to March-cube an implicit microstructure, and

IsoSrf = MRCHCUBE(list(ThreeCyls, 1, 1, TRUE), point(1, 1, 1), 1, 0.12);

iso surface contours the X axis of trivariate ThreeCyls and uses the trivariate to get
better normals’ estimations. Cell size is unit cube like, no dat is skipped and the iso
surface level is 0.12. See Figure 75 and also Figure 36.

11.2.223 MREFINE

MultivarType MREFINE(MultivarType TV, ConstantType Direction,

NumericType Replace, ListType KnotList)

provides the ability to Replace a knot vector of MV or refine it in the specified direction
Direction. KnotList is a list of knots at which to refine MV. All knots should be contained
in the parametric domain of MV in Direction. If the knot vector is replaced, the length of
KnotList should be identical to the length of the original knot vector of MV in Direction.
If MV is a Bezier multivariate, it is automatically promoted to be a B-spline multivariate.

Example:

MV = MREFINE(MREFINE(MREFINE(MV,

0, FALSE, list(0.333, 0.667)),

1, FALSE, list(0.333, 0.667)),

2, FALSE, list(0.333, 0.667));

refines MV in the first three directions by adding two more knots at 0.333 and 0.667.
See also CREFINE, SREFINE, and TREFINE.

IRIT Solid modeler G. Elber 181

Figure 75: The result of applying Marching Cubes to a trivariate scalar function using the MRCHCUBE
command.

11.2.224 MREGION

MultivarType MREGION(MultivarType MV, ConstantType Direction,

NumericType MinParam, NumericType MaxParam)

extracts a region of MV between MinParam and MaxParam in the specified Direction.
Both MinParam and MaxParam should be contained in the parametric domain of MV in
Direction.

Example:

MV1r1 = MREGION(MV1, 3, 0.1, 0.2);

MV1r2 = MREGION(MV1, 3, 0.4, 0.6);

MV1r3 = MREGION(MV1, 3, 0.99, 1.0);

extracts three regions of MV1 along the 4th (directions are counted from zero) direc-
tion. See also CREGION, SREGION, and TREGION.

IRIT Solid modeler G. Elber 182

11.2.225 MREPARAM

MultivarType MREPARAM(MultivarType MV, ConstantType Direction,

NumericType MinParam, NumericType MaxParam)

reparametrizes MV over a new domain from MinParam to MaxParam, in the pre-
scribed Direction. This operation does not affect the geometry of the multivariate and
only affine transforms its knot vectors. A Bezier multivariate will automatically be pro-
moted into a B-spline surface by this function.

Example:

MV = MREPARAM(MREPARAM(MV, 0, 0.1, 1.9),

1, 0.1, 0.9);

ensures that the multivariate MV is defined over [0.1, 0.9] in the first two directions.
See also CREPARAM, SREPARAM, and TREPARAM.

11.2.226 MREVERSE

MultivarType MREVERSE(MultivarType MV, NumericType Dir1, NumericType Dir2)

reverses MV by flipping the given two parametric directions, Dir1 and Dir2, (starting
to count directions from zero). If, however, Dir2 is negative, the multivariate is reversed
by flipping the direction of MV in Dir1.

Example:

RevMV = MREVERSE(MV, 2, 4);

reverses MV by flipping the third and fifth directions of MV. See also SREVERSE
and TREVERSE.

11.2.227 MSCIRC

CurveType MSCIRC(PolyType Poly, ListType Tols)

or

CurveType MSCIRC(ListType Geom, ListType Tols)

computes a minimum spanning circle to polyline(s) (first form), or to a list of curves
(second form). Tols is a list of two numeric values, SubdivTol and NumerTol, that are
used only if the minimum spannng circle of a set of curves is required. See MZERO for
the meaning of the SubdivTol and NumerTol tolerances. The returned circle will have
’center’ and ’radius’ attributes with the circles parameters. If a cone is returned, ’angle’
and ’center’ of the cone will be returned.

Example:

Msc = MSCIRC(Crvs, list(0.01, 1e-10)):

See Figure 76.

IRIT Solid modeler G. Elber 183

Figure 76: The minimum spanning circle of a set of planar curves is computed with the aid of MSCIRC.
Two examples are shown.

11.2.228 MSCONE

ListType MSCONE(ListType Vecs)

computes the minimum spanning cone of a set of input vectors, Vecs. Returned is a
list of the cone’s parameters as well as a geometry representation of the cone.

Example:

MSC = MSCONE(Vecs);

See also MSCIRC and MSSPHERE

11.2.229 MSSPHERE

SurfaceType MSSPHERE(ListType Pts)

computes a minimum spanning sphere to a list of 3D points. Returned is a geometric
representation of the cone with ”radius” and ”center” attributes of the parameters of the
sphere.

Example:

MSS = MSSPHERE(Pts);

11.2.230 MUNIVZERO

ListType MUNIVZERO(ListType MVs, NumericType StepSize,

NumericType SubdivTol, NumericType NumerTol)

IRIT Solid modeler G. Elber 184

computes the simultaneous zeros of several scalar multivariate functions, in MVs.
The system is assumed to be underdetermined, having n constraints in n + 1 degrees of
freedom (parameters). StepSize specifies the marching step size. SubdivTol specifies the
subdivision tolerance in the parametric domain of the multivariates, whereas NumerTol
prescribes the tolerance of the numerical improvement stage. A numerical improvement
stage is applied if |NumerTol| < SubdivTol. If NumerTol is negative, and a numeric
improvement stage is indeed applied, all points that fail to improve to the requested
accuracy are purged away.

A list of piecewise linear solution curves, each designating one univariate in the pa-
rameter space of the multivariates, is returned.

Example:

UnivZeroMVs = MUNIVZERO(list(MV1, MV2, MV3), 0.01, -1e-6);

.
See also SSINTR2, CONTOUR and MZERO.

11.2.231 MVCONTACT

MultivarType MVCONTACT(CurveType C1, CurveType C2, ListType MotionCrvs,

NumericType SubdivTol, NumericType NumerTol,

NumericType UseExprTrees)

or

MultivarType MVCONTACT(SurfaceType S1, SurfaceType S2, ListType MotionCrvs,

NumericType SubdivTol, NumericType NumerTol,

NumericType UseExprTrees)

computes the contact locations, if any, when C1 or S1 is stationary and C2 or S2
is moving along the MotionCrvs animation curves. Currently only ”MOV XYZ” and
”SCL” animation curves are supported. SubdivTol and NumerTol control the tolerance
of the computation as in MZERO. If UseExpreTrees, expression trees are used in the
computation which is typically faster.

Example:

Cntct = MVCONTACT(s1, s2, list(mov_xyz), 0.02, -1e-14, true);

11.2.232 MVEXPLICIT

MultivarType MVEXPLICIT(NumericType Dim, StringType Expression)

constructs a multivariate power basis from the given polynomial Expression. The
Expression can be any infix notational expression using +-/*^ with no parenthesis. The
parameters are the 26 letters A-Z. The dimension of the multivariate is set by Dim and
should be in line with the variables used. A stands for the first dimension, B for the
second, etc., so if Dim equal 3, only A, B, and C could appear in Expression. Having a
higher letter with a lower dimension constitutes an error.

Example:

IRIT Solid modeler G. Elber 185

M1 = coerce(mvexplicit(2, "A^2 + B^2 - 1"), bezier_type);

M2 = coerce(mvexplicit(2, "4 * A^2 + B^2 / 4 - 1"), bezier_type);

constructs two scalar saddle Bezier bivariate surfaces, represented as multivariates.

11.2.233 MVINTER

MultivarType MVINTER(ListType Geometry, NumericType SubdivTol,

NumericType NumerTol, NumericType UseExprTrees)

computes the intersection of two planar curves (Geometry is a list of two planar curves)
or three surfaces (Geometry is a list of three surfaces). SubdivTol and NumerTol control
the tolerance of the computation as in MZERO. If UseExpreTrees, expression trees are
used in the computation which is typically faster.

Example:

Sln1 = MVINTER(list(c1, c2), 0.001, 1e-8, true);

11.2.234 NCCNTRPATH

ListType NCCNTRPATH(PolyType Obj, NumericType Offset, NumericType ZBaseLevel,

NumericType TPathSpace, NumericType Units)

or

ListType NCCNTRPATH(SurfaceType Obj, NumericType Offset, NumericType ZBaseLevel,

NumericType TPathSpace, NumericType Units)

builds Numerically controlled (NC) tool path to mill (machine) the given Obj ge-
ometry. The Offset prescribes the necessary offset, due to the tool’s ball end radius.
ZBaseLevel sets a base level the toolpath will not go below. and Units sets the used units
with 0 for inches and 1 for mm. The toolpath is built as parallel contours of the (offset
of the) input Obj, contours that are TPathSpace spacing apart.

The following attributes are optional and supported by NCCNTRPATH:

NCCntrBBox A string attribute with six numeric values as
”XMin XMax YMin YMax ZMin ZMax”. Bounds the
working space of the contouring.

NCCntrClip A closed polyline object to clip the final
toolpath to be confined to its interior.

NCCntrMaxDepthStep Specifies how deep can tool plunge in compared
to the last depth, in the last contour. Adds
additional paths to confirm to this, if needed.

NCCntrSlowOnPlunge If set and plung this much, generates toolpath
with ”RelFeedrate” attributes to slowdown.

Example:

IRIT Solid modeler G. Elber 186

Tea = load("teapot");

NCPath = NCCntrPath(Tea, 1/4, 0.0, 1/8, 0);

attrib(NCPath, "NCRetractZLevel", 3.5);

attrib(NCPath, "NCMaxXYBridgeGap", 0.25);

save("NCPath.nc", NCPath);

NC data can be saved using the SAVE command in G-code if the saved file type is
”.nc”. See SAVE for more, including the meaning of the different attributes in the above
example. See also NCPCKTPATH.

11.2.235 NCPCKTPATH

ListType NCPCKTPATH(PolyType Obj, NumericType ToolRadius, NumericType RoughOffset,

NumericType TPathSpace, NumericType TPathJoin,

NumericType Units, NumericType TrimSelfInters)

computes tool path to 2D pocket machining from +Z direction the given Obj geometry
(a closed curve or a closed polygon). ToolRadius sets the offset to use in the pocket
whereas RoughOffset sets the offset to use during roughing (RoughOffset better be larger
than ToolRadius). TPathSpace sets the space between adjacent pockets slices in the
zigzag motion and TPathJoin prescribes the maximum distance to connect adjacent slices
(if larger a full retracting will be performed). Units sets the used units with 0 for inches
and 1 for mm and if TrimSelfInters is TRUE also attempts to eliminate self intersections
due to the applied offsets.

Example:

TPath = NCPcktPath(Crv, 0.05, 0.06, 0.02, 0.05, 0, true);

attrib(TPath, "NCRetractZLevel", 1.0);

attrib(TPath, "NCMaxXYBridgeGap", 0.05);

save("TPath.nc", TPath);

NC data can be saved using the SAVE command in G-code if the saved file type is
”.nc”. See SAVE for more, including the meaning of the different attributes in the above
example. See also NCCNTRPATH.

11.2.236 MZERO

ListType MZERO(ListType MVs, ListType Constraints,

NumericType SubdivTol, NumericType NumerTol)

computes the simultaneous zeros of several scalar multivariate functions, in MVs. Con-
straints is a list of positive, zero or negative values to denote the respective constraint
must be positive, zero or negative. Can be nil() to denote all constraints are zero con-
straints. SubdivTol specifies the subdivision tolerance in the parametric domain of the
multivariates, whereas NumerTol prescribes the tolerance of the numerical improvement
stage. A numerical improvement stage is applied if |NumerTol| < SubdivTol. If Numer-
Tol is negative, and a numeric improvement stage is indeed applied, all points that fail to
improve to the requested accuracy are purged away.

A list of control points, each designating one location in the parameter space of the
multivariates, is returned.

IRIT Solid modeler G. Elber 187

The number of multivariates cannot exceed the dimension of the multivariates. That
is, if the MVs are trivariates, then, at most, three of them may be provided. If less
are provided, then the dimension of the solution space is larger than zero and piecewise
linear univariates/bivariates/finite cloud of points sampled from that solution space will
be returned.

Example:

ZeroMVs = MZERO(list(MV1, MV2, MV3), nil(), 0.01, -1e-6);

.
See also BFZEROS, CONTOUR and MUNIVZERO.

11.2.237 MPROMOTE

PromMV = MPROMOTE(MultivarType MV, ListType AddDir);

or

PromMV = MPROMOTE(MultivarType MV, ListType NewDimStartAxis);

promote the multivariate MV to a higher dimension. In the first form (a list of one
numeric value), the multivariate will be promoted to have one more dimension (i.e. a
bivariate would become a trivariate). The new added axis will be AddDir.

The second form (a list of two numeric values) allows the original multivariate to be
placed at axes from StartAxis and have a new dimensional NewDim.

Example:

ms = coerce(srf, multivar_type);

coerce(mfrommv(MPROMOTE(ms, list(0)), 0, 0.5), surface_type) == srf;

coerces a surface to a multivariate, promotes it to a trivariate-multivariate, extracts
an iso-surface bivariate-multivariate along the new introduced axis from the trivariate-
multivariate and compares it to the original surface. It should be equal!

11.2.238 NIL

ListType NIL()

creates an empty list so data can be accumulated in it. See CINFLECT or CZEROS
for examples. See also LIST and SNOC.

11.2.239 OFFSET

PolygonType OFFSET(PolygonType Poly, NumericType OffsetDistance,

NumericType Smoothing, NumericType MiterEdge)

or

CurveType OFFSET(CurveType Crv, NumericType OffsetDistance,

NumericType Tolerance, NumericType BezInterp)

IRIT Solid modeler G. Elber 188

or

CurveType OFFSET(CurveType Crv, CurveType OffsetDistance,

NumericType Tolerance, NumericType BezInterp)

or

SurfaceType OFFSET(SurfaceType Srf, NumericType OffsetDistance,

NumericType Tolerance, NumericType BezInterp)

or

TrimSrfType OFFSET(TrimSrfType TrimSrf, NumericType OffsetDistance,

NumericType Tolerance, NumericType BezInterp)

or

VoxelType OFFSET(VoxelType VxlMdl, NumericType OffsetDistance,

NumericType Tolerance, NumericType BezInterp)

offset Poly, Crv, Srf or a TrimSrf, by translating all the vertices or control points in the
direction of the normal of the poly/curve or of the (trimmed) surface by an OffsetDistance
amount. For a Poly object, the input can be a single polygon or a single polyline, in which
case the offset is computed in the XY plane, or can be a polygonal model in which case
the offset is computed in R3. In the former case, the result is an offset of the original
polygon/line in the XY plane and is exact. In the latter case, the normals at the vertices
of the polygonal model are employed (and are locally estimated if non detected), and all
vertices are moved in the vertices normals, scaled by this offset distance. For offset in
R3, if Smoothing is TRUE, normals at the vertices are always recomputed and smoothed
out. Also for an offset in R3, if MiterEdge is positive, attempts to properly compenstate
for miter edges’ based offset is made, upto a scaling factor set by the value of MiterEdge.

Otherwise, each control point has a node parameter value associated with it, which
is used to compute the normal. The returned curve or surface only approximates the
real offset. If the resulting approximation does not satisfy the accuracy required by
Tolerance, Crv or Srf or TrimSrf is subdivided and an offset approximation fit is computed
for the two halves. For curves, one can request a Bezier interpolation scheme in the
offset approximation by setting BezInterp. BezInterp is not yet supported for (trimmed)
surfaces. Negative OffsetDistance denotes offset in the reversed direction of the normal.
If the curve is a 3D curve (E3 or P3) the offset is computed using the nornal of the
frenet frame of the curve. Make sure you use a 2D curve (E2 or P2) for a proper offset
in the plane. If OffsetDistance is a (scalar) curve, the curve’s first coordinate is used
to prescribe a variable offset amount along the curve for which we compute the variable
offset. Both Crv and OffsetDistance must share the same parametric domain. In the case
of input that is VoxelType, the OffsetDistance is measured in pixels and Tolerance and
BezInterp are ignored.

Example:

OffCrv = OFFSET(Crv, -0.4, 0.1, off);

IRIT Solid modeler G. Elber 189

Figure 77: Offset approximation (thick) of a B-spline curve (thin). (See also Figure 5.)

offsets Crv by the amount of −0.4 in the reversed normal direction, Tolerance of 0.1
and no Bezier interpolation. See also TOFFSET, AOFFSET, LOFFSET and MOFFSET.
See Figure 77.

11.2.240 ORTHOTOMC

CurveType ORTHOTOMC(CurveType Crv, PointType Pt, NumericType K)

or,

SurfaceType ORTHOTOMC(SurfaceType Srf, PointType Pt, NumericType K)

compute the K-orthotomic of freeform curves and surfaces. See Fundamentals of
Computer Aided Geometric Design, by J. Hoschek and D. Lasser. A K-orthotomic equal,

Pt+K 〈(F − Pt), N〉N, (22)

where F is the curve or surface and N is its unit normal field.
Example:

pt = point(0, 0.35, 0);

crv = cbezier(list(ctlpt(E2, -0.8, -0.6),

ctlpt(E2, -0.3, -0.2),

ctlpt(E2, 0.0, 0.0),

ctlpt(E2, 0.8, -0.6)));

Orth = ORTHOTOMC(crv, pt, 2);

interact(list(Orth, crv, pt) * tx(0.5)));

computes the orthotomic of a cubic Bezier curve that has an inflection point. Note
that inflection points are reduced to cusps in the orthotomic result. See Figure 78.

IRIT Solid modeler G. Elber 190

Figure 78: An orthotomic (thick) of a cubic Bezier curve. The inflection point in the cubic Bezier is
reduced to a cusp in the orthotomic. Computed using the ORTHOTOMC command.

11.2.241 PATTRIB

AnyType PATTRIB(PolyType Poly, NumericType Index,

StringType Name, AnyType Value)

provides a mechanism to set/get an attribute to a vertex of a polygon. Unlike the
regular ATTRIB/RMATTR functions, PATTRIB allows access to the Index vertex in
polygon Poly, access that is otherwise impossible. Index starts at zero for the first
vertex. The attribute will have a name Name and a value Value. If Value is NIL(), no
attributes are set and the named attribute, if any, is returned. This PATTRIB function
only allows numeric values or strings as Value.

For example,

PATTRIB(Tri, 0, "rgb", "255,0,0");

PATTRIB(Tri, 1, "rgb", "0,255,0");

PATTRIB(Tri, 2, "rgb", "0,0,255");

sets the RGB values of the three vertices of triangle Tri. See also PNORMAL, AT-
TRIB, ATTRPROP, GETATTR, RMATTR, CPATTR, FINDATTR.

11.2.242 PCIRCLE

CurveType PCIRCLE(VectorType Center, NumericType Radius)

IRIT Solid modeler G. Elber 191

is the same as CIRCLE but approximates the circle as a polynomial curve. See also
CIRCLE.

11.2.243 PCIRCAPX

CurveType PCIRCAPX(VectorType Center, NumericType Radius, NumericType Order,

NumericType Continuity, NumericType Tol)

is the same as CIRCLE but approximates the circle as a polynomial curve of a specific
tolerance. Order can be either 3 or 4 for a qudaratic or a cubic approximation, Continuity
governs the continuity between the different polynomial arcs and can be 0 (for C0) or 1
(for C1), and Tol, that governs the accuracy of the constructed approximated circle, can
be any accuracy up to around 10−15.

c = PCIRCAPX(vector(0, 0, 0), 1, 3, 1, 1e-6):

constructs a quadratic polynomial circe approximation with tolarenace 1e-6.
See also CIRCLE and PCIRCLE.

11.2.244 PCRVTR

PolyType PCRVTR(PolyType Pl, NumericType NumOfRings, NumericType CubicFit)

estimates curvature properties of given polygonal model Pl, assuming Pl originated
from a continuous freeform surfaces. NumOfRings sets the number of rings around a
vertex that will be used to estimate the curvature properties of the vertex. If (CubicFit
is TRUE, a cubic fit is computed to the local vertex neighborhood, or a quadratic fit, if
FALSE. The return polygonal object is identical to Pl, but with the following attributes
set at each vertex:

”K1Curv” First principal curvature value
”K2Curv” Second principal curvature value
”KCurv” The Gaussian Curvature
”HCurv” The Mean Curvature
”D1” The first principal direction
”D2” The second principal direction

See also PPROPFTCH.

11.2.245 PDOMAIN

ListType PDOMAIN(FreeformType Freeform)

returns the parametric domain of the given Freeform. See also MESHSIZE, FFCTLPTS,
FFKNTVEC, FFMESH, FFMSIZE, FFPTTYPE, FFORDER.

Example:

circ_domain = PDOMAIN(circle(vector(0.0, 0.0, 0.0), 1.0));

IRIT Solid modeler G. Elber 192

11.2.246 PINTERP

PlaneType PINTERP(ListType PtsList)

least squares fits a plane to a given set of points PtsList.
Example:

Pln = PINTERP(Pts);

11.2.247 PIMPRTNC

PolyType PIMPRTNC(PolyType Pl, NumericType GenImprtncPolylines)

computes the importance of a local neighborhood in a triangular polygonal mesh Pl,
based on the dihedral angles of the edges in that neighborhood. If GenImprtncPolylines
FALSE, every vertex in the returned mesh will have a ”SilImp” (See the connection of
this importance to silhouettes?) attribute with its importance. Otherwise, if GenIm-
prtncPolylines TRUE, polylines that stylistically convey the importance of the different
regions in this mesh are returned.

Example:

Pl = triangl(box(vector(0, 0, 0), 1, 2, 3), 1);

PlImp = PIMPRTNC(Pl, 0);

11.2.248 PLANE

PointType PLANE(NumericType A, NumericType B, NumericType C, NumericType D)

creates a plane type object, using the four provided NumericType coefficients. See
also VECTOR, POINT.

11.2.249 PLANECLIP

ListType PLANECLIP(PolyType Poly, PlaneType Pln)

clips a polygonal model Poly against a plane Pln. Three polygonal objects are returned
in a list: polygons on the positive side of the plane, polygons that intersect the plane, and
polygons on the negative side of the plane, in this order. If one of these lists is empty, a
numeric zero is substituted.

Example:

Pls = PLANECLIP(Pl, plane(1, 1, 0, 0));

clips polygonal object Pl against the plane X+Y=0.

11.2.250 PLN3PTS

PlaneType PLN3PTS(PointType Pt1, PointType Pt2, PointType Pt3)

computes a plane out of three points.
Example:

Pl1 = PLN3PTS(point(0, 0, 0), point(0, 1, 0), point(1, 0, 0));

IRIT Solid modeler G. Elber 193

11.2.251 PLYROUND

PlaneType PLYROUND(NumericType RoundMethod, PolyType Mesh,

PolyType Edge, ListType Params)

or

PlaneType PLYROUND(NumericType RoundMethod, ListType TwoMeshes,

PolyType Edge, ListType Params)

apply a arounding to Mesh or TwoMeshes along the prescribed Edge, or in the entire
mesh(es) if Edge nil(). Params sets the different parameters of the roundings, depending
on the value of RoundMethod: If RoundMethod is 1, the rounded area is locally smoothed
out by local averaging in the neighborhood of the Edge. Then, Params is a list of the
form (SmoothNormals, NumIterations, RoundPower, AllowBndryMove, RoundingRa-
dius) where if SmoothNormals TRUE we also estimate smooth normals, NumIterations
controls how many smoothing iterations to apply, RoundPower controls the decay power
as we get away from the Edge, AllowBndryMove allows the boundary to freely move if
-1, allows the boundary to move only along the plane containing the boundary curve if 1,
and fixes the boundary if 0. RoundingRadius sets the (approximated) rounding radius. If
RoundMethod is 3, the rounded area is locally projected onto a rounded swept geometry
in the neighborhood of the Edge. Then, Params is a list of the form (moothNormals,
RoundRadius, RoundPower) where if SmoothNormals TRUE we also estimate smooth
normals, RoundingRadius sets the (approximated) rounding radius, and RoundPower
controls the decay power as we get away from the Edge. Other values of RoundMethod
are not allowed and in no case, the result is a perfect circular rounding.

Example

RPlns1 = PlyRound(1, Pln, nil(), list(TRUE, 100, 1.0, 0, 0.1)):

RPlns2 = PlyRound(1, Pln, Edge, list(TRUE, 10, 1.0, 1, 0.5)):

rounds poly mesh Pln twice. Once into RPlns1, rounding the entire mesh by smoothing
in 100 iterations and fixing the boundary, and once into RPlns21, rounding only along
edge Edge, in 10 iterations and boundary can move only along the plane holding the
boundary.

11.2.252 PMORPH

PlaneType PMORPH(PolyType Pl1, PolyType Pl2, NumericType Blend)

creates a new polygonal object which is a metamorph of the two given polygonal objects
that share the same topology. That is, Pl1 and Pl2 must share the same number of
polygons and the i’th polygon in Pl1 must be equal in its number of vertices to the i’th
polygon of Pl2. This is very useful if a sequence that ”morphs” one polygonal model to
another is to be created.

Example:

Pl1 = con2(vector(0.0, -0.5, -0.5), vector(0.0, 0.0, 1.0), 0.4, 0.1, 3);

Pl2 = con2(vector(0.0, 0.5, 0.0), vector(0.0, 0.0, 1.0), 0.1, 0.4, 3);

Pl = PMORPH(Pl1, Pl2, 0.5);

IRIT Solid modeler G. Elber 194

creates a cylinder out of two truncated cones, using PMORPH. See also CMORPH
and SMORPH.

11.2.253 PNORMAL

PointType PNORMAL(PolyType Poly, NumericType Index, VectorType Normal)

provides a mechanism to set/get the normal of vertex number Index in a polygon Poly.
Index starts at zero for the first vertex. Normal replaces the current normal that is also
returned. If Normal is not a VectorType, no new normal is set but the current normal is
still returned, allowing normals to be queried.

For example,

PNORMAL(Tri, 0, vector(1, 0, 0));

PNORMAL(Tri, 1, vector(0, 1, 0));

sets the normals of the first two vertices in triangle Tri to be the X and Y axes,
respectively.

See also PATTRIB.

11.2.254 POINT

PointType POINT(NumericType X, NumericType Y, NumericType Z)

Creates a point type object, using the three provided NumericType scalars. See also
VECTOR, PLANE.

11.2.255 POLARSIL

PolygonType POLARSIL(SurfaceType Srf, VectorType ViewDir,

NumericType SubdivTol, NumericType EuclideanSpace)

Computes the polar silhouettes of surface Srf from view direction ViewDir. Equal
to ¡ S(u, v) x N(u, v), VDir ¿ = 0. If EuclideanSpace TRUE, the polar silhouettes are
returned in Euclidean space, over Srf. Otherwise, the polar silhouettes are returned in
the parametric domain of Srf. SubdivTol controls the accuracy of the computation of the
polar silhouettes.

Example:

pSil = polarsil(glass, vector(1, 0, 0), 0.01, true);

See Figure 79 for this example.

11.2.256 POLY

PolygonType POLY(ListType VrtxList, NumericType IsPolyline)

creates a single polygon/polyline (and therefore open) object, defined by the vertices
in VrtxList (see LIST). All elements in VrtxList must be one of PointType, VectorType,
CtlPtType, or PolygonType types. If IsPolyline, a polyline is created; otherwise, a poly-
gon.

Example:

IRIT Solid modeler G. Elber 195

Figure 79: Polar silhouette computed for this glass shaped surface using the POLARSIL

V1 = vector(0.0, 0.0, 0.0);

V2 = vector(0.3, 0.0, 0.0);

V3 = vector(0.3, 0.0, 0.1);

V4 = vector(0.2, 0.0, 0.1);

V5 = vector(0.2, 0.0, 0.5);

V6 = vector(0.3, 0.0, 0.5);

V7 = vector(0.3, 0.0, 0.6);

V8 = vector(0.0, 0.0, 0.6);

V9 = vector(0.0, 0.0, 0.5);

V10 = vector(0.1, 0.0, 0.5);

V11 = vector(0.1, 0.0, 0.1);

V12 = vector(0.0, 0.0, 0.1);

I = POLY(list(V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12),

FALSE);

constructs an object with a single polygon in the shape of the letter I. See Figure 80.

11.2.257 POLYMESH2TV

TrivarType POLYMESH2TV(PolygonType Mesh, PolygonType MedAxis,

NumericType MeanErr, HausdErr)

Fits a trivariate to a given tube-like poly geometry Mesh. The input should also
include MedAxis - a medical axis rough approximation of the to-be-constructured tube-
like trivariates. The last two parameters MeanErr and HausdErr, contol the allowed
mean and Hausdorff errors in the fit.

Example:

TV = POLYMESH2TV(Mesh, Pls, 0.01, 0.02);

IRIT Solid modeler G. Elber 196

Figure 80: Polygons or polylines can be manually constructed using the POLY constructor.

11.2.258 POLYHOLES

PolygonType POLYHOLES(PolygonType OuterPoly, PolygonType Island)

or

PolygonType POLYHOLES(PolygonType OuterPoly, ListType Islands)

merges the given Island(s) into the main polygon OuterPoly, creating a polygon with
holes. The outer polygon OuterPoly is assumed to be oriented in the opposite direction
to that of the Island(s).

11.2.259 PPINCLUDE

NumericType PPINCLUDE(PolyType Pl, PointType Pt)

tests if a point Pt is inside a 3D closed polyhedra Pl in 3-space or if a point Pt is inside a
2D closed polygon Pl in 2-space, if Pl contains only one (planar) polygon. Returns TRUE
if inside, FALSE otherwise.

Example:

if (PPINCLUDE(Pl, pt),

...);

See also CPINCLUDE.

IRIT Solid modeler G. Elber 197

11.2.260 PPINTER

ListType PPINTER(PolyType Pl1, PolyType Pl2)

computes the intersection of two individual polygons in R3, Pl1 and Pl2. Similar
results can also be obtained via Boolean operations.

Example:

Pl1 = poly(list(point(-1, -1, 0),

point(-1, 1, 0),

point(1, 1, 0),

point(1, -1, 0)), false);

Pl2 = Pl1 * rx(70) * tx(0.5);

Inter1 = PPINTER(Pl1, Pl2);

iritstate("intercrv", true);

Inter2 = Pl1 * Pl2;

computes the intersection edge of two polygons in two different ways. Note, however,
that while PPINTER considers only the first polygon in a polygonal object, the Boolean
operations considers them all.

11.2.261 PPROPFTCH

PolyType PPROPFTCH(PolyType Pl, NumericType PropType, ListType PropParam)

computes piecwise linear curves over polygonal mesh Pl. The extracted curves could
be one of,

Property PropType PropParam
Attribute Value 0 list(AttrName, AttrValue)
Isophotes 1 list(ViewDir, InclinationAngle)
Gaussian Crvtr 2 list(NumRingCrvtrAprx, CrvtrVal)
Mean Crvtr 3 list(NumRingCrvtrAprx, CrvtrVal)

The NumRingCrvtrAprx specifies how many rings around a vertex should be consid-
ered when the curvature of the vertex is estimated. Typically 1.

Example:

Pl1 = PPropFtch(Srf, 1, list(normalize(vector(1, 1, 1)), 90));

Pl2 = PPropFtch(Srf, 1, list(normalize(vector(1, -1, 1)), 90));

Pl3 = PPropFtch(Srf, 1, list(normalize(vector(1, 0, 1)), 90));

extracts silhouettes from surface Srf (note an InclinationAngle of 90 degrees extract
silhouettes), from three different viewing direction. See also PCRVTR, SILHOUETTE,
ISOCLINE, PPROPFTCH and SASPCTGRPH.

IRIT Solid modeler G. Elber 198

11.2.262 PRINTER

ListType PRINTER(PolyType Pl, NumericType RayPt, NumericType RayDir)

computes the number of XY planar intersection of ray (RayPt, RayDir) with a single
polygon Pl. Returned is the number of interesections found.

11.2.263 PRISA

ListType PRISA(SurfaceType Srfs, NumericType SamplesPerCurve,

NumericType Epsilon, ConstantType Dir, VectorType Space,

NumericType CrossSecs)

or

ListType PRISA(TrimSrfType TrimSrfs, NumericType SamplesPerCurve,

NumericType Epsilon, ConstantType Dir, VectorType Space,

NumericType CrossSecs)

compute a layout (prisa) of the given surface(s) Srfs or TrimSrfs, and return a list
of (trimmed) surface objects representing the layout. The surface is approximated to
within Epsilon in direction Dir into a set of ruled surfaces, and then developable surfaces
that are laid out flat onto the XY plane. If Epsilon is negative, the piecewise ruled
surface approximation in 3-space is returned. SamplesPerCurve controls the piecewise
linear approximation of the boundary of the ruled/developable surfaces. Space is a vector
whose X component controls the space between the different surfaces’ layout, and whose
Y component controls the space between different layout pieces. If CrossSecs is not zero,
the 3D cross sections, approximated as planar, of each laid out region are also provided.

Example:

cross = cbspline(3,

list(ctlpt(E3, 0.7, 0.0, 0.),

ctlpt(E3, 0.7, 0.0, 0.06),

ctlpt(E3, 0.1, 0.0, 0.1),

ctlpt(E3, 0.1, 0.0, 0.6),

ctlpt(E3, 0.6, 0.0, 0.6),

ctlpt(E3, 0.8, 0.0, 0.8),

ctlpt(E3, 0.8, 0.0, 1.4),

ctlpt(E3, 0.6, 0.0, 1.6)),

list(KV_OPEN));

wglass = surfrev(cross);

wgl_ruled = PRISA(wglass, 6, -0.1, COL, vector(0, 0.25, 0.0), false);

wgl_prisa = PRISA(wglass, 6, 0.1, COL, vector(0, 0.25, 0.0), true);

computes a layout of a wine glass in wgl prisa and a three-dimensional ruled surface
approximation of wglass in wgl ruled. See Figure 81.

See also PRULEDALG.

IRIT Solid modeler G. Elber 199

Figure 81: The layout (prisa in hebrew...) of a freeform surface can be approximated using the PRISA
function.

11.2.264 PSUBDIV

CurveType PSUBDIV(PolyType Plgns, NumericType SubdivisionScheme,

NumericType Numiterations, NumericType SmoothNormals,

NumericType TrianglesOnly, NumericType AdditionalParam)

applies one of several subdivision schemes to the given polygonal object Plgns. The
SubdivisionScheme can be one of: Catmull Clark if 0, Loop if 1, Butterfly if 2. The
number of subdivision iterations applied is set by Numiterations. If SmoothNormals is
TRUE, a normal approximation scheme is applied to the result, for the vertices of the
model, by averaging adjacent faces normals at each vertex. If TrianglesOnly, the output
is examined and non triangles are dividied into triangles. Finally, if the Butterfly scheme
is applied, AdditionalParam is used as the tension.

CatmulRomPl = PSUBDIV(Plgns, 0, 1, 1, 1, 0);

See Figure 82.

11.2.265 PT3BARY

VectorType PT3BARY(PointType Pt1, PointType Pt2, PointType Pt3,

PointType InteriorPt)

computes the barycentric coordinates of InterPt with respect to the triangle defined
by Pt1, Pt2, Pt3. A vector of three coefficents, which are the weights of the three points
of the triangle, are returned. InteriorPt is assumed to be in the triangle.

Example:

IRIT Solid modeler G. Elber 200

Figure 82: Applied a subdivision scheme for polygonal models using the PSUBDIV command. From
left to right: Original half-a-pawn model, Catmull Clark, Loop, and Butterfly, after one iteration.

Coeffs = PT3BARY(point(0, 0, 0),

point(1, 0, 0),

point(0, 1, 0),

point(0.25, 0.25, 0.0));

11.2.266 PTHMSPR

ListType PTHMSPR(NumericType Size)

computes a fairly uniform distribution of points on a hemisphere. Size hints at the
distance between adjacent placed points.

Example:

Pts = PTHMSPR(0.1);

11.2.267 PTLNPLN

VectorType PTLNPLN(PointType LineOrig, VectorType LineRay, PlaneType Plane)

computes the point of intersection of given line LineOrig, LineRay with plane Plane.
Example:

InterPt = PtLnPln(point(1, 0, 1), vector(1, 1, 1), Plane(0, 0, 1, 0));

11.2.268 PTPTLN

VectorType PTPTLN(PointType Point, PointType LineOrig, VectorType LineRay)

computes the point on line LineOrig, LineRay that is closest to point Point. See also
DSTPTLN.

Example:

ClosestPt = PTPTLN(point(0, 0, 0), point(1, 1, 0), vector(1, 1, 1));

IRIT Solid modeler G. Elber 201

11.2.269 PTREGISTER

MatrixType PTREGISTER(ListType PtSet1, ListType PtSet2,

NumericType StepSize, NumericType Tolerance)

registers one points set, PtSet1, with another, PtSet2. The two points sets are assumed
to be rigid motion of one another. StepSize controls the step size of the numerical process
and must be a positive real less than 1.0. The larger StepSize is, the faster the convergance
with less stability. Finally, Tolerance prescribes the necessary accuraacy in L-infinity
sense. This function will converge for small rotational deviations only.

Pt1 = nil();

for (i = 0, 1, 15,

Pt = point(random(-.7, .7), random(-.7, .7), random(-.7, .7)):

snoc(Pt * tx(0), Pt1));

Pt2 = Pt1 * rx(13) * ry(5) * rz(11)

* tx(0.1) * ty(0.03) * tz(-0.05);

Tr = PTREGISTER(Pt1, Pt2, 1, 1e-6);

11.2.270 PTS2PLLN

ListType PTS2PLLN(ListType Points, NumericType MaxMatchDist)

matches the given cloud of points in a list of polylines. MaxMatchDist is used as the
maximal distance between two adjacent points to connect.

Example:

Pts = nil();

for (i = 0, 1, 100,

t = random(0, 2 * Pi):

snoc(point(cos(t), sin(t), 0), Pts));

Pll = PTS2PLLN(Pts, 0.1);

connects 100 random points on the unit circle into a polyline approximating an (almost)
complete circle.

11.2.271 PTS2PLYS

PolylineType PTS2PLYS(ListType Points, NumericType MergeTol)

merges a list of points Points to polylines. Merges the points until two adjacent points
are at most MergeTol apart. Points is a list of with PointType or CtlPtType. In the later
case the control point can be of arbitrary dimension.

11.2.272 PTSLNLN

ListType PTSLNLN(PointType Line1Orig, VectorType Line1Ray,

PointType Line2Orig, VectorType Line2Ray)

IRIT Solid modeler G. Elber 202

computes the closest two points on the two lines defined by point LineiOrig and ray
LineiRay. See also DSTLNLN. A list object with the two points is returned.

Example:

ClosestPts = PtsLnLn(point(1, 0, 0), vector(0, 1, 0),

point(0, 1, 0), vector(1, 0, 0));

11.2.273 QUADCRVS

ListType QUADCRVS(CurveType Crv, NumericType Tolerance, NumericType MaxLen)

approximates given curve Crv using piecewise quadratic curves upto the prescribed
tolerance Tolerance. If MaxLen is positive it is used to limit the arc length of the cubic
curves segments.

Example:

PQaudCrv = QUADCRVS(Crv, 0.01, 0.5);

creates a piecewise quadratic approximation to curve Crv upto tolerance 0.01 and
maximal arc length of cubic segments of 0.5. See also CUBICCRVS, CBIARCS.

11.2.274 QUADRIC

ListType QUADRIC(ListType ABCDEFGHIJ))

or

ListType QUADRIC(ListType ABCDEFZ))

in the first form, constructs a quadric parametric surface whose coefficients are the
ten coefficients in the list ABCDEFGHIJ:

Ax2 +By2 + Cz2 +Dxy + Exz + Fyz +Gx+Hy + Iz + J = 0. (23)

In the second form, promotes the given conic curve whose coefficients are the first six
coefficients in the list ABCDEFZ:

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0. (24)

into a quadric surface with height in z of Z amount, the seven’th list element.
Example:

Sph = QUADRIC(list(1, 1 , 1 , 0, 0, 0, 0, 0, 0, -1));

Hyp1s = QUADRIC(list(1, 1, -1, 0, 0, 0, 0, 0, 0, -1));

Hyp2s = QUADRIC(list(1, -1, -1, 0, 0, 0, 0, 0, 0, -1));

Ellipse = list(1, 0, 2, 0, 0, -1):

Ellipsoid = QUADRIC(Ellipse + list(0.1));

constructs four quadric surfaces, a sphere, a portion of a hyperboloid of one sheet, a
portion of a hyperboloid of two sheets, and promotes an ellipse to an ellipsoid of Z height
of 0.1. Note only elliptic surfaces are compact and are reconstructed in whole. Because
the parametrization of the quadric is predetermined, one might need to use SREGION
and SMOEBIUS to extract subregions and/or reparametrize the surface.

See also CONICSEC, IMPLCTTRANS, ELLIPSE3PT.

IRIT Solid modeler G. Elber 203

11.2.275 RAYTRAPS

ListType RAYTRAPS(ListType Crvs, NumericType Orient

NumericType SubdivTol, NumericType NumerTol,

NumericType UserExprTree)

or

ListType RAYTRAPS(ListType Srfs, NumericType Orient

NumericType SubdivTol, NumericType NumerTol,

NumericType UserExprTree)

computes locations on the given planar curves or 3-space surfaces that would bounce
rays from one object to the next, in an infinite cycle. Such traps are denoted ray traps.
Ray-traps are computed for the given list of Crvs or Srfs, in the given order. The ray-trap
problem is posed as a set of n multivariate algebraic constraints with n variables, given
n objects prescribed in Crvs or Srfs. The simultaneous solution of these constraints is
computed using the MZERO function. See MZERO for the meaning of the SubdivTol
and NumerTol tolerances. If Orient, attempt is made to orient the curves/surfaces which
is likely to speed up the process. If UserExprTree, expression trees constraints are used
instead of tensor products. Again, typically faster and much less memory use.

Example:

Crv1 = pcircle(vector(-0.75, -0.75, 0), 0.5);

Crv2 = Crv1 * sc(1.5) * tx(2);

Crv3 = Crv1 * sc(0.5) * tx(0.2) * ty(0.6);

Tris = RayTraps(list(Crv1, Crv2, Crv3), 0.1, -1e-6);

computes the ray-traps between three circles. See Figure 83.

11.2.276 RFLCTLN

ListType RFLCTLN(SurfaceType Srf, VectorType ViewDir,

ListType LinesSprs, NumericType Euclidean)

computes reflection lines/ovals to the given surface Srf as seen from view direction
ViewDir. The resulting piecewise linear curves are in Euclidean space if Euclidean is
TRUE and in Srf parameter space, otherwise.

The reflection/ovals themselves are defined via LinesSprs. For reflection lines, Li-
nesSprs consists of

list(LineDir, list(LinePos1, LinePos2, ... , LinePosN));

defining n parallel lines with direction LineDir through point LinePos1 to LinePosN.
For reflection ovals, LinesSprs consists of

list(SprCntr, list(Rad1, Rad2, ... , RadN));

defining n co-spherical spheres, all located at SprCntr with radii of Rad1 to RadN.
Example:

IRIT Solid modeler G. Elber 204

Figure 83: Computes all ray-traps between three circles, using RAYTRAPS.

resolution = 20;

RefLns = RflctLn(Srf,

vector(0, 1, 2),

list(vector(0, 0, 1),

list(point(-3.0, 2, 0),

point(-1.5, 2, 0),

point(0.0, 2, 0),

point(1.5, 2, 0),

point(3.0, 2, 0))),

true);

RefOvals = RflctLn(Srf,

vector(1, 1, 0),

list(point(0, 2, 0),

list(5, 25, 45, 65, 85)),

true);

computes the reflection lines of surface Srf from viewing direction (0, 1, 2) having
five reflected lines and computes five reflection ovals from viewing direction (1, 1, 0).
See also ReflectLns attributes in the display devices.

IRIT Solid modeler G. Elber 205

11.2.277 ROCKETFUEL

ListType ROCKETFUEL(SurfaceType SectionSrfGeom, VectorType MeshSize,

CurveType ThurstProfileCurve, NumericType SliceThrough,

NumericType BndrySrfs, NumericType ApplyRGB)

or

ListType ROCKETFUEL(TrivarType TVGeom, VectorType MeshSize,

CurveType ThurstProfileCurve, NumericType SliceThrough,

NumericType BndrySrfs, NumericType ApplyRGB)

computes an abstract hetergeneous rocket fuel based on a given geometry, that can
either be a cross section surface, SectionSrfGeom, to be rotated along Zto form a trivari-
ate, or a trivariate directly, as TVGeom. The volumetric geometry is sampled MeshSize
samples in (u, v, w), during the approximation. The buring profile is set via ThurstPro-
fileCurve, with a time domain of [0, 1], where the last dimension of ThurstProfileCurve is
used as the buring rate. The last three parameters controls the output. if SliceThrough
is TRUE, some portion of the volume is removed to show the inside. If BndrySrfs is
TRUE, the boundary surfaces of the volume are returned (i.e. for fast display) instead
of the full volumetric geometry. Both returned surfaces or trivariates are going to be in
E4 or P4 space, where the fourth dimension specifies the amount of retardant (negative)
or accelerants (positive) to relatively locally add. Finally, if ApplyRGB is TRUE, ”rgb”
attributes are added to the geometry according to the heterogeneity mix, have retardants
in blue, accelrant in red and nuetral fuel in green.

Example:

Fuel = rocketFuel(TV, vector(10, 10, 10), ThrustCurve,

TRUE, TRUE, TRUE);

generates the abstract fuel shaped as trivariate TV, sampled into a 10x10x10 grid, having
a thrust profile following ThrustCurve, with a slice through the geometry of the result,
with boundary surfaces only, and RGB colors representing the heterogeneity.

11.2.278 RRINTER

ListType RRINTER(CurveType Srf1Crv1, CurveType Srf1Crv2,

CurveType Srf2Crv1, CurveType Srf2Crv2,

NumericType SubdivTol, NumericType ZeroSetFunc)

computes the intersection curves of the given two ruled surfaces, defined as

SrfiCrv1 ∗ v + SrfiCrv2 ∗ (1− v), i = 1, 2, v ∈ [0, 1]. (25)

The ruled ruled intersection (RRI) problem is tranformed into a zero set finding on an-
other function. If ZeroSetFunc is true, the function whose zero set provides the RRIso-
lution is returned. Otherwise, if ZeroSetFunc is false, the RRI solution itself is returned.
The zero set is computed via numerical zero set finding methods and Tolerance controls
the fineness of the approximated solution. If Tolerance is negative, the absolute value

IRIT Solid modeler G. Elber 206

Figure 84: Computation of the intersection curve between two ruled surfaces via the RRINTER com-
mand. On the left, the four intersection curves are shown, while (right) shows the computed function
whose zero set provides the request RRI solution.

is employed as Tolerance but the intersection curves are computed as if the two ruled
surfaces are infinite (i.e. v is unbounded). See Figure 84.

Example:

c1 = cbezier(list(ctlpt(E3, -1.0, -1.0, -1.0),

ctlpt(E3, -0.5, 8.0, -1.0),

ctlpt(E3, 0.0, -15.0, -1.0),

ctlpt(E3, 0.5, 8.0, -1.0),

ctlpt(E3, 1.0, -1.0, -1.0)));

c2 = c1 * sc(0.7) * tz(1.7);

r1 = ruledSrf(0, c1, c2);

c1 = pcircle(vector(0, 0, 0), 0.3) * tz(2);

c2 = c1 * sc(0.5) * tz(-3);

r2 = ruledSrf(0, c1, c2) * ry(90);

c = RRINTER(cMesh(r1, row, 0),

cMesh(r1, row, 1),

cMesh(r2, row, 0),

cMesh(r2, row, 1),

0.1, false);

interact(list(r1, r2, nth(c, 1)));

See also SSINTER, SSINTR2 and GGINTER.

11.2.279 RULEDFIT

SurfaceType RULEDFIT(SurfaceType Srf, NumericType Dir,

IRIT Solid modeler G. Elber 207

Figure 85: A ruled surface fitting to a general hyperbolic surface using RULEDFIT.

NumericType DomainExtension, NumericType SamplingRate)

fits a ruled surface to the given general surface Srf along the specified Dir direction.
Normally DomainExtension is zero but it can be used to extend the domain so the ruling
can start/end outside Srf’s domain. Finally SamplingRate sets the number of samples to
use along the fitting Dir.

Example:

rSrf = ruledfit(Srf, col, 0.0, 40);

fits a ruled surface to Srf along the col direction with no extension and 40 samples.
See Figure 85.
See also RULEDSRF.

11.2.280 RULEDSRF

SurfaceType RULEDSRF(Mode, CurveType Crv1, CurveType Crv2)

or

IRIT Solid modeler G. Elber 208

PolygonType RULEDSRF(Mode, PolygonType Poly1, PolygonType Poly2)

The Mode parameter indicates which variant of the operator to use. For regular ruling
operator, it should be 0. The regular operator construct a ruled surface between the two
curves Crv1 and Crv2 or two polylines Poly1 and Poly2. If The curves do not have to
have the same order or type, and will be promoted to their least common denominator.
The polys must have the same number of points and both must be either polygons or
polylines.

For a Kernel-based ruling operator, which is used to construct valid planar ruled
surface (aiming to ensure positive Jacobian throughout the domain, while parametrization
will no longer will be linear between the input curves), the Mode parameter should be a
list of five numeric values: (Op, DistRatio, Limit, SubEps, IsSingular), where

• Op is either 0 or 1 for adding DOFs using degree raising or knot insertion, respec-
tively.

• DistRatio is a number in [0, 1] to set how far to move internal control points toward
the kernel. If 1 the points are moved to the kernel point.

• Place a Limit on the number of knots to add or the maximal degree in degree raising.

• SubEps is the Subdivision epsilon. 0.01 is a reasonable start for a unit size geometry.

• IsSingular can be: TRUE to allow singularity at the kernel point. FALSE all the
surface is regular.

The Kernel-based ruling operator, if successful, constructs a valid ruled surface be-
tween Crv1 and Crv2, which has the same boundaries as the regular ruled surface, but
its interior parametrization will be non linear.

Example:

c1 = cbspline(3,

list(ctlpt(E3, 1.7, 0.0 , 0),

ctlpt(E3, 0.7, 0.7 , 0),

ctlpt(E3, 1.7, 0.3 , 0),

ctlpt(E3, 1.5, 0.8 , 0),

ctlpt(E3, 1.6, 1.0 , 0)),

list(KV_OPEN));

c2 = cbspline(3,

list(ctlpt(E3, 0.7, 0.0 , 0),

ctlpt(E3,-0.7, 0.2 , 0),

ctlpt(E3, 0.7, 0.5 , 0),

ctlpt(E3,-0.7, 0.7 , 0),

ctlpt(E3, 0.7, 1.0 , 0)) ,

list(KV_OPEN));

srf1 = RULEDSRF(0, c1, c2);

interact(list(c1, c2, srf1), on);

IRIT Solid modeler G. Elber 209

Figure 86: A naive construction of a ruled surface (left) using RULEDSRF results in self intersection.
FFMATCH is employed (right) to automatically resolve this self intersection.

c2a = ffmatch(c1, c2, 50, 100, 2, false, 1);

srf2 = RULEDSRF(0, c1, c2a);

interact(list(c1, c2, srf2), on);

constructs a planar ruled surface between two curves, c1 and c2. The naive construc-
tion causes self intersection, but by employing FFMATCH the self intersection can be
resolved. See Figure 86.

c1 = cbezier(

list(ctlpt(E2, -1., -1.),

ctlpt(E2, -0.724, -1.973),

ctlpt(E2, 1.026, -1.983),

ctlpt(E2, -0.756, -0.283),

ctlpt(E2, 1., -1.)));

c2 = cbezier(

list(ctlpt(E2, -1., 1.),

ctlpt(E2, -0.738, 0.975),

ctlpt(E2, -1.639, 1.54),

ctlpt(E2, -1.965, 1.636),

ctlpt(E2, 1., 1.)));

srf1 = RULEDSRF(0, c1, c2);

interact(list(c1, c2, srf1), on);

srf2 = RULEDSRF(list(0, 1.0, 5, 0.01, TRUE), bottom , top) * tx(-3);

srf3 = RULEDSRF(list(1, 1.0, 5, 0.01, TRUE), bottom, top) * tx(3);

interact(list(c1, c2, srf1, srf2, srf3), on);

constructs a planar ruled surface between two curves, c1 and c2. The naive con-
struction causes self intersection. By using the kernel-based ruling operator, the self
intersection can be resolved. After adding degree of freedoms to the input curves using
either degree raising operator or refinement.

See also SRFORTHONET, RULEDTV, RULEDVMDL, FFMATCH and RULEDFIT.

IRIT Solid modeler G. Elber 210

11.2.281 RULEDTV

TrivarType RULEDTV(Mode, SurfaceType Srf1, SurfaceType Srf2)

Mode parameter indicates which variant of the operator to use. For regular ruling op-
erator, should be 0. The regular operator constructs a ruled trivariate between the two
surfaces Srf1 and Srf2. The surfaces do not have to have the same order or type, and will
be promoted to their least common denominator.

For a Kernel-based ruling operator, which is used to construct valid trivariate (i.e.
with positive Jacobian throughout the domain, if possible), the Mode parameter should
be a list of five numeric values: (Op, DistRatio, Limit, SubEps, IsSingular), where

• Op is either 0 or 1 for adding DOFs using degree raising or knot insertion, respec-
tively.

• DistRatio is a number in [0, 1] to set how far to move internal control points toward
the kernel. If 1 the points are moved to the kernel point.

• Place a Limit on the number of knots to add or the maximal degree in degree raising.

• SubEps is the Subdivision epsilon. 0.01 is a reasonable start for a unit size geometry.

• IsSingular can be: TRUE to allow singularity at the kernel point. FALSE all the
surface is regular.

The Kernel-based ruling operator, if successful, constructs a valid ruled trivariate
between Srf1 and Srf2, which has the same boundaries as the regular ruled trivariate, but
its interior parametrization will be non linear.

Example:

s1 = boolone(pcircle(vector(0, 0, 0), 1));

s2 = boolone(pcircle(vector(0, 0, 1), 0.5));

tv = RULEDTV(0, s1, s2);

constructs a truncated cone-volume as a ruled trivariate between two surfaces, s1 and
s2. See Figure 87.

See also RULEDSRF, RULEDVMDL, EXTRUDE, and TFROMSRFS.

11.2.282 RULEDVMDL

TrivarType RULEDVMDL(TrimSrfType TSrf1, SurfaceType Srf2, NumericType ResultType)

Constructs a ruled volumetric model (as a trimmed trivariate) between the two sur-
faces TSrf1 and Srf2. The trimming curves of TSrf1 will be extruded into the third
dimension of the volume and will be employed as the trimming surfaces of the result.
The result will be a VModelType if ResultType is TRUE and a ModelType otherwise.
The surfaces do not have to have the same order or type, and will be promoted to their
least common denominator.

Example:

RuledVModel = RULEDVMDL(tsrf, s * sc(0.9), true);

See also VMDLSWP, VMDLREV, RULEDSRF, EXTRUDE, and TFROMSRFS.

IRIT Solid modeler G. Elber 211

Figure 87: A ruled volume as a trivariate between two disc surfaces, created via the RULEDTV
function.

11.2.283 SACCESS

ListType SACCESS(SurfaceType AccessSrf,

AnyType OrientFieldSrf,

SurfaceType CheckSrf,

NumericType SubdivTol,

NumericType NumericTol)

computes the domain on the AccessSrf surface that is accessible from the orientation
that is optionally prescribed by OrientFieldSrf, without gouging into the CheckSrf surface.
If OrientFieldSrf is not a surface, the normal field of AccessSrf is employed. AccessSrf
and OrientFieldSrf must share a (u, v) domain, whereas CheckSrf can present a different
(s, t) domain.

The accuracy of the computation is governed by a two stage solution, a subdivision
stage with tolerance SubdivTol followed by a numerical improvement stage with Numer-
icTol accuracy. The second, numeric, stage is invoked only if NumericTol ¡ SubdivTol.

The returned results are a set of points on the boundary of the accessible region. The
points are in E4 space as (u, v, s, t) 4-tuples.

Example:

c = cregion(pcircle(vector(0, 0, 0), 1), 1, 3) * ry(90);

pSphere = surfPRev(c) * sc(0.3) * tz(1);

IRIT Solid modeler G. Elber 212

Figure 88: The limit of the accessible area of the plane along the normal direction, without gouging
into the sphere is computed and presented using the SACCESS function.

Pln = ruledSrf(0,

ctlpt(E3, -1, -1, 0) + ctlpt(E3, -1, 1, 0),

ctlpt(E3, 1, -1, 0) + ctlpt(E3, 1, 1, 0));

Pts = SACCESS(Pln, 0, pSphere, 0.1, 1e-5);

sPts = nil();

sPtsErr = nil();

for (i = 1, 1, sizeof(Pts),

Pt = nth(Pts, i):

Err = getAttr(Pt, "Error"):

if (Err > 1e-5,

snoc(seval(Pln, coord(Pt, 1), coord(Pt, 2)), sPtsErr),

snoc(seval(Pln, coord(Pt, 1), coord(Pt, 2)), sPts)));

color(sPts, green);

color(sPtsErr, red);

interact(list(pSphere, Pln, sPts, sPtsErr));

computes the access domain of plane Pln along the normal, Z, direction while prevent-
ing gouging into the check surface pSphere. See Figure 88. See MZERO for the meaning
of SubdivTol and NumerTol.

11.2.284 SADAPISO

CurveType SADAPISO(SurfaceType Srf, NumericType OutputType, NumericType Dir,

NumericType Eps, NumericType FullIso,

NumericType SinglePath, ListType WeightPtSclWdt)

IRIT Solid modeler G. Elber 213

Constructs a coverage to Srf using isocurves, if OutputType is 1, in the Dir direction and
simple iso-distance function. If OutputType is 2, the used iso-distance function takes into
account the skewing in the transformation (i.e. the non-orthogonality on conformality).
Finally, if OutputType is 0, the constructed coverage to Srf will be using quadrilaterals.
The coverage to the surface Srf is in the following sense, using isocuves, for any point
p on surface Srf, there exists a point on one of the isocurves that is close to p within
Eps. If FullIso, the extracted isocurves span the entire surface domain; otherwise they
may span only a subset of the domain. If SinglePath, an approximation to a single path
(Hamiltonian path) that visits all isocurves is constructed (not supported). If Srf has
an integer ”AdapIsoMinSubdivLevel” attribute, it is used to set the minimal subdivision
level used in the adaptive isocurve computations.

If quadrilaterals are generated, one can force higher density of quads at some zone using
the WeightPtSclWdt parameter that is a list of length three: (point of interest, weight of
influence, scale factor). See also COVERPT, COVERISO.

srf = sbezier(list(list(ctlpt(E3, -0.5, -1.0, 0.0),

ctlpt(E3, 0.4, 0.0, 0.1),

ctlpt(E3, -0.5, 1.0, 0.0)),

list(ctlpt(E3, 0.0, -0.7, 0.1),

ctlpt(E3, 0.0, 0.0, 0.0),

ctlpt(E3, 0.0, 0.7, -0.2)),

list(ctlpt(E3, 0.5, -1.0, 0.1),

ctlpt(E3, -0.4, 0.0, 0.0),

ctlpt(E3, 0.5, 1.0, -0.2))));

attrib(srf, "AdapIsoMinSubdivLevel", 2);

aiso = SADAPISO(srf, TRUE, COL, 0.1, FALSE, FALSE, NIL());

constructs an adaptive isocurve approximation with tolerance of 0.1 to surface srf in
direction COL. Isocurves are allowed to span a subset of the surface domain. No single
path is needed.

The SinglePath option is currently not supported. See also TADAPISO.

11.2.285 SASPCTGRPH

PolyType SASPCTGRPH(SurfaceType Srf)

approximates the aspect graph of surface Srf by computing the principal directions
with zero curvature at the parabolic points of Srf. The aspect graph is defined over the
unit sphere and identifies all direction from which the silhouette curves of Srf change
topology.

Example:

AG = SAspctGrph(Srf);

See also SILHOUETTE.

11.2.286 SASYMPEVAL

ListType SASYMPEVAL(SurfaceType Srf, NumericType U, NumericType V,

NumericType Euclidean)

IRIT Solid modeler G. Elber 214

evalutes the asymptotic direction of surface Srf at parametric location (U, V), if any.
If Euclidean is not zero, the directions are returned in Euclidean space, otherwise, in
parametric space. Returned is a list of upto two vectors.

Example:

AsympDir = SAsympEval(Srf, u, v, true);

See also SCRVTR.

11.2.287 SBEZIER

SurfaceType SBEZIER(ListType CtlMesh)

creates a Bezier surface using the provided control mesh. CtlMesh is a list of rows,
each of which is a list of control points. All control points must be of type (E1-E9, P1-P9),
or regular PointType defining the surface’s control mesh. The surface’s point type will
be of a space which is the union of the spaces of all points.

The created surface is the piecewise polynomial (or rational) surface,

S(u, v) =
m∑
i=0

n∑
j=0

PijBi(u)Bj(v) (26)

where Pij are the control points CtlMesh, and m and n are the degrees of the surface,
which are one less than the number of points in the appropriate direction.

Example:

Srf = SBEZIER(list (list(ctlpt(E3, 0.0, 0.0, 1.0),

ctlpt(E3, 0.0, 1.0, 0.0),

ctlpt(E3, 0.0, 2.0, 1.0)),

list(ctlpt(E3, 1.0, 0.0, 0.0),

ctlpt(E3, 1.0, 1.0, 2.0),

ctlpt(E3, 1.0, 2.0, 0.0)),

list(ctlpt(E3, 2.0, 0.0, 2.0),

ctlpt(E3, 2.0, 1.0, 0.0),

ctlpt(E3, 2.0, 2.0, 2.0)),

list(ctlpt(E3, 3.0, 0.0, 0.0),

ctlpt(E3, 3.0, 1.0, 2.0),

ctlpt(E3, 3.0, 2.0, 0.0)),

list(ctlpt(E3, 4.0, 0.0, 1.0),

ctlpt(E3, 4.0, 1.0, 0.0),

ctlpt(E3, 4.0, 2.0, 1.0))));

See Figure 89.
See also CBEZIER, SBSPLINE and SPOWER.

11.2.288 SBISECTOR

SurfaceType SBISECTOR(SurfaceType Srf, PointType Pt)

IRIT Solid modeler G. Elber 215

Figure 89: A Bezier surface (left) of degree 3 by 5 and a B-spline surface (right) of degree 3 by 3
(bi-quadratic). Both share the same control mesh.

computes the bisector surface of a given surface to a point. See also CBISECTOR2D,
CBISECTOR3D.

Example:

s = ruledSrf(0,

ctlpt(E3, -1.0, -1.0, 0.0) + ctlpt(E3, 1.0, -1.0, 0.0),

ctlpt(E3, -1.0, 1.0, 0.0) + ctlpt(E3, 1.0, 1.0, 0.0));

pt = point(0.0, 0.0, 1.0);

bisect = SBISECTOR(s, pt);

interact(list(s, pt, bisect));

computes the bisector surface of a plane and a point. See Figure 90.

11.2.289 SBSPLINE

SurfaceType SBSPLINE(NumericType UOrder, NumericType VOrder,

ListType CtlMesh, ListType KnotVectors)

creates a B-spline surface from the provided UOrder and VOrder orders, the control
mesh CtlMesh, and the two knot vectors KnotVectors. CtlMesh is a list of rows, each of
which is a list of control points. All control points must be of point type (E1-E9, P1-P9),
or regular PointType defining the surface’s control mesh. The surface’s point type will
be of a space which is the union of the spaces of all points. KnotVectors is a list of two
knot vectors. Each knot vector is a list of NumericType knots of length #CtlPtList plus
the Order. If, however, the length of the knot vector is equal to #CtlPtList + Order +
Order - 1, the curve is assumed to be periodic. The knot vector may also be a list of a
single constant KV OPEN or KV FLOAT or KV PERIODIC, in which a uniform knot
vector with the appropriate length and with an open, floating or periodic end condition
will be constructed automatically.

The created surface is the piecewise polynomial (or rational) surface,

S(u, v) =
m∑
i=0

n∑
j=0

PijBi,χ(u)Bj,ξ(v) (27)

IRIT Solid modeler G. Elber 216

Figure 90: (a) Bisector surface of a plane and a point computed using the SBISECTOR command.

where Pij are the control points CtlMesh, and m and n are the degrees of the surface,
which are one less than UOrder and VOrder. χ and ξ are the two knot vectors of the
surface.

Example:

Mesh = list (list(ctlpt(E3, 0.0, 0.0, 1.0),

ctlpt(E3, 0.0, 1.0, 0.0),

ctlpt(E3, 0.0, 2.0, 1.0)),

list(ctlpt(E3, 1.0, 0.0, 0.0),

ctlpt(E3, 1.0, 1.0, 2.0),

ctlpt(E3, 1.0, 2.0, 0.0)),

list(ctlpt(E3, 2.0, 0.0, 2.0),

ctlpt(E3, 2.0, 1.0, 0.0),

ctlpt(E3, 2.0, 2.0, 2.0)),

list(ctlpt(E3, 3.0, 0.0, 0.0),

ctlpt(E3, 3.0, 1.0, 2.0),

ctlpt(E3, 3.0, 2.0, 0.0)),

list(ctlpt(E3, 4.0, 0.0, 1.0),

ctlpt(E3, 4.0, 1.0, 0.0),

IRIT Solid modeler G. Elber 217

ctlpt(E3, 4.0, 2.0, 1.0)));

Srf = SBSPLINE(3, 3, Mesh, list(list(KV_OPEN),

list(3, 3, 3, 4, 5, 6, 6, 6)));

constructs a bi-quadratic B-spline surface with its first knot vector having a uniform
knot spacing with open end conditions. See Figure 89.

See also CBSPLINE, SBEZIER and SPOWER.

11.2.290 SCINTER

ListType SCINTER(SurfaceType Srf, CurveType Crv,

NumericType SubdivTol, NumericType NumericTol,

NumeircType Euclidean)

Returns the intersection points of Srf S(u, v) and Crv C(t) in the parametric space if
Euclidean FALSE, and in the Euclidean space if Euclidean TRUE. Parametric locations
are returned as (t, u, v) tuples and Euclidean points as (x, y, z). SubdivTol and NumericTol
sets the accuracy of the computation.

Example:

InterPt = SCINTER(glass, 3DCrv, 0.01, 1e-10, true);

Computes the intersection locations of surface glass and curve 3DCrv, in Euclidewan
space.

See also SLINTER, SSINTER, RRINTER, SSINTR2 and GGINTER.

11.2.291 SCRVTR

SurfaceType SCRVTR(SurfaceType Srf, ConstType PtType, ConstType Dir)

symbolically computes the extreme curvature bound on Srf. If Dir is either ROW
or COL, then the normal curvature square of Srf in Dir is computed symbolically and
returned. Otherwise, an upper bound on the sum of the squares of the two principle
curvatures is symbolically computed and returned.

The returned value is a surface that can be evaluated to the curvature bound, given a
UV location. The returned surface value is a scalar field of point type P1 (scalar rational).
However, if PtType is one of E1, P1, E3, or P3, the returned surface is coerced to this
given type. If the types are one of E3, or P3, then the Y and Z axes are set to be
equivalent to the U and V parametric domains.

This function computes the square of the normal curvature scalar field for surfaces as
(in the U parametric direction, same for V),

κun(u, v) =

〈
n, ∂

2S
∂u2

〉
〈
∂S
∂u ,

∂S
∂u

〉 (28)

and computes ξ(u, v) = k1(u, v)
2 + k2(u, v)

2 as the scalar field of

ξ(u, v) =
(g11l22 + l11g22 − 2g12l12)

2 − 2 |G| |L|
|G|2 ‖n‖2 , (29)

IRIT Solid modeler G. Elber 218

where gij and lij are the coefficients of the first and second fundamental forms G and L.
See also CCRVTR, SCRVTREVAL, SASYMPEVAL.
Example:

cross = cbspline(3,

list(ctlpt(E2, 0.0, 0.0),

ctlpt(E2, 0.8, 0.0),

ctlpt(E2, 0.8, 0.2),

ctlpt(E2, 0.07, 1.4),

ctlpt(E2, -0.07, 1.4),

ctlpt(E2, -0.8, 0.2),

ctlpt(E2, -0.8, 0.0),

ctlpt(E2, 0.0, 0.0)),

list(KV_OPEN));

cross = coerce(cross, e3);

s = sFromCrvs(list(cross,

cross * trans(vector(0.5, 0, 1)),

cross * trans(vector(0, 0, 2))), 3, KV_OPEN);

view(list(s, axes), on);

UCrvtrZXY = scrvtr(s, E3, row);

VCrvtrZXY = scrvtr(s, E3, col);

UCrvtrXYZ = UCrvtrZXY * rotx(-90) * roty(-90) * scale(vector(1, 1, 0.001));

VCrvtrXYZ = VCrvtrZXY * rotx(-90) * roty(-90) * scale(vector(1, 1, 10));

color(UCrvtrXYZ, red);

color(VCrvtrXYZ, magenta);

view(list(UCrvtrXYZ, VCrvtrXYZ), off);

CrvtrZXY = scrvtr(s, E3, off);

CrvtrXYZ = CrvtrZXY * rotx(-90) * roty(-90) * scale(vector(1, 1, 0.001));

color(CrvtrXYZ, green);

view(CrvtrXYZ, off);

computes the square of the normal curvature in the U and V directions, flips its scalar
value from X to Z using rotations and scales the fields to reasonable values, and then
displays them. It also displays a total bound on the normal curvature.

Due to the large degree of the resulting fields, be aware that rational surfaces will
compute into large degree curvature bound fields. See also IRITSTATE ”InterpProd”
option for faster symbolic computation. See Figure 91.

11.2.292 SCRVTREVAL

ListType SCRVTREVAL(SurfaceType Srf, NumericType U, NumericType V,

NumericType Euclidean)

computes the principle curvatures and directions of surface Srf at parametric location
(U, V). A list of four elements (k1, V1, k2, V2), with k1/V1 being the first principle

IRIT Solid modeler G. Elber 219

Figure 91: From left to right: original surface, normal curvature in the U direction, normal curvature
in the V direction, sum of the square of principle curvatures (different scales). All computed using
SCRVTR.

curvature/direction and k2/V2 being the second, is returned. If Euclidean is TRUE then
the principle curvatures are returned in Euclidean space. Consecutive calls with the same
surface Srf to SCRVTREVAL will yield more efficient evaluations as derivative data is
cached.

Example:

Crvtr = SCRVTREVAL(Srf, 0.5, 0.5, True);

K = nth(Crvtr, 1) * nth(Crvtr, 3);

computes the Total (Gaussian) curvatures, K = k1 * k2, of Srf at (0.5, 0.5). See also
SCRVTR.

11.2.293 SDDMMAP

PolyType SDDMMAP(SurfaceType BaseSrf, PolyType Bump,

NumericType UDup, NumericTye VDup, NumericTye LclUVs)

Tiles a composition of Bump over surface BaseSrf UDup by VDup times, creating
a detailed bump geometry. Bump can be any polygonal geometry whatsoever with XY
coordinates that are contained in the unit square [0, 1]x[0, 1], while Z serves as the elevation
above the surface. The composed geometry could inherit the UV texture ccordinates from
the UV coordinates found in Bump if LclUVs is TRUE or inherit BaseSrf UV coordinates
if LclUVs is FALSE.

Example:

BaseTorus = torusSrf(1, 0.2);

BumpTorus = SDDMMAP(BaseTorus, BumpPolyObj, 6, 8, on);

constructs a bumpy BumpTorus with a bump tiled 6 x 8 times over the surface. See
Figure 92. See also TEXTWARP, TDEFORM.

IRIT Solid modeler G. Elber 220

+ =

Figure 92: Polygonal geometry (left) could be tiled over arbitrary surface, torus in this case (middle),
to yield a bumpy shape (right) using the SDDMMAP function.

11.2.294 SDERIVE

SurfaceType SDERIVE(SurfaceType Srf, NumericType Dir)

returns a vector field surface representing the differentiated surface in the given di-
rection (ROW or COL). Evaluation of the returned surface at a given parameter value
will return a vector tangent to Srf in Dir at that parameter value.

DuSrf = SDERIVE(Srf, ROW);

DvSrf = SDERIVE(Srf, COL);

Normal = coerce(seval(DuSrf, 0.5, 0.5), VECTOR_TYPE) ^

coerce(seval(DvSrf, 0.5, 0.5), VECTOR_TYPE);

computes the two partial derivatives of the surface Srf and computes its normal as their
cross product, at the parametric location (0.5, 0.5). See also CDERIVE, TDERIVE, and
MDERIVE.

11.2.295 SDIVCRV

CurveType SDIVCRV(SurfaceType Srf, CurveType Crv)

subdivides surface Srf into two along curve Crv, assuming that: Crv is a simple curve
in the UV parametrci domain of Srf and that Crv divides the domain of Srf into two
regions by starting and ending on two opposite boundaries of Srf. Either Crv starts and
ends in UMin/UMax or VMin/VMax of Srf.

Example:

Srfs = SDIVCRV(Srf, Crv);

See Figure 93. See also SDIVIDE.

IRIT Solid modeler G. Elber 221

Figure 93: A surface can be subdivided along a general curve that splits its domain into two distinct
regions using SDIVCRV. Left shows the input and the right shows the result (after shifting a bit the
two surface regions).

11.2.296 SDIVIDE

SurfaceType SDIVIDE(SurfaceType Srf, ConstantType Direction,

NumericType Param)

or

TrimSrfType SDIVIDE(TrimSrfType Srf, ConstantType Direction,

NumericType Param)

subdivide a (possibly trimmed) surface into two at the specified parameter value Param
in the specified Direction (ROW or COL). Srf can be either a B-spline surface in which
Param must be contained in the parametric domain of the surface, or a Bezier surface in
which Param can be arbitrary, extrapolating if not in the range of zero to one.

It returns a list of upto two sub-surfaces. The individual surfaces may be extracted
from the list using the NTH command. If Srf is a trimmed surface, it may be the case
that one of the two subdivided surfaces is completely trimmed out, and hence only one
surface will be returned.

Example:

SrfLst = SDIVIDE(Srf, ROW, 0.5);

Srf1 = nth(SrfLst, 1);

Srf2 = nth(SrfLst, 2);

subdivides Srf at the parameter value of 0.5 in the ROW direction. See Figure 94.
See also CDIVIDE, SDIVCRV, TDIVIDE, and MDIVIDE

IRIT Solid modeler G. Elber 222

Figure 94: A surface can be subdivided into two distinct regions using SDIVIDE.

11.2.297 SDVLPCRV

SurfaceType SDVLPCRV(SurfaceType Srf, CurveType Crv, ListType Params)

constructs a developable surface, give curve Crv and surface Srf. If Crv is a 2D curve,
it is assumed in the parametric domain of Srf and a developable sheet that is tangent to
Srf along Crv is constructed. In this case, Params holds only one NumericType parameter
setting the scaling of the constructed developable surface in the ruling direction.

If Crv is a 3D curve, a developable sheet is constructed that is in tangential contant
with both curve Crv and surface Srf. Then, Params is a list of five parameteras as (Ori-
entField, SubdivTol, NumericTol, Euclidean, CrvReduction) where OrientField, if is a
curve, prescribes where to look for solutions of the next developable in the surface (u,
v) space, along Crv params. This optional curve is assumed to have the same parame-
terization as Crv. SubdivTol, NumericTol: Controls the solution process tolerances and
Euclidean is TRUE to return the construct developable scroll(s) in the Euclidean space,
or otherwise it will be returned in (u, v, t) space. Finally, CrvSizeReduction allows a
reduction in size of traced curve while ensuring the Tolerance, conservatively.

Example:

DvlpSrf = SDVLPCRV(Srf, Circ, list(0.03));

constructs a developable surface that is tangent to Srf along Circ that is the parametric
domain of Srf. See also PRISA, DVLPSTRIP and PRULEDALG

IRIT Solid modeler G. Elber 223

11.2.298 SELFINTER

ListType SELFINTER(CurveType Crv, NumericType SubdivTol,

NumericType NumerTol, NumericType MinNrmlDeviation,

NumericType Euclidean)

or

ListType SELFINTER(SurfaceType Srf, NumericType SubdivTol,

NumericType NumerTol, NumericType MinNrmlDeviation,

NumericType Euclidean)

computes the self intersection locations/curves of a given curve or surface. Returned
is a list of points/piecewise linear curves. The returned locations, if in the parameteric
space (see below), are pairs of parameter values along the curve in case of a curve and
a 4-tuple holding the pair of surface location, in case of surfaces. See MZERO for the
meaning of SubdivTol and NumerTol. If MinNrmlDeviation is positive it specifies the
minimal deviation angle required for the two normal at the self intersection (of the two
different interesecting locations), in degrees. If -1, a different approach algother is used
that eliminates the redundant diagonal factor in the self intersection constraint. If -2,
miter (singular Jacobian) locations are computed. If Euclidean, the returned data is in
Euclidean space. Otherwise, the returned data is in parameteric space.

Example:

si1 = selfinter(crv, 0.001, 1e-10, 15.0, true);

si2 = selfinter(crv, 0.001, 1e-10, -1.0, true);

See also PSELFINTER

11.2.299 SETCOVER

ListType SETCOVER(ListType RangesSet, NumericType OverlapTolerance)

computes the minimal subset of the given set RangesSet, that covers the entire domain
spanned by RangesSet. A range is a list object with two numeric values, the start and
end of this specific range. Each element in RangesSet can be either a range, or a list of
ranges. OverlapTolerance specifies the tolerance to use in overlapping ranges. Returned
is a list of indices (first element zero) that prescribe the minimal coverage. Note that the
former case of a single range per element is solved in an almost linear time whereas the
later case of multiple ranges per element is exponential. Hence, do not attempt to find
minimal coverage of more than a few elements in the later case.

Example:

Ranges = list(list(0.0, 0.4),

list(0.1, 0.4),

list(0.3, 1.0),

list(0.1, 0.9));

Indcs = SETCOVER(Ranges, 1e-7);

and SETCOVER should return ”list(0, 2)”, the two indices of the ranges that cover
this domain of [0, 1]. See also CVISIBLE.

IRIT Solid modeler G. Elber 224

11.2.300 SEDITPT

SurfaceType SEDITPT(SurfaceType Srf, CtlPtType CPt, NumericType UIndex,

NumericType VIndex)

provides a simple mechanism to manually modify a single control point number UIndex
and VIndex (base count is 0) in the control mesh of Srf by substituting CtlPt instead.
CtlPt must have the same point type as the control points of Srf. The original surface
Srf is not modified.

Example:

CPt = ctlpt(E3, 1, 2, 3);

NewSrf = SEDITPT(Srf, CPt, 0, 0);

constructs a NewSrf with the first control point of Srf being CPt.

11.2.301 SEVAL

CtlPtType SEVAL(SurfaceType Srf, NumericType UParam, NumericType VParam)

or

CtlPtType SEVAL(TrimSrfType Srf, NumericType UParam, NumericType VParam)

evaluates the provided (possibly trimmed) surface Srf at the given UParam and VParam
parameters. Both UParam and VParam should be contained in the surface parametric
domain if Srf is a B-spline surface, or between zero and one if Srf is a Bezier surface. The
returned control point has the same type as the control points of Srf.

Example:

CPt = SEVAL(Srf, 0.25, 0.22);

evaluates Srf at the parameter values of (0.25, 0.22). See also CEVAL, MEVAL,
TEVAL.

11.2.302 SFLECNODAL

PolyType SFLECNODAL(SurfaceType Srf, NumericType SubdivTol,

NumericType NumericTol, NumericType ContactOrder)

computes the flecnodal curves over a given freeform geometry, Srf, if ContactOrder is
4.. The flecnodal curves are curves of contact of order three with a line in an asymptotic
direction. SubdivTol and NumericTol controls the subdivision and numeric tolerances of
the approximation. Typically the subdivision tolerance is fairly coarse. This function can
also be used to compute flecnodal points of contact, if ContactOrder is set to 4.

Example:

flecs = SFlecnodal(srf, 0.05, -1e-6, 3);

See also MZERO for the meaning of SubdivTol and NumerTol.

IRIT Solid modeler G. Elber 225

Figure 95: A focal surface (right) of a glass surface (left) can be computed using SFOCAL.

11.2.303 SFOCAL

SurfaceType SFOCAL(SurfaceType Srf, NumericType Dir)

evaluates the focal surface field of surface Srf using the normal curvature in the isopara-
metric direction as given by Dir (either ROW or COL). Note this function is not using
the principal curvatures as is generaly the case for focal surfaces.

Example:

gcross = cbspline(3,

list(ctlpt(E3, 0.3, 0.0, 0.0),

ctlpt(E3, 0.1, 0.0, 0.1),

ctlpt(E3, 0.1, 0.0, 0.4),

ctlpt(E3, 0.5, 0.0, 0.5),

ctlpt(E3, 0.6, 0.0, 0.8)),

list(KV_OPEN));

glass = surfprev(gcross);

color(glass, red);

gfocal = SFOCAL(glass, col);

evaluates the focal surface using the COL isoparametric direction’s normal curvature
of the glass surface. See Figure 95.

11.2.304 SFXCRVTRLN

SurfaceType SFXCRVTRLN(SurfaceType Srf,

NumericType k1,

IRIT Solid modeler G. Elber 226

NumericType Step,

NumericType SubdivTol,

NumericType NumerTol,

NumericType Euclidean)

Comptues the lines of curvatures of surface Srf where one principle curvature is fixed
to the value of k1, if any. Step, SubdivTol, and NumerTol controls the step size and tol-
erances of the approximated curvature lins. If Euclidean is TURE, the result is returned
in Euclidean space. Otherwise, a parameteric curve will be resulted in Srf.

Example:

CLns5 = sFxCrvtrLn(s, 1, 0.003, 0.001, 1e-8, TRUE);

11.2.305 SFROMCRVS

SurfaceType SFROMCRVS(ListType CrvList,

NumericType OtherOrder,

NumericType OtherEndCond)

or

SurfaceType SFROMCRVS(ListType CrvList,

NumericType OtherOrder,

ListType OtherKnotVector)

constructs a surface by substituting the curves in CrvList as rows in a control mesh
of a surface. The curves in CrvList are made compatible by promoting Bezier curves to
B-splines if necessary, and raising the degrees and refining as required before substituting
the control polygons of the curves as rows in the mesh. The other direction order is set by
OtherOrder, which cannot be larger than the number of curves. If B-spline (OtherOrder
is smaller than number of curves) end conditions are set via OtherEndCond and can
either be one of KV OPEN, KV FLOAT or KV PERIODIC, or an explicitly prescribed
knot vector OtherKnotVector.

The surface interpolates the first and last curves only, if a Bezier or open end conditions
are selected; otherwise, no curve is interpolated.

See also SINTERP, SINTPCRVS, TFROMSRFS.
Example:

Crv1 = cbspline(3,

list(ctlpt(E3, 0.0, 0.0, 0.0),

ctlpt(E3, 1.0, 0.0, 0.0),

ctlpt(E3, 1.0, 1.0, 0.0)),

list(KV_OPEN));

Crv2 = Crv1 * trans(vector(0.0, 0.0, 1.0));

Crv3 = Crv2 * trans(vector(0.0, 1.0, 0.0));

Srf = SFROMCRVS(list(Crv1, Crv2, Crv3), 3, KV_OPEN);

See Figure 96.

IRIT Solid modeler G. Elber 227

Figure 96: A surface can be constructed from a list of curves substituted as rows into its mesh using
SFROMCRVS. The surface does not necessarily interpolate the curves.

11.2.306 SGAUSS

SurfaceType SGAUSS(SurfaceType Srf, NumericType NumerOnly)

evaluates the Gaussian curvature (K) field of surface Srf. If NumerOnly is TRUE,
only the numerator of the Gaussian curvature is derived. Otherwise, if NumerOnly is
FALSE, the full exact Gaussian field is derived. NumerOnly TRUE may be used in cases
where the zero set of K is needed (parabolic lines).

Example:

Srf1 = hermite(cbezier(list(ctlpt(E3, 0.0, 0.0, 0.0),

ctlpt(E3, 0.5, 0.2, 0.0),

ctlpt(E3, 1.0, 0.0, 0.0))),

cbezier(list(ctlpt(E3, 0.0, 1.0, 0.0),

ctlpt(E3, 0.5, 0.8, 0.0),

ctlpt(E3, 1.0, 1.0, 0.5))),

cbezier(list(ctlpt(E3, 0.0, 2.0, 0.0),

ctlpt(E3, 0.0, 2.0, 0.0),

ctlpt(E3, 0.0, 2.0, 0.0))),

IRIT Solid modeler G. Elber 228

Figure 97: The Gaussian curvature field (right) of the quadratic by cubic surface (left) is computed
using SGAUSS. The Gaussian curvature field is scaled down to %1 to fit into the figure. Compare with
figure 101.

cbezier(list(ctlpt(E3, 0.0, 2.0, 0.0),

ctlpt(E3, 0.0, 2.0, 0.0),

ctlpt(E3, 0.0, 2.0, 0.0))));

SGauss = SGAUSS(Srf1, false);

evaluates the Gaussian curvaure of Srf1. See Figure 97. See also EVOLUTE and
SMEAN.

11.2.307 SILHOUETTE

PolyType SILHOUETTE(SurfaceType Srf, VectorType ViewDir,

NumericType SubdivTol, NumericType Euc)

or

PolyType SILHOUETTE(PolyType Pl, VectorType ViewDir,

NumericType SubdivTol, NumericType Euc)

Compute the silhouette edges of the given Srf or Pl from the prescribed viewing direc-
tion ViewDir. The end result is a piecewise linear approximation of the exact silhouette,
and its accuracy is controlled via the SubdivTol, in the case of a freeform surface Srf.
If Euc is TRUE, the silhouette curves are returned on the surface, in Euclidean space.
Otherwise, the silhouette curves are returned in the parametric space of Srf. Both Euc
and the RESOLUTION variables have no affect in the case of a polygonal model Pl.

Example:

Resolution = 10;

IRIT Solid modeler G. Elber 229

Sils = SILHOUETTE(glass, vector(1, -2, 1), 0.01, true);

computes the silhouette curves of surface glass as viewed from viewing direction
(1, -2, 1), and returns the silhouette curves in Euclidean space. See also ISOCLINE,
PPROPFTCH and SASPCTGRPH.

11.2.308 SINTERP

SurfaceType SINTERP(ListType PtList, ListType Params)

computes a B-spline polynomial surface that interpolates or approximates the rectan-
gular grid or scattered set of points in PtList. Two main options:

1. Params is of the form list(NumericType UOrder, NumericType VOrder, Numer-
icType USize, NumericType VSize, ConstantType Param) 2. Params is of the form list(
CrvUMin, CrvUMax, CrvVMin, CrvVMax)

For option 1, the B-spline surface will have orders UOrder and VOrder and mesh of size
USize by VSize control points. If the PtList data is on a grid (list of lists of the same size),
the knots will be spaced according to Param which can be one of PARAM UNIFORM,
PARAM CHORD, PARAM CENTRIP, or PARAM NEILFOL. Currently, only PARAM UNIFOR
is supported. For a scattered point set, the Param parameter is ignored. PtList is typ-
ically a list of points for grid data in which all lists carry the same amount of points,
thereby defining a rectangular grid. However, for scattered data interpolation, PtList
can also a linear list of points. All points in PtList must be of type (E1-E9, P1-P9) con-
trol point, or regular PointType. If USize and VSize are equal to the number of points in
the grid data set of PtList, the resulting surface will interpolate the data set. Otherwise,
if USize or VSize is less than the number of points in the grid of PtList, the point data
set will be least square approximated. At no time can USize or VSize be larger that the
number of points in PtList or lower than UOrder and VOrder, respectively. If USize or
VSize are zero, the grid size is used, forcing an interpolation of the data set. If PtList
contains a linear list of points, these points are treated as scattered. Each scattered point
is assumed to be holding the parameteric location at which to interpolate its first two
coefficients. The other coefficients are the interpolation values. In other words, to inter-
polate scattered data of type E3, E5 control points in a linear list must be provided in (u,
v, x, y, z) format. Scattered data is interpolated over a unit square (0 to 1) parameteric
domain in both u and v.

For option 2, the four boundary curves are specified and will be used to force the
boundary of the fitted surface to follow. Further, the orders, sizes and parametrizations
will be taken for the fitted surface from the these four curves.

See also SINTPCRVS, SFROMCRVS, CINTERP.
Example:

pl = nil();

pll = nil();

for (x = -5, 1, 5,

pl = nil():

for (y = -5, 1, 5,

snoc(point(x, y, sin(x * Pi / 2) * cos(y * Pi / 2)),

pl)

):

IRIT Solid modeler G. Elber 230

Figure 98: A surface least square fitting a data set with insufficient degrees of freedom (left) and
actually interpolating the data set (right), all using SINTERP.

snoc(pl, pll));

s1 = SINTERP(pll, list(3, 3, 8, 8, PARAM_UNIFORM));

s2 = SINTERP(pll, list(3, 3, 11, 11, PARAM_UNIFORM));

samples an explicit surface sin(x) * cos(y) at a grid of 11 by 11 points, least square
fit with a grid of size of 8 by 8 surface s1, and interpolates surface s2 using this data set.
See also CINTERP and LINTERP. See Figure 98.

11.2.309 SINTPCRVS

SurfaceType SINTPCRVS(ListType CrvList,

NumericType OtherOrder,

NumericType OtherEndCond,

NumericType OtherParam)

constructs a surface by fitting it to the curves in CrvList. The curves in CrvList
are made compatible by promoting Bezier curves to B-splines if necessary, and rais-
ing the degrees and refining as required before fitting a surface through them all. The
other direction order is set by OtherOrder, which cannot be larger than the number of
curves. If B-spline (OtherOrder is smaller than number of curves) end conditions are
set via OtherEndCond and can be one of KV OPEN, KV FLOAT or KV PERIODIC.
Finally OtherParam sets the parametrization in the other direction and can be one of
PARAM CENTRIP, PARAM CENTRIP, PARAM CHORD, or PARAM NIELFOL. See
also SINTERP, SFROMCRVS.

Example:

Crv1 = cbspline(3,

list(ctlpt(E3, 0.0, 0.0, 0.0),

ctlpt(E3, 1.0, 0.0, 0.0),

ctlpt(E3, 1.0, 1.0, 0.0)),

list(KV_OPEN));

Crv2 = Crv1 * trans(vector(0.0, 0.0, 1.0));

Crv3 = Crv2 * trans(vector(0.0, 1.0, 0.0));

Srf = SINTPCRVS(list(Crv1, Crv2, Crv3), 3, KV_OPEN, PARAM_CHORD);

See Figure 99.

IRIT Solid modeler G. Elber 231

Figure 99: A surface can be fitted to a list of curves using SINTPCRVS.

11.2.310 SKEL2DINT

ListType SKEL2DINT(CurveType Crv1 | PointType Pt1 | CtlPtType Pt1,

CurveType Crv2 | PointType Pt2 | CtlPtType Pt1,

CurveType Crv3 | PointType Pt3 | CtlPtType Pt1,

NumericType OutExtent, NumericType Epsilon,

NumericType FineNess, ListType MZeroTols)

computes locations in the plane of points that are equadistant from the three given
entities. Entities can be points or control points or curves, all in the XY plane. The
equadistant points are computed as the mutual intersection of the bisectors of the enti-
ties. Infinite bisectors (such as the bisector of two points) are extended up to OutExtent.
Epsilon controls the tolerances while FineNess controls the subdivision fineness in the bi-
sector intersection computations. MZeroTols controls the subdivision/numeric tolerances
of the MV solver, as a list of the two numeric tolerances.

Exanple:

Crv1 = pcircle(vector(-0.5, 0.7, 0.0), 0.3);

Crv2 = pcircle(vector(-0.4, -0.6, 0.0), 0.5);

Crv3 = pcircle(vector(0.3, 0.2, 0.0), 0.4);

EquaPt = SKEL2DINT(Crv1, Crv2, Crv3, 100, 0.1, 150, list(1e-3, -1e-9)):

computes the eight points that are equadistant to three circles. See Figure 100. See
also CRC2CRVTAN, TNSCRCR, CRVC1RND, CRV2TANS.

11.2.311 SLINTER

PointType SLINTER(SurfaceType Srf, PointType LinePt, VectorType LineDir,

NumericType SubdivTol, NumericType NumericTol,

NumeircType Euclidean)

Returns the intersection points of Srf S(u, v) and line LinePt and LineDir as L(t) =
LinePos = LineDirt, in the parametric space if Euclidean FALSE, and in the Euclidean
space if Euclidean TRUE. Parametric locations are returned as (u, v, 0) tuples and Eu-
clidean points as (x, y, z). SubdivTol and NumericTol sets the accuracy of the computa-
tion.

IRIT Solid modeler G. Elber 232

Figure 100: Computes the eight points that are equadistant to three circles, using SKEL2DINT.

Example:

InterPt = SLINTER(glass, LinePt, LineDir, 0.01, 1e-10, true);

Computes the intersection locations of surface glass and line L(t) = LinePos+LineDirt,
in Euclidewan space.

Note the line t parameter is not returned and if needed, can be derived from the
Euclidean point solution P as P = L(t) = LinePos+ LineDirt.

See also SCINTER, SSINTER, RRINTER, SSINTR2 and GGINTER.

11.2.312 SMEAN

SurfaceType SMEAN(SurfaceType Srf, NumericType NumerOnly)

evaluates the mean curvature field of surface Srf as follows: if NumerOnly is true, it
computes the numerator of only the Mean curvature. Otherwise, if NumerOnly is false,
the square of the exact Mean curvature field is derived. NumerOnly TRUE may be used
in cases where the zero set of H is needed (k1 == -k2 points).

Example:

IRIT Solid modeler G. Elber 233

Figure 101: The square of the mean curvature field (right) of the quadratic by cubic surface (left) is
computed using SMEAN. The square of the mean curvature field is scaled down to %1 to fit into the
figure. Compare with figure 97.

Srf1 = hermite(cbezier(list(ctlpt(E3, 0.0, 0.0, 0.0),

ctlpt(E3, 0.5, 0.2, 0.0),

ctlpt(E3, 1.0, 0.0, 0.0))),

cbezier(list(ctlpt(E3, 0.0, 1.0, 0.0),

ctlpt(E3, 0.5, 0.8, 0.0),

ctlpt(E3, 1.0, 1.0, 0.5))),

cbezier(list(ctlpt(E3, 0.0, 2.0, 0.0),

ctlpt(E3, 0.0, 2.0, 0.0),

ctlpt(E3, 0.0, 2.0, 0.0))),

cbezier(list(ctlpt(E3, 0.0, 2.0, 0.0),

ctlpt(E3, 0.0, 2.0, 0.0),

ctlpt(E3, 0.0, 2.0, 0.0))));

SMean = SMEAN(Srf1, false);

evaluates the square of the mean curvature of Srf1. See Figure 101. See also EVOLUTE
and SGAUSS.

11.2.313 SMERGE

SurfaceType SMERGE(SurfaceType Srf1, SurfaceType Srf2,

NumericType Dir, NumericType SameEdge)

merges two surfaces along the requested direction (ROW or COL). Based on the value
of SameEdge the shared boundary is treated as:

IRIT Solid modeler G. Elber 234

negative The edge is assumed not common and is not interpolated,
leaving a C−1 discontinuity.

0 The common edge is interpolated (edges are assumed not
identical.

1 The common edge is copied from the 1st surface
2 The common edge is copied from the 2nd surface
3 The common edge is blended between the two surfaces respective

boundaries

Example:

MergedSrf = SMERGE(Srf1, Srf2, ROW, TRUE);

See also MMERGE.

11.2.314 SMESH

SurfaceType SMESH(TrivarType TV, MumericType Dir, NumericType Index)

extracts a surface out of a trivariate, TV, as the Index’s plane of the control mesh of
TV in direction Dir. Dir can be one of COL, ROW, DEPTH.

Example:

tv = tbezier(list(list(list(ctlpt(E3, 0.1, 0.0, 0.8),

ctlpt(E3, 0.2, 0.1, 2.4)),

list(ctlpt(E3, 0.3, 2.2, 0.2),

ctlpt(E3, 0.4, 2.3, 2.0))),

list(list(ctlpt(E3, 2.4, 0.8, 0.1),

ctlpt(E3, 2.2, 0.7, 2.3)),

list(ctlpt(E3, 2.3, 2.6, 0.5),

ctlpt(E3, 2.1, 2.5, 2.7)))));

s0 = SMESH(tv, col, 0);

s1 = SMESH(tv, col, 1);

extracts the two (first and last) planes in direction col out of trivariate tv.
See also STRIVAR, CMESH, MFROMMESH.

11.2.315 SMOEBIUS

CurveType SMOEBIUS(CurveType Crv, NumericType Ratio, NumericType Dir)

rebalances the weights of a rational surface using the Moebius transformation. The
shape of the surface remains identical, while the speed is modified in the direction Dir.
Ratio controls the ratio between the last and first weights of the first row/column. If
Ratio = 0, the first and last weights are made equal.

See also CMOEBIUS.

IRIT Solid modeler G. Elber 235

11.2.316 SMOOTHNRML

ListType SMOOTHNRML(ListType Obj, NumericType MaxAngle)

or

PolygonType SMOOTHNRML(PolygonType Obj, NumericType MaxAngle)

Given a (list of) polygonal object(s), Obj, compute normals to the vertices by averag-
ing the normals of the polygons that share the vertices. Only vertices where the deviation
between the polygons’ normals and the averaged normal is less than MaxAngle are up-
dated. Set to 180 degrees (or more) to enable the blend over all vertices. If MaxAngle
is negative, all vertices normals are cleared and all polygon normals reevaluated. This is
useful for polygonal data sets that have no vertex normals.

Example:

A = box(vector(-1, -1, -1), 2, 2, 2);

B = SMOOTHNRML(A, 90);

computes average normals to a curve resulting in the smoothly shaded display of a
cube. See also FIXPLNRML.

11.2.317 SMOMENTS

SurfaceType SMOMENTS(SurfaceType Srf, NumericType Moment,

NumericType Axis1, NumericType Axis2,

NumericType Eval)

or

NumericType SMOMENTS(SurfaceType Srf, NumericType Moment,

NumericType Axis1, NumericType Axis2,

NumericType Eval)

compute the integral moment surface, MSrf, of the given surface Srf, up to a sign. The
computed moment can be either a first order moment when Moment = 1, or a second
order moment when Moment = 2. If Srf is a closed surface with domain (u0, v0) to
(u1, v1), then the difference of MSrf(u1, v1) - MSrf(u0, v0) is the requested moment.
Otherwise, the computation is for the volume occupied between the surface Srf and the
XY plane. If Eval is TRUE, the actual numerical value of the moment is returned. The
moment integral surface is returned if Eval is FALSE. Axis1 and Axis2 prescribe the two
axes to compute the moments for a second order moment computation. For a first order
moment computation only Axis1 is considered.

Example:

Spr = surfPRev(cregion(pcircle(vector(0, 0, 0), 1), 1, 3)

* ry(90));

SMOMENTS(Spr, 2, 1, 1, 2, 1);

computes the second order XX moment of a polynomial approximation of a unit sphere,
using method one. See also TVOLUME, SVOLUME, MOMENT and CAREA.

IRIT Solid modeler G. Elber 236

Figure 102: A morphing sequence between a bottle and a glass. Snapshots computed using SMORPH.

11.2.318 SMORPH

SurfaceType SMORPH(SurfaceType Srf1, SurfaceType Srf2, NumericType Blend)

creates a new surface which is a convex blend of the two given surfaces. The two given
surfaces must be compatible (see FFCOMPAT) before this blend is invoked. This is very
useful if a sequence that ”morphs” one surface to another is to be created.

Example:

for (i = 0.0, 1.0, 11.0,

Msrf = SMORPH(Srf1, Srf2, i / 11.0):

color(Msrf, white):

attrib(Msrf, "rgb", "255,255,255"):

attrib(Msrf, "reflect", "0.7"):

save("morp1-" + i, Msrf)

);

creates a sequence of 12 surfaces, morphed from Srf1 to Srf2 and saves them in the
files ”morph-0.itd” to ”morph-11.itd”. See also PMORPH, CMORPH and TMORPH.
See Figure 102.

11.2.319 SNORMAL

VectorType SNORMAL(SurfaceType Srf, NumericType UParam, NumericType VParam)

or

VectorType SNORMAL(TrimSrfType Srf, NumericType UParam, NumericType VParam)

compute the normal vector to (possibly trimmed) surface Srf at the parameter values
UParam and VParam. The returned vector has a unit length.

Example:

Normal = SNORMAL(Srf, 0.5, 0.5);

computes the normal to Srf at the parameter values (0.5, 0.5). See also SNRMLSRF.

IRIT Solid modeler G. Elber 237

Figure 103: A vector field normal (right) computed for a unit sphere (left) using SNRMLSRF. The
normal field degenerates at the north and south poles because the surface is not regular there.

11.2.320 SNRMLSRF

SurfaceType SNRMLSRF(SurfaceType Srf)

symbolically computes a vector field surface representing the non-normalized normals
of the given surface. That is, the normal surface, evaluated at (u, v), provides a vector in
the direction of the normal of the original surface at (u, v). The normal surface is computed
as the symbolic cross product of the two surfaces representing the partial derivatives of
the original surface.

Example:

NrmlSrf = SNRMLSRF(Srf);

See Figure 103.

11.2.321 SPARABOLC

ListType SPARABOLC(SurfaceType Srf, NumericType SubdivTol,

NumericType NumericTol, NumericType Euclidean,

DecompSrfs)

computes the parabolic edges of a freeform surface, Srf, as the zero set of the Gaussian
curvature. A scalar field with the sign of the Gauss curvature is computed and its zero
is derived. SubdivTol and NumericTol controls the subdivision and numeric tolerances
of the approximation. Typically the subdivision tolerance is fairly coarse. If Euclidean
is false, the list of (piecewise linear) parabolic curves is returned in the parametric space
of Srf. Otherwise, if Euclidean is true, the parabolic curves are mapped onto Srf. if
DecompSrfs is set, the surface is divided into several trimed surfaces along the parabolic
lines, creating regions that are solely convex, concave, and saddle-like.

Example:

IRIT Solid modeler G. Elber 238

pl = nil();

pll = nil();

for (x = -3, 1, 3,

pl = nil():

for (y = -3, 1, 3,

snoc(point(x, y, sin(x * Pi / 2) * cos(y * Pi / 2)),

pl)):

snoc(pl, pll));

EggBase = sinterp(pll, 4, 4, 0, 0, PARAM_UNIFORM);

Resolution = 15;

Parab = SPARABOLC(EggBase, 0.005, 1e-6, true, false);

constructs a surface in the shape of an egg carton’s base and then derives its parabolic
edges in Euclidean space. See also MZERO for the meaning of SubdivTol and NumerTol.

11.2.322 SPHERE

PolygonType SPHERE(VectorType Center, NumericType Radius)

creates a SPHERE geometric object, defined by Center as the center of the SPHERE,
and with Radius as the radius of the SPHERE. See RESOLUTION for accuracy of
SPHERE approximation as a polygonal model. See IRITSTATE’s ”PrimRatSrfs” and
”PrimRatSrfs” state variables.

11.2.323 SPLITLST

ListType SPLITLST(AnyType LinkedListObj)

splits an object of several linked list data elements such as polygons, curves, or suraces,
into a list object that contains an object for each of the individual objects.

Example:

ObjLst = SPLITLST(axes);

splits the axes object into a list object of several objects each holding a single polyline.
See also MERGEPOLY, MERGEPLLN, MERGETYPE, MERGELST.

11.2.324 SPHEREPACK

ListType SPHEREPACK(ModelType Shape, NumericType Radius,

NumericType TimeLimit, BooleanType UseGravity)

Packs a given Shape with spheres in 3D (or circles in 2D) of a given Radius as densely
as possible, within a given TimeLimit, using either the ”Randomize and Repulse” or the
”Gravity Shaking” algorithm, depending on the UseGravity parameter. In 3D, Shape
can be either a closed polygonal model, or a closed C1 freeform surface. In 2D, Shape
can be either a closed planar polyline or polygon, or a closed freeform C1 planar curve.
”Randomize and Repulse” runs in parallel in several threads. ”Gravity Shaking” is single-
threaded, but may outperform ”Randomize and Repulse” when thread count is low. The

IRIT Solid modeler G. Elber 239

function returns, in 3D, a list of 7-element tuples, as E7 points, of the format (Sphere-
CenterX, SphereCenterY, SphereCenterZ, ClosestBorderPtX, ClosestBorderPtY, Closes-
tBorderPtZ, DistToBorderPt). In 2D, a list of 7-element tuples (E7 Pts) will be returned,
of the format (CircleCenterX, CircleCenterY, 0.0, ClosestBorderPtX, ClosestBorderPtY,
0.0, DistToBorderPt).

Example:

SpheresInfo = SPHEREPACK(S, 0.06, 60, true);

11.2.325 SPOWER

SurfaceType SPOWER(ListType CtlMesh)

creates a polynomial/rational surface out of the provided control mesh. The created
surface employs the monomial power basis. CtlMesh is a list of rows, each of which is
a list of control points. All control points must be of type (E1-E9, P1-P9), or regular
PointType defining the surface’s control mesh. The surface’s point type will be of a space
which is the union of the spaces of all points. The created surface is the polynomial (or
rational),

C(u, v) =
m∑
i=0

n∑
j=0

Piju
ivi (30)

where Pij are the control points CtlMesh. and m and n are the degrees of the surface,
which are one less than the number of points in the appropriate direction.

Example:

s = SPOWER(list(list(ctlpt(E3, 1, 0, 1),

ctlpt(E3, 0, 1, 1)),

list(ctlpt(E3, 0, 0, 1),

ctlpt(E3, 0, 0, 1))));

s == coerce(coerce(s, bezier_type), power_type);

constructs a bilinear power basis surface, coerces it to a Bezier form, coerces the Bezier
form back to a power basis, and then compares the result for equality.

See also CBEZIER, SBSPLINE and SPOWER.

11.2.326 SRADCRVTR

SurfaceType SRADCRVTR(SurfaceType Srf, VectorType ViewDir,

NumericType SubdivTol, NumericType SubdivTol,

NUmericType MergeTol)

computes the radial curvature of surface Srf, as viewed from view direction ViewDir.
See MZERO for the meaning of the SubdivTol and NumerTol tolerances. MergeTol
specifies the tolerance to use to merge points into polygons,

IRIT Solid modeler G. Elber 240

11.2.327 SRAISE

SurfaceType SRAISE(SurfaceType Srf, ConstantType Direction,

NumericType NewOrder)

raises Srf to the specified NewOrder in the specified Direction.
Example:

Srf = ruledSrf(0,

cbezier(list(ctlpt(E3, -0.5, -0.5, 0.0),

ctlpt(E3, 0.5, -0.5, 0.0))),

cbezier(list(ctlpt(E3, -0.5, 0.5, 0.0),

ctlpt(E3, 0.5, 0.5, 0.0))));

Srf = SRAISE(SRAISE(Srf, ROW, 3), COL, 3);

constructs a bilinear flat-ruled surface and raises both its directions to be a bi-quadratic
surface. See also TRAISE, MRAISE, and CRAISE.

11.2.328 SRAYCLIP

ListType SRAYCLIP(PointType Pt, VectorType Dir, SurfaceType Srf)

computes the intersection of ray (Pt, Dir) with Bezier surface Srf, using the Bezier
clipping scheme. The returned list is of the form ”list(NumInters, UV0, EucPt0, ...,
UVn, EucPtn)”.

Example:

InterPts = SRayClip(point(0, 0, 0), vector(0, 0, 1), Srf);

computes the intersection of surface Srf with the positive Z axis.

11.2.329 SREFINE

SurfaceType SREFINE(SurfaceType Srf, ConstantType Direction,

NumericType Replace, ListType KnotList)

provides the ability to Replace a knot vector of Srf or refine it in the specified direction
Direction (ROW or COL). KnotList is a list of knots at which to refine Srf. All knots
should be contained in the parametric domain of Srf in Direction. If the knot vector is
replaced, the length of KnotList should be identical to the length of the original knot
vector of Srf in Direction. If Srf is a Bezier surface, it is automatically promoted to be a
B-spline surface.

Example:

Srf = SREFINE(SREFINE(Srf,

ROW, FALSE, list(0.333, 0.667)),

COL, FALSE, list(0.333, 0.667));

refines Srf in both directions by adding two more knots at 0.333 and 0.667. See also
CREFINE, TREFINE, and MREFINE.

IRIT Solid modeler G. Elber 241

Figure 104: A region can be extracted from a freeform surface using SREGION.

11.2.330 SREGION

SurfaceType SREGION(SurfaceType Srf, ConstantType Direction,

NumericType MinParam, NumericType MaxParam)

or

TrimSrfType SREGION(TrimSrfType Srf, ConstantType Direction,

NumericType MinParam, NumericType MaxParam)

extract a region of Srf between MinParam and MaxParam in the specified Direction.
Both MinParam and MaxParam should be contained in the parametric domain of Srf in
Direction, except for Bezier surfaces when MinParam and MaxParam can be arbitrary
(extrapolating if not between zero and one).

Example:

Srf = ruledSrf(0,

cbezier(list(ctlpt(E3, -0.5, -0.5, 0.5),

ctlpt(E3, 0.0, 0.5, 0.0),

ctlpt(E3, 0.5, -0.5, 0.0))),

cbezier(list(ctlpt(E3, -0.5, 0.5, 0.0),

ctlpt(E3, 0.0, 0.0, 0.0),

ctlpt(E3, 0.5, 0.5, 0.5))));

SubSrf = SREGION(Srf, ROW, 0.3, 0.6);

extracts the region of Srf from the parameter value 0.3 to the parameter value 0.6 along
the ROW direction. The COLumn direction is extracted as a whole. See Figure 104. See
also CREGION, TREGION, and MREGION.

11.2.331 SREPARAM

SurfaceType SREPARAM(SurfaceType Srf, ConstantType Direction,

IRIT Solid modeler G. Elber 242

NumericType MinParam, NumericType MaxParam)

or

TrimSrfType SREPARAM(TrimSrfType Srf, ConstantType Direction,

NumericType MinParam, NumericType MaxParam)

reparametrize Srf over a new domain from MinParam to MaxParam, in the prescribed
Direction. This operation does not affect the geometry of the (trimmed) surface and only
affine transforms its knot vectors. A Bezier (trimmed) surface will automatically be
promoted into a B-spline surface by this function.

If MinParam equals MaxParam and both equates with one of the parameterization key-
words of PARAM CENTRIP, PARAM CENTRIP, PARAM CHORD, or PARAM NIELFOL,
then that parametrization is approximated for the surface, by changing the knot sequence.
Note this last operation affects the geometry of the surface.

Example:

srf = sbspline(2, 4,

list(list(ctlpt(E3, 0.0, 0.0, 1.0),

ctlpt(E2, 0.0, 1.0),

ctlpt(E3, 0.0, 2.0, 1.0)),

list(ctlpt(E2, 1.0, 0.0),

ctlpt(E3, 1.0, 1.0, 2.0),

ctlpt(E2, 1.0, 2.0)),

list(ctlpt(E3, 2.0, 0.0, 2.0),

ctlpt(E2, 2.0, 1.0),

ctlpt(E3, 2.0, 2.0, 2.0)),

list(ctlpt(E2, 3.0, 0.0),

ctlpt(E3, 3.0, 1.0, 2.0),

ctlpt(E2, 3.0, 2.0)),

list(ctlpt(E3, 4.0, 0.0, 1.0),

ctlpt(E2, 4.0, 1.0),

ctlpt(E3, 4.0, 2.0, 1.0))),

list(list(KV_OPEN),

list(KV_OPEN)));

srf = sreparam(sreparam(srf, ROW, 0, 1), COL, 0, 1);

ensures that the (trimmed) B-spline surface is defined over the unit size parametric
domain. See also CREPARAM, TREPARAM, and MREPARAM.

11.2.332 SREVERSE

SurfaceType SREVERSE(SurfaceType Srf)

or

TrimSrfType SREVERSE(TrimSrfType Srf)

IRIT Solid modeler G. Elber 243

reverse Srf by flipping the U and V parametric directions. Note that the unary minus
(i.e -Srf) also reverses the surface by reversing the U parametric direction. If the surface
is a trimmed surface, the trimming curves are flipped accordingly to yield the same shape.

RevSrf = SREVERSE(Srf);

See also MREVERSE and TREVERSE.

11.2.333 SRF2TANS

ListType SRF2TANS(SurfaceType Srf1, SurfaceType Srf2,

NumericType SubdivTol, NumericType NumericTol)

computes the developable sheet(s) bi-tangent to given two surfaces Srf1 and Srf2. See
MZERO for the meaning of the SubdivTol and NumerTol tolerances. Returns are lists,
one per developable sheet, of piecewise linear curves in E4, having two pairs of parameter
values of the bi-tangent points in the two input surfaces, in their parametric domain.

Example:

c1 = cbspline(3,

list(ctlpt(E2, -1, -1),

ctlpt(E2, 1, -1),

ctlpt(E2, 1, 1),

ctlpt(E2, -1, 1)),

list(kv_periodic));

c1 = coerce(c1, kv_open);

c2 = cbspline(3,

list(ctlpt(E3, 0.8, -0.2, -0.3),

ctlpt(E3, 0.5, 0.0, -0.2),

ctlpt(E2, -0.45, -0.21),

ctlpt(E2, -0.45, 0.32),

ctlpt(E3, 0.5, -0.0, 0.2),

ctlpt(E3, 0.8, 0.28, 0.3)),

list(kv_open));

s1 = sregion(sweepSrf(c1 * sc(0.1), c2, off), col, 0, 0.5);

s2 = sregion(sweepSrf(c1 * sc(0.1), c2, off), col, 0.5, 1.0);

BiTans = SRF2TANS(s1, s2, 0.1, 1e-6);

computes the self bi-tangencies of a given bottle-like surface. See Figure 105. See also
SRF3TANS.

11.2.334 SRF3TANS

ListType SRF3TANS(ListType Srfs, NumericType Orientation,

NumericType SubdivTol, NumericType NumericTol)

computes the plane(s) tri-tangent to given three surfaces Srfs. Srfs can be either a
list of three surfaces or a list of one surface in which self bi-tangencies are being sought.

IRIT Solid modeler G. Elber 244

Figure 105: Extracts self bi-tangent developable out of the given surface using SRF2TANS.

If Orientation is 0 all tri-tangent planes are returned. Otherwise, if Orientation equal
+1 or -1, tri-tangent sheets(s)with same or different tangency orienation are returned,
respectively. See MZERO for the meaning of the SubdivTol and NumerTol tolerances.
Returns are lists, one per developable sheet, of sample points in E6, having three pairs
of parameter values of the tri-tangent points in the three surfaces, in their parametric
domain.

Example:

c2 = cbspline(3,

list(ctlpt(E3, 0.8, -0.2, -0.3),

ctlpt(E3, 0.5, 0.0, -0.2),

ctlpt(E2, -0.45, -0.21),

ctlpt(E2, -0.45, 0.32),

ctlpt(E3, 0.5, -0.0, 0.2),

ctlpt(E3, 0.8, 0.28, 0.3)),

list(kv_open));

s1 = sFromCrvs(list(c2 * sc(0.001),

c2,

c2 * tz(1.0),

c2 * sc(0.001) * tz(1.0)),

3, kv_open) * sc(0.1);

s2 = s1 * ry(14) * tx(0.6) * tz(0.02);

s3 = s1 * rx(12) * ty(0.6) * tx(0.3) * tz(0.01);

IRIT Solid modeler G. Elber 245

Figure 106: Extracts tri-tangent planes out of the given three approximate ellipsoids using SRF3TANS.

TriTans = SRF3TANS(list(s1, s2, s3) * sz(1), 1, 0.5, -1e-6);

Edges = nil();

for (i = 1, 1, sizeof(TriTans),

Pt = nth(TriTans, i):

snoc(seval(s1, coord(Pt, 1), coord(Pt, 2)) +

seval(s2, coord(Pt, 3), coord(Pt, 4)), Edges):

snoc(seval(s1, coord(Pt, 1), coord(Pt, 2)) +

seval(s3, coord(Pt, 5), coord(Pt, 6)), Edges):

snoc(seval(s2, coord(Pt, 3), coord(Pt, 4)) +

seval(s3, coord(Pt, 5), coord(Pt, 6)), Edges));

computes the two outer oriented tri-tangencies to three approximate ellipsoids. Ex-
tract and draw the two tri-tangent triangles. See Figure 106. See also SRF2TANS.

11.2.335 SRFFFORM

ListType SRFFFORM(SurfaceType Srf, NumericType Form)

derives the four coefficients of the 1st, 2nd or 3rd surface fundamental forms. Form
can be one of 1, 2, or 3 only, designating the requested form. Since this 2x2 matrix is
symmetric, only three coefficients are returned as a list of three scalar surfaces as (A11,
A12 == A21, A22).

Example:

FFF = SRFFFORM(Srf, 1);

SFF = SRFFFORM(Srf, 2);

TFF = SRFFFORM(Srf, 3);

computes the three fundamental forms of Srf.

IRIT Solid modeler G. Elber 246

11.2.336 SRFLNDST

PointType SRFLNDST(SurfaceType Srf, PointType LnPt, VectorType LnDir,

NumericType IsMinDist, NumericType SubdivTol,

NumericType NumerTol)

compute the minimal (IsMinDist TRUE) or maximal (IsMinDist FALSE) distance
betweeb surface Srf and the line defined by LnPt, a point on the line, and LnDir, the
direction of the line. See MZERO for the meaning of the SubdivTol and NumerTol
tolerances.

Example:

Dst = SRFLNDST(Srf, LnPoint, vector(1, 1, 1), TRUE, 0.1, 1e-6);

computes the minimal distance between Srf and line LnPoint/Vector(1, 1, 1). See
also SRFPTDST, CRVLNDST.

PolyType SRFKERNEL(SurfaceType Srf, NumericType Fineness,

NumericType SkipRate)

11.2.337 SRFKERNEL

PolyType | ListType SRFKERNEL(SurfaceType Srf | ListType SrfList,

ListType KrnlParam, NumericType Mode)

Approximates the kernel of a single surface Srf, or a list of surfaces SrfList (only
when Mode == 1). When Mode == 0, the kernel of (a closed and continuous) sur-
face is approximated by deriving the parabolic points of Srf and intersecting half planes
tangent to Srf and placed at sampled set of parabolic locations. KrnlParam is a list of
control parameters and specified as list(Fineness, SkipRate), where Fineness governs
the parabolic curves’ approximation, and SkipRate controls the sampling rate along the
parabolic curves. The function returns the list of polygons that approximates the kernel
of the surface.

When Mode == 1, the kernel of a single surface Srf, or a list of surfaces in SrfList is
computed based on derived inequality constraints. A point P in R3 belongs to the kernel
of Srf (or SrfList) if it satisfies the following inequalities:

< Si(ui, vi)− P,Ni(ui, vi) >> 0, ∀ui, vi, (31)

where Si(ui, vi) is the i-th surface and Ni(ui, vi) is the (inward) normal field of Si(ui, vi).
Starting from the bounding box of the surface(s), this function finds the xyz sub-domains
that satisfy the above inequalities. KrnlParam is a list of control parameters and specified
as list(SubdivTol, BoxScale, Gamma, NumTanSamples, DmnBoxOutput), where Subdi-
vTol prescribes a subdivision tolerance, (non-zero) BoxScale sets a scaling factor to size
of the bounding box to compute the kernel domains when, Gamma sets the gamma-angle
for the gamma-kernel, NumTanSamples controls the sampling rate of the tangent planes,
which are used in purging the domains during subdivision, and DmnBoxOutput deter-
mines the form of output. The function returns a list of kernel points if DmnBoxOutput
is FALSE, and a list of the kernel domain boxes in R3 if DmnBoxOutput is TRUE.

Example:

IRIT Solid modeler G. Elber 247

Krnl = SRFKERNEL(Srf, list(0.05, 15), 0);

estimates the kernel of Srf with Fineness of 0.05 and SkipRate of 15.

Krnl = SRFKERNEL(Srf, list(0.01, 1, 0, 20, FALSE), 1);

finds a list of points that belong to the regular kernel of Srf by subdividing the nor-
malized xyz domains in the bounding box of Srf, and testing with 20 x 20 tangent planes
sampled along Srf.

Krnl = SRFKERNEL(Srf, list(0.01, 1, 30, 20, FALSE), 1);

finds a list of points that belong to the gamma-kernel of Srf with the gamma angle of
30 degrees.

Krnl = SRFKERNEL(SrfList, list(0.01, 2.0, 0, 20, TRUE), 1);

finds a list of kernel domains of SrfList in R3 from the domain that has been scaled
twice from the bounding box of SrfList. 400 (20x20) tangent planes are sampled for each
surface in SrfList, to accelerate purging during subdivision.

See also CRVKERNEL.

11.2.338 SRFORTHONET

PointType SRFORTHONET(CurveType CrvSrc, CurveType CrvDst,

NumericType NumCrvSamples, NumericType NumLayers)

aims to approximate an orthogonal (conformal) planar (XY) mapping bivariate surface,
mapping from planar curve CrvDsrc to planar curve SrcDst, that also must span the
same domain. Clearly, as such mapping can be quite complex, the curves better be
”well behaved” and relatively parallel to each other. The last two parameters control the
fineness of the approximation, controlling how many samples to sample along the curves,
as NumCrvSamples, and how many layers to smaple between the curves, as NumLayers.
The more, the more accurate the result will be.

Example:

Crv1 = pcircle(vector(0, 0, 0), 1);

Crv2 = cbspline(4,

list(ctlpt(E2, 0.7, 0.0),

ctlpt(E2, 0.7, 0.4),

ctlpt(E2, 0.1, 0.1),

ctlpt(E2, 0.4, 0.7),

ctlpt(E2, 0.0, 0.7)),

list(kv_open));

Crv2 = crv2 +

crv2 * rz(90) +

crv2 * rz(180) +

crv2 * rz(270);

Sec = srfOrthoNet(Crv2, Crv1, 50, 50);

IRIT Solid modeler G. Elber 248

creates an approximated orthogonal network, starting from crv2), toward crv1, com-
puting 50 layers in the approximatin and taking 50 samples along the curves.

See also RULEDSRF.

11.2.339 SRFPTDST

PointType SRFPTDST(SurfaceType Srf, PointType Pt

NumericType IsMinDist, NumericType SubdivTol,

NumericType NumerTol, NumericType Cache)

compute the minimal (IsMinDist TRUE) or maximal (IsMinDist FALSE) distance
between surface Srf and point Pt. See MZERO for the meaning of the SubdivTol and
NumerTol tolerances. If Cache is 1, a cache of precomputed data is prepared following
by many point distance evaluations for the SAME SURFACE with Cache = 0 that take
advantage of this caching, only to terminate and free the cache, when Cache = 2. Cache
= 0 should also used when no cache is required. Returned is the UV coordinate of the
sought location on Srf.

Example:

Dst = SRFPTDST(Srf, Pt1, FALSE, 0.1, 1e-6, 0);

computes the maximal distance between Srf and point Pt1. See also SRFLNDST,
CRVPTDST.

11.2.340 SRINTER

PointType SRINTER(SurfaceType Srf, PointType RayOrigin,

VectorType RayDirection, NumericType Tolerance,

NumeircType Approx)

If Approx is TRUE, computes the first intersection, if any, of the prescribed ray
originating from RayOrigin in direction RayDirection with surface Srf. It returns the
intersection point in the parametric space of Srf with the U and V coordinates as the X
and Y coefficients of the returned value. The intersection is computed between the ray
and a polygonal approximation of the surface Srf as set via the RESOLUTION variable.
If RayDirection is the zero vector, the closest position on Srf to RayOrigin is returned
instead. If Approx is FALSE, the precise surface ray intersection is computed, using an
algebaric approach. Tolerance sets the accuracy of the computation.

This function is tailored toward many invokations of ray-surface test against the same
surface. Hence, it caches local data for faster processing. To signal the function that the
processing of the current surface is complete, use a Tolerance of zero.

Example:

RayOrigin = point(2, 0.1, 0.3);

RayDir = vector(-4, 0, 0);

RayLine = coerce(RayOrigin, E3) + coerce(RayOrigin + RayDir, E3);

color(RayLine, magenta);

attrib(RayLine, "dwidth", 2);

IRIT Solid modeler G. Elber 249

resolution = 80;

InterPt = SRINTER(glass, RayOrigin, RayDir, 0.001);

InterPtE3 = seval(glass, coord(InterPt, 0), coord(InterPt, 1));

color(InterPtE3, cyan);

attrib(InterPtE3, "dwidth", 3);

view(list(InterPtE3, RayLine, glass, axes), 1);

InterPt = SRINTER(glass, RayOrigin, RayDir, 0.0);

This is a complete example of constructing a ray and intersecting it against a surface
of a glass at two different resolutions, resulting in two different accuracies. See also
RESOLUTION.

11.2.341 SSINTER

ListType SSINTER(SurfaceType Srf1, SurfaceType Srf2,

NumericType Euclidean, NumericType Epsilon,

NumericType Alignment)

computes the intersection curve of two surfaces, Srf1 and Srf2, up to Epsilon accu-
racy. The returned data is in Euclidean space if Euclidean is true; otherwise it is in the
parametric space. A list of two lists (for the two surfaces) of n curves each, where n
is the number of intersection curves, is returned. If Alignment is true, the surfaces are
rotated to that one bbox of one surface whose axes are aligned, increasing the probability
of detecting disjoint cases.

Example:

s1 = sphereSrf(0.35) * trans(vector(0.0, 0.1, 0.2));

s2 = coneSrf(1, 0.5);

Inter = nth(SSINTER(s1, s2, true, 0.1, false), 1);

computes the Euclidean intersection curves of a cone and a sphere, in general positions.
The Euclidean curves on the first surface are extracted while purging the Euclidean
curves on the second surface. See also SLINTER, SCINTER, RRINTER, SSINTR2 and
GGINTER.

11.2.342 SSINTR2

ListType SSINTR2(SurfaceType Srf1, SurfaceType Srf2,

NumericType Step, NumericType SubdivTol,

NumericType NumerTol, NumericType Euclidean,

NumericType DiscBndry)

computes the intersection curve of two surfaces, Srf1 and Srf2, up to SubdivTol/NumerTol
accuracy. The returned data is in Euclidean space if Euclidean is true; otherwise it is in
the parametric space. Step controls the forward step size while tracing the intersection
curves. A list of pairs of (piecewise linear) intersection curves is returned, one for each

IRIT Solid modeler G. Elber 250

connected component. If Euclidean is true a Euclidean curve is also evaluated and re-
turned. If DiscBndry is TRUE, special case is made to properly compute intersections
along the boundary and/or along knot lines.

Example:

s1 = sphereSrf(0.35) * trans(vector(0.0, 0.1, 0.2));

s2 = coneSrf(1, 0.5);

Inter = SSINTR2(s1, s2, 0.01, 0.01, 1e-8, false, false);

computes the intersection curves of a cone and a sphere in parameter spaces. See also
MUNIVZERO, SLINTER, SCINTER, RRINTER, SSINTER and GGINTER.

11.2.343 STANGENT

VectorType STANGENT(SurfaceType Srf, ConstantType Direction,

NumericType UParam, NumericType VParam,

NumericType Normalize)

or

VectorType STANGENT(TrimSrfType Srf, ConstantType Direction,

NumericType UParam, NumericType VParam,

NumericType Normalize)

compute the tangent vector to the (possibly trimmed) surface Srf at the parameter
values UParam and VParam in Direction. The returned vector has a unit length. If
Normalize TRUE, the returned vector is normalized as well.

Example:

Tang = STANGENT(Srf, ROW, 0.5, 0.6, TRUE);

computes the unit tangent to Srf in the ROW direction at the parameter values (0.5,
0.6).

11.2.344 STRIMSRF

SurfaceType STRIMSRF(TrimSrfType TSrf)

extracts the surface of a trimmed surface TSrf.
Example:

Srf = STRIMSRF(TrimSrf);

extracts the surface of TrimSrf. See also CTRIMSRF.

IRIT Solid modeler G. Elber 251

Figure 107: Extracts an iso bilinear surface from a trilinear function, using STRIVAR.

11.2.345 STRIVAR

SurfaceType STRIVAR(TrivarType TV, ConstantType Direction,

NumericType Param))

extracts an iso surface from a trivariate function TV in the specified Direction (ROW
or COL or DEPTH) at the specified parameter value Param. Param must be contained
in the parametric domain of TV in Direction direction. The returned surface is in the
trivariate TV.

Example:

TV1 = tbezier(list(list(list(ctlpt(E3, 0.1, 0.0, 0.8),

ctlpt(E3, 0.2, 0.1, 2.4)),

list(ctlpt(E3, 0.3, 2.2, 0.2),

ctlpt(E3, 0.4, 2.3, 2.0))),

list(list(ctlpt(E3, 2.4, 0.8, 0.1),

ctlpt(E3, 2.2, 0.7, 2.3)),

list(ctlpt(E3, 2.3, 2.6, 0.5),

ctlpt(E3, 2.1, 2.5, 2.7)))));

Srf = STRIVAR(TV1, col, 0.4);

extracts an iso surface of TV1, in the col direction at parameter value 0.4. See Fig-
ure 107. See also SMESH, CSURFACE, MFROMMV.

11.2.346 SURFPREV

SurfaceType SURFPREV(CurveType Object)

This is the same as SURFREV but approximates the surface of revolution as a polyno-
mial surface. The object must be a polynomial curve. The behaviour of this function can
be modified if ”Rational” attribute is provided with a non zero value to construct a pre-
cise surface of revolution instead of a polynomial approximation. Further if ”StartAngle”
and ”EndAngle” are found as attributes with valid angular prescription (in degrees), only
that angular slice out of the surface of revolution is constructed. See also SURFREV,
SURFPREV2.

IRIT Solid modeler G. Elber 252

11.2.347 SURFPREV2

SurfaceType SURFPREV2(CurveType Object,

NumericType StartAngle,

NumericType EndAngle)

This is the same as SURFPREV but also allow to specify a starting and terminating
angle. The behaviour of this function can be modified if ”Rational” attribute is provided
with a non zero value to construct a precise surface of revolution instead of a polynomial
approximation. See also SURFREV, SURFPREV.

11.2.348 SURFREV

PolygonType SURFREV(PolygonType Object)

or

SurfaceType SURFREV(CurveType Object)

create a surface of revolution by rotating the first polygon/curve of the given Ob-
ject, around the Z axis. Use the linear transformation functions to position a surface of
revolution in a different orientation.

Example:

VTailAntn = SURFREV(ctlpt(E3, 0.001, 0.0, 1.0) +

ctlpt(E3, 0.01, 0.0, 1.0) +

ctlpt(E3, 0.01, 0.0, 0.8) +

ctlpt(E3, 0.03, 0.0, 0.7) +

ctlpt(E3, 0.03, 0.0, 0.3) +

ctlpt(E3, 0.001, 0.0, 0.0));

constructs a piecewise linear B-spline curve in the XZ plane and uses it to construct a
surface of revolution by rotating it around the Z axis. See also SURFPREV, SURFRE-
VAXS, SURFREV2, SURFREVAX2, and TVREV. See Figure 108.

11.2.349 SURFREVAXS

PolygonType SURFREVAXS(PolygonType Object, VectorType Axis)

or

SurfaceType SURFREVAXS(CurveType Object, VectorType Axis)

create a surface of revolution by rotating the first polygon/curve of the given Object,
around the Axis axis. Use the linear transformation functions to position a surface of
revolution in a different location.

Example:

Glass = SURFREVAXS(GCross, vector(1, 0, 1));

constructs a surface of revolution by rotating GCross around the axis of (1, 0, 1). See
also SURFPREV, SURFREV, SURFREV2, SURFREVAX2.

IRIT Solid modeler G. Elber 253

Figure 108: A surface of revolution, VTailAntn in surfrev documentation, can be constructed using
SURFREV or SURFPREV.

11.2.350 SURFREV2

PolygonType SURFREV2(PolygonType Object,

NumericType StartAngle,

NumericType EndAngle)

or

SurfaceType SURFREV2(CurveType Object,

NumericType StartAngle,

NumericType EndAngle)

create a surface of revolution by rotating the first polygon/curve of the given Object,
around the Z axis. The rotation does not form a complete circle and is from the StartAngle
to the EndAngle only, in degrees, starting from the X axis toward the Y axis, in the XY
plane. Use the linear transformation functions to position a surface of revolution in a
different orientation.

Example:

Glass = SURFREV2(GCross, 45, 180);

constructs a surface of revolution by rotating it around the Z axis from 45 to 180
degrees. See also SURFPREV, SURFREVAXS, SURFREV, SURFREVAX2.

11.2.351 SURFREVAX2

PolygonType SURFREVAX2(PolygonType Object,

NumericType StartAngle,

NumericType EndAngle,

IRIT Solid modeler G. Elber 254

VectorType Axis)

or

SurfaceType SURFREVAX2(CurveType Object,

NumericType StartAngle,

NumericType EndAngle,

VectorType Axis)

create a surface of revolution by rotating the first polygon/curve of the given Object,
around the Axis axis. The rotation does not form a complete circle and is from the
StartAngle to the EndAngle only, in degrees, starting from the X axis toward the Y
axis, in the XY plane. Use the linear transformation functions to position a surface of
revolution in a different location.

Example:

T4 = SURFREVAX2(PolyCross, 90, 360, vector(1, 0, 1));

constructs a polygonal surface of revolution by rotating PolygonType PolyCross around
the axis (1, 0, 1), from 45 to 180 degrees. See also SURFPREV, SURFREVAXS,
SURFREV2, SURFREV.

11.2.352 SVISIBLE

ListType SVISIBLE(SurfaceType Srf,

NumericType Resolution,

NumericType ConeSize)

computes a decomposition of a freeform surface Srf into regions, each visible with a
cone visibility of ConeSize degrees from one direction. In other words, all points in one
region have angular deviation of their surface normal of less than ConeSize degrees from
the set viewing direction. Resolution controls the accuracy of the computation; the higher
this value is, more exact the result. 20 is a good starting value. Each returned region is
a trimmed surface that has a ”ViewDir” attribute that contains the viewing direction of
this region.

Example:

c1 = cbezier(list(ctlpt(E3, 1.0, 0.0, 0.5),

ctlpt(E3, 1.1, 0.0, 0.0),

ctlpt(E3, 1.0, 0.0, -0.5)));

Simp = sregion(surfPRev(c1), col, 0.0, 1.0) * rz(45) * rx(90);

Decomp = SVISIBLE(Simp, 20, 30 * pi / 180);

SimDecomp = nil();

Mod = 5;

for (i = 1, 1, sizeof(Decomp),

o = nth(Decomp, i):

v = getattr(o, "ViewDir"):

l = (ctlpt(E3, 0, 0, 0) + coerce(v, e3)) * sc(1.5):

IRIT Solid modeler G. Elber 255

Figure 109: A decomposition of a freeform surface into cone visible regions of 30 degrees. The direction
of visibility is also presented. Computed using the SVISIBLE command.

j = floor((i - 1) / Mod):

snoc(list(o, Simp, l, axes)

* view_mat * tx((i - 1 - j * Mod) * 2 - 4)

* ty(-j * 2),

SimDecomp));

view(SimDecomp, on);

decomposes a given surface Simp into regions of 30 degrees at most, goes over the
decomposed regions and orders them five in a row. See Figure 109.

11.2.353 SVOLUME

SurfaceType SVOLUME(SurfaceType Srf, NumericType Method, NumericType Eval)

or

NumericType SVOLUME(SurfaceType Srf, NumericType Method, NumericType Eval)

computes the integral volume surface, VSrf, of the given surface Srf, up to a sign. If
Srf is a closed surface with domain (u0, v0) to (u1, v1), then the difference of VSrf(u1,
v1) - VSrf(u0, v0) is the requested volume. Otherwise, the computation is for the volume
occupied between the surface Srf and the XY plane if Method equals one, and the volume
occupied between the surface Srf and the origin if Method equals two. If Eval is TRUE,
the actual numerical value of the volume is returned. The volume integral surface is
returned if Eval is FALSE.

IRIT Solid modeler G. Elber 256

Example:

Spr = surfPRev(cregion(pcircle(vector(0, 0, 0), 1), 1, 3)

* ry(90));

SVOLUME(Spr, 1, 1) * 3 / 4;

SVOLUME(Spr, 2, 1) * 3 / 4;

are yet another two ways of approximating the value of Pi. See also TVOLUME, SMO-
MENTS and CAREA.

11.2.354 SWEEPSRF

SurfaceType SWEEPSRF(CurveType CrossSection | ListType CrossSectionList,

CurveType Axis,

CurveType FrameCrv | VectorType FrameVec

| ConstType OFF)

constructs a generalized cylinder surface. This function sweeps a specified cross sec-
tion CrossSection along the provided Axis. If a list of curves CrossSectionList is specified
instead, the cross sections are blended along the Axis curve so that the first/last cross
section in the list fits the first/last location on the Axis. By default, when frame speci-
fication (third parametr) is OFF, the orientation of the cross section is computed using
the Axis curve tangent and normal. However, unlike the Frenet frame, attempt is made
to minimize the normal change, as can happen along inflection points in the Axis curve.
If a VectorType FrameVec is provided as a frame orientation setting, it is used to fix
the binormal direction to this value. In other words, the orientation frame has a fixed
binormal. If FrameVec has an ”init” attribute with a 1 (TRUE) value, this vector is only
used as an initial vector for the first frame, and the rest of the orientations are computed
while aiming to minimize the twist. If a CurveType FrameCrv is specified as a frame
orientation setting, this vector field curve is evaluated at each placement of the cross
section to yield the needed binormal.

The resulting sweep is only an approximation of the real sweep. The resulting sweep
surface will not be exact, in general. Refinement of the axis curve at the proper location,
before applying SWEEPSRF, will improve the accuracy of the output. The parametric
domain of FrameCrv does not have to match the parametric domain of Axis, and its
parametric domain is automatically made compatible by this function.

Example:

Cross = arc(vector(0.2, 0.0, 0.0),

vector(0.2, 0.2, 0.0),

vector(0.0, 0.2, 0.0)) +

arc(vector(0.0, 0.4, 0.0),

vector(0.1, 0.4, 0.0),

vector(0.1, 0.5, 0.0)) +

arc(vector(0.8, 0.5, 0.0),

vector(0.8, 0.3, 0.0),

vector(1.0, 0.3, 0.0)) +

arc(vector(1.0, 0.1, 0.0),

vector(0.9, 0.1, 0.0),

IRIT Solid modeler G. Elber 257

Figure 110: Three examples of the use of SWEEPSRF (Srf1, Srf2, Srf3 from left to right in sweepsrf
documentation).

vector(0.9, 0.0, 0.0)) +

ctlpt(E2, 0.2, 0.0);

Axis = arc(vector(-1.0, 0.0, 0.0),

vector(0.0, 0.0, 0.1),

vector(1.0, 0.0, 0.0));

Axis = crefine(Axis, FALSE, list(0.25, 0.5, 0.75));

Srf1 = SWEEPSRF(Cross, Axis, OFF);

Srf2 = SWEEPSRF(Cross, Axis, vector(0.0, 1.0, 1.0));

Srf3 = SWEEPSRF(Cross, Axis,

cbezier(list(ctlpt(E3, 1.0, 0.0, 0.0),

ctlpt(E3, 0.0, 1.0, 0.0),

ctlpt(E3, -1.0, 0.0, 0.0))));

constructs a rounded rectangle cross section and sweeps it along an arc, while orienting
it several ways. The axis curve Axis is manually refined to better approximate the
requested shape.

See also SWPSCLSRF for sweep with scale. See Figure 110.

11.2.355 SWEEPTV

TrivarType SWEEPTV(SurfaceType CrossSection | ListType CrossSectionList,

CurveType Axis,

CurveType FrameCrv | VectorType FrameVec

| ConstType OFF)

constructs a generalized cylinder trivariate. This function sweeps a specified cross
section surface CrossSection along the provided Axis curve. If a list of surfaces CrossSec-
tionList is specified instead, the cross sections are blended along the Axis curve so that
the first/last cross section in the list fits the first/last location on the Axis. By default,
when frame specification (third parameter) is OFF, the orientation of the cross section is
computed using the Axis curve tangent and normal. However, unlike the Frenet frame,
attempt is made to minimize the normal change, as can happen along inflection points in
the Axis curve. If a VectorType FrameVec is provided as a frame orientation setting, it
is used to fix the binormal direction to this value. In other words, the orientation frame
has a fixed binormal. If FrameVec has an ”init” attribute with a 1 (TRUE) value, this
vector is only used as an initial vector for the first frame, and the rest of the orientations
are computed while aiming to minimize the twist. If a CurveType FrameCrv is specified

IRIT Solid modeler G. Elber 258

as a frame orientation setting, this vector field curve is evaluated at each placement of
the cross section to yield the needed binormal.

The resulting sweep is only an approximation of the real sweep. The resulting sweep
trivariate will not be exact, in general. Refinement of the axis curve at the proper location,
before applying SWEEPTV, will improve the accuracy of the output. The parametric
domains of FrameCrv does not have to match the parametric domain of Axis, and its
parametric domain is automatically made compatible by this function.

Example:

cross = ruledSrf(0,

arc(vector(0.2, 0.0, 0.0),

vector(0.2, 0.2, 0.0),

vector(0.0, 0.2, 0.0)) +

arc(vector(0.0, 0.3, 0.0),

vector(0.2, 0.3, 0.0),

vector(0.2, 0.5, 0.0)),

arc(vector(0.8, 0.0, 0.0),

vector(0.8, 0.2, 0.0),

vector(1.0, 0.2, 0.0)) +

arc(vector(1.0, 0.3, 0.0),

vector(0.8, 0.3, 0.0),

vector(0.8, 0.5, 0.0)));

Axis = arc(vector(-1.0, 0.0, 0.0),

vector(0.0, 0.0, 0.1),

vector(1.0, 0.0, 0.0));

Axis = crefine(Axis, FALSE, list(0.25, 0.5, 0.75));

TV1 = SWEEPTV(Cross, Axis, OFF);

TV2 = SWEEPTV(Cross, Axis, vector(0.0, 1.0, 1.0));

TV3 = SWEEPTV(Cross, Axis,

cbezier(list(ctlpt(E3, 1.0, 0.0, 0.0),

ctlpt(E3, 0.0, 1.0, 0.0),

ctlpt(E3, -1.0, 0.0, 0.0))));

constructs a rounded rectangle cross section and sweeps it along an arc, while orienting
it several ways. The axis curve Axis is manually refined to better approximate the
requested shape.

See also SWPSCLTV for sweep with scale and SWEEPSRF.

11.2.356 SWPSCLSRF

SurfaceType SWPSCLSRF(CurveType CrossSection | ListType CrossSectionList,

CurveType Axis, NumericType Scale | CurveType ScaleCrv,

CurveType FrameCrv | VectorType FrameVec

| ConstType OFF,

NumericType AxisRefine, NumericType C1JointType)

constructs a generalized cylinder surface. This function sweeps a specified cross section
CrossSection along the provided Axis. If a list of curves CrossSectionList is specified

IRIT Solid modeler G. Elber 259

instead, the cross sections are blended along the Axis of the curve so that the first/last
cross section in the list fits the first/last location on the Axis. The cross section may
be scaled by a constant value Scale, or scaled along the Axis parametric direction via a
scaling curve ScaleCrv. The ScaleCrv can be an E2 curve in which the X axis is ignored
and the Y axis serves to scale the cross sections along the sweep. If, however, ScaleCrv is
an E3 curve, the Y and Z coordinates of ScaleCrv are used to scale the cross sections in
X and Y, respectively. The X axis can be used to give a visible form to ScaleCrv, to be
displayed and examined, and again, it is ignored by this function. By default, when frame
specification is OFF, the orientation of the cross section is computed using the Axis curve
tangent and normal. However, unlike the Frenet frame, attempt is made to minimize the
normal change, as can happen along inflection points in Axis. If a VectorType FrameVec
is provided as a frame orientation setting, it is used to fix the binormal direction to this
value. In other words, the orientation frame has a fixed binormal. If FrameVec has an
”init” attribute with a 1 (TRUE) value, this vector is only used as an initial vector for
the first frame. If a CurveType FrameCrv is specified as a frame orientation setting, this
vector field curve is evaluated at each placement of the cross section to yield the needed
binormal. AxisRefine an integer value to define possible refinement of the Axis to better
reflect the information in ScalingCrv and the orientation. A value of zero will force no
refinement while a value of n > 0 will insert n times the number of control points in
ScaleCrv into Axis, better emulating the requested sweep. If AxisRefine is negative, it
is used as a positive value while a bound on the sweep approximation error is computed
and placed as ”SweepError” attribute on the result. The resulting sweep is only an
approximation of the real sweep. The scaling and axis placement will not be exact, in
general. Manual refinement (in addition to AxisRefine) of the axis curve at the proper
location, where accuracy is important, should improve the accuracy of the output. The
parametric domains of ScaleCrv and FrameCrv do not have to match the parametric
domain of Axis, and their domains are made compatible by this function. If the Axis
curve has C1 discontinuities, they can be treated as follows, depending on the value of
C1JointType:

No treatment of C1 discontinuities and if Axis
has a C1 discontinuity, the function will abort.
Will only subdivide the Axis at all C1 discontinuity and
compute individual sweeps for each of the continuus pieces.
Will attempt to round the C1. If a polynomial sweep,
round will be approximately circular. If a rational sweep, the
round will be circular. Result will be G1 continuous.
Will chamfer the corner, resulting in a C1 discontinuous sweep.
Will miter the corner, resulting in a C1 discontinuous sweep.

Example:

Cross = arc(vector(-0.11, -0.1, 0.0),

vector(-0.1, -0.1, 0.0),

vector(-0.1, -0.11, 0.0)) +

arc(vector(0.1, -0.11, 0.0),

vector(0.1, -0.1, 0.0),

vector(0.11, -0.1, 0.0)) +

IRIT Solid modeler G. Elber 260

Figure 111: Three examples of the use of SWPSCLSRF (Srf1, Srf2, Srf3 from left to right in SWP-
SCLSRF documentation).

arc(vector(0.11, 0.1, 0.0),

vector(0.1, 0.1, 0.0),

vector(0.1, 0.11, 0.0)) +

arc(vector(-0.1, 0.11, 0.0),

vector(-0.1, 0.1, 0.0),

vector(-0.11, 0.1, 0.0)) +

ctlpt(E2, -0.11, -0.1);

scaleCrv = cbspline(3,

list(ctlpt(E2, 0.05, 1.0),

ctlpt(E2, 0.1, 0.0),

ctlpt(E2, 0.2, 2.0),

ctlpt(E2, 0.3, 0.0),

ctlpt(E2, 0.4, 2.0),

ctlpt(E2, 0.5, 0.0),

ctlpt(E2, 0.6, 2.0),

ctlpt(E2, 0.7, 0.0),

ctlpt(E2, 0.8, 2.0),

ctlpt(E2, 0.85, 1.0)),

list(KV_OPEN));

Axis = circle(vector(0, 0, 0), 1);

Frame = circle(vector(0, 0, 0), 1)

* rotx(90) * trans(vector(1.5, 0.0, 0.0));

Srf1 = SWPSCLSRF(Cross, Axis, scaleCrv, off, 0, 0);

Srf2 = SWPSCLSRF(Cross, Axis, scaleCrv, off, 2, 0);

Srf3 = SWPSCLSRF(Cross, Axis, 1.0, Frame, 0, 0);

constructs a rounded rectangle cross section and sweeps it along a circle, while scaling
and orienting in several ways. The axis curve Axis is automatically refined in Srf2 to
better approximate the requested scaling.

See also SWEEPSRF for sweep with no scale. See Figure 111.

11.2.357 SWPSCLTV

SurfaceType SWPSCLTV(SurfaceType CrossSection | ListType CrossSectionList,

IRIT Solid modeler G. Elber 261

CurveType Axis, NumericType Scale | CurveType ScaleCrv,

CurveType FrameCrv | VectorType FrameVec

| ConstType OFF,

NumericType AxisRefine, NumericType C1JointType)

constructs a generalized cylinder trivariate. This function sweeps a specified cross
section CrossSection surface along the provided Axis curve. If a list of surfaces CrossSec-
tionList is specified instead, the cross sections are blended along the Axis curve so that
the first/last cross section in the list fits the first/last location on the Axis curve. The
cross section may be scaled by a constant value Scale, or scaled along the Axis parametric
direction via a scaling curve ScaleCrv. By default, when frame specification is OFF, the
orientation of the cross section is computed using the Axis curve tangent and normal.
However, unlike the Frenet frame, attempt is made to minimize the normal change, as
can happen along inflection points in Axis. If a VectorType FrameVec is provided as a
frame orientation setting, it is used to fix the binormal direction to this value. In other
words, the orientation frame has a fixed binormal. If FrameVec has an ”init” attribute
with a 1 (TRUE) value, this vector is only used as an initial vector for the first frame,
and the rest of the orientations are computed while aiming to minimize the twist. If a
CurveType FrameCrv is specified as a frame orientation setting, this vector field curve is
evaluated at each placement of the cross section to yield the needed binormal. AxisRefine
is an integer value to define possible refinement of the Axis to better reflect the infor-
mation in ScalingCrv and the orientation frame. A value of zero will force no refinement
while a value of n > 0 will insert n times the number of control points in ScaleCrv into
Axis, better emulating the requested sweep. If AxisRefine is negative, it is used as a
positive value while a bound on the sweep approximation error is computed and placed
as ”SweepError” attribute on the result. The resulting sweep is only an approximation
of the real sweep. The scaling and axis placement will not be exact, in general. Manual
refinement (in addition to AxisRefine) of the axis curve at the proper location, where ac-
curacy is important, should improve the accuracy of the output. The parametric domains
of ScaleCrv and FrameCrv do not have to match the parametric domain of Axis, and their
domains are made compatible by this function. If the Axis curve has C1 discontinuities,
they can be treated as follows, depending on the value of C1JointType:

No treatment of C1 discontinuities and if Axis
has a C1 discontinuity, the function will abort.
Will only subdivide the Axis at all C1 discontinuity and
compute individual sweeps for each of the continuus pieces.
Will attempt to round the C1. If a polynomial sweep,
round will be approximately circular. If a rational sweep, the
round will be circular. Result will be G1 continuous.
Will chamfer the corner, resulting in a C1 discontinuous sweep.
Will miter the corner, resulting in a C1 discontinuous sweep.

Example:

cross = ruledSrf(0,

arc(vector(0.2, 0.0, 0.0),

vector(0.2, 0.2, 0.0),

IRIT Solid modeler G. Elber 262

vector(0.0, 0.2, 0.0)) +

arc(vector(0.0, 0.3, 0.0),

vector(0.2, 0.3, 0.0),

vector(0.2, 0.5, 0.0)),

arc(vector(0.8, 0.0, 0.0),

vector(0.8, 0.2, 0.0),

vector(1.0, 0.2, 0.0)) +

arc(vector(1.0, 0.3, 0.0),

vector(0.8, 0.3, 0.0),

vector(0.8, 0.5, 0.0)));

scaleCrv = cbspline(3,

list(ctlpt(E2, 0.05, 1.0),

ctlpt(E2, 0.1, 0.0),

ctlpt(E2, 0.2, 2.0),

ctlpt(E2, 0.3, 0.0),

ctlpt(E2, 0.4, 2.0),

ctlpt(E2, 0.5, 0.0),

ctlpt(E2, 0.6, 2.0),

ctlpt(E2, 0.7, 0.0),

ctlpt(E2, 0.8, 2.0),

ctlpt(E2, 0.85, 1.0)),

list(KV_OPEN));

Axis = circle(vector(0, 0, 0), 1);

Frame = circle(vector(0, 0, 0), 1)

* rotx(90) * trans(vector(1.5, 0.0, 0.0));

Tv1 = SWPSCLTV(Cross, Axis, scaleCrv, off, 0, 0);

Tv2 = SWPSCLTV(Cross, Axis, scaleCrv, off, 2, 0);

Tv3 = SWPSCLTV(Cross, Axis, 1.0, Frame, 0, 0);

constructs a rounded rectangle cross section and sweeps it along a circle, while scaling
and orienting in several ways. The axis curve Axis is automatically refined in Tv2 to
better approximate the requested sweep.

See also SWEEPTV for sweep with no scale and SWPSCLSRF.

11.2.358 SWUNGASUM

SurfaceType SWUNGASUM(CurveType Crv1, CurveType Crv2)

or

TrivarType SWUNGASUM(CurveType Crv, SurfaceType Srf)

Given two curves (or a curve and a surface), compute a swung surface (trivariate) that
equals:

S(r, t) = (x1(r)x2(t), x1(r)y2(t), y1(r)) (32)

or

IRIT Solid modeler G. Elber 263

Figure 112: An algebraic swung sum of a circle and a line creating a portion of a sphere (left) and a
general swung surface between a circle and a periodic curve (right), both using SWUNGASUM.

T (u, v, w) = (Sx(v,w)Cx(u), Sx(v,w)Cy(u), Sy(v,w)) (33)

Example:

circ = circle(vector(0.0, 0.0, 0.0), 1.5) * ry(90);

arc1 = arc(vector(0.0, 1.0, 0.0),

vector(0.0, 0.0, 0.0),

vector(1.0, 0.0, 0.0));

as1 = SWUNGASUM(circ * ry(-90), arc1);

arc1 = cregion(circle(vector(0.0, 0.0, 0.0), 1.5), 0, 2) * rz(90);

c2 = coerce(cbspline(3,

list(ctlpt(E2, 1.0, 0.0),

ctlpt(E2, 0.2, 0.2),

ctlpt(E2, 0.0, 1.0),

ctlpt(E2, -0.2, 0.2),

ctlpt(E2, -1.0, 0.0),

ctlpt(E2, -0.2, -0.2),

ctlpt(E2, 0.0, -1.0),

ctlpt(E2, 0.2, -0.2)),

list(KV_PERIODIC)),

KV_OPEN);

as2 = SWUNGASUM(arc1, c2);

creates two algebraic sum surfaces, one in the shape of a cylinder as a sum of a line
and a circle, and one circular sweep. See Figure 112.

IRIT Solid modeler G. Elber 264

11.2.359 SYMBCPROD

CurveType SYMBCPROD(CurveType Crv1, CurveType Crv2)

or

SurfaceType SYMBCPROD(SurfaceType Srf1, SurfaceType Srf2)

or

MultivarType SYMBCPROD(MultivarType MV1, MultivarType MV2)

compute the symbolic cross product of the two given curves/surfaces/multivariates as
a curve, surface or multivariate.

Example:

NrmlSrf = SYMBCPROD(sderive(Srf, ROW), sderive(Srf, COL))

computes a normal surface as the cross product of the two surface partial derivatives
(see SNRMLSRF). See also SYMBIPROD, SYMBDPROD, SYMBPROD, SYMBSUM,
SYMBDIFF.

11.2.360 SYMBDIFF

CurveType SYMBDIFF(CurveType Crv1, CurveType Crv2)

or

SurfaceType SYMBDIFF(SurfaceType Srf1, SurfaceType Srf2)

or

MultivarType SYMBDIFF(MultivarType MV1, MultivarType MV2)

compute the symbolic difference of the two given curves/surfaces/multivariates as a
curve, surface or multivariate. The difference is computed coordinate-wise.

Example:

DiffCrv = SYMBDIFF(Crv1, Crv2)

DistSqrCrv = symbdprod(DiffCrv, DiffCrv)

See also SYMBCPROD, SYMBDPROD, SYMBIPROD, SYMBPROD, SYMBSUM.

11.2.361 SYMBDPROD

CurveType SYMBDPROD(CurveType Crv1, CurveType Crv2)

or

CurveType SYMBDPROD(CurveType Crv1, VectorType Vec2)

IRIT Solid modeler G. Elber 265

or

SurfaceType SYMBDPROD(SurfaceType Srf1, SurfaceType Srf2)

or

SurfaceType SYMBDPROD(SurfaceType Srf1, VectorType Vec2)

or

MultivarType SYMBDPROD(MultivarType MV1, MultivarType MV2)

or

MultivarType SYMBDPROD(MultivarType MV1, VectorType Vec2)

compute the symbolic dot (inner) product of the two given curves/surfaces/multivariates
as a scalar curve/surface/multivariate. As an alternative, one parameter can also be a reg-
ular vector.

Example:

DiffCrv = symbdiff(Crv1, Crv2)

DistSqrCrv = SYMBDPROD(DiffCrv, DiffCrv)

computes a scalar curve that at parameter t is equal to the distance square between
Crv1 at t and Crv2. See also SYMBCPROD, SYMBIPROD, SYMBPROD, SYMBSUM,
SYMBDIFF.

11.2.362 SYMBIPROD

NumericType SYMBIPROD(CurveType Crv, NumericType Order1, NumericType Order2)

or

NumericType SYMBIPROD(NumericType Dummy, NumericType Idx1, NumericType Idx2)

compute the inner product of two B-spline basis functions. The first form defines the
function space to be the same as the function space of Crv of order Order1 (first basis
function) by Order2. The second basis function in the inner product is defined as,

∫
Bi,o1(t)Bj,o2(t)dt. (34)

The second form prescribes the indices of the two basis functions, i and j. The first
form returns zero in case of an error. The second form returns the result of the inner
product.

Example:

IRIT Solid modeler G. Elber 266

SYMBIPROD(Crv = pcircle(vector(0, 0, 0), 1), 4, 4);

for (i = 0, 1, nth(ffmsize(Crv), 1) - 1,

for (j = 0, 1, nth(ffmsize(Crv), 1) - 2,

printf("%3.3f ", list(SYMBIPROD(0, i, j)))):

printf("\\n", nil()));

prints all possible inner products of the B-spline function space of pcircle, of cubics
vs. cubics. See also SYMBCPROD, SYMBDPROD, SYMBPROD, SYMBSUM, SYMB-
DIFF.

11.2.363 SYMBPROD

CurveType SYMBPROD(CurveType Crv1, CurveType Crv2)

or

SurfaceType SYMBPROD(SurfaceType Srf1, SurfaceType Srf2)

or

MultivarType SYMBPROD(MultivarType MV1, MultivarType MV2)

compute the symbolic product of the two given curves/surfaces/multivariates as a
curve, surface or multivariate. The product is computed coordinate-wise.

Example:

ProdSrf = SYMBPROD(Srf1, Srf2)

See also SYMBCPROD, SYMBDPROD, SYMBIPROD, SYMBSUM, SYMBDIFF.

11.2.364 SYMBSUM

CurveType SYMBSUM(CurveType Crv1, CurveType Crv2)

or

SurfaceType SYMBSUM(SurfaceType Srf1, SurfaceType Srf2)

or

MultivarType SYMBSUM(MultivarType MV1, MultivarType MV2)

compute the symbolic sum of the two given curves/surfaces/multivariates as a curve,
surface or multivariate. The sum is computed coordinate-wise.

Example:

SumCrv = SYMBSUM(Crv1, Crv2)

See also SYMBCPROD, SYMBDPROD, SYMBIPROD, SYMBPROD, SYMBDIFF.

IRIT Solid modeler G. Elber 267

Figure 113: Computes a coverage for a volumetric torus object by curves or surfaces using TADAPISO.
Left shows the original volumetric model, middle shows covering by surfaces, and right shows covering
by curves.

11.2.365 TADAPISO

CurveType TADAPISO(TrivarType TV, NumericType SrfDir, NumericType Tol,

NumericType CrvDir, NumericType CntrEps)

compute adaptive isocurves coverage for the given trivariate TV. The coverage extracts
iso-surfaces adaptively from TV in SrfDir and then extract iso-curves adaptively from each
such iso-surface in CrvDir. If the trivariate (and hence surfaces) are trimmed, CntrEps
controls the accuracy of the trimming approximation. SrfDir can be one of ROW, COL
or DEPTH. CrvDir can be one of COL,ROW, or 0 to return the surfaces (and no curves).

Example:

Cvr = TADAPISO(TV, col, Tol, 0, 0.01);

to return the covering iso-surfaces of trivariate TV. See also SADAPISO. See Figure 113.

11.2.366 TBEZIER

TrivarType TBEZIER(ListType CtlMesh)

creates a Bezier trivariate using the provided control mesh. CtlMesh is a list of planes,
each of which is a list of rows, each of which is a list of control points. All control points
must be of type (E1-E9, P1-P9), or regular PointType defining the trivariate’s control
mesh. The surface point type will be of a space which is the union of the spaces of all
points.

The created trivariate is the piecewise polynomial (or rational) function,

T (u, v, w) =
m∑
i=0

n∑
j=0

l∑
k=0

PijkBi(u)Bj(v)Bk(w) (35)

where Pijk are the control points CtlMesh, and l, m and n are the degrees of the trivariate,
which are one less than the number of points in the appropriate direction.

Example:

IRIT Solid modeler G. Elber 268

Figure 114: A trivariate Bezier of degree 2 by 3 by 3 (left) and a trilinear B-spline (right). Both share
the same control mesh.

TV = TBEZIER(list(list(list(ctlpt(E3, 0.1, 0.1, 0.0),

ctlpt(E3, 0.2, 0.5, 1.1),

ctlpt(E3, 0.3, 0.1, 2.2)),

list(ctlpt(E3, 0.4, 1.3, 0.5),

ctlpt(E3, 0.5, 1.7, 1.7),

ctlpt(E3, 0.6, 1.3, 2.9)),

list(ctlpt(E3, 0.7, 2.4, 0.5),

ctlpt(E3, 0.8, 2.6, 1.4),

ctlpt(E3, 0.9, 2.8, 2.3))),

list(list(ctlpt(E3, 1.1, 0.1, 0.5),

ctlpt(E3, 1.3, 0.2, 1.7),

ctlpt(E3, 1.5, 0.3, 2.9)),

list(ctlpt(E3, 1.7, 1.2, 0.0),

ctlpt(E3, 1.9, 1.4, 1.2),

ctlpt(E3, 1.2, 1.6, 2.4)),

list(ctlpt(E3, 1.4, 2.3, 0.9),

ctlpt(E3, 1.6, 2.5, 1.7),

ctlpt(E3, 1.8, 2.7, 2.5)))));

creates a trivariate Bezier which is linear in the first direction, and quadratic in the
second and third. See Figure 114.

11.2.367 TBOOLONE

TrivarType TBOOLONE(SurfaceType Srf)

Given a surface closed in one direction (like a sweep of a closed curve), the surface is
subdivided into four segments in the parametric space that are then fed into TBOOLSUM.
This is useful if a volume bounded by Srf should be ”filled” abd parameterized.

IRIT Solid modeler G. Elber 269

Figure 115: A volumetric Boolean sum of a cylinder (left) using TBOOLONE and a general volumetric
Boolean sum of six surfaces (right) using TBOOLSUM.

Example:

Srf = TBOOLONE(CylinderSrf);

creates a cylinder volume, parameterizing the entire volume of CylinderSrf. See Fig-
ure 115. See also TBOOLSUM, BOOLONE.

11.2.368 TBOOLSUM

TrivarType TBOOLSUM(Mode,

SurfaceType Srf1, SurfaceType Srf2,

SurfaceType Srf3, SurfaceType Srf4,

SurfaceType Srf5, SurfaceType Srf6)

The Mode parameter indicates which variant of the operator to use. For regular Boolean
sum operator, it should be 0. The regular operator constructs a volume using the provided
up to six surfaces as up to its six boundary surfaces, forming a topology of a cube.
Surfaces do not have to have the same order or type, and will be promoted to their least
common denominator. The boundary curves of the provided surfaces should match but
the stitching will be performed automatically so the order or orientation of all surfaces
will be set automatically to follow that of Srf1 that is not modified. There are several
options of only two input surfaces, three input surfaces, four input surfaces or the full six
surfaces, as follows:

IRIT Solid modeler G. Elber 270

2 srfs Constructs a trivariate TV from two input surfaces, Srf1
and Srf2 that must share a boundary C, as
TV = Srf1 + Srf2 - C;

3 srfs Constructs a trivariate TV from two input surfaces, Srf1
Srf2 and Srf3 that must share a boundaries C12, C13,
C23, as TV = Srf1 + Srf2 + Srf2 - C12 - C13 - C23 + P
where P is the common point of the three input surfaces.

4 srfs In this case full volumetric Boolean sum is computed while
Srf5 and Srf6 are derived as Boolean suum surfaces from the
boundary curves there share with the first, provided,
four surfaces.
The four surfaces must form a sleeve with two openings
for Srf5 and Srf6.

6 srfs In this case, a full volumetric Boolean sum is computed.

Surface parameters that are not provided should be specified as non-surface parameters
(i.e. 0 is this surface is not used).

For Kernel-based Boolean sum operator, which is used to construct valid Boolean
sum trivariate (i.e. with positive Jacobian throughout the domain), theMode parameter
should be a list of five numeric values: (Op, DistRatio, Limit, SubEps, IsSingular), where

• Op is either 0 or 1 for adding DOFs using degree raising or knot insertion, respec-
tively.

• DistRatio is a number in [0, 1] to set how far to move internal control points toward
the kernel. If 1 the points are moved to the kernel point.

• Place a Limit on the number of knots to add or the maximal degree in degree raising.

• SubEps is the Subdivision epsilon. 0.01 is a reasonable start for a unit size geometry.

• IsSingular can be: TRUE to allow singularity at the kernel point. FALSE all the
surface is regular.

Examples:

tv1 = TBOOLSUM(0,

sregion(s, col, 0, 1),

sregion(s, col, 1, 2),

sregion(s, col, 2, 3),

sregion(s, col, 3, 4),

0, 0);

tv2 = TBOOLSUM(0,

sregion(s, col, 0, 1),

sregion(s, col, 1, 2),

0, 0, 0, 0);

constructs a volume tv1 for the interior of closed surface s (e. g. a cylinder with
no caps), as will TBOOLONE when operated on s, and constructs volume trivariate tv2
using two adjacent faces of s. See also TBOOLONE, BOOLSUM.

IRIT Solid modeler G. Elber 271

11.2.369 TBSPLINE

TrivarType TBSPLINE(NumericType UOrder,

NumericType VOrder,

NumericType WOrder,

ListType CtlMesh,

ListType KnotVectors)

creates a B-spline trivariate with the provided UOrder, VOrder and WOrder orders,
the control mesh CtlMesh, and the three knot vectors in KnotVectors. CtlMesh is a list
of planes, each of which is a list of rows, each of which is a list of control points. All
control points must be of point type (E1-E9, P1-P9), or regular PointType defining the
trivariate’s control mesh. Trivariate point type will be of a space which is the union of
the spaces of all points. KnotVectors is a list of three knot vectors. Each knot vector is a
list of NumericType knots of length #CtlPtList plus the Order. If, however, the length
of the knot vector is equal to #CtlPtList + Order + Order - 1, the curve is assumed to be
periodic. The knot vector may also be a list of a single constant, KV OPEN, KV FLOAT
or KV PERIODIC, in which a uniform knot vector with the appropriate length and with
open, floating or periodic end conditions will be constructed automatically.

The created surface is the piecewise polynomial (or rational) surface,

T (u, v, w) =
m∑
i=0

n∑
j=0

l∑
k=0

PijkBi,χ(u)Bj,ξ(v)Bk,φ(w) (36)

where Pijk are the control points CtlMesh, and l, m and n are the degrees of the surface,
which are one less than UOrder, VOrder and WOrder and χ, ξ and φ are the three knot
vectors of the trivariate.

Example:

TV = TBSPLINE(2, 2, 2,

list(list(list(ctlpt(E3, 0.1, 0.1, 0.0),

ctlpt(E3, 0.2, 0.5, 1.1),

ctlpt(E3, 0.3, 0.1, 2.2)),

list(ctlpt(E3, 0.4, 1.3, 0.5),

ctlpt(E3, 0.5, 1.7, 1.7),

ctlpt(E3, 0.6, 1.3, 2.9)),

list(ctlpt(E3, 0.7, 2.4, 0.5),

ctlpt(E3, 0.8, 2.6, 1.4),

ctlpt(E3, 0.9, 2.8, 2.3))),

list(list(ctlpt(E3, 1.1, 0.1, 0.5),

ctlpt(E3, 1.3, 0.2, 1.7),

ctlpt(E3, 1.5, 0.3, 2.9)),

list(ctlpt(E3, 1.7, 1.2, 0.0),

ctlpt(E3, 1.9, 1.4, 1.2),

ctlpt(E3, 1.2, 1.6, 2.4)),

list(ctlpt(E3, 1.4, 2.3, 0.9),

ctlpt(E3, 1.6, 2.5, 1.7),

ctlpt(E3, 1.8, 2.7, 2.5)))),

list(list(KV_OPEN),

IRIT Solid modeler G. Elber 272

list(KV_OPEN),

list(KV_OPEN)));

constructs a trilinear B-spline trivariate with open end conditions. See Figure 114.
TCRVTR

11.2.370 TCRVTR

AnyType TCRVTR(TrivarType TV, PointType Pos, NumericType ComputeWhat)

computes differential curvature properties of an isosurface of the given trivariate TV
at the given (parameteric) location Pos. Following the value of ComputeWhat, the result
equals,

-1 Initialization (a must prelude)
0 Conclusion (a must postlude)
1 Returns a vector hold of the gradient
2 Returns a list of three vectors

equal to the Hessian of this location
3 Returns a list of two scalar values

(Principle curvatures) and two vectors
(Principal directions).

Every evaluation must start with an invocation of ComputeWhat equal to -1 and
terminate with ComputeWhat 0. In both cases, 1 is returned in case of success.

Example:

TCRVTR(TV, point(0, 0, 0), -1); # Prelude

Grad1 = TCRVTR(TV, point(0, 0, 0), 1);

Grad2 = TCRVTR(TV, point(0, 0, 1), 1);

Grad3 = TCRVTR(TV, point(0, 1, 0), 1);

Grad4 = TCRVTR(TV, point(1, 0, 0), 1);

TCRVTR(TV, point(0, 0, 0), 0); #Postlude

11.2.371 TDEFORM

AnyType TDEFORM(GeometryType Tile, SurfaceType DeformingSrf,

NumericType UTiles, NumericType VTiles, NumericType WTiles,

NumericType FitTile, NumericType Precise,

NumericType CropBoundary)

or

AnyType TDEFORM(GeometryType Tile, TrivarType DeformingTV,

NumericType UTiles, NumericType VTiles, NumericType WTiles,

NumericType FitTile, NumericType Precise,

NumericType CropBoundary)

IRIT Solid modeler G. Elber 273

Figure 116: Geometry can be composed into trivariate volumetric splines using the TDEFORM com-
mand. Here, three orthogonal tubes (middle) are composed into a trivariate (left) 2x2x4 times, yeilding
the approximated result on the right.

Tiles Tile UTiles x VTiles (x WTiles) times inside the surface domain of Deform-
ingSrf or the volumetric domain of DeformingTV by compose Tile with DeformingSrf
or DeformingTV. Result is precisely deformed, using composition, if Precise, where the
Tile can be almost any geometric type (a curve, a (trimmed) surface, etc.). If Tile is a
surface, DeformingSrf must be a Bezier surface. Result is approximated if DeformingTV
and Precise is 0, by mapping only (control) points through the trivariate. If Precise is
POSITIVE and Tile is either a curve or a (trimmed) surface, the computation will indeed
be precise using composition. If Precise is 1, the precise computation will generate as
compact as possible representation for the result while if ¿1, the precise result will be
computed faster but not as compact. The Tile is supposed to span [0, 1]2 or [0, 1]3. If
FitTile is 2, the Tile is first fitted into the DeformingSrf/TV domain. If FitTile is 1, the
Tile is first scaled to fit as many times as needed in the [0, 1]3 domain and if FitTile is 0, no
Tile fitting/scaling is conducted. If CropBoundary positive, the tiles near the boundary
are cropped that amount, assuming tile spans [0, 1]3.

Example:

Geom = TDEFORM(Tubes, TV, 2, 2, 4, FALSE, FALSE, 0.0);

See Figure 116. See also SDDMMAP, TEXTWARP, MICROSTRCT, MICROTILE,

11.2.372 TDERIVE

TrivarType TDERIVE(TrivarType TV, NumericType Dir)

Returns a vector field trivariate representing the differentiated trivariate in the given
direction (ROW, COL, or DEPTH). Evaluation of the returned trivariate at a given
parameter value will return a vector representing the partial derivative of TV in Dir at
that parameter value.

TV = tbezier(list(list(list(ctlpt(E1, 0.1),

ctlpt(E1, 0.2)),

IRIT Solid modeler G. Elber 274

list(ctlpt(E1, 0.3),

ctlpt(E1, 0.4))),

list(list(ctlpt(E1, 2.4),

ctlpt(E1, 2.2)),

list(ctlpt(E1, 2.3),

ctlpt(E1, 2.1)))));

DuTV = TDERIVE(TV, ROW);

DvTV = TDERIVE(TV, COL);

DwTV = TDERIVE(TV, DEPTH);

computes the gradiate of a scalar trivariate field, by computing its partials with respect
to u, v, and w. See also CDERIVE, SDERIVE, and MDERIVE.

11.2.373 TDIVIDE

TrivarType TDIVIDE(TrivarType TV, ConstantType Direction,

NumericType Param)

or

VModelType TDIVIDE(VModelType VMdl, ConstantType Direction,

NumericType Param)

Subdivides a (trimmed in case of VModelType) trivariate into two at the specified
parameter value Param in the specified Direction (ROW, COL, or DEPTH). TV can be
either a B-spline trivariate in which Param must be contained in the parametric domain
of the trivariate, or a Bezier trivariate in which Param must be in the range of zero to
one. If input is a VModel, it must be a VModel of a single VElement or a single trimmed
trivariates.

It returns a list of the two sub-(trimmed-)trivariates. The individual (trimmed) trivari-
ates may be extracted from the list using the NTH command.

Example:

TvDiv = TDIVIDE(Tv2, depth, 0.3);

Tv2a = nth(TvDiv, 1) * tx(-2.2);

Tv2b = nth(TvDiv, 2) * tx(2.0);

subdivides Tv2 at the parameter value of 0.3 in the DEPTH direction, See Figure 117.
See also CDIVIDE, SDIVIDE, and MDIVIDE

11.2.374 TEDITPT

TrivarType TEDITPT(TrivarType TV, CtlPtType CPt, NumericType UIndex,

NumericType VIndex)

NumericType WIndex)

Provides a simple mechanism to manually modify a single control point number UIn-
dex, VIndex and WIndex (base count is 0) in the control mesh of Srf by substituting
CtlPt instead. CtlPt must have the same point type as the control points of Srf. Original
surface Srf is not modified.

Example:

IRIT Solid modeler G. Elber 275

Figure 117: A trivariate can be subdivided into two distinct regions using TDIVIDE.

CPt = ctlpt(E3, 1, 2, 3);

NewTV = TEDITPT(TV, CPt, 0, 0, 0);

constructs a NewTV with the first control point of TV being CPt.

11.2.375 TEVAL

CtlPtType TEVAL(TrivarType TV,

NumericType UParam,

NumericType VParam,

NumericType WParam)

Evaluates the provided Trivariate TV at the given UParam, VParam and WParam
values. UParam, VParam, WParam must be contained in the surface parametric domain
if TV is a B-spline trivariate, or between zero and one if TV is a Bezier trivariate. The
returned control point has the same type as the control points of TV.

Example:

CPt = TEVAL(TV1, 0.25, 0.22, 0.7);

evaluates TV at the parameter values of (0.25, 0.22, 0.7). See also CEVAL, SEVAL,
MEVAL.

11.2.376 TEXT2GEOM

CurveType TEXT2GEOM(StringType Text, StringType Font,

NumericType FontStyle, NumericType SpaceWidth,

NumericType EdgeType3D, ListType Setup3D,

NumericType Tolerance, NumericType OutputType)

Synthesizes geometry that represents Text in one long line. The font that is used to
synthesized the text is an outline font Font, whereas under windows Font simple lists
the font name (i.e. ”Times New Roman”) and under other system Font specifies the full

IRIT Solid modeler G. Elber 276

Figure 118: Outline fonts can be used to synthesize text geometry, using the TEXT2GEOM command.

path of an outline ttf font file. FontStyle selects regular font if 0, italics if 1, bold if 2,
and italic bold if 3. Might be ignored if specific font does not support the specific style.
SpaceWidth controls the space between different characters. EdgeType3D sets for 3D
text syntehsis, the edge style than can be one of regular if 1, chamfered if 2 or rounded if
3. Ignored for 2D text. If 3D text generated is chamfered, Setup3D sets a 2D vector that
controls the chamfering offset amount. If swept tubes, the first parameter of Setup3D
sets the tubes radius. If solid text is to be generated, Tolerance controls the accuracy
of the polygonal approximations. OutputType selects the type of output geometry to
create: 0 for Bezier curves, 1 for B-spline curves, 2 for 2D solid text, 3 for 2D solid text
with outline B-spline curves, 4 for solid 3D polygonal text, 5 for 2D trimmed surfaces
text, 6 for 3D trimmed surfaces text, and 7 for swept tubes through the curves.

Example:

Text = TEXT2GEOM("This is a test example of some 3D text",

"Times New Roman",

0, 0, 2, list(0.01, 0.1), 0.001, 1);

See Figure 118 for the result of this example. See also TEXTLAYSHP, TEXTGEOM,
and TEXTWARP.

11.2.377 TEXTLAYSHP

CurveType TEXTLAYSHP(StringType Text, StringType Font,

NumericType FontStyle, NumericType Size,

NumericType Space, NumericType Tolerance

NumericType EdgeType3D, NumericType Setup3D,

NumericType AlignmentType, NumericType OutputType,

PolyType BoundingRegion)

or

CurveType TEXTLAYSHP(StringType Text, StringType Font,

NumericType FontStyle, NumericType Size,

VectorType Space, NumericType Tolerance

NumericType EdgeType3D, NumericType Setup3D,

NumericType AlignmentType, NumericType OutputType,

CurveType BoundingRegion)

Synthesizes geometry that represents Text inside BoundingRegion. The font that is
used to synthesized the text is an outline font Font, whereas under windows Font simple
lists the font name (i.e. ”Times New Roman”) and under other system Font specifies
the full path of an outline ttf font file. FontStyle selects regular font if 0, italics if 1,

IRIT Solid modeler G. Elber 277

bold if 2, and italic bold if 3. Might be ignored if specific font does not support the
specific style. Size simply scales the text. Space is a vector of size three: (WordWidth,
SpaceWidth, LineHeight), controling the space between different words, characters, and
lines, respectively. If solid text is to be generated, Tolerance controls the accuracy of
the polygonal approximations. EdgeType3D sets for 3D text syntehsis, the edge style
than can be one of regular if 1, chamfered if 2 or rounded if 3. Ignored for 2D text. If
3D text generated is chamfered, Setup3D sets a 2D vector that controls the chamfering
offset amount. If swept tubes, the first parameter of Setup3D sets the tubes radius.
AlignmentType selects the type of text alignments: 0 for left, 1 for center, 2 for right,
and 3 for wide (full width) alignments. OutputType selects the type of output geometry
to create: 0 for Bezier curves, 1 for B-spline curves, 2 for 2D solid text, 3 for 2D solid text
with outline B-spline curves, 4 for solid 3D polygonal text, 5 for 2D trimmed surfaces
text, 6 for 3D trimmed surfaces text, and 7 for swept tubes through the curves.

Example:

Heart = cbspline(4,

list(ctlpt(E2, 0, 0.6),

ctlpt(E2, 0.2, 1),

ctlpt(E2, 1, 1),

ctlpt(E1, 1.2),

ctlpt(E2, 0.8, -0.6),

ctlpt(E2, 0, -1),

ctlpt(E2, 0, -1),

ctlpt(E2, -0.8, -0.6),

ctlpt(E1, -1.2),

ctlpt(E2, -1, 1),

ctlpt(E2, -0.2, 1),

ctlpt(E2, 0, 0.6)),

list(kv_open)) * sc(10);

Str = "This is a test example of some 3D text. ";

text = TextLayShp(Str + Str + Str + Str + Str + Str + Str + Str,

"Courier New",

2, 0.67, list(35, 10, 34), 0.001, 0,

list(0.01, 0.5), 3, 1, Heart);

See Figure 119 for the result of this example. See also TEXT2GEOM, TEXTGEOM, and
TEXTWARP.

11.2.378 TEXTGEOM

AnyType TEXTGEOM(StringType Str, VectorType Spacing, NumericType Scaling)

Creates a displayable geometry that represents the text in Str, with Spacing space
between individual characters. Each character is scaled by Scaling where scaling of one
generates a close to unit size character.

Example:

IRIT Solid modeler G. Elber 278

Figure 119: Outline fonts can be used to synthesize text geometry and confine it to arbitrary 2D shaped
boundary, using the TEXTLAYSHP command.

a = TEXTGEOM("Text", vector(0.12, 0, 0), 0.1);

b = TEXTGEOM("IRIT", vector(0, -0.12, 0), 0.1);

Creates a horizontal Text and a vertical top to bottom IRIT, both as geometrical ob-
jects. See TEXTWARP, TEXTLAYSHP, TEXT2GEOM and IRITSTATE’s ”LoadFont”
state variable.

11.2.379 TEXTWARP

AnyType TEXTWARP(Surface Srf, StringType Text, NumericType HSpace,

NumericType VBase, NumericType VTop, NumericType Ligature)

Warps the given text, Text, using surface Srf as warping function with HSpace setting
the horizontal spacing between characters, VBase and VTop controls the vertical spacing
of the characters in Srf, and Ligature, if not zero, sets the amount to contract the distance
between two adjacent characters.

Example:

c = cbezier(list(ctlpt(e2, -1.5, -0.5),

ctlpt(e2, -2, 0),

IRIT Solid modeler G. Elber 279

Figure 120: Font and text warping using the TEXTWARP function.

ctlpt(e2, -1, 1),

ctlpt(e2, 0, -2),

ctlpt(e2, 1, 0)));

s = sreparam(ruledSrf(0, c, offset(c, -0.4, 0.02, off)), col, 0, 6);

Txt = TEXTWARP(s, "Text Warping Toolkit", 0.08, 0.25, 0.75, 0);

See also TEXTGEOM, TEXTLAYSHP, TEXT2GEOM and IRITSTATE’s ”LoadFont”
state variable.

11.2.380 TFROMSRFS

TrivarType TFROMSRFS(ListType SrfList, NumericType OtherOrder,

NumericType OtherEndCond)

or

TrivarType TFROMSRFS(ListType SrfList, NumericType OtherOrder,

ListType OtherKnotVector)

Constructs a trivariate by substituting the surfaces in SrfList as planes in a control
mesh of a trivariate. Surfaces in SrfList are made compatible by promoting Bezier surfaces
to B-splines if necessary, and raising degree and refining as required before substituting
the control meshes of the surfaces as planes in the mesh of the trivariate. The other, third,
direction order is controlled by OtherOrder and OtherEndCond. OtherOrder cannot be
larger than the number of surfaces, and OtherEndCond prescribes the desired end con-
ditions as one of KV OPEN, KV FLOAT or KV PERIODIC, or an explicitly prescribed
knot vector OtherKnotVector.

The trivariate interpolates the first and last surfaces only.
Example:

s1 = sbezier(list(list(ctlpt(E3, -0.5, -0.5, 0),

ctlpt(E3, -0.5, 0.5, 0)),

list(ctlpt(E3, 0.5, -0.5, 0),

IRIT Solid modeler G. Elber 280

Figure 121: A trivariate (thin lines) is constructed via five planar surfaces (thick lines) using the
TFROMSRFS constructor...

ctlpt(E3, 0.5, 0.5, 0)))) * sc(0.3);

Srfs = list(s1 * sc(2.0),

s1 * sx(1.4) * ry(45) * tz(1.0),

s1 * ry(90) * trans(vector(1.0, 0.0, 1.1)),

s1 * sx(1.4) * ry(135) * trans(vector(2.0, 0.0, 1.0)),

s1 * sc(2.0) * ry(180) * trans(vector(2.0, 0.0, 0.0)));

color(Srfs, red);

ts = TFROMSRFS(Srfs, 3, kv_open);

color(ts, green);

view(list(Srfs, ts), on);

Constructs a trivariate from five planar surfaces and displays both the trivariate and
the five planar surfaces, in different colors. See Figure 121.

See also EXTRUDE, RULEDTV, SFROMCRVS, TINTPSRFS.

11.2.381 TILEPACK

TrivarType TILEPACK(AnyType Tile, ListType StepsMin, ListType StepsMax,

VectorType DomainMin, VectorType DomainMax,

NumericType IncludePartial, MergeNeighbors)

computes a tiling of some planar XY domain by periodic Tile. Tile must hold ”veci”
attributes, i = 1,2, to set the duplication directions and amounts. Default, if no ”veci”
attributes, is X and Y. StepsMin and StepsMax are explicit setting of the number of
time to tile (duplicate tiles) along ”veci”, backward and forward. StepsMin and Steps-
Max are optional and can be nil() in which case tiling is performed until the domain set
by DomainMin and DomainMax is filled. IncludePartial controls how to treat tiles that
cross and intersect with the boundary of the domain: 0 to exclude such tiles, 1 to include

IRIT Solid modeler G. Elber 281

Figure 122: Tiling a 2D domain with arbitrary tile shapes can be achieved via the TILEPACK con-
structor.

intersecting tiles, 2 to include all placements of the tile regardless of boundaries, 3 to in-
clude all created tiles (ignores domain clipping, and 4 to include all boundary intersecting
tiles that their centroids are inside the domain (useful when creating periodic tilings).
If MergeNeighbors is TRUE, mark the neighbors tiles with the same ID and same RGB
Attribute. Relevant only for rectangular tiles. At least two steps in Y are needed to
merge neighboring tile parts.

Example:

attrib(Tile, "vec1", vector(0.15, 0, 0)):

attrib(Tile, "vec2", vector(0.03, 0.15, 0)):

Pck1 = Tilepack(Tile, nil(), nil(),

vector(-1, -1, 0), vector(1, 1, 0), 0, 0):

tiles domain [−1, 1]2 using Tile with tiling that is not with orthogonal directions. See
Figure 122.

11.2.382 TINTERP

TrivarType TINTERP(TrivarType TV,

NumericType ULength, NumericType VLength, NumericType WLength,

NumericType UOrder, NumericType VOrder, NumericType WOrder);

or

TrivarType TINTERP(ListType PtList,

NumericType ULength, NumericType VLength, NumericType WLength,

IRIT Solid modeler G. Elber 282

NumericType UOrder, NumericType VOrder, NumericType WOrder);

Given a trivariate data structure or a list of points in R3, the above computes a fitted
trivariate in the prescribed function space (i.e. U/V/WLength and U/V/WOrder) that
interpolates/least squares approximates the given trivariate, TV, at the node parameter
values. PtList is a list of points in Rn, n ¿ 3. The first three coordinates of each points in
PtList prescribes the (u, v, w) parametric value and the rest, the interpolation values. To
construct a mapping from R3 to R3, the points of PtList should be in R6. To construct
a scalar trivariate function, R4 points are expected. The (u, v, w) points are assumed
to be containted in a unit curve paramteric space - zero to one in all three dimensions.
If U/V/WOrder are zero and the first parameter is a trivariate, the respective order
is taken for TV. If U/V/WLength are zero and the first parameter is a trivariate, the
respective length is taken for TV.

Example:

tv = tbspline(3, 3, 2,

list(list(list(ctlpt(E3, 0.1, 0.1, 0.0),

ctlpt(E3, 0.2, 0.5, 1.1),

ctlpt(E3, 0.3, 0.1, 2.2)),

list(ctlpt(E3, 0.4, 1.3, 0.5),

ctlpt(E3, 0.5, 1.7, 1.7),

ctlpt(E3, 0.6, 1.3, 2.9)),

list(ctlpt(E3, 0.7, 2.4, 0.5),

ctlpt(E3, 0.8, 2.6, 1.4),

ctlpt(E3, 0.9, 2.8, 2.3))),

list(list(ctlpt(E3, 1.1, 0.1, 0.5),

ctlpt(E3, 1.3, 0.2, 1.7),

ctlpt(E3, 1.5, 0.3, 2.9)),

list(ctlpt(E3, 1.7, 1.2, 0.0),

ctlpt(E3, 1.9, 1.4, 1.2),

ctlpt(E3, 1.2, 1.6, 2.4)),

list(ctlpt(E3, 1.4, 2.3, 0.9),

ctlpt(E3, 1.6, 2.5, 1.7),

ctlpt(E3, 1.8, 2.7, 2.5))),

list(list(ctlpt(E3, 2.8, 0.1, 0.4),

ctlpt(E3, 2.6, 0.7, 1.3),

ctlpt(E3, 2.4, 0.2, 2.2)),

list(ctlpt(E3, 2.2, 1.1, 0.4),

ctlpt(E3, 2.9, 1.2, 1.5),

ctlpt(E3, 2.7, 1.3, 2.6)),

list(ctlpt(E3, 2.5, 2.9, 0.7),

ctlpt(E3, 2.3, 2.8, 1.7),

ctlpt(E3, 2.1, 2.7, 2.7)))),

list(list(KV_OPEN),

list(KV_OPEN),

list(KV_OPEN)));

tvi = TINTERP(tv, 0, 0, 0, 0, 0, 0);

IRIT Solid modeler G. Elber 283

creates a quadratic by quaratic by linear trivariate tvi that interpolates the control
points of tv at the node parameter values.

11.2.383 TINTPSRFS

TrivarType TINTPSRFS(ListType SrfList, NumericType OtherOrder,

NumericType OtherEndCond, NumericType OtherParam)

constructs a trivariate by interpolating the surfaces in SrfList. The other, third, direc-
tion order is controlled by OtherOrder and OtherEndCond. OtherOrder cannot be larger
than the number of surfaces, and OtherEndCond prescribes the desired end conditions as
one of KV OPEN, KV FLOAT or KV PERIODIC. Finally, OtherParams affects the third
direction’s parameterization and can be one of PARAM CENTRIP, PARAM CENTRIP,
PARAM CHORD, or PARAM NIELFOL.

Example:

s1 = sbezier(list(list(ctlpt(E3, -0.5, -0.5, 0),

ctlpt(E3, -0.5, 0.5, 0)),

list(ctlpt(E3, 0.5, -0.5, 0),

ctlpt(E3, 0.5, 0.5, 0)))) * sc(0.3);

Srfs = list(s1 * sc(2.0),

s1 * sx(1.4) * ry(45) * tz(1.0),

s1 * ry(90) * trans(vector(1.0, 0.0, 1.1)),

s1 * sx(1.4) * ry(135) * trans(vector(2.0, 0.0, 1.0)),

s1 * sc(2.0) * ry(180) * trans(vector(2.0, 0.0, 0.0)));

color(Srfs, red);

ts = TINTPSRFS(Srfs, 3, kv_open, param_uniform);

color(ts, green);

view(list(Srfs, ts), on);

Interpolates a trivariate thtough five planar surfaces and displays both the trivari-
ate and the five planar surfaces, in different colors. See also EXTRUDE, RULEDTV,
SFROMCRVS, TFROMSRFS.

11.2.384 TMORPH

TrivarType TMORPH(TrivarType TV1, TrivarType TV2, NumericType Blend)

creates a new trivariate which is a convex blend of the two given trivariates. The two
given trivariates must be compatible (see FFCOMPAT) before this blend is invoked. This
isv ery useful if a sequence that ”morphs” one trivariate to another is to be created and
in combination with MRCHCUBE.

Example:

Size = 0.05;

for (i = 0, step, 1.0,

Tv = TMORPH(Tv1, Tv2, i):

view(mrchcube(list(Tv, 1, off),

point(Size, Size, Size), 1, IsoVal), on));

IRIT Solid modeler G. Elber 284

creates a sequence of 1/step trivariates, morphed from Tv1 to Tv2 and displays an
extracted iso surface at level IsoVal. See also MRCHCUBE, PMORPH, CMORPH and
SMORPH.

11.2.385 TNSCRCR

ListType TNSCRCR(PointType Cntr1, NumericType Rad1,

PointType Cntr2, NumericType Rad2, NumericType OuterTans)

computes the two outer, if OuterTans TRUE, or the two inner if OuterTans FALSE,
bi-tangents between the prescribed two circles. Note the bi-tangents might no exist of
one circle is containt in the other.

Example:

T1 = TnsCrCr(point(-2, 0.3, 0), 0.7, point(1, 0, 0), 1, 0);

T2 = TnsCrCr(point(-2, 0.3, 0), 0.7, point(1, 0, 0), 1, 1);

See also CRC2CRVTAN, CRV2TANS, CRVC1RND, SKEL2DINT.

11.2.386 TOFFSET

ListType TOFFSET(CurveType Crv, CurveType OffCrv, ListType Params)

or

ListType TOFFSET(SurfaceType Srf, SurfaceType OffSrf, ListType Params)

Trims local and global self intersections in curve OffCrv (surface OffSrf) that is an
offset approximation to curve Crv (surface Srf) with parameters Params as follows: For
curves, Params contains the 4 paramers (Method, SubdivTol, TrimAmount, NumerTol)
stating with the Method of trimming which can be 1 of distance map trmming or 2 for
self intersection via uv-elimination. 2nd paramter is the tolerance of the subdivision
search, 3rd is the trimming amount which should be a tad below the offset distance and
the last parameter is a numerical tolerance to improve trimmed locations. For surfaces
Params hold 6 parameters (TrimAmount, Validate, Euclidean, SubdivTol, NumerTol,
NumerImprove). The TrimAmount is again a tad below the offset distance, Validate is
a boolean to activate the filering of self intersecting regions, Euclidean sets the output
form to be in Euclidean or parametric space and SubdivTol and NumerTol are used by
the multivariate solver. Finally, NumerImprove TRUE if a final numerical improvement
step is to be apllied to the result for a better quality result.

Example:

c0 = cbspline(3,

list(ctlpt(E2, -1, 3),

ctlpt(E2, -0.3, 0),

ctlpt(E2, 0.3, 0),

ctlpt(E2, 1, 3)),

list(kv_open));

for (i = -5, 1, 5,

IRIT Solid modeler G. Elber 285

if (i != 0,

ofst = 0.15 * i:

co = offset(c0, ofst, 0.0001, off):

none = TOFFSET(c0, co, list(1, 0.01, abs(ofst * 0.999), 1e-6)):

color(none, i + 6):

viewobj(none)));

approximates several offset curves at offset amounts of 0.15 * i to curve c0 and trim
the self intersections detected in them. See Figure 123.

See also OFFSET, COFFSET, AOFFSET, LOFFSET, and MOFFSET.
subsubsetionTOOLSWEP

PolyType TOOLSWEP(CurveType ToolProfile,

PointType ToolOrigin,

StringType MotionData,

NumericType DexelGridType,

PointType GridOrigin,

PointType GridEnd,

NumericType NumDexel0,

NumericType NumDexel1,

SurfaceType StockSurface,

NumericType RectStockTopLevel,

NumericType RectStockBotLevel,

StringType OutputSavePath)

or

PolyType TOOLSWEP(CurveType ToolProfile,

PointType ToolOrigin,

ListType MotionData,

NumericType DexelGridType,

PointType GridOrigin,

PointType GridEnd,

NumericType NumDexel0,

NumericType NumDexel1,

SurfaceType StockSurface,

NumericType RectStockTopLevel,

NumericType RectStockBtmLevel,

StringType OutputSavePath)

Performs multi-axis CNC machining simulation by computing the swept volume of
the given tool along the given path and subtracting the same from the stock. The axis-
symmetric tool is specified by ToolProfile which is assumed to be a curve in XZ plane.
The origin of the tool is given by ToolOrigin. The motion is specified by a sequence of
positions and orientations of the tool which are interpolated using SLERP. The motion
may be speficied in a text file MotionData with each line containing a space-separated
six-tuple specifying position and orientation of the tool, or a list of list of six-tuples.
The stock is represented using a dexel-grid. The parameter DexelGridType may take

IRIT Solid modeler G. Elber 286

Figure 123: Properly trimmed offsets could be created using the TOFFSET function.

IRIT Solid modeler G. Elber 287

values 0, 1 or 2 to imply dexels along the X, Y or Z axis. The origin and the end of
the grid are given by GridOrigin and GridEnd respectively. The number of dexels in the
two directions are given by NumDexel0 and NumDexel1. The dexel grid representation
of the stock may be computed either from StockSurface which is a closed surface, or
from RectStockTopLevel and RectStockBtmLevel which specify the top and the bottom
levels of a rectangular stock. The intermediate output may be saved at OutputSavePath
which may be an empty string to indicate that intermediate output is not to be save.
OutputSavePath is used as a base name and type (as ”basename.type”) to which frame
numeric indices are appended. The function returns a triangulated stock after subtracting
the swept volume of the tool from the original stock.

Example:

GEMachinedStock = TOOLSWEP(ToolProfile, TOrigin,

"motion.txt", 2, GridOrigin,

GridEnd, 50, 50, 0, 5, -3, "");

See Figure 124.

11.2.387 TORUS

PolygonType TORUS(VectorType Center, VectorType Normal,

NumericType MRadius, NumericType mRadius)

creates a TORUS geometric object, defined by Center as the center of the TORUS,
Normal as the normal to the main plane of the TORUS, MRadius and mRadius as the
major and minor radii of the TORUS. See RESOLUTION for the accuracy of the TORUS
approximation as a polygonal model. See IRITSTATE’s ”PrimRatSrfs” and ”PrimRat-
Srfs” state variables.

Example:

T = TORUS(vector(0.0, 0.0, 0.0), vector(0.0, 0.0, 1.0), 0.5, 0.2);

constructs a torus with its major plane as the XY plane, major radius of 0.5, and
minor radius of 0.2. See Figure 125.

11.2.388 TPINCLUDE

CurveType TPINCLUDE(TrivarType TV, PointType Pt, NumericType Sampling)

examines if Pt is inside the triavariate TV. The function is optimizied for many point
including in a trivairate tests. If Sampling is positive, a data structure is prepared with
the given Sampling rate, for coming queries. If sampling is negative, the structure is freed
and if sampling is zero, the actualy inclusion test is conducted.

Example:

TPInclude(tv2, point(0, 0, 0), 20); # Prep. aux data.

for (i = 0, 1, 1000,

if (TPInclude(tv2, nth(Pts, i), 0), # actual query.

printf("Point is inside\n", nil()),

printf("Point is outside\n", nil()));

TPInclude(tv2, point(0, 0, 0), -1); # Free aux data.

IRIT Solid modeler G. Elber 288

Figure 124: CNC machining simulation of simple machining of a GE shape, using the TOOLSWEP
command.

11.2.389 TRAISE

TrivarType TRAISE(TrivarType TV, ConstantType Direction,

NumericType NewOrder)

raises TV to the specified NewOrder in the specified Direction.
Example:

tv1r = TRAISE(traise(traise(tv1, row, 4), col, 4), depth, 4);

ensures that the trivariate is a tricubic. See also MRAISE, SRAISE, and CRAISE.

11.2.390 TREFINE

TrivarType TREFINE(TrivarType TV, ConstantType Direction,

NumericType Replace, ListType KnotList)

provides the ability to Replace a knot vector of TV or refine it in the specified direction
Direction (ROW, COL, or DEPTH). KnotList is a list of knots at which to refine TV. All

IRIT Solid modeler G. Elber 289

Figure 125: A torus primitive can be constructed using a TORUS constructor...

knots should be contained in the parametric domain of TV in Direction. If the knot vector
is replaced, the length of KnotList should be identical to the length of the original knot
vector of TV in the Direction. If TV is a Bezier trivariate, it is automatically promoted
to be a B-spline trivariate.

Example:

TV = TREFINE(TREFINE(TREFINE(TV,

ROW, FALSE, list(0.333, 0.667)),

COL, FALSE, list(0.333, 0.667)),

DEPTH, FALSE, list(0.333, 0.667));

refines TV in all directions by adding two more knots at 0.333 and 0.667. See also
CREFINE, SREFINE, and MREFINE.

11.2.391 TREGION

TrivarType TREGION(TrivarType TV, ConstantType Direction,

NumericType MinParam, NumericType MaxParam)

extracts a region of TV between MinParam and MaxParam in the specified Direction.
Both MinParam and MaxParam should be contained in the parametric domain of TV in
the Direction.

Example:

Tv1 = tbezier(list(list(list(ctlpt(E3, 0.1, 0.0, 0.8),

ctlpt(E3, 0.2, 0.1, 2.4)),

IRIT Solid modeler G. Elber 290

Figure 126: A region can be extracted from a freeform trivariate using TREGION.

list(ctlpt(E3, 0.3, 2.2, 0.2),

ctlpt(E3, 0.4, 2.3, 2.0))),

list(list(ctlpt(E3, 2.4, 0.8, 0.1),

ctlpt(E3, 2.2, 0.7, 2.3)),

list(ctlpt(E3, 2.3, 2.6, 0.5),

ctlpt(E3, 2.1, 2.5, 2.7)))));

Tv1r1 = TREGION(Tv1, row, 0.1, 0.2);

Tv1r2 = TREGION(Tv1, row, 0.4, 0.6);

Tv1r3 = TREGION(Tv1, row, 0.99, 1.0);

extracts three regions of Tv1 along the ROW direction. See Figure 126. See also
CREGION, SREGION, and MREGION.

11.2.392 TREPARAM

TrivarType TREPARAM(TrivarType TV, ConstantType Direction,

NumericType MinParam, NumericType MaxParam)

reparametrizes TV over a new domain from MinParam toMaxParam, in the prescribed
Direction. This operation does not affect the geometry of the trivariate and only affine
transforms its knot vectors. A Bezier trivariate will automatically be promoted into a
B-spline surface by this function.

Example:

Tv = TREPARAM(TREPARAM(TREPARAM(tv, row, 0, 1),

col, 0, 1),

depth, 0, 1);

ensures that the trivariate is defined over the unit size parametric cube. See also
CREPARAM, SREPARAM, and MREPARAM.

IRIT Solid modeler G. Elber 291

11.2.393 TREVERSE

TrivarType TREVERSE(TrivarType TV, NumericType Dir1, NumericType Dir2)

reverses TV by flipping the given two parametric directions, Dir1 and Dir2, (starting
to count directions from zero). If, however, Dir2 is negative, the trivariate is reversed by
flipping the direction of TV in Dir1.

Example:

RevTV = TREVERSE(TV, 0, 2);

reverses TV by flipping the first and third directions of TV. See also SREVERSE and
MREVERSE.

11.2.394 TRIANGL

PolygonType TRIANGL(PolygonType Model, NumericType Regular)

converts Model into a new model with exactly the same shape that holds only triangles.
If the Regular is not zero, the object is regularized as well. Example:

final2 = triangl(final, false);

See also MAXEDGELEN

11.2.395 TRIMSRF

TrimSrfType TRIMSRF(SurfaceType Srf,

CurveType TrimCrv,

NumericType HasUpperLevel)

or

TrimSrfType TRIMSRF(SurfaceType Srf,

ListType TrimCrvs,

NumericType HasUpperLevel)

create a trimmed surface from the provided surface Srf and the trimming curve Trim-
Crv or curves TrimCrvs. If HasUpperLevel is FALSE, an additional trimming curve is
automatically added that contains the entire parametric domain of Srf. No validity test
is performed on the trimming curves which are assumed to be two-dimensional curves
contained in the parametric domain of Srf.

Example:

spts = list(list(ctlpt(E3, 0.1, 0.0, 1.0),

ctlpt(E3, 0.3, 1.0, 0.0),

ctlpt(E3, 0.0, 2.0, 1.0)),

list(ctlpt(E3, 1.1, 0.0, 0.0),

ctlpt(E3, 1.3, 1.5, 2.0),

ctlpt(E3, 1.0, 2.1, 0.0)),

IRIT Solid modeler G. Elber 292

list(ctlpt(E3, 2.1, 0.0, 2.0),

ctlpt(E3, 2.3, 1.0, 0.0),

ctlpt(E3, 2.0, 2.0, 2.0)),

list(ctlpt(E3, 3.1, 0.0, 0.0),

ctlpt(E3, 3.3, 1.5, 2.0),

ctlpt(E3, 3.0, 2.1, 0.0)),

list(ctlpt(E3, 4.1, 0.0, 1.0),

ctlpt(E3, 4.3, 1.0, 0.0),

ctlpt(E3, 4.0, 2.0, 1.0)));

sb = sbspline(3, 3, spts, list(list(KV_OPEN), list(KV_OPEN)));

TCrv1 = cbspline(2,

list(ctlpt(E2, 0.3, 0.3),

ctlpt(E2, 0.7, 0.3),

ctlpt(E2, 0.7, 0.7),

ctlpt(E2, 0.3, 0.7),

ctlpt(E2, 0.3, 0.3)),

list(KV_OPEN));

TCrv2 = circle(vector(0.5, 0.5, 0.0), 0.25);

TCrv3 = cbspline(3,

list(ctlpt(E2, 0.3, 0.3),

ctlpt(E2, 0.7, 0.3),

ctlpt(E2, 0.7, 0.7),

ctlpt(E2, 0.3, 0.7)),

list(KV_PERIODIC));

TSrf1 = TRIMSRF(sb, TCrv1, false);

TSrf2 = TRIMSRF(sb, TCrv1, true);

TSrf3 = TRIMSRF(sb, list(TCrv1, TcRv2 * ty(1), TCrv3 * ty(2)),

false);

constructs three trimmed surfaces. Tsrf1 contains the outer boundary and excludes
what is inside TCrv1, TSrf2 contains only the domain inside TCrv1. TCrv3 has three
holes corresponding to the three trimming curves. See also TRMSRFS. See Figure 127.

11.2.396 TRMSRFS

TrimSrfType TRMSRFS(SurfaceType Srf, CurveType Cntrs)

or

TrimSrfType TRMSRFS(SurfaceType Srf, PolyType Cntrs)

or

TrimSrfType TRMSRFS(SurfaceType Srf, ListType Cntrs)

create a set of trimmed surfaces from the provided surface Srf and the set of contours
Cntrs in Srf’s parametric domain.

IRIT Solid modeler G. Elber 293

Figure 127: Three trimmed surfaces created from the same B-spline surface. The original surface is
outline by thin lines and the trimmed surfaces are outlined by thick lines.

The contours in Cntrs can be polylines, curves, or a list of such entities. The contours
in Cntrs must be either closed or start and end on the boundary of the parametric domain
of Srf. Further, these contours must be (self) intersection free. Finally, all trimming input
is first converted to a piecewise linear representation.

The returned result is a (list of) trimmed surfaces, each defining one sub-region that
results from Cntrs’s trimming.

Example:

tsrfs = TRMSRFS(srf,

list(poly(list(point(0.0, 0.2, 0.0),

point(1.0, 0.5, 0.0)), true),

cbezier(list(ctlpt(E2, 0.0, 2.5),

ctlpt(E2, 0.5, 2.5),

ctlpt(E2, 0.5, 3.0)))));

interact(list(nth(tsrfs, 1) * tz(-0.2),

nth(tsrfs, 2) * tz(0.0),

nth(tsrfs, 3) * tz(0.2)));

constructs trimmed surfaces using two contours. One contour is a polyline with two
points, and the other is a quadratic Bezier curve. See also TRIMSRF. See Figure 128.

11.2.397 TRUSSLATTICE

ListType TRUSSLATTICE(SurfaceType SurfaceModel, ListType SpherePackingParams,

ListType TrusslatticeParams)

or

ListType TRUSSLATTICE(PolygonType PolyModel, ListType SpherePackingParams,

IRIT Solid modeler G. Elber 294

Figure 128: Three trimmed surfaces created from the same B-spline surface using the TRMSRFS and
two prescribed contour in the surface’s parametric domain.

ListType TrusslatticeParams)

or

ListType TRUSSLATTICE(ListType PointList, ListType SpherePackingParams,

ListType TrusslatticeParams)

construct a truss lattice that fits a given shape. In the first two options, the truss
lattice fills the volume of a closed model (closed surface or polygonal model), by pack-
ing the given model with spheres of prescribed radius, and constructing a truss struc-
ture, with its nodes at the centers of the spheres. In the third option, the locations of
the lattice nodes are provided explicitly. SpherePackingParams is a list of five numeric
values as (SpherePackRadius, PackingTimeLimit, PackingAlgorithm, SubdivTol, Numer-
Tol), where SpherePackRadius is the desired radius of the packed spheres, PackingTime-
Limit prescribed the time (in seconds) to allow the iterative sphere packing algorithm to
run, or if negative, precise number of -PackingTimeLimit iterations. PackingAlgorithm
can be one of:

0. Basic honeycomb placement, clipped to the bounding model.

1. Repulsion iterations between spheres.

2. Repulsion iterations between spheres, executed in parallel.

3. Gravity based iterations between spheres.

4. Gravity based iterations between spheres, executed in parallel.

and SubdivTol and NumerTol are controlling the tolerances in the multivariate solver.

IRIT Solid modeler G. Elber 295

Alternatively, SpherePackingParams can be a list of just one element (SpherePack-
ingRadius) or an empty list (in case the truss lattice is constructed from explicitly given
points, and sphere packing is not used).

TrusslatticeParams is a list of eight values as (ConnectDistance, SphereRadius, Beam-
Radius, FilletRadius, FilletHeight, OutputType, ShellPruneOnly, ShellObj), where Con-
nectDistance is the maximal distance to connect two nearby spheres, or zero to use
SpherePackingRadius * sqrt(2). The SphereRadius, BeamRadius, and FilletRadius con-
trol the radii of the constructed truss -it spherical joints, bars and fillets in between.
OutputType can be one of

0. A set of individual trimmed surfaces.

1. A set of individual trivariates.

2. Models (stitched trimmed surfaces in a closed 2-manifold).

If ShellPruneOnly TRUE, the ShellObj is used only to prune the constructured geometry.
If FALSE, the geometry is also connected to the ShellObj. All assuming ShellObj is
provided as geometry.

Example:

s = sphere(vector(0, 0, 0), 1);

truss = TRUSSLATTICE(s,

list(0.4, 10, 3, 0.01, 1e-8),

list(0.0, 0.2, 0.08, 0.088, 0.01, 0, TRUE, FALSE));

11.2.398 TSBEZIER

SurfaceType TSBEZIER(NumericType Order, ListType CtlMesh)

creates a triangular Bezier surface of order Order using the provided control mesh.
CtlMesh is a list of control points of size (Order + 1) * Order / 2. All control points must
be of type (E1-E9, P1-P9), or regular PointType defining the surface’s control polygon.
The surface point type will be of a space which is the union of the spaces of all points.

The created surface is the piecewise polynomial (or rational) surface,

S(u, v) =
m∑

i,j,k=0

n!

i!j!k!
uivjwkPijk (37)

where Pijk are the control points CtlMesh, and i+ j + k = m and m are the degree of the
surface, which are one less than Order.

Example:

b = TSBEZIER(3,

list(ctlpt(E3, 0.0, 0.0, 0.4),

ctlpt(E3, 0.3, 0.0, 0.3),

ctlpt(E3, 0.7, 0.0, 0.8),

ctlpt(E3, 0.2, 0.4, 1.0),

ctlpt(E3, 0.4, 0.5, 1.0),

ctlpt(E3, 0.5, 1.0, 0.7)));

IRIT Solid modeler G. Elber 296

Figure 129: A triangular Bezier surface of degree 2 or order 3.

See Figure 129. See also TSGREGORY and TSBSPLINE.

11.2.399 TSBSPLINE

TriSrfType TSBSPLINE(NumericType Order, NumericType Length,

ListType CtlMesh, ListType KnotVector)

creates a B-spline surface from the provided Order and Length, the control mesh
CtlMesh, and the knot vector KnotVector. CtlMesh is a list of control points of size
(Length + 1) * Length / 2. All control points must be of point type (E1-E9, P1-P9), or
regular PointType defining the surface’s control mesh. The surface point type will be of a
space which is the union of the spaces of all points. KnotVector is a list of NumericType
knots of length Length plus the Order. The knot vector may also be a list of a single
constant KV OPEN or KV FLOAT, in which a uniform knot vector with the appropriate
length and with an open or floating end condition will be constructed automatically.

Not fully supported at this time. See also TSBEZIER and TSGREGORY.

11.2.400 TSDERIVE

TriSrfType TSDERIVE(TriSrfType Srf, NumericType Dir)

returns a vector field surface representing the differentiated triangular surface in the
given direction (ROW, COL, or DEPTH). Evaluation of the returned surface at a given
parameter value will return a vector tangent to Srf in Dir at that parameter value.

IRIT Solid modeler G. Elber 297

DuSrf = TSDERIVE(Srf, ROW);

DvSrf = TSDERIVE(Srf, COL);

Normal = coerce(tseval(DuSrf, 0.5, 0.25, 0.25), VECTOR_TYPE) ^

coerce(tseval(DvSrf, 0.5, 0.25, 0.25), VECTOR_TYPE);

computes two partial derivatives of the surface Srf and computes its normal as their
cross product, at the parametric location (0.5, 0.25, 0.25).

See also TSNORMAL

11.2.401 TSEVAL

CtlPtType TSEVAL(TriSrfType Srf,

NumericType UParam, NumericType VParam, NumericType WParam)

evaluates the provided triangular surface Srf at the given UParam, VParam, WParam
parameters. UParam, VParam, and WParam must all be non negative and must sum to
one for a Bezier triangular surface or to the maximum domain, if a B-spline surface.

Example:

CPt = TSEVAL(Srf, u, v, 1.0 - u - v);

evaluates Srf at the parameter values prescribed by u and v.

11.2.402 TSGREGORY

SurfaceType TSGREGORY(NumericType Order, ListType CtlMesh)

cCreates a triangular Gregory surface of order Order using the provided control mesh.
CtlMesh is a list of control points of size (Order + 1) * Order / 2 + 3. All control points
must be of type (E1-E9, P1-P9), or regular PointType defining the surface’s control
polygon. The surface point type will be of a space which is the union of the spaces of all
points.

The created surface is the polynomial (or rational) surface,

S(u, v) =
m∑

i,j,k=0

n!

i!j!k!
uivjwkPijk (38)

where Pijk are the control points CtlMesh, and i+ j + k = m and m are the degree of the
surface, which are one less than Order, where Pijk for i = j = 1, or i = k = 1, or j = k = 1
are the three Gregory, double points.

Example:

Srf = tsgregory(5,

list(ctlpt(E3, 2, -1, 0),

ctlpt(E3, 2.3, -1, 0.25),

ctlpt(E3, 2.6, -1, 0.25),

ctlpt(E3, 2.8, -1, 0.13),

ctlpt(E3, 3, -1, 0),

ctlpt(E3, 2.25, -0.7, 0.25),

ctlpt(E3, 2.5, -0.7, -0.25),

IRIT Solid modeler G. Elber 298

ctlpt(E3, 2.6, -0.7, -0.15),

ctlpt(E3, 2.75, -0.7, 0.25),

ctlpt(E3, 2.4, -0.4, 0.25),

ctlpt(E3, 2.5, -0.4, 0),

ctlpt(E3, 2.6, -0.4, -0.25),

ctlpt(E3, 2.45, -0.2, 0.12),

ctlpt(E3, 2.55, -0.2, -0.12),

ctlpt(E3, 2.5, 0, 0),

ctlpt(E3, 2.5, -0.7, -0.25),

ctlpt(E3, 2.6, -0.7, -0.15),

ctlpt(E3, 2.5, -0.4, 0)));

Not fully supported at this time. See also TSBEZIER and TSBSPLINE.

11.2.403 TSNORMAL

VectorType TSNORMAL(TriSrfType Srf,

NumericType UParam, NumericType VParam, NumericType WParam)

computes the normal vector to a triangular surface Srf at the parameter values UP-
aram, VParam, WParam. The returned vector has a unit length.

UParam, VParam, and WParam must all be non negative and must sum to one for a
Bezier triangular surface or to the maximum domain, if a B-spline surface.

Example:

Normal = TSNORMAL(Srf, 0.5, 0.5, 0.0);

computes the normal to Srf at the parameter values (0.5, 0.5, 0.0).

11.2.404 TVADJCNT

TrivType TVADJCNT(TrivType TVs)

or

TrivType TVADJCNT(ListType TVs)

Refine and degree raise the trivariates in the input along sahred boundaries so that
the result has only compatible trivariates - for every shared faces between two trivariates
the two adjacent trivariates share degrees and refinement. Input can either be a trivariate
objects with multiple trivariates or a list object of trivariates.

Example:

TVs = TVADJCNT(TVList);

computes a compatible arrangemnt of the input TVList.

IRIT Solid modeler G. Elber 299

11.2.405 TVCRVS2IMP

TrivarType TVCRVS2IMP(NumericType Order, NumericType Length,

ListType Curves, NumericType DistThrshld,

NumericType CornerDistBias, NumericType CornerScale)

constructs an implicit trivariate of order Order and length Length in all three axes,
that approximates the topology of the given list of curves Curves, as the zero set. Dist-
Thrshld controls the (approxiamted) thickness of the created arms along the input curves.
CornerDistBias and CornerScale provide additional control over the effect of corners by
setting the distance and scale of the corner values. In essense, builds a distance field from
each control point in the created trivariates and the input curves.

Example:

TV1 = TVCrvs2Imp(3, 10, AxesLines, 0.2, 0.0, 0.0);

created an implicit trivariate TV1 of Order 3 and 10 control points in each axes, out
of the list of curves AxesLines.

11.2.406 TVFILLET

TrivarType TVFILLET(SurfaceType Srf1, SurfaceType Srf2, NumericType RailDist,

NumericType R1Orient, NumericType R2Orient,

NumericType TanScale, NumericType ApproxCrvsCtlPts,

NumericType Tol, NumericType NumerTol)

constructs a (list of) fillet trivariate(s) between Srf1 and Srf2. The fillet meets with
the surfaces with G1 continuity, and its boundary curves are the intersection curve of Srf1
and Srf2, and two rail curves that are computed as an approximate Euclidean offset of
distance RailDist of the intersection curve on each of the surfaces. R1Orient and R2Orient
specify the orientations of the two rail curves ((+/-)1), or can be set to zero to choose
the orientation resulting with the maximal arc length rail curve. TanScale specifies the
magnitude of the fillet’s tangets that connect it with Srf1 and Srf2. ApproxCrvsCtlPts
specifies the number of control points to be used when least square fitting curves used
for the fillet construction. Tol and NumerTol specify the (subdivision) tolerance and
numeric tolerance to be used. Finally, note that if Srf1 and Srf2 intersects at two disjoint
locations, two disjoint fillets will be constructed.

Example:

TeapotOrig = load("teapot");

Body = nth(TeapotOrig, 1);

Spout = nth(TeapotOrig, 2);

TVFillet = tvfillet(Body, Spout, 0.14, 0, -1, 0.18, 20, 1e-2, 1e-10);

11.2.407 TVIMPJACOB

TrivarType TVIMPJACOB(TrivarType TV, NumericType StepSize,

NumericType NumIter)

IRIT Solid modeler G. Elber 300

numerically improves, if possible, the parametrization of TV so that the difference
between the minimal and maximal determinant of the Jacobian of TV is reduced.

It is equal to,

C(t) =
m∑
i=0

PijBi(t), (39)

and similar for the other parametric direction.
Example:

TV = TVIMPJACOB(TV, 0.001, 10);

See also TVJACOBIAN and TVZRJACOB.

11.2.408 TVJACOBIAN

TrivarType TVJACOBIAN(TrivarType TV)

computes a scalar trivariate field from the given scalar trivariate TV that equals the
determinant of the Jacobian of TV.

Example:

exList = ffextrema(TVJACOBIAN(tv), false):

computes extreme Jaciban values in the parametrization of tv. See also TVIMPJA-
COB and TVZRJACOB.

11.2.409 TVLOAD

TrivarType TVLOAD(StringType FileName,

NumericType DataType,

VectorType VolSize,

VectorType Orders)

loads a volumetric data set from file FileName in as a trivariate of orders Orders.
DataType can be one of:

1 Regular ASCII (separated by white spaces).
2 Two bytes short integer.
3 Four bytes long integer.
4 One byte (char) integer.
5 Four bytes float.
6 Eight bytes double.

Beware of the little vs big Endian problem! We assume here you have read the volume
in the same machine type in which this file was written.

VolSize provides the dimensions of the volume, with width first and depth last. Uni-
form open end condition knot vectors are constructed to all three axes.

Example:

Tv = TVLOAD("3dhead", 1, vector(32, 32, 13), vector(3, 3, 3));

loads the data set ”3dhead” of size (32, 32, 13) as a triquadratic function. THe sata
set is assumed to contain ASCII numeric values.

See also MRCHCUBE.

IRIT Solid modeler G. Elber 301

11.2.410 TVPREV

TrivarType TVPREV(SurfaceType Srf)

or

TrivarType TVPREV(ListType SrfList)

computes trivariate(s) of revolution for the given polynomial surface(s) by rotating
the input along the Z axis. Result is a polynomial approximation for the real circular
shape.

Example:

Tv = TVPRev(Disk);

Creates a trivariate torus, TV by rotating the input Disk surface along the Z axis.
The behaviour of this function can be modified if ”Rational” attribute is provided with
a non zero value to construct a precise rational trivariate of revolution and a polynomial
approximation otherwise. Further if ”StartAngle” and ”EndAngle” are found as attribute
with valid angular prescription (in degrees), only that angular slice out of the trivariate
of revolution is constructed. See also SURFPREV, TVREV, TVREV2, TVPREV2.

11.2.411 TVPREV2

TrivarType TVPREV2(SurfaceType Srf,

NumericType StartAngle,

NumericType EndAngle)

or

TrivarType TVPREV2(ListType SrfList,

NumericType StartAngle,

NumericType EndAngle)

computes trivariate(s) of revolution for the given polynomial surface(s) by rotating
the input along the Z axis. Result is a polynomial approximation for the real circular
shape.

Example:

Tv = TVPRev2(Disk, 90, 180);

Creates a 1/4 of a trivariate torus, TV by rotating the input Disk surface along the Z
axis. The behaviour of this function can be modified if ”Rational” attribute is provided
with a non zero value to construct a precise rational trivariate of revolution and a poly-
nomial approximation otherwise. See also SURFPREV, TVREV, TVREV2, TVPREV.

11.2.412 TVOLUME

NumericType TVOLUME(TrivarType TV, NumericType VolType)

IRIT Solid modeler G. Elber 302

Computes the volume enclosed by trivariate, TV. If VolType is TRUE, volume is
integrates over the six faces’ surfaces with respect to the XY plane. If VolType is FALSE,
the integration of the six face surfaces is with respect to the origin,

Example:

V = TVolume(TV1, true);

See also SVOLUME, SMOMENTS and CAREA.

11.2.413 TVREV

TrivarType TVREV(SurfaceType Srf)

or

TrivarType TVREV(ListType SrfList)

computes trivariate of revolution for the given surface(s) by rotating the input along
the Z axis.

Example:

Tv = TVRev(Disk);

Createa a trivariate torus, TV by rotating the input Disk surface along the Z axis. See
also SURFREV, TVPREV, TVREV2, TVPREV2.

See Figure 130.

11.2.414 TVREV2

TrivarType TVREV2(SurfaceType Srf,

NumericType StartAngle,

NumericType EndAngle)

or

TrivarType TVREV2(ListType SrfList,

NumericType StartAngle,

NumericType EndAngle)

computes trivariate(s) of revolution for the given surface(s) by rotating the input along
the Z axis.

Example:

Tv = TVRev(Disk, 90, 270);

Createa a 1/2 of a trivariate torus, TV by rotating the input Disk surface along the Z
axis. See also SURFREV, TVPREV, TVREV, TVPREV2.

IRIT Solid modeler G. Elber 303

Figure 130: A trivariate of revolution in the shape of a torus is creating, using TVREV, by rotating a
disk surface.

11.2.415 TVS2FILLET

TrivarType TVS2FILLET(SurfaceType Srf1, SurfaceType Srf2,

NumericType RailDist, NumericType R1Orient,

NumericType R2Orient, NumericType TanScale,

NumericType CtlPts, NumericType Tol,

NumericType NumerTol, NumericType FilletingMethod)

Constructs a (list of) fillet trivariate(s) between Srf1 and Srf2. The fillet meets with
Srf1 and Srf2 with G1 continuity, and its bounded in between their intersection curve and
two rail curves, that are computed as an approximate Euclidean offset of the intersection
curve on each of the surfaces. R1Orient and R2Orient specify the orientations of the two
rail curves ((+/-)1), or can be set to zero to choose the orientation resulting with the
maximal arc length rail curve. TanScale specifies the magnitude of the fillet’s tangets
that connect it with Srf1 and Srf2. CtlPts controls the number of control points used
to approximate some of the curves computed during the filleting algorithm. Tol and
NumerTol specify the tolerances used during the filleting algorithm. FilletingMethod
specifies the used filleting method (0 for the ruled volume method and 1 for the volumetric
boolean sum method).

Example:

TeapotOrig = load("teapot");

Body = nth(TeapotOrig, 1);

Spout = nth(TeapotOrig, 2);

IRIT Solid modeler G. Elber 304

filletTV = TVS2FILLET(Body, Spout, 0.3, 1, -1, 0.25, 20,

5e-2, 1e-10, 0);

See also VMDLFILLET, MDLFILLET, TVTTFILLET.

11.2.416 TVTTFILLET

TrivarType TVTTFILLET(TrivarType TV1, TrivarType TV2,

NumericType Bndry1, NumericType Bndry2,

NumericType RailDist, NumericType R1Orient,

NumericType R2Orient, NumericType TanScale,

NumericType CtlPts, NumericType Tol,

NumericType NumerTol, NumericType FilletingMethod)

Constructs a (list of) fillet trivariate(s) between the specified
boundary surfaces of TV1 and TV2. The fillet meets with the boundary surfaces

with G1 continuity, and its bounded in between their intersection curve, and two rail
curves, that are computed as an approximate Euclidean offest of the intersection curve
on each of the surfaces. Bndry1 and Bndry2 specify the boundary surfaces of TV1 and
TV2 to construct a fillet in between (0,1,2,3,4,5 for UMin, UMax, VMin, VMax, WMin
and WMax, respectively, and 6 to take a list of all six boundary surfaces). R1Orient
and R2Orient specify the orientations of the two rail curves ((+/-)1), or can be set to
zero to choose the orientation resulting with the maximal arc length rail curve. TanScale
specifies the magnitude of the fillet’s tangets that connect it with TV1 and TV2. CtlPts
controls the number of control points used to approximate some of the curves computed
during the filleting algorithm. Tol and NumerTol specify the tolerances used during the
filleting algorithm. FilletingMethod specifies the used filleting method (0 for the ruled
volume method and 1 for the volumetric boolean sum method).

Example:

Teapot = load("vteapot2htr_tvs");

VBody = nth(Teapot, 1);

VSpout = nth(Teapot, 3);

filletTV = TVTTFILLET(VBody, VSpout, 5, 5, 0.3, 1, -1, 0.25, 20,

5e-2, 1e-10, 0);

See also VMDLFILLET, MDLFILLET, TVS2FILLET.

11.2.417 TVZRJACOB

PolyType TVZRJACOB(TrivarType TV,

NumericType Euclidean,

NumericType SkipRate,

NumericType Fineness)

computes the zero set of the Jacobian of the given trivariate, TV. This zero set is the
implicit boundary of the trivariate and, for example, equals the envelop of the sweep of
a bivariate surface in space (see example below). The zero set is returned as a polygonal

IRIT Solid modeler G. Elber 305

Figure 131: The envelope of the motion of the wine glass surface in space can be derived with the aid
of the TvZrJacob function.

data set approximation with Fineness tolerance. If Euclidean, the resulting polygons are
in Euclidean space. Otherwise, the polygons are returned in the trivariate’s parametric
domain. Finally, SkipRate provides a mechanism to skip to every SkipRate row, column
and plane while a SkipRate skips nothing.

Let T (u, v, w) = (xT (u, v, w), yT (u, v, w), zT (u, v, w)). Then, the zero of the Jacobian equals,

0 =

∣∣∣∣∣∣∣

∂xT
∂u

∂xT
∂v

∂xT
∂w

∂yT
∂u

∂yT
∂v

∂yT
∂w

∂zT
∂u

∂zT
∂v

∂zT
∂w

∣∣∣∣∣∣∣
= 〈xT , yT × zT 〉 . (40)

Example:

Tv = tfromsrfs(list(Srf,

Srf * tx(3) * ty(3),

Srf * tx(6)), 3);

Tv1ZeroJacobian = TVZRJACOB(Tv, 1, 1, 0);

A trivariate TV is constructed as a sweep of surface Srf along a quadratic Bezier curve
with (0, 0), (3, 3), (6, 0) as control points, and then the zero set of the Jacobian is derived
to yield the envelope of this motion of Srf. See Figure 131. See also TVJACOBIAN and
TVIMPJACOB.

11.2.418 UNITETEXTURE

AnyType UNITETEXTURE(AnyType Geom, StringType MergedTextureName)

Given a model Geom with entries with attribute texture maps, merges all images into
one large image called MergedTextureName while updating the relative location in the
merged image of each specific texture in each entry.

Example:

MergedTextureModel = UNITETEXTURE(Model, Mergedtexture.png");

IRIT Solid modeler G. Elber 306

11.2.419 UNSTRCTGRID

CurveType UNSTRCTGRID(NumericType Operation,

ListType Params)

Topological computations over an unstructured grid of points. Operation can be one
of:

IRIT Solid modeler G. Elber 307

0 - create a Params: contains no items. Returns the
new UG. ID of the newly created UG.
1 - free a UG. Params: ID of the UG to free. Returns

Success-flag, i.e., TRUE if successful,
FALSE otherwise.

2 - sets points Params: ID of UG, List of Pts, List of
of a UG. Pt-IDs. Returns Success-flag, vector of

actual IDs assigned to pts in grid.
3 - adds points Params: ID of UG, List of Pts, List of Pt-IDs.
to a UG. Returns Success-flag, ID of new UG, number of

points in grid, vector of actual IDs assigned
to pts in grid.

4 - extract points Params: ID of UG, attribute-type,
with given attribute-names, attribute-values.
attribute values. Returns binary vector with 1s’ for selected points.
5 - merge identical Params: ID of UG, flag to identify points
points. without merging, binary vector with 1s’ for points

to consider for merge. Returns Success-flag, ID of
new UG, number of points in new UG, vector
indicating which points were identified.

6 - modify a point Params: ID of UG, ID of Point to modify, new
in a UG. coordinates of point. Returns Success-flag.
7 - add a cell Params: ID of UG, Cell, List of point IDs.
to a UG. Returns Success-flag, ID of Cell.
8 - append two UGs. Params: ID of the two UGs to append.

Returns Success-flag, ID of newly created UG,
number of points in new UG, newly assigned IDs
to points in second UG.

9 - update Params: ID of the UG, Tolerance for merging
adjacency relations identical entities. Returns Success-flag.
amongst cells of UG.
10 - purge Params: ID of the UG. Returns Success-flag,
points of UG which ID of new UG, number of points in new UG.
do not belong to
any cell.
11 - ID to Params: ID of UG, ID of Cell.
cell map. Returns Success-flag, Cell.
12 - cell Params: ID of UG, Cell.
to ID map. Returns Success-flag, ID of Cell.
13 - No Support. Params: Contains no item.
14 - No Support. Params: Contains no item.
15 - Extract info Params: ID of UG. Returns Success-flag,
on the UG. Number of points, number of cells, number of

curve cells, number of surface cells, number of
trivar cells, number of cell attributes, number
of points attributes.

IRIT Solid modeler G. Elber 308

16 - Extract the Params: ID of UG. Returns Success-flag,
boundaries of all ID of new UG (extrnal bndry), ID of new UG
curve-cells. (internal bndry), ID of new UG (internal bndry,

different function spaces), number of pts in grid.
17 - Extract the Params: ID of UG. Returns Success-flag, ID
boundaries of all of new UG (extrnal bndry), ID of new UG (internal
surface-cells. bndry), ID of new UG (internal bndry, different

function spaces), number of pts in grid.
18 - Extract the Params: ID of UG. Returns Success-flag, ID
boundaries of all of new UG (extrnal bndry), ID of new UG (internal
trivariate-cells. bndry), ID of new UG (internal bndry, different

function spaces), number of pts in grid.
19 - Set Params: ID of UG, attribute-type, attribute
attributes of name, list of point-ids, list of attribute values.
points. Returns Success-flag.
20 - Get Params: ID of UG, attribute-type, attribute
attributes of name, list of point-ids. Returns Success-flag,
points. list of attribute values.
21 - Set Params: ID of UG, attribute-type, attribute
attributes name, list of cell-ids, list of attribute values.
of cells. Returns Success-flag.
22 - Get Params: ID of UG, attribute-type, attribute
attributes name, list of cell-ids. Returns Success-flag,
of cells. list of attribute values.
23 - Get Params: ID of UG, ID of cell. Returns
adjacency list Success-flag, list of cell-ids adjacent to
for a cell. given cell.
24 - Get list Params: ID of UG. Returns Success-flag,
of point-IDs list of point-IDs, list of cell-IDs of UG.
and cell-IDs.
25 - Get list Params: ID of UG, ID of Cell. Returns
of point-IDs Success-flag, cell type (curve/surface/etc.),
of a cell. list of point-IDs of the cell.
26 - Get list Params: ID of UG. Returns Success-flag,
of all points in UG number of points in the list, the list of IDs,
(including IDs) and a list XYZ points.
27 - Assign ID of new UG, number of points in new UG.
sequential IDs to
points, starting
with 1.
28 - Assign Params: ID of UG. Returns Success-flag,
sequential IDs to ID of new UG, number of points in new UG.
cells, starting
with 1.
29 - Add Params: ID of UG, Object to add.
object to field. Returns Success-flag.

IRIT Solid modeler G. Elber 309

30 - Get Params: ID of UG. Returns
field. Success-flag, field as an object-list.
31 - Add Params: ID of UG, cell to add.
a new cell to Returns Success-flag, number of points in UG.
grid. Also adds
points of cell
to grid.
32 - Extract Params: ID of UG. Returns Success-flag,
Bezier patches of ID of new UG, number of points in new UG.
input UG as a new, Converts all B-spline patches to Bezier.
Bezier’s only, UG.
33 - Refine Params: ID of UG, Cell-Id to refine,
cells. direction to refine, parameter values to refine

at, number of values. Returns Success-flag,
ID of new UG, number of points in new UG.

34 - Select Params: ID of UG, point, Closest Entity
cell clostest to (closest face for 1, closest edge for 2, and
given point. closest corner for 2). Optionally, can have

a fourth parameter with an attribute to place
on the selected entity, as
”list(attrName, AttrVal)”.
Returns Success-flag, ID of selected cell,
selected face and selected edge.

35 - Select Params: ID of UG, polyline, direction.
all cells Returns Success-flag, IDs of cells selected,
intersecting with number of cell IDs.
frustum of given
polyline and vector.
36 - Refine Params: ID of UG, RefRatio, Pt, Div1
cells at Point. Div2, Div3. Div1/2/3 refer to divisions to

refine at for closest entity to Pt. Div1 must
be positive. If Div2 < 0, closest edge is
considered and refined Div1 times. If Div2 > 0
and Div3 < 0, closest face is considered and
refined Div1 x Div2 times. If Div2 > 0
and Div3 > 0, closest volume (trivariate) is
considered and refined Div1 x Div2 x Div3 times.
RefRatio sets the size ratios between the first
division and last (one for similar sizes).
Returns Success-flag, ID of new UG, number
of points in new UG, Cell Id.

IRIT Solid modeler G. Elber 310

37 - Refine Params: ID of UG, RefSize. Refines
unrefined cells. all cells that were unrefined so far in all

dirs., so that all edge lengths in all such
cells are approximately smaller than RefSize.
if RefSize is zero, 5% of the bbox of the
input geometry is set to RefSize. If RefSize
is negative, -Refsize of the bbox of the input
geometry will be used as RefSize.

38 - Write Params: ID of UG, file-name (zero
grid to a file. length name for stdout).

Returns Success-flag.
39 - Read Params: File-name to read from.
grid from disk. Returns Success-flag, ID of new UG, number

of points in new UG.
40 - Converts Params: File-name to read from.
all patches Returns Success-flag, ID of new UG, number
to linear in of points in new UG. Converts all patches
all dimension. to linear Bezier patches. An

approximation of the input UG patches.

Example:

PtList1 = list(

Point(0,0,0), Point(0,0,0), Point(0,1,0), Point(1,1,0),

Point(0,0,1), Point(1,0,1), Point(0,1,1), Point(1,1,1),

Point(0,0,2), Point(1,0,2), Point(0,1,2), Point(1,1,2));

IdList1 = list(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12);

ParList = list (UG1, PtList1, IdList1);

RetVal = UNSTRCTGRID(UG_SET_POINTS, ParList);

Success = nth(RetVal, 1);

printf("Set points in grid. Success = %d.\\n", list(Success));

Creates a UG with 12 points.

11.2.420 UNTRIM

ListType UNTRIM(TrimSrfType TrimSrf, ListType Params, NumericType Compose)

or

ListType UNTRIM(ListType TrimSrfList, ListType Params, NumericType Compose)

Untrims a trimmed surface or a list of trimmed surfaces. The trimmed surface(s) is/are
converted into a set of tensor-product surface patches by tiling its valid (untrimmed)
parametric domain with parametric tensor product quads only to compose the parametric
quads with the input (tensor product) surface(s).

The untrimming is performed by the line-sweep algorithm (if Params is an empty list),
or by the minimum-weight algorithm with either a pre-defined weight function below (if

IRIT Solid modeler G. Elber 311

Params contains a single value) between 1 to 3, or a weight blend of the three weight
functions below (if Params contains a list of three real values, indicating weights). The
pre-defined weight function are:

1. A function which favors a low ratio between the maximum Jacobian
determinant of the surface patches and the minimum Jacobian
determinant (in absolute values).

2. A function which favors close-to-orthogonal isoparametric curves
in the surface patches.

3. A function which favors surface patches which are close to being
square (i.e. height similar to width) in the parametric domain of
the input surface.

If Compose is true, the resulting untrimmed surface patches will be returned in Eu-
clidean space. Otherwise, they will be returned in the parametric space of the input
surface(s).

Example:

UntrimmedSrfs = UNTRIM(TrimSrf, list(1), true);

See also UNTRIMMED TYPE.

11.2.421 UVPOLY

PolyType UVPOLY(PolyType Obj, ListType Scales, ListType Translates);

Sets UV coordinates to polygonal object Obj. The UV coordinates are set using the
XY Euclidean coordinates if Scales is a list that holds two scaling factors (XScale, YScale),
or the UV coordinates are set via the two largest span in XYZ for each polygon, if Scales
is a list of three scaling factors (XScale, YScale, ZScale). Translates offers a way to shift
the UV coordinates in the texture 2D domain, Translates of (0, 0) does nothing. Needless
to say, the ?Scale factors scales the Euclidean coordinates before being sets as UV texture
coordinates.

Example:

UVCube = UVPOLY(Cube, list(1, 1, 1), list(0, 0));

sets UV coordinates to the six faces of the cube, each face with UV values between
zero and one.

11.2.422 VMBLENDPLN

VMBLENDPLN(VModelType Object, StringType Name, NumericType ZLevel,

ListType NumericValues)

Provides a mechanism to blend property functions of any type at all the points at
height ZLevel associated to a volumetric Object. The output of the blending process is
saved in a ’.ppm’ file with resolution NumericValues (0, 1), in a file name provided by
Name.

IRIT Solid modeler G. Elber 312

The standard behavior of this function blends the rgb attribute associated to Object.
This behavior can only be modified, providing a user-defined field function, in C code
level, of IRIT.

For example,

s1 = Sphere(Vector(0, 0, 0), 1);

attrib(s1, "rgb", "255,0,0");

s2 = Sphere(Vector(1.5, 0, 0), 1);

attrib(s2, "rgb", "0,255,0");

obj = s1 + s2;

VMBLENDPLN(obj, "blend.ppm", LIST(1000, 1000));

blends the RGB color values associated to the spheres s1 and s2 in their intersection
region, saving the output in blend.ppm.

See also ATTRIB for setting attributes, VMBLENDPT for blending the attributes in
a specific (Euclidean) point and VMENCFIELD, for encoding fields.

11.2.423 VMBLENDPT

VMBLENDPT(VModelType Object, ConstantType Oper, PointType Point)

provides a mechanism to blend property functions of any type at point Point associated
to a volumetric Object. The output of the blending process is a control point holding the
values of the property at the point.

The input parameter Oper controls the different stage of the blending. A value of 0
indicates initialization, where various quantities are initialized for fast access; a value of
1 outputs the blend at Point while a value of 9 frees the auxiliary structures created with
the initialization. The value of the input parameter Point is influential one for Oper is
1. The standard behavior of this function blends the rgb attribute associated to Object.
In order to modify this behavior, a different, C code based user-defined function must be
provided in C code level of IRIT.

For example,

s1 = Sphere(Vector(0, 0, 0), 1);

attrib(s1, "rgb", "255,0,0");

s2 = Sphere(Vector(1.5, 0, 0), 1);

attrib(s2, "rgb", "0,255,0");

obj = s1 + s2;

VMBlendPt(obj, 0, POINT(0, 0, 0)); # init cache

VMBlendPt(obj, 1, POINT(0, 0, 0)); # Evalaute value at given

VMBlendPt(obj, 1, POINT(0.75, 0, 0)); # Euclidean locations.

VMBlendPt(obj, 1, POINT(1.5, 0, 0));

IRIT Solid modeler G. Elber 313

VMBlendPt(obj, 9, POINT(0, 0, 0)); # free cache

blends the RGB color values associated to the spheres s1 and s2 in (0, 0, 0), (0.75, 0,
0) and (1.5, 0, 0) (Euclidean space coordinates).

See also ATTRIB for setting attributes, VMBLENDPLN for blending the attributes
corresponding to a grid of points for the same height coordinate and VMENCFIELD, for
encoding fields.

11.2.424 VMDLFILLET

VModelType VMDLFILLET(TrivarType TV1, TrivarType TV2,

NumericType Bndry1, NumericType Bndry2,

NumericType RailDist, NumericType R1Orient,

NumericType R2Orient, NumericType TanScale,

NumericType CtlPts, NumericType Tol,

NumericType NumerTol, NumericType FilletingMethod)

Constructs a V-rep model containing a (list of) fillet trivariate(s) that fill the space
between the specified boundary surfaces of TV1 and TV2. The fillet meets with the
boundary surfaces with G1 continuity, and its bounded in between their intersection
curve and two rail curves, that are computed as an approximate Euclidean offest of the
intersection curve on each of the surfaces. Bndry1 and Bndry2 specify the boundary
surfaces of TV1 and TV2 to construct a fillet in between (0,1,2,3,4,5 for UMin, UMax,
VMin, VMax, WMin and WMax, respectively, and 6 to take a list of all six boundary
surfaces). R1Orient and R2Orient specify the orientations of the two rail curves ((+/-)1),
or can be set to zero to choose the orientation resulting with the maximal arc length rail
curve. TanScale specifies the magnitude of the fillet’s tangets that connect it with Srf1
and Srf2. CtlPts controls the number of control points used to approximate some of the
curves computed during the filleting algorithm. Tol and NumerTol specify the tolerances
used during the filleting algorithm. FilletingMethod specifies the used filleting method
(0 for the ruled volume method and 1 for the volumetric boolean sum method).

Example:

Teapot = load("vteapot2htr_tvs");

VBody = nth(Teapot, 1);

VSpout = nth(Teapot, 3);

filletVMdl = VMDLFILLET(VBody, VSpout, 5, 5, 0.3, 1, -1, 0.25, 20,

5e-2, 1e-10, 0);

See also MDLFILLET, TVS2FILLET, TVTTFILLET.

11.2.425 VMDLREV

VModelType VMDLREV(TrimSrfType TSrf, PointType AxisPt, VectorType AxisVec,

NumericType StartAngle, NumericType EndAngle,

NumericType Rational)

IRIT Solid modeler G. Elber 314

or

VModelType VMDLREV(ListType TSrfList, PointType AxisPt, VectorType AxisVec,

NumericType StartAngle, NumericType EndAngle,

NumericType Rational)

constructs a VMODEL out of a given trimmed surface TSrf or trimmed surfacesTSr-
fList, by rotating the trimmed surface into a volume of revolution. AxisPt and AxisVec
sets the rotational axis, whereas StartAngle and EndAngle controls the rotational span.
Finally, Rational controls if the result is a precise (Rational) volume of revolution, or a
polynomial approximation (if input surfaces are polynomial).

Example:

VMRev = VMDLREV(TSrf, point(0, 0, 0), vector(0, 0, 1), 0, 90, false);

constructs a 90 degrees trimmed volume (VMODEL) of revolution around the Z axis,
using TSrf. See also RULEDVMDL and VMDLSWP, and SURFPREV, SURFPREV2,
and SURFREV.

11.2.426 VMDLSWP

VModelType VMDLSWP(TrimSrfType CrossSection, CurveType Axis,

NumericType Scale | CurveType ScaleCrv,

CurveType FrameCrv | VectorType FrameVec | ConstType OFF,

NumericType AxisRefine)

constructs a generalized cylinder VMODEL. This function sweeps a specified cross
section CrossSection along the provided Axis. The cross section may be scaled by a
constant value Scale, or scaled along the Axis parametric direction via a scaling curve
ScaleCrv. By default, when frame specification is OFF, the orientation of the cross section
is computed using the Axis curve tangent and normal. However, unlike the Frenet frame,
attempt is made to minimize the normal change, as can happen along inflection points
in Axis. If a VectorType FrameVec is provided as a frame orientation setting, it is used
to fix the binormal direction to this value. In other words, the orientation frame has a
fixed binormal. If FrameVec has an ”init” attribute with a 1 (TRUE) value, this vector
is only used as an initial vector for the first frame. If a CurveType FrameCrv is specified
as a frame orientation setting, this vector field curve is evaluated at each placement of
the cross section to yield the needed binormal. AxisRefine an integer value to define
possible refinement of the Axis to better reflect the information in ScalingCrv and the
orientation. A value of zero will force no refinement while a value of n > 0 will insert n
times the number of control points in ScaleCrv into Axis, better emulating the requested
sweep. If AxisRefine is negative, it is used as a positive value while a bound on the sweep
approximation error is computed and placed as ”SweepError” attribute on the result.
The resulting sweep is only an approximation of the real sweep. The scaling and axis
placement will not be exact, in general. Manual refinement (in addition to AxisRefine)
of the axis curve at the proper location, where accuracy is important, should improve the
accuracy of the output. The parametric domains of ScaleCrv and FrameCrv do not have

IRIT Solid modeler G. Elber 315

to match the parametric domain of Axis, and their domains are made compatible by this
function.

Example:

VMSwp = vmdlswp(TrimSrf, Axis, SclCrv, vector(0, 0, 1), 0);

constructs a sweep trimmed volume (VMODEL) along Axis curve, using TrimSrf. The
cross section TrimSrf is scaled along the Axis by SclCrv and the orientation is fixed so the
binormal is the Z axis. No additional refinements are applied. See also RULEDVMDL
and VMDLREV, and SWEEPSRF and SWEEPTV.

11.2.427 VMENCFIELD

VMENCFIELD(VModelType Object, StringType String, ConstantType Samples,

ConstantType Output)

provides a mechanism to encode a (scalar, vector, etc.) field String defined over the
V-model Object into a set of property functions associated to the single V-primitives
through least mean square approximation.

The input parameter Samples controls the number of evaluated points for each knot
span of each trivariate B-spline, so as to guarantee the Schoenberg-Whitney interpolation
conditions. The value Output controls the output of the method: TRUE if the output
property functions are to be returned as a separate trivariate structure and FALSE if
they are to be encoded in the same trivariates describing the geometry of Object. The
standard behavior of this function blends the rgb attribute associated to Object. In order
to modify this behavior, a different, user-defined function must be provided directly in C
code level of IRIT.

For example,

s1 = Sphere(Vector(0, 0, 0), 1);

attrib(s1, "rgb", "255,0,0");

s2 = Sphere(Vector(1.5, 0, 0), 1);

Attrib(s2, "rgb", "0,255,0");

obj = s1 + s2;

objRec = VMENCFIELD(obj, "", FALSE);

SAVE("output1", objRec);

encodes the RGB color values given as attributes to s1 and s2 into the V-model objRec
and save the new V-model into a itd file.

See also ATTRIB for setting attributes, VMBLENDPLN and VMENCFIELD.

11.2.428 VMSLICE

AnyType VMSLICE(TrivarType Model | VModelType Model,

NumericType SliceMode,

StringType SliceImageName,

VectorType ZLevels,

ListType Options);

IRIT Solid modeler G. Elber 316

Given a volumetric object, Model, either a TRIVAR, a list of TRIVARs. or a
VMODEL model, slice it at level ZLevel, or at levels (Zmin, ZMin, ZStep), from ZMin
to ZMax, in ZSteps if ZLevels. Options is a list object holding slicing information as

1. If Model is a single trivariate, Options will be (Mdl, XMin, YMin, XMax, YMax,
ZRes, XRes, YRes) where Mdl is an optional POLYgonal/MODEL object setting
the boundaries of the sliced volume (i.e. trimming boundaries of the trivar). If a
non zero interger attribute named ”level” is detected in Mdl, the whole VMSLICE
processing will be restricted to the interior of Mdl. The rest of the parameters set
the XY domain to slice and the resolution.

2. If Model is a list of more than one trivariate, Options will be (Mdl, XMin, YMin,
XMax, YMax, ZRes, XRes, YRes) where Mdl is an optional containter holding all
trivariates in the list. Mdl in this case, can be one of a TRIVAR, a MODEL, a
VMODEL, or a POLYgonal model. This optional container can serve as a (trans-
parent) aquarium to hold all the content. The color and transparency attributes
of this container are employed. If a non zero interger attribute named ”level” is
detected in Mdl, the whole VMSLICE processing will be restricted to the interior
of Mdl. The rest of the parameters set the XY domain to slice and the resolution.

3. If Model is a a VMODEL, Options will be (Idx, XMin, YMin, XMax, YMax,
ZRes, XRes, YRes) where Idx sets the index of the VElement in the VMODEL to
slice. If Idx is negative, all the VMODEL is sliced. The rest of the parameters set
the XY domain to slice and the resolution.

If the optional POLYgonal/MODEL, Mdl, as first parameter of the Options is provided
and Mdl has both ”rgb” and ”transp”, then it will be scan converted into the slices as
well, in pixels that are not affected by Model. Otherwise, it will only serve to restrict
Model to its volume.

All dimensions are in Object space resolution. SliceMode can be

0. Slice a heterogenenous image.

1. Slice and return the outline curves of the intersection as curves.

2. Slice and return the outline curves as an image.

3. Slice and return the full covering set as linear curves.

4. Slice and return the full covering set as an image.

Example:

vmslice(TV, 0, "vmslice.ppm", 1.0,

list(Mdl, 0.0, 0.0, 1.0, 1.0, 0.01, 0.01, 0.01));

slices heterogeneous (E4, E6, etc.) trivariate TV in domain [0, 1]2 in XY and resolution
0.01, into image vmslice.ppm.

See also MICROSLICE

IRIT Solid modeler G. Elber 317

11.2.429 VOXELIZE

VoxelType VOXELIZE(CurveType Crv | ModelType Mdl || TrivarType TV |

VModelType VMdl | ListType Lst,

NumericType PixelType, ListType Resolution);

Given (closed) geomerty, as curve Crv, trivariate TV, model Mdl, or vmodel Vmdl
or a list of such geometries Lst, convert the given geometry into voxels model at the
designated Resolution that is a list of resolution in X, Y, and Z. Returned is vxls model.
The pixel type in the create voxel model can be one of 1 (unsigned byte), 2 (int), 3
(double), 4 (ARGB byte), 5 (ARGB int), 6 (ARGB double), where ARGB stands for 4
entities: Alpha, Red, Green, and Blue.

Example:

vxls = voxelize(tv, list(1, 0.1, 0.1, 0.1));

See also OFFSET that con computes offsets over voxels, and VOXELOPER for special
voxels operations.

11.2.430 VOXELOPER

AnylType VOXELOPER(VoxelType VxlMdl, NumericType Operation,

NumericType OperValue);

or

AnylType VOXELOPER(VoxelType VxlMdl, NumericType Operation,

ListType OperValues);

or

AnylType VOXELOPER(NumericType Dummy, NumericType Operation,

ListType OperValues);

performs operations over a Voxeltype model VxlMdl. Operations prescribes the oper-
ation to perform and OperValue sets an input value for the operations. Operations Can
be one of:

IRIT Solid modeler G. Elber 318

0 with OperValues being a list of two parameters as
(PixelFormat, ImageIdx), prints the Voxel Model to
stderr using pixel format string PixelFormat, and dumps the
ImageIdx image plane in the volume. If ImageIdx is less
than zero, all image planes and hence all volume is dumped to
stderr.

1 Applies marching cubes to VxlMdl, with numeric parameter
iso value OperValue. Result is a polygonal model
representing the iso surface of VxclMdl, at iso level
OperValue.

3 Computes a voxel model using radon transform between n (can be more
than two images!). Herein, VxlModel can be a Dummy
numeric value that is ignored.
Images are given in OperValues as a list of lists, each
sub-list holds two items - image file name (a string) and a
horizontal view angle.

Example:

MCPolys = VoxelOper(vxl, 1, 100);

See also VOXELIZE that converts geometry into a VoxelType Model.

11.2.431 ZCOLLIDE

NumericType ZCOLLIDE(GeometricTreeType Obj1,

GeometricTreeType Obj2,

NumericType Fineness,

NumericType NumOfIters);

Given two objects, Obj1 and Obj2, where Obj1 is assumed to be above (in the Z
direction) Obj2, this function computes the amount that Obj1 could be moved down,
the -Z direction, until it collides with Obj2. The collision detection is considered using
a polygonal approximation that has a Fineness resolution (see RESOLUTION variable).
The computation cost is linear in NumOfIters with quadratic accuracy convergence. Val-
ues of ten for both Fineness and NumOfIters are reasonable selections. While Obj1 is
considered in its exact form, in Obj2, only the bbox of the shape is considered.

Example:

view(chair, 1);

for (x = 0, 1, 5,

b = box(vector(x / 10, 0, 2), 0.1, 0.1, 0.1):

view(b * tz(ZCOLLIDE(chair, b, 10, 10)), 0));

places and draws six different cubes on top of the object called chair.

IRIT Solid modeler G. Elber 319

Figure 132: A twisting extrusion can be constructed via the ZTEXTRUDE command. Here a start
shaped planar surface (in blue) is extruded and twisted to created the shown trivariate (in red).

11.2.432 ZTEXTRUDE

SurfaceType ZTEXTRUDE(CurveType CrossSection, NumericType Rational,

NumericType ZPitch)

or

TrivarType ZTEXTRUDE(SurfaceType CrossSection, NumericType Rational,

NumericType ZPitch)

constructs an extrusion of CrossSection in the +Z direction while twisting (rotation
the CrossSection along the Z axis). ZPitch sets the Z extrusion amount (for 360 rotation)
as we advances in the +Z direction. If Rational is TRUE the result is a precise rational
freeform. If FALSE, a polynomial approximation is constructed instead.

Example:

TV = ZTEXTRUDE(Srf, TRUE, 1);

See Figure 132 for an example. See also EXTRUDE.

11.3 Object transformation functions

All the routines in this section construct a 4 by 4 homogeneous transformation matrix
representing the required transform. These matrices may be concatenated to achieve

IRIT Solid modeler G. Elber 320

more complex transforms using the matrix multiplication operator ∗. For example, the
expression

m = trans(vector(-1, 0, 0)) * rotx(45) * trans(vector(1, 0, 0));

constructs a transform to rotate an object around the X = 1 line, 45 degrees. A matrix
representing the inverse transformation can be computed as:

InvM = m ^ -1

See also overloading of the - operator.

11.3.1 HOMOMAT

MatrixType HOMOMAT(ListType MatData)

creates an arbitrary homogeneous transformation matrix by manually providing its 16
coefficients.

Example:

step = 10;

for (a = 1, 1, 720 / step,

view_mat = save_mat *

HOMOMAT(list(list(1, 0, 0, 0),

list(0, 1, 0, 0),

list(0, 0, 1, -a * step / 500),

list(0, 0, 0, 1))):

view(list(view_mat, axes), on)

);

looping and viewing through a sequence of perspective transforms, created using the
HOMOMAT constructor. See also RFLCTMAT and PROJMAP.

11.3.2 MAP3PT2EQL

MatrixType MAP3PT2EQL(PointType Pt1, PointType Pt2, PointType Pt3)

computes the transofrmation matrix in the XY plane that takes the given three planar
points into an equilateral triangle around the origin.

Example:

Mat = MAP3PT2EQL(Pt1, Pt2, Pt3);

See also ELLIPSE3PT, CONICSEC.

IRIT Solid modeler G. Elber 321

11.3.3 MATPOSDIR

MatrixType MATPOSDIR(PointType Pos, VectorType Dir, VectorType UpDir)

creates a viewing transformation matrix of a viewer at Pos, looking at direction Dir
and upper view of UpDir.

Example:

step = 10;

for (a = 1, 1, 720 / step,

view_mat = MATPOSDIR(point(0.5, 0.1, 0.5),

vector(0.0, 1.0, 0.0),

vector(cos(a * step * Pi / 360), 0,

sin(a * step * Pi / 360))):

view(list(view_mat, axes), on)

);

looping and viewing through a sequence of transforms, created using the MATPOSDIR
constructor.

11.3.4 PROJMAT

MatrixType PROJMAT(PlaneType ProjPlane,

VectorType EyePos,

NumericType EyeInf)

constructs a projection matrix to project the universe onto the given projection plane
ProjPlane, with the eye position at EyePos (divided by EyeInf). Note that if EyeInf is
zero, the eye is at infinity.

Example:

PMat = PROJMAT(plane(0, 0, 1, -0.1), vector(1, 1, 1), 0);

contstructs a projection matrix PMat onto the Z = -0.1 plane with a view direction
of (1, 1, 1). See also RFLCTMAP, HOMOMAT.

11.3.5 PSELFINTER

PolyType PSELFINTER(PolyType PolyObj)

computes theslef intersections, if any, of polygons in PolyObj.
Example:

SelfInters = PSELFINTER(Poly);

IRIT Solid modeler G. Elber 322

Figure 133: A ruled surface fitting along two different parametric directions of the input surface,
computed using PRULEDALG. In blue, the boundaries of the strips are shown while in red, the
tangency curves are presented, between the original surface and the fitted ruled surface.

11.3.6 PRULEDALG

CurveType PRULEDALG(SurfaceType Srf, NumericType Tolerance,

NumericType Euclidean, NumericType CrvSizeReduction,

NumericType SubdivTol, NumericType NumericTol,

NumericType GenSurfaces)

or

CurveType PRULEDALG(TrimSrfType Srf, NumericType Tolerance,

NumericType Euclidean, NumericType CrvSizeReduction,

NumericType SubdivTol, NumericType NumericTol,

NumericType GenSurfaces)

computes a piecewise ruled surface approximation to given surface Srf, where the fit
always starts from VMin parametric direction. The strips fits Srf to within Tolerance. If
Euclidean is true, the result is evaluated into Euclidean space, otherwise it is returned in
the parametric domain of Srf. CrvSizeReduction is used as a curve fitting size limit for the
intermediate rail curves of the fruled fitting. See MZERO for the meaning of SubdivTol
and NumericTol. If GenSurfaces is true, the urled surfaces are returned. Otherwise, the
adjacent ruling lines, as curves, are returned.

Example:

Strips = PRULEDALG(Srf2, 0.01, true, 40, 0.01, 1e-10);

See Figure 133. See also PRISA and SDVLPCRV.

11.3.7 RFLCTMAT

MatrixType RFLCTMAT(PlaneType RflctPlane)

constructs a reflection matrix to reflect the universe along the given reflection plane
RflctPlane.

Example:

IRIT Solid modeler G. Elber 323

PMat = RFLCTMAT(plane(0, 0, 1, 0));

constructs a reflection matrix PMat around the Z = 0 plane. See also PROJMAP,
HOMOMAT.

11.3.8 ROTV2V

MatrixType ROTV2V(VectorType Vec1, VectorType Vec2)

creates a rotation that takes vector Vec1 to vector Vec2. See also ROTVEC, ROTZ2V,
ROTZ2V2.

11.3.9 ROTVEC

MatrixType ROTVEC(VectorType Vec, NumericType Angle)

creates a rotation around the vector Vec matrix with Angle degrees. See also ROTV2V,
ROTZ2V, ROTZ2V2.

11.3.10 ROTX

MatrixType ROTX(NumericType Angle)

creates a rotation around the X transformation matrix with Angle degrees.

11.3.11 ROTY

MatrixType ROTY(NumericType Angle)

creates a rotation around the Y transformation matrix with Angle degrees.

11.3.12 ROTZ

MatrixType ROTZ(NumericType Angle)

creates a rotation around the Z transformation matrix with Angle degrees.

11.3.13 ROTZ2V

MatrixType ROTZ2V(VectorType Dir)

creates a rotation matrix that takes Z axis into Dir. Length of Dir is ignored. See also
ROTV2V, ROTVEC, ROTZ2V2.

11.3.14 ROTZ2V2

MatrixType ROTZ2V2(VectorType Dir, VectorType Dir2)

creates a rotation matrix that takes the Z axis into Dir, while the X axis is aligned with
Dir2. The lengths of Dir and Dir2 are ignored. See also ROTV2V, ROTVEC, ROTZ2V,
ROTVEC.

IRIT Solid modeler G. Elber 324

11.3.15 SCALE

MatrixType SCALE(VectorType ScaleFactors)

creates a scaling by the ScaleFactors transformation matrix.

11.3.16 TRANS

MatrixType TRANS(VectorType TransFactors)

creates a translation by the TransFactors transformation matrix.

11.4 General purpose functions

11.4.1 ADWIDTH

ADWIDTH(GeometricType Object, NumericType DWidth)

sets the width of the object. This display width is used in pixels in display devices for
width of line drawing, if supported by the display device. See also ATTRIB, COLOR,
and AWIDTH.

This function is equivalent to using,
ATTRIB(Object, ”dwidth”, DWidth);

11.4.2 ATTRIB

ATTRIB(AnyType Object, StringType Name, AnyType Value)

provides a mechanism to add an attribute of any type to an Object, with name Name
and value Value. This ATTRIB function is tuned and optimized toward numeric values
or strings as Value although any other object type can be saved as attribute.

These attributes may be used to pass information to other programs about this object,
and are saved with the objects in data files. Attributes placed on a list object or even a
whole hierarchy of objects will be propagated into all items in the list or hierarchy. There
are a few exception to this propagation. The ”animation” attribute is not propagated
and is kept in the internal nodes, forming a hierachy of animation commands for all the
objects contained in the list/hierarchy. The ”invisible” attribute is saved at all levels of
the hierarchy, used to denote a complete sub tree that is invisible (yet can serve as a
source at which instances can point).

For example,

ATTRIB(Glass, "rgb", "255,0,0");

ATTRIB(Glass, "refract", "1.4");

.

.

.

RmAttr(Glass, "rgb", 0); # Removes "rgb" attribute.

sets the RGB color and refraction index of the Glass object and later removes the
RGB attribute.

Attribute names are case insensitive. Spaces are allowed in the Value string, as well
as the double quote itself, although the latter must be escaped:

IRIT Solid modeler G. Elber 325

ATTRIB(Glass, "text", "Say \"this is me\"");

See also RMATTR for removal of attributes, CPATTR for copying them, GETATTR
to get an attribute, ATTRPROP for setting attributes on all subtrees of parts, as well as
AWIDTH, ADWIDTH, FINDATTRm COLOR and PATTRIB.

11.4.3 ATTRPROP

ATTRPROP(AnyType Object, StringType Name, AnyType Value)

Same as ATTRIB but propagates the attributes to all sub-parts of the object. See
also ATTRVPROP.

Example:

Glass1 = list(Base, Handle, Wine);

Glass2 = list(Base, Handle, Wine);

attrib(Glass1, "ptexture", "marble1.gif");

ATTRPROP(Glass2, "ptexture", "marble1.gif");

In Glass1, only Glass1 will be set with ”texture” while in Glass2, the ”texture” at-
tribute will propagate to the sub-parts of Glass2, namely to the Base, Handle, Wine.

11.4.4 ATTRVPROP

ATTRVPROP(AnyType Object, StringType Name)

Propagates an Object attribute named Name to the vertices in Object. Typically for
RGB color values.

Example:

Obj2 = ATTRVPROP(Obj, "RGB");

11.4.5 AWIDTH

AWIDTH(GeometricType Object, NumericType Width)

sets the width of the object to one of those specified below. This width is used in real
object side dimensions in tools such as scan converters and rendering tools for rendering
lines and curves, as well as postscript. See also ATTRIB, COLOR, and ADWIDTH.

This function is equivalent to using,
ATTRIB(Object, ”width”, Width);

11.4.6 CHDIR

CHDIR(StringType NewDir)

sets the current working directory to be NewDir.

IRIT Solid modeler G. Elber 326

11.4.7 CLNTCLOSE

CLNTCLOSE(NumericType Handler, NumericType Kill)

closes a communication channel to a client. Handler contains the index of the com-
munication channel opened via CLNTEXEC. If Kill, the client is sent an exit request for
it to die. Otherwise, the communication is closed and the client runs standing alone. See
also VIEWOBJ, VIEWSET, CLNTREAD, CLNTWRITE, and CLNTEXEC.

Example:

h2 = clntexec("nuldrvs -s-");

.

.

.

CLNTCLOSE(h2,TRUE);

closes the connection to the nuldrvs client, opened via CLNTEXEC.

11.4.8 CLNTWRITE

CLNTWRITE(NumericType Handler, AnyType Object)

writes one object Object to a communication channel of a client. Handler contains
the index of the communication channel opened via CLNTEXEC. If the Handler equals
-1, the regular display device (forked via, for example, VIEWOBJ command) is used. If
Handler equals CLIENTS ALL, a broadcast of Object to all clients is performed. See also
VIEWOBJ, VIEWSET, CLNTREAD, CLNTCLOSE, and CLNTEXEC.

Example:

h2 = clntexec("nuldrvs -s-");

.

.

CLNTWRITE(h2, Model);

.

.

clntclose(h2,TRUE);

writes the object named Model to client through communication channel h2.

11.4.9 COLOR

COLOR(GeometricType Object, NumericType Color)

sets the color of the object to one of those specified below. Note that an object has a
default color (see irit.cfg file) according to its origin - loaded with the LOAD command,
PRIMITIVE, or a BOOLEAN operation result. The system internally supports colors

IRIT Solid modeler G. Elber 327

(although you may have a B&W system) and the colors recognized are: BLACK, BLUE,
GREEN, CYAN, RED, MAGENTA, YELLOW, and WHITE.

See the ATTRIB command for more fine control of colors using the RGB attribute.
See also AWIDTH and AWIDTH.

This function is equivalent to using,
ATTRIB(Object, ”color”, Color);

11.4.10 COMMENT

COMMENT

Two types of comments are allowed:
1. One-line comment: starts anywhere in a line at the ’#’ character, up to the end of

the line.
2. Block comment: starts at the COMMENT keyword followed by a unique character

(anything but white space), up to the second occurrence of that character. This is a fast
way to comment out large blocks.

Example:

COMMENT $

This is a comment

$

11.4.11 CPATTR

CPATTR(AnyType DestObj, AnyType SrcObj)

copies all attribute from object SrcObj into object DestObj. All attributes, if any, in
DestObj are purged. Needless to say, both objects must exist at the time of attribute
copy.

See also ATTRIB, ATTRPROP, GETATTR, RMATTR.

11.4.12 DITHERIMAGE

DITHERIMAGE(StringType InputImage, StringType DitheredImage,

NumericType DitherMatrixSize, NumericType ErrorDiffusion,

ListType Colors, NumericType DitheringMethod)

dithers, possibly with predefined Colors, an InputImage file. Result is saved in
DitheredImage file. DitherMatrixSize sets the dithering matrix size that can be 2, 3
or 4. If ErrorDiffusion, an error diffusion algorithm is applied (Floyd Steinberg). Colors
holds a list of colors as a list of triplet RGB lists, to set the colors to use in the dithering
process, or a non list object for BW dithering. Finally, DitheringMethod can be one of:

0 Regular Floyd Steinberg including BW if no color.
1 Stucki. Subjectively, this look best.
2 Another variation of Floyd Steinberg.
3 Jarvis, Judice, and Ninke.
4 Burkes.
5/6/7 Three variances of Frankie Sierra.

IRIT Solid modeler G. Elber 328

Example:

DITHERIMAGE("BenGurion.ppm", "BenGurionDither.ppm", 1, true,

list(list(0, 90, 158),

list(166, 33, 98),

list(200, 189, 3),

list(240, 240, 240)), 0);

dithers the input image BenGurion.ppm” into ”BenGurionDither.ppm” using four
colors.

An examples of dithering an images, using the DITHERIMAGE function. See also
DITHERWIRE.

11.4.13 ERROR

ERROR(StringType Message);

breaks the execution and returns to the IRIT main loop, after printing a Message to
the screen. This may be useful in user defined functions to break execution in cases of
fatal errors.

11.4.14 EXEC

EXEC(StringType Command);

executes a string Command in the IRIT interepreter, indirectly.
Example:

Univariate2Bezier = function(Polynom, Deg): x: f:

return = nil():

f = 1:

for (x = 0, 0.05 / Deg, 1,

EXEC("f = " + Polynom):

snoc(ctlpt(E1, f), return)):

return = coerce(cinterp(return, Deg + 1, Deg + 1, PARAM_UNIFORM, FALSE),

bezier_type);

defines a function that converts univariate expressions into explicit, E1, Bezier curves.
For example ”Univariate2Bezier(”3 * x ^ 2 - 2 * x + 5”, 3);” would return a cubic
Bezier curve representing ”3 * x ^ 2 - 2 * x + 5”.

11.4.15 EXIT

EXIT()

exits from the solid modeler. NO warning is given!

IRIT Solid modeler G. Elber 329

11.4.16 FOR

FOR(NumericType Start, NumericType Increment, NumericType End, AnyType Body)

executes the Body (see below), while the FOR loop conditions hold. Start, Increment,
End are evaluated first, and the loop is executed while <= End if Increment > 0, or while
>= End if Increment < 0. If Start is of the form ”Variable = Expression”, then that
variable is updated on each iteration, and can be used within the body. The body may
consist of any number of regular commands, separated by COLONs, including nesting
FOR loops to an arbitrary level.

Example:

step = 10;

rotstepx = rotx(step);

FOR (a = 1, 1, 360 / step,

view_mat = rotstepx * view_mat:

view(list(view_mat, axes), ON)

);

displays axes with a view direction that is rotated 10 degrees at a time around the X
axis.

11.4.17 HELP

HELP(StringType Subject)

provides help on the specified Subject.
Example:

HELP("");

will list all IRIT help subjects.

11.4.18 FNFREE

FNFREE(StringType UserFuncName)

frees a user defined function named UserFuncName. See also FREE.

11.4.19 FREE

FREE(GeometricType Object)

Because of the usually huge size of geometric objects, this procedure may be used to
free them. Reassigning a value (even of different type) to a variable automatically releases
the old variable’s allocated space as well. See also FNFREE.

IRIT Solid modeler G. Elber 330

11.4.20 FUNCTION

FuncName = FUNCTION(Prm1, Prm2, ... , PrmN):LclVal1:LclVar2: ... :LclVarM:

FuncBody;

defines a function named FuncName with N parameters and M local variables (N,M >=
0). Here is a (simple) example of a function with no local variables and a single parameter
that computes the square of a number:

sqr = FUNCTION(x):

return = x * x;

Functions can be defined with optional parameters and optional local variables. A
function’s body may contain an arbitrary set of expressions including for/while loops,
(user) function calls, or even recursive function calls, all separated by colons. The re-
turned value of the function is the value of an automatically defined local variable named
return. The return variable is a regular local variable within the scope of the function
and can be used as any other variable.

If a variable’s name is found in neither the local variable list nor the parameter list,
it is searched for in the global variable list (outside the scope of the function). Binding
of names of variables is static as in the C programming language.

Because binding of variables is performed in execution time, there is a somewhat
less restrictive type checking of parameters of functions that are invoked within a user’s
defined function.

A function can invoke itself, i.e., it can be recursive. However, since a function should
be defined when it is called, a dummy function should be defined before the recursive
one is defined:

factorial = function(x):return = x; # Dummy function.

factorial = function(x):

if (x <= 1, return = 1, return = x * factorial(x - 1));

Overloading is valid inside a function as it is outside. For example, for

add = FUNCTION(x, y):

return = x + y;

the following function calls are all valid:

add(1, 2);

add(vector(1,2,3), point(1,2,3));

add(box(vector(-3, -2, -1), 6, 4, 2), box(vector(-4, -3, -2), 2, 2, 4));

Finally, here is a more interesting example that computes an approximation of the
length of a curve, using the sqr function defined above:

distptpt = FUNCTION(pt1, pt2):

return = sqrt(sqr(coord(pt1, 1) - coord(pt2, 1)) +

sqr(coord(pt1, 2) - coord(pt2, 2)) +

sqr(coord(pt1, 3) - coord(pt2, 3)));

IRIT Solid modeler G. Elber 331

crvlength = FUNCTION(crv, n):pd:t:t1:t2:dt:pt1:pt2:i:

return = 0.0:

pd = pdomain(crv):

t1 = nth(pd, 1):

t2 = nth(pd, 2):

dt = (t2 - t1) / n:

pt1 = coerce(ceval(crv, t1), e3):

for (i = 1, 1, n,

pt2 = coerce(ceval(crv, t1 + dt * i), e3):

return = return + distptpt(pt1, pt2):

pt1 = pt2);

Try, for example:

crvlength(circle(vector(0.0, 0.0, 0.0), 1.0), 30) / 2;

crvlength(circle(vector(0.0, 0.0, 0.0), 1.0), 100) / 2;

crvlength(circle(vector(0.0, 0.0, 0.0), 1.0), 300) / 2;

See PROCEDURE and IRITSTATE’s ”DebugFunc” for more.

11.4.21 IF

IF(NumericType Cond, AnyType TrueBody { , AnyType FalseBody })

executes TrueBody (a group of regular commands, separated by COLONs - see FOR
loop) if the Cond holds, i.e., it is a numeric value other than zero, or optionally, if it
exists, executes FalseBody. If the Cond does not hold, i.e., it evaluates to a numeric
value equal to zero.

Examples:

IF (machine == IBMOS2, resolution = 5, resolution = 10);

IF (a > b, max = a, max = b);

sets the resolution to 10, unless running on an IBMOS2 system, in which case the
RESOLUTION variable will be set to 5 in the first statement, and set to max to the
maximum of a and b in the second statement.

11.4.22 INCLUDE

INCLUDE(StringType FileName)

executes the script file FileName. Nesting of an include file is allowed up to 10 levels
deep. If an error occurs, all open files in all nested files are closed and data are waited
for at the top level (standard input). Files are searched for inclusion in the current
directory. If not found, and the inclusion is from a different file at some directory, that
directory is searched as well. Finally, if all the above fails, the directories specified via
the IRIT INCLUDE environment variable are also searched.

A script file can contain any command the solid modeler supports.
Example:

IRIT Solid modeler G. Elber 332

INCLUDE("/tmp/general.irt");

includes the file ”/tmp/general.irt”. Any inclusion inside general.irt will search for the
included file in the current directory, then in /tmp, and then in the directories specified
via IRIT INCLUDE.

11.4.23 INSERTPOLY

INSERTPOLY(PolyType Poly, PolyType Polys)

inserts, in place, Poly as a new polygon of object Polys. After the completion of this
function Poly is unmodified but Polys has a new polygon in it.

Example:

X = poly(list(point(0, 0, 0),

point(0, 1, 0),

point(1, 1, 0),

point(1, 0, 0)), false);

Y = X * tz(1);

INSERTPOLY(Y, X);

At the end of the execution of this sequence of command, X contains two polygons,
one at Z = 0 and one at Z = 1. See also MERGEPOLY, SPLITLST.

11.4.24 INTERACT

INTERACT(GeometryTreeType Object)

This is a user-defined function (see iritinit.irt) that does the following, in order out-
lined:

1. Clear the display device.

2. Display the given Object.

3. Pause for a keystroke.

This user-defined function in version 4.0 of IRIT is an emulation of the INTERACT
function that used to exist in previous versions.

Example:

INTERACT(list(view_mat, Axes, Obj));

displays and interacts with the object Obj and the predefined object Axes. VIEW MAT
will be used to set the starting transformation.

See VIEW and VIEWOBJ for more.

IRIT Solid modeler G. Elber 333

11.4.25 IQUERY

IQUERY(NumericType QueryType)

A low level query tool for checking the current state of the IRIT internal tables.
According to the values of QueryType the following is printed to stdout:

QueryType Printed content
1 All the known functions/user defined functions/constants

and parameters/returned values (if any).
2 All the knwon keywords

11.4.26 LIST

ListType LIST(AnyType Elem1, AnyType Elem2, ...)

constructs an object as a list of several other objects. Only a reference is made to the
Elements, so modifying Elem1 after being included in the list will affect Elem1 in that
list next time list is used!

Each inclusion of an object in a list increases its internal used reference. The object is
freed iff theused reference is zero. As a result, attempt to delete a variable (using FREE)
which is referenced in a list removes the variable, but the object itself is freed only when
the list is freed.

11.4.27 LOAD

AnyType LOAD(StringType FileName)

loads an object from the given FileName. The object may be any object defined in
the system, including lists, in which the structure is recovered and reconstructed as well
(internal objects are inserted into the global system object list if they have names). If no
file type is provided, ”.itd” is assumed.

This command can also be used to load binary files. ASCII regular data files usually
take longer to load than binary files due to the required parsing. Binary data files can
be loaded directly, like ASCII files in IRIT, but can only be inspected through IRIT tools
such as dat2irit. A binary data file must have a ”.ibd” (IRIT Binary Data) type in its
name.

Compressed files can be loaded if the given file name has a postfix of ”.Z” or .”.gz”.
The gnu utility ”gzip” will be invoked via a pipe for that purpose.

See also IRITSTATE’s option ”FlatLoad” for optioanl flattening of the object hier-
arechy during a load.

11.4.28 LOGFILE

LOGFILE(NumericType Set)

or

LOGFILE(StringType FileName)

IRIT Solid modeler G. Elber 334

If Set is non zero (see TRUE/FALSE and ON/OFF), then everything printed in the
input window will go to the log file specified in the irit.cfg configuration file. This file will
be created the first time logfile is turned ON. If a string FileName is provided, it will be
used as a log file name from now on. It also closes the current log file. A ”LOGFILE(on
);” must be issued after a log file name change.

Example:

LOGFILE("Data1");

LOGFILE(on);

printf("Resolution = %lf\\n", list(resolution));

LOGFILE(off);

to print the current resolution level into file Data1.

11.4.29 MSLEEP

MSLEEP(NumericType MilliSeconds)

causes the solid modeller to sleep for the prescribed time in milliseconds.
Example:

for (i = 1, 1, sizeof(crvs),

c = nth(crvs, i):

color(c, yellow):

msleep(20):

viewobj(c)

);

displays an animation sequence and sleeps for 20 milliseconds between iterations.

11.4.30 NREF

AnyType NREF(ListType ListObject, NumericType Index)

returns a reference to the Index (base count 1) element of the list ListObject. The
reference points to the original object and hence can be used to modify (add attributes
for example) to objects in lists. Assignment of this reference to a new object would result
in a copy of the object. In contrast, a FREE of a reference to an object would have an
undefined result.

Example:

Lst = list(a, b, c);

attrib(NREF(Lst, 2), "NewAttr", on);

adds a new attribute to the second element of Lst. See also NTH.

IRIT Solid modeler G. Elber 335

11.4.31 NRMLCONE

ListType NRMLCONE(SurfaceType Srf)

computes a cone that bounds all normals of surface Srf. A list of two objects, the axis
vector of the cone and the opening radius, in radians, is returned.

Example:

NCone = NRMLCONE(Srf);

Cn = Cone(vector(0, 0, 0), normalize(nth(NCone, 1)),

nth(NCone, 2), 0) * tz(1.0) * sc(0.75);

computes a normals’ cone for surface Srf and builds a real cone following these limits.

11.4.32 NTH

AnyType NTH(ListType ListObject, NumericType Index)

returns the Index (base count 1) element of the list ListObject.
Example:

Lst = list(a, list(b, c), d);

Lst2 = NTH(Lst, 2);

and now Lst2 is equal to ’list(b, c)’. See also NREF.

11.4.33 PAUSE

PAUSE(NumericType Flush)

waits for a keystroke. This is nice to have if a temporary stop in a middle of an
included file (see INCLUDE) is required. If Flush is TRUE, then the input is first flushed
to guarantee that the actual stop will occur.

11.4.34 PRINTF

PRINTF(StringType CtrlStr, ListType Data)

This results in a formatted printing routine, following the concepts of the C program-
ming language’s printf routine. CtrlStr is a string object for which the following special
’%’ commands are supported:

%d, %i, %u Prints the numeric object as an integer or unsigned integer.
%o, %x, %X Prints the numeric object as an octal or hexadecimal integer.
%e, %f, %g, Prints the numeric object in several formats of
%E, %F floating point numbers.
%s Prints the string object as a string.
%pe, %pf, %pg Prints the three coordinates of the point object.
%ve, %vf, %vg Prints the three coordinates of the vector object.
%Pe, %Pf, %Pg, Prints the four coordinates of the plane object.
%De, %Df, %Dg, Prints the given object in IRIT’s data file format.

IRIT Solid modeler G. Elber 336

All the ’%’ commands can include any modifier that is valid in the C programming
language PRINTF routine, including l (long), prefix character(s), size, etc. The point,
vector, plane, and object commands can also be modified in a similar way, to set the
format of the numeric data printed.

Also supported are the newline and tab using the backslash escape character:

PRINTF("\\tThis is the char \"\\%\"\\n", nil());

Backslashes should be escaped themselves as can be seen in the above example. Here
are few more examples:

PRINTF("this is a string \"%s\" and this is an integer %8d.\\n",

list("STRING", 1987));

PRINTF("this is a vector [%8.5lvf]\\n", list(vector(1,2,3)));

IritState("DumpLevel", 9);

PRINTF("this is a object %8.6lDf...\\n", list(axes));

PRINTF("this is a object %10.8lDg...\\n", list(axes));

This implementation of PRINTF is somewhat different than the C programming lan-
guage’s version, because the backslash always escapes the next character during the pro-
cessing stage of IRIT’s parser. That is, the string

’\\tThis is the char \"\\%\"\\n’

is actually parsed by the IRIT’s parser into

’\tThis is the char "\%"\n’

because this is the way the IRIT parser processes strings. The latter string is the one
that PRINTF actually sees.

See also FPRINTF and FPRINTFILE for ways to redirect PRINTF to a file.

11.4.35 FPRINTF

FPRINTF(NumericType FileNandle, StringType CtrlStr, ListType Data);

Similar to PRINTF, but prints to a file, as set via the FileHandle. See PRINTF for
the formatting options - CtrlStr and Data are identical as in PRINTF. See PRINTFILE
how to open/close a file for printing to file, and get a FileHandle.

See also PRINTF and FPRINTFILE

11.4.36 FPRINTFILE

NumericType PRINTFILE(StringType FileName | NumericType FileHandle);

Opens a file to write to via FPRINTF, if parameter is a FileName. Closes a file
written to via FPRINTF, if parameter is a FileHandle, as returned by a previous call to
FPRINTFILE to open a file. Retuns a file handle (non-negative numeric) or -1 if error.
Examples:

IRIT Solid modeler G. Elber 337

File1 = FPrintFile("test1.txt");

fprintf(File1, "test1 - 1\\n", nil());

fprintf(File1, "test1 - 2 %d\\n", list(File1));

File2 = FPrintFile("test2.txt");

fprintf(File2, "test2 - 1\\n", nil());

fprintf(File2, "test2 - 2 %d\\n", list(File2));

FPrintFile(File1);

FPrintFile(File2);

opens two files and write some text into them, only to close the files.
See also PRINTF and FPRINTF

11.4.37 PROCEDURE

ProcName = PROCEDURE(Prm1, Prm2, ... , PrmN):LclVal1:LclVar2: ... :LclVarM:

ProcBody;

A procedure is a function that does not return a value, and therefore the returned
variable (see FUNCTION) should not be used. A procedure is identical to a function in
every other way. See FUNCTION for more.

11.4.38 RESET

RESET()

clears all variables and initializes the environment to the starting state. User defined
functions, however, are kept intact.

11.4.39 RMATTR

RMATTR(AnyType Object, StringType Name, NumericType Options)

removes attribute named Name from object Object. This function will have no affect
on the Object if the Object has no attribute named Name. If Name is a zero length
string, all attributes are removed. Options is a bit mask as follows:

0x01 If Object is a list object, the removal procedure will
recurse over all its elements.

0x02 Removes the attributes also from the geometries in the
Object, like curves or models.

Example:

RmAttr(List, "rgb", 3);

To remove the ”rgb” attribute from all elements in List and all its geometries. See
also ATTRIB, ATTRPROP, GETATTR, CPATTR.

IRIT Solid modeler G. Elber 338

11.4.40 SAVE

SAVE(StringType FileName, AnyType Object)

saves the provided Object in the specified file name FileName. No extension type is
needed (ignored if specified), and ”.itd” is supplied by default. The Object can be any
object type, including list, in which the structure is saved recursively. See also LOAD.
If a display device is actively running at the time SAVE is invoked, its transformation
matrix will be saved with the same name but with extension type of ”.imd” instead of
”.itd”.

This command can also be used to save binary files. ASCII regular data files usually
take longer to load than binary files due to the required parsing. Binary data files can be
loaded directly like ASCII files in IRIT, but must be inspected through IRIT tools such
as dat2irit. A binary data file must have a ”.ibd” (IRIT Binary Data) type in its name.

This command can also save geometry in one of the following formats:
IGES file, If the file type is either ”igs” or ”iges”.
STL file, if the file type is ”stl”. If Object has the int attribute ”RegularTriang” as

TRUE, the geometry will be regularized first (no T junctions). If Object has the int
attribute ”MultiObjSplit”, the data will be saved in one large STL object in one file if 0,
one STL object per IRIT object in one file if 1, or in one file per IRIT obejct if 2.

OBJ file. if the file type is ”obj”.
VRML file. if the file type is ”wrl”.
CNC Gcode tool path file, if the file type is either ”nc” or ”gcode”. For this format,

only univariate data sets (polylines and curves) will be processed and saved as 3-axis G
code commands. The following attributes are supported in this mode, if found in Object:

IRIT Solid modeler G. Elber 339

”NCCommentChar” Holds a string of one character to define the
comment character. If exists a header comment is
dumped as well.

”NCDownPlungeRelFeed” Relative feed rate to plunge down (relative to
”NCFeedRate”).

”NCDownPlungeZLevel” Distance, above the plunging destination to move
down in fast g0 motion. Infinity to disable and
plunge in g1 all the way, or zero to plunge fast
in g0 all way.

”NCFeedRate” Feedrate to use. Default is 10 mm per second.
”NCMaxXYBridgeGap” The maximal gap in the XY plane to bridge between

adjacent polylines/curves without retraction.
By default, this value is one mm (0.04inch).

”NCMaxZBridgeGap” The maximal gap in Z to bridge between adjacent
polylines/curves without retraction. By default,
this value is two mm (0.08inch).

”NCRetractZLevel” Set as the Z retraction level above the (bounding
box) of the model. By default, the retration level
will be one inch (25mm) above the bounding box of
the model.

”NCReverseZ” If set to a non negative value, the Z coordinates
are assumed reversed. That is the +Z is down.
By default +Z is assumed up.

”NCUpRetractFast” If TRUE, up retracting will be in fast g0 motion.
Otherwise, if FALSE, g1 will be used.

On some platforms, files will be saved compressed if the given file name has a postfix
of ”.Z” or ”.gz”. The gnu ”gzip” utility will be invoked via a pipe for that purpose.

Example:

SAVE("oObj1.ibd.Z", Obj1);

Saves Obj1 in the file Obj1.ibd.Z as compressed binary file.

11.4.41 SETNAME

SETNAME(ListType ListObj, NumericType Index, StringType NewName)

sets the name of a sub object of index Index in list object ListObj to a new name
NewName. The index of the first element is zero.

Example:

A = list(1, 2, 3);

SETNAME(A, 0, "First");

sets the name of the first element in object A to ”First”.
While it is not a good idea to modify names of objects in the top level global space,

one can use this function to do exactly that. To rename the object ”Axes” to ”XYZ”,
do:

IRIT Solid modeler G. Elber 340

SETNAME(list(Axes), 0, "XYZ");

See also GETNAME.

11.4.42 SNOC

SNOC(AnyType Object, ListType ListObject)

This is similar to the lisp cons operator but puts the new Object in the end of the list
ListObject instead of at the beginning.

Example:

Lst = list(axes);

SNOC(Srf, Lst);

and now Lst is equal to the list ’list(axes, Srf)’.

11.4.43 SYSTEM

SYSTEM(StringType Command)

executes a system command Command. For example,

SYSTEM("ls -l");

11.4.44 TIME

TIME(NumericType Reset)

returns the time in seconds from the last time TIME was called with Reset TRUE.
This time is CPU time if such support is available from the system (times function), and
otherwise, is real time (time function). The time is automatically reset at the beginning
of the execution of this program.

Example:

Dummy = TIME(TRUE);

.

.

.

TIME(FALSE);

prints the time in seconds between the above two time function calls.

11.4.45 VARLIST

VARLIST(NumericType Verbosity)

lists all the currently defined objects in the system. If Verbosoty equals 0, only object
names are printed. If Verbosoty equals 1, all object geometry is printed.

IRIT Solid modeler G. Elber 341

11.4.46 VECTOR

VectorType VECTOR(NumericType X, NumericType Y, NumericType Z)

creates a vector type object, using the three provided NumericType scalars. See also
PLANE, POINT.

11.4.47 VERIFYSTATE

VERIFYSTATE(NumericType Action)

auxiliary function to verify the state of the variables in the irit interpreter as follows:

0. to test if state modified and only report changes to stdout.

1. same as 0 but stop script execution, if state modified.

2. dump to stdout all state.

9. to capture irit state.

so typical use will capture (Action = 9) the state only to verify it at a later time.

11.4.48 VIEW

VIEW(GeometricTreeType Object, NumericType ClearWindow)

displays the (geometric) object(s) as given in Object.
If ClearWindow is non zero (see TRUE/FALSE and ON/OFF), the window is first

cleared (before drawing the objects).
Example:

VIEW(Axes, FALSE);

displays the predefined object Axes in the viewing window on top of what is drawn
already.

In version 4.0, this function is emulated (see iritinit.irt) using the VIEWOBJ func-
tion. In order to use the current viewing matrix, VIEW MAT should be provided as an
additional parameter. For example,

VIEW(list(view_mat, Obj), TRUE);

However, since VIEW is a user defined function, the following will not use VIEW MAT
as one would expect:

VIEW(view_mat, TRUE);

because VIEW MAT will be renamed inside the VIEW user defined function to a local
(to the user defined function) variable.

In iritinit.irt one can find several other useful VIEW related functions:

IRIT Solid modeler G. Elber 342

VIEWCLEAR Clears all data displayed on the display device.
VIEWREMOVE Removes the object specified by name from display.
VIEWDISC Disconnects from display device (which is still running)

while allowing IRIT to connect to a new device.
VIEWEXIT Forces the display device to exit.
VIEWSAVE Requests the display device to save transformation matrix.
BEEP An emulation of the BEEP command of versions prior to 4.0.
VIEWSTATE Allows change to the state of the display device.

For the above VIEW related functions, only VIEWREMOVE, VIEWSAVE, and VIEW-
STATE require parameters, which are the file name and view state, respectively. The
view state can be one of several commands. See the display device section for more.

Examples:

VIEWCLEAR();

VIEW(axes, off);

VIEWSTATE("DrawSurfaceMesh");

VIEWSTATE("DrawStyle");

VIEWSAVE("matrix1");

VIEWREMOVE("axes");

VIEWDISC();

11.4.49 VIEWOBJ

VIEWOBJ(GeometricTreeType Object)

displays the (geometric) object(s) as given in Object. Object may be any Geometric-
Type or a list of other GeometricTypes nested to an arbitrary level.

Unlike IRIT versions prior to 4.0, VIEW MAT is not explicitly used as the transforma-
tion matrix. In order to display with a VIEW MAT view, VIEW MAT should be listed
as an argument (in that exact name) to VIEWOBJ. The same is true for the perspective
matrix PRSP MAT.

Example:

VIEWOBJ(list(view_mat, Axes));

displays the predefined object Axes in the viewing window using the viewing matrix
VIEW MAT.

11.4.50 VIEWSET

VIEWSET(NumericType DispHandle)

sets the current display device to be DispHandle. DispHandle is returned by the CLN-
TEXEC command. The use of the reserved constant of CLIENTS ALL would broadcast
the viewing commands to all objects.

Example:

IRIT Solid modeler G. Elber 343

h1 = clntexec(DispDeviceName);

h2 = clntexec(DispDeviceName);

clntwrite(h1, sphere(vector(0, 0, 0), 1));

clntwrite(h2, axes);

pause();

VIEWSET(h1);

viewclear();

viewobj(list(sphere(vector(0, 0, 0), 1), axes));

VIEWSET(h2);

viewclear();

viewobj(list(sphere(vector(0, 0, 0), 1), axes));

pause();

VIEWSET(CLIENTS_ALL);

viewobj(axes);

pause();

viewexit();

opens two display devices, and displays a unit sphere to the first, and the axes object,
to the second. After a pause, displays both objects on both display devices, then pauses
and exits from both.

See also VIEWOBJ, CLNTEXEC, CLNTCLOSE, CLNTREAD, CLNTWRITE.

11.4.51 WHILE

WHILE(NumericType Cond, AnyType Body)

executes the Body (see below), while the WHILE loop condition Cond is evaluated
into a non zero value. Cond is evaluated before each iteration.

The body may consist of any number of regular commands, separated by COLONs,
including nesting loops to an arbitrary level.

Example:

deg = 0;

rotstepx = rotx(10);

WHILE (deg < 360,

deg = deg + 10:

view_mat = rotstepx * view_mat:

view(list(view_mat, axes), ON)

);

IRIT Solid modeler G. Elber 344

displays axes with a view direction that is rotated 10 degrees at a time around the X
axis.

11.5 System variables

System variables are predefined objects in the system. Any time IRIT is executed, these
variable are automatically defined and set to values which are sometimes machine depen-
dent. These are regular objects in any other sense, including the ability to be deleted or
overwritten. One can modify, delete, or introduce other objects using the iritinit.irt file.

11.5.1 AXES

Predefined polyline object (PolylineType) that describes the XY Z axes.

11.5.2 DRAWCTLPT

Predefined Boolean variable (NumericType) that controls whether curves’ control poly-
gons and surfaces’ control meshes are drawn (TRUE) or not (FALSE). Default is FALSE.

11.5.3 FLAT4PLY

Predefined Boolean object (NumericType) that controls the way almost flat surface
patches are converted to polygons: four polygons (TRUE) or only two polygons (FALSE).
Default value is FALSE.

11.5.4 MACHINE

Predefined numeric object (NumericType) holding the machine type as one of the fol-
lowing constants: MSDOS, SGI, HP, APOLLO, SUN, UNIX, IBMOS2, WINDOWS,
AMIGA, CYGWIN, MACOSX, and LINUX.

11.5.5 POLY APPROX OPT

A variable controlling the algorithm to tesselate surfaces into polygons. If FALSE, that
is, uniform, in parametric space, sampling is used. If TRUE, maximal deviation between
the polygonal approximation and the surface is used, with distance as prescribed by
POLY APPROX TOL.

11.5.6 POLY APPROX UV

A Boolean predefined variable. If TRUE, UV values of surface polygonal approximation
are placed on the attribute lists of vertices.

11.5.7 POLY APPROX TOL

A numeric predefined tesselation control on the distance between the surface and its
polygonal approximation in POLY APPROX OPT settings.

IRIT Solid modeler G. Elber 345

11.5.8 POLY APPROX TRI

A numeric predefined tesselation control. If TRUE, only triangles are generated in surface
tesselations.

11.5.9 POLY MERGE COPLANAR

A numeric predefined surface tesselation control. If TRUE, coplanar adjacent polygons
are merged into one.

11.5.10 PRSP MAT

Predefined matrix object (MatrixType) to hold the perspective matrix used/set by VIEW
and/or INTERACT commands. See also VIEW MAT.

11.5.11 RESOLUTION

Predefined numeric object (NumericType) that sets the accuracy of the polygonal primi-
tive geometric objects and the approximation of curves and surfaces. It holds the number
of divisions into which a circle is divided (with minimum value of 4). If, for example,
RESOLUTION is set to 6, then a generated CONE will effectively be a six-sided pyramid.
It also controls the fineness of freeform curves and surfaces when they are approximated
as piecewise linear polylines, and the fineness of freeform surfaces when they are approx-
imated as polygons.

11.5.12 VIEW MAT

Predefined matrix object (MatrixType) to hold the viewing matrix used/set by VIEW
and/or INTERACT commands. See also PRSP MAT.

11.6 System constants

The following constants are used by the various functions of the system to signal certain
conditions. Internally, they are represented numerically, although, in general, their exact
value is unimportant and may be changed in future versions. In the rare circumstance
that you need to know their values, simply type the constant as an expression.

Example:

MAGENTA;

11.6.1 AMIGA

A constant designating an AMIGA system, in the MACHINE variable.

11.6.2 APOLLO

A constant designating an APOLLO system, in the MACHINE variable.

11.6.3 BEZIER TYPE

A constant defining a Bezier freeform geometry.

IRIT Solid modeler G. Elber 346

11.6.4 BLACK

A constant defining a BLACK color.

11.6.5 BLUE

A constant defining a BLUE color.

11.6.6 BSPLINE TYPE

A constant defining a B-spline freeform geometry.

11.6.7 CLIENTS ALL

A constant defining a request to address (broadcast to) all clients.

11.6.8 COL

A constant defining the COLumn or U direction of a surface or a trivariate mesh.

11.6.9 CTLPT TYPE

A constant defining an object of type control point.

11.6.10 CURVE TYPE

A constant defining an object of type curve.

11.6.11 CYAN

A constant defining a CYAN color.

11.6.12 CYGWIN

A constant designating an IBM system running under Cygwin, in the MACHINE variable.

11.6.13 DEBUG EXE

A constant designating DEBUG (1.0) vs RELEASE (0.0) compilation.

11.6.14 DEPTH

A constant defining the DEPTH direction of a trivariate mesh. See TBEZIER, TB-
SPLINE.

11.6.15 E1

A constant defining an E1 (X only coordinate) control point type.

11.6.16 E2

A constant defining an E2 (X and Y coordinates) control point type.

IRIT Solid modeler G. Elber 347

11.6.17 E3

A constant defining an E3 (X, Y and Z coordinates) control point type.

11.6.18 E4

A constant defining an E4 control point type.

11.6.19 E5

A constant defining an E5 control point type.

11.6.20 E6

A constant defining an E6 control point type.

11.6.21 E7

A constant defining an E7 control point type.

11.6.22 E8

A constant defining an E8 control point type.

11.6.23 E9

A constant defining an E9 control point type.

11.6.24 FALSE

A zero constant. May be used as a Boolean operand.

11.6.25 GEOM CONST

Designates a constant shape.

11.6.26 GEOM LINEAR

Designates a shape of a (piecewise) linear curve.

11.6.27 GEOM CIRCULAR

Designates a shape of a circle/arc.

11.6.28 GEOM PLANAR

Designates a planar shape.

11.6.29 GEOM SPHERICAL

Designates a spherical shape.

IRIT Solid modeler G. Elber 348

11.6.30 GEOM SRF OF REV

Designates a shape that is (a portion of) a surface of revolution..

11.6.31 GEOM EXTRUSION

Designates a shape that is an extrusion surface.

11.6.32 GEOM RULED SRF

Designates a shape that is a ruled surface.

11.6.33 GEOM DEVELOP SRF

Designates a shape that is a ruled surface.

11.6.34 GEOM SWEEP

Designates a shape that is a sweep surface.

11.6.35 GREEN

A constant defining a GREEN color.

11.6.36 GREGORY TYPE

A constant defining a Gregory freeform geometry.

11.6.37 HP

A constant designating an HP system, in the MACHINE variable.

11.6.38 IBMOS2

A constant designating an IBM system running under OS2, in the MACHINE variable.

11.6.39 KV DISC OPEN

A constant defining an open end condition with a discontinuous uniformly spaced knot
vector. That is, all interior knots are of multiplicity order -1 and are equally spaced.

11.6.40 KV FLOAT

A constant defining a floating end condition uniformly spaced knot vector.

11.6.41 KV OPEN

A constant defining an open end condition uniformly spaced knot vector.

11.6.42 KV PERIODIC

A constant defining a periodic end condition with a uniformly spaced knot vector.

IRIT Solid modeler G. Elber 349

11.6.43 LINUX

A constant designating an IBM system running under Linux, in the MACHINE variable.

11.6.44 LIST TYPE

A constant defining an object of type list.

11.6.45 MACOSX

A constant designating an IBM system running under Mac OSX, in the MACHINE
variable.

11.6.46 MAGENTA

A constant defining a MAGENTA color.

11.6.47 MATRIX TYPE

A constant defining an object of type matrix.

11.6.48 MSDOS

A constant designating an MSDOS system, in the MACHINE variable.

11.6.49 MODEL TYPE

A constant defining an object of type model.

11.6.50 MULTIVAR TYPE

A constant defining an object of type multivariate function.

11.6.51 NUMERIC TYPE

A constant defining an object of type numeric.

11.6.52 OFF

Synonym for FALSE.

11.6.53 ON

Synonym for TRUE.

11.6.54 P1

A constant defining a P1 (W and WX coordinates, in that order) rational control point
type.

IRIT Solid modeler G. Elber 350

11.6.55 P2

A constant defining a P2 (W, WX, and WY coordinates, in that order) rational control
point type.

11.6.56 P3

A constant defining a P3 (W, WX, WY, and WZ coordinates, in that order) rational
control point type.

11.6.57 P4

A constant defining a P4 rational control point type.

11.6.58 P5

A constant defining a P5 rational control point type.

11.6.59 P6

A constant defining a P6 rational control point type.

11.6.60 P7

A constant defining a P7 rational control point type.

11.6.61 P8

A constant defining a P8 rational control point type.

11.6.62 P9

A constant defining a P9 rational control point type.

11.6.63 PARAM CENTRIP

A constant defining a centripetal length parametrization.

11.6.64 PARAM CHORD

A constant defining a chord length parametrization.

11.6.65 PARAM NIELFOL

A constant defining a Nielson-Foley parametrization.

11.6.66 PARAM UNIFORM

A constant defining an uniform parametrization.

IRIT Solid modeler G. Elber 351

11.6.67 PI

The constant of 3.141592...

11.6.68 PLANE TYPE

A constant defining an object of type plane.

11.6.69 POINT TYPE

A constant defining an object of type point.

11.6.70 POLY TYPE

A constant defining an object of type poly.

11.6.71 POWER TYPE

A constant defining a power basis freeform geometry.

11.6.72 RED

A constant defining a RED color.

11.6.73 ROW

A constant defining the ROW or V direction of a surface or a trivariate mesh.

11.6.74 SGI

A constant designating an SGI system, in the MACHINE variable.

11.6.75 STRING TYPE

A constant defining an object of type string.

11.6.76 SURFACE TYPE

A constant defining an object of type surface.

11.6.77 SUN

A constant designating a SUN system, in the MACHINE variable.

11.6.78 TRIMSRF TYPE

A constant defining an object of type trimmed surface.

11.6.79 TRISRF TYPE

A constant defining an object of type triangular surface.

IRIT Solid modeler G. Elber 352

11.6.80 TRIVAR TYPE

A constant defining an object of type trivariate function.

11.6.81 TRUE

A non zero constant. May be used as a Boolean operand.

11.6.82 UNDEF TYPE

A constant defining an object of no type (yet).

11.6.83 UNIX

A constant designating a generic UNIX system, in the MACHINE variable.

11.6.84 UNTRIMMED TYPE

A constant defining an untrimmed freeform geometry. See also UNTRIM.

11.6.85 VECTOR TYPE

A constant defining an object of type vector.

11.6.86 VMODEL TYPE

A constant defining an object of type volumetric model.

11.6.87 WINDOWS

A constant designating an IBM system running under Windows, in the MACHINE vari-
able.

11.6.88 WHITE

A constant defining a WHITE color.

11.6.89 YELLOW

A constant defining a YELLOW color.

12 Animation

The animation tool adds the capability of animating objects using forward kinematics, ex-
ploiting animation curves. Each object has different attributes, that prescribe its motion,
scale, and visibility as a function of time. Every attribute has a name, which designates its
role. For instance, an attribute animation curve named MOV X describes a translation
motion along the X axis.

IRIT Solid modeler G. Elber 353

12.1 How to create animation curves in IRIT

Let OBJ be an object in IRIT which we want to animate.
Animation curves are either scalar (E1/P1) curves or three-dimensional (E3/P3) curves

with one of the following name prefixes:

MOV X, MOV Y, MOV Z Translation along one axis
MOV XYZ Arbitrary translation along all three axes
ROT X, ROT Y, ROT Z Rotating around a single axis (degrees)
SCL X, SCL Y, SCL Z Scale along a single axis
SCL Global scale
VISIBLE Visibility

The visibility curve is a scalar curve that enables the display of the object if the
visibility curve is positive at time t and disables the display (hides) the object if the
visibility curve is negative at time t. A positive visibility value between zero and one also
hints at the opacity of the object, if supported; one means fully opaque.

The animation curves are all attached as an attribute named ”animation” to the object
OBJ.

Example:

mov_x = cbezier(list(ctlpt(E1, 0.0),

ctlpt(E1, 1.0)));

scl = cbezier(list(ctlpt(E1, 1.0),

ctlpt(E1, 0.1)));

rot_y = cbezier(list(ctlpt(E1, 0.0),

ctlpt(E1, 360.0)));

attrib(OBJ, "animation", list(mov_x, scl, rot_y));

The above will animate OBJ between time zero and one (Bezier curves are always
between zero and one), by moving it a unit size in the X direction, scaling it to 10% of
its original size and rotating it at increasing angular speed from zero to 360 degrees.

OBJ can now be saved into a file or displayed via one of the regular viewing commands
in IRIT (i.e. VIEWOBJ).

Animation is not always between zero and one. To that end, one can apply the
CREPARAM function to modify the parametric domain of the animation curve. The
convention is that if the time is below the starting value of the parametric domain,
the starting value of the curve is used. Similarly, if the time is beyond the end of the
parameter domain of the animation curve, the end value of the animation curve is used.

Example:

CREPARAM(mov_x, 3.0, 5.0);

to set the time of the motion in the x axis to be from t = 3 to t = 5. For t < 3, use
mov x(3), and for t > 5, use mov x(5).

The animation curves are regular objects in the IRIT system. Hence, only one object
named mov x or scl can exist at one time. If you create a new object named mov x, the
old one is overwritten! To preserve old animation curves you can detach the old ones by
executing ’free(mov x)’ which will remove the object named mov x from IRIT’s object
list but not from its previously used locations within other list objects, if any. A different

IRIT Solid modeler G. Elber 354

way to do this is to call the animation curves mov x1, mov x2 etc. as only the prefix of
the name is verified.

For example:

mov_x = cbezier(list(ctlpt(E1, 0.0),

ctlpt(E1, 1.0)));

attrib(obj1, "animation", list(mov_x));

free(mov_x);

mov_x1 = cbezier(list(ctlpt(E1, 2.0),

ctlpt(E1, 3.0)));

mov_x2 = cbezier(list(ctlpt(E1, 2.0),

ctlpt(E1, 3.0)));

attrib(obj2, "animation", list(mov_x1, mov_x2));

free(mov_x);

Notice the way we have two animation curves translating obj2 in x. This is somewhat
artificial but makes more sense if other transformations appear in between.

One can evaluate an object with animation curves at a certain time, only to find the
proper expected transformation matrix at that time on the object as an ”animation mat”
attribute. The following example defines a user defined TransformAnim function that
creates a transformed object out of object that was evaluated with ANIMEVAL. Then,
a simple loop (slowly) animates the scene...

TransformAnim = function(Obj):

return = 0;

TransformAnim = function(Obj): m: i:

if (thisobj("Obj") == list_type,

return = nil():

for (i = 1, 1, sizeof(Obj),

snoc(TransformAnim(nth(Obj, i)), return)),

return = Obj * tx(0)):

m = getattr(Obj, "animation_mat"):

if (thisobj("m") == matrix_type,

return = return * m);

for (t = 0, 0.1, 1,

ANIMEVAL(t, Object):

view(TransformAnim(Object), 1));

Animation of movies are supported to a certain extent. A movie animation is pre-
scribed using a ”pmovie” (parametric texture movie) attribute. The format of the
”pmovie” attribute is as follows

"MovieName {, S X Y {Z}} {, F} {, R} {, T=tmin,tmax}"

where ”S X, Y, Z,” prescribes image scaling much like regular ”ptexture” attributes
(how many times the image will span the object?) with the default being for the movie
to span the entire object and ’F’ requests the flipping of the X and Y axes of the movie,

IRIT Solid modeler G. Elber 355

again much like in the ”ptexture’ attribute. Further, ”T=tmin,tmax” sets the time range
to execute the animation at, beginning to end and ’R’, if set, request that the movie will
be repeated modulus this (tmin,tmax) domain.

12.2 A more complete animation example

a = box(vector(0, 0, 0), 1, 1, 1);

b = box(vector(0, 0, 0), 1, 1, 1);

c = box(vector(0, 0, 0), 1, 1, 1);

d = sphere(vector(0, 0, 0), 0.7);

pt0 = ctlpt(e1, 0.0);

pt1 = ctlpt(e1, 1.0);

pt2 = ctlpt(e1, 2.0);

pt6 = ctlpt(e1, 6.0);

pt360 = ctlpt(e1, 360.0);

pt10 = ctlpt(e1, -4.0);

pt11 = ctlpt(e1, 1.0);

pt12 = ctlpt(e1, 4.0);

pt13 = ctlpt(e1, -1.0);

visible = creparam(cbezier(list(pt10, pt11)), 0.0, 5.0);

mov_x = creparam(cbezier(list(pt0, pt6, pt2)), 0.0, 1.2);

mov_y = mov_x;

mov_z = mov_x;

rot_x = creparam(cbspline(2,

list(pt0, pt360, pt0),

list(KV_OPEN)),

1.2, 2.5);

rot_y = rot_x;

rot_z = rot_x;

scl = creparam(cbezier(list(pt1, pt2, pt1, pt2, pt1)),

2.5, 4.0);

scl_x = scl;

scl_y = scl;

scl_z = scl;

mov_xyz = creparam(circle(vector(0, 0, 0), 2.0), 4.0, 5.0);

attrib(d, "animation", list(mov_xyz, visible));

free(visible);

visible = creparam(cbezier(list(pt12, pt13)), 0.0, 5.0);

attrib(a, "animation", list(rot_x, mov_x, scl, scl_x, visible));

attrib(b, "animation", list(rot_y, mov_y, scl, scl_y, visible));

attrib(c, "animation", list(rot_z, mov_z, scl, scl_z, visible));

IRIT Solid modeler G. Elber 356

color(a, red);

color(b, green);

color(c, blue);

color(d, cyan);

demo = list(a, b, c, d);

interact(demo);

viewanim(0, 5, 0.01);

In this example, we create four objects, three cubes and one sphere. Animation curves
to translate the three cubes along the three axes for time period of t = 0 to t = 1.2 are
created. Rotation curves to rotate the three cubes along the three axes are then created
for time period t = 1.2 to t = 2.5. Finally, for time period t = 2.5 to t = 4.0. the cubes
are (not only) unifomly scaled. For time period t = 4 to t = 5, the cubes become invisible
and the sphere, which becomes visible, is rotated along a circle of radius 2.

12.3 Another complete animation example

This example demonstrates the ability to put ”animation” attributes on internal nodes of
a hierarchy, thereb, affecting the entire set of objects in the hierachy. Herein, we present
an robotic arm with three edges and two joints.

BoxLength = 2;

BoxWidth = 2;

BoxHeight = 10;

LowerBox = box(vector(-BoxLength / 2, -BoxWidth / 2, 0),

BoxLength, BoxWidth, BoxHeight);

MiddleBox = box(vector(-BoxLength / 2, -BoxWidth / 2, 0),

BoxLength, BoxWidth, BoxHeight);

UpperBox = box(vector(-BoxLength / 2, -BoxWidth / 2, 0),

BoxLength, BoxWidth, BoxHeight);

Cn1 = cone(vector(0, 0, 0), vector(0, BoxHeight / 3, 0), 1);

color(LowerBox, magenta);

color(MiddleBox, yellow);

color(UpperBox, cyan);

color(Cn1, green);

rot_x1 = creparam(cbspline(3,

list(ctlpt(E1, 0),

ctlpt(E1, -200),

ctlpt(E1, 200),

ctlpt(E1, 0)),

list(KV_OPEN)),

0, 3);

rot_x2 = creparam(cbspline(4,

IRIT Solid modeler G. Elber 357

list(ctlpt(E1, 0),

ctlpt(E1, 400),

ctlpt(E1, -400),

ctlpt(E1, 0)),

list(KV_OPEN)),

0, 3);

rot_y = creparam(cbspline(2,

list(ctlpt(E1, 0),

ctlpt(E1, 100),

ctlpt(E1, -100),

ctlpt(E1, 0)),

list(KV_OPEN)),

0, 3);

rot_z = creparam(cbspline(2,

list(ctlpt(E1, 0),

ctlpt(E1, 1440)),

list(KV_OPEN)),

0, 3);

Translate = trans(vector(0, 0, BoxHeight));

attrib(Cn1, "animation", list(rot_z, Translate));

Upr = list(Cn1, UpperBox);

attrib(Upr, "animation", list(rot_y, Translate));

Mid = list(Upr, MiddleBox);

attrib(Mid, "animation", list(rot_x2, Translate));

rbt_hand = list(Mid, LowerBox);

attrib(rbt_hand, "animation", list(rot_x1));

view(rbt_hand, 1);

In this example, we create four objects, three cubes and one cone, simulating a robotic
hand with three edges an a gripper (the cone). The animation is defined hierarchically,
making it very easy to model the robot.

13 Display devices

The following display device drivers are available,

IRIT Solid modeler G. Elber 358

Device Name Invocation Environment

xgldrvs xgldrvs -s- SGI 4D GL regular driver.
xogldrvs xogldrvs -s- SGI 4D Open GL/Motif driver.
xgladap xgladap -s- SGI 4D GL adaptive isocurve

experimental driver.
x11drvs x11drvs -s- X11 driver.
xmtdrvs xmtdrvs -s- X11 Motif driver.
xglmdrvs xglmdrvs -s- SGI 4D GL and X11/Motif driver.
wntdrvs wntdrvs -s- IBM PC Windows NT driver.
wntgdrvs wntgdrvs -s- IBM PC Windows NT Open GL driver.
wntgaiso wntgaiso -s- IBM PC OGL Adap. Iso. driver.
os2drvs os2drvs -s- IBM PC OS2 2.x/3.x driver.
amidrvs amidrvs -s- AmigaDOS 2.04+ driver.
nuldrvs nuldrvs -s- [-d] [-D] A device to print the

object stream to stdout.

All display devices are clients communicating with the (IRIT) server using IPC (inter
process communication). On Unix and Windows NT, sockets are used. A Windows NT
client can talk to a server (IRIT) on a Unix host if hooked to the same network. On
OS2 pipes are used, and both the client and server must run on the same machine. On
AmigaDOS exec messages are used, and both the client and server must run on the same
machine.

While all display devices support object(s) transformations via a transformation con-
trol window, many of the display devices allow one to click and drag on the viewing
window to rotate (Left Button) and to translate (Right Button). This mode exploits the
mouse’s two degrees of freedom to provide intuitive dual axis rotation and translation.
Most display devices supports two levels of fineness. A rough display is used when in the
middle of a transformation operation (i.e. the mouse button is down/dragged), while a
fine object display is employed when the display is idle (mouse button is up). See also
option ’-E’.

The (IRIT) server will automatically start a client display device if the IRIT DISPLAY
environment variable is set to the name and options of the display device to run. For
example:

setenv IRIT_DISPLAY xgldrvs -s-

The display device must be in a directory that is in the environment variable path.
Most display devices require the ’-s-’ flags to run in a non-standalone mode, or a client-
server mode. Most drivers can also be used to display data in a standalone mode (i.e.,
no server). For example:

xgldrvs -s solid1.itd irit.imd

Effectively, all the display devices are also data display programs. Therefore, some
functionality is not always as expected. For example, the Quit button will always force
the display device to quit, even if popped up from IRIT, but will not cause IRIT to quit
as might logically expected. In fact, the next time IRIT will try to communicate with the
display device, it will find the broken connection and will start up a new display device.

IRIT Solid modeler G. Elber 359

Most display devices recognize attributes found on objects. The following attributes
are usually recognized (depending on the device capability):

• Color: Selects the drawn color of the object to be one of the 8/16 predefined colors
in the IRIT system: white, red, green, blue, yellow, cyan, magenta, black.

• DWidth: Sets the width in pixels of the drawn object, when drawn as a wireframe.

• Light source: Mark a points object as a light source. Such a marked object is not
rendered but rather used to set a light source position. A light source object also
honors ”index” attribute that sets the light source number (between 0 and 9), and
”type” which can be either ”point infty” for a light source direction (light source at
infinity) or ”point pos” for a point light source. See also ”advanced usage” in the
irender program.

• ReflectLns: Allows the display of reflection lines off a freeform surface. The ”Re-
flectLns” attribute is a list object of two subobjects, a vector and a list of points.
The vector is the reflection lines’ direction (all reflection lines are parallel) and the
list of points is a list of points on the different reflection lines. For example,

attrib(S, "RflctLines",

list(vector(0, 0, 1),

list(point(-1.6, 2, 0),

point(-0.8, 2, 0),

point(0.0, 2, 0),

point(0.8, 2, 0),

point(1.6, 2, 0))));

defines five reflection lines to be reflected off surface S, all in the direction of (0, 0,
1) and on the plane Y = 2. See also RFLCTLN command.

• RGB: Overwrites (if supported) the COLOR attribute (if given) and sets the color
of the object to the exact prescribed RGB set.

• StrScale, StrPos, StrSpace: Allows control over string drawing, controlling the scale
of the string, its position, and the spacing between characters in the string.

All display devices recognize all the command line flags and all the configuration
options in a configuration file, as described below. The display devices will attempt to
honor the requests, to the best of their ability. For example, only gl and OpenGL devices
can render shaded models, and so only they will honor all DrawStyle configuration options.

13.1 Command Line Options

???drvs [-s] [-u] [-n] [-N] [-i] [-c] [-C] [-m] [-a] [-q] [-g "x1,x2,y1,y2"]

[-G "x1,x2,y1,y2"] [-I #IsoLines] [-F PlgnOpti PlgnFineNess] [-R]

[-f PllnOpti PllnFineNess] [-E RelLowRes] [-p PointSize]

[-l Line Width] [-r] [-A Shader] [-B] [-2] [-d] [-D] [-L NormalSize]

[-4] [-k SketchSilType SilPwr ShdTyp ShdPwr InvShd ImpTyp Imp] [-K]

[-b "R,B,G (background)"] [-S "x,y,z,w{,a,d,s}"] [-1] [-e PickDist]

IRIT Solid modeler G. Elber 360

[-O PickObjType] [-Z ZMin ZMax] [-M] [-W WireSetup] [-v] [-P] [-t]

[-o] [-x ExecAnimCmd] [-X Min,Max,Dt,R{,flags}] [-w InitWidget] [-T]

[-z] DFiles

• -1: One or two sides for light sources.

• -2: Double buffering. Prevents screen flicker at the possible cost of fewer colors.

• -4: Forces four polygons per almost flat region in the surface to polygon conversion.
Otherwise two polygons only.

• -a: Activate antialiased lines and shaded display.

• -A Shader: Shader can be one of 0 (None), 1 (Background), 2 (Flat), 3 (Gouraud),
or 4 (Phong).

• -b BackGround: Sets the background color as three RGB integers in the range of 0
to 255.

• -B: Back face culling of polygons.

• -c: Sets depth cueing on. Drawings that are closer to the viewer will be drawn in
more intense color.

• -C: Caches the piecewise linear geometry so curves and surface can be redisplayed
faster. Purging it will free memory, on the other hand.

• -d: Debug objects. Prints to stderr all objects read from the communication port
with the server IRIT.

• -D: Debug input. Prints to stderr all characters read from communcation port with
the server IRIT. Lowest level of communication.

• -e PickDist: Sets the distance to the near and far Z clipping planes.

• -E RelLowRes: Sets the relative fineness of curves and surface while the input device
is active, such as in a drag operation.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed dveiation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -F PolyOpti FineNess: Controls the method used to approximate surfaces into poly-
gons. See the variable POLY APPROX OPT for the meaning of FineNess. See also
-4.

• -g x1,x2,y1,y2: Prescribes the position and location of the transformation window
by prescribing the domain of the window in screen space pixels.

• -G x1,x2,y1,y2: Prescribes the position and location of the viewing window by pre-
scribing the domain of the window in screen space pixels.

IRIT Solid modeler G. Elber 361

• -i: Draws internal edges (created by IRIT) - default is not to display them; this
option will also force their display.

• -I #IsoLines: Specifies the number of isolines per surface, per direction. A spec-
ification of zero isolines is possible only on the command line and it denotes the
obvious.

• -k SketchType Sil Shd Imp: Sets the strokes type (one of 1 (isoparametric curves), 2
(lines of curvature), 3 (silhoutees)), and the silhouette and shader powers (between
zero and one) and strokes improtance factor, in interactive line art strokes (See -W).

• -K: Captures the image underneath the display device and use that as a bacKground
image.

• -l LineWidth: Sets the linewidth, in pixels. Default is one pixel wide.

• -L NormalLen: Sets the length of the drawn normals in thousandths of a unit.

• -m: Provides some more information on the parsed data file(s).

• -M: Draw control mesh/polygon of curves and surfaces, as well.

• -n: Draws normals of vertices.

• -N: Draws normals of polygons.

• -o: Reverses the Orientation by flipping all normals (see -n, -N).

• -O PickObjType: A binary mask that controls which object can be picked: bit 0 -
not used, bit 1 - poly, bit 2 - numeric, bit 3 - point, bit 4 - vector, bit 5 - Plane, bit
6 - matrix, bit 7 - curve, bit 8 - surface, bit 9 - string, bit 10 - list object, bit 11 -
ctl pt, bit 12 - trimmed srf, bit 13 - trivariate, bit 14 - instance, bit 15 - triangular
srf, bit 16 - model, bit 17 - multivariate.

• -P: Draws curves and surfaces using a set of polygons (see -F).

• -p PointSize: Sets the width of drawn points.

• -q: Load and display the geometry as quickly as possible.

• -r: Activate solid Rendering mode. Draws object as shaded solid.

• -R: Use optimized polygonal strips instead of lists of polygons, if possible. This
feasibility depends on the support of the underlying hardware/graphics libraries.

• -s: Runs the driver in a standalone mode. Otherwise, the driver will attempt to
communicate with the IRIT server.

• -S x,y,z,w{,a,d,s} (LgtSrcPosADS): Sets the lighting by setting the light source po-
sition as well as the optional Ambient, Diffuse, and Specular intensities.

• -t: Draw freeform geometry orientations (i.e. Min of U, V, W).

• -T: Enable continuous moTion. Objects continue to move indefinitely following the
last transformation applied.

IRIT Solid modeler G. Elber 362

• -u: Forces a unit matrix. That is, input data are not transformed at all.

• -v: Draw knot lines of freeform geometry.

• -V: Draw V(Models) monolithically. If FALSE, and the V(Models) hold graphics in-
formation (like textures, colors, etc.) on individual trimmed surfaces, the V(Models)
will be decomposed into individual trimmed surfaces named ’MDL NAME TSi’,
where ’MDL NAME’ is the input V(MOdel) name and ’i’ is a running index for the
specic trimmed surface. Set upon initializations.

• -w InitWidget: Sets the widgets that are displayed initially (as an or’ed mask): 1 -
Environment widget, 2 - Animation widget, 4 - Curves widget, 8 - surfaces widget,
16 - Shading widget, 32 - Pick objects widget, 64 - Object transforms widget.

• -W WireSetup: Controls the line drawing of the freeforms where WireSetup is a
mask that controls: bit 0: Draw curves and surfaces using a set of isocurves (see -I
and -f), bit 1: Draw boundary curves of surfaces, bit 2: Draw silhouette curves of
surfaces, bit 3: Draw surfaces in sketch style line art (see -k). bit 4: Draw surfaces’
reflection lines (surface also must have a ”ReflectLns” attribute - see attributes
above).

• -x ExecAnimCmd: Command to execute as a subprocess every iteration of display
of an animation sequence. This command can, for example, save the display into
an image file, saving the animation sequence. One parameter, which is an running
index starting from one, is passed.

• -X Min,Max,Dt,R{,flags}: Executes an animation sequence between Min time to
Max time in steps of Dt. R repetitions of the animations are executed. Flags could
be any combination of: ’s’: Flag to specify the saving of the animation as individual
data files, one per frame, for high quality rendering. ’t’: Two way animation - bounce
back and forth. ’b’: Reset the animation back to its starting position. ’x’: Flag to
force the display device to exit upon completion of the animation.

• -z: Prints version number and current defaults.

• -Z ZMin ZMax: Sets the near and far Z clipping planes.

13.2 Configuration Options

The configuration file is read before the command line options are processed. Therefore,
all options in this section can be overridden by the appropriate command line option, if
any.

• TransPrefPos: Preferred location (Xmin, YMin, Xmax, Ymax) of the transformation
window.

• ViewPrefPos: Preferred location (Xmin, YMin, Xmax, Ymax) of the viewing win-
dow.

• BackGround: Background color. Same as ’-b’.

• Internal: Draws internal edges. Same as ’-i’.

IRIT Solid modeler G. Elber 363

• LightSrcPos: Sets the location of the (first) light source as a rational four coefficient
location. W of zero sets the light source at infinity.

• ExecAnimCmd: Executes a command at each step of the animation. Same as ’-x’.

• ExecAnimation: Executes an animation sequence on startup. Same as ’-X’.

• DrawVNormal: Draws normals of vertices. Same as ’-n’.

• DrawPNormal: Draws normals of polygons. Same as ’-n’.

• MoreVerbose: Provides some more information on the parsed data file(s). Same as
’-m’.

• UnitMatrix: Forces a unit matrix. That is, input data are not transformed at all.
Same as ’-u’.

• DrawStyle: Requests a shaded surface rendering, or isocurve/polyline surface ren-
dering, or point rendering.

• BFaceCull: Requests the removal of back facing polygons, for better visibility.

• DoubleBuffer: Requests drawing using a double buffer, if any.

• DebugObjects: Debugs objects. Prints to stderr all objects read from the commu-
nication port with the server IRIT. Same as ’-d’.

• DebugEchoInput: Debugs input. Prints to stderr all characters read from the com-
munication port with the server IRIT. Lowest level of communication.

• DepthCue: Sets depth cueing on. Drawings that are closer to the viewer will be
drawn in more intense color. Same as ’-c’.

• CacheGeom: Normally piecewise linear approximation of freefroms is cached. By
setting this option to FALSE, no such auxiliary data is saved, reducing the memory
overhead. Same as ’-C’.

• FourPerFlat: Forces four polygons per almost flat region in the surface to polygon
conversion. Otherwise two polygons only. Same as ’-4’.

• AntiAlias: Requests the drawing of antialiased lines.

• DrawSurfaceMesh: Draws control mesh/polygon of curves and surfaces, as well.
Same as ’-M’.

• DrawSurfacePoly: Draws freeforms as polygons. Same as ’-P’.

• DrawSurfaceWire: Draws freeforms as wireframe (isocurves). See ’-I’.

• DrawSurfaceSktc: Draws freeforms using sketching styles.

• DrawSurfaceOrient: Draws orientation geometry forr freeforms in RGB color for
UVW axes. Same as ’-t’.

• StandAlone: Runs the driver in a standalone mode. Otherwise, the driver will
attempt to communicate with the IRIT server. Same as ’-s’.

IRIT Solid modeler G. Elber 364

• PolyStrips: Renders using polygonal strips, if possible. Same as ’-R’.

• ContMotion: Renders using continuous motions. Objects continue to move indefi-
nitely, following the last transformation applied. Same as ’-T’.

• NumOfIsolines: Specifies number of isolines per surface, per direction. Same as ’-I’.

• PllnFineNess: Specifies the samples per (iso)curve or tolerance of approximation.
See ’-f ’.

• LineWidth: Sets the linewidth, in pixels. Default is one pixel wide. Same as ’-l’

• AdapIsoDir: Selects the direction of the adaptive isoline rendering.

• PolygonOpti: Controls the method used to subdivide a surface into polygons that
approximate it. See ’-F’.

• PolylineOpti: Controls the method used to subdivide a curve into polylines that
approximate it. See ’-f ’.

• ShadingModel: One of 1 (Flat), 2 (Gouraud), or 3 (Phong). Same as ’-A’.

• TransMode: Selects between object space transformations and screen space trans-
formation.

• ViewMode: Selects between perspective and orthographic views.

• NormalLength: Sets the length of the drawn normals in thousandths of a unit. Same
as ’-L’.

• ZClipMin: Sets the minimal clipping plane in Z. Same as ’-Z’.

• ZClipMax: Sets the maximal clipping plane in Z. Same as ’-Z’.

• PlgnFineNess: Controls the fineness of the surface to polygon subdivision. See ’-F’.

13.3 Interactive mode setup

Commands that affect the status of the display device can also be sent via the commu-
nication port with the IRIT server. The following commands are recognized as string
objects with object name of ”COMMAND ”:

IRIT Solid modeler G. Elber 365

ANIMATE TMin TMax Dt Animates current scene from TMin to TMax in Dt
steps.

BEEP Makes some sound.
CLEAR Clears the display area. All objects are deleted.
CLONEOBJ OBJNAME Clone the object OBJNAME.
DCLEAR Delays clear. Same as CLEAR but delayed until next

object is sent from the server. Useful for animation.
DISCONNECT Closes connection with the server, but does not quit.
EDITCRV CRVNAME Requests immediate editing mode of crv CRVNAME.
EDITOBJ OBJNAME Requests immediate editing mode of obj OBJNAME.
EDITSRF SRFNAME Requests immediate editing mode of srf SRFNAME.
EXIT Closes connection with the server and quits.
GETOBJ NAME Requests the object named NAME that is returned

in the output channel to the server.
HIGHLIGHT1 NAME Color the object named NAME with highlight1 color.
HIGHLIGHT2 NAME Color the object named NAME with highlight2 color.
IMGSAVE NAME Save the current display in an image file named NAME.
MSAVE NAME Save the current matrix in a file named NAME.
PICKCRSR Requests to interactively sample mouse/cursor events

for mouse-up, mouse-down, and mouse-move-while-down.
PICKDONE Stop interactive pick reports to server. Stops all

PICKCRSR, PICKNAME and PICKOBJ modes.
PICKNAME Requests to interactively pick an object by name that

is returned in the output channel to the server.
PICKOBJ Requests to interactively pick an object that is

returned in the output channel to the server.
REMOVE NAME Requests the removal of object named NAME from

display.
STATE COMMAND Changes the state of the display device. See below.
UNHIGHLIGHT Unhighlight all highlighted objects.

The following commands are valid for the STATE COMMAND above,

IRIT Solid modeler G. Elber 366

MouseSense: Mouse sensitivity control.
ScrnObjct: Controls screen/object transformation mode.
PerspOrtho: Controls perspective/orthographic trans. mode.
DepthCue: Controls depth cueing drawing.
CacheGeom: Cache the created piecewise linear geometry.
DrawStyle: Controls isocurve/shaded solid/points rendering.
ShadingMdl: Controls shading model for solid solid drawing.
BFaceCull: Cull backfacing polygons.
DblBuffer: Controls single/double buffer mode.
AntiAlias: Controls antialiased lines.
DrawIntrnl: Controls drawing of internal lines.
DrawVNrml: Controls drawing of normals of vertices.
DrawPNrml: Controls drawing of normals of polygons.
DrawPlgns: Controls drawing of polygonal objects as polygons.
DSrfMesh: Controls drawing of control meshes/polygons.
DSrfWire: Controls drawing of curves/surfaces as wireframes.
DSrfBndry: Controls drawing of boundary curves of surfaces.
DSrfSilh: Controls drawing of silhouette curves of surfaces.
DSrfPoly: Controls drawing of curves/surfaces as polygons.
DSrfSktch: Controls drawing of surfaces as sketches.
DKnotLines: Controls drawing of knot lines of freeforms.
4PerFlat: Controls 2/4 polygons per flat surface regions.
NumIsos: Controls the number of isocurves in a surface.
PolyAprx: Controls the surface tesselation fineness.
PllnAprx: Controls the curves to polylines fineness.
LenVecs: Controls the length of displayed normal vectors.
WidthLines: Controls the width of the drawn lines.
WidthPts: Controls the width of the cross of drawn points.
Front: Selects a front view.
Side: Selects a side view.
Top: Selects a top view.
Isometry: Selects an isometric view.
4Views: Selects a four views mode.
Clear: Clears the viewing area.
ResAdapIso: Controls the resolution of a number of adaptive isocurves.
ResRldSrf: Controls the resolution of ruled srfs in adaptive isocurves.
RuledSrfApx: Controls the ruled surface approx. in adaptive isocurves.
AdapIsoDir: Controls the row/col direction of adaptive isocurves.
LowResRatio: Controls the low/high resolution ratios.
ClipAtPoles: Controls the optional clipping of polygons/lines at poles.

Obviously not all state options are valid for all drivers. The IRIT server defines in
iritinit.irt several user-defined functions that exercise some of the above state commands,
such as VIEWSTATE and VIEWSAVE. VIEWSTATE accepts a second parameter which
can be -1 to toggle the value, 0 to reset the value or 1 to set it. If the state value is real,
1 doubles its value and 0 halfs it.

In addition to state modification via communication with the IRIT server, modes can
be interactively modified on most of the display devices using a pop-up menu that is

IRIT Solid modeler G. Elber 367

activated using the right button in the transformation window. This pop-up menu is somewhat
different in different drivers, but its entries closely follow the entries of the above state
command table.

All driver support three special matrices. The VIEW MAT can set the current viewing
direction and PRSP MAT can set the current perspective view. Finally, CONT MAT can
set the current continuous motion (see also ’-T’ option).

Animation of movies are supported to a certain extent. A movie animation is pre-
scribed using a ”pmovie” (parametric texture movie) attribute. The format of the
”pmovie” attribute is as follows

13.4 Basic Attributes

The display devices support basic graphics capabilities like color via the ”color” attribute
that selects between 15 basic different colors and the”rgb” attribute that allows full ”red,
green. blue” specification. If both ”rgb” and ”color” are found in the same object, the
”rgb” attribute will govern.

Some display devices also support transparency via the ”transp” attributes that ex-
pects a translucency value between zero and one.

Some display devices also support parameteric texture via the ”ptexture attribute”
that can look like (see also irender for a more elaborated ”ptexture” options that are not
supported by the ????drvs devices.

"ImageName {, S X Y {Z}} {, F} {, N}"

where ”S X, Y, Z,” prescribes image scaling (how many times the image will span the
object?) with the default being for the movie to span the entire object, ’F’ requests the
flipping of the X and Y axes of the image, and ’N’ optionally forces a reload the image as
a New image, even if an image by this exact same name was already loaded and is cached.

13.5 Animation Mode

All the display drivers are now able to animate objects with animation curve attributes on
them. For more on the way animation curves can be created, see the Animation Section
of this manual. (Section 12).

Once a scene with animation curve attributes is being loaded into a display device,
one can enter ”animation” mode using the ”Animation” button available in all display
devices. The user is then prompted (either graphically or in a textual based interface) for
the starting time, termination time and step size of the animation. The parameter space
of the animation curve serves as the time domain. The default starting and terminating
times are set as the minimal and maximal parametric domain values of all animation
curves. An object at time t below the minimal parametric value will be placed at the
starting value of the animation curve. Similarly, an object at time t above the maximal
parametric value will be placed at the termination value of the animation curve. The user
can also set a bouncing back and forth mode, the number of repetitions, and if desired,
request the saving of all the different scenes in the animation as separate files so a high
quality animation can be created.

A string object can be viewed as the text of selected PS font (See -N). The string
position is set via a ”StrPos” vector attribute (default to the origin), and ”StrScale” real

IRIT Solid modeler G. Elber 368

attribute to control the string height in world unit (default to 0.1). Text will always be
in a plane parallel to the XY plane.

13.6 Advanced (Programmable) Hardware Graphics Support

Programmable hardware allows us to change the standard pipeline of the GPU. This
features enables users to create dedicated GPU programs (called shaders) to implement
advanced rendering algorithms.

Under Windows, IRITS OpenGL display device is able to use programmable hardware
features. In order to use these advanced hardware rendering features, the GPU must
support the proper shader model. The display device will ignore advanced hardware
features attributes if the local GPU does not support the proper shaders requirements.

The following advanced hardware features are supported by IRIT:

13.6.1 HDDM (Hardware Deformation Displacement Mapping)

Deformation displacement mapping is a technique that allows us to tile the geometry of
a given object without the limitations of strict displacement mapping.

Requirements: Shader model 3.0 and above Shader file: ddm vshd.cg Shader Lan-
guage: CG Shaders compilation: run time. Supported geometries: All surfaces and
polygonal models with UV values

In order to use DDM texture in an object, a ”DTexture” attribute string must be
defined for the object ([.] are optional):

”TileFileName, T TilesU TilesV, [S SamplingU SamplingV], [H Shader], [Z Scale],
[OB/OA], [RU/CU/CRU], [RV/CV/CRV], [M], [NO/NT], [A AnimationSamples]”

where

• TileFileName: The DDM Tile.

• T TilesU TilesV: Number of tiles to place.

• S SamplingU SamplingV: Number of samples to take on the original object (default
S=T).

• H Shader: Shader filename (default: ddm vshd.cg).

• Z Scale: Z Scale factor on tiles Z axes (default = 1).

• OB/OA: Draw the original object before the tiles (OB) or draw the original object
after the tiles (OA). This matters when using tiles with transparency (Default: dont
draw original object).

• RU/CU/CRU, RV/CV/CRV: How the tiles should be handled when overlapping
the objects UV domain: RU, RV: Repeat end conditions. CU, CV: Clamp end
conditions. CRU, CRV: Clamp to tile size - simulates repeat with clamping (handles
the stretch side effect in the background of objects with only 1 side when using
simple repeat. (Default: RU, RV)

• M: Use multitiles (see below).

• NO/NT: Normal calculation methods offset (NO), or tangent plane mapping (NT)
(Default: NO).

IRIT Solid modeler G. Elber 369

• Animation Samples: The number of samples from a continuous animation sequence
that is defined on an object (default: 1).

Examples:

[DTexture "horn.itd, H ddm_vshd.cg, T 4 16, S 32 64, CRU, CV, Z 0.7, NT"]

[DTexture "stone-t1.itd, H ddm_vshd.cg, T 6 1, S 64 64, CU, RV, Z -0.1, M, NO"]

DDM supports usage of more than one tile per object. When using multitiles, tiles are
placed randomly on the object. To use multitiles, an ’M flag should placed in the dtexture
attribute. Furthermore, an additional ”DTextureFiles” attributes must be defined for the
object with the following string: ”Tilefile1, tilefile2, tilefile3...”. The maximum number
of supported tiles is 10.

Example:

[DTextureFiles "stone-t4.itd stone-t3.itd stone-t2.itd stone-t6.itd"]

The tile geometry also supports some attributes such as animation. The following
animations are supported:

• MORPH: Morphing between two compatible tiles (same number of vertices) accord-
ing to the curve. The morphing is between the DDM tiles (”DTexture” attribute)
and the first tile in the ”DTextureFiles” attribute (hence, using morph requires
multitiles).

• SCL Z: Z scale of the tile (in tile space) according to the animation curve (see also
animation in IRIT and the display device).

• MOV U/MOV V: Change the UV placement of the tile in the parametric space of
the base, textured, surface, according to the animation curve.

• RECT TILE, or HEX TILE or TRIG TILE or TRIG TILE REV: DDM supports
four types of tiles:

Rectangle: Creates square tiling.
Hexagon: Creates honeycomb tiling.
Triangle: Tiles the surfaces using triangles.
Reversed Triangle: Tiles the surfaces using reversed triangles.

In order to define the type of tiling, one of the above attributes should be added to
the tile object:

13.6.2 HFFD (Hardware Free Form Deformation)

FFD is a technique which deforms objects by deforming the space in which the object is
embedded.

Requirements: Shader model 3.0 and above Shader file: ddm vshd.cg Shader Lan-
guage: CG Shaders compilation: run time. Supported geometries: All surfaces and
polygonal models with UV values

IRIT Solid modeler G. Elber 370

In order to use FFD in an object, an ”FFD texture” attribute must be added to the
object with the following string:

”ObjectFile, ShaderType, DrawTV, ScaleX, ScaleY, ScaleZ, AnimationSamples, Off-
setX, OffsetY, OffsetZ, NormalCalcMethod”

where

• Objectfile: The file of the object to use with TV.

• ShaderType: 0 - Single Phase Shader (Limited shader), 1 - Double Phase Shader

• DrawTV: 0 - Dont draw the trivariate object. 1 - Draw the trivariate object.

• ScaleX, ScaleY, ScaleZ: The scale of the object in xyz.

• AnimationSamples: Number of times to sample object when object has animation,
along the animation.

• OffsetX, OffsetY, OffsetZ: The offset of the object in xyz axes.

• NormalCalcMethod: 0 - No shading (use original normal values), 1 - Normal offset
calculation, 2 - Tangent plane mapping

Examples:

[FFD_texture "porschesc.itd, 1, 0, 1.8, 0.15, 1.8, 0, 0, 0, 0, 2"]

13.7 Specific Comments

• The x11drvs supports the following X Defaults (searched at /.Xdefaults):

#ifndef COLOR

irit*MaxColors: 1

irit*Trans*BackGround: Black

irit*Trans*BorderColor: White

irit*Trans*TextColor: White

irit*Trans*SubWin*BackGround: Black

irit*Trans*SubWin*BorderColor: White

irit*Trans*CursorColor: White

irit*View*BackGround: Black

irit*View*BorderColor: White

irit*View*CursorColor: White

#else

irit*MaxColors: 15

irit*Trans*BackGround: NavyBlue

irit*Trans*BorderColor: Red

irit*Trans*TextColor: Yellow

irit*Trans*SubWin*BackGround: DarkGreen

irit*Trans*SubWin*BorderColor: Magenta

irit*Trans*CursorColor: Green

irit*View*BackGround: NavyBlue

irit*View*BorderColor: Red

IRIT Solid modeler G. Elber 371

irit*View*CursorColor: Red

#endif

irit*Trans*BorderWidth: 3

irit*Trans*Geometry: =150x500+510+0

irit*View*BorderWidth: 3

irit*View*Geometry: =500x500+0+0

• The Motif-based display drivers contain three types of gadgets which can be operated
in the following manner. Scales: can be dragged or clicked outside for single (mouse’s
middle button) or continuous (mouse’s left button) action. Pushbuttons: activated
by clicking the mouse’s left button. The control panel: allows rotation, translation
of the objects in three axes, determining of the perspective ratio, viewing an object
from top, side, front or isometrically, determining scale factor and clipping settings,
and operating the matrix stack.

The environment window toggles between screen or object transformation, depth cue
on or off, orthographic or perspective projection, wireframe or solid display, single
or double buffering, showing or hiding normals, including or excluding the surface’s
mesh and curve’s control polygon, surface drawing using isolines or polygons, and
four or two polygons per flat patch. Some display devices allow for the inclusion
or exclusion of internal edges, and enable or disable of antialiased lines. Scales in
the X11/Motif based devices set normals length, lines width, control sensitivity, the
number of islolines and samples, etc.

• The locations of windows as set via [-g] and [-G] and/or via the configuration file
overwrite in x11drvs the Geometry X11 defaults. To use the Geometry X11 default,
use ’-G ” ”’ and ’-g ” ”’ or set the string to empty size in the configuration file.

• In os2drvs, only -G is used to specify the dimensions of the parent window that
holds both the viewing and the transformation window.

• In os2drvs, the following key strokes are available as shortcuts:

Key Function
^x Quit
^s Save
^f Front View
^d Side View
^t Top View
^i Isometric VIew
^p Perspetive/Orthographic
^n View Internal Edges
^v View Vertices’ Normals
^g View Polygons’ Normals
^b Backface Culling
^c Depth Cue
^m View Control Mesh/Poly

IRIT Solid modeler G. Elber 372

13.8 Examples

xglmdrvs -z

prints all the options and their current values.

xglmdrvs -B -i -l 3 solid1.itd

displays the model of solid1.itd using backface culling (’-B’), with internal edges (’-i’),
and line width of 3.

xglmdrvs -r -A flat wiggle.itd

displays the model of wiggle.itd shaded (’-r’) using flat shading (’-A’).

xglmdrvs -I 40 -u -b 255 255 255 wiggle.itd

displays the model of wiggle.itd using isolines’ density of 40 (’-I’), using unit matrix
to begin with (’-u’), and a white background (’-b’).

xglmdrvs -X 0,2,0.1,sx -r anim.itd

executes the animation in anim.itd, from time 0 to time 2 in steps of 0.1. The animation
is saved in one frame per file (flag ’s’ in ’-X’) and the display device exists once the
animation has terminated (flag ’x’ in ’-X’)). The animation will be shaded (’-r’).

14 Utilities - General Usage

The IRIT Solid Modeler is accompanied by quite a few utilities. They can be subdivided
into two major groups. The first includes auxiliary tools such as illustrt and poly3d-h.
The second includes filters such as irit2ray and irit2ps.

All these tools operate on input files, and most of the time produce data files. In all
utilities that read files, the dash (’-’) can be used to read stdin.

Example:

poly3d-h solid1.itd | irit2ps - > solid1.ps

All the utilities have command line options. If an option is set by a ’-x’, then ’-x-’
resets the option. The command line options overwrite the settings in config files, and
the reset option is useful for cases where the option is set by default, in the configuration
file.

All utilities can read a sequence of data files. However, the last transformation matrices
found (VIEW MAT and PRSP MAT) are actually used.

Example:

poly3d-h solid1.itd | x11drvs solid1.itd - solid1.imd

x11drvs will display the original solid1.itd file with its hidden version, as computed by
poly3d-h, all with the solid1.imd, ignoring all other matrices in the data stream.

Compressed files with a postfix ”.Z” or ”.gz” will be automatically uncompressed on
read and write. The following is legal:

IRIT Solid modeler G. Elber 373

Figure 134: Some examples of the use of the hidden line removal tool, poly3d-h, to remove hidden
lines.

poly3d-h solid1.itd.Z | x11drvs solid1.itd.Z - solid1.imd

where solid1.itd.Z was saved from within IRIT using the command

save("solid1.itd.Z", solid1);

or similarly. The gnu utility ”gzip” is used for the purpose of (un)compressing the
data via pipes. See also SAVE and LOAD.

15 Poly3d-h - Hidden Line Removing Program

15.1 Introduction

poly3d-h is a program to remove hidden lines from a given polygonal model. Freeform
objects are preprocessed into polygons with controlled fineness. See Figure 134 for some
output examples which use this tool.

The program performs 4 passes over the input:
1. Preprocesses and maps all polygons in a scene, and sorts them.
2. Generates edges out of the polygonal model and sorts them (preprocessing for the

scan line algorithm) into buckets.
3. Intersects edges, and splits edges with non-homogeneous visibility (the scan line

algorithm).
4. Applies a visibility test on each edge.
This program can handle CONVEX polygons only. From IRIT one can ensure that a

model consists of convex polygons only, using the CONVEX command:

CnvxObj = convex(Obj);

just before saving it into a file. Surfaces are always decomposed into triangles.
poly3d-h output is in the form of polylines. It is a regular IRIT data file that can be

viewed using any of the display devices, for example.

IRIT Solid modeler G. Elber 374

15.2 Command Line Options

poly3d-h [-b] [-m] [-i] [-e #Edges] [-H] [-4] [-W Width]

[-F PolyOpti FineNess] [-q] [-o OutName] [-t AnimTime]

[-c] [-z] DFiles > OutFile

• -b: BackFacing - if an object is closed (such as most models created by IRIT),
backfacing polygons can be deleted, thereby speeding up the process by at least a
factor of two.

• -m: More - provides some more information on the parsed data file(s).

• -i: Internal edges (created by IRIT) - default is not to display them, and this option
will force their display, as well.

• -e n: Number of edges to use from each given polygon (default all). Handy as ’-e 1
-4’ for freeform data.

• -H: Dumps both visible lines and hidden lines as separated objects. Hidden lines
will be dumped using a different (dimmer) color and (a narrower) line width.

• -4: Forces four polygons per almost flat region in the surface to polygon conversion.
Otherwise two polygons only.

• -W Width: Selects a default width for visible lines in inches.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -q: Quiet mode. No printing aside from fatal errors. Disables -m.

• -o OutName: Name of output file. Default is stdout.

• -t AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -z: Prints version number and current defaults.

• -c: Clips data to screen (default). If disabled (’-c-’), data outside the view screen
([-1, 1] in x and y) are also processed.

Some of the options may be turned on in poly3d-h.cfg. They can then be turned off
in the command line as ’-?-’.

15.3 Configuration

The program can be configured using a configuration file named poly3d-h.cfg. This is a
plain ASCII file you can edit directly and set the parameters according to the comments
there. ’poly3d-h -z’ will display the current configuration as read from the configuration
file.

The configuration file is searched in the directory specified by the IRIT PATH en-
vironment variable. For example, ’setenv IRIT PATH /u/gershon/irit/bin/’. If the
IRIT PATH variable is not set, the current directory is searched.

IRIT Solid modeler G. Elber 375

15.4 Usage

As this program is not interactive, usage is quite simple, and the only control available
is the command line options.

The images in Figure 134 were created using the following commands:

poly3d-h -W 0.01 -H -q molecule.itd view1.itd | irit2ps - > molecule.ps

poly3d-h -W 0.02 -q solid2h.itd view2.itd | irit2ps - > solid2h.ps

poly3d-h -W 0.02 -H -q dodechdr.itd view3.itd |

irit2ps -d -0.59 0.59 - > dodechdr.ps

If a certain surface should be polygonized into a finer/coarser set of polygons than the
rest of the scene, one can set a ”resolution” attribute which specifies the relative FineNess
resolution of this specific surface. Further, ”u resolution” and ”v resolution” might be
similarly used to set relative resolution for the u or v direction only. The ”crv resolution”
attribute controls the relative fineness of curves as polylines. The ”num of isolines”
attribute controls the relative number of isoparametric curves.

See also IHidden.

16 Illustrt - Simple line illustration filter

16.1 Introduction

illustrt is a filter that processes IRIT data files and dumps out modified IRIT data files.
illustrt can be used to make simple, nice illustrations of data. The features of illustrt in-
clude depth sorting, hidden line clipping at intersection points, and vertex enhancements.
illustrt is designed to closely interact with irit2ps, although it is not neceessary to use
irit2ps on illustrt output.

See Figure 135 for some output examples which use this tool.

16.2 Command Line Options

illustrt [-I #UIso[:#VIso[:#WIso]]] [-f PolyOpti SampTol] [-s] [-M] [-P]

[-p] [-O] [-l MaxLnLen] [-a] [-t TrimInter] [-o OutName]

[-Z InterSameZ] [-m] [-T AnimTime] [-z] DFiles

• -I #UIso[:#VIso[:#WIso]]: Specifies the number of isolines per surface/trivariate,
per direction. If #VIso is not specified, #UIso is used for #VIso as well and so no.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -s: sorts the data in Z depth order that emulates hidden line removal once the data
are drawn.

• -M: Dumps the control mesh/polygon as well.

• -P: Dumps the curve/surface as isocurves.

IRIT Solid modeler G. Elber 376

Figure 135: Some examples of the use of the illustration tool, illustrt.

• -p: Dumps vertices of polygons/lines as points.

• -O: Handles polygonal objects as possibly open. This will generate two identical
edges for an edge shared by two adjacent polygons. This can be useful for open or
isolated polygons.

• -l MaxLnLen: Breaks long lines into shorter ones with maximal length of MaxLnLen.
This option is necessary to achieve good depth depending on line width in the ’-d’
option of irit2ps.

• -a: Takes into account the angle between the two (poly)lines that intersect when
computing how much to trim. See also -t.

• -t TrimInter: Each time two (poly)line segments intersect in the projection plane, the
(poly)line that is farther away from the viewer is clipped by the TrimInter amount
from both sides. See also -a.

• -o OutName: Name of output file. Default is stdout.

• -Z InterSameZ: The maximal Z depth difference of intersection curves to be be
considered invalid.

• -m: More talkative mode. Prints processing information.

• -T AnimTime: If the data contain animation curves, evaluate and process the scene
at time AnimTime.

• -z: Prints version number and current defaults.

IRIT Solid modeler G. Elber 377

16.3 Usage

illustrt is a simple line illustration tool. It processes geometry such as polylines and
surfaces and dumps geometry with attributes that will make nice line illustrations. illustrt
is geared mainly toward its use with irit2ps to create postscript illustrations. Here is a
simple example:

illustrt -s -l 0.1 solid1.itd | irit2ps -W 0.05 -d 0.2 0.6 -u - > solid.ps

makes sure all segments piped into irit2ps are shorter than 0.1 and sorts them in order
to make sure hidden surface removal is correctly applied. Irit2ps is invoked with depth
cueing activated, and a default width of 0.05.

illustrt dumps out regular IRIT data files, so output can be handled like any other
data set. illustrt does the following processing to the input data set:

• Converts surfaces to isocurves (’-I’ flag) and isocurves and curves to polylines (’-S’
flag), and converts polygons to polylines. Polygonal objects are considered closed
and even though each edge is shared by two polygons, only a single one is generated.

• Finds the intersection location in the projection plane of all segments in the input
data set and trims away the far segment at both sides of the intersection point by
an amount controlled by the ’-t’ and ’-a’ flags.

• Breaks polylines and long lines into short segments, as specified via the ’-l’ flag, so
that width depth cueing can be applied more accurately (see irit2ps’s ’-d’ flag) as
well as the Z sorting.

• Generates vertices of polygons in the input data set as points in output data con-
trolled via the ’-p’ flag. set.

• Applies a Z sort to the output data, if ’-s’, so drawing in order of the data will
produce a properly hidden surface removal drawing.

Here is a more complex example. Make sure tubular is properly set via ”attrib(solid1,
”tubular”, 0.7);” and invoke:

illustrt -s -p -l 0.1 -t 0.05 solid1.itd |

irit2ps -W 0.05 -d 0.2 0.6 -p h 0.05 -u - > solid.ps

makes sure all segments piped into irit2ps are shorter than 0.1, generates points for
the vertices, sorts the data in order to make sure hidden surface removal is correctly
applied, and trims the far edge by 0.05 at an intersection point. Irit2ps is invoked with
depth cueing activated and a default width of 0.05, points are drawn as hollowed circles
of default size 0.05, and lines are drawn tubular.

Objects in the input stream that have an integer attribute by the name of ”IllustrtNo-
Process” are passed to the output unmodified. If this attribute value is ¡= 0, the object
is sent to the output stream immediately (in the beginning of the output stream. If this
attribute value is ¿ 0, the object is sent to the output stream at the end (in the end of
the output stream. Objects in the input stream that have a real attribute by the name
of ”IllustrtShadeBG” are copied and rendered also in the background with a gray color
as set by this attribute (between zero and one). If a regular color/rgb attribute is found

IRIT Solid modeler G. Elber 378

on the object, this value will scale that as well. Objects in the input stream that have an
attribute by the name of ”SpeedWave” will have a linear segment added that emulates
fast motion with the following attributes,

"Randomness,DirX,DirY,DirZ,Len,Dist,LenRandom,DistRandom, width".

Objects in the input stream that have an attribute by the name of ”HeatWave” will
have a spiral curves added that emulate a heat wave in the +Z axis with the following
attributes,

"Randomness,Len,Dist,LenRandom,DistRandom, width".

Examples:

attrib(Axis, "IllustrtNoProcess", 1);

attrib(Srf, "IllustrtShadeBG", 0.7);

attrib(Obj, "SpeedWave", "0.0005,1,0,0,5,3,3,2,0.05");

attrib(Obj, "HeatWave", "0.015,0.1,0.03,0.06,0.03,0.002");

17 Aisoshad - Simple line illustration filter

17.1 Introduction

Aisoshad is a filter that processes IRIT data files of freeform shapes and dumps out
modified IRIT data files in the form of short univariate strokes. Aisoshad can be used to
make simple yet nice line art illustrations of geometry that is based solely on isoparametric
curves.

Aisoshad employs a simple shader to determine the density of the isoparametric strokes
as well as the thickness etc. Output of aisoshad can be piped into the irit2ps postscript
postprocessor.

See Figure 136 for output examples of using this tool.

17.2 Command Line Options

aisoshad [-o OutName] [-m] [-i] [-F PolyOpti FineNess]

[-f PolyOpti SampTol] [-r RndrMdl] [-c CosPwr] [-s SdrPwr]

[-l Lx Ly Lz] [-R Random] [-d AdapDir] [-t SrfZTrans]

[-M MinSubdiv] [-D AdapDist] [-w AdapIsoWidth] [-S WidthScale]

[-W] [-u] [-Z ZbufSize] [-b] [-z] DFiles

• -o OutName: Name of output file. Default is stdout.

• -m: More talkative mode. Prints processing information.

• -i: Solve symbolic products using interpolations. Faster but the generated output is
not as compact as possible.

• -I #IsoLines: Specifies number of isolines per surface, per direction.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. Default is 0 and 20.0
(no optimal sampling with fineness of 20.0 (real number)).

IRIT Solid modeler G. Elber 379

Figure 136: Examples of the use of the aisoshad illustration tool to line art illustrative drawing using
isoparametric curves. In (left), silhouettes are emphasized, while in (right) a light source above and to
the right is placed using a cosine shader.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -r: Selects the rendering model of the shader as follows:

1. Cosine shader, diffuse only, light source regular.

2. Cosine shader, diffuse only, light source as two lights from opposite directions.

3. Cosine shader, has specular term, light source regular.

4. Cosine shader, has specular term, light source as two lights.

5. Shader emphasizing the silhouette areas of the model.

6. Shader estimating distance decay from a point light source.

• -c CosPower: Controls the cosine shader’s power.

• -s SdrPower: Controls the shader’s relative influence.

• -l Lx Ly Lz: Sets the light source position/direction.

IRIT Solid modeler G. Elber 380

• -R Random: Controls the levels of randomness that the isoparametric curves per-
turb. Low levels of randomness would leave visible artifacts while too high levels
would disturb the shading. Should be greater than one or negative one to disable.

• -d AdapDir: Sets the isoparametric directions of the strokes. Either 0, 1, or 2 for U
direction, V direction or both U and V directions, respectively.

• -t SrfZTrans: The amount to translate the created line strokes in Z, in order to
prevent Z fighting with the rendered object itself.

• -M MinSubdiv: Sets the minimal number of subdivision to enforce during the
isoparametric strokes’ construction. This flag should be used rarely and typically
MinSubdiv should be low and close to one.

• -D AdapDist: Sets the distance between adjacent isocurves. The smaller AdapDist
is, the denser the coverage of the strokes will be.

• -w AdapIsoWidth: Sets the default width attribute of the generated strokes.

• -S WidthScale: Controls the relative variance of the width of the strokes in variable
width strokes.

• -W: If set, enables variable width strokes.

• -u: If set, maps the strokes to screen space. Otherwise, strokes are mapped back to
object space.

• -Z ZbufSize: Sets the size of the (square) Z buffer to set.

• -b: If set, generates a binary IRIT data file that holds the strokes. Otherwise, IRIT
text file will be created.

• -z: Print version number and current defaults.

17.3 Usage

Aisoshad is a simple line art illustration tool that generates strokes that follow the isopara-
metric curves. It processes freeform geometry such as surfaces and dumps geometry with
attributes that makes nice line illustrations. Aisoshad is geared mainly toward its use
with irit2ps to create postscript illustrations. Here is a simple example:

aisoshad -Z -500 -F 0 50 -s 10 -c 1 -D 0.3 -r 5 wglass.itd view.imd |

irit2ps -W 0.05 -d 0.2 0.6 -u - > wglass1.ps

that creates line art illustrations of a wine glass wglass.itd with hidden strokes removed
via a Z-buffer of size 500 that will be displayed on screen, polygonal fineness of 50 for
the surface of the glass, shader power of 10 and cosine power of 1, isoparametric curves
maximal distance of 0.3, and shader number 5 that emphasizes silhouettes. The output
of the shader is piped to a irit2ps filter to postscript that sets the width of the strokes to
be a function of depth. Figure 136 (a) shows the result of this example.

Here is another example:

IRIT Solid modeler G. Elber 381

Figure 137: Examples of the use of the izebra illustration tool toward line art illustrative drawings. On
the left, the Utah teapot is rendered, while on the right, a chess piece, a pawn, is portrayed.

aisoshad -Z 700 -R 4 -F 0 50 -l 1 1 1 -D 0.02 -r 2 wglass.itd view.imd

irit2ps -W 0.005 -d 0.2 0.6 -u - > wglass2.ps

that creates line art illustrations of a wine glass wglass.itd with hidden strokes removal
via a Z-buffer of size 700 that is allocated off-line in core memory, polygonal fineness of
50 for the surface of the glass, a light source at (1, 1, 1), isoparametric curves maximal
distance of 0.02, and a cosine shader number 2. The output of the shader is piped to a
irit2ps filter to postscript that sets the width of the strokes to be a function of depth.
Figure 136 (b) shows the result of this example.

Transparent objects, or objects with the ”transp” attribute, would generate strokes as
regular surfaces but would not participate in the hidden strokes removal. An ”AdapIsoDir”
attribute that is found on some surface object would override the global isoparametric
direction’s setup of strokes as is set via the ’d’ option.

See also the illustrt, izebra, lineshad, and irit2ps tools.

18 IZebra - Simple zebra style, parallel curve based rendering

18.1 Introduction

Izebra is a filter that processes IRIT data files into a 2D striped, zebra style illustration
that gives the user an illusionary depth cue. The output is also an IRIT data file in the
form of freeform curves. Izebra can be used to make simple yet nice art illustrations of
geometry that is based on a specific style inspired by the artist Victor Vasarely.

Izebra employs a Z buffer to determine the density and warping of the stripes. Output
of izebra can be piped into the irit2ps postscript postprocessor.

See Figure 137 for output examples which use this tool.

IRIT Solid modeler G. Elber 382

18.2 Command Line Options

IZebra [-o OutName] [-m] [-O ImgOper] [-F PolyOpti FineNess] [-u]

[-I NumIters] [-Z ZbufSize] [-B CbcBspSize] [-D DataSrf]

[-A StripeAngle] [-b] [-s Stripes] [-S ZScale] [-d ZInitDepth]

[-z] DFiles

• -o OutName: Name of output file. Default is stdout.

• -m: More talkative mode. Prints processing information.

• -O ImgOper: By default, the Z buffer is employed directly. However, once the Z
buffer is fully evaluated and before beginning the stripes processing, one can apply a
filter to the Z map of the Z buffer. The filter can be a first order Roberts derivative
if ”-O 1”, a second order Laplacian if ”-O 2”, or an inverted depth if ”-O 3”.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. Default is 0 and 20.0
(no optimal sampling with fineness of 20.0 (real number)).

• -u: Forces a unit matrix. That is, input data are not transformed at all.

• -I NumIters: Puts a bound on the number of iterations in the numerical processing
stage.

• -Z ZbufSize: ZbufSize sets the size of the (square) Z buffer to set.

• -B CbcBspSize: Sets the mesh size of the constructed uniform cubic B-spline grid,
if no data surface is specified by ’-D’.

• -D DataSrf: If specified, provides the name of the uniform cubic B-spline to load
and warp. Overrides the ’-B’ option.

• -A StripeAngle: Sets the angle of the stripes with respect to the horizontal line, in
degrees.

• -b: If set, generates a binary IRIT data file that holds the stripes. Otherwise, an
IRIT text file will be created.

• -s Stripes: If set, prescribes the number of strips to extract as iso parametric curves
of the warped B-spline surface. Otherwise, the warped B-spline surface itself is
dumped out.

• -S ZScale: A relative factor to control the effect of the depth on the warping amount.
This should be around one.

• -d ZInitDepth: By default, the Z buffer is initialized to a depth of zero which amounts
to no warping of the B-spline surface. Here is a proper way to prescribe a different
background depth (which will cause warping in the surface).

• -z: Print version number and current defaults.

IRIT Solid modeler G. Elber 383

18.3 Usage

Izebra is a simple stripes art illustration tool that generates stripes that follow a warped
B-spline surface as its isoparametric curves. It processes the given geometry, such as
surfaces, into a Z map of a Z buffer and warps a B-spline surface that is placed over it,
with a warping amount that is a function of the locally detected depth. IZebra dumps
out stripes geometry that makes nice illusionary illustrations. IZebra is geared mainly
toward its use with irit2ps to create postscript illustrations. Here is a simple example:

izebra -m -Z 500 -B 150 -I 10 -F 0 100 -A 140 -S 0.35 pawn.itd |

irit2ps -f 0 300 -u -B -0.45 -0.75 0.65 0.75 -W 0.004 -I 0:250 - > pawn.ps

creates striped illustrations of a pawn chess piece, with the aid of a Z-buffer of size 500
by 500, a uniform cubic B-spline surface with mesh size of 150 by 150, polygonal fineness
of 100 for the surface of the pawn, rotation of stripes of 140 degrees and Z scale factor of
0.35. Ten iterations will be conducted during the numerical processing of the data. The
output of izebra is piped by the irit2ps filter to postscript that extracts 250 isoparametric
curves out of the dumped warped surface and sets the width of the strokes to be 0.004.
Figure 137 (a) shows the result of this example.

Here is another example:

izebra -m -Z 500 -B 200 -I 10 -F 0 100 -A -90 -S 0.4 teapot.itd |

irit2ps -f 0 200 -u -B -0.55 -0.35 0.55 0.35 -W 0.007 -I 0:150 - > teapot.ps

creates striped illustrations of the Utah Teapot, with the aid of a Z-buffer of size 500 by
500, a uniform cubic B-spline surface with mesh size of 200 by 200, polygonal fineness of
100 for the surface of the teapot, rotation of stripes of -90 degrees and Z scale factor of
0.4. Ten iterations will be conducted during the numerical processing of the data. The
output of izebra is piped by the irit2ps filter to postscript that extracts 150 isoparametric
curves out of the dumped warped surface and sets the width of the strokes to be 0.007.

Figure 137 (b) shows the result of this example.
See also the illustrt, aisoshad, lineshad, and irit2ps tools.

19 LineShad - Simple line illustration filter

19.1 Introduction

Lineshad is a filter that processes IRIT data files of freeform shapes and dumps out
modified IRIT data files in the form of short univariate strokes. Lineshad can be used to
make simple yet nice line art illustrations of geometry that is based on arbitrarily stroked
curves on the surfaces.

Lineshad employs a simple shader to determine the density of the isoparametric strokes
as well as the thickness etc. Output of lineshad can be piped into the irit2ps postscript
postprocessor.

See Figure 138 for output examples using this tool.

19.2 Command Line Options

lineshad [-o OutName] [-m] [-F PolyOpti FineNess] [-R RelStepSize]

[-f PolyOpti SampTol] [-r RndrMdl] [-c CosPwr] [-s SdrPwr]

IRIT Solid modeler G. Elber 384

Figure 138: Examples of the use of the lineshad illustration tool to line art illustrative drawing using
isoparametric curves. On the left, silhouettes are emphasized, while on the right, a light source above
and to the right is placed using a cosine shader.

[-i Intensity] [-l Lx Ly Lz] [-v Vx Vy Vz] [-w Width]

[-d Density] [-t SrfZTrans] [-S WidthScale] [-T Texture]

[-Z ZbufSize] [-b] [-z] DFiles

• -o OutName: Name of output file. Default is stdout.

• -m: More talkative mode. Prints processing information.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. Default is 0 and 20.0
(no optimal sampling with fineness of 20.0 (real number)).

• -R RelStepSize: Relative control (default to 1.0) on the step size taken during the
numerical marching on the surfaces in the different strokes’ patterns.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -r: Selects the rendering model of the shader as follows:

IRIT Solid modeler G. Elber 385

1. Dumps only the uniform point distribution.

2. Cosine shader, diffuse only, light source regular.

3. Cosine shader, diffuse only, light source as two lights from opposite directions.

4. Cosine shader, has specular term, light source regular.

5. Cosine shader, has specular term, light source as two lights.

6. Shader emphasizing the silhouette areas of the model.

7. Shader estimating distance decay from a point light source.

• -c CosPower: Controls the cosine shader’s power.

• -s SdrPower: Controls the shader’s relative influence. -i Intensity: Controls the
global density of the constructed line art. The larger Intensity is, the denser the
drawing becomes.

• -l Lx Ly Lz: Sets the light source position/direction.

• -v Vx Vy Vz: Sets the viewing direction; typically, the Z axis.

• -w Width: Sets the width of the generated strokes.

• -d Density: Relative control (default to 1.0) of the density of the uniform point
distribution from which the strokes are developed.

• -t SrfZTrans: Amount of created line strokes in Z to translate, in order to prevent
Z from fighting with the rendered object itself.

• -S WidthScale: Controls the relative variance of the width of the strokes in variable
width strokes.

• -T Textures: Selects the pattern of the strokes. Texture can be one of:

1. ”isoparam[,0,1,2w]”: Isoparametric curves will be created in a similar way to
the aisoshad tool. Following the ”isoparam” string, one can optionally specify
the isoparametric direction as 0, 1 or 2 for U, V, or both, and a second ’w’
character for optional variable width. This option extracts exact isoparametric
curves from the given surface.

2. ”wood[,Dx,Dy,Dz]”: A strokes’ style following layers of wood will be used.
Optionally, a direction normal to the layers can be specified, with a default being
the Z axis.

3. ”vood[,Ry,Rz]”: A variation on the wood texture, this time with a layered
orientation set via two rotation angles around Y and Z.

4. ”isomarch[,0,1,2]”: Similar to ”isparam” but numerically march on the sur-
face in the isoparametric direction. Again, 0, 1, or 2 stands for U, V, or both
isoparametric directions.

5. ”silhouette[,t,n,tn]”: Extract strokes emphasizing the silhoeutte areas from
the given viewing direction. Strokes can be extracted in the direction of the
surface normal near the silhouette area if option ”,n” is given, tangent along
the surface if ”,t”, or both if ”,tn”.

IRIT Solid modeler G. Elber 386

6. ”iTexture”: Employ a raster image as a texture image on the surface with
the gradient of the image serving as the strokes direction. The name of the
image itself (must be in urt rle format) is expected in a ”iTexture” attribute on
the specific object.

7. ”curvature[,0,1,2]”: Develop strokes along lines of curvatures. Strokes are
developed along the minimal curvature if ”,0”, the maximal curvature if ”,1”,
and both if ”,2”.

8. ”CurveStroke”: An XY curve object is expected as a ”CurveStroke” attribute
on the same object and serves as a specification of motion in the parametric space
of the surface for each given point.

• -Z ZbufSize: ZbufSize sets the size of the (square) Z buffer to set.

• -b: If set, generates a binary IRIT data file that holds the strokes. Otherwise, an
IRIT text file will be created.

• -z: Print version number and current defaults.

19.3 Usage

lineshad is a simple line art illustration tool that generates strokes that follow the isopara-
metric curves. It processes freeform geometry such as surfaces, and dumps geometry with
attributes that makes nice line illustrations. lineshad is geared mainly toward its use with
irit2ps to create postscript illustrations. Here is a simple example:

lineshad -Z -500 -F 0 50 -T "isoparam" -d 0.5 -c 10 -r 2 wglass.itd view.imd |

irit2ps -W 0.002 -u - > wglass3.ps

creates line art illustrations of a wine glass wglass.itd with hidden strokes removal
via a Z-buffer of size 500 that will be displayed on screen, polygonal fineness of 50 for
the surface of the glass, shader that employs isoparametric curves, relative density of
distribution of 0.5, and cosine power of 10 of the cosine shader number 2. Figure 138 (a)
shows the result of this example.

Here is another example:

lineshad -Z -500 -F 0 50 -T "wood,1,1,1" -d 6 -c 10 -r 2 wglass.itd view.imd |

irit2ps -W 0.002 -u - > wglass4.ps

creates line art illustrations of a wine glass wglass.itd with hidden strokes removal via
a Z-buffer of size 500 that is allocated off-line in core memory, polygonal fineness of 50 for
the surface of the glass, a light source at (1, 1, 1) for the wood strokes’ style, relative point
distribution of 6, and a cosine power of 10 for the cosine shader number 2. Figure 138 (b)
shows the result of this example.

Transparent objects, or objects with the ”transp” attribute, will generate strokes
as regular surfaces but will not participate in the hidden strokes removal. A string
”itexture” attribute is expected if ”itexture” strokes’ style is used. A curve object as the
”CurveStroke” attribute is expected if ”CurveStroke” is employed. One can override the
strokes’ style as it is set via the ’-T’ command line option by setting an ”lTexture” string
attribute with the prefered strokes’ style of this object. One can modify the relative
density of some specific object by placing a real number attribute named ”PtsDensity”
on the object.

See also the illustrt, izebra, aisoshad, and irit2ps tools.

IRIT Solid modeler G. Elber 387

Figure 139: Some examples of the use of hidden curve removal tool, ihidden, to remove hidden curves.

20 ihidden - Hidden Curve Removing Program

20.1 Introduction

ihidden is a program to remove hidden curves from a given surface model. Only freeform
objects are processed in ihidden. See Figure 139 for some output examples which use
this tool.

The program performs 3 passes over the input:
1. Preprocesses and extracts the different curves in a scene, boundary curves, silhou-

ette curves, isoparametric curves and discontinuity curves.
2. Solves for all the intersections of the different curves in the parametric space, and

at that point splits the curves into curve segments.
3. Applies a visibility test to each segment of curve.
This program can handle non self interesecting surfaces only. Further, surfaces that

intersect other surfaces and are not properly trimmed into a model are likely to result in
the wrong answer as well.

The output of ihidden is in the form of curves. It is a regular IRIT data file that can
be viewed using any of the display devices, for example.

20.2 Command Line Options

ihidden [-q] [-H] [-M] [-I #UIso[:#VIso[:#WIso]]] [-d] [-s Stage] [-b]

[-o OutName] [-t Tolerance] [-Z ZBufSz] [-T AnimTime] [-z] DFiles

• -q: Quiet - provides no information on the progress if TRUE.

IRIT Solid modeler G. Elber 388

• -H: Dumps both visible lines and hidden curves as separated objects. Hidden curves
will be dumped using a narrower line width.

• -M: Force conversion of (active) curves to be monotone.

• -I #UIso[:#VIso[:#WIso]]: Specifies the number of isolines per surface/trivariate,
per direction. If #VIso is not specified, #UIso is used for #VIso as well and so on.

• -d: Add to also display C1 discontinuity curves.

• -s: Specifies the step at which to stop this process, where step 3, as described above,
will complete the entire hidden curve removal process and is the default.

• -b: If set, generates a binary IRIT data file that holds the strokes. Otherwise, an
IRIT text file will be created.

• -o OutName: Name of output file. Default is stdout.

• -t Tolerance: Tolerance of computation.

• -Z ZBufSz: Size of the Z buffer in the visibility testing process.

• -T AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -z: Prints version number and current defaults.

Some of the options may be turned on in ihidden.cfg. They can then be turned off in
the command line as ’-?-’.

20.3 Configuration

The program can be configured using a configuration file named ihidden.cfg. This is a
plain ASCII file you can edit directly and set the parameters according to the comments
there. ’ihidden -z’ will display the current configuration as read from the configuration
file.

The configuration file is searched in the directory specified by the IRIT PATH en-
vironment variable. For example, ’setenv IRIT PATH /u/gershon/irit/bin/’. If the
IRIT PATH variable is not set, the current directory is searched.

20.4 Usage

As this program is not interactive, usage is quite simple, and the only control available
is using the command line options.

The images in Figure 139 were created using the following commands:

ihidden ih_glass.itd | irit2ps -d -W 0.02 - > ih_glass.ps

ihidden -H ih_wiggl.itd | irit2ps -d -W 0.02 - > ih_wiggl.ps

If a certain surface should contain more or less isoparametric curves, a relative change
could be applied to some specific object via the ”num of isolines” attribute. If a ”transp”
attribute is found on some object, it will generate all the curves but will not affect the
visibility (i.e. be fully transparent).

See also Poly3d-h.

IRIT Solid modeler G. Elber 389

Figure 140: Some examples of the use of irender scan convertion tool to render images of IRIT scenes.
Highlights can be seen in the molecule image while the glass is rendered transparent.

21 Irender - Simple Scan Line Renderer

21.1 Introduction

irender is a program to render IRIT scenes into images. It is a software based Z buffer
that is able to create images in few formats. Several of its features includes parametric
and volumetric texture mapping, shadow computations, transparency and antialiasing.

Freeform objects are preprocessed into polygons with controlled fineness. See Fig-
ure 140 for some output examples of using this tool.

21.2 Command Line Options

irender [-v] [-s XSize YSize] [-Z Znear Zfar] [-a Ambient] [-b R G B]

[-B] [-F PolyOpti FineNess] [-f PolyOpti SampPerCrv]

[-M Flat/Gouraud/Phong/None] [-p PtRad] [-P WMin [WMax]] [-S]

[-T] [-t AnimTime] [-N ClrQuant SilWidth [SilR SilG SilB]]

[-A FilterName] [-d] [-D] [-l] [-V] [-n] [-i rle/ppm{3,6}/png]

[-o OutName] [-z] files

• -v: Verbose mode. Prints informative messages as it progresses.

• -s XSize YSize: Sets the size of the output image, in pixels. Default to 512x512.

• -Z Znear Zfar: Sets the near and far cliping planes with default of no clipping.

• -a Ambient: Sets the ambient lighting fraction. Between zero (no ambient lighting)
and one. Default to 0.2.

IRIT Solid modeler G. Elber 390

• -b R G B: Sets the background color. Each of thre R,G,B colors is an integer value
between zero and 255. Default to black.

• -B: Apply back face culling. Somewhat faster, but only correct for closed objects.
Default is no back face culling.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. Default is 0 and 20.0
(no optimal sampling with fineness of 20.0 (real number)).

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -M Flat/Gouraud/Phong/None: Selects the shader to be used. Default to Phong
if has normals of vertices, Flat if no normals are found. The None options exactly
paints the objects with the given color, applying no shader.

• -p PtRad]: Width of rendered points (as spheres).

• -P WMin [WMax]: Width of rendered polyline, in world units. If only WMin
is specified, all polylines are set to have WMin width. Otherwise, if WMax is
prescribed as well, polylines’ width is set to be proportional to their depth with
WMax is the width of closest polyline and WMin the farest polyline. Polylines and
curves will be ignored without the setting of this option.

• -S: Enable shadow computation. No shadows will be rendered without -S. The is no
shadow support for this release of irender.

• -T: Enable transparency computation. No transparent object will be processed with-
out -T.

• -t AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -N ClrQuant SilWidth [SilR SilG SilB]: Requests cartooN style NPR rendering.
Two effects could be activated using this option: the colors could be quantized into
ClrQuant levels or, alternatively a value of zero for ClrQuant denotes no quantiza-
tion. Also, open boundaries and silhouettes could be rendered if SilWidth ¿ 0.0 at
SilWidth polyline width and optional color SilR SilG SilB.

• -A FilterName: Selects an antialiasing filter. FilterName can be one of ’none’, ’box’,
’triangle’, ’quadratic’, ’cubic’, ’catrom’, ’mitchell’, ’gaussian’, ’sinc, and ’bessel’. De-
fault is ’none’.

• -d: Output will be in the form of Z depth instead of a color image. Output will be
32 bits depth instead of RGBA.

• -V: Output will be in form of visibility map: a map in model’s UV coordinates that
represents the visibility of the model from the specified rendering direction.

IRIT Solid modeler G. Elber 391

• -n: Reverses the normals of vertices and planes, globally.

• -i rle/ppm{3,6}/png/itd: Selects output image type. Currently the Utah Raster
Toolkit’s (URT) rle format is being supported as well as the PPM and PNG formats.
PPM can be either P6 or P3 style. If (geometry) ITD is selected, output type must
be Z depth (-d) and a grid of the geometry of the Z depth map is dumped as itd file.

• -o OutName: Name of output file. By default the output goes to stdout.

• -z: Prints version number and current defaults.

Some of the options may be turned on in irender.cfg. They can be then turned off in
the command line as ’-?-’.

21.3 Configuration

The program can be configured using a configuration file named irender.cfg. This is a
plain ASCII file you can edit directly and set the parameters according to the comments
there. ’irender -z’ will display the current configuration as read from the configuration
file.

The configuration file is searched in the directory specified by the IRIT PATH en-
vironment variable. For example, ’setenv IRIT PATH /u/gershon/irit/bin/’. If the
IRIT PATH variable is not set, the current directory is searched.

21.4 Usage

As this program is not interactive, usage is quite simple, and the only control available
is using the command line options.

The images in Figure 140 were created using the following commands:

irender -s 350 350 -b 255 255 255 -S -A sinc -i rle lightsrc.itd

molecule.itd view_mat.itd > molecule.rle

irender -s 700 700 -F 0 64 -M Flat -b 255 255 255 -T -A sinc -i rle

glass.itd view_mat.itd > glass.rle

21.5 Advanced Usage

One can specify several attributes that affect the way the scene is rendered. The attributes
can be generated within IRIT. See also the ATTRIB IRIT command.

Surface color is controlled on two levels. If the object has an RGB attribute, it is used.
Otherwise, a color as set via the IRIT COLOR command. If a vertex of a poly object has
an RGB attribute it will overwrite the object’s RGB color for that vertex.

If a certain surface should be finer/coarser than the rest of the scene, one can set
a ”resolution” attribute which specifies the relative FineNess resolution of this specific
surface. Further, ”u resolution” and ”v resolution” might be similarly used to set relative
resolution for the u or v direction only. The ”crv resolution” attribute controls the
relative fineness of curves as polylines. The ”num of isolines” attribute controls the
relative number of isoparametric curves. Points are rendered as small spheres with size
(radius) that is controlled by the ”width” attribute found on the object or the radius
that is specified by the ’-p’ option as default size.

IRIT Solid modeler G. Elber 392

Objects are rendered with no shading if ”NoShading” attribute is found on them.
Example:

attrib(Ball, "rgb", "255,0,0");

color(Sphere, white);

The cosine exponent of the phong shader can be set for a specific object via the
SRF COSINE attribute, with 128 as default value. An object can affect its diffuse and
specular components via the DIFFUSE and SPECULAR real attributes, with 0.4 as
default value.

Example:

attrib(Ball, "srf_cosine", 16);

attrib(Ball, "diffuse", 0.7);

attrib(Ball, "specular", 1.0);

An object can be drawn transparent instead of opaque, if it has a ”transp” attribute.
A transparent value of one denotes a completely transparent object, while a value of zero
means a completely opaque object. Transparent objects will be rendered as such if and
only if the ’-T’ command line option is set.

Example:

attrib(final, "transp", 0.5);

An object can have its silhouettes (and boundary curves) rendered if a real ”SilWidth”
attribute with width larger than zero is specified. ”SilColor” will then set the color of
the rendered outline curves. See also ’-N’ which sets this option globally.

Several types of texture mapping are supported. Parametric texture may be attached
to a parametric surface where the prescribed image is mapped onto the rectangular
parametric domain of the surface.

The parametric texture may be applied with the following options:

IRIT Solid modeler G. Elber 393

’D’ x y z Vector that will be rotated to Z along with the
texture coordinates. Applies to ’T’ 1, 2 or 3.
Default to the Z axis.

’O’ x y z a point to which that texture Origin will be translated.
Applies to ’T’ 1, 2 or 3. Default to origin.

’S’ Su Sv {Sw} Scales the coordinates in u and v. Scale
factors of 1.0 would cover the entire surface
once. Default to scale factors of 1.0. If Sw is
specified for a polygonal object, each polygonal is
locally scaled based on its maximal projection on
one of the main, XY XZ or YZ, planes.
If (Su = Sv = 0) for freeforms, the texture coords
are undergoing no scale at all (assuming image domain
of zero to one in all axes).

’A’ a Angle of rotation in degrees of texture map with
respect to main axis. Applies to ’T’ 1, 2 or 3.
Default to no rotations.

’T’ TextureType with 0 denotes regular parametric texture,
1 denotes spherical coordinates,
2 denotes spherical bijective coordinates,
3 denotes cylinderical coordinates,
4 denotes planar coordinates.

Regular parametric texture employs the inherited surface parametrization of the freeform
surface and can only be used on parametric surfaces.

Spherical, cylinderical, and planar coordinate transformations are useable for all types
of geometry from polygons to freeform surfaces and is fairly straightforward with the
origin as set by ’O’ being the center of the mapping while the direction set by ’D’ controls
the north pole of the sphere, the axis of the cylinder, and the normal of the plane. Finally,
the angle set by ’A’ rotates the texture around this ’D’ prescribed axis.

The spherical bijective mapping is more complex. An object identical to the textured
object should be found as an ”PTextureBijectObj” that contains the identical topology
of the original object. The original object must be genus zero non convex, while the
attribute object must be a genus zero convex object with the origin as set via ’O’, inside
this convex object. It is likely that both the original object and its attribute object will
be a polygonal object. Both objects must contain triangles only.

A bijective mapping is then conducted from every point on the original non convex
object to the convex attribute object and from there through spherical mapping to the
texture map.

Example:

attrib(Srf1, "ptexture", "checker.ppm, S 1 1, A 45");

attrib(Srf2, "ptexture", "checker.ppm, S 1 3, T 1, O 1 1 1, D 0 0 1");

attrib(Srf3Triangs, "ptexture", "checker.ppm, S 1 2, T 1, O 1 1 1, D 0 0 1");

attrib(Srf3Triangs, "PTextureBijectObj", Srf3ConvexTriangles);

Srf1 is a parametrically textured map using spherical mapping, Srf2 is a parametrically
textured map using cylinderical mapping and Srf3Triangs is a parametrically textured

IRIT Solid modeler G. Elber 394

map using spherical bijective mapping and Srf3ConvexTriangles is the convex topologi-
cally equivalent object.

The program will automatically detect the image type according to the file’s type.
Note that regular parametric texture may be applied to parametric surfaces only, whereas
the spherical, cylinderical and planar parametric textures may be used on all types of
geometry. Depending upon the way irender is compiled, texture images could be in ppm
format (always), or gif, png, and rle. If the image has an alpha channel (fully supported
in png and rle and binary supported in gif images via its transparent color) it is honored
if transparency (-T) is activated.

A second type of texture mapping can be applied to all geometric objects. Herein, a
procedural texture mapping is employed. The currently supported textures are

camouf Camouflage style
checker Checker style
chocolate Chocolate chips style
contour Parallel plane contouring
curvature Gaussian/Mean etc. curvature
marble Marble style
ncontour Constant normal angle to major axis
orange Bump mapping orange style
wood Wood style
punky Colorful punky style

A second parameter that must be provided for procedural textures is the scaling factor
of the texture, which can be either one parameter of uniform scaling or a vector of three
coefficients for scaling in x, y, and z. For contour style, the scale denotes the spacing
of the contouring planes in X, Y and Z. For ncontour style, the scale also denotes the
spacing of the adjacent constant normal contours. Related attributes are ”texture color”
and ”texture width” that support the color and the width of the textured strokes.

Example:

attrib(Obj1, "texture", "marble, 2");

attrib(Obj2, "texture", "wood, 1 0.5 2.5");

which sets Obj1 to have a marble procedural texture with a uniform scaling factor of
2 and a wood texture for Obj2 with scaling factors of (1, 0.5, 2.5) in x, y, and z.

In addition, the appearance of each procedural texture can be controlled by optional
parameters which are different for each texture. Each texture parameter is recognized
by a letter; to enter a parameter, add to the attribute string the paramter letter followed
by the value or values. Each parameter should be separated by a comma.

Example:

attrib(Obj1, "texture", "wood, 2, b 0.3, o 5 5 5");

sets Obj1 to have a wood procedural texture with a scaling factor of 2, a Brightness
level of 0.3, and the Origin point at (5,5,5).

The optional parameters are:
checker:

IRIT Solid modeler G. Elber 395

’z’ x y z a vector to which the Z axis will be rotated.
’o’ x y z a point to which the Origin will be translated.
’b’ x the brightness of the checker color scaling,

should be between 0 and 1.
’CP’ f To force a 2D checker plane orthogonal to the

vector that is specified via the ’z’ option.
’C1’ r g b A second optional color for the checkerboard.
’C2’ r g b A third optional color for the checkerboard,

used in the second layer of the checker volume.
’C3’ r g b A fourth optional color for the checkerboard,

used in the second layer of the checker volume.

chocolate:

’W’ w the ’width’ of chocolate piece (zero to half).
’d’ x the ’depth’ of the bumps on the bump-mapping.

contour:

’W’ w the ’width’ of contour.
’C’ r g b the color of the contour in RGB betweeo zero

and one (”C 1 1 1” fully is white).

curvature:
The curvature texture has no optional parameter, but the first scale parameter has a

special meaning. A scale of

0 Paints convex regions in red, concave in
green, and saddle-like in yellow.

>0 Paints the Gaussian curvature in convex regions
in red to magenta, in concave regions in yellow
to green, and in saddle-like in cyan to blue.

<0 Paints the Mean curvature in positive mean
curvature regions in yellow to green and in
negative Mean curvature in red to magenta.

If this first scale parameter is non zero, its absolute value is used to modify the blending
speeds between the different colors.

marble:

’z’ x y z a vector to which the Z axis will be rotated.
’o’ x y z a point to which the Origin will be translated.
’t’ f s the scale of the turbulence noise, and the

factor to multiply that noise.
’f ’ x the ’frequency’ of the marble layers.

ncontour:

IRIT Solid modeler G. Elber 396

’W’ w the ’width’ of contour.
’C’ r g b the color of the contour in RGB betweeo zero

and one (”C 1 1 1” fully is white).

orange:

’d’ x the ’depth’ of the bumps on the bump-mapping.

wood:

’z’ x y z a vector to which Z axis will be rotated.
’o’ x y z a point to which the Origin will be translated.
’b’ x the brightness of the wood color scaling,

should be between 0 and 1.
’c’ f s the scale of the noise in the wood center axis

and the factor by which to multiply that noise.
’w’ n f the number of angles to sample noise when creating

distortion in the circle shape of the wood
cylinders, and the factor by which to multiply that noise.

’f ’ x the ’frequency’ of the wood cylinders.
’r’ f s the scale of the wood-fibers noise, and the

factor by which to multiply that noise.

punky:

’b’ x the brightness/saturation of the punky color.

More Examples:

attrib(Obj1, "texture", "marble, 2, t 3.0 12.0, f 7.0");

attrib(Obj2, "texture", "contour, 1 0.5 2.5, W 0.004, C 1 1 0");

sets Obj1 to have a marble procedural texture with a uniform scaling factor of 2, and
new turbulance and frequency factors. This also sets a contouring texture for Obj2 with
scaling factors of (1, 0.5, 2.5) in x, y, and z, in yellow color and width 0.004.

In addition, a scalar surface spanning the same parameteric domain as an original
surface may be used as a texture mapping function. Herein, the scalar function texture
is evaluated at each UV parameter value and is mapped through a color scale to yield
the output color. This type of texture is useful for stress maps or analysis maps on top
of freeform surfaces. Several related attributes are supported: ”stexture scale” which
prescribes the color scale image (only its first column is employed), and ”stexture bound”
that sets the domain that will be clipped to the min max values. Funally, ”stexture func”
can hold the functions ”sqrt” or ”abs” to be applied to the evaluated surface value.

Example:

attrib(Srf, "stexture", scrvtr(Srf, P1, off));

attrib(Srf, "stexture_scale", "color_scale.ppm");

attrib(Srf, "stexture_func", "sqrt");

attrib(Srf, "stexture_bound", "0.0 100.0");

IRIT Solid modeler G. Elber 397

where scrvtr computes a scalar field to Srf that represents the sum of the squares of
the principle curvatures. The evaluated scalar texture surface’s value is piped through a
sqrt function. The first column of the image of color scale.ppm is used to set the coloring
scale for curvature bounds values between 0.0 and 100.0.

Both ”stexture scale” and ”stexture bound” are optional. The default color scale
maps the min/max values from blue to red through green. The default scalar surface
texture bound is computed as the extreme values of the ”stexture” surface.

While the program has a default for lighting which is two light sources at opposite
directions at (1, 1, 1) and (-1, -1, -1), one can overwrite this default. A POINT TYPE
object with LIGHT SOURCE attribute denotes a light source. If irender detects one or
more light sources in the input stream, the default light sources are not created. Two
types of light sources may be prescribed, a parallel at infinity or a point at a finite distance
light source, distinguished by a TYPE attribute of either POINT POS or POINT INFTY.
A point light source can be colored; an RGB attribute will set its (diffuse) color. Specular
color defaults to white but can be set via the ”SpecRGB” attribute. Ambient color
defaults to black but can be set via the ”AmbtRGB” attribute. A point light source
will cast shadows, if and only if, it has a SHADOW attribute (one needs to apply the
’-S’ command line option as well for rendering shadows). Finally, one can construct two
mirrored light sources at opposite directions if the TWOLIGHT attribute is added to the
light source object.

Example:

Light1 = point(0, 0, 10);

attrib(Light1, "light_source", on);

attrib(Light1, "shadow", on);

attrib(Light1, "rgb", "255,0,0");

attrib(Light1, "type", "point_pos");

Light2 = point(1, 1, 1);

attrib(Light2, "light_source", on);

attrib(Light2, "twolight", on);

attrib(Light2, "type", "point_infty");

constructs two lights sources with Light1 with red color positioned at (0, 0, 10) and
casting shadows, while Light2 will create two mirrored white parallel lights sources in the
direction of (1, 1, 1) and (-1, -1, -1), as its irender’s default.

Visibility Maps
if the -V option is selected, the output will be a visibility map. Visibility maps are

created in the model’s UV (texture) space and are composed of 4 colors:

• White: if pixel isn’t mapped. I.e. the model UV’s map does not cover this pixel

• Green: if the pixel is a (UV location of a Euclidean) visible location.

• Red: if pixel is (UV location of a Euclidean) invisible location.

• Yellow: if large errors are detected while calculating pixel’s visibility. This indeter-
ministic result is due to almost vertical polygns, typically.

IRIT Solid modeler G. Elber 398

Tips for geting higher quality visibility map: 1. Use the -s option for larger output
resolution. 2. Use the -F option for finer polygonal sampling of surfaces.

Controlling the output can also be done by object attributes, as follow:
Use the ’tan angle’ property to change the yellow area of output. A rendered triangle

will be colored in yellow if it’s surface is close to being vertical, or tangent to the view, z,
axis. Change the ’tan angle’ property to get maximal value of normalized scalar product
of triangle normal and z axis. Below that value the triangle will be colored yellow. Default
value: 0.1. Example:

attrib(Obj1, "tan_angle", 0.1);

Use ’critic ar’ to change the unmapped area of output. Poor aspect ratio of triangles
leads to major errors. Aspect ratio is defined as the ratio of largest edge by the smallest
edge of triangle. Any triangle with aspect ratio larger than ’critic ar’ will not be mapped.
Default value: 20.

attrib(Obj2, "critic_ar", 20);

22 3DS2Irit - AutoCad 3DS Data To IRIT file filter

Converts ’.3ds’ data files to ’.itd’ IRIT data files.

22.1 Command Line Options

3ds2Irit [-m] [-c ClrScale] [-o OutName] [-b] [-z] 3DSFile

• -m: More information flag.

• -c ClrScale: Scaling the color values (intensity control).

• -o OutName: Name of output file. By default the output goes to stdout.

• -b: If set, generates a binary IRIT data file that holds the strokes. Otherwise, an
IRIT text file will be created.

• -z: Print version number and current defaults.

22.2 Usage

3ds2irit converts Autocad’s 3DS data files into IRIT data files. The current version pro-
vides only partial support, mainly due to lack of documentation examples on the dxf
format and the convoluted way freeform surfaces are saved.

Example:

3ds2irit file.3ds > file.itd

IRIT Solid modeler G. Elber 399

23 Dat2Bin - Data To Binary Data file filter

23.1 Command Line Options

dat2bin [-t] [-z] {[-c QuantVal]} DFiles

• -t: Dumps data to stdout as text instead of binary. -z: Print version number and
current defaults. -c: Optional option that is available only if compressed binary files
are supported. Dumps data to stdout as compressed binary file with a quanitization
level of QuantVal.

23.2 Usage

The user may sometimes wish to convert .itd data files into a binary form, for example,
for fast loading of files with large geometry. Binary files can be somewhat larger and are
unreadable in editors but are much faster to load. A binary file must have a ’.ibd’ file
type.

Example:

dat2bin b58polys.itd > b58polys.ibd

dat2bin -t b58polys.ibd | more

The above converts a text file b58polys.itd into a binary file b58polys.ibd and shows
the content of the binary file by converting it back to text. At this time data through
pipes must be in text. That is, the following is illegal:

dat2bin b58polys.itd | xglmdrvs -

It should be remembered that the binary format is not documented and it might
change in the future. Moreover, it is machine dependent and can very well may be
unreadable between different platforms.

24 Dat2Irit - Data To IRIT file filter

Converts ’.itd’ and ’.ibd’ data files to ’.irt’ IRIT scripts. Optionally, if compressed binary
files are supported, also handle ’.icd’ compressed data files.

24.1 Command Line Options

dat2irit [-z] DFiles

• -z: Print version number and current defaults.

24.2 Usage

Users may sometimes wish to convert .itd data files into a form that can be fed back to
IRIT - a ’.irt’ file. This filter does exactly that.

Example:

dat2irit b58.itd > b58-new.irt

IRIT Solid modeler G. Elber 400

25 Dxf2Irit - DXF (Autocad) To IRIT filter

Converts Autocad’s, DXF data files into IRIT data files.

25.1 Command Line Options

dxf2irit [-m] [-f] [-o OutName] [-z] DXFFile

• -m: Provides some more information on the data file(s) parsed.

• -f: Coerces floating end conditions to constructed freeform surfaces. Default is open
end conditions.

• -o OutName: Name of output file. By default the output goes to stdout.

• -z: Prints version number and current defaults.

25.2 Usage

dxf2irit converts Autocad’s DXF data files into IRIT data files. The current version
provides only partial support for the conversion of freeform surfaces, mainly due to lack
of documentation examples on the dxf format and the convoluted way freeform surfaces
are saved.

Example:

dxf2irit file.dxf > file.itd

26 IGS2Irit - IGES Data To IRIT file filter

Converts ’.igs’ data files to ’.itd’ IRIT data files.

26.1 Command Line Options

IGS2Irit [-m] [-M] [-A] [-c] [-a] [-s] [-o OutName] [-b] [-z] IGSFile

• -m: More information flag.

• -M: Even more information flag - dumps all parsed entities.

• -A: Allows the appproximated conversion of trimming curves with numerous control
points.

• -c: Clips trimmed surfaces to the minimal domain as prescribed by the trimming
curves.

• -a: Dumps all. Without this flag setting, only top level objects, that are referenced
by no other object, will be dumped out.

• -s: Dumps surfaces only. When set only (trimmed) surfaces are dumped.

• -o OutName: Name of output file. By default the output goes to stdout.

IRIT Solid modeler G. Elber 401

• -b: If set, generates a binary IRIT data file that holds the data. Otherwise, an IRIT
text file will be created.

• -z: Print version number and current defaults.

26.2 Usage

igs2irit converts IGES data files into IRIT data files.
Example:

igs2irit file.igs > file.itd

27 Irit23js - Irit to ThreeJS filter

27.1 Command Line Options

irit23JS [-l] [-4] [-p] [-F PolyOpti FineNess] -i InName -o OutName

[-T] [-t AnimTime] [-z]

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -p: for perspective camera, or orthographic camera otherwise.

• -F PolygonOpti FineNess: Optimality of polygonal approximation of surfaces. See
the variable POLY APPROX OPT for the meaning of FineNess. See also -4. Default
FineNess is 20.

• -o OutName: Specify the file path to the output file.

• -i InName: Specify the file path to the input file.

• -T: Talkative mode. Prints processing information.

• -t AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -z: Prints version number and current defaults.

27.2 Usage

Irit23js extracts the relevant data from Irit object files and converts the object’s polygon
data to a format that can be loaded into THREE.js via JSON file (see http://json.org/).
The result is an HTML file that can be used to view the Irit model in various web browsers
(Internet Explorer, Google Chrome, Firefox, Safari, etc), with help from THREE.js, and
using WebGL rendering.

IRIT Solid modeler G. Elber 402

Four files are created in all: three with a ’.js’ (JavaScript) extension and one with an
’.html’ extension. Two of the JavaScript files are required in order for the viewer to func-
tion properly. The first is ’irit23js.js’, which is a version of the THREE.js library, and the
second is ’iritOC.js’, which is a THREE.js (Orbit Controls) library that allows the user to
pan, orbit, and zoom within the viewer. These two files can be obtained by downloading
the package from the ’download’ link on the three.js website (see http://threejs.org/). The
last JavaScript file is the actual geometry output file that is written in JSON (JavaScript
Object Notation) format, and contains the polygon data for each object. Polygon data
exists in this JSON file as vertices, materials, textures, normals, colors, UVs, and faces
(refer to https://github.com/mrdoob/three.js/wiki/JSON-Model-format-3 for an expla-
nation of this formatting). The HTML file allows the user to directly view the model in
the browser, as well as manipulate it with the mouse and arrow keys if so desired.

In order to view the model in a web browser, the files must be uploaded to a website,
and all four of them should be placed in the same web directory. This is the intended
use, but if a user would like to view the model from his/her file system, the HTML
file must be opened with Firefox or run locally through any web browser (IE, Firefox,
Chrome, Safari, etc). This restriction is a consequence of the same-origin policy. A user
attempting this second option should take a look at the methods listed on this page:
https://github.com/mrdoob/three.js/wiki/How-to-run-things-locally.

If a model contained a texture in Irit, its image name within irit23js has been modified
to end with a ’.jpg’ extension, if it wasn’t already an image of that type. If the user wishes
to see a texture displayed on the model, the texture image must be placed in the same
directory as the above four output files, and its name must match the one specified in the
JavaScript file written in JSON (look for the ’materials’ property and the ’mapDiffuse’
attribute).

Example:
irit23js -l -F 0 5 -i C:/irit/data/b58.itd -o C:/irit/b58.js
creates b58.js, b58Viewer.html, irit3js.js, and iritOC.js. The model is created with

low resolution (FineNess of 5). At such low resolution, it may very well happen that
triangles will have normals ”over the edge” since a single polygon may approximate a
highly curved surface. This problem will not arise if high fineness is used:

irit23js -l -F 0 30 -i C:/irit/data/b58.itd -o C:/irit/b58.js
creates ir b58.js, ir b58Viewer.html, irit3js.js, and iritOC.js. The model is created

with high resolution (FineNess of 30), so it will have smooth curves and surfaces.

27.3 Advanced Usage

One can specify surface qualities for individual surfaces of a model. Several such at-
tributes are supported by irit23js and can be set within IRIT. See also the ATTRIB IRIT
command.

Example:

attrib(srf1, "resolution", 2);

will force srf1 to have twice the default resolution, as set via the ’-F’ flag.
Almost flat patches are converted to polygons. The rectangle can be converted into

two polygons (by subdividing along one of its diagonals) or into four by introducing a
new point at the patch center. This behavior is controlled by the ’-4’ flag, but can be
overwritten for individual surfaces by setting ”twoperflat” or ”fourperflat”.

IRIT Solid modeler G. Elber 403

irit23js specific properties are controlled via the following attributes: ”transp” and
”ptexture”. The value of these attributes must be strings as it is copied verbatim.

Example:

attrib(legs, "transp", "0.3");

attrib(legs, "ptexture", "wood.jpg,2");

attrib(table, "ptexture", "marble.jpg");

An optional scale can be prescribed to textures. In the above example wooden legs’
(that are also transparent...) texture is selected with a texture scaling factor of 2.

Surface color is controlled on two levels. If the object has an RGB attribute, it is used.
Otherwise a color as set via the IRIT COLOR command is used, if set.

Example:

attrib(tankBody, "rgb", "244,164,96");

28 Irit23mf - Irit to 3MF (3D Manufacturing Format) filter

28.1 Command Line Options

irit23mf [-l] [-4] [-F FineNess] [-w] [-i InName]

[-o OutName] [-z] [-d Designer]

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -F FineNess: Optimality of polygonal approximation of surfaces. See the variable
POLY APPROX OPT for the meaning of FineNess. See also -4. Default is 0.01.

• -w: Print warnings.

• -i InName: The Irit ’.itd’ file to convert.

• -o OutName: Optional, The name of the output 3MF file. If not provided, the input
file name will be used.

• -z: Prints version number and current defaults.

• -d: Designer: Optional, File designer name. Adds the name to the 3MF output file
metadata. If not provided, no designer metadata will be added.

IRIT Solid modeler G. Elber 404

28.2 Usage

Irit23mf converts freeform surfaces and polygons into the 3MF (3D Manufacturing For-
mat) file format. The 3MF model data should be a closed solid but no such validity check
is conducted by Irit23mf. However, 3MF file viewers will generate informative errors in
any faulty case.

Example:
Irit23mf -w -i mdl sd2a.itd -F 0.01 -d ”John Doe”

29 Irit2Dxf - Irit to DXF (Autocad) filter

Converts IRIT data files into Autocad’s, DXF data files.

29.1 Command Line Options

irit2dxf [-s Scale] [-t Tx Ty Tz] [-i] [-f] [-F PolyOpti FineNess]

[-4] [-o OutName] [-T] [-a AnimTime] [-z] DFiles

• -s Scale: Global scaling factor of the converted geometry.

• -t Tx Ty Tz: a Vector of size three of translation factors along the X, Y, and Z axes.

• -i: Shows internal edges as well.

• -f: Dumps freeforms as converted polygonal geometry.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -4: Forces four polygons per almost flat region in the surface to polygon conversion.
Otherwise two polygons only.

• -o OutName: Name of output file. By default the output goes to stdout.

• -T: Talkative mode. Prints processing information.

• -a AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -z: Prints version number and current defaults.

29.2 Usage

irit2dxf converts IRIT data files into Autocad’s DXF data files. The current version
provides only partial support for the direct conversion of freeform surfaces, mainly due
to lack of documentation examples on the dxf format and the convoluted way freeform
surfaces are saved. Nonetheless, freeform surfaces can be converted into polygons using
the ’-f ’ flag.

Example:

irit2dxf -z -t 1 2 3 -F 0 20 -4 -o file.dxf file.itd

IRIT Solid modeler G. Elber 405

30 Irit2Hgl - Irit to HPGL filter

Converts IRIT geometry into the HL Graphics Language used by HP’s plotters.

30.1 Command Line Options

irit2hgl [-t XTrans YTrans] [-I #UIso[:#VIso[:#WIso]]]

[-f PolyOpti SampTol] [-F PolyOpti FineNess] [-M] [-G] [-T]

[-a AnimTime] [-i] [-o OutName] [-z] DFiles

• -t XTrans YTrans: X and Y translation. of the image. Default is (0, 0).

• -I #UIso[:#VIso[:#WIso]]: Specifies the number of isolines per surface/trivariate,
per direction. If #VIso is not specified, #UIso is used for #VIso as well and so no.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -F PolygonOpti FineNess: Optimality of polygonal approximation of surfaces. See
the variable POLY APPROX OPT for the meaning of FineNess. See also -4. This
enforces the dump of freefrom geometry as polygons.

• -M: Dumps the control mesh/polygon as well.

• -G: Dumps the freeform geometry.

• -T: Talkative mode. Prints processing information.

• -a AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -i: Internal edges (created by IRIT) - default is not to display them, and this option
will force their display.

• -o OutName: Name of output file. By default the name of the first data file from
DFiles list is used. See below on the output files.

• -z: Prints version number and current defaults.

30.2 Usage

Irit2Hgl converts freeform surfaces and polygons into polylines in a format that can be
used by HPGL.

Example:

irit2Hgl -M -f 0 16 saddle.itd > saddle.hgl

However, one can overwrite the viewing matrix by appending a new matrix in the end
of the command line, created by the display devices:

IRIT Solid modeler G. Elber 406

x11drvs b58.itd

irit2Hgl -M -f 0 16 b58.itd irit.imd > saddle.hgl

where irit.imd is the viewing matrix created by x11drvs.

31 Irit2IGS - Irit to IGES filter

Converts IRIT data files into IGES/IGS data files.

31.1 Command Line Options

Irit2igs [-m] [-o OutName] [-t AnimTime] [-E] [-u] [-z] IritFile

• -m: More information flag.

• -o OutName: Name of output file. By default the output goes to stdout.

• -t AnimTime: If has animation data, time of dump.

• -E: Requests the conversion of Euclidean trimming curves as well.

• -u: Forces a unit transformation matrix.

• -z: Prints version number and current defaults.

31.2 Usage

Irit2IGS converts IRIT data files into IGES data files.
Example:

Irit2IGS -u -o file.igs file.itd

32 Irit2inp - IRIT to INP finite element data filter

INP is the finite element file format used, for example, in Abaqus. This program converts
trivariates found in the data into a finite element representation.

32.1 Command Line Options

irit2inp [-s UVWSamples] [-b] [-f FloatFormat] [-e MergeEpsilon]

[-d HierarchySaveDepth] [-o OutName] [-m] [-z] DFiles

• -s UVWSamples: Sets the sampling rates to samples trivariates at, in U, V, W.

• -b: Convert first the (B-spline) trivariates into Bezier form.

• -f FloatFormat: Sets the text format to use the save a real number.

• -e MergeEpsilon: Sets the tolerane to use to merge similar points into one.

IRIT Solid modeler G. Elber 407

• -o OutName: Sets the name of the out finite elment file to save. Otherwise, output
will go to stdout.

• -m: Talkative mode. Prints processing information.

• -z: Prints version number and current defaults.

32.2 Usage

Irit2inp converts freeform trivariates into finite element compatible entitles, typically
cuboid (hexa) elements.

Example:

irit2inp -s 2 5 2 -e 1e-4 micro36strct.itd > micro36strct.inp

33 Irit2Iv - IRIT to SGI’s Inventor filter

IV is the format used by the Inventor modeling/rendering package from SGI.

33.1 Command Line Options

irit2iv [-l] [-4] [-P] [-F PolyOpti FineNess] [-f PolyOpti SampTol]

[-T] [-t AnimTime] [-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -P: Polygonize freeform shapes. Default is to leave freeform curves and surfaces as
is.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -T: Talkative mode. Prints processing information.

• -t AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -z: Prints version number and current defaults.

IRIT Solid modeler G. Elber 408

33.2 Usage

Irit2Iv converts freeform surfaces and polygons into polygons and saved in iv Inventor’s
ASCII file format.

Example:

irit2iv solid1.itd > solid1.iv

Surfaces are converted to polygons with fineness control:

irit2iv -F 0 16 - view.imd < saddle.itd > saddle.iv

Note the use of ’-’ for stdin.

34 Irit2msh - IRIT to MSH finite element data filter

MSH is the finite element file format used, for example, in Abaqus. This program converts
trivariates found in the data into a finite element representation.

34.1 Command Line Options

irit2msh [-s UVWSamples] [-b] [-f FloatFormat] [-e MergeEpsilon]

[-d HierarchySaveDepth] [-o OutName] [-m] [-z] DFiles

• -s UVWSamples: Sets the sampling rates to samples trivariates at, in U, V, W.

• -b: Convert first the (B-spline) trivariates into Bezier form.

• -f FloatFormat: Sets the text format to use the save a real number.

• -e MergeEpsilon: Sets the tolerane to use to merge similar points into one.

• -o OutName: Sets the name of the out finite elment file to save. Otherwise, output
will go to stdout.

• -m: Talkative mode. Prints processing information.

• -z: Prints version number and current defaults.

34.2 Usage

Irit2msh converts freeforms into finite element compatible entitles, typically cuboid (hexa)
elements for trivariates but not only.

Example:

irit2msh -s 2 5 2 -e 1e-4 micro36strct.itd > micro36strct.msh

IRIT Solid modeler G. Elber 409

35 Irit2Nff - IRIT to NFF filter

35.1 Command Line Options

irit2nff [-l] [-4] [-c] [-F PolyOpti FineNess] [-o OutName] [-T]

[-t AnimTime] [-g] [-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -c: Output files should be filtered by cpp. When set, the usually huge geometry
file is separated from the main nff file that contains the surface properties and view
parameters. By default all data, including the geometry, are saved into a single file
with type extension ’.nff’. Use of ’-c’ will pull out all the geometry into a file with
the same name but a ’.geom’ extension, which will be included using the ’#include’
command. The ’.nff’ file should, in that case, be preprocessed using cpp before being
piped into the nff renderer.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -o OutName: Name of output file. By default the name of the first data file from
the DFiles list is used. See below on the output files.

• -T: Talkative mode. Prints processing information.

• -t AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -g: Generates the geometry file only. See below.

• -z: Prints version number and current defaults.

35.2 Usage

Irit2Nff converts freeform surfaces into polygons in a format that can be used by an
NFF renderer. Usually, one file is created with the ’.nff’ type extension. Since the
number of polygons can be extremely large, a ’-c’ option is provided, which separates the
geometry from the surface properties and view specification, but requires preprocessing
by cpp. The geometry is isolated in a file with the extension ’.geom’ and included (via
’#include’) in the main ’.nff’ file. The latter holds the surface properties for all the
geometry as well as the viewing specification. This allows for the changing of the shading
or viewing properties while editing small (’.nff’) files.

If ’-g’ is specified, only the ’.geom’ file is created, preserving the current ’.nff’ file. The
’-g’ flag can be specified only with ’-c’.

IRIT Solid modeler G. Elber 410

In practice, it may be useful to create a low resolution approximation of the model,
change viewing/shading parameters in the ’.nff’ file until a good view and/or surface
quality is found, and then run Irit2Nff once more to create a high resolution approximation
of the geometry using ’-g’.

Example:

irit2nff -c -l -F 0 8 b58.itd

creates b58.nff and b58.geom with low resolution (FineNess of 5).
Once done with parameter setting, a fine approximation of the model can be created

with:

irit2nff -c -l -g -F 0 64 b58.itd

which will only recreate b58.geom (because of the -g option).
One can overwrite the viewing matrix by appending a new matrix in the end of the

command line, created by a display device:

xgldrvs b58.itd

irit2nff -l -F 0 32 b58.itd irit.imd

where irit.imd is the viewing matrix created by xgldrvs.

35.3 Advanced Usage

One can specify surface qualities for individual surfaces of a model. Several such attributes
are supported by Irit2Nff and can be set within IRIT. See also the ATTRIB IRIT command.

If a certain surface should be finer/coarser than the rest of the scene, one can set
a ”resolution” attribute which specifies the relative FineNess resolution of this specific
surface. Further, ”u resolution” and ”v resolution” might be similarly used to set relative
resolution for the u or v direction only. The ”crv resolution” attribute controls the
relative fineness of curves as polylines. The ”num of isolines” attribute controls the
relative number of isoparametric curves.

Example:

attrib(srf1, "resolution", 2);

will force srf1 to have twice the default resolution, as set via the ’-f ’ flag.
Almost flat patches are converted to polygons. The rectangle can be converted into

two polygons (by subdividing along one of its diagonals) or into four by introducing a new
point at the center of the patch. This behavior is controlled by the ’-4’ flag, but can be
overwritten for individual surfaces by setting a ”twoperflat” or a ”fourperflat” attribute.

NFF specific properties are controlled via the following attributes: ”kd”, ”ks”, ”shine”,
”trans”, ”index”. Refer to the NFF manual for detail.

Example:

attrib(srf1, "kd", 0.3);

attrib(srf1, "shine", 30);

Surface color is controlled on two levels. If the object has an RGB attribute, it is used.
Otherwise, a color, as set via the IRIT COLOR command, is used if set.

Example:

attrib(tankBody, "rgb", "244,164,96");

IRIT Solid modeler G. Elber 411

36 Irit2obj - Irit to Wavefront OBJ filter

Converts IRIT data files into Obj data files.

36.1 Command Line Options

irit2obj [-l] [-4] [-F PolyOpti FineNess] [-u] [-w] [-i InName]

[-o OutName] [-q] [-c CnvxOrTriang] [-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

•

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -u: Forces a unit matrix transformation, i.e. no transformation.

• -w: If set, allows for more warning messages.

• -i InName: Name of intput file. By default the input comes from stdin.

• -o OutName: Name of output file. By default the output goes to stdout.

• -q: Search for unique vertices, based on Euclidean locations and merge into one.
Beware it will merge also vertices that have different normals (at the same location).

• -c CnvxOrTriang: Polygonal geometry will be converted to convex polygons only, if
CnvxOrTriang = 1, and to triangles only if CnvxOrTriang = 2.

• -z: Prints version number and current defaults.

36.2 Usage

Irit2obj converts IRIT data files into Obj data files.
Example:

Irit2obj -m -o file.off file.itd

37 Irit2Off - Irit to OFF filter

Converts IRIT data files into OFF data files.

IRIT Solid modeler G. Elber 412

37.1 Command Line Options

Irit2Off [-l] [-4] [-n] [-F PolyOpti FineNess] [-E VrtxEps] [-o OutName]

[-m] [-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -n: Vertex Normals - Dumps the normals of the vertices with the coordinates.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -E VrtxEps: Epsilon to consider two vertices same.

• -o OutName: Name of output file. By default the output goes to stdout.

• -m: More information flag.

• -z: Prints version number and current defaults.

37.2 Usage

Irit2Off converts IRIT data files into Geom View OFF data files.
Example:

Irit2Off -m -o file.off file.itd

38 Irit2Plg - Irit to PLG (REND386) filter

PLG is the format used by the rend386 real time renderer for the IBM PC.

38.1 Command Line Options

irit2plg [-l] [-4] [-F PolyOpti FineNess] [-T] [-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

IRIT Solid modeler G. Elber 413

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -T: Talkative mode. Prints processing information.

• -z: Prints version number and current defaults.

38.2 Usage

Irit2Plg converts freeform surfaces and polygons into polygons in a format that can be
used by the REND386 renderer.

Example:

irit2plg solid1.itd > solid1.plg

Surfaces are converted to polygons with fineness control:

irit2plg -F 0 16 - view.imd < saddle.itd > saddle.plg

Note the use of ’-’ for stdin.

39 Irit2pov - Irit to POVRAY raytracer filter

39.1 Command Line Options

irit2pov [-l] [-4] [-C] [-F PolyOpti FineNess] [-f PolyOpti SampTol]

[-o OutName] [-g] [-p Zmin Zmax] [-P] [-M] [-T] [-t AnimTime]

[-I #UIso[:#VIso[:#WIso]]] [-s ObjSeq#] [-i Includes] [-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -C: Constructs bicubic Bezier patches whenever possible as POVRAY supports this
type of surface. Polynomial Bezier surfaces of orders up to and including bicubic
(order 4, degree 3) are degree raised to bicubic. Piecewise polynomials B-spline
surfaces are split into Bezier patches. Higher order surfaces and rational surfaces
are always converted into polygons.

• -F PolygonOpti FineNess: Optimality of polygonal approximation of surfaces. See
the variable POLY APPROX OPT for the meaning of FineNess. See also -4, -C,
and -l.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

IRIT Solid modeler G. Elber 414

• -o OutName: Name of output file. By default the name of the first data file from
the DFiles list is used. See below on the output files.

• -g: Generates the geometry file only. See below.

• -p Zmin Zmax: Sets the ratios between the depth cue and the width of the dumped
polylines. See also -P. Closer lines will be drawn wider.

• -P: Forces dumping polygons as polylines with thickness controlled by -p.

• -M: If -P (see -P and -p), then convert the control mesh/polygon to polylines which
are represented as a sequence of truncated cones.

• -T: Talkative mode. Prints processing information.

• -t AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -I #UIso[:#VIso[:#WIso]]: Specifies the number of isolines per surface/trivariate,
per direction. If #VIso or #WIso is not specified, #UIso is used for #VIso etc.

• -s ObjSeq#: Sets object sequence number if there is no object name. Default 1.

• -i Includes: Expands the comma’s separated list of POVRAY include file names into
POVRAY include commands at the beginning of the created POVRAY output file.

• -z: Prints version number and current defaults.

39.2 Usage

Irit2pov converts freeform surfaces into polygons in a format that can be used by the
POVRAY ray tracing program. Two files are created, one with a ’.geom’ extension and
one with a ’.pov’ extension. Since the number of polygons can be extremely large, the
geometry is isolated in the ’.geom’ file and is included (via ’#include’) in the main ’.pov’
file. The latter holds the surface properties for all the geometry as well as viewing and
POVRAY specific commands. This allows for the changing of the shading or the viewing
properties while editing small (’.pov’) files.

If ’-g’ is specified, only the ’.geom’ file is created, preserving the current, possibly
manually modified, ’.pov’ file.

In practice, it may be useful to create a low resolution approximation of the model,
change the viewing/shading parameters in the ’.pov’ file until a good view and/or surface
quality is found, and then run Irit2pov once more to create a high resolution approxima-
tion of the geometry using ’-g’.

Example:

irit2pov -l -F 0 5 b58.itd

creates b58.pov and b58.geom with low resolution (FineNess of 5). At such low res-
olution it may very well happen that triangles will have normals ”over the edge” since
a single polygon may approximate a highly curved surface. One can ray trace this scene
using a command similar to:

IRIT Solid modeler G. Elber 415

POVRAY -Q0 +Ib58

Once done with a parameter setting for POVRAY, a fine approximation of the model
can be created with:

irit2pov -l -g -F 0 64 b58.itd

which will only recreate b58.geom (because of the -g option).
Interesting effects can be created using the depth cue support and polyline conversion

of irit2pov. For example,

irit2pov -P -p -0.0 0.5 solid1.itd

will dump solid1 as a set of polylines (represented as truncated cones in POVRAY)
with varying thickness according to the z depth. Another example is

irit2pov -P -p -0.1 1.0 saddle.itd

which dumps the isolines extracted from the saddle surface with varying thickness.
Each time a data file is saved in IRIT, it can be saved with the viewing matrix of the

last INTERACT by saving the VIEW MAT object as well. I.e.:

save("b58", b58);

However, one can overwrite the viewing matrix by appending a new matrix in the end
of the command line, created by the display devices:

xglmdrvs b58.itd // Also creates irit.imd

irit2pov -l -F 0 16 b58.itd irit.imd

where irit.imd is the viewing matrix created by xglmdrvs. The output name, by
default, is the last input file name, so you might want to provide an explicit name with
the -o flag.

39.3 Advanced Usage

One can specify surface qualities for individual surfaces of a model. Several such at-
tributes are supported by Irit2pov and can be set within IRIT. See also the ATTRIB IRIT
command.

If a certain surface should be finer/coarser than the rest of the scene, one can set
a ”resolution” attribute which specifies the relative FineNess resolution of this specific
surface. Further, ”u resolution” and ”v resolution” might be similarly used to set relative
resolution for the u or v direction only. The ”crv resolution” attribute controls the
relative fineness of curves as polylines. The ”num of isolines” attribute controls the
relative number of isoparametric curves.

Example:

attrib(srf1, "resolution", 2);

IRIT Solid modeler G. Elber 416

will force srf1 to have twice the default resolution as set via the ’-f ’ flag.
Almost flat patches are converted to polygons. The rectangle can be converted into

two polygons (by subdividing along one of its diagonals) or into four by introducing a
new point at the patch center. This behavior is controlled by the ’-4’ flag, but can be
overwritten for individual surfaces by setting ”twoperflat” or ”fourperflat”.

POVRAY also supports bicubic Bezier patches and the ’-C’ option of irit2pov supports
that. In such a case, the resolution that is requested from POVRAY to polygonize these
patches approximately follows the resolution as selected via the ’-F’ flag of irit2pov.
Nevertheless, one can override the requested resolution via the ”steps”, ”u steps”, and
”v steps” attributes to irit2pov data files that are transferred directly to POVRAY’s
bicubic Bezier patches. The ”steps” attributes sets both ”u steps” and ”v steps”.

While the program has a default for lighting which is a point light source at (1, 2, 10),
one can overwrite this default. A POINT TYPE object with LIGHT SOURCE attribute
in the data stream denotes a light source. If irit2pov detects one or more light sources in
the input stream, the default light sources are not created. A point light source can be
colored, when an RGB attribute will set its color.

Example:

l1 - point(5, 5, 5);

attrib(l1, "rgb", "255, 0, 0");

creates a red light source at (5, 5, 5).
POVRAY specific properties are controlled via the following attributes: ”ambient”,

”diffuse”, ”brilliance”, ”phong”, ”phong size”, ”specular”, ”roughness”, ”metallic”, ”re-
flection”, ”crand”, ”conserve energy”, ”irid”, ”ior”, ”caustics”, ”dispersion”, ”disper-
sion samples”, ”fade distance”, ”fade power”, ”fade color”. One can prescribe a whole
property block of POV attributes via the ”texture”, ”pigment”, ”finish”, ”halo”, and
”normal”. The values of this attributes must be strings as they are copied verbatim.
Refer to POVRAY’s manual for their exact meaning.

Example:

attrib(legs, "ambient", 0.1);

attrib(pot, "matallic", "");

attrib(table, "ior", 1.4);

attrib(bird, "finish", "ambient 0 diffuse 1 specular 1");

Surface color is controlled on two levels. If the object has an RGB attribute, it is used.
Otherwise a color as set via the IRIT COLOR command is used, if set.

Example:

attrib(tankBody, "rgb", "244,164,96");

Transparency is controlled via the ”transp” attribute, with values between zero and
one.

Example:

attrib(Glass, "transp", 0.9);

IRIT Solid modeler G. Elber 417

40 Irit2Ps - Irit to PS filter

40.1 Command Line Options

irit2ps [-l] [-4] [-s Size] [-I #UIso[:#VIso[:#WIso]]] [-F PolyOpti FineNess]

[-f PolyOpti SampTol] [-M] [-G] [-P] [-W LineWidth]

[-w WidenLen WidenWidth] [-b R G B] [-B X1 Y1 X2 Y2] [-c] [-C]

[-T] [-t AnimTime] [-N FontName] [-i] [-o OutName] [-d [Zmin Zmax]]

[-D [Zmin Zmax]] [-p PtType PtSize] [-u] [-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -s Size: Controls the size of the postscript output in inches. Default is to fill the
entire screen.

• -I #UIso[:#VIso[:#WIso]]: Specifies the number of isolines per surface/trivariate,
per direction. If #VIso or #WIso is not specified, #UIso is used for #VIso etc.

• -F PolygonOpti FineNess: Optimality of polygonal approximation of surfaces. See
the variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -M: Dumps the control mesh/polygon as well.

• -G: Dumps the curve/surface (as freeform geometry). Default. See -I, -C, -f for
control on polyline approximation.

• -P: Dumps the curve/surface (as polygons). See -F, -l, -4 for control on polygonal
approximation.

• -W #LineWidth: Sets the line drawing width in inches. Default is as thin as possible.
This option will overwrite only those objects that do not have a ”width” attribute.
See also -d. If LineWidth is negative, its absolute value is used to scale the current
width of the object if it has one, or the default width otherwise.

• -w WidenLen WidenWidth: Widens the end points of polylines if they should be
made wider, and if so, to what width.

• -b R G B: Sets a colored background. RGB are three integers prescribing the Red,
Green, and Blue coefficients. If there is no -c (i.e. a gray level drawing), this color
is converted to a gray level using RGB to T.V. Y(IQ) channel conversion.

IRIT Solid modeler G. Elber 418

• -B X1 Y1 X2 Y2: Clips the drawing area outsize the bounding box from (X1, Y1)
to (X2, Y2).

• -c: Creates a color postscript file.

• -C: Curve mode. Dumps freeform curves and surfaces as cubic Bezier curves. Higher
order curves and surfaces and/or rationals are approximated by cubic Bezier curves.
This option generates data files that are roughly a third of piecewise linear postscript
files (by disabling this feature, -C-), but it takes a longer time to compute.

• -T: Talkative mode. Prints processing information.

• -t AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -N FontName: Sets the font to use when dumping text out of string objects.

• -i: Internal edges (created by IRIT) - the default is not to display them, and this
option will force displaying them as well.

• -o OutName: Name of output file. Default is stdout.

• -d [Zmin Zmax]: Sets the ratios between the depth cue and the width of the dumped
data. See also -W, -p. Closer lines/points will be drawn wider/larger. Zmin and
Zmax are optional. The object’s bounding box is otherwise computed and used.

• -D [Zmin Zmax]: Same as -d, but depth cue the color or gray scale instead of width.
You might need to consider the sorting option of the illustrt tool (-s of illustrt) for
proper drawings. Only one of -d and -D can be used.

• -p PtType PtSize: Specifies the way points are drawn. PtType can be one of H, F,
C for Hollow circle, Full Circle, or Cross. PtSize specifies the size of the point to be
drawn, in inches. Vectors will also be drawn as points, but with an additional thin
line to the origin. See also -d.

• -u: Forces a unit matrix transformation, i.e. no transformation.

• -z: Prints version number and current defaults.

40.2 Usage

Irit2Ps converts freeform surfaces and polygons into a postscript file.
Example:

irit2ps solid1.itd > solid1.ps

Surfaces are converted to polygons with fineness control:

irit2ps -f 0 32 -c -W 0.01 saddle.itd > saddle.ps

creates a postscript file for the saddle model, in color, and with lines 0.01 inch thick.

IRIT Solid modeler G. Elber 419

40.3 Advanced Usage

One can specify several attributes that affect the way the postscript file is generated. The
attributes can be generated within IRIT. See also the ATTRIB IRIT command.

If a certain object should be thinner or thicker than the rest of the scene, one can set
a ”width” attribute which specifies the line width in inches of this specific object.

Example:

attrib(srf1, "width", 0.02);

will force srf1 to have this width, instead of the default as set via the ’-W’ flag.
If a (closed) object, a polygon, for example, needs to be filled, a ”fill” attribute should

be set.
Example:

attrib(poly, "fill", true);

will fill poly.
If an object, a polygon, for example, needs to be painted/filled in a gray level instead

of black, a ”gray” attribute should be set, with a value equal to the gray level desired.
Example:

attrib(poly, "gray", 0.5);

will draw/fill poly with %50 gray.
Dotted or dashed line effects can be created using a ”dash” attribute which is a direct

postScript dash string. A simple form of this string is ”[a b]” in which a is the drawing
portion (black) in inches, followed by b inches of white space. See the postScript manual
for more about the format of this string. Here is an example for a dotted-dash line.

attrib(poly, "dash", "[0.006 0.0015 0.001 0.0015] 0");

Surface color is controlled (for color postscript only - see -c) on two levels. If the
object has an RGB attribute, it is used. Otherwise, a color as set via the IRIT COLOR
command is used.

Example:

attrib(Ball, "rgb", "255,0,0");

An object can be drawn as ”tubes” instead of full lines. The ratio between the inner
and the outer radii of the tube is provided as the TUBULAR attribute:

attrib(final, "tubular", 0.7);

The depth cueing option of irit2ps could be disabled for individual objects by placing
an integer attribute ”DepthCue” with the FALSE value:

attrib(final, "DepthCue", FALSE);

IRIT Solid modeler G. Elber 420

The ”resolution” attribute controls the relative fineness of polygonal approximation
of surfaces, and ”u resolution” and ”v resolution” similarly control this relative fineness
along one parametric direction only. The ”crv resolution” attribute controls the relative
fineness of curves as polylines. The ”num of isolines” attribute controls the relative
number of isoparametric curves.

A string object can be dumped as text of a selected PS font (See -N). The string
position is set via a ”StrPos” vector attribute (default to the origin), and ”StrScale” real
attribute to control the string height in world unit (default to 0.1). Text will always be
dumped horizontally.

Example:

Text = "Some text";

attrib(Text, "StrPos", vector(1, 2, 3));

attrib(Text, "StrScale", 0.1);

Will print the Text ”Some text” at location (1, 2, 3). The text height be be 0.1.

41 Irit2Ray - Irit to RAYSHADE filter

41.1 Command Line Options

irit2ray [-l] [-4] [-G GridSize] [-F PolyOpti FineNess]

[-f PolyOpti SampTol] [-o OutName] [-g] [-p Zmin Zmax] [-P]

[-M] [-T] [-t AnimTime] [-I #UIso[:#VIso[:#WIso]]] [-s ObjSeq#]

[-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -G GridSize: Usually objects are grouped as lists of polygons. This flag will coerce
the usage of the RAYSHADE grid structure, with GridSize being used as the grid size
along the object bounding box’s largest dimension.

• -F PolygonOpti FineNess: Optimality of polygonal approximation of surfaces. See
the variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -o OutName: Name of output file. By default, the name of the first data file from
the DFiles list is used. See below on the output files.

IRIT Solid modeler G. Elber 421

• -g: Generates the geometry file only. See below.

• -p Zmin Zmax: Sets the ratios between the depth cue and the width of the dumped
polylines. See also -P. Closer lines will be drawn wider.

• -P: Forces dumping polygons as polylines with thickness controlled by -p.

• -M: If -P (see -P and -p), will then convert the control mesh/polygon to polylines
which are represented as a sequence of truncated cones.

• -T: Talkative mode. Prints processing information.

• -t AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -I #UIso[:#VIso[:#WIso]]: Specifies the number of isolines per surface/trivariate,
per direction. If #VIso or #WIso is not specified, #UIso is used for #VIso etc.

• -s ObjSeq#: Sets object sequence number if no object name. Default 1.

• -z: Prints version number and current defaults.

41.2 Usage

Irit2Ray converts freeform surfaces into polygons in a format that can be used by the
RAYSHADE ray tracing program. Two files are created, one with a ’.geom’ extension
and one with a ’.ray’ extension. Since the number of polygons can be extremely large, the
geometry is isolated in the ’.geom’ file and is included (via ’#include’) in the main ’.ray’
file. The latter holds the surface properties for all the geometry as well as viewing and
RAYSHADE specific commands. This allows for the changing of the shading or viewing
properties while editing small (’.ray’) files.

If ’-g’ is specified, only the ’.geom’ file is created, preserving the current ’.ray’ file.
In practice, it may be useful to create a low resolution approximation of the model,

change the viewing/shading parameters in the ’.ray’ file until a good view and/or surface
quality is found, and then run Irit2Ray once more to create a high resolution approxima-
tion of the geometry using ’-g’.

Example:

irit2ray -l -F 0 5 b58.itd

creates b58.ray and b58.geom with low resolution (FineNess of 5). At such low reso-
lution it may very well happen that triangles will have normals ”over the edge” since a
single polygon may approximate a highly curved surface. That will cause RAYSHADE
to issue an ”Inconsistent triangle normals” warning. This problem will not arise if high
fineness is used. One can ray trace this scene using a command similar to:

RAYSHADE -p -W 256 256 b58.ray > b58.rle

Once done with the parameter setting for RAYSHADE, a fine approximation of the
model can be created with:

irit2ray -l -g -F 0 64 b58.itd

IRIT Solid modeler G. Elber 422

which will only recreate b58.geom (because of the -g option).
Interesting effects can be created using the depth cue support and polyline conversion

of irit2ray. For example,

irit2ray -G 5 -P -p -0.0 0.5 solid1.itd

will dump solid1 as a set of polylines (represented as truncated cones in RAYSHADE)
with varying thickness according to the z depth. Another example is

irit2ray -G 5 -P -p -0.1 1.0 saddle.itd

which dumps the isolines extracted from the saddle surface with varying thickness.
Each time a data file is saved in IRIT, it can be saved with the viewing matrix of the

last INTERACT by saving the VIEW MAT object as well. I.e.:

save("b58", b58);

However, one can overwrite the viewing matrix by appending a new matrix in the end
of the command line, created by the display devices:

os2drvs b58.itd // Also creates irit.imd

irit2ray -l -F 0 16 b58.itd irit.imd

where irit.imd is the viewing matrix created by os2drvs. The output name, by default,
is the last input file name, so you might want to provide an explicit name with the -o flag.

41.3 Advanced Usage

One can specify surface qualities for individual surfaces of a model. Several such at-
tributes are supported by Irit2Ray and can be set within IRIT. See also the ATTRIB
IRIT command.

If a certain surface should be finer/coarser than the rest of the scene, one can set
a ”resolution” attribute which specifies the relative FineNess resolution of this specific
surface. Further, ”u resolution” and ”v resolution” might be similarly used to set relative
resolution for the u or v direction only. The ”crv resolution” attribute controls the
relative fineness of curves as polylines. The ”num of isolines” attribute controls the
relative number of isoparametric curves.

Example:

attrib(srf1, "resolution", 2);

will force srf1 to have twice the default resolution, as set via the ’-f ’ flag.
Almost flat patches are converted to polygons. The rectangle can be converted into

two polygons (by subdividing along one of its diagonals) or into four by introducing a
new point at the patch center. This behavior is controlled by the ’-4’ flag, but can be
overwritten for individual surfaces bu setting ”twoperflat” or ”fourperflat”.

RAYSHADE specific properties are controlled via the following attributes: ”specpow”,
”reflect”, ”transp”, ”body”, ”index”, and ”texture”. The value of these attributes must
be strings as it is copied verbatim. Refer to RAYSHADE’s manual for their meaning.

Example:

IRIT Solid modeler G. Elber 423

attrib(legs, "transp", "0.3");

attrib(legs, "texture", "wood,2");

attrib(table, "texture", "marble");

attrib(table, "reflect", "0.5");

An optional scale can be prescribed to textures. In the above example wooden legs’
(that are also transparent...) texture is selected with a texture scaling factor of 2.

Surface color is controlled on two levels. If the object has an RGB attribute, it is used.
Otherwise a color as set via the IRIT COLOR command is used, if set.

Example:

attrib(tankBody, "rgb", "244,164,96");

42 Irit2Scn - Irit to SCENE (RTrace) filter

SCENE is the format used by the RTrace ray tracer. This filter was donated by Antonio
Costa (acc@asterix.inescn.pt), the author of RTrace.

42.1 Command Line Options

irit2scn [-l] [-4] [-F PolyOpti FineNess] [-o OutName] [-g] [-T]

[-t AnimTime] [-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated as a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -o OutName: Name of output file. By default the name of the first data file from
DFiles list is used. See below on the output files.

• -g: Generates the geometry file only. See below.

• -T: Talkative mode. Prints processing information.

• -t AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -z: Prints version number and current defaults.

IRIT Solid modeler G. Elber 424

42.2 Usage

Irit2Scn converts freeform surfaces and polygons into polygons in a format that can be
used by RTrace. Two files are created, one with a ’.geom’ extension and one with a
’.scn’ extension. Since the number of polygons can be extremely large, the geometry is
isolated in the ’.geom’ file and is included (via ’#include’) in the main ’.scn’ file. The
latter holds the surface properties for all the geometry as well as viewing and RTrace
specific commands. This allows for the changing of the shading or viewing properties
while editing small (’.scn’) files.

If ’-g’ is specified, only the ’.geom’ file is created, preserving the current ’.scn’ file.
In practice, it may be useful to create a low resolution approximation of the model,

adjust the viewing/shading parameters in the ’.scn’ file until a good view and/or surface
quality is found, and then run Irit2Scn once more to create a high resolution approxima-
tion of the geometry using ’-g’.

Example:

irit2scn -l -F 0 8 b58.itd

creates b58.scn and b58.geom with low resolution (FineNess of 5).
One can ray trace this scene after converting the scn file to a sff file, using scn2sff

provided with the RTrace package.
Once done with the parameter setting of RTrace, a fine approximation of the model

can be created with:

irit2scn -l -g -F 0 64 b58.itd

which will only recreate b58.geom (because of the -g option).
One can overwrite the viewing matrix by appending a new matrix at the end of the

command line, created by the display devices:

wntdrvs b58.itd

irit2scn -l -F 0 8 b58.itd irit.imd

where irit.imd is the viewing matrix created by wntdrvs. The output name, by default,
is the last input file name, so you might want to provide an explicit name with the -o flag.

42.3 Advanced Usage

One can specify surface qualities for individual surfaces of a model. Several such at-
tributes are supported by Irit2Scn and can be set within IRIT. See also the ATTRIB IRIT
command.

If a certain surface should be finer/coarser than the rest of the scene, one can set
a ”resolution” attribute which specifies the relative FineNess resolution of this specific
surface. Further, ”u resolution” and ”v resolution” might be similarly used to set relative
resolution for the u or v direction only. The ”crv resolution” attribute controls the
relative fineness of curves as polylines. The ”num of isolines” attribute controls the
relative number of isoparametric curves.

Example:

attrib(srf1, "resolution", 2);

IRIT Solid modeler G. Elber 425

will force srf1 to have twice the default resolution, as set via the ’-f ’ flag.
Almost flat patches are converted to polygons. The patch can be converted into

two polygons (by subdividing along one of its diagonals) or into four by introducing a
new point at the patch center. This behavior is controlled by the ’-4’ flag, but can be
overwritten for individual surfaces by setting ”twoperflat” or ”fourperflat”.

RTrace specific properties are controlled via the following attributes: ”SCNrefraction”,
”SCNtexture”, ”SCNsurface. Refer to the RTrace manual for their meaning.

Example:

attrib(srf1, "SCNrefraction", 0.3);

Surface color is controlled on two levels. If the object has an RGB attribute, it is used.
Otherwise a color as set via IRIT COLOR command is used, if set.

Example:

attrib(tankBody, "rgb", "244,164,96");

43 Irit2Stl - Irit to STL filter

43.1 Command Line Options

irit2stl [-l] [-4] [-r] [-R] [-F PolyOpti FineNess] [-E VrtxEps] [-s] [-S]

[-o OutName] [-m] [-u] [-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -r: Regularize and triangulate the input data if not regularized and with triangles
only to begin with.

• -R: Reverses the orders of the vertices and in essense flipes the inside/outside ori-
entation of the geometry.

• -F PolygonOpti FineNess: Optimality of polygonal approximation of surfaces. See
the variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -E VrtxEps: Tolerance of two adjacent verices to be considered the same. Vertices
that are considered the same are collapsed to an identical location.

• -s: Dumps each object as a separated ”solid” - ”endsolid” brackets.

• -S: Dumps each object as a separated ”solid” - ”endsolid” brackets in a separated
stl file, with file name appended with numeric index.

• -o OutName: Name of output file. By default the output goes to stdout.

IRIT Solid modeler G. Elber 426

• -m: More information flag.

• -u: Forces a unit matrix. That is, input data are not transformed at all.

• -z: Prints version number and current defaults.

43.2 Usage

Irit2Stl converts freeform surfaces and polygons into the STL (Stereolithography) file
format. The STL data should be a closed solid in general but no such validity check is
conducted by irit2stl.

Example:

irit2stl -u solid2.itd > solid2.stl

44 Irit2unity - Irit to UNITY filter

Converts irit data files to C sharp *.cs files that can be uploaded to Unity.

44.1 Command Line Options

Usage: Irit2unity [-l] [-4] [-F PolyOpti FineNess] [-w] [-i InName]

[-o OutName] [-s AnimSlices] [-S AnimTimeScale] [-z] [-N]

[-n] [-T]

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -w: Print warnings

• -i InName: The nut Irit ’.itd’ file to convert. This is optional as the input can also
be provided by stdin.

• -o OutName: Optional, The name of the object to be synthesized. If not provided,
the input irit main object name will be used. If the Irit object has no name, the
input file name will be used.

• -s AnimSlices: Number of samples taken from the objects’ animations, if has anima-
tions defined. Default is 10 samples.

• -S AnimationTimeScale: Sets the periodi of the animation, in Seconds. Default is
one second.

IRIT Solid modeler G. Elber 427

• -z: Print help and version.

• -N: If set, inverts the Vertices’ Normals.

• -n: If set, Inverts the Polygons’ Normals. Note that Irit and unity normals are
inverted by defualt. Hene, to disable do ’-n-’.

• -T: Disable automatic texture application (computation and conversion of UV tex-
ture coordinates, etc.).

44.2 Usage

Irit2unity converts freeform surfaces and polygons into polygons in a format that can be
used by the unity engine.

Example:

irit2unity -i solid1.itd -o solid1.cs

where the geometry is saved in the C sharp file solid1.cs, or

irit2unity -i puz1anim.itd -s 100 -S 10 -o puz1animSlow

that converts the animations in puz1anim.itd to unity anymations with 100 keyframes,
for a duration of 10 seconds.

Note irit2unity is also exploiting a C sharp template called irit2unity.cs that is expected
to be in the irit bin directory (where the irit2unity executable is).

44.3 More on Usage

To use the converted *.cs files, one should have unity installed. Then you should add
(drag and drop) the *.cs files as well as irit2unity.shader to the unity ’Assets’. If all goes
well, unity will successfully parse them and you can access the new geometry, within
Unity, via the ”GameObject -¿ IritLoad” new Unity menu item.

Images can then be added by dragging them into the ’Assets’ and onto the geometry,
as texture.

45 Irit2Wrl - Irit to IGES filter

Converts IRIT data files into IGS data files.

45.1 Command Line Options

irit2wrl [-l] [-4] [-u] [-F PolyOpti FineNess] [-f PolyOpti SampTol]

[-o OutName] [-T] [-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

IRIT Solid modeler G. Elber 428

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -u: Forces a unit matrix. That is, input data are not transformed at all.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -o OutName: Name of output file. By default the output goes to stdout.

• -T: More talkative/information flag.

• -z: Prints version number and current defaults.

45.2 Usage

Irit2Wrl converts IRIT data files into Geom View OFF data files.
Example:

Irit2Wrl -m -o file.off file.itd

46 Irit2Wgl - Irit to WGL filter

46.1 Command Line Options

irit2wgl [-l] [-4] [-F PolyOpti FineNess] [-C] [-w CanvasWidth]

[-h CanvasHeight] [-b R G B] [-W] [-D] [-P] [-M] [-d DrawMode] [-T]

[-v ViewAngle] [-p ProjectionMode] [-a R G B] [-o OutName]

[-z] DFiles

• -l: Linear - forces linear (degree two) surfaces to be approximated by a single polygon
along their linear direction. Although most of the time linear direction can be rep-
resented exactly using a single polygon, even a bilinear surface can have a freeform
shape (saddle-like) that is not representable using a single polygon. Note that al-
though this option will better emulate the surface shape, it will create unnecessary
polygons in cases where one is enough.

• -4: Four - Generates four polygons per flat patch. Default is 2.

• -F PolyOpti FineNess: Optimality of polygonal approximation of surfaces. See the
variable POLY APPROX OPT for the meaning of FineNess. See also -4.

• -C: HideCtrlBar - Hides the scene control bar.

• -w CanvasWidth: Width of the html canvas in pixels.

• -h CanvasWidth: Height of the html canvas in pixels.

IRIT Solid modeler G. Elber 429

• -b R G B: Sets the background color. Each of thre R,G,B colors is an integer value
between zero and 255. Default is black.

• -W: ShowWorldAxes - Shows axes relative to the world.

• -D: DisableDepthTest - Disables the depth test.

• -P: EnablePicking - Enables picking.

• -M: ShowModelAxes - Shows axes relative to the model.

• -d DrawMode: The draw mode of the model. 1, 2 and 4 for wireframe, solid and
texture, respectively (default is wireframe).

• -T: ModelTrans - Transformation will be relative to model coordinates. By default
(or -T-), transformation is relative to world coordinates.

• -v ViewAngle: The view angle of the camera. 0 for the original view angle and 1,
2, 3, 4, 5 and 6 for front, back, right, left, top and bottom view angles, respectively
(default is original view angle).

• -p ProjectionMode: The projection mode of the scene. 0 for orthographic projection
(the default) and 1 for perspective projection.

• -a R G B: Sets the global ambient light intensity. Each of thre R,G,B colors is a
double value between 0 and 1. Default is 0.2 for each component.

• -o OutName: Name of output file. Default is stdout.

• -z: Prints version number and current defaults.

46.2 Usage

Irit2Wgl converts IRIT data files into WebGL based HTML data files.
Example:

irit2wgl teapot.itd > teapot.html

If an output file name is supplied, the output will consist of three files all having the
same file name, but a different extension - html file, javascript file and css file. For exam-
ple, the following command will output the files teapot.html, teapot.js and teapot.css:

irit2wgl -o teapot teapot.itd

If an output file name is not supplied, the entire output data is dumped into the
standard output. In order to load that data into the web, it should be redirected into an
html file.

46.3 Runtime Usage

Right click the mouse in order to translate the model, Left click the mouse in order to
rotate the mode and press the middle button in order to scale the model.

If picking is enabled, right click the mouse in order to pick an object. Please notice
that when picking is enabled, the right mouse button is used both for picking objects and
for translating the model.

IRIT Solid modeler G. Elber 430

46.4 Browser Support

Make sure that your graphics drivers are up to date. When running under Windows,
make sure you have the Microsoft DirectX runtime installed.

Explorer: WebGL is not supported in with Internet Explorer.
Firefox: WebGL is supported in version 4 or higher. However, it is recommended to

upgrade to the latest version available. In case of security errors, set the following Firefox
security flag to false: about:config -¿ set security.fileuri.strict origin policy as false

Chrome: WebGL is available in the stable release of Chrome. If you catch the error
”Uncaught Error: SECURITY ERR: DOM Exception 18”, run Chrome with ”–allow-
file-access-from-files”. For debugging WebGL with Chrome, WebGL Inspector is highly
recommended: http://benvanik.github.com/WebGL-Inspector/

Opera: WebGL is supported in Opera 12 alpha.
Safari: WebGL is supported on Mac OS X 10.6 in the WebKit nightly builds. Af-

ter downloading and installing the browser, open the Terminal and type the following:
defaults write com.apple.Safari WebKitWebGLEnabled -bool YES This command only
needs to be run once. All future invocations of the browser will run with WebGL en-
abled.

46.5 Usefull Links

To check if your browser supports WebGL, visit the following page: http://get.webgl.org/
WebGL specification can be found at: https://www.khronos.org/registry/webgl/specs/1.0/
WebGL tutorial (Lesson 0 provides good troubleshootong tips): http://learningwebgl.com/blog/
WebGL Techniques and Performance presentation: http://www.youtube.com/watch?v=rfQ8rKG

47 Irit2Xfg - Irit to XFIG filter

47.1 Command Line Options

irit2xfg [-s Size] [-t XTrans YTrans] [-I #UIso[:#VIso[:#WIso]]]

[-f PolyOpti SampTol] [-F PolyOpti FineNess] [-M] [-G] [-T]

[-a AnimTime] [-i] [-o OutName] [-z] DFiles

• -s Size: Size in inches of the page. Default is 7 inches.

• -t XTrans YTrans: X and Y translation. of the image. Default is (0, 0).

• -I #UIso[:#VIso]: Specifies the number of isolines per surface, per direction. If
#VIso is not specified, #UIso is used for #VIso as well.

• -f PolyOpti SampTol: Controls the method used to approximate curves into poly-
lines. If PolyOpti == 0, equally spaced intervals are used. For PolyOpti == 1,
SampTol (real number) specifies the maximal allowed deviation tolerance of the
piecewise linear approximation from the original curve. Default is 0 64 (uniform
sampling with 64 samples).

• -F PolygonOpti FineNess: Optimality of polygonal approximation of surfaces. See
the variable POLY APPROX OPT for the meaning of FineNess. See also -4. This
enforces the dump of freefrom geometry as polygons.

IRIT Solid modeler G. Elber 431

• -M: Dumps the control mesh/polygon as well.

• -G: Dumps the freeform geometry.

• -T: Talkative mode. Prints processing information.

• -a AnimTime: If the data contains animation curves, evaluate and process the scene
at time AnimTime.

• -i: Internal edges (created by IRIT) - default is not to display them, and this option
will force their display.

• -o OutName: Name of output file. By default, the name of the first data file from
DFiles list is used. See output files below.

• -z: Prints version number and current defaults.

47.2 Usage

Irit2Xfg converts freeform surfaces and polygons into polylines in a format that can be
used by XFIG.

Example:

irit2Xfg -T -f 0 16 saddle.itd > saddle.xfg

However, one can overwrite the viewing matrix by appending a new matrix at the end
of the command line, created by the display devices:

x11drvs b58.itd

irit2Xfg -T -f 0 16 b58.itd irit.imd > saddle.xfg

where irit.imd is the viewing matrix created by x11drvs.

48 Obj2irit - Wavefront OBJ format To IRIT data files

converts Waverfront’s OBJ data files into IRIT data files.

48.1 Command Line Options

obj2irit [-m] [-r] [-o OutName] [-z] OBJFile

• -m: Provides some more information on the data file(s) parsed.

• -r: Reverses all polygons’ orientation in generated data.

• -o OutName: Name of output file. By default, the output goes to stdout.

• -z: Prints version number and current defaults.

IRIT Solid modeler G. Elber 432

48.2 Usage

obj2irit converts Wavefront’s OBJ data files into IRIT data files. The current version
provides only partial support for the direct conversion of freeform surfaces, mainly due
to luck of examples of freeform surfaces in obj format.

Example:

obj2irit -o file.itd file.obj

49 Off2irit - Geom View Off format To IRIT data files

Converts Geom View’s Off data files into IRIT data files.

49.1 Command Line Options

Off2irit [-o OutName] [-z] OffFile

• -o OutName: Name of output file. By default the output goes to stdout.

• -z: Prints version number and current defaults.

49.2 Usage

Off2irit converts Geom View’s Off data files into IRIT data files.
Example:

Off2irit - < file.off > file.itd

50 Stl2Irit - Stl (stereo lithograph) data To IRIT file filter

Converts ’.stl’ stereolithography data files to ’.irt’ IRIT scripts. Both binary and text STL
files are supported.

50.1 Command Line Options

stl2irit [-b] [-w] [-n] [-o OutName] [-z] STLFile

•

• -b: The stl file is a binary stl. -w: Perform an endian swap on all read data. Little
vs. Big Endian is supported for binary STL files only. -n: Flip orientation of all
polygons by flipping their normals. -o OutName: Name of output file. By default,
the output goes to stdout. -z: Print version number and current defaults.

50.2 Usage

stl2irit converts stereo-lithography STL data files into IRIT data files.
Example:

stl2irit -o file.itd file.stl

IRIT Solid modeler G. Elber 433

51 Data File Format

This section describes the data file format used to exchange data between IRIT and its
accompanying tools.

[OBJECT {ATTRS} OBJNAME

[NUMBER n]

| [POINT x y z]

| [VECTOR x y z]

| [CTLPT POINT_TYPE {w} x y {z}]

| [STRING "a string"]

| [MATRIX m00 ... m03

m10 ... m13

m20 ... m23

m30 ... m33]

;A polyline should be drawn from first point to last. Nothing is drawn

;from last to first (in a closed polyline, last point is equal to first).

| [POLYLINE {ATTRS} #PTS ;#PTS = number of points.

[{ATTRS} x y z]

[{ATTRS} x y z]

.

.

.

[{ATTRS} x y z]

]

;Defines a closed planar region. Last point is NOT equal to first,

;and a line from last point to first should be drawn when the boundary

;of the polygon is drawn.

| [POLYGON {ATTRS} #PTS

[{ATTRS} x y z]

[{ATTRS} x y z]

.

.

.

[{ATTRS} x y z]

]

;Defines a "cloud" of points.

| [POINTLIST {ATTRS} #PTS

[{ATTRS} x y z]

[{ATTRS} x y z]

IRIT Solid modeler G. Elber 434

.

.

.

[{ATTRS} x y z]

]

;Defines a polygon triangle strip. At least 3 vertices are expected.

;Last point is NOT equal to first, and a line from last point to first

;should be drawn when the boundary of the polygon is drawn.

| [POLYSTRIP {ATTRS} #PTS

[{ATTRS} x y z]

[{ATTRS} x y z]

.

.

.

[{ATTRS} x y z]

]

;Defines an instance - a geometric reference (by name, SRF13 below)

;and a transformation matrix to apply to this geoemtry

| [INSTANCE SRF13

m00 ... m03

m10 ... m13

m20 ... m23

m30 ... m33]

;Defines a Bezier curve with #PTS control points. If the curve is

;rational, the rational component is introduced first.

| [CURVE BEZIER {ATTRS} #PTS POINT_TYPE

[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

.

.

.

[{ATTRS} {w} x y z ...]

]

;Defines a Bezier surface with #UPTS * #VPTS control points. If the

;surface is rational, the rational component is introduced first.

;Points are printed row after row (#UPTS per row), #VPTS rows.

| [SURFACE BEZIER {ATTRS} #UPTS #VPTS POINT_TYPE

[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

.

.

.

[{ATTRS} {w} x y z ...]

]

IRIT Solid modeler G. Elber 435

;Defines a Bezier triangular surface with (#PTS + 1) * #PTS / 2 control

;points, of order ORDER. If the surface is rational, the rational

;component is introduced first. Note #PTS holds number of points along

;an edge and is exactly equal to ORDER. Points are printed sequentially.

| [TRISRF BEZIER {ATTRS} #PTS POINT_TYPE

[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

.

.

.

[{ATTRS} {w} x y z ...]

]

;Defines a Bezier trivariate with #UPTS * #VPTS * #WPTS control

;points. If the trivariate is rational, the rational component is

;introduced first. Points are printed row after row (#UPTS per row),

;#VPTS rows, #WPTS layers (depth).

| [TRIVAR BEZIER {ATTRS} #UPTS #VPTS #WPTS POINT_TYPE

[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

.

.

.

[{ATTRS} {w} x y z ...]

]

;Defines a Bezier multivariate of #Dim dimensions (#Dim = 1 for a

;curve, #Dim = 2 for a surface, #Dim = 3 for a trivariate, etc.)

;with (Dim1#PTS * ... * Dim1#PTS) control points. If the multivariate

;is rational, the rational component is introduced first.

| [MULTIVAR BEZIER {ATTRS} #Dim Dim1#PTS ... DimN#PTS POINT_TYPE

[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

.

.

.

[{ATTRS} {w} x y z ...]

]

;Defines a B-spline curve of order ORDER with #PTS control points. If the

;curve is rational, the rational component is introduced first.

;Note that the length of knot vector is equal to #PTS + ORDER.

;If the curve is periodic, KVP prefix the knot vector that has length of

;’Length + Order + Order - 1’.

| [CURVE BSPLINE {ATTRS} #PTS ORDER POINT_TYPE

[KV{P} {ATTRS} kv0 kv1 kv2 ...] ;Knot vector

[{ATTRS} {w} x y z ...]

IRIT Solid modeler G. Elber 436

[{ATTRS} {w} x y z ...]

.

.

.

[{ATTRS} {w} x y z ...]

]

;Defines a B-spline surface with #UPTS * #VPTS control points, of order

;UORDER by VORDER. If the surface is rational, the rational component

;is introduced first.

;Points are printed row after row (#UPTS per row), #VPTS rows.

;If the surface is periodic in some direction, KVP prefix the knot vector

;that has length of ’Length + Order + Order - 1’.

| [SURFACE BSPLINE {ATTRS} #UPTS #VPTS UORDER VORDER POINT_TYPE

[KV{P} {ATTRS} kv0 kv1 kv2 ...] ;U Knot vector

[KV{P} {ATTRS} kv0 kv1 kv2 ...] ;V Knot vector

[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

.

.

.

[{ATTRS} {w} x y z ...]

]

;Defines a B-spline triangular surface with (#PTS + 1) * #PTS / 2 control

;points, of order ORDER. If the surface is rational, the rational

;component is introduced first.

;Points are printed sequentially.

| [TRISRF BSPLINE {ATTRS} #PTS ORDER POINT_TYPE

[KV {ATTRS} kv0 kv1 kv2 ...] ;Knot vector

[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

.

.

.

[{ATTRS} {w} x y z ...]

]

;Defines a B-spline trivariate with #UPTS * #VPTS * #WPTS control

;points. If the trivariate is rational, the rational component is

;introduced first. Points are printed row after row (#UPTS per row),

;#VPTS rows, #WPTS layers (depth).

;If trivariate is periodic in some direction, KVP prefix the knot vector

;that has length of ’Length + Order + Order - 1’.

| [TRIVAR BSPLINE {ATTRS} #UPTS #VPTS #WPTS UORDER VORDER WORDER POINT_TYPE

[KV{P} {ATTRS} kv0 kv1 kv2 ...] ;U Knot vector

[KV{P} {ATTRS} kv0 kv1 kv2 ...] ;V Knot vector

[KV{P} {ATTRS} kv0 kv1 kv2 ...] ;W Knot vector

IRIT Solid modeler G. Elber 437

[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

.

.

.

[{ATTRS} {w} x y z ...]

]

;Defines a B-spline multivariate of #Dim dimensions (#Dim = 1 for a

;curve, #Dim = 2 for a surface, #Dim = 3 for a trivariate, etc.)

;with (Dim1#PTS * ... * Dim1#PTS) control points. If the multivariate

;is rational, the rational component is introduced first.

| [MULTIVAR BSPLINE {ATTRS} #Dim Dim1#PTS ... DimN#PTS POINT_TYPE

[KV{P} {ATTRS} kv0 kv1 kv2 ...] ;Dim1 Knot vector

.

.

.

[KV{P} {ATTRS} kv0 kv1 kv2 ...] ;DimN Knot vector

[{ATTRS} {w} x y z ...]

[{ATTRS} {w} x y z ...]

.

.

.

[{ATTRS} {w} x y z ...]

]

;Defines a trimmed surface. Encapsulates a surface (can be either a

;B-spline or a Bezier surface) and prescribes its trimming curves.

;There can be an arbitrary number of trimming curves (either Bezier

; or B-spline). Each trimming curve contains an arbitrary number of

;trimming curve segments, while each trimming curve segment contains

;a parameteric representation optionally followed by a Euclidean

;representation of the trimming curve segment.

| [TRIMSRF

[SURFACE ...

]

[TRIMCRV

[TRIMCRVSEG

[CURVE ...

]

]

.

.

.

[TRIMCRVSEG

[CURVE ...

]

]

IRIT Solid modeler G. Elber 438

]

.

.

.

[TRIMCRV

[TRIMCRVSEG

[CURVE ...

]

]

.

.

.

[TRIMCRVSEG

[CURVE ...

]

]

]

]

;Defines a model. A model contains a set of (trimmed) surfaces along

;with a set of trimming curves that are shared by (at most) two

;surfaces each.

;The trimming curves must form closed loops in each surface.

| [MODEL {ATTRS} #TrimSrfs #TrimSegs

;A surface in the model holds a regular surface and a set of

;closed loops that defines the trimming loops of the surface.

[MDLTSRF #Loops ;Number of trimming loops

[SURFACE ...

]

;Each trimming loop is a list of trimming curve segments.

;If the index is negative, it denotes the traversal of the

;curve in reverse order.

[MDLLOOP trim seg’s indices] ;Negative index - reversed

.

.

.

[MDLLOOP trim seg’s indices] ;Negative index - reversed

]

.

.

.

[MDLTSRF #Loops ;Number of trimming loops

[SURFACE ...

]

[MDLLOOP trim seg’s indices] ;Negative index - reversed

.

.

.

IRIT Solid modeler G. Elber 439

[MDLLOOP trim seg’s indices] ;Negative index - reversed

]

;The trimming curve segments can hold a parameteric curve in the

;first surface, a parametric curve in the second surface, and a

;Euclidean representation, in this order. A 3 bits mask ’CurveMask’

;says what is available, as one bit per curve type.

;’#1stSrf’ and ’#2ndSrf’ specify the two surfaces that share

;this boundary trimming curve, with 0 denoting no surface.

[MDLTSEG CurveMask #1stSrf #2ndSrf ;CurveMask = 5

[CURVE ...

]

[CURVE ...

]

]

.

.

.

[MDLTSEG CurveMask #1stSrf #2ndSrf ;CurveMask = 7

[CURVE ...

]

[CURVE ...

]

[CURVE ...

]

]

]

]

POINT_TYPE -> E1 | E2 | E3 | E4 | E5 | E6 | E7 | E8 | E9 |

P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9

ATTRS -> [ATTRNAME ATTRVALUE]

| [ATTRNAME]

| [ATTRNAME ATTRVALUE] ATTRS

Some notes:
* This definition for the text file is designed to minimize the reading time and space.

All information can be read without backward or forward referencing.
* An OBJECT must never hold different geometry types or other entities. I.e.

CURVEs, SURFACEs, and POLYGONs must all be in different OBJECTs.
* Attributes should be ignored if not needed. The attribute list may have any length

and is always terminated by a token that is NOT ’[’. This simplifies and disambiguates
the parsing.

* Comments may appear between ’[OBJECT ...]’ blocks, or immediately after OB-
JECT OBJNAME, and only there.

A comment body can be anything not containing the ’[’ or the ’]’ tokens (signals

IRIT Solid modeler G. Elber 440

start/end of block). Some of the comments in the above definition are illegal and appear
there only for the sake of clarity.

* It is preferable that geometric attributes such as NORMALs be saved on the geomet-
ric structure level (POLYGON, CURVE or vertices) while graphical and other attribures
such as COLORs will be saved on the OBJECT level.

* Objects may be contained in other objects to an arbitrary level.
Here is an example that exercises most of the data format:

This is a legal comment in a data file.

[OBJECT DEMO

[OBJECT REAL_NUM

And this is also a legal comment.

[NUMBER 4]

]

[OBJECT A_POINT

[POINT 1 2 3]

]

[OBJECT A_VECTOR

[VECTOR 1 2 3]

]

[OBJECT CTL_POINT

[CTLPT E3 1 2 3]

]

[OBJECT STR_OBJ

[STRING "string"]

]

[OBJECT UNIT_MAT

[MATRIX

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]

]

[OBJECT [COLOR 4] POLY1OBJ

[POLYGON [PLANE 1 0 0 0.5] 4

[-0.5 0.5 0.5]

[-0.5 -0.5 0.5]

[-0.5 -0.5 -0.5]

[-0.5 0.5 -0.5]

]

[POLYGON [PLANE 0 -1 0 0.5] 4

IRIT Solid modeler G. Elber 441

[0.5 0.5 0.5]

[-0.5 0.5 0.5]

[-0.5 0.5 -0.5]

[0.5 0.5 -0.5]

]

]

[OBJECT [COLOR 63] ACURVE

[CURVE BSPLINE 16 4 E2

[KV 0 0 0 0 1 1 1 2 3 4 5 6 7 8 9 10 11 11 11 11]

[0.874 0]

[0.899333 0.0253333]

[0.924667 0.0506667]

[0.95 0.076]

[0.95 0.76]

[0.304 1.52]

[0.304 1.9]

[0.494 2.09]

[0.722 2.242]

[0.722 2.318]

[0.38 2.508]

[0.418 2.698]

[0.57 2.812]

[0.57 3.42]

[0.19 3.572]

[0 3.572]

]

]

[OBJECT [COLOR 2] SOMESRF

[SURFACE BEZIER 3 3 E3

[0 0 0]

[0.05 0.2 0.1]

[0.1 0.05 0.2]

[0.1 -0.2 0]

[0.15 0.05 0.1]

[0.2 -0.1 0.2]

[0.2 0 0]

[0.25 0.2 0.1]

[0.3 0.05 0.2]

]

]

]

IRIT Solid modeler G. Elber 442

52 Bugs and Limitations

As with any program of more than one line, this is far from perfect. Some limitations, as
well as simplifications, are laid out below.

* If the intersection curve of two objects falls exactly on polygon boundaries, for all
polygons, the system will scream that the two objects do not intersect at all. Try to move
one by EPSILON into the other. I probably should fix this one - it is supposed to be
relatively easy.

* Avoid degenerate intersections that result in a point or a line. They will probably
cause wrong propagation of the inner and outer parts of one object relative to another.
Always extend your object beyond the other object.

* If two objects have no intersection in their boundary, IRIT assumes they are disjoint:
a union simply combines them, and the other Boolean operators return a NULL object.
One should find a FAST way (3D Jordan theorem) to find the relation between the two
(A in B, B in A, A disjoint B) and according to that, make a decision.

* Since the Boolean sum implementation constructs ruled surfaces with uniform speed,
it might return a somewhat incorrect answer, given non-uniform input curves.

* The parser is out of hand and difficult to maintain. There are several memory leaks
there that one should fix.

* Rayshade complains a lot about degenerate polygons on irit2ray output. To alleviate
the problem, change the ’equal’ macro in common.h in libcommon of rayshade from
EPSILON (1e-5) to 1e-7 or even lower.

* On the motif-based drivers (xmtdrvs etc.) clicking the mouse left and right of
the scale’s button produces stepped transformations. This step size is constant, and is
not proportional to the distance between the mouse’s position and the position of the
button. The reason for the flaw is incorrect callback information returned from the scale
in repetitive mode.

* Binary data files are not documented, nor will they be. They might change in
the future and are in fact machine dependent. Hence, one platform might fail to read
another’s binary data file.

