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Topics last week 
• Overview on  

– Memory management  
– The 3 classic algorithms 
– Course topics 

• The Mark & Sweep algorithm 
– Basics 
– Recursion explicit,  pointer reversal, mark-bit table, 

lazy sweeping, bitwise sweep
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The Mark-Sweep algorithm

• Traverse live objects & mark black.  
• White objects can be reclaimed. 
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Mark-Compact

• With time the heap gets fragmented.  
• When space is too fragmented to allocate, a 

compaction algorithm is used.  
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A Header 
• The memory manager keeps a header for each object.  
• User allocates 24 bytes, the actual allocation is larger! 
• Header typically has: length, control bits (for marking an 

object, synchronization, hashing, etc), pointer to class 
(for methods and fields types). 
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Memory Management
 

Compaction
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Overview
• Motivation 

– Fragmentation – problem and solutions. 
• Five Algorithms: 

– Two-finger Alg – for objects of equal size.  
– Lisp 2 Alg. 
– Jonkers threaded algorithm 
– SUN’s parallel algorithm 
– IBM’s parallel algorithm 
– (The Compressor, a more advanced algorithm is presented in 

lecture 10) 
• Summary.
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Motivation
• Fragmentation is the main drawback of the mark-sweep 

algorithms. 
– Large objects cannot be allocated (even after GC). 
– Allocation becomes difficult (and inefficient). 
– Increasing heap size means page faults and cache misses.  
– Longer sweep 
– Locality: objects allocated together tend to be accessed 

together.  Thus, mixing allocated objects with “old” objects 
increases cache-misses.  

• Compaction algorithms fix above problems by moving all 
live objects together.  
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The Generic Task
• Assume live objects are marked.  

• Move objects to one (or a small number of) areas 
in the heap 

• Modify pointers to reference the new locations. 
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Comparison Criteria
• Complexity:  

– Number of heap passes.  
– Passes over auxiliary tables.  
– Cache performance. 

• Extra space required. 
• Restrictions on objects (e.g., equal size). 
• Compaction quality: 

– Order of objects in output.  
– Number of packed areas (best: 1 area).
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Object Ordering

 11

1 2 3 4

1 2 3 4

1 2 3 4 1 3 24

1 23 4

Sliding

Arbitrary

Linearizing

̔ Arbitrary – no guaranteed order.  
̔ Linearizing – objects pointing to 
one another are moved into adjacent 
positions. 
̔ Sliding – maintaining the original 
order of allocation.

Worst

Best

Good
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The Two Finger  Algorithm  
[Edwards 1974]

• Simplest algorithm:  
– Designed for objects of equal size 
– Order of objects in output is arbitrary.  
– Two passes.  

• First pass: compact.  
• Second pass: update pointers.
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Two finger, pass I - Example
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livefree
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Pass I: Compact
• Use two pointers: 

– free:  search from heap start for free space. 
– Live: search from heap end for a live object. 
– When both find, move object to free spot.  

• When an object is moved, a pointer to its 
new location is left at its old location.
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Pass II: Fix Pointers

• Go over live objects in the heap 
• For each pointer 

– If points to free area: fix it using the forwarding 
pointer. 
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Partial Adaption to Variable Sized Objects

• Divide heap to regions. 
• Each region has one size 

objects.  
• Perform compaction via two 

fingers for each region 
separately.
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Two finger – Properties
☺Simple! 
☺Relatively fast: One pass + pass on live 

objects (and their previous location).  
☺No extra space required! 
☹ Objects restricted to equal size.  
☹ Order of objects in output is arbitrary.  

☹ This significantly deteriorates program efficiency!  
Thus – not used in practice. 
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The Lisp2 Algorithm
• Goals: handle variable sized objects, keep order 

of objects.  
• Requires one additional pointer field for each 

object.  
• The picture:  
 

• Note: cannot simply  
keep forwarding pointer  
in original address.  It may  
be overwritten by a moved object. 
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The Lisp2 Algorithm
• Pass 1: Address computation.  Keep new address in 

an additional header field.  
• Pass 2: pointer  

modification.  
• Pass 3: Move. 

two pointers (free & live) run  
from the bottom.  Live objects  
are moved to free  
space keeping their original order. 
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Lisp 2 – Properties

☺ Simple enough. 
☺ No constraints on object sizes.  
☺ Order of objects preserved. 
☹ Slower: 3 passes.  
☹ Extra space required – a pointer per object. 
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Notes on Previous Algorithms
• LISP2: extra space for forwarding pointers & three 

passes..  
• Two-fingers: creates arbitrary order.  
• Pointer fix up: using forwarding pointers.  

– Either before moving the objects (LISP2)  
– or after (two fingers).  

• The next algorithm is more complicated.   
– Fixing pointers while moving objects.  
– No extra space required.  
– Order of objects preserved. 
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Jonker’s Algorithm [1979]: Eliminate Extra Space

 22

free

Live

• No extra space: can't keep new location for each object.  
• Where do we move an object?  
• An important point: we know where to move each object 

when we get to it. If we don't keep this information, we 
lose it. 
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Jonker’s Algorithm [1979]: Eliminate Extra Space

• No extra space: can't keep new location for each object.  
• Where do we move an object?  
• An important point: we know where to move each object 

when we get to it. If we don't keep this information, we 
lose it.  

• Basic idea  (threading method):  
for each object O, keep list of all pointers that reference 
it.  (The pointers are “threaded”.)  
Issues to solve:  
• list with no extra space = in objects,  
• objects that move foil the list structure. 
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Threading: a List with no Space Overhead

• Observations for a Java-Like Environments.  
• Pointers only point to object head.  
• JVM keeps a header for each object.   

– Size of header larger than a pointer.  
– Info in header distinguishable from a pointer (e.g., pointer to 

class info).  
• Use this structure to “thread” pointers referencing an 

object.   
– Let’s thread 3 pointers referencing object D…
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Threading Example

 25

Header

A B C

D

Before Threading D

D

1) header info moves to pointer 
2) pointer location put in header. 
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A B C

P

After threading D with A

D

Threading Example

1) header info moves to pointer 
2) pointer location put in header. 
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A B C

P

After threading D 
 with A and B

D

Threading Example

1) header info moves to pointer 
2) pointer location put in header. 
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After threading D  
with A, B and C

A B C

P

D

From now on, when we say “thread 
p” for pointer p, we mean:  
1) header of referenced object 
replaces pointer 
2) put pointer location in header. 

Threading Example

1) header info moves to pointer 
2) pointer location put in header. 
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After threading D with A, B and C

A B C

P

D
Note that if we move 
one of the objects now, 
we destroy the list!

Threading Example
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Modify pointers on a threaded list to 
reference a new location

// Update thread, starting from node P to point to new location of P  update( P, 
new-location ) { 

 next = Heap[ P ]; 
 while pointer( next ) // Update thread to point to the location of  
    // P, free, till data different from pointer  
    // reached (‘info’ in our example) 
  temp = Heap[next]; 
  Heap[next] = new-location;  // Point to new location  
  next = temp;  // Get next object to update 
      
 Heap[ P ] = next;   // Put ‘info’ back in P 
}
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A Simplified Version: 3 Passes
• Go over the heap once and thread all pointers.  
• Go over the heap again and fix pointers:  

– When reaching an object O, its new address is 
known.  

– Use the threaded list to fix all pointers to O.  
– Un-thread O's list to restore the heap. 

• Go over the heap again and move objects.  

 31

Can we do this with only 2 heap passes? 
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Forwards and Backwards Pointers
• While going over the heap and threading.   
• Observation 1: when reaching an object in the first pass 

all forwards pointers to it are threaded.  
• Action 1: at that time --- update these pointers.   
• Observation 2: when completing the first pass, all 

objects have all backwards pointers threaded to them.   
• During second pass: update the threaded backwards 

pointers and move the object. 
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Note different terms: 
Forwarding pointer: a pointer that shows where object has moved  
Forwards pointer: a property of a pointer (points to higher addresses)
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Threaded Methods –  
P’s Point of View

 33

P

in
fo

Initial configuration - forward and backward 
pointers to P.
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Threaded Methods –  
P’s Point of View
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P

info

When P is first reached in first pass-  
all forward pointers to P are threaded.
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Threaded Methods –  
P’s Point of View
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P

in
fo

P’=new-location
After update(P, free) 
was called by  
First-pass - 
forward pointers refer 
to P’s new location.
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Threaded Methods –  
P’s Point of View
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P

P’ By the end of first-pass 
backward pointers 
to P are threaded.

info



© Erez Petrank

Threaded Methods –  
P’s Point of View
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P

P’

At the end of update_backward_pointers - backward 
pointers are updated and P is moved.

in
fo
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Jonker’s Algorithm

• First heap pass: for each object O 
– Determine where O should move 
– Update all (incoming) forwards pointers to O (already threaded) 
– Thread O’s (outgoing) forwards & backwards pointers 

• Second heap pass: for each object 
– Determine where it should move 
– Update all (incoming) backward pointers (already threaded) 
– Move object

 38
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Jonker’s Algorithm – Pass I

March 11, 2014
 39

Current object

H H HH

Current free location
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Jonker’s Algorithm – Pass I
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Current object

H H Hh

Current free location

Step 1: Update threaded 
pointers with new location. 
And return the header.  

H
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Jonker’s Algorithm – Pass I
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Current object

H H HH

Current free location

Step 1: Update threaded 
pointers with new location. 
And return the header.  
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Jonker’s Algorithm – Pass I
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Current object

H H HH

Current free location

Step 2: Move free forwards 
according to the length of 
orange.  
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Jonker’s Algorithm – Pass I
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Current object

H H HH

Current free location

Step 2: Move free forwards 
according to the length of 
orange.  
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Jonker’s Algorithm – Pass I
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Current object

H H HH

Current free location

Step 3: Thread all orange’s 
pointers to their targets. 
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Jonker’s Algorithm – Pass I
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Current object

HH HH

Current free location

Step 3: Thread all orange’s 
pointers to their targets. 
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Jonker’s Algorithm – Pass I
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Current object

HH HH

Current free location

Step 4: Move to next object. 



© Erez Petrank

Jonker’s Algorithm – Pass I
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Current object

HH HH

Current free location

Step 4: Move to next object. 
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Jonker’s Algorithm – Pass I
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Current object

HH HH

Current free location

Step 1: Update threaded 
pointers with new location. 
And return the header.
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Jonker’s Algorithm – Pass I
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Current object

HH HH

Current free location

Step 1: Update threaded 
pointers with new location. 
And return the header.
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Jonker’s Algorithm – Pass I
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Current object

HH HH

Current free location

Step 2: Advance free pointer.
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Jonker’s Algorithm – Pass I
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Current object

HH HH

Current free location

Step 2: Advance free pointer.
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Jonker’s Algorithm – Pass I
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Current object

HH HH

Current free location

Step 3: Thread red’s pointer
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Jonker’s Algorithm – Pass I
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Current object

HH HH

Current free location

Step 3: Thread red’s pointer
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Jonker’s Algorithm – Pass I
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Current object

HH HH

Current free location

Step 4: When trying to move 
to next object – no more 
objects. 
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Jonker’s Algorithm – Pass I
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HH HH

Step 4: When trying to move 
to next object – no more 
objects. 
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Jonker’s Algorithm – Pass II
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HH HH

Step 1: find first (green) 
object and update pointers to 
object. 

Step 1: find first (green) 
object and update pointers to 
object. 

Current object

Current free location
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Jonker’s Algorithm – Pass II
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H H HH

Step 1: find first (green) 
object and update pointers to 
object. 

Current object

Current free location
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Jonker’s Algorithm – Pass II
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H H HH

Current object

Current free location

Step 2: move (green) object. 
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Jonker’s Algorithm – Pass II
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H H HH

Step 2: move (green) object. Current object

Current free location
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Moving during Second Pass 
• Can’t move an object if its fields are involved in a list.  
• Claim: when moving an object (second phase) none of 

its fields are part of a threaded list. 
• Threaded lists: due to its header or pointers.  
• It’s header has been handled before move 
• Forwards pointers: have already been handled in first 

pass. 
• Backwards pointers (in this object) point to objects that 

we are done handling.

 60
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Threaded Methods - Forward pointers
First-pass( ) { 
 for R in Roots  // Thread the roots first  
  thread ( R ); 
 free = Heap_bottom; // ‘free’ is a next free space variable,   
 P = Heap_bottom;  //  P will be the “live” pointer 
 while P <= Heap_top 
  if marked( P )  // Check that P is a live object 
   update( P, free ); // When P is reached, forward pointers are 
     // threaded and can be updated with ‘free’ 
   for Q a pointer in P         // Thread all pointers of a live object 
    thread( Q ); 
   free = free + size( P );     // Location for the next live object 
  P = P + size( P );  // Go to next object 
}
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Threaded Methods - Backward pointers
Second-pass( ) { 
 free = Heap_bottom; 
 P = Heap_bottom; 
 while P <= Heap_top 
  if marked( P )  // Check that P is a live object  

    update( P, free );                 // When P is reached again, backward pointers  
     // are threaded and can be updated with ‘free’. 

   // Self reference is treated as back pointer  
    move( P, free );                 // Move P to its new location - ‘free’ 

      free = free + size( P );         // Calculate the location for the next live cell 
 P = P + size( P );                     // Go to next object 

}
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Threaded Methods - Analysis
• No extra space required 
• Variable size objects 
• Preserves order 
• Two passes  
• But: 

– each iteration may touch several other objects.   
– requires a header distinguishable from pointer. 
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Threaded Methods - Analysis

• How many times is each object touched?  
– Once by first pass 
– Once by second pass 
– For each pointer referencing it, it is touched once 

when threading the pointer.   
– For each pointer in the object, it is touched during 

update.  
• Asymptotic complexity O(M) (who cares?)
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Summary --- Single Threaded Compaction

Algorithm Space Passes Obj size Order

Two-finger None 2 Fixed Arbitrary

LISP2 1 pointer-sized 
per object

3 Variable Sliding

Threaded (Pointer-sized 
headers)

2 Variable Sliding
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Parallel Compaction: SUN’s Version
• [Flood Detlefs Shavit Zhang 2001] 
• First parallel compaction  
• 3 phases (similar to the LISP 2 algorithm): 

– Forwarding pointers installation 
– Fix up pointers phase 
– Move phase 

• Each phase done in parallel 
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Splitting the work

• Heap divided to n regions  
–n is the number of compaction threads 
–Division not uniform; it balances work 

• Each region compacted independently so 
compaction does not use synch’ed operations.  

• Number of regions determines “quality” of 
compaction.  

• Trade-off between quality of compaction and load 
balancing.   

 68



© Erez Petrank

Improving quality

• In even regions – push left 
• In odd regions – push right

 69

Region 1 Region 2 Region 3 Region 4

Result: only n/2 piles of objects (rather than n) 
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Working in parallel

• Phase 1: each thread grabs a region and installs forwarding 
references.  

• Phase 2: each thread grabs a region and updates its pointers 
• Phase 3: each thread grabs a region and compacts the objects 

therein.  

• Between phases threads wait for each other.  
• Grabbing must be synchronized, the rest of the work is 

independent. 

 70
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Properties

☺ Runs in parallel – good scalability! 
☺ Keeps order of objects 
☹ Objects are not fully packed 
☹ Requires extra word per object (or a smart use of 

the reclaimable space) 
☹ Coarse-grained load balancing  
☹ 3 passes

 71
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IBM’s Parallel Compaction
• [Abuaiadh-Ossia-Petrank-Silbershtein 2004] 
• A more involved parallelization of the LISP-II 

compaction algorithm.  
• Unlike SUN: Objects are packed to the bottom.  
• Space overhead: replace forwarding pointer in each 

object with a smaller table.   
• Two heap passes (each executed in parallel): 

– Move and keep some info 
– Use info to fix up pointers

 73
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Parallelism versus Compaction 
• First goal: compact all objects together instead of 

creating several piles of objects.  
• Heap is divided  to n  areas  
• For example: n =64 was used for a 640MB heap and  

8 processors.

 74

10MB

640MB
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Squeezing the Objects in Spite of 
Parallelism

• The goal: move all objects to the lower addresses.  
• Each thread compacts one area at a time.  
• Beginning:  each area is compacted into itself.  
• After a while:  

• vacant spaces appear in compacted areas.  
• compact objects of one area into the free 

space of a lower area    
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First Phase: Moving the Objects
• A thread picks the next area to be compacted;  
• it finds a lowest area with empty space to compact into; 
• if no such area exists, it compact to the bottom of the 

same area.  

• While moving the objects, record information in a small 
additional table that will enable updating the pointers.  
– This replaces the forwarding pointers.  
– It implements a map from old to new addresses. 

 76



Moving the objects: an Example

̔ Two threads, 4 area 
̔ (Thread#1,red area), (Thread#2,blue area)

̔ (Thread#1,brown area), (Thread#2,green area) 

At the end



More areas
• 4 threads, 64 areas,  
• In the end we may have some holes at the last areas 
• For a reasonable number of areas, these holes are 

insignificant.

At the end

Empty space

………….

………….



Area Size Tradeoff
“Holes” in 
the Heap

Preserve 
allocation 
order

Load 
balancing

Oversized areas - ☺ -
“Normal” size

☺ ☺ ☺
Areas too small

☺ - ☺



Phase 2: Fix up

• Divide the heap to n areas.  
• Each thread fixes up pointers in one area at a time.  

   Remember: Information is recorded during the move 
phase to allow redirecting the pointers in the second 
phase. 



Implementing the Fix-Up Map

• We consider the heap as a sequence of blocks (say, 
block = 256 bytes) 

• Blocks  (256 bytes)  << areas (10 Mbytes). 
• Information is recorded per block rather than per object. 

• Objects in a block are moved together;  
objects of different blocks are never interleaved. 

• The idea: record less information per block, but perform 
more computation during fix up of each reference. 
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The Block Table

Block 175

Block 176

Block 177

. 

. 

.

. 

. 

.

Ptr 175
Ptr 176
Ptr 177

Old 
Heap:

. 

. 

.

. 

. 

.

New
Heap:



Recorded Information
• Block table: For each block keep the new location of the 

first object in the block.  
– One pointer per block.  

• Two bit maps (1 bit for any 8 bytes). 
– Old bitmap represents location of objects before the move 

(created while marking live objects)   
– New bitmap represents location of objects after the move 

(created while moving the objects).  
– One bit stands for 8 bytes in the heap (8-byte alignment)



Calculating a New Location
• Given an old address of an object A: 
• Find A’s block (its most significant bits) 
• Using the block table, obtain the new address (B) of 

the first object in the block.  
• Using the old bitmap: find the ordinal number (i) 

of the object in the block.  
• Using the new bitmap: find the relative new 

location (r) of the i-th object in the block.   
• Add B+r  to obtain the new location. 



Example
• Calculating the new location of object C.  
• Old bitmap  C is third in block  (i=3) 
• New bitmap  relative address of C (to A)  (r = 0x18)  
• Block table  new address of A = 0x58296200 
• A + r = new location = 0x58296218

A B C D

A B C D



Space overhead
• For each block (say, 256 bytes),  

– A pointer: 4 (or 8 for 64-bits platforms) bytes 
– 2 Bitmaps: 4+4 bytes 
– Overall: 12 (or 16) bytes for each 256 bytes (4.7-6.2%) 

• Existing data structures may be reused, e.g., the GC 
markbits table.  

• Increasing the size of the block: reduces the extra space 
but increases the computation cost. 



Properties
• Almost all objects are condensed to the bottom of the 

heap.  
• Order of objects is essentially preserved.  
• Good parallelism with almost no contention.  
• Space overhead low compared to forwarding 

pointers.    



Measurements
• Algorithms compared: 

– Jonker’s threaded algorithm 
– Restricted parallel algorithm (to a single thread) 
– Fully parallel algorithm 

• Platform: AIX (on 8-way PPC, 64 bits) and NT (on 4-way 
Pentium, 32 bits)  

• Benchmarks: Specjbb2000 and Trade 3 on Websphere.  
• Heap size: determined so that live objects take 60% of 

the heap: 600MB for SPECjbb and 180MB for Trade3. 



Specjbb2000
• Compaction runs when a warehouse is added, those 

(substantial) parts of the run are not considered for the 
measurements  

• Thus, throughput is not affected by the compaction 
times.   
– May be affected by bad compaction quality.  

• We measure compaction times. 



Results: Compaction Times for 
(Specjbb2000) on a Uniprocessor

Compaction Time
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Results: Speedup (Specjbb2000)

Speedup
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Results: Throughput (Specjbb2000)
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Results: Trade3 (Websphere)
• 4-way NT machine 
• Heap size: 180MB 
• Additional test: we forced compaction each 20gc

Compaction type Compaction time #Requests per second

Triggering ≈ 90 gc        20gc 
default

≈ 90 gc          20gc 
default

Threaded 
Parallel-restricted 
Parallel

  1698            1671 
  1387            1251 
  499              440

     219.8          224.5 
     221.7          226.1 
     222.4          229.1
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Conclusion --- IBM’s Parallel Compaction 
Algorithm 

• More efficient than the previously used threaded 
algorithm even on a uniprocessor.  

• Good speedup 
• Good compaction quality. 
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The Compressor
• [Kermany-Petrank 2006] 
• The goal: concurrent and parallel compaction with low 

overhead.  
• Overhead reduction via a single heap pass.  
• Extending with parallelism and concurrency:  
• Objects are packed to the bottom, maintaining 

address order.  
• We will study the Compressor around the 10th lecture. 
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Conclusion --- Compaction
• Uniprocessor compaction: 

– Two fingers, Lisp2, Threaded (Yonkers) 
• Parallel compaction: 

– Sun’s compaction, IBM’s compaction. 
– (Compressor: parallel and concurrent, delayed…) 

• Issues considered:  
– Efficiency, space overhead, parallelism, compaction 

quality, locality. 
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