Algorithms for Dynamic Memory
Management (236780)

Lecture 2

Erez Petrank

© Erez Petrank

Topics last week

« Qverview on
— Memory management
— The 3 classic algorithms
— Course topics

« The Mark & Sweep algorithm
— Basics

— Recursion explicit, pointer reversal, mark-bit table,
lazy sweeping, bitwise sweep

The Mark-Sweep algorithm

* Traverse live objects & mark black.
* White objects can be reclaimed.

registers /Plj'l

Heap

Roots

yoejs

Mark-Compact

* With time the heap gets fragmented.

* When space is too fragmented to allocate, a
compaction algorithm is used.

Heap

© Erez Petrank

A Header

The memory manager keeps a header for each object.
User allocates 24 bytes, the actual allocation is larger!

Header typically has: length, control bits (for marking an
object, synchronization, hashing, etc), pointer to class
(for methods and fields types).

Header

Fields of object

Memory Management

Compaction

© Erez Petrank

Overview

« Motivation

— Fragmentation — problem and solutions.
* Five Algorithms:

— Two-finger Alg — for objects of equal size.

— Lisp 2 Alg.

— Jonkers threaded algorithm

— SUN's parallel algorithm

— IBM’s parallel algorithm

— (The Compressor, a more advanced algorithm is presented in
lecture 10)

e Summary.

© Erez Petrank

Motivation

« Fragmentation is the main drawback of the mark-sweep
algorithms.
— Large objects cannot be allocated (even after GC).
— Allocation becomes difficult (and inefficient).
— Increasing heap size means page faults and cache misses.
— Longer sweep

— Locality: objects allocated together tend to be accessed
together. Thus, mixing allocated objects with “old” objects
increases cache-misses.

« Compaction algorithms fix above problems by moving all
live objects together.

© Erez Petrank

The Generic Task

Assume live objects are marked.

Move objects to one (or a small number of) areas
INn the heap

Modify pointers to reference the new locations.

© Erez Petrank

Comparison Criteria

Complexity:

— Number of heap passes.

— Passes over auxiliary tables.

— Cache performance.

Extra space required.

Restrictions on objects (e.g., equal size).
Compaction quality:

— Order of objects in output.

— Number of packed areas (best: 1 area).

© Erez Petrank

10

Object Ordering

_ Worst
Arbitrary
. Best
. Sliding

m Arpitrary — no guaranteed order.
® | inearizing — objects pointing to
one another are moved into adjacent
positions.
® Sliding — maintaining the original Good

order of allocation. Llnearlzmg

© Erez Petrank

11

The Two Finger Algorithm
[Edwards 1974]

* Simplest algorithm:
— Designed for objects of equal size
— Order of objects in output is arbitrary.
— [wo passes.

* First pass: compact.
* Second pass: update pointers.

© Erez Petrank

12

Two finger, pass | - Example

free@ > <—m 1 live

1 20 3 4 5
U !
1 20 3 4 5

U !
511 20 3 4
W
51114 2|3

Pass |: Compact

* Use two pointers:
— free: search from heap start for free space.
— Live: search from heap end for a live object.
— When both find, move object to free spot.

* When an object is moved, a pointer to its
new location is left at its old location.

Pass |l: Fix Pointers

« (GO over live objects in the heap
* For each pointer

— If points to free area: fix it using the forwarding
pointer.

Compacted area free area

© Erez Petrank

15

Partial Adaption to Variable Sized Objects

* Divide heap to regions.

* Each region has one size
objects.

« Perform compaction via two
fingers tfor each region
separately.

16
© Erez Petrank

Two finger — Properties

@ Simple!

@ Relatively fast: One pass + pass on live
objects (and their previous location).

@No extra space required!

® Objects restricted to equal size.

® QOrder of objects in output is arbitrary.

® This significantly deteriorates program efficiency!
Thus — not used in practice.

The Lisp2 Algorithm

Goals: handle variable sized objects, keep order
of objects.

Requires one additional pointer field for each
object.

Note: cannot simply TT T T

keep forwarding pointer ‘
in original address. It may free
be overwritten by a moved object.

© Erez Petrank

18

The Lisp2 Algorithm

« Pass 1: Address computation. Keep new address in
an additional header field.

« Pass 2: pointer
modification.

* Pass 3: Move.

two pointers (free & live) run A
from the bottom. Live objects free

are moved to free
space keeping their original order.

19
© Erez Petrank

Lisp 2 — Properties

& Simple enough.

@ No constraints on object sizes.

& Order of objects preserved.

® Slower: 3 passes.

® Extra space required — a pointer per object.

© Erez Petrank

20

Notes on Previous Algorithms

LISP2: extra space for forwarding pointers & three
passes..

Two-fingers: creates arbitrary order.

Pointer fix up: using forwarding pointers.
— Either before moving the objects (LISP2)
— or after (two fingers).

The next algorithm is more complicated.
— Fixing pointers while moving objects.
— No extra space required.
— QOrder of objects preserved.

21
© Erez Petrank

Jonker’s Algorithm [1979]: Eliminate Extra Space

No extra space: can't keep new location for each object.

Where do we move an object?

An important point: we know where to move each object
when we get to it. If we don't keep this information, we

/:: ™~

[T 1T Live

T

free

22
© Erez Petrank

Jonker’s Algorithm [1979]: Eliminate Extra Space

No extra space: can't keep new location for each object.

Where do we move an object?

An important point: we know where to move each object
when we get to it. If we don't keep this information, we
lose it.

Basic idea (threading method):

for each object O, keep list of all pointers that reference
it. (The pointers are “threaded”.)

Issues to solve:

* list with no extra space = in objects,
* oObjects that move foil the list structure.

© Erez Petrank

23

Threading: a List with no Space Overhead

Observations for a Java-Like Environments.
Pointers only point to object head.
JVM keeps a header for each object.

— Size of header larger than a pointer.

— Info in header distinguishable from a pointer (e.g., pointer to
class info).

Use this structure to “thread” pointers referencing an
object.
— Let’s thread 3 pointers referencing object D...

24
© Erez Petrank

Threading Example

A B C
T N
g J
Header D
Before Threading D 1) header info moves to pointer

2) pointer location put in header.

25
© Erez Petrank

Threading Example

AH B [T Cx
e

1) header info moves to pointer
2) pointer location put in header.

After threading D with A

26
© Erez Petrank

Threading Example

A h B C :

J

After ’rhr'eading D 1) hegder info moves tp pointer
. 2) pointer location put in header.
with A and B

®
I

D

27
© Erez Petrank

Threading Example

A h B C
From now on, when we say "thread J
p" for pointer p, we mean:

1) header of referenced object —

replaces pointer D
2) put pointer location in header.

1) header info moves to pointer
2) pointer location put in header.

After threading D
with A, Band C

28
© Erez Petrank

Threading Example

A h B C
P J

D

Note that if we move
one of the objects now,
we destroy the list!

After threading D with A, Band C

29
© Erez Petrank

Modify pointers on a threaded list to
reference a new location

// Update thread, starting from node P to point to new location of P update(P,
new-location) {

next = Heap|[P |;
while pointer(next) // Update thread to point to the location of
/] P, free, till data different from pointer
/[reached (‘info’ in our example)
temp = Heap[next];

Heap[next] = new-location; // Point to new location
next = temp; /| Get next object to update
Heap[P] = next; // Put ‘info’ back in P

© Erez Petrank

30

A Simplified Version: 3 Passes

* Go over the heap once and thread all pointers.
« Go over the heap again and fix pointers:

— When reaching an object O, its new address is
Known.

— Use the threaded list to fix all pointers to O.
— Un-thread O's list to restore the heap.
« Go over the heap again and move objects.

Can we do this with only 2 heap passes?

Forwards and Backwards Pointers

« While going over the heap and threading.

* Observation 1: when reaching an object in the first pass
all forwards pointers to it are threaded.

« Action 1: at that time --- update these pointers.

« Observation 2: when completing the first pass, all
objects have all backwards pointers threaded to them.

« During second pass: update the threaded backwards
pointers and move the object.

Note different terms:
Forwarding pointer: a pointer that shows where object has moved
Forwards pointer: a property of a pointer (points to higher addresses)

Threaded Methods —
P’s Point of View

[=

: : . l

info

Initial configuration - forward and backward
pointers to P.

© Erez Petrank

Threaded Methods —
P’s Point of View

N

info < ® « ° l

When P is first reached in first pass-
all forward pointers to P are threaded.

© Erez Petrank

Threaded Methods —
P’s Point of View

—

) . J

info

P
After update(P, free)

kP’=new-Iocation was called by
First-pass -

forward pointers refer

to P's new location.

35
© Erez Petrank

Threaded Methods —
P’s Point of View

T

l

T ° info < °

k P’ By the end of first-pass
backward pointers
to P are threaded.

36
© Erez Petrank

Threaded Methods —
P’s Point of View

| |

ﬁ\iyJJ

info

At the end of update_backward_pointers - backward
pointers are updated and P is moved. 37

© Erez Petrank

Jonker’s Algorithm

 First heap pass: for each object O
— Determine where O should move
— Update all (incoming) forwards pointers to O (already threaded)
— Thread O’s (outgoing) forwards & backwards pointers

« Second heap pass: for each object
— Determine where it should move
— Update all (incoming) backward pointers (already threaded)
— Move object

38
© Erez Petrank

Jonker’s Algorithm — Pass |

e
N

Current object

Current free location

39
March 11, 2014 © Erez Petrank

Jonker’s Algorithm — Pass |

e

Step 1. Update threaded
pointers with new location. Current object
And return the header.

Current free location

40
© Erez Petrank

Jonker’s Algorithm — Pass |

e

Step 1. Update threaded
pointers with new location. Current object
And return the header.

Current free location

41
© Erez Petrank

Jonker’s Algorithm — Pass |

e

Step 2: Move free forwards
according to the length of Current object
orange.

Current free location

42
© Erez Petrank

Jonker’s Algorithm — Pass |

e

VN

Step 2: Move free forwards
according to the length of Current object
orange.

Current free location

43
© Erez Petrank

Jonker’s Algorithm — Pass |

e

VN

Step 3: Thread all orange’s
pointers to their targets. Current object

Current free location

44
© Erez Petrank

Jonker’s Algorithm — Pass |

e

VN

Step 3: Thread all orange’s
pointers to their targets. Current object

Current free location

45
© Erez Petrank

Jonker’s Algorithm — Pass |

e

VN

Step 4: Move to next object.
Current object

Current free location

46
© Erez Petrank

Jonker’s Algorithm — Pass |

e

VN

Step 4: Move to next object.
Current object

Current free location

47
© Erez Petrank

Jonker’s Algorithm — Pass |

e

VN

Step 1. Update threaded
pointers with new location. Current object
And return the header.

Current free location

48
© Erez Petrank

Jonker’s Algorithm — Pass |

e

VN ‘

Step 1. Update threaded
pointers with new location. Current object
And return the header.

Current free location

49
© Erez Petrank

Jonker’s Algorithm — Pass |

e

VN

Step 2: Advance free pointer.
Current object

Current free location

50
© Erez Petrank

Jonker’s Algorithm — Pass |

e

VN \

Step 2: Advance free pointer.
Current object

Current free location

51
© Erez Petrank

Jonker’s Algorithm — Pass |

e

VN \

Step 3: Thread red's pointer
Current object

Current free location

oY4
© Erez Petrank

Jonker’s Algorithm — Pass |

m
Step 3: Thread red's pointer \
Current object

Current free location

53
© Erez Petrank

Jonker’s Algorithm — Pass |

il

VN

to next object - no more
objects.

Step 4: When trying o move
Current object

Current free location

54
© Erez Petrank

Jonker’s Algorithm — Pass |

VN

Step 4: When trying o move
to next object - no more
objects.

b5
© Erez Petrank

Jonker’s Algorithm — Pass ||

Step 1. find first (green)
object and update pointers to
object.

Current object

Current free location

56
© Erez Petrank

Jonker’s Algorithm — Pass ||

Step 1: find first (green)
object and update pointers to
object.

Current object

Current free location

57
© Erez Petrank

Jonker’s Algorithm — Pass ||

Step 2: move (green) object. Current object

Current free location

58
© Erez Petrank

Jonker’s Algorithm — Pass ||

Step 2: move (green) object. Current object

Current free location

59
© Erez Petrank

Moving during Second Pass

Can’t move an object if its fields are involved in a list.

Claim: when moving an object (second phase) none of
its fields are part of a threaded list.

Threaded lists: due to its header or pointers.
It's header has been handled before move

Forwards pointers: have already been handled in first
pass.

Backwards pointers (in this object) point to objects that
we are done handling.

Threaded Methods - Forward pointers

First-pass() {

for R in Roots // Thread the roots first
thread (R);
free = Heap_bottom; // ‘free’ is a next free space variable,
P = Heap_bottom; /| P will be the “live” pointer
while P <= Heap_top
if marked(P) /| Check that P is a live object

update(P, free); // When P is reached, forward pointers are
/[threaded and can be updated with ‘free’

for Q a pointer in P /[Thread all pointers of a live object
thread(Q);
free = free + size(P); // Location for the next live object
P=P+size(P); // Go to next object

61
© Erez Petrank

Threaded Methods - Backward pointers

Second-pass() {

free = Heap_bottom;

P = Heap_bottom;

while P <= Heap_top

if marked(P) /| Check that P is a live object
update(P, free); /[When P is reached again, backward pointers

// are threaded and can be updated with ‘free’.
/| Self reference is treated as back pointer

move(P, free); // Move P to its new location - ‘free’
free = free + size(P); /| Calculate the location for the next live cell
P=P +size(P); // Go to next object

62
© Erez Petrank

Threaded Methods - Analysis

 No extra space required
« Variable size objects

* Preserves order

« [wO passes

* But:

— each iteration may touch several other objects.
— requires a header distinguishable from pointer.

© Erez Petrank

63

Threaded Methods - Analysis

« How many times is each object touched?
— Once by first pass
— Once by second pass

— For each pointer referencing it, it is touched once
when threading the pointer.

— For each pointer in the object, it is touched during
update.

* Asymptotic complexity O(M) (who cares?)

© Erez Petrank

64

Summary --- Single Threaded Compaction

Algorithm | Space Passes |Obj size Order

Two-finger |None 2 Fixed Arbitrary

LISP2 1 pointer-sized 3 Variable Sliding
per object

Threaded |(Pointer-sized 2 Variable Sliding
headers)

65
© Erez Petrank

Parallel Compaction: SUN’s Version

* |Flood Detlefs Shavit Zhang 2001]

« First parallel compaction

* 3 phases (similar to the LISP 2 algorithm):
— Forwarding pointers installation
— FiX up pointers phase
— Move phase

» Each phase done in parallel

© Erez Petrank

67

Splitting the work

Heap divided to n regions
—n is the number of compaction threads
—Division not uniform; it balances work

Each region compacted independently so
compaction does not use synch’'ed operations.

Number of regions determines “quality” of
compaction.

Trade-off between quality of compaction and load
balancing.

Improving quality

* |In even regions — push left
* In odd regions — push right

Region 1 Region 2 Region 3 Region 4

Result: only n/2 piles of objects (rather than n)

© Erez Petrank

69

Working in parallel

Phase 1: each thread grabs a region and installs forwarding
references.

Phase 2: each thread grabs a region and updates its pointers

Phase 3: each thread grabs a region and compacts the objects
therein.

Between phases threads wait for each other.

Grabbing must be synchronized, the rest of the work is
independent.

© Erez Petrank

70

Properties

& Runs in parallel — good scalability!
& Keeps order of objects
® QObjects are not fully packed

® Requires extra word per object (or a smart use of
the reclaimable space)

® Coarse-grained load balancing

® 3 passes

IBM’s Parallel Compaction

|Abuaiadh-Ossia-Petrank-Silbershtein 2004]

A more involved parallelization of the LISP-
compaction algorithm.

Unlike SUN: Objects are packed to the bottom.

Space overhead: replace forwarding pointer in each
object with a smaller table.
Two heap passes (each executed in parallel):

— Move and keep some info

— Use info to fix up pointers

Parallelism versus Compaction

* First goal: compact all objects together instead of
creating several piles of objects.

« Heap is divided ton areas

« For example: n =64 was used for a 640MB heap and
8 Processors.

640MB

74
© Erez Petrank

Squeezing the Objects in Spite of
Parallelism

The goal: move all objects to the lower addresses.

Each thread compacts one area at a time.
Beginning: each area is compacted into itself.
After a while:

e vacant spaces appear in compacted areas.

* compact objects of one area into the free
space of a lower area

© Erez Petrank

75

First Phase: Moving the Objects

A thread picks the next area to be compacted;
it finds a lowest area with empty space to compact into

If N0 such area exists, it compact to the bottom of the
same area.

While moving the objects, record information in a small
additional table that will enable updating the pointers.

— This replaces the forwarding pointers.

— It implements a map from old to new addresses.

© Erez Petrank

76

Moving the objects: an Example

® Two threads, 4 area
® (Thread#1,red area), (Thread#2,blue area)

m (Thread#1,brown area), (Thread#2,green area)

1 At the end

More areas

4 threads, 64 areas,

* Inthe end we may have some holes at the last areas

 For areasonable number of areas, these holes are
insignificant.

At the end

Area Size Tradeoff

“Holes” in
the Heap

Preserve
allocation
order

Load
balancing

Oversized areas

o e

o’

“Normal” size

))
))

o e

o’

))
))

Areas too small

))
))

))
))

Phase 2: Fix up

* Divide the heap to n areas.
« Each thread fixes up pointers in one area at a time.

Remember: Information is recorded during the move
phase to allow redirecting the pointers in the second
phase.

Implementing the Fix-Up Map

We consider the heap as a sequence of blocks (say,
block = 256 bytes)

Blocks (256 bytes) << areas (10 Mbytes).

Information is recorded per block rather than per object.

Objects in a block are moved together;
objects of different blocks are never interleaved.

The idea: record less information per block, but perform
more computation during fix up of each reference.

- The Block Table

Old ' New
Heap: : Heap: ~ S
) Ptr 176
Block 175 Ptr 177
Block 176

Block 177

© Erez Petrank

Recorded Information

* Block table: For each block keep the new location of the
first object in the block.
— One pointer per block.

* Two bit maps (1 bit for any 8 bytes).

— Old bitmap represents location of objects before the move
(created while marking live objects)

— New bitmap represents location of objects after the move
(created while moving the objects).

— One bit stands for 8 bytes in the heap (8-byte alignment)

Calculating a New Location

Given an old address of an object A:
Find A’'s block (its most significant bits)

Using the block table, obtain the new address (B) of
the first object in the block.

Using the old bitmap: find the ordinal number (i)
of the object in the block.

Using the new bitmap: find the relative new
location (r) of the i-th object in the block.

Add B+r to obtain the new location.

Example

Calculating the new location of object C.

Old bitmap =* C is third in block (i=3)

New bitmap =? relative address of C (to A) (r = 0x18)
Block table =» new address of A = 0x58296200

A + r = new location = 0x58296218

Space overhead

For each block (say, 256 bytes),

— A pointer: 4 (or 8 for 64-bits platforms) bytes

— 2 Bitmaps: 4+4 bytes

— QOverall: 12 (or 16) bytes for each 256 bytes (4.7-6.2%)

Existing data structures may be reused, e.g., the GC
markbits table.

Increasing the size of the block: reduces the extra space
but increases the computation cost.

Properties

Almost all objects are condensed to the bottom of the
heap.

Order of objects is essentially preserved.
Good parallelism with almost no contention.

Space overhead low compared to forwarding
pointers.

Measurements

Algorithms compared:
— Jonker’s threaded algorithm
— Restricted parallel algorithm (to a single thread)
— Fully parallel algorithm

Platform: AlIX (on 8-way PPC, 64 bits) and NT (on 4-way
Pentium, 32 bits)

Benchmarks: Specjbb2000 and Trade 3 on Websphere.

Heap size: determined so that live objects take 60% of
the heap: 600MB for SPECjbb and 180MB for Trades3.

Specjbb2000

Compaction runs when a warehouse is added, those
(substantial) parts of the run are not considered for the
measurements

Thus, throughput is not affected by the compaction
times.

— May be affected by bad compaction quality.
We measure compaction times.

Results: Compaction Times for
(Specjbb2000) on a Uniprocessor

time (ms)

Compaction Time
3000

/,’/—"
2250

-)/‘//://:///_;,//j/./.
750 € Threaded

/ ® parallel-restricted
O T T T T T T T T

1 2 3 4 5 6 7 8 9 10 1" 12 13 14 15 16
Warehouses

Results: Speedup (Specjbb2000)

Speedup

7 Wb
'5 5.25 ., o3
© o/ o
H‘E 1/./-\-/'—.’-‘.&—
g 35 1
©
Q
a
& 175

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Warehouses

4 8 compacting threads 4 6 compacting threads
4 compacting threads 2 compacting threads

Results: Throughput (Specjbb2000)

Throughput
90000
O}
8 67500 /
@©
S
o 45000
£
=
E 22500 @ parallel-restricted i
- # Threaded
O T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 M 12 13 14 15 16
warehouse

Results: Trade3 (Websphere)

4-way NT machine
Heap size: 180MB
Additional test: we forced compaction each 20gc

Compaction type

Compaction time

#Requests per second

Triggering ~ 90 gc 20gc |~ 90 gc 20gc
default default

Threaded 1698 1671 219.8 2245

Parallel-restricted 1387 1251 2217 226.1

Parallel 499 440 2224 229.1

Conclusion --- IBM’s Parallel Compaction
Algorithm

More efficient than the previously used threaded
algorithm even on a uniprocessor.

Good speedup
Good compaction quality.

© Erez Petrank

94

The Compressor

[Kermany-Petrank 2006]

The goal: concurrent and parallel compaction with low
overhead.

Overhead reduction via a single heap pass.
Extending with parallelism and concurrency:

Objects are packed to the bottom, maintaining
address order.

We will study the Compressor around the 10t lecture.

95
© Erez Petrank

Conclusion --- Compaction

* Uniprocessor compaction:
— Two fingers, Lisp2, Threaded (Yonkers)
« Parallel compaction:

— Sun’s compaction, IBM’s compaction.
— (Compressor: parallel and concurrent, delayed...)

* |ssues considered:

— Efficiency, space overhead, parallelism, compaction
quality, locality.

© Erez Petrank

96

