
© Erez Petrank

Algorithms for Dynamic Memory
Management (236780)

 
 Lecture 2

Erez Petrank

 1

© Erez Petrank

Topics last week
• Overview on

– Memory management
– The 3 classic algorithms
– Course topics

• The Mark & Sweep algorithm
– Basics
– Recursion explicit, pointer reversal, mark-bit table,

lazy sweeping, bitwise sweep

 2

© Erez Petrank

The Mark-Sweep algorithm

• Traverse live objects & mark black.
• White objects can be reclaimed.

 3
s
ta
c
k
Heap

registers

Roots

© Erez Petrank

Mark-Compact

• With time the heap gets fragmented.
• When space is too fragmented to allocate, a

compaction algorithm is used.

 4

The
Heap

A Header
• The memory manager keeps a header for each object.
• User allocates 24 bytes, the actual allocation is larger!
• Header typically has: length, control bits (for marking an

object, synchronization, hashing, etc), pointer to class
(for methods and fields types).

 5

Header

Fields of object

© Erez Petrank

Memory Management
 

Compaction

 6

© Erez Petrank

Overview
• Motivation

– Fragmentation – problem and solutions.
• Five Algorithms:

– Two-finger Alg – for objects of equal size.
– Lisp 2 Alg.
– Jonkers threaded algorithm
– SUN’s parallel algorithm
– IBM’s parallel algorithm
– (The Compressor, a more advanced algorithm is presented in

lecture 10)
• Summary.

 7

© Erez Petrank

Motivation
• Fragmentation is the main drawback of the mark-sweep

algorithms.
– Large objects cannot be allocated (even after GC).
– Allocation becomes difficult (and inefficient).
– Increasing heap size means page faults and cache misses.
– Longer sweep
– Locality: objects allocated together tend to be accessed

together. Thus, mixing allocated objects with “old” objects
increases cache-misses.

• Compaction algorithms fix above problems by moving all
live objects together.

 8

© Erez Petrank

The Generic Task
• Assume live objects are marked.

• Move objects to one (or a small number of) areas
in the heap

• Modify pointers to reference the new locations.

 9

© Erez Petrank

Comparison Criteria
• Complexity:

– Number of heap passes.
– Passes over auxiliary tables.
– Cache performance.

• Extra space required.
• Restrictions on objects (e.g., equal size).
• Compaction quality:

– Order of objects in output.
– Number of packed areas (best: 1 area).

 10

© Erez Petrank

Object Ordering

 11

1 2 3 4

1 2 3 4

1 2 3 4 1 3 24

1 23 4

Sliding

Arbitrary

Linearizing

̔ Arbitrary – no guaranteed order.
̔ Linearizing – objects pointing to
one another are moved into adjacent
positions.
̔ Sliding – maintaining the original
order of allocation.

Worst

Best

Good

© Erez Petrank

The Two Finger Algorithm  
[Edwards 1974]

• Simplest algorithm:
– Designed for objects of equal size
– Order of objects in output is arbitrary.
– Two passes.  

• First pass: compact.
• Second pass: update pointers.

 12

© Erez Petrank

Two finger, pass I - Example

 13

1 2 3 4 5

1 2 3 4 5

livefree

5 1 2 3 4

5 1 24 3

© Erez Petrank

Pass I: Compact
• Use two pointers:

– free: search from heap start for free space.
– Live: search from heap end for a live object.
– When both find, move object to free spot.

• When an object is moved, a pointer to its
new location is left at its old location.

 14

© Erez Petrank

Pass II: Fix Pointers

• Go over live objects in the heap
• For each pointer

– If points to free area: fix it using the forwarding
pointer.

 15
Compacted area free area

© Erez Petrank

Partial Adaption to Variable Sized Objects

• Divide heap to regions.
• Each region has one size

objects.
• Perform compaction via two

fingers for each region
separately.

 16

© Erez Petrank

Two finger – Properties
☺Simple!
☺Relatively fast: One pass + pass on live

objects (and their previous location).
☺No extra space required!
☹ Objects restricted to equal size.
☹ Order of objects in output is arbitrary.

☹ This significantly deteriorates program efficiency!
Thus – not used in practice.

 17

© Erez Petrank

The Lisp2 Algorithm
• Goals: handle variable sized objects, keep order

of objects.
• Requires one additional pointer field for each

object.
• The picture:  
 

• Note: cannot simply  
keep forwarding pointer  
in original address. It may  
be overwritten by a moved object.

 18

free

© Erez Petrank

The Lisp2 Algorithm
• Pass 1: Address computation. Keep new address in

an additional header field.
• Pass 2: pointer  

modification.
• Pass 3: Move. 

two pointers (free & live) run  
from the bottom. Live objects
are moved to free  
space keeping their original order.

 19

free

© Erez Petrank

Lisp 2 – Properties

☺ Simple enough.
☺ No constraints on object sizes.
☺ Order of objects preserved.
☹ Slower: 3 passes.
☹ Extra space required – a pointer per object.

 20

© Erez Petrank

Notes on Previous Algorithms
• LISP2: extra space for forwarding pointers & three

passes..
• Two-fingers: creates arbitrary order.
• Pointer fix up: using forwarding pointers.

– Either before moving the objects (LISP2)
– or after (two fingers).

• The next algorithm is more complicated.
– Fixing pointers while moving objects.
– No extra space required.
– Order of objects preserved.

 21

© Erez Petrank

Jonker’s Algorithm [1979]: Eliminate Extra Space

 22

free

Live

• No extra space: can't keep new location for each object.
• Where do we move an object?
• An important point: we know where to move each object

when we get to it. If we don't keep this information, we
lose it.

© Erez Petrank

Jonker’s Algorithm [1979]: Eliminate Extra Space

• No extra space: can't keep new location for each object.
• Where do we move an object?
• An important point: we know where to move each object

when we get to it. If we don't keep this information, we
lose it.

• Basic idea (threading method):  
for each object O, keep list of all pointers that reference
it. (The pointers are “threaded”.)  
Issues to solve:
• list with no extra space = in objects,
• objects that move foil the list structure.

 23

© Erez Petrank

Threading: a List with no Space Overhead

• Observations for a Java-Like Environments.
• Pointers only point to object head.
• JVM keeps a header for each object.

– Size of header larger than a pointer.
– Info in header distinguishable from a pointer (e.g., pointer to

class info).
• Use this structure to “thread” pointers referencing an

object.
– Let’s thread 3 pointers referencing object D…

 24

© Erez Petrank

Threading Example

 25

Header

A B C

D

Before Threading D

D

1) header info moves to pointer
2) pointer location put in header.

© Erez Petrank
 26

A B C

P

After threading D with A

D

Threading Example

1) header info moves to pointer
2) pointer location put in header.

© Erez Petrank
 27

A B C

P

After threading D
 with A and B

D

Threading Example

1) header info moves to pointer
2) pointer location put in header.

© Erez Petrank
 28

After threading D
with A, B and C

A B C

P

D

From now on, when we say “thread
p” for pointer p, we mean:
1) header of referenced object
replaces pointer
2) put pointer location in header.

Threading Example

1) header info moves to pointer
2) pointer location put in header.

© Erez Petrank
 29

After threading D with A, B and C

A B C

P

D
Note that if we move
one of the objects now,
we destroy the list!

Threading Example

© Erez Petrank

Modify pointers on a threaded list to
reference a new location

// Update thread, starting from node P to point to new location of P update(P,
new-location) {

 next = Heap[P];
 while pointer(next) // Update thread to point to the location of
 // P, free, till data different from pointer
 // reached (‘info’ in our example)
 temp = Heap[next];
 Heap[next] = new-location; // Point to new location
 next = temp; // Get next object to update

 Heap[P] = next; // Put ‘info’ back in P
}

 30

© Erez Petrank

A Simplified Version: 3 Passes
• Go over the heap once and thread all pointers.
• Go over the heap again and fix pointers:

– When reaching an object O, its new address is
known.

– Use the threaded list to fix all pointers to O.
– Un-thread O's list to restore the heap.

• Go over the heap again and move objects.

 31

Can we do this with only 2 heap passes?

© Erez Petrank

Forwards and Backwards Pointers
• While going over the heap and threading.
• Observation 1: when reaching an object in the first pass

all forwards pointers to it are threaded.
• Action 1: at that time --- update these pointers.
• Observation 2: when completing the first pass, all

objects have all backwards pointers threaded to them.
• During second pass: update the threaded backwards

pointers and move the object.

 32

Note different terms:
Forwarding pointer: a pointer that shows where object has moved
Forwards pointer: a property of a pointer (points to higher addresses)

© Erez Petrank

Threaded Methods –  
P’s Point of View

 33

P

in
fo

Initial configuration - forward and backward
pointers to P.

© Erez Petrank

Threaded Methods –  
P’s Point of View

 34

P

info

When P is first reached in first pass-
all forward pointers to P are threaded.

© Erez Petrank

Threaded Methods –  
P’s Point of View

 35

P

in
fo

P’=new-location
After update(P, free)
was called by
First-pass -
forward pointers refer
to P’s new location.

© Erez Petrank

Threaded Methods –  
P’s Point of View

 36

P

P’ By the end of first-pass
backward pointers
to P are threaded.

info

© Erez Petrank

Threaded Methods –  
P’s Point of View

 37

P

P’

At the end of update_backward_pointers - backward
pointers are updated and P is moved.

in
fo

© Erez Petrank

Jonker’s Algorithm

• First heap pass: for each object O
– Determine where O should move
– Update all (incoming) forwards pointers to O (already threaded)
– Thread O’s (outgoing) forwards & backwards pointers

• Second heap pass: for each object
– Determine where it should move
– Update all (incoming) backward pointers (already threaded)
– Move object

 38

© Erez Petrank

Jonker’s Algorithm – Pass I

March 11, 2014
 39

Current object

H H HH

Current free location

© Erez Petrank

Jonker’s Algorithm – Pass I

 40

Current object

H H Hh

Current free location

Step 1: Update threaded
pointers with new location.
And return the header.

H

© Erez Petrank

Jonker’s Algorithm – Pass I

 41

Current object

H H HH

Current free location

Step 1: Update threaded
pointers with new location.
And return the header.

© Erez Petrank

Jonker’s Algorithm – Pass I

 42

Current object

H H HH

Current free location

Step 2: Move free forwards
according to the length of
orange.

© Erez Petrank

Jonker’s Algorithm – Pass I

 43

Current object

H H HH

Current free location

Step 2: Move free forwards
according to the length of
orange.

© Erez Petrank

Jonker’s Algorithm – Pass I

 44

Current object

H H HH

Current free location

Step 3: Thread all orange’s
pointers to their targets.

© Erez Petrank

Jonker’s Algorithm – Pass I

 45

Current object

HH HH

Current free location

Step 3: Thread all orange’s
pointers to their targets.

© Erez Petrank

Jonker’s Algorithm – Pass I

 46

Current object

HH HH

Current free location

Step 4: Move to next object.

© Erez Petrank

Jonker’s Algorithm – Pass I

 47

Current object

HH HH

Current free location

Step 4: Move to next object.

© Erez Petrank

Jonker’s Algorithm – Pass I

 48

Current object

HH HH

Current free location

Step 1: Update threaded
pointers with new location.
And return the header.

© Erez Petrank

Jonker’s Algorithm – Pass I

 49

Current object

HH HH

Current free location

Step 1: Update threaded
pointers with new location.
And return the header.

© Erez Petrank

Jonker’s Algorithm – Pass I

 50

Current object

HH HH

Current free location

Step 2: Advance free pointer.

© Erez Petrank

Jonker’s Algorithm – Pass I

 51

Current object

HH HH

Current free location

Step 2: Advance free pointer.

© Erez Petrank

Jonker’s Algorithm – Pass I

 52

Current object

HH HH

Current free location

Step 3: Thread red’s pointer

© Erez Petrank

Jonker’s Algorithm – Pass I

 53

Current object

HH HH

Current free location

Step 3: Thread red’s pointer

© Erez Petrank

Jonker’s Algorithm – Pass I

 54

Current object

HH HH

Current free location

Step 4: When trying to move
to next object – no more
objects.

© Erez Petrank

Jonker’s Algorithm – Pass I

 55

HH HH

Step 4: When trying to move
to next object – no more
objects.

© Erez Petrank

Jonker’s Algorithm – Pass II

 56

HH HH

Step 1: find first (green)
object and update pointers to
object.

Step 1: find first (green)
object and update pointers to
object.

Current object

Current free location

© Erez Petrank

Jonker’s Algorithm – Pass II

 57

H H HH

Step 1: find first (green)
object and update pointers to
object.

Current object

Current free location

© Erez Petrank

Jonker’s Algorithm – Pass II

 58

H H HH

Current object

Current free location

Step 2: move (green) object.

© Erez Petrank

Jonker’s Algorithm – Pass II

 59

H H HH

Step 2: move (green) object. Current object

Current free location

© Erez Petrank

Moving during Second Pass
• Can’t move an object if its fields are involved in a list.
• Claim: when moving an object (second phase) none of

its fields are part of a threaded list.
• Threaded lists: due to its header or pointers.
• It’s header has been handled before move
• Forwards pointers: have already been handled in first

pass.
• Backwards pointers (in this object) point to objects that

we are done handling.

 60

© Erez Petrank
 61

Threaded Methods - Forward pointers
First-pass() {
 for R in Roots // Thread the roots first
 thread (R);
 free = Heap_bottom; // ‘free’ is a next free space variable,
 P = Heap_bottom; // P will be the “live” pointer
 while P <= Heap_top
 if marked(P) // Check that P is a live object
 update(P, free); // When P is reached, forward pointers are
 // threaded and can be updated with ‘free’
 for Q a pointer in P // Thread all pointers of a live object
 thread(Q);
 free = free + size(P); // Location for the next live object
 P = P + size(P); // Go to next object
}

© Erez Petrank
 62

Threaded Methods - Backward pointers
Second-pass() {
 free = Heap_bottom;
 P = Heap_bottom;
 while P <= Heap_top
 if marked(P) // Check that P is a live object

 update(P, free); // When P is reached again, backward pointers
 // are threaded and can be updated with ‘free’.

 // Self reference is treated as back pointer
 move(P, free); // Move P to its new location - ‘free’

 free = free + size(P); // Calculate the location for the next live cell
 P = P + size(P); // Go to next object

}

© Erez Petrank

Threaded Methods - Analysis
• No extra space required
• Variable size objects
• Preserves order
• Two passes
• But:

– each iteration may touch several other objects.
– requires a header distinguishable from pointer.

 63

© Erez Petrank

Threaded Methods - Analysis

• How many times is each object touched?
– Once by first pass
– Once by second pass
– For each pointer referencing it, it is touched once

when threading the pointer.
– For each pointer in the object, it is touched during

update.
• Asymptotic complexity O(M) (who cares?)

 64

© Erez Petrank

Summary --- Single Threaded Compaction

Algorithm Space Passes Obj size Order

Two-finger None 2 Fixed Arbitrary

LISP2 1 pointer-sized
per object

3 Variable Sliding

Threaded (Pointer-sized
headers)

2 Variable Sliding

 65

© Erez Petrank

Parallel Compaction: SUN’s Version
• [Flood Detlefs Shavit Zhang 2001]
• First parallel compaction
• 3 phases (similar to the LISP 2 algorithm):

– Forwarding pointers installation
– Fix up pointers phase
– Move phase

• Each phase done in parallel

 67

© Erez Petrank

Splitting the work

• Heap divided to n regions
–n is the number of compaction threads
–Division not uniform; it balances work

• Each region compacted independently so
compaction does not use synch’ed operations.

• Number of regions determines “quality” of
compaction.

• Trade-off between quality of compaction and load
balancing.

 68

© Erez Petrank

Improving quality

• In even regions – push left
• In odd regions – push right

 69

Region 1 Region 2 Region 3 Region 4

Result: only n/2 piles of objects (rather than n)

© Erez Petrank

Working in parallel

• Phase 1: each thread grabs a region and installs forwarding
references.

• Phase 2: each thread grabs a region and updates its pointers
• Phase 3: each thread grabs a region and compacts the objects

therein.  

• Between phases threads wait for each other.
• Grabbing must be synchronized, the rest of the work is

independent.

 70

© Erez Petrank

Properties

☺ Runs in parallel – good scalability!
☺ Keeps order of objects
☹ Objects are not fully packed
☹ Requires extra word per object (or a smart use of

the reclaimable space)
☹ Coarse-grained load balancing
☹ 3 passes

 71

© Erez Petrank

IBM’s Parallel Compaction
• [Abuaiadh-Ossia-Petrank-Silbershtein 2004]
• A more involved parallelization of the LISP-II

compaction algorithm.
• Unlike SUN: Objects are packed to the bottom.
• Space overhead: replace forwarding pointer in each

object with a smaller table.
• Two heap passes (each executed in parallel):

– Move and keep some info
– Use info to fix up pointers

 73

© Erez Petrank

Parallelism versus Compaction
• First goal: compact all objects together instead of

creating several piles of objects.
• Heap is divided to n areas
• For example: n =64 was used for a 640MB heap and

8 processors.

 74

10MB

640MB

© Erez Petrank

Squeezing the Objects in Spite of
Parallelism

• The goal: move all objects to the lower addresses.
• Each thread compacts one area at a time.
• Beginning: each area is compacted into itself.
• After a while:

• vacant spaces appear in compacted areas.
• compact objects of one area into the free

space of a lower area

 75

© Erez Petrank

First Phase: Moving the Objects
• A thread picks the next area to be compacted;
• it finds a lowest area with empty space to compact into;
• if no such area exists, it compact to the bottom of the

same area.

• While moving the objects, record information in a small
additional table that will enable updating the pointers.
– This replaces the forwarding pointers.
– It implements a map from old to new addresses.

 76

Moving the objects: an Example

̔ Two threads, 4 area
̔ (Thread#1,red area), (Thread#2,blue area)

̔ (Thread#1,brown area), (Thread#2,green area)

At the end

More areas
• 4 threads, 64 areas,
• In the end we may have some holes at the last areas
• For a reasonable number of areas, these holes are

insignificant.

At the end

Empty space

………….

………….

Area Size Tradeoff
“Holes” in
the Heap

Preserve
allocation
order

Load
balancing

Oversized areas - ☺ -
“Normal” size

☺ ☺ ☺
Areas too small

☺ - ☺

Phase 2: Fix up

• Divide the heap to n areas.
• Each thread fixes up pointers in one area at a time.

 Remember: Information is recorded during the move
phase to allow redirecting the pointers in the second
phase.

Implementing the Fix-Up Map

• We consider the heap as a sequence of blocks (say,
block = 256 bytes)

• Blocks (256 bytes) << areas (10 Mbytes).
• Information is recorded per block rather than per object.

• Objects in a block are moved together;  
objects of different blocks are never interleaved.

• The idea: record less information per block, but perform
more computation during fix up of each reference.

© Erez Petrank

The Block Table

Block 175

Block 176

Block 177

.

.

.

.

.

.

Ptr 175
Ptr 176
Ptr 177

Old
Heap:

.

.

.

.

.

.

New
Heap:

Recorded Information
• Block table: For each block keep the new location of the

first object in the block.
– One pointer per block.

• Two bit maps (1 bit for any 8 bytes).
– Old bitmap represents location of objects before the move

(created while marking live objects)
– New bitmap represents location of objects after the move

(created while moving the objects).
– One bit stands for 8 bytes in the heap (8-byte alignment)

Calculating a New Location
• Given an old address of an object A:
• Find A’s block (its most significant bits)
• Using the block table, obtain the new address (B) of

the first object in the block.
• Using the old bitmap: find the ordinal number (i)

of the object in the block.
• Using the new bitmap: find the relative new

location (r) of the i-th object in the block.
• Add B+r to obtain the new location.

Example
• Calculating the new location of object C.
• Old bitmap C is third in block (i=3)
• New bitmap relative address of C (to A) (r = 0x18)
• Block table new address of A = 0x58296200
• A + r = new location = 0x58296218

A B C D

A B C D

Space overhead
• For each block (say, 256 bytes),

– A pointer: 4 (or 8 for 64-bits platforms) bytes
– 2 Bitmaps: 4+4 bytes
– Overall: 12 (or 16) bytes for each 256 bytes (4.7-6.2%)

• Existing data structures may be reused, e.g., the GC
markbits table.

• Increasing the size of the block: reduces the extra space
but increases the computation cost.

Properties
• Almost all objects are condensed to the bottom of the

heap.
• Order of objects is essentially preserved.
• Good parallelism with almost no contention.
• Space overhead low compared to forwarding

pointers.

Measurements
• Algorithms compared:

– Jonker’s threaded algorithm
– Restricted parallel algorithm (to a single thread)
– Fully parallel algorithm

• Platform: AIX (on 8-way PPC, 64 bits) and NT (on 4-way
Pentium, 32 bits)

• Benchmarks: Specjbb2000 and Trade 3 on Websphere.
• Heap size: determined so that live objects take 60% of

the heap: 600MB for SPECjbb and 180MB for Trade3.

Specjbb2000
• Compaction runs when a warehouse is added, those

(substantial) parts of the run are not considered for the
measurements

• Thus, throughput is not affected by the compaction
times.
– May be affected by bad compaction quality.

• We measure compaction times.

Results: Compaction Times for
(Specjbb2000) on a Uniprocessor

Compaction Time

tim
e

(m
s)

0

750

1500

2250

3000

Warehouses

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threaded
parallel-restricted

Results: Speedup (Specjbb2000)

Speedup

S
pe

ed
up

 fa
ct

or

0

1.75

3.5

5.25

7

Warehouses

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8 compacting threads 6 compacting threads
4 compacting threads 2 compacting threads

Results: Throughput (Specjbb2000)

Throughput

TP
M

 (t
ho

us
an

ds
)

0

22500

45000

67500

90000

warehouse

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

parallel-restricted
Threaded

Results: Trade3 (Websphere)
• 4-way NT machine
• Heap size: 180MB
• Additional test: we forced compaction each 20gc

Compaction type Compaction time #Requests per second

Triggering ≈ 90 gc 20gc
default

≈ 90 gc 20gc
default

Threaded
Parallel-restricted
Parallel

 1698 1671
 1387 1251
 499 440

 219.8 224.5
 221.7 226.1
 222.4 229.1

© Erez Petrank

Conclusion --- IBM’s Parallel Compaction
Algorithm

• More efficient than the previously used threaded
algorithm even on a uniprocessor.

• Good speedup
• Good compaction quality.

 94

© Erez Petrank

The Compressor
• [Kermany-Petrank 2006]
• The goal: concurrent and parallel compaction with low

overhead.
• Overhead reduction via a single heap pass.
• Extending with parallelism and concurrency:
• Objects are packed to the bottom, maintaining

address order.
• We will study the Compressor around the 10th lecture.

 95

© Erez Petrank

Conclusion --- Compaction
• Uniprocessor compaction:

– Two fingers, Lisp2, Threaded (Yonkers)
• Parallel compaction:

– Sun’s compaction, IBM’s compaction.
– (Compressor: parallel and concurrent, delayed…)

• Issues considered:
– Efficiency, space overhead, parallelism, compaction

quality, locality.

 96

