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int64_t
TotalObjectMemory(void)
{

retu rn blkvar.heapSz;

int64_t
FreeObjectMemory (void)
{
int freePartialBytes[N_BINS], freePartialBlocks[N_BINS];
int nBlockBlocks = blkvar.nWildernessBlocks + blkvar.nListsBlocks;

int nBlockBytes, nPartialBytes, nPartialBlocks, nBytes, i;
float avgRes;

printf ( FreeObjectM y statistics(begin)\n");
nBlockBytes = nBlockBlocks*BLOCKSIZE;
printf ("BlkMgr blocks=Y%d MB=/d\n", nBlockBlocks, nBlockBytes>>20 );

chkGetPartialBlocksStats( freePartialBlocks, freePartialBytes );
printf("Partial:\n");
printf ("binsz\tblocks\tMB\n");

nPartialBytes = 0;
nPartialBlocks = 0;

for (i=0; i<N_BINS; i++) {
printf ("%d\t%d\t%d\n",
chkconv.binSize[i],
freePartialBlocks[i],
freePartialBytes[i]>>20 );
nPartialBlocks += freePartialBlocks([i];
nPartialBytes += freePartialBytes[i];

if (nPartialBlocks)

avgRes = (float)nPartialBytes /((float)BLOCKSIZE#*(float)nPartialBlocks);
else

avgRes = -1;

printf("Total partial: blocks=Y%d MB=Yd avg-res=4f\n",
nPartialBlocks,
nPartialBytes>>20,
avgRes
);
nBytes = nBlockBytes + nPartialBytes;
printf("Total free MB=)d\n", nBytes>>20 );
printf ("sxxrxxnxxrxrrxrrxr FreeObjectMemory statistics(end)\n");

return nBytes;

int64_t
TotalHandleMemory(void)
i

retu rn 0;

int64_t
FreeHandleMemory (void)

retu rn 0;

/*
* User interface to synchronous garbage collection. This is called
* by an explicit call to GC.
*/
void
gc(unsigned int free_space_goal)

gcRe questSyncGC();

bool_t isHandle(void *p)
{
retu rn _isHandle(p);

}

bool_t isObject(void *p)

{

GCHa ndle *h = (GCHandle* ) (((char#*)p)-sizeof(GCHandle));

return _isHandle(h);

}

bool_t isValidHandle(JHandle *h)
{

retu rn _isHandle(h);




#ifdef RCDEBUG
static int deltaMax = -1;
int delta = GetTickCount();
#endif

GCHandle *h;
JHandle *_h;
uint *obj;
int bin;

uint nbytes = sizeof (GCHandle) + size;

if (nbytes <= MAX_CHUNK_ALLOC) {
bin = chkconv.szToBinIdx[ nbytes ];

chkAllocSmallInlined( ee, bin, _h );
if (!_h) return NULL;

#ifdef RCDEBUG
ee->gcblk.dbg.nBytesAllocatedInCycle += chkconv.binSize[ bin ];
#endif

h = (GCHandle*) _h;
obj = (uint *)(h + 1);
if (size > 0)
memset( obj, 0, size );

#ifdef RCDEBUG
h->status = Im_used;

#endif
h->methods = mptr;
h->0bj = obj;

gcBuffLogNewHandle(ee, h);

#ifdef RCDEBUG
delta = GetTickCount() - delta;
if (delta > deltaMax) {
deltaMax = delta;
printf( " #*» CACHE(small, nbytes=Yd) delta=)d\n", nbytes, delta );

#endif
}
else {
BlkAllocBigHdr *ph;
int i;
for(i=0; i<3; i++) {
ph = blkAllocRegion( nbytes, ee );
if (ph) goto __good;
gcvar .memStress = true;
gcRequestSyncGC() ;

return NULL;

--good:
h = (GCHandle*)BLOCKHDROBJ((BlkAllocHdr*)ph);

#ifdef RCDEBUG
ee->gcblk.dbg.nBytesAllocatedInCycle += ph->blobSize * BLOCKSIZE;
#endif

obj = (uint *) (h+1);

ZeroMemory( obj, size );
#ifdef RCDEBUG

h->status = Im_used;

#endif
h->methods = mptr;
h->obj = obj;

gcBuffLogNewHandle(ee, h);
ph->allocInProgress = 0;
#ifdef RCDEBUG
delta = GetTickCount() - delta;
if (delta > deltaMax) {
deltaMax = delta;
printf( " **x CACHE(big, nbytes=)d) delta=%d\n", nbytes, delta );
#endif

sysAssert( h );

return (HObject*)h;

Er T r— T ——
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struct BLKVAR blkvar;
struct CHKCONV chkconv;

static struct CHUNKVAR chunkvar;
static struct GCVAR gecvar;

#include "mok_win32.c"
#include "rcbmp.c"
#include "rcblkmgr.c"
#include "rcchunkmgr.c"
#include "rcgc.c"

End of file source listing

D.10 ylrc_protocol.h

This file (the name of which stands for “The Yossi Levanoni’s Reference Counting Protocol”)
defines the write barrier that must be adhered to when changing references. i.e., this is the

declaration of the write barrier. =
ource listing for file ylrc_protocol.h

/*

* File: ylrc_protocol.h

* Author: Mr. Yossi Levanoni

* Purpose: Definition of the write barrier
*/
#ifndef YLRC

#define YLRC

struct execenv;
typedef struct execenv ExecEnv;

void gcDo_gcupdate (ExecEnv *ee, void *_h, void *_slot, void *_newval );

void gcDo_gcupdate_array(ExecEnv *ee, void *_arrayh, void* _slot, void *newval);

void gcDo_gcupdate_class(ExecEnv* ee, ClassClass* cb, void *_slot, void *_newval );

void gcDo_gcupdate_jvmglobal (ExecE: ee, void* _global, void *_newval )

void gcDo_gcupdate_static( ExecEnv* ee, struct fieldblock* fb, void* slot, void* _newval );

#define gcupdate(ee,_h,_slot,_ newval ) \
gcDo_gcupdate(ee, _h, _slot, _newval )

#define gcupdate_array(ee,_arrayh,_slot,newval) \
gcDo_gcupdate_array(ee,_arrayh, _slot,newval)
#define gcupdate_class(ee,cb,_slot, _newval ) \
gcDo_gcupdate_class(ee,cb,_slot,_newval )
#define gcupdate_jvmglobal(ee,_global, _newval ) \
gcDo_gcupdate_jvmglobal(ee, _global,_newval )
#define gcupdate_static(ee,fb,slot, _newval ) \
gcDo_gcupdate_static(ee,fb,slot, newval )

#endif /* ! YLRC */

End of file source listing

D.11 gcc

This file contains code mostly from the original JVM. Most importantly, this file includes
rchub.c and defines the entry point for allocation code.
Due to the author’s non-disclosure agreement with Javasoft, only those parts of the file

which are new to the collector are listed below,
Source listing for file gc.c

#include "rchub.c"

/

AR AR F AR A AR AR AR AR
sxxxexnrraax  Allocation Cache ( ated)
AR AR RER AR FR RN KRR

/

HObject * cacheAlloc(ExecEnv *ee, struct methodtable *mptr, long size)
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/* Advanced */

GCFUNC void* mokMemReserve(void *starting_at_hint, unsigned sz );
GCFUNC void mokMemUnreserve( void *start, unsigned sz );

GCFUNC void* mokMemCommit( void *start, unsigned sz, bool zero_out );
GCFUNC void mokMemDecommit( void *start, unsigned sz );

/* C style */
GCFUNC void* mokMalloc( unsigned sz, bool zero_out );
GCFUNC void mokFree( void *);

/* zero out */
GCFUNC void mokMemZero( void *start, unsigned sz );

#define mokAssert sysAssert
#define gcAssert sysAssert

#ifdef RCDEBUG

#define Im_used Oxlbadbadl

#define Im_free 0x12344321

#endif

int x86CompareAndSwap(unsigned *addr, unsigned oldv, unsigned newv);

#define ___compare_and_swap x86CompareAndSwap

#define gcCompareAndSwap x86CompareAndSwap

/*

* p is a pointer to BlkAllocHdr. Lock and unlock the page
*/

#pragma optimize( "", off )
static void bhLock(BlkAllocHdr *p)
{
vola tile word *ptr = (volatile word*)&p->StatusLockBinidx;
for (5;) {
volatile word oldv, newv;
oldv = *ptr;
oldv = oldv & "LOCKMASK;
newv = oldv | LOCKMASK;
if (gcCompareAndSwap( (word*)ptr, oldv, newv))
goto ___do_bh_lock_end;

}
——-do_bh_lock_end: ;

static bhUnlock(BlkAllocHdr* p)
{

tor (;;) {
volatile word *ptr = (volatile word*)&p->StatusLockBinidx
word oldv, newv;
oldv = #*ptr;
if (t(oldv & LOCKMASK )) {
_-asm { int 3 }

}
newv = oldv & “LOCKMASK;
if (gcCompareAndSwap( (word*)ptr, oldv, newv))
goto ___do_bh_unlock_end;
---do_bh_unlock_end: ;
#pragma optimize( "", on )
#define gcNonNullValidHandle _isHandle

#define gcValidHandle(h) ((h)==NULL || _isHandle((h)))

#endif /* __RCGC_INTERNAL__ »/

End of file source listing

D.9 rchub.c

This file simply includes the block manager, chunk manager and collector into a single

translation unit. o
Source listing for file rchub.c

* File: rcbmp.c

* Aurhor: Yossi Levanoni

* Purpose: Includes all of the allocator and collector into a single
* translation unit.

*/

#define GCINTERNAL

#define gcUnhand(h)  ((JHandle*#) (((char*)h)+sizeof (GCHandle)))
#define gcRehand(obj) ((JHandle*)(((char*)obj)-sizeof(GCHandle)))

#include "rcgc.h"

#include "rcgc_internal.h"
#include "../../../win32/hpi/include/threads_md.h"
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else
jio_printf("Good RC for j=id, val=Yx\n", j, v );
H2BIT_Inc( bmp->entry, (unsigned)&handleSpace[j] );
}
}
for (i=2; i>=0 ;i--) {
for (j=0; j<N_HANDLES; j++) {
uint v = H2BIT_Get( bmp->entry, (unsigned)handleSpace(j] );
if (v != (uint)i )
jio_printf("Bad RC for j=Vd, val=lx exoect=4i\n", j, v, i );
else
jio_printf("Good RC for j=Yd, val=Yx\n", j, v );
H2BIT_Dec( bmp->entry, (unsigned)&handleSpace[j] );
‘ }
}
¥

#endif /» RCNOINLINE =/
/%x/

End of file source listing

D.8 rcgc_internal.h

rcgc_internal.h contains declarations which are needed internally by the collector and allo-

cator (forward declarations etc.)
Source listing for file rcgc_internal.h

/*
* File: rcblkmgr.h
* Author: Mr. Yossi Levanoni
* Purpose: Header for internal use of the collector/allocator.
*/
#ifndef __RCGC_INTERNAL__
#define __RCGC_INTERNAL__

GCFUNC bool gcCompareAndSwap( unsigned *addr, unsigned oldv, unsigned newv);
GCFUNC void geSpinLockEnter(volatile unsigned *p, unsigned id);

GCFUNC void geSpinLockExit(volatile unsigned *p, unsigned id);

GCFUNC void gcCheckGC(void) ;

GCFUNC void blkInit( unsigned nMB );

GCFUNC BlkAllocHdr* blkAllocBlock( ExecEnv *ee );

GCFUNC void blkFreeChunkedBlock( BlkAllocHdr *ph );

GCFUNC void blkFreeSomeChunkedBlocks( BlkAllocHdr **pph, int nBlocks );
GCFUNC void blkFreeRegion( BlkAllocBigHdr *ph );

GCFUNC void blkSweep(void) ;

GCFUNC void chkFlushRecycledListEntry( RLCENTRY *rlce )

GCFUNC void chkFlushRecycledListsCache( void )

GCFUNC void chkSweepChunkedBlock( BlkAllocHdr *ph, int status);

GCFUNC void chkInit(unsigned nMB);

#ifdef RCDEBUG
GCFUNC void chkPreCollect (BLKOBJ* o) ;
#endif /* RCDEBUG */

#ifdef RCNOINLINE

GCFUNC void H1BIT_Set(byte* entry, unsigned h);

GCFUNC void H1BIT_Clear(byte* entry, unsigned h);

GCFUNC void H1BIT_ClearByte(byte* entry, unsigned h);

GCFUNC void H1BIT_Put(byte* entry, unsigned h, unsigned val);

GCFUNC byte H1BIT Get(byte* entry, unsigned h);

GCFUNC void H1BIT_Init(H1BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size );

GCFUNC void H2BIT_Put(byte* entry, unsigned h, unsigned val);

GCFUNC void H2BIT_Clear(byte* entry, unsigned h);

GCFUNC void H2BIT_Stuck(byte* entry, unsigned h);

GCFUNC byte H2BIT_Get(byte* entry, unsigned h);

GCFUNC void H2BIT_Inc(byte* entry, unsigned h);

GCFUNC byte H2BIT_IncRV(byte* entry, unsigned h);

GCFUNC byte H2BIT Dec(byte* entry, unsigned h);

GCFUNC void H2BIT_Init(H2BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size );

#endif /> RCNOINLINE */
GCFUNC  uint gcGetHandleRC(GCHandle* h);

/

* System utilities layer (MOK)
»

*/
#define mokSleep Sleep

/*
* Memory

*/
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*bbmp = val;

}
#ifdef RCDEBUG

_forceIncSanityCheck( entry, h, f);
#endif

return f;

byte H2BIT Dec(byte* entry, unsigned h)
{
/* entry address into the bitmap.*/
byte *bbmp = H2BIT_BYTE(entry, h);
byte val = *bbmp;
uint f;
/* we include the upper zero in the selector */
uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector2 == 0);
mokAssert( field_selector <= 30 );

f = GET_BIT_FIELD(val, field_selector, 2);
mokAssert( f<= 3 );
mokAssert( f>= 1 ); /* we should never go below zero */
if (£<3) { /* STUCK remains STUCK »/
SET_BIT_FIELD( val, f-1, field_selector, 2);
*bbmp = val;
mokAssert ( H2BIT Get(entry,h)== f-1 );

return f;

}

/*

* Create a new 2-bit per handle BMP with the handles starting

* at address ‘rep_addr’ and the handles area being ‘rep_size’

* bytes long.

*/

void H2BIT_Init (H2BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size )
{

/* each 2 bits in the bimtap represents a handle, which

* takes 2°H_GRAIN_BITS bytes. So a byte in the

* bitmap repreesnts 2~ (H_GRAIN_BITS+2) bytes in the

* handle space.

*/

bmp->bmp_size = rep_size >> (H_GRAIN_BITS+2);
bmp->bmp_size = ROUND_PAGE( bmp->bmp_size );

bmp->bmp = (byte*)mokMemReserve( NULL, bmp->bmp_size );
mokMemCommit ( bmp->bmp, bmp->bmp_size, true );
bmp->rep_addr = (byte*)rep_addr;

bmp->entry = bmp->bmp - (((unsigned)rep_addr)>>H2B_NON_BS_BITS);

char * write_bits(unsigned x)
{

char *s = (char *)mokMalloc(33, false);
unsigned i = 1<<31;
int j=0;
for (;j<32;j++) {
s[j] = xei 7 °1° : °0’;
i>=1;

}

s(j]1 = "\0o’;

return s;
}
void testBitFields(void)
{

int shift, length;
unsigned m=0, val;

while (1) {
jio_printf("Enter shift length val, please: ");
scanf("%d %d %x", &shift, &length, &val );
SET_BIT_FIELD(m, val, shift, length);
jio_printf("m=(%x)%s field=(%x)%s\n", m, write_bits(m),
GET_BIT_FIELD(m, shift, length), write_bits(GET_BIT_FIELD(m, shift, length)) );

typedef struct Hand1leTAG { unsigned h1l, h2; } Handle;
H2BIT_BMP Bmp;
#define N_HANDLES 10000
void test2BitBmp(void)
{
int 1i,j;

Handle* handleSpace = (Handle*)mokMalloc( N_HANDLES*sizeof (Handle), false );
H2BIT_BMP #bmp = &Bmp;

H2BIT_Init( bmp, (unsigned*)handleSpace, N_HANDLES*sizeof (Handle) );
for (i=0; i<2 ;i++) {
for (j=0; j<N_HANDLES; j++) {
uint v = H2BIT_Get( bmp->entry, (unsigned)handleSpace[j] );
if (v != (uint)i)
jio_printf("Bad RC for j=Yd, val=Yx\n", j, v );



byte v = »bbmp;
/* we indlude the upper zero in the selector */
uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector’2 == 0);
mokAssert( field_selector <= 30 );

CLEAR_BIT_FIELD(v, field_selector, 2);
*bbmp = v;

void H2BIT_Stuck(byte* entry, unsigned h)
{

/* entry address into the bitmap.s/

byte *bbmp = H2BIT_BYTE(entry, h);

byte v = *bbmp;

/* we indlude the upper zero in the selector */

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector’2 == 0);
mokAssert( field_selector <= 30 );

OR_BIT_FIELD(v, 3, field_selector );
*bbmp = v;
}

byte H2BIT Get(byte* entry, unsigned h)
{
/* entry address into the bitmap.*/
byte *bbmp = H2BIT_BYTE(entry, h);
byte v = *bbmp;
byte res;
/* we indlude the upper zero in the selector */
uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector’2 == 0);
mokAssert( field_selector <= 30 );

res = GET_BIT_FIELD(v, field_selector, 2 );
return res;

}

#ifdef RCDEBUG

#pragma optimize( "", off )

void _forceIncSanityCheck(byte *entry, unsigned h, int f)
{

int nextF = (£==3) 7 3 : f+1;

mokAssert( H2BIT Get(entry,h) == nextF );
if (£==2) {
gcvar .dbg.nStuckCountersInCycle++;

}
#pragma optimize( "", on )
#endif

void H2BIT_ Inc(byte* entry, unsigned h)
{

/* entry address into the bitmap.*/

byte *bbmp = H2BIT_BYTE(entry, h);

byte val = *bbmp;

uint f;

/* we indlude the upper zero in the selector */

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector2 == 0);
mokAssert( field_selector <= 30 );

f = GET_BIT_FIELD(val, field_selector, 2);

mokAssert( f<= 3 );

if (£<3) { /* STUCK remains STUCK =/
SET_BIT_FIELD( val, f+1, field_selector, 2);
*bbmp = val;

#ifdef RCDEBUG

_forceIncSanityCheck( entry, h, f);
#endif
}

byte H2BIT_IncRV(byte* entry, unsigned h)
{

/* entry address into the bitmap.*/

byte *bbmp = H2BIT_BYTE(entry, h);

byte val = *bbmp;

uint f£;

/* we indlude the upper zero in the selector */

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector’2 == 0);
mokAssert( field_selector <= 30 );

f = GET_BIT_FIELD(val, field_selector, 2);

mokAssert( f<= 3 );

if (£<3) { /* STUCK remains STUCK */
SET_BIT_FIELD( val, f+1, field_selector, 2);




{
mokA ssert( val <= 1);
if (val==0)
H1BIT_Clear(entry, h);
else
H1BIT_Set(entry, h);

byte H1BIT Get(byte* entry, unsigned h)

/* entry address into the bitmap.*/

byte *bbmp = H1BIT_BYTE(entry, h);

byte v = *bbmp;

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS, H1B_FS_BITS );
uint res = GET_BIT_FIELD(v, field_selector, 1 );

return res;

}

/*

* Create a new 1-bit per handle BMP with the handles starting

* at address ‘rep_addr’ and the handles area being ‘rep_size’

* bytes long.

*/
void H1BIT_ Init (H1BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size )
{

/* each bit in the bimtap represents a handle, which

* takes 2°H_GRAIN_BITS bytes. So a byte in the

* bitmap repreesnts 2" (H_GRAIN_BITS+3) bytes in the

* handle space.

*/

bmp->bmp_size = rep_size >> (H_GRAIN_BITS+3);
bmp->bmp_size = ROUND_PAGE( bmp->bmp_size );
bmp->bmp = (byte*)mokMemReserve( NULL, bmp->bmp_size );
mokMemCommit ( bmp->bmp, bmp->bmp_size, true );
bmp->rep_addr = (byte*)rep_addr;
bmp->entry = bmp->bmp - (((unsigned)rep_addr)>>H1B_NON_BS_BITS);

/
Implementation of a 2 bit per handle BMP.
Layout of a handle:

[ 3% =— =G4 -—312-0
| BS | Fs | 2z

Where:

== Z: these bits are always zero (because handles are 8-byte aligned).

-- FS: Field Select. Selects a 2-bit field in a byte of the
bitmap. The selector is 4 bits wide cause there are 4
possibilies.

-- BS: Word selector, relatively to the beginning of the heap, this is
the bitmap word selector.

/*

* Field selector bits. There are 16 options. If the
* selector value is s (with 0<=s<=15), then the field
* begins at bit s*2.

*/
#define H2B_FS_BITS 2

/*

* The rest of the handle selects

* the bmp word inside the bitmap.

*/
#define H2B_BS_BITS (32-(H_GRAIN_BITS+H2B_FS_BITS))
#define H2B_NON_BS_BITS (32-H2B_BS_BITS)

#define H2BIT_BYTE(entry,h)  ((((uint)h)>>H2B_NON_BS_BITS) + entry)

void H2BIT_ Put(byte* entry, unsigned h, unsigned val)
£

/* entry address into the bitmap.*/

byte *bbmp = H2BIT_BYTE(entry, h);

byte v = xbbmp;

/* we include the third least bit in the selector (it is always zero). */
/* to get selection of 0,2,4,...,30, and not 0,1,...15. */
uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector’2 == 0);
mokAssert( field_selector <= 30 );
mokAssert( val <= 3);

SET_BIT_FIELD(v, val, field_selector, 2);
*bbmp = v;

void H2BIT_Clear(byte* entry, unsigned h)

/* entry address into the bitmap.*/
byte *bbmp = H2BIT_BYTE(entry, h);
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End of file source listing

D.7 rcbmp.c and rcbmp_inline.h

These two files contain the declaration and implementation of a 1-bit-per-word and 2-bit-
per-word data structures which are used extensively by the (e.g., for the ZCT and reference
counters). Since the declarations are repeated in the definition, we bring here only the

listing of rcbmp.c.
Source listing for file rcbmp.c

/*

* File: rcbmp.c

* Aurhor: Yossi Levanoni

* Purpose: 1 bit per word and 2 bit per word bitmap implementation.
*/

#ifdef RCNOINLINE

#include <stdio.h>

#include "rcgc.h"

#define PAGE_SIZE 4096
#define ROUND_PAGE(u) (((u)&~ (PAGE_SIZE-1))+PAGE_SIZE)

/*
+ BIT FIELD MANIPULATION
*/
#define MAKE_MASK(shift,length) (((1<<(length))-1)<<(shift))
#define GET_BIT_FIELD(w,shift,length) (((w) &MAKE_MASK (shift,length))>>shift)
#define OR_BIT_FIELD(w,v,shift) do{ (w) = (w) | ((v)<<(shift)); \

}while(0)

#define CLEAR_BIT_FIELD(w,shift,length) do{ (w) = (w) & ("MAKE_MASK(shift,length)); \
}while(0)

#define SET_BIT_FIELD(w,v,shift,length)  do{CLEAR_BIT_FIELD(w,shift,length);\
OR_BIT_FIELD(w,v,shift);\

}while(0)
/*
* Specify (log) allignment of handles.
*/
#define H_GRAIN_BITS 3
/%

* Field selector bits. The next 3 bits select

* the bit inside the bmp word. there

* are 8 options.

*/

#define H1B_FS_BITS 3

/*

* The rest of the bits handle selects

* the bmp byte inside the bitmap.

*/

#define H1B_BS_BITS (32-(H_GRAIN_BITS+H1B_FS_BITS))
#define H1B_NON_BS_BITS (H_GRAIN_BITS+H1B_FS_BITS)

#define H1BIT_BYTE(entry,h)  (byte*)(((uint)h>>H1B_NON_BS_BITS) + (byte*)entry)
void H1BIT Set(byte* entry, unsigned h)
{

/* entry address into the bitmap.*/
byte *bbmp = HIBIT_BYTE(entry, h);
byte v = *bbmp;
uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS, H1B_FS_BITS );
OR_BIT_FIELD(v, 1, field_selector );
*bbmp = v;
}

void H1BIT_Clear(byte* entry, unsigned h)
{

/* entry address into the bitmap.*/
byte *bbmp = H1BIT_BYTE(entry, h);
byte v = *bbmp;
uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS, H1B_FS_BITS );
CLEAR_BIT_FIELD(v, field_selector, 1 );
*bbmp = v;
}

void H1BIT_ClearByte(byte* entry, unsigned h)
byte #bbmp = HiBIT_BYTE(entry, h);

*bbmp = 0;
}

void H1BIT_Put(byte* entry, unsigned h, unsigned val)
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} dbgpersist;

struct {
uint nHS1Threads;
uint nHS2Threads;
uint nHS3Threads;
uint nHS4Threads;

uint nHS1CoopThreads;
uint nHS2CoopThreads;
uint nHS3CoopThreads;
uint nHS4CoopThreads;

// update logs

uint nUpdateObjects;

uint nUpdateChilds;

uint nActualUpdateObjects;
uint nActualUpdateChilds;
uint nUpdateDuplicates;
uint nUpdate2ZCT;

uint nActualCyclesBroken;

// update logs, for reinforcement

uint nReinforceObjects;

uint nReinforceChilds; f
uint nActualReinforceObjects;

uint nActualReinforceChilds;

// create logs

uint nCreateObjects;

uint nActualCreateObjects;
uint nCreateDel;

// same checks, during RC updating
uint nUpdateRCObjects;

uint nUpdateRCChilds;

uint nUpdateRCDuplicates;

uint nCreateRCObjects;

// more RC updating...
uint nDetermined;
uint nUndetermined;

// roots

uint nLocals;

uint nGlobals;

uint nSnooped;

uint nActualSnooped;

// freeing

uint nlInZct;

uint nRecursiveDel;

uint nFreedInCycle;

uint nRecursivePend;

uint nBytesAllocatedInCycle;
uint nBytesFreedInCycle;
uint nRefsAllocatedInCycle;
uint nRefsFreedInCycle;

// tracing stuff
uint nTracedInCycle;

// counters
uint nStuckCountersInCycle;

// updates
int nNewObjectUpdatesInCycle;
int n0ldObjectUpdatesInCycle;
} dbg;
#endif // RCDEBUG
}

/
*
* GC Exports

*/

GCEXPORT void gcGetInfo( uint *pUc, uint *pFc, uint *pAc, int *iGc );
GCEXPORT void gcBuffSlowConditionalLogHandle( ExecEnv *ee, GCHandle #*h);
GCEXPORT void gcBuffAllocAndLink( ExecEnv *ee, BUFFHDR *bh);

GCEXPORT void gcRequestSyncGC(void);

GCEXPORT void gcRequestAsyncGC();

GCEXPORT void gcInit(int nMegs);

GCEXPORT void gcInstallBlk(ExecEnv* ee);

GCEXPORT void gcUninstallBlk(ExecEnv* ee);

GCEXPORT bool gcNonNullValidHandle( GCHandle *h);

GCEXPORT bool gcValidHandle( GCHandle *h);

GCEXPORT void gcThreadAttach(ExecEnv *ee);

GCEXPORT void gcThreadDetach(ExecEnv *ee);

GCEXPORT void gcThreadCooperate(ExecEnv *ee);

extern struct BLKVAR blkvar;
extern struct CHKCONV chkconv;

#endif /* __RCGC__ */
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#define N_GC_STAGES 4

enum GCTYPE { GCT_TRACING=0, GCT_RCING=1

#define N_SAMPLES 4

=

struct GCVAR {

bool initialized;

bool gcActive;

int iCollection;

int requestPhase;

int collectionType;

int nextCollectionType;

// triggering

bool memStress;

bool usrSyncGC;

int geTrigHigh;

int runHist (2] [N_SAMPLES] ;
ExecEnv* ee;

sys_thread_t* sys_thread;

int stage;

uint#* createBuffList;

uint* updateBuffList;

uint#* snoopBuffList;

uint* deadThreadsCreateBuffList;
uint* deadThreadsUpdateBuffList;
uint* deadThreadsSnoopBuffList;
uint#* deadThreadsReinforceBuffList;
uint* reinforceBuffList;
GCHandle** tempReplicaSpace;
H1BIT_BMP localsBmp;

H2BIT_BMP rcBmp;

H1BIT_BMP zctBmp;

BUFFHDR zctBuff;

BUFFHDR nextZctBuff;

BUFFHDR tmpZctBuff;

BUFFHDR uniqueLocalsBuff;

BUFFHDR preAllocatedBuffers[2];
int nPreAllocatedBuffers;
GCHandle** zctStack;

GCHandle** zctStackSp;

GCHandle** zctStackTop;

sys_mon_t* gcMon;

sys_mon_t* requesterMon;

SAVEDALLOCLISTS *pListOfSavedAllocLists;

// chunk mgmt
uint nAllocatedChunks;

uint nChunksAllocatedRecentlyByUser;

uint nUsedChunks;
uint nFreeChunks;

// settable options
struct {
int recommendOnlyRCGC;
int useOnlyRCGC;
int useOnlyTracingGC;
int 1listBlkWorth;
int userBuffTrig;
int initialHighTrigMark;
int lowTrigDelta;
int raiseTriglnc;
int lowerTrigDec;
int uniPrio;
int multiPrio;
} opt;

#ifdef RCDEBUG

struct {
// running totals
uint nObjectsAllocated;
uint nObjectsFreed;

uint nBytesAllocated;
uint nBytesFreed;

uint nRefsAllocated;
uint nRefsFreed;

uint n0DldObjectUpdates;
uint nNewObjectUpdates;
uint nLoggedUpdates;
uint nLoggedSlots;

uint nStuckCounters;

// from prev to curr cycle
uint nPendInCycle;

uint nFreeCyclesBroken;
uint nDeadUpdateObjects
uint nDeadUpdateChilds;
uint nDeadCreateObjects;
uint nDeadReinforceObjects;
uint nDeadReinforceChilds;
uint nDeadSnooped;




!

/ /

[ Ernnn worrnn/
Jnnnns GC Data Structures *xnnn/
Jaxxnnn p—
/ /
/ /
/ /
/

-
* Buffer mgmnt.
»

*/

#define BUFFBITS 18

#define BUFFSIZE  (1<<BUFFBITS)
#define BUFFMASK (BUFFSIZE-1)
#define LOWBUFFMASK ((1<<16)-1)

#define BUFF_LINK_MARK 1
#define BUFF_HANDLE_MARK 2u
#define BUFF_DUP_HANDLE_MARK 3u

#ifdef RCDEBUG

#define N_RESERVED_SLOTS 8
#else

#define N_RESERVED_SLOTS 4
#endif //RCDEBUG

#define LINKED_LIST_IDX

#define REINFORCE_LINKED_LIST_IDX
#define NEXT_BUFF_IDX

#define LAST_POS_IDX

#ifdef RCDEBUG

#define ALLOCATING_EE

#define LOG_CHILDS_IDX

#define LOG_OBJECTS_IDX

#define USED_IDX

#endif

WO

N oo

typedef struct BUFFHDR BUFFHDR;
struct BUFFHDR {
uint *pos;
uint *limit;
uint *start;
uint *currBuff;
};
GCEXPORT void gcBuffConditionalLogHandle (ExecEnv *ee, GCHandle *h);

GCEXPORT void gcBuffLogWord(ExecEnv *ee, BUFFHDR #*bh, uint w);
GCEXPORT void gcBuffLogNewHandle (ExecEnv *ee, GCHandle *h);

/

*
* Thread specific GC block

*

* It conatains the create, uodate and snoop buffers.

*

* Also it contains the thread GC state and allocation lists.

*/
struct GCTHREADBLK {
bool gclnited;
bool gcSuspended ;
bool cantCoop;
bool snoop;
int stage;
int stageCooperated;

BUFFHDR  updateBuffer;
BUFFHDR  createBuffer;
BUFFHDR  snoopBuffer;

ALLOCLIST allocLists[ N_BINS ];
#ifdef RCDEBUG
struct {
int nBytesAllocatedInCycle;
int nRefsAllocatedInCycle;
int nNewObjectUpdatesInCycle;
int n0ldObjectUpdatesInCycle;
} dbg;
#endif // RCDEBUG
};

typedef struct SAVEDALLOCLISTS {
struct SAVEDALLOCLISTS #*pNext;
ALLOCLIST allocLists[ N_BINS ];
} SAVEDALLOCLISTS;

Global GC block

GCHS4 is defined as zero so that the GC is in this state when the system
is initialized.

R S
~

enum GCSTAGE { GCHS1=1, GCHS2=2, GCHS3=3, GCHS4=0, GCHSNONE=0x12345678};
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#define chkAllocSmalllnlined( ee, binldx, __res)\
do {\

(BLKOBJ*) __res = chkAllocSmall( ee, binIdx );\
} while(0)

#endif /+ ! RCDEBUG =/

/ /.
/ /
/Errnn ok /
[awrnnn BITMAPS workonn/
/awrnnn wxwnn/
/ /
/ /
/ 72
/

*
* 1 Bit per handle BMP
*/
typedef struct H1BIT_BMP H1BIT_BMP;
struct HI1BIT_BMP {

byte *entry;

byte *bmp;

byte *rep_addr;

unsigned bmp_size;
}

/

*
* 2 Bits per handle BMP
*/
typedef struct H2BIT_BMP H2BIT_BMP;
struct H2BIT_BMP {

byte *entry;

byte *bmp;

byte *rep_addr;

unsigned bmp_size;
}

/*
*
* Include inline vertions of bmp functions:

void HI1BIT_Set(byte* entry, unsigned h);

void H1BIT_Clear(byte* entry, unsigned h);

void H1BIT_Put(bytex entry, unsigned h, unsigned val);

byte HIBIT Get(byte* entry, unsigned h);

void H1BIT_Init(H1BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size );

void H2BIT Put(byte* entry, unsigned h, unsigned val);

void H2BIT Clear(byte* entry, unsigned h);

void H2BIT_Stuck(byte* entry, unsigned h);

byte H2BIT_Get(byte* entry, unsigned h);

void H2BIT_Inc(byte* entry, unsigned h);

byte H2BIT_IncRV(byte* entry, unsigned h);

byte H2BIT Dec(byte* entry, unsigned h);

void H2BIT_Init(H2BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size );

Functions that have a return value have "Inlined" appended to their name
e.g HIBIT GetInlined( entry, h, __res_var) where __res_var is the *name*
of the variable onto which the result should be stored.

*/

#ifdef RCNOINLINE

#define H1BIT GetInlined( entry, h, __res_var)\

do {\
__res_var = H1BIT Get(entry, h );\
} while (0)
#define H2BIT GetInlined( entry, h, __res_var)\
do {\
__res_var = H2BIT Get(entry, h );\
} while (0)
#define H2BIT_IncRVInlined( entry, h, __res_var)\
do {\
__res_var = H2BIT_IncRV(entry, h );\
} while (0)
#define H2BIT DecInlined( entry, h, __res_var)\
do {\
__res_var = H2BIT Dec(entry, h );\
} while (0)

#else /» ! RCNOINLINE */

#include "rcbmp_inline.h"

#endif /* RCNOINLINE */




The list also contains a remembered set of blocks which have been observed to
be full.

Finally the list contains a lock and therefore it is padded to a total size
of 256 bytes (assuming this is bigger or equal to the contention granule)
in order to prevent false sharing with other partial lists.

R R R R R

struct PARTIALLISTtag {
BlkAllocHdr *firstBlock;

word lock;

int nObservedFull;

BlkAllocHdr *observedFull[ MAX_OBSERVED_FULL_PER_LIST ];
word pad[64 - (MAX_OBSERVED_FULL_PER_LIST +3) ];

}

typedef struct PARTIALLISTtag PARTIALLIST;

/
*
* Chunk manager structure.
*
| :
struct CHUNKVAR {
° PARTIALLIST partialLists[ N_BINS ];
int nBlocksInPartialList[ N_BINS ];
int nCacheEntries;
RLCENTRY *rlCache;
int nObservedFull;
int nTrulyFull;
BlkAllocHdr* trulyFull[ MAX_OBSERVED_FULL ];
};
/

*
* Chunk Manager exports
*

*/

GCEXPORT int chkCountPartialBlocks (void) ;

GCEXPORT BLKOBJ* chkAllocSmall(ExecEnv* ee, unsigned binIdx);
GCEXPORT void chkReleaseAllocLists( ExecEnv *ee);

#ifndef RCDEBUG

#define chkPreCollect(__o) \
do{\

word blockid;\

RLCENTRY #*rlce;\

BLKOBJ *head;\

BLKOBJ *o = (BLKOBJ*)(__0);\

bloc kid = OBJBLOCKID(o);\
rlce = &chunkvar.rlCache[blockid % chunkvar.nCacheEntries];\
head = rlce->recycledList;\

\
if ((((word)head) ~ ((word)o)) < BLOCKSIZE) {\
o->next = head->next;\
head->next = o;\
head->count ++;\
goto __chkPreCollect_done_;\
n
if (head) \
chkFlushRecycledListEntry( rlce );\
\

o->count = 1;\
o->next = o;\
rlce->recycledList = o;\
__chkPreCollect_done_:;\
} while(0)

#define _allocFromOwnedBlockInlined( allocList, __res )\
do {\
BLKOBJ *head = allocList->head;\
if (head != ALLOC_LIST_NULL) {\
allocList->head = head->next;\
(BLKOBJ*) __res = head;\
n
else {\
--res = NULL;\
N\
} while (0)

#define chkAllocSmallInlined(ee, binIdx
do {\

ALLOCLIST *allocList = & (ee)->gcblk.allocLists[ (binIdx) ];\

_allocFromOwnedBlockInlined( allocList, __res);\

if (1__res) {\

(BLKOBJ*) __res = chkAllocSmall( ee, binIdx);\

n

} while (0)

res)\

#else /» RCDEBUG */
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#define FREE_BLOCKS() \
(((blkvar.nListsBlocks*gcvar.opt.listBlkWorth)/100)+blkvar.nWildernessBlocks)

/

* Block manager exports
*/
GCEXPORT BlkAllocBigHdr*  blkAllocRegion( unsigned nBytes, ExecEnv *ee );

/ /
/ /
Jannnnn rnnn/
[anrnnn CHUNK MANAGEMENT e/
[rrnrnn Py
/ /
/ /
/ /

Recycled lists cache.

linked in a circular list with the first element holding the number
of elements in the list.

/!
*
»
*
* The cache is simply an array of pointers to blocks. The blocks are
*
*
*
* Collisions are treated by flushing an entry. Meaning: adding the 4
*

list to the block’s free list.

|
*/ 4
/*
* this ration defines the number of blocks per recycled lists cache
* entry.
*/
#define RLCACHE_RATIO 10
typedef struct RLCacheEnteryTAG RLCENTRY;
struct RLCacheEnteryTAG {
BLKOBJ *recycledList;
}
/
»*
* Partial Lists to Block Manager evacuation thresholds.
*
*/ *
#define MAX_OBSERVED_FULL_PER_LIST 2
#define MAX_OBSERVED_FULL 4
\
p; \
*
* Allocation lists ‘

|
: These structures are embedded in the threads EE for fast allocation. ‘
* Each thread has an allocation list per bin size.
v
typedef struct AllocListTAG ALLOCLIST;
#define ALLOC_LIST_NULL ((BLKOBJ*)Ox12baab21)

struct AllocListTAG {

BLKOBJ* head;
BlkAllocHdr*  allocBlock;
int binldx;

)

#define OutDfMemory() mokAssert(0)
#define ALLOC_RETRY (20)

/
*
* Bins conversion tables.
*

*/

#define N_BINS (27)

struct CHKCONV {

int szToBinIdx[ BLOCKSIZE ];

int szToBinSize[ BLOCKSIZE ];

int binSize[ N_BINS ]; l
int binToObjectsPerBlock[ N_BINS ];

}

/

*

* Partial lists.

»

* A partial list is a list of blocks which have some free chunks on them. The
* pages are linked in a doubly linked list whose head is in this structure.

*

* There is a list per each bin size.




struct BlkListHdrTAG {

BlkRegionHdr
BlkListHdr
volatile int
volatile word

};

*nextRegion;

*nextlList;
listRegionSize;
StatusPrevListID;

struct BlkRegionHdrTAG {

BlkRegionHdr
BlkRegionHdr
volatile int

*nextRegion;
*prevRegion;
regionSize;

volatile word StatusUnused;

struct BlkAnyHdrTAG {
volatile word wO;
volatile word wi;
volatile word w2;
volatile union {
volatile byte b[4];
volatile unsigned short s([2];
volatile word w;
}u;
}

/*
* Utility macros
*/

/*
* p is a pointer to AllocPgHdr. Set and get the chunk size

*

/
#define bhGet_bin_idx(p) ((int) (((p)->StatusLockBinidx)&BINIDXMASK) )
#define bhSet_bin_idx(p,idx) do {\

word v; \

mokAssert( (idx)< N_BINS ); \

v = p->StatusLockBinidx; \

v = v & "BINIDXMASK; \

v=v | idx; \

p->StatusLockBinidx = v; \
} while(0)

/*
* p is a pointer to BlkRegionHdr. Set and get the previous list IS.
*/
#define bhGet_prev_region_list(p) \
((BlkListHdr*)&blkvar.allocatedBlockHeaders [(p)->StatusPrevListID & PREVLISTMASK])

#define bhSet_prev_region_list(p,pBlkListHeader) \
do {\
word idx; \
word v; \
idx = (pBlkListHeader) - (BlkListHdr»*)blkvar.allocatedBlockHeaders; \
mokAssert (idx < (word) (blkvar.nBlocks+2)); \
v = p->StatusPrevListID; \
v = v & “PREVLISTMASK; \

v =v | idx; \
(p)->StatusPrevListID = v; \

} while(0)

/*

* Set and get the status of any page

*/
#define bhGet_status(p) (((BlkAnyHdr*)p)->u.b(3])
#define bhSet_status(p,s) do{ bhGet_status(p)=(s); }while(0)
/

*

* Block manager structure

*

*/

#define N_QUICK_BLK_MGR_LISTS 5

struct BLKVAR {
BlkListHdr* pRegionLists;
BlkRegionHdr* quickLists( N_QUICK_BLK_MGR_LISTS ];
byte* heapStart;
byte* heapTop;
BlkRegionHdr* heapTopRegion;
BlkRegionHdr* wildernessRegion;
word heapSz;
word nBlocks;
BlkAllocHdr *blockHeaders;
BlkAllocHdr* allocatedBlockHeaders;

sys_mon_t* blkMgrMon;

int nWildernessBlocks;
int nListsBlocks;

int nAllocatedBlocks;
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state from BLKxxx to ALLOCBIG till the object is logged in the allocating
thread create log. This prevents sweep from reclaiming such an object
just after it has been allocated.

"size" is the size of this large object, in blocks.

Page header format for INTERNALBIG:

Word 0: < - startBlock(32) =-—-=-—---=-mmmcmmemeee —_—>
Word 1: - unused(32) >
Word 2: unused(32)

Word 3: <-- status(8) -->< unused (24)

Where "start page" is the address where this large object begins.

THIS FORMAT IS GUARANTEED ONLY IN DEBUG MODE.

Page header format for BLK:

Word 0: < Region(32) >
Word 1: - prevRegion(32) -----------m---mm-momome >
Word 2: - size(32) >
Word 3: <-- status(8) -->< unused (24) >

Next and prev are linked list pointers. size is the size in pages of the
regions.

Page header format for BLKLIST:

Word 0: <
Word 1: <
Word 2: <
Word 3: <-- status(8) --><--

"firstRegion" is a pointer to a BLK block, the first on a linked list
of regions with the same size.

"nextList" points to the next list header (of type BLKLIST). The pointer
to the previous list is encoded in the field "prevListIDX" as an index
into the allocatedPageHeaders array.

"size" is the size of the region. Each element in the list has this size.

/*

* Field selectors

*/

#define STATUSMAK 0x££000000
#define LOCKMASK 0x00££0000

#define BINIDXMASK 0x0000££££
#define PREVLISTMASK O0x00ffffff

typedef struct BlkAllocHdrTAG BlkAllocHdr;
typedef struct BlkAllocBigHdrTAG BlkAllocBigHdr;
typedef struct BlkAllocInternalHdrTAG BlkAllocInternalHdr;
typedef struct BlkRegionHdrTAG BlkRegionHdr;
typedef struct BlkListHdrTAG BlkListHdr;

typedef struct BlkAnyHdrTAG BlkAnyHdr;

struct BlkAllocHdrTAG {
BlkAllocHdr  *nextPartial;
BlkAllocHdr *prevPartial;
volatile BLKOBJ *freelist;
volatile word StatusLockBinidx;
}

struct BlkAllocBigHdrTAG {
volatile word allocInProgress;
word  unused2;
volatile int blobSize;
volatile word StatusUnused;

b 4]

struct BlkAllocInternalHdrTAG {
BlkAllocBigHdr  *startBlock;

word unusedi;

word unused2;

volatile word StatusUnused;
};
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least 8 bits wide in order to allow 4GB regionms.

Since in pracrice we use blocks which are at least 4KB big, this is
not a problem.

*
*
*
*
-
* Additionally, we store the size of chunks in a block on a 16 bit
» entity. Thus, a block cannot be much bigger than 64KB or we’ll
* have to encode this field etc.

*/

#define MINBLOCKBITS
#define MAXNONBLOCKBITS

#define MAXBLOCKBITS

8
(32-MINBLOCKBITDS)

16

#define MAXOBJPERBLOCK (BLOCKSIZE/MINOBJ)

/*
* Actual block size. This coincides with the PC page size.
*/

#define BLOCKBITS (14)

#define NONBLOCKBITS (32-BLOCKBITS)
#define BLOCKSIZE (1<<BLOCKBITS)
#define BLOCKMASK ((1<<BLOCKBITS)-1)
/*

* Size of maximal chunk. Allocations larger than this size
* are given full blocks.

*/

#define MAX_CHUNK_ALLOC (BLOCKSIZE/2)

/* address of first object on the block */
#define OBJPAGE (o) ((OBJECT*) (((unsigned)o) & (“BLOCKMASK)))

/* offset of object in the block */
#define OBJOFFSET(o) (((unsigned) (o)) & BLOCKMASK)

/* number of block relative to address 0 */
#define OBJBLOCKID(o) (((unsigned) (o)) >>BLOCKBITS)

/* Object’s block header */
#define OBJBLOCKHDR(o)  (&blkvar.blockHeaders[ OBJBLOCKID(0)])

/* convert from block header to the block’s address */
#define BLOCKHDROBJ(ph) ((BLKOBJ*) (((ph)-blkvar.blockHeaders)<<BLOCKBITS))

/ /
/ /
VAT T wwwnn/
[rrnrnn BLOCK MANAGER Py
[aRnrnn wannn/
/ /
74 /
/

*/

/*

* Page States
*/
#define BLK 1 /» In the block manager */
#define  BLKLIST 2/%— ¥ emceceee—— */
#define  CHUNKING 3 /* Just out of the block manager, going to be OWNED =/
#define  ALLOCBIG 4 /* Multiple-blocks object */
#define  INTERNALBIG 5 /* In the middle of ALLOCBIG, only in DEBUG */
#define  OWNED 6 /* Chunked block which is owned by some thread */
#define  VOIDBLK 7 /* Chunked block, allocation exhausted. */
#define  PARTIAL 8 /* Chunked block, sitting in a partial blocks list */
#define  DUMMYBLK 9 /* Temporary state */

#define  LASTMGRSTATE BLKLIST

/*
Page header format for: OWNED, VOIDPG, PARTIAL.

Word 0: <-=-====——=----——-———— pextPartial(32) ---—————————-—m—m———eeo- >
Word 1: >
Word 2: >
Word 3: binidx(16) =—-==-=--- >

In this case, the second word in the object pointed by "freeList"
contains the number of objects in the list. recycledList is cached
(see below), the number of elements is held in the same manner at the
second word of the first element of the list.

Page header format for ALLOCBIG:

—- AllocInProgress(32) =-—-==-=====-=meeeae >
-~ unused(32) >
< size(32) >
<~ status(8) —3<—rm———m—mma—ene unused(24) —--=--====mmmmme >

"AllocInProgress" is true in the interval between the changing of the




#include <assert.h>
#include <stdio.h>
#include <windows.h>

#include "monitor.h"

//#ifdef DEBUG
#define RCDEBUG
//#endif

#define RCVERBOSE
#define RCNOINLINE

#define GCEXPORT
#define GCFUNC static

#ifdef RCDEBUG
#define RCDEBUGVAR 1
#else

#define RCDEBUGVAR 0
#endif

/
*
* Forward declarations for external structures

*/

#define DECSTRUCT(T) struct T; typedef struct T T;

DECSTRUCT (BUFFHDR) ;

struct execenv;

typedef struct execenv ExecEnv;
typedef bool_t bool;

typedef struct GCHandle {
unsigned *obj;
struct methodtable *methods;
unsigned *logPos;

#ifdef RCDEBUG
unsigned status;

#endif

} GCHandle ;

#define false FALSE
#define true TRUE

/

*

* Atomic operatrions

*

*

*/

#define N_SPINS 4000

/

-

* Some primitive data structures.
*/

typedef unsigned word;
typedef unsigned uint;

typedef unsigned char byte;
typedef unsigned short PAGEID;
typedef unsigned short  PAGECNT;

/
*
* An object (chunk of memory) as the chunk manager sees it.
*/

typedef struct BLKOBJtag BLKOBJ;

struct BLKOBJtag {
int count;
int unused;
BLKOBJ *next;
b8

Object and page sizes.

bits for playing.

/
-
*
*
* We assume that objects are at least 8 bytes aligned. This leaves 3
*
*
* The minimal object size is 16 bytes because we have (at least) two
* words overhead per object: class pointer and log pointer. In the
* "handled" JVM we have a third extra poiner.
*/
#define OBJGRAIN 8
#define OBJBITS 3
#define MINOBJ 16
#define OBJMASK (" (OBJGRAIN-1))
/*
* Minimal size of a page for the design to work: 256 bytes
* The reason for this is that we sometimes (in BLKLIST blocks) keep
* a block identifier as a 24 bit entity. Thus, a block has to be at
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GCEXPORT void gcPutstatic(ExecEnv *ee, struct fieldblock *fb, JHandle *val)
{

sysA ssert( fb );
sysAssert( ValidHandle(fb->clazz) );
gcupdate_static( ee, fb, &fb->u.static_value, val );

GCEXPORT void gcPutfield(ExecEnv *ee, JHandle *h, int offset, JHandle *val)
{

Clas sjava_lang_Class *ucb;
JHandle #*#*slot;
GCHandle *_h;

#ifdef RCDEBUG
{
Classjava_lang_Class *ucb;

mokAssert( h );
mokAssert ( isHandle(h) );

ucb = unhand(obj_classblock(h));

mokAssert( ucb->is_reference [offset] );
mokAssert( !val || isHandle(val) );

}
#endif

slot = (JHandle**) (((uint*)unhand(h)) + offset);
gcupdate( ee, h, slot, val );

GCEXPORT void gcAastore(ExecEnv *ee, ClassArrayOfObject *arr, int offset, JHandle *val)
{
JHan dle **slot;
JHandle *arrh;
#ifdef RCDEBUG
ClassClass *cb;
long n;
#endif

arrh = gcRehand( arr );

#ifdef RCDEBUG
mokAssert( arr );
mokAssert( arrh );
mokAssert( isHandle(arrh) );

#endif
slot = karr->body[offset];

#ifdef RCDEBUG
mokAssert( !*slot || isHandle(*slot) );
mokAssert( !val || isHandle(val) );
mokAssert( obj_flags(arrh) == T_CLASS );
n = obj_length(arrh);

mokAssert( offset < n );
mokAssert( offset >=0 );

cb = (ClassClass*)arr->body[n];

mokAssert( cb );

mokAssert ( isHandle(cb) );
#endif

gcupdate_array( ee, arrh, slot, val );

End of file source listing

D.6 rcgc.h

rcgc.h contains declarations and macros which are needed by the rest of the JVM. In par-
ticular, it defines the GC blocks which are associated with threads, layout of objects and

page headers and the definition of frequently used functions that were turned into macros.
Source listing for file rcge.h

/*

* File: rcge.h

* Author: Mr. Yossi Levanoni

* Purpose: Publicly visible interface to garbage collection and allocation.
*/

/xrwrmnnnnnnenrraens Initialization /

#ifndef __RCGC__
#define __RCGC__
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}
else {
ee->gcblk.dbg.n0ldObjectUpdatesInCycle++;

}
}
#endif // RCDEBUG

ee->gcblk.cantCoop = true;
if (!h->logPos) {
gcBuffSlowConditionalLogHandle( ee, (GCHandle*)h );

*slot = newval;
if (newval && ee->gcblk.snoop) {
BUFFHDR *bh = kee->gcblk.snoopBuffer;
gcBuf fLogWordUnchecked( ee, bh, (uint)newval );
ee->gcblk.cantCoop = false;
gcBuffReserveWord( ee, bh );

else {
ee->gcblk.cantCoop = false;

#ifdef RCDEBUG
delta = GetTickCount() - delta;
if (delta > deltaMax) {
deltaMax = delta;
dbgprn( 0, " **» UPDATE(offset=)d) delta=/d\n", (char*)slot - (char*)h, delta );

#endif

void gcDo_gcupdate_array(ExecEnv *ee, void *_arrayh, void* _slot, void *_newval )

geup date( ee, _arrayh, _slot, _newval );

void gcDo_gcupdate_jvmglobal (ExecEnv* ee, void* _global, void *_newval )
{

#ifdef RCDEBUG
static int deltaMax = -1;
int delta = GetTickCount();
#endif

GCHandle **slot = (GCHandle**)_global;
GCHandle *newval = (GCHandle*) newval;
sysAssert( !newval || ValidHandle(newval) );

ee->gcblk.cantCoop = true;

*slot = newval;

if (newval && ee->gcblk.snoop) {
BUFFHDR *bh = &ee->gcblk.snoopBuffer;
gcBuffLogWordUnchecked( ee, bh, (uint)newval );
ee->gcblk.cantCoop = false;
gcBuf fReserveWord( ee, bh );

else {
ee->gcblk.cantCoop = false;

#ifdef RCDEBUG
delta = GetTickCount() - delta;
if (delta > deltaMax) {
deltaMax = delta;
dbgprn( 0, " #** UPD_GLOBAL delta=)d\n", delta );

#endif
}

void gcDo_gcupdate_class(ExecEnv* ee, ClassClass* cb, void *_slot, void *_newval

~

GCHa ndle **slot = (GCHandle*)_slot;

sysAssert( ValidHandle(cb) );
sysAssert( !»slot || ValidHandle(*slot) );

geupdate_jvmglobal( ee, slot, _newval );
}

void gcDo_gcupdate_static(
ExecEnvx* ee,
struct fieldblock* fb,
void #*_slot,
void* _newval

GCHa ndle *#*slot = (GCHandle**)_slot;
char isig = fieldsig(fb)[0];
if (isig == SIGNATURE_CLASS || isig == SIGNATURE_ARRAY) {
sysAssert( !*slot || ValidHandle(*slot) );
gcupdate_jvmglobal( ee, slot, _newval );

else {
*slot = (GCHandle*)_newval;




}

GCEXPORT void gcThreadDetach(ExecEnv* ee)
{
sys_ thread_t *self = EE2SysThread( ee );
SAVEDALLOCLISTS #*sal;

sal = (SAVEDALLOCLISTS*)sysMalloc( sizeof (SAVEDALLOCLISTS) );

mokAssert ( sizeof(sal->allocLists) == sizeof (ee->gcblk.allocLists) );
mokAssert( sizeof(sal->allocLists) == sizeof (ALLOCLIST)*N_BINS );

memcpy( sal->allocLists, ee->gcblk.allocLists, sizeof( ee->gcblk.allocLists) );
QUEUE_LOCK( self );

sal->pNext = gcvar.pListOfSavedAllocLists;
gecvar.pListOfSavedAllocLists = sal;

#ifdef RCDEBUG
gevar .dbgpersist.nDeadUpdateObjects +=
ee->gcblk.updateBuffer.start [LOG_OBJECTS_IDX];
gevar .dbgpersist.nDeadUpdateChilds +=
ee->gcblk.updateBuffer.start [LOG_CHILDS_IDX];
gevar .dbgpersist.nDeadCreatelbjects +=
ee->gcblk.createBuffer.start [LOG_OBJECTS_IDX];

gcvar .dbgpersist.nDeadSnooped +=
ee->gcblk.snoopBuffer.start [LOG_OBJECTS_IDX] ;
#endif

/* link the create buffer into a list for dead threads */

*ee->gcblk.createBuffer.pos = 0;

ee->gcblk.createBuffer.start [LAST_POS_IDX] = (uint)ee->gcblk.createBuffer.pos;

ee->gcblk.createBuffer.start [LINKED_LIST_IDX] =
(uint)gcvar.deadThreadsCreateBuffList;

gevar.deadThreadsCreateBuffList = ee->gcblk.createBuffer.start;

/* do the same for the update buffer */

*ee->gcblk.updateBuffer.pos = 0;

ee->gcblk.updateBuffer.start [LAST_POS_IDX] = (uint)ee->gcblk.updateBuffer.pos;

ee->gcblk.updateBuffer.start [LINKED_LIST_IDX] =
(uint)gcvar.deadThreadsUpdateBuffList;

gcvar.deadThreadsUpdateBuffList = ee->gcblk.updateBuffer.start;

/* do the same for the snoop buffer */

*ee->gcblk.snoopBuffer.pos = 0;

ee->gcblk.snoopBuffer.start [LAST_POS_IDX] = (uint)ee->gcblk.snoopBuffer.pos;
ee->gcblk.snoopBuffer.start [LINKED_LIST_IDX] = (uint)gcvar.deadThreadsSnoopBufflList;
gcvar .deadThreadsSnoopBuffList = ee->gcblk.snoopBuffer.start;

/* 1f we’re between HS1 & HS2 then also link the update buffer
* into the dead threads reinforce list
»/
if (ee->gcblk.stage == GCHS1) {
#ifdef RCDEBUG
gcvar .dbgpersist.nDeadReinforceObjects +=
ee->gcblk.updateBuffer.start [LOG_OBJECTS_IDX];
gevar .dbgpersist.nDeadReinforceChilds +=
ee->gcblk.updateBuffer.start [LOG_CHILDS_IDX] ;
#endif
ee->gcblk.updateBuffer.start [REINFORCE_LINKED_LIST_IDX] =
(uint)gcvar.deadThreadsReinforceBuffList;
gevar.deadThreadsReinforceBuffList = ee->gcblk.updateBuffer.start;

ee->gcblk.gclnited = false;

QUEUE_UNLOCK( self );

void gcDo_gcupdate(ExecEnv *ee, void *_h, void *_slot, void *_newval )
{

#ifdef RCDEBUG
static int deltaMax = -1;
int delta = GetTickCount();
#endif

GCHandle *h = (GCHandle*)_h;
GCHandle **slot = (GCHandle**)_slot;
GCHandle *newval = (GCHandle*) _newval;

#ifdef RCDEBUG
sysAssert( h );
sysAssert( ValidHandle(h) );
sysAssert( !sslot || ValidHandle(#*slot) );
sysAssert( !newval || ValidHandle(newval) );

{

uint *p = h->logPos;

if (p) {
uint val = *p;
uint type = val&3;
sysAssert( (val&™3) == (uint)h );
if (type==0) { // create log

ee->gcblk.dbg.nNewObjectUpdatesInCycle++;
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* Dtherwise, we choose priority==9 which translates into win32
* "highest priority"
*/
if (sysGetSysInfo()->isMP)
priority = gcvar.opt.multiPrio;
else
priority = gcvar.opt.uniPrio;
createSystemThread ("YLRC Garbage Collector (YEH!)", 9, 10%#1024, gcThreadFunc, NULL);

GCEXPORT void gcThreadCooperate(ExecEnv *ee)
{
int gcStage;

mokAssert( !ee->gcblk.cantCoop );

ee->gcblk.cantCoop = true;
gcStage = gcvar.stage;
if (ee->gcblk.stage == gcStage) goto __exit;
if (ee->gcblk.stageCooperated == gcStage) goto __exit;
mokAssert( ee->gcblk.stageCooperated == GCHSNONE );
switch (gcStage) {
case GCHS1:
mokAssert ( ee->gcblk.stage == GCHS4 );
goto __exit;

case GCHS2:
mokAssert( ee->gcblk.stage == GCHS1 );
goto __exit;

case GCHS3:
mokAssert( ee->gcblk.stage == GCHS2 );
_HS3Cooperate( ee );
goto __exit;

case GCHS4:
mokAssert( ee->gcblk.stage == GCHS3 );
goto __exit;

—-exit:
ee->gcblk.cantCoop = false;

GCEXPORT void gcThreadAttach(ExecEnvs ee)
{

int i, stage;

sys_thread_t *self = EE2SysThread( ee );

#ifdef RCDEBUG
dbgprn( 0, "gcThreadAttach starting for ee=Yx thread=/x\n", ee, self);
#endif

ee->gcblk.cantCoop = false;

buffInit( ee, kee->gcblk.updateBuffer );
buffInit( ee, kee->gcblk.createBuffer );
buffInit( ee, kee->gcblk.snoopBuffer );

#ifdef RCDEBUG
dbgprn( 2, "QUEUVE_LOCK %x\n", self );
#endif
QUEUE_LOCK( self );
#ifdef RCDEBUG
dbgprn( 2, "QUEUE_LOCK %x took the lock\n", self );
#endif

SAVEDALLOCLISTS *sal = gcvar.pListOfSavedAllocLists;

if (sal) {
gevar.pListOfSavedAllocLists = sal->pNext;
memcpy ( ee->gcblk.allocLists, sal->allocLists, sizeof(sal->allocLists) );
sysFree( sal );

¥
else {
for (i=0; i<N_BINS; i++) {
ee->gcblk.allocLists[i].binldx = i;
ee->gcblk.allocLists[i] .head = ALLOC_LIST_NULL;

}
}

stage = gcvar.stage;
ee->gcblk.stageCooperated = GCHSNONE;
ee->gcblk.stage = stage;
if (ee->gcblk.stage != GCHS4)
ee->gcblk.snoop = true;
else
ee->gcblk.snoop = false;
ee->gcblk.gcInited = true;
QUEUE_UNLOCK( self );
#ifdef RCDEBUG

dbgprn( 0, "gcThreadAttach ee=/x stage=Yd\n", ee, stage);
dbgprn( 0, “gcThreadAttach ended for ee=Yx self=Yx\n", ee, self);
#endif




4TimeAdjustmentDisabled // disable option
);
#ifdef RCDEBUG
dbgprn( 0, "TimeAdjustment=%d, TimeIncrement=)d, TimeAdjustmentDisabled=Y%d\n",

TimeAdjustment, // size of time adjustment
TimeIncrement, // time between adjustments
TimeAdjustmentDisabled // disable option

);

#endif

f = fopen( "gcopt.txt", "r" );

it (1f) {
jio_printf( "GCOPT.txt could not be opened\n");
exit(-1);

}

for (5;5) {
char buff [200];
char opt[100];
int wval;

if (! fgets( buff, sizeof (buff), f) ) break;

if (buff[0]=="#’) continue; /* remark line */

if (2 != sscanf( buff, "%s %d", opt, &val )) {
jio_printf("Error reading GCOPT.TXT\n");
exit(-1);

}

#define CHECKGCOPT(optname) if (strcmp(opt, #optname)==0) {\
gcvar.opt. optname = val;\
jio_printf("GCOPT set: %s = %d\n", #optname, val);\
continue;\

} else do {} while(0)

CHECKGCOPT (recommendOnlyRCGC) ;
CHECKGCOPT (useOnlyTracingGC) ;
CHECKGCOPT (useOn1yRCGC) ;
CHECKGCOPT(1istBlkWorth) ;
CHECKGCOPT (userBuffTrig) ;
CHECKGCOPT(initialHighTrigMark) ;
CHECKGCOPT (1owTrigDelta) ;
CHECKGCOPT(raiseTrigInc) ;
CHECKGCOPT (lowerTrigDec) ;
CHECKGCOPT (uniPrio) ;
CHECKGCOPT (multiPrio) ;
jio_printf("GCOPT unknown option %s\n", opt );
exit(-1);

}

fclose( £ );

/* Init blocks manager */
blkInit( HEAP_SIZE >> 20 );

/* Init chunks manager */
chkInit( HEAP_SIZE >> 20 );

gcvar.stage = GCHS4;
gcvar.createBuffList = NULL;
gcvar.updateBuffList = NULL;
gcvar.snoopBuffList = NULL;

gcvar .deadThreadsCreateBuffList = NULL;
gcvar.deadThreadsUpdateBuffList = NULL;
gcvar.deadThreadsSnoopBuffList = NULL;
gcvar.reinforceBuffList = NULL;

gevar. tempReplicaSpace = (GCHandle**)mokMemReserve( NULL, BUFFSIZE );
mokMemCommit ( (char*)gcvar.tempReplicaSpace, BUFFSIZE, false );

gcvar.zctStack = (GCHandle**)mokMemReserve( NULL, ZCT_SIZE );
mokMemCommit( (char*)gcvar.zctStack, ZCT_SIZE, false );
gevar.zctStackTop = (GCHandle**) (ZCT_SIZE + (char*)gcvar.zctStack);
gevar.zctStackSp = gcvar.zctStack;

HIBIT_Init( %gcvar.localsBmp, (uint*)blkvar.heapStart, HEAP_SIZE );
H2BIT_Init( &gcvar.rcBmp, (uint*)blkvar.heapStart, HEAP_SIZE );
H1BIT_Init( &gcvar.zctBmp, (uint*)blkvar.heapStart, HEAP_SIZE );
buffInit( gcvar.ee, &gcvar.zctBuff );

gevar.gcMon = (sys_mon_t*)sysMalloc(sysMonitorSizeof());
gcvar.requesterMon = (sys_mon_t*)sysMalloc(sysMonitorSizeof());

sysMonitorInit( gcvar.gcMon );
sysMonitorInit( gcvar.requesterMon );

gevar.collectionType = GCT_RCING;

gevar.gcTrigHigh = (gcvar.opt.initialHighTrigMark * blkvar.nBlocks)/100;

GCEXPORT void gcStartGCThread(void)
{

int priority;

If we’re on an MP then the GC thread should be alloted a processor
of its own when it needs it. So we select the priority to be

10 which is translated in threads_md.c into win32 time critical
priority.

* % ko ¥
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}
HANDLE hGCEvent, hMutEvent;
void gcThreadFunc(void *param)

gcva r.ee = EEQ);
gevar.sys_thread = EE2SysThread ( gcvar.ee );

#ifdef RCDEBUG
dbgprn (
0,
"GC Thread starting ... ee=Yx sys_thread=/x\n",
gcvar.ee,
gevar.sys_thread );
#endif
gevar.initialized = true;

for(;;) {

PulseEvent( hMutEvent );
#ifdef RCDEBUG

dbgprn( 0, " #ss#xssxxxsxsxx GC -- sleeping (%d)\n", gcvar.iCollection );
#endif

WaitForSingleObject( hGCEvent, INFINITE );
#ifdef RCDEBUG

jio_printf( " wwsssxsssrxssxs GC -- wokeup (’%d)\n", gcvar.iCollection );

fflush( stdout );
#endif

gcvar .nChunksAllocatedRecentlyByUser = 0;

gc0;
#ifdef RCDEBUG

dbgprn( 0, " #*xssesxssxxxkr GC -- done (%d)\n", gcvar.iCollection );
#endif

gevar.iCollection++;

}

/ /
/xmnmkonknsksokkak USER REQUESTS sokskoroniksksmkmnknkonk /
/ /

GCEXPORT void gcRequestSyncGC(void)
{

sys_ thread_t *self = sysThreadSelf();
int wasPhase = gcvar.iCollection;
int waitT = 100;

#ifdef RCVERBOSE
jio_printf("SYNC GC thread=/x (iCollection=Yd) stress=Yd\n",
self,
wasPhase,
gevar .memStress) ;
£flush( stdout );
#endif
gcvar.usrSyncGC = true;
SetEvent ( hGCEvent );
while (wasPhase == gcvar.iCollection) {
WaitForSingleObject( hMutEvent, waitT );
waitT »= 2;
#ifdef RCDEBUG
dbgprn( 0,
"SYNC GC thread=%x GOT GC LOCK (iCollect=%d)\n",
self,
gevar.iCollection );
#endif

#ifdef RCDEBUG

dbgprn( 0, "SYNC GC thread=Y%x DONE (iCollect=%d)\n", self, gcvar.iCollection
#endif
}

GCEXPORT void gcRequestAsyncGC(void)

if (!gcvar.gcActive) {
SetEvent ( hGCEvent );

Y

/ Init /

static void gcInit(int __nMegs)

DWOR D HEAP_SIZE = __nMegs << 20;
DWORD ZCT_SIZE = HEAP_SIZE/0x100;

FILE *£f;
DWORD TimeAdjustment; // size of time adjustment
DWORD TimeIncrement; // time between adjustments

BOOL TimeAdjustmentDisabled; // disable option

hGCEvent = CreateEvent( NULL, FALSE, FALSE, NULL );
hMutEvent = CreateEvent( NULL, FALSE, FALSE, NULL );

GetSystemTimeAdjustment (
&TimeAdjustment, // size of time adjustment
&TimeIncrement, // time between adjustments




gcvar.nextZctBuff.pos = NULL;

end = GetTickCount();
delta = end - start;

_updateRunHist( delta );

#ifdef RCDEBUG
if (gcvar.collectionType == GCT_RCING) {
gevar.dbgpersist.nPendInCycle = gcvar.nextZctBuff.start [LOG_DBJECTS_IDX];
mokAssert( gcvar.dbg.nFreedInCycle == gcvar.dbg.nInZct + gcvar.dbg.nRecursiveDel );

#endif //RCDEBUG

/*
* DK, now see where we stand and set the strategy for the
* next cycle.
*/
{
int nNowFree, nLowMark;
int prevTrig;
bool failed, gotIntoSync;

nNowFree = FREE_BLOCKSQ);
nLowMark = gcvar.gcTrigHigh + (gcvar.opt.lowTrigDelta * blkvar.nBlocks)/100;

failed = nNowFree < nLowMark;
gotIntoSync = gcvar.memStress;

jio_printf("s#x* high=jd low=Yd free=)d was=)d failed=Yd sync=Yd\n",
gevar.geTrigHigh,
nLowMark,
nNowFree,
nWasFree,
failed,
gotIntoSync

fflush( stdout );
prevIrig = gcvar.gcTrigHigh;

if (gcvar.collectionType == GCT_TRACING) {
if (gotIntoSync && failed) {
gecvar .nextCollectionType = GCT_TRACING;
gevar.gcTrigHigh -= (gcvar.opt.raiseTrigInc * blkvar.nBlocks)/100;

else if (gotIntoSync && !failed) {
gcvar.nextCollectionType = GCT_TRACING;
gevar.gcTrigHigh += (gcvar.opt.lowerTrigDec * blkvar.nBlocks)/100;

else if (!gotIntoSync && failed) {
gcvar.nextCollectionType = GCT_TRACING;
gevar.gcTrigHigh -= (gcvar.opt.raiseTrigInc * blkvar.nBlocks)/100;

else /» (!gotIntoSync && !failed) */ {
gevar.nextCollectionType = _recommendCollectionMethod();

}
else /*(gcvar.collectionType == GCT_RCING)*/ {
if (gotIntoSync && failed) {
gevar.nextCollectionType = GCT_TRACING;

else if (gotIntoSync && !failed) {
gevar.nextCollectionType = GCT_TRACING;

else if (!gotIntoSync && failed) {
gevar.nextCollectionType = GCT_TRACING;

else /* (!gotIntoSync && !failed) */ {
gevar.nextCollectionType = _recommendCollectionMethod();

}

jio_printf("s**x prevIrig=/d currTrig=/d curCycle=Ys nextCycle=Ys\n",
prevlrig,
gevar.gcTrigHigh,
gevar.collectionType == GCT_RCING ? "RC" : "TRACING",
gevar.nextCollectionType == GCT_RCING ? "RC" : "TRACING"

);
fflush( stdout );

#ifdef RCDEBUG
_printStats();
#endif

gevar.gcActive = false;

#ifdef RCVERBOSE
jio_printf(
e end gc(%d) delta=Yd --------- \n",
gcvar.iCollection,
end-start );
fflush( stdout );
#endif




for (t=0; t<2; t++) {
nSamples = 0;
avg(t] = 0;
for (i=0; i<N_SAMPLES; i++) {
if (gevar.runHist[t]1[i]) {
avg[t] += gcvar.runHist([t][il;
nSamples++;

}
else break;

}
avg[t] = nSamples ? avg[t]/nSamples : O;

printf( "s*x _recommendCollectionMethod trace=%f rc=/f\n",
avg [GCT_TRACING], avg[GCT_RCING] );

if (avg[GCT_TRACING] < 0.001) return GCT_TRACING;
if (avg[GCT_RCING] < 0.001) return GCT_RCING;

/*
* Normalize so that prob ~ 1/avg
* and prob[0]+prob[1] ==
*/
norm = (avg[0] * avg[1]) / ( avg[0] + avgl1] );
prob[0] = norm / avg[0];
prob[1] = norm / avglil;

printf( "p[0]=%f p(1]1=%f sum=%f\n", prob[0], prob[1], prob[0]+prob[1]
r = (float)rand() / (float)RAND_MAX;

if (r < prob(0]) m = 0;
elsem = 1;

printf("r=%f --> m=Yd\n", r , m );
return m;

}

static void _updateRunHist(int runTime)
{

int 1i;

int t = gcvar.collectionType;

for (i=N_SAMPLES-2; i>=0; i--)
gevar.runHist[t] [i+1] = gevar.runHist[t][i];

gevar.runHist [t] [0] = runTime;

static void _gc(void)

{

uint delta, end, start;
int  nWasFree;

start = GetTickCount();
gcvar.gcActive = true;
gcvar.collectionType = gcvar.nextCollectionType;
gevar.nextCollectionType = GCT_RCING;
if (gecvar.usrSyncGC) {
gevar.collectionType = GCT_TRACING;
gecvar.usrSyncGC = false;

if (gcvar.memStress) {
gcvar .memStress = false;
gevar.collectionType = GCT_TRACING;
Y
if (gcvar.opt.useOnlyTracingGC)
gevar.collectionType = GCT_TRACING;
if (gcvar.opt.useOnlyRCGC)
gcvar.collectionType = GCT_RCING;

nWasFree = FREE_BLOCKS();

#ifdef RCVERBOSE

jio_printf("---------------—- start gc(%d--Y%s) time=jd ----- \n"
gecvar.iCollection,
gevar.collectionType == GCT_TRACING ? "TRACING" : "RC",
start );
fflush( stdout );
#endif

_Initiate_Collection_Cycle();

_Clear Dirty Marks();

_Reinforce_Clearing_Conflict_Set();

_Consolidate();

if (gcvar.collectionType == GCT_RCING) {
_Update_Reference_Counters( );
_Reclaim_Garbage( );

else {
_Trace();
_Sweep();
/* re-commit the "zct" bmp */
mokMemCommit ( gcvar.zctBmp.bmp, gcvar.zctBmp.bmp_size, true );

_processLocalsIntoNextZCT();
gecvar.zctBuff = gcvar.nextZctBuff;
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#endif /* 0 »/

#ifdef RCDEBUG
static void _printStats(void)

floa t avg, avgs;
dbgprn( 1, " __________ THIS: CYCLE  STATS . .vicnwsnineses \n");
dbgprn( 1, "STORE: new=Y%d old=%d\n",
gecvar .dbg .nNewObjectUpdatesInCycle,
gcvar .dbg.n01dObjectUpdatesInCycle );
dbgprn( 1, "UPDATE: updated=%d logged-slots=/d\n",
gcvar.dbg.nUpdateObjects, gcvar.dbg.nUpdateChilds );
if (gcvar.dbg.nCreateObjects) {
avg = (float)gcvar.dbg.nBytesAllocatedInCycle/gcvar.dbg.nCreateObjects;
avgs = (float)gcvar.dbg.nRefsAllocatedInCycle/gcvar.dbg.nCreateObjects;

else {
avg =-1;
avgs = -1;

dbgprn( 1, "CREATE: objects=Yd bytes=)d avg=4f refs=Jd avg=Yf\n",
gevar.dbg.nCreateObjects, gcvar.dbg.nBytesAllocatedInCycle, avg,
gevar.dbg.nRefsAllocatedInCycle, avgs);

dbgprn( 1,
"RECLAIM: objects=/d bytes=Yd\n",
gcvar .dbg.nFreedInCycle,
gcvar .dbg.nBytesFreedInCycle );

dbgprn( 1, "STUCK: %d\n", gcvar.dbg.nStuckCountersInCycle );

gevar .dbgpersist.nLoggedUpdates += gcvar.dbg.nUpdateObjects;
gcvar .dbgpersist.nLoggedSlots += gcvar.dbg.nUpdateChilds;

gevar.dbgpersist.nObjectsAllocated += gcvar.dbg.nCreateObjects;
gevar.dbgpersist.nBytesAllocated += gcvar.dbg.nBytesAllocatedInCycle;
gevar .dbgpersist.nRefsAllocated += gcvar.dbg.nRefsAllocatedInCycle;
gevar.dbgpersist.nObjectsFreed += gcvar.dbg.nFreedInCycle;

gecvar .dbgpersist.nBytesFreed += gcvar.dbg.nBytesFreedInCycle;

gevar .dbgpersist.nRefsFreed += gcvar.dbg.nRefsFreedInCycle;
gevar.dbgpersist.nNewObjectUpdates += gcvar.dbg.nNewObjectUpdatesInCycle;
gevar.dbgpersist.n0ldObjectUpdates += gcvar.dbg.n0ldObjectUpdatesInCycle;
gevar . dbgpersist .nStuckCounters += gcvar.dbg.nStuckCountersInCycle;

dbgprn( 1, " __________ ACCUMULATING STATS
dbgprn( 1, "STORE: new=%d old=Yd\n",
gcvar .dbgpersist.nNewObjectUpdates,
gevar .dbgpersist.n0ldObjectUpdates );
dbgprn( 1, "UPDATE: updated=%d logged-slots=Jd\n",
gevar .dbgpersist.nLoggedUpdates, gcvar.dbgpersist.nLoggedSlots );
if (gcvar.dbgpersist.nObjectsAllocated) {
avg = (float)gcvar.dbgpersist.nBytesAllocated / gcvar.dbgpersist.nObjectsAllocated;
avgs = (float)gcvar.dbgpersist.nRefsAllocated / gcvar.dbgpersist.nObjectsAllocated;

else {
avg = -1;
avgs = -1;

dbgprn( 1, "CREATE: objects=Yd bytes=Jd avg=/f refs=Jd avg=Yf\n",
gecvar .dbgpersist.nObjectsAllocated,
gevar .dbgpersist.nBytesAllocated,
avg,
gevar .dbgpersist.nRefsAllocated,
avgs );
dbgprn(

1,
"RECLAIM: objects=)d bytes=/d\n",
gcvar.dbgpersist.nObjectsFreed,
gcvar . dbgpersist .nBytesFreed );
dbgprn( 1, "STUCK: %d\n", gcvar.dbgpersist.nStuckCounters );
{

int nAllocated = gcvar.dbgpersist.nBytesAllocated - gcvar.dbgpersist.nBytesFreed;
int nFree = blkvar.heapSz - nAllocated;
dbgprn( 1, "USAGE: free=%10d used= %10d\n", nFree, nAllocated );

blkPrintStats();
dbgprn( 1, "PARTIAL: %d\n", chkCountPartialBlocks() );

}
#endif /» RCDEBUG */
GCFUNC void gcCheckGC(void)
{
int nFreeBlocks = FREE_BLOCKS();

if (nFreeBlocks < gcvar.gcTrigHigh)
gcRequestAsyncGC() ;

static int _recommendCollectionMethod(void)
{

int nSamples, i, t, m;

float norm, avg(2], prob[2], r;

if (gcvar.opt.recommendOnlyRCGC)
return GCT_RCING;
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_markHandleSons( h );
}
}

static void _traceFromLocals( void)

‘ uint *buff = gcvar.uniqueLocalsBuff.start;
uint *ptr, type, *p;

mokAssert( (((uint)buff) & LOWBUFFMASK) == 0);
mokAssert( buff );

p = gcvar.uniqueLocalsBuff.pos - 1;
mokAssert( p );
mokAssert( *p );

for (;;) {
ptr = (uint*) (*p & ~3);
type = *p & 3;
mokAssert( type != BUFF_DUP_HANDLE_MARK );
mokAssert( type != BUFF_HANDLE_MARK ) ;

if (type==0) {
GCHandle *h = (GCHandle*)ptr;
mokAssert( _isHandle(h) );
#ifdef RCDEBUG
{
int rc = gcGetHandleRC( h );
mokAssert( rc >= 1 );

#endif
_markHandleSons( h );
emptyMarkStack() ;

P
}
else { /* type==BUFF_LINK_MARKx/
mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof (uint));
if (tptr) {
mokAssert ( buff+N_RESERVED_SLOTS == p);
return;

¥
mokAssert ( *ptr == BUFF_LINK_MARK| (uint)p );
p = ptr-1; /* skip forward pointer */

static void _Trace( void )

#ifdef RCDEBUG

uint start, end;

start = GetTickCount();

dbgprn( 0, "_Trace(start) time=/d\n", start );
#endif

_traceFromLocals() ;

#ifdef RCDEBUG
end = GetTickCount();
dbgprn( 2, "\tnTracedInCycle=jd\n", gcvar.dbg.nTracedInCycle );
dbgprn( 0, "_Trace(end) delta=Yd\n", end-start );

#endif

}

static void _Sweep( void )

#ifdef RCDEBUG

uint start, end;

start = GetTickCount();

dbgprn( 0, "_Sweep(start) time=/d\n", start );
#endif

blkSweep();

#ifdef RCDEBUG
end = GetTickCount();
dbgprn( 2, "\tnFreedInCycle=)d\n", gcvar.dbg.nFreedInCycle );
dbgprn( 0, "_Sweep(end) delta=)d\n", end-start );

#endif

}

Jrwnsnnnnnrnnnnnrns GC Driver Func wsssstsrssssns/

#if 0

static int _ResumeHelper( sys_thread_t *thrd, bool *allOK )
{

Exec Env *ee;

mokAssert( gcvar.sys_thread != thrd );

ee = SysThread2EE( thrd );

if (ee->gcblk.gcSuspended)
mokThreadResumeForGC( thrd );

return SYS_O0K;




GCHandle *hSon = (GCHandle®)*p;
uint type = 3 & *p;

mokAssert( hSon );

if (type) return;

_scanHandle( hSon );

P~

GCHandle *#*tempbuff = gcvar. lica$
register GCHandle *child;
register GCHandle **objslots;

switch (obj_flags(h)) {

case T_NORMAL_OBJECT:{
register ClassClass *cb = obj_classblock(h);
register unsigned short offset;
register unsigned short *object_offsets ;

if (cb == classJavalangClass || unhand(cb)->n_object_offsets==0)
#ifdef RCDEBUG
gevar.dbg.nDetermined++;

-~

#endif
return;

object_offsets = cbObjectOffsets(chb);
objslots = (GCHandle *#)(((char *)unhand(h)) - 1);
while ((offset = *object_offsets++)) {
child = *(GCHandle »**) ((char *) objslots + offset);
if (child) {
tempbuff++;
*tempbuff = child;

}
break;
}

case T_CLASS: { /* an array of classes */
register long n = obj_length(h);
GCHandle **body = (GCHandle**) (((ArrayOfObject#*)gcUnhand(h))->body) ;
while (-=-n >= 0) {
child = body[n];
if (child) {
tempbuf f++;
*tempbuff = child;
}
}
break;
}
}
if (h->logPos) {
goto start;

/% 0K, the replica we have at this point is valid
* so use it as the reference to the objects’
* contents.
*/
#ifdef RCDEBUG
gevar .dbg.nDetermined++;
#endif // RCDEBUG
vhile( tempbuff > gcvar.tempReplicaSpace) {
child = *tempbuff;
-scanHandle( child );
tempbuff--;
}
}
}

static void _emptyMarkStack( void )

for (;5) {
GCHandle *h;

if (gcvar.zctStackSp == gcvar.zctStack)
return;

gevar.zctStackSp--;

h = sgcvar.zctStackSp;

#ifdef RCDEBUG
mokAssert( _isHandle(h) );
mokAssert ( gcGetHandleRC(h) > 0);
{

/*
* Check that if we see an object nested in
* another one then this object cannot be
* a one created since the beginning of the
* cycle.
*/
uint *p = h->logPos;
if (p) {
mokAssert( h == (GCHandle*) (*p”BUFF_HANDLE_MARK)

}

#endif




dbgprn( 2, "\tnPendInCycle=%d\n", gcvar.dbgpersist.nPendInCycle );
dbgprn( 0, "_processLocalsIntoNextZCT(start) delta=)d\n", end-start );
#endif
}
static void _Reclaim_Garbage(void)
buff Init( gcvar.ee, &gcvar.tmpZctBuff );
_throwNonZerosFromCurrentZCT( &gcvar.tmpZctBuff );
_processCreateBuffsIntoZCT( );

_freeHandlesOnTempZCT( &gcvar.tmpZctBuff );

chkFlushRecycledListsCache( );

/

=xxxxxerrerrs Tracing Cycle Stuff

static void _freeListOfBuffers( uint* buff )

{
whil e (buff) {
uint *next;
next = (uint*)buff [NEXT_BUFF_IDX];
_freeBuff( gcvar.ee, buff );
buff = next;

static void _freeListOfListsOfBuffers( uint *buff)

whil e (buff) {
uint *next;
next = (uint*)buff [LINKED_LIST_IDX];
_freeListOfBuffers( buff );
buff = next;

static void _traceSetup( void )

_fre eListOfListsOfBuffers( gcvar.createBuffList );
gcvar.createBufflList = NULL;

_freeListOfListsOfBuffers( gcvar.updateBuffList );
gevar.updateBuffList = NULL;

*gcvar.zctBuff.pos = 0;
gevar.zctBuff.start[ LAST_POS_IDX ] = (int)gcvar.zctBuff.pos;
_freeListOfBuffers( gcvar.zctBuff.start );

/* Decommit the "zct" bmp */
mokMemDecommit ( gcvar.zctBmp.bmp, gcvar.zctBmp.bmp_size );

/% Clear the "rc" bmp */
mokMemDecommit ( gcvar.rcBmp.bmp, gcvar.rcBmp.bmp_size );
mokMemCommit ( gcvar.rcBmp.bmp, gcvar.rcBmp.bmp_size, true );

¥
static void _scanHandle(GCHandle *h)

int prevRC = _incrementHandleRCWithReturnValue( h );
if (prevRC == 0)
_putInMarkStack( h );

static void _markHandleSons(GCHandle *h)
{

uint *p;

start:
P = h->logPos;

#ifdef RCDEBUG
gcvar.dbg.nTracedInCycle++;
#endif // RCDEBUG
if (p) {
#ifdef RCDEBUG
gcvar.dbg.nUndetermined++;
#endif // RCDEBUG
if ( ((*p) & 3) == 0) { /* newly created object */
/*

* must be called directly from _traceFromLocals
*/

mokAssert( _isLocal(h) );

return;

}
mokAssert( h == (GCHandle*) (*p~BUFF_HANDLE_MARK) );

vhile m {

145




mokAssert( type != BUFF_HANDLE_MARK ) ;

if (type==0) {

GCHandle #h = (GCHandle*)ptr;
mokAssert( h );
mokAssert( _isInZCT(h) );
mokAssert ( gcNonNullValidHandle(h) );
mokAssert( gcGetHandleRC(h)==0 );
_freeHandle( h );
_markNotInZCT (h) ;

#ifdef RCDEBUG
nInZCT++;

#endif // RCDEBUG
P

}
else { /* type==BUFF_LINK_MARK*/
mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof (uint));
/* free the more recent buffer */
_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);
if (iptr) {
mokAssert ( buff+N_RESERVED_SLOTS == p);
#ifdef RCDEBUG
mokAssert( nInZCT == gcvar.tmpZctBuff.start [LOG_OBJECTS_IDX] );
#endif // RCDEBUG
goto __end;
mokAssert( *ptr == BUFF_LINK_MARK| (uint)p );
p = ptr-1; /* skip forward pointer */

}
_-end:;
#ifdef RCDEBUG
end = GetTickCount();
dbgprn( 2, "\tnFreedInCycle=/d\n", gcvar.dbg.nFreedInCycle );
dbgprn( 2, "\tnRecursiveDel=)d\n", gcvar.dbg.nRecursiveDel );
dbgprn( 2, "\tnRecursivePend=%d\n", gcvar.dbg.nRecursivePend );
dbgprn( 0, "_freeHandlesOnTempZCT(start) delta=)d\n", end-start );
#endif
}

static void _processLocalsIntoNextZCT( void)

{

uint *buff = gcvar.uniqueLocalsBuff.start;
uint *ptr, type, *p;

#ifdef RCDEBUG

uint start, end;

start = GetTickCount();

dbgprn( 0, "_processLocalsIntoNextZCT(start) time=Yd\n", start );
#endif // RCDEBUG

mokAssert( (((uint)buff) & LOWBUFFMASK)
mokAssert( buff );

/* allocate buffer for next ZCT */
buffInit( gcvar.ee, &gcvar.nextZctBuff );

p = gcvar.uniqueLocalsBuff.pos - 1;
mokAssert( p );
mokAssert( *p );

for (;5) {
ptr = (uint*) (*p & "3);
type = *p & 3;
mokAssert( type != BUFF_DUP_HANDLE_MARK );
mokAssert( type != BUFF_HANDLE_MARK );

if (type==0) {
GCHandle *h = (GCHandle*)ptr;
mokAssert( h );
mokAssert( _isHandle( h ) );
mokAssert( !_isInZCT(h) );

_unsetLocal(h);
_decrementLocalHandleRC( h );

P
}
else { /* type==BUFF_LINK_MARKx/
mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof (uint));
/* free the more recent buffer */
_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);
if (Iptr) {
mokAssert ( buff+N_RESERVED_SLOTS == p);
#ifdef RCDEBUG
gcvar.uniqueLocalsBuff.pos = NULL;
#endif
goto checkout;

¥
mokAssert( *ptr == BUFF_LINK_MARK| (uint)p );
p = ptr-1; /* skip forward pointer */

}
checkout: ;
#ifdef RCDEBUG
end = GetTickCount();
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register char *objslots;
unsigned obj_type = obj_flags(h);

if (obj_type == T_NORMAL_OBJECT) {
register ClassClass *cb = obj_classblock(h);
unsigned short *object_offsets;
int offset;

mokAssert( cb != classJavalangClass);

object_offsets = cbObjectOffsets(cb);
if (object_offsets) {
objslots = ((char *)gcUnhand(h)) - 1;
while ((offset = *object_offsets++)) {
child = =((GCHandle **) (((char *)objslots) + offset));
if (child) {
mokAssert( gcNonNullValidHandle(child) );
_decrementHandleRCInDeletion( child );

}
}
}
else if (obj_type == T_CLASS) { /* an array of references */
register long n = obj_length(h);
GCHandle **body;

body = (GCHandle**) (((ArrayOfObject *)gcUnhand(h))->body);
while (--n >= 0) {
child = body[nl;
if (child) {
_decrementHandleRCInDeletion( child );

}
}

}
#ifdef RCDEBUG
gevar.dbg.nFreedInCycle++;
h->status = Im_free;
#endif
bh = (BlkAllocBigHdr *)0OBJBLOCKHDR(h);
status = bhGet_status( bh );

mokAssert ( status==ALLOCBIG ||

status==0WNED ) ;
mokAssert ( ALLOCBIG < OWNED );
mokAssert ( OWNED < VOIDBLK );
mokAssert ( VOIDBLK < PARTIAL );

if (status == ALLOCBIG) {
#ifdef RCDEBUG
gcvar.dbg.nBytesFreedInCycle +=
((BlkAllocBigHdr *)OBJBLOCKHDR(h))->blobSize * BLOCKSIZE;
#endif
blkFreeRegion( (BlkAllocBigHdr *)0OBJBLOCKHDR(h) );

else {
#ifdef RCDEBUG
gcvar.dbg.nBytesFreedInCycle +=
chkconv.binSize[ bhGet_bin_idx( (BlkAllocHdr*)bh ) 1;
#endif
chkPreCollect( (BLKOBJ*)h );

if (gcvar.zctStackSp == gcvar.zctStack)
return;
gcvar.zctStackSp——;
h = *gcvar.zctStackSp;
}
}
#pragma optimize( "", on )

static void _freeHandlesOnTempZCT(BUFFHDR *tmpZCT)
{

uint *buff = tmpZCT->start;

uint *ptr, type, *p;

#ifdef RCDEBUG
uint start, end;
uint nInZCT = O;

start = GetTickCount();
dbgprn( 0, "_freeHandlesOnTempZCT(start) time=Y%d\n", start );
#endif // RCDEBUG

mokAssert( (((uint)buff) & LOWBUFFMASK) == 0);
mokAssert( buff );

p = tmpZCT->pos - 1;
mokAssert( p );
mokAssert( *p );

for (5;) {
ptr = (uint*) (*p & "3);
type = *p & 3;
mokAssert( type != BUFF_DUP_HANDLE_MARK );
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#ifdef RCDEBUG
else {
nThrown++;
}
#endif // RCDEBUG
P
}
else { /* type==BUFF_LINK_MARK*/

mokAssert ( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof (uint));

/* free the more recent buffer »/

_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);
if (lptr) {
mokAssert ( buff+N_RESERVED_SLOTS == p);
goto __end_chunk;

mokAssert( *ptr == BUFF_LINK_MARK| (uint)p );
P = ptr-1; /» skip forward pointer */

}
_-end_chunk:
buff = nextBuff;
}
gevar.createBuffList = NULL;

#ifdef RCDEBUG
end = GetTickCount();

mokAssert ( gcvar.tmpZctBuff.start [LOG_OBJECTS_IDX] == nDel + gcvar.dbg.nInZct
gevar.dbg.nlnZct = gevar.tmpZctBuff.start [LOG_OBJECTS_IDX] ;

gcvar.dbgpersist.nPendInCycle += nPend;

mokAssert( gcvar.dbg.nCreateObjects == nCreate );

mokAssert ( nThrown+nDel+nPend+nAlreadyInZct == nCreate );

gcvar.dbg.nCreateDel = nDel;

dbgprn( 2, "\tnCreate=%d\n", nCreate );

dbgprn( 2, "\tnDel=%d\n", nDel );

dbgprn( 2, "\tnPend=)d\n", nPend )

dbgprn( 2, "\tnThrown=%d\n", nThrown );

dbgprn( 2, "\tnInZct=Yd\n", gcvar.dbg.nInZct );

dbgprn( 2, "\tnInNextZct=Y%d\n", gcvar.dbgpersist.nPendInCycle );

dbgprn( 0, "_processCreateBuffIntoZCT(end) time=d delta=d\n", start,
#endif
¥

#pragma optimize( "", off )
static void _freeHandle(GCHandle* h)

for (;3) {
unsigned *p;
BlkAllocBigHdr *bh;
int status;

mokAssert( h );
mokAssert( gcNonNullValidHandle(h) );
mokAssert( gcGetHandleRC(h)==0 );

#ifdef RCDEBUG
{
unsi gned obj_type = obj_flags(h);

if (obj_type == T_NORMAL_OBJECT) {
register ClassClass *cb = obj_classblock(h);

gevar . dbg.nRefsFreedInCycle += unhand(cb)->n_object_offsets;
}

else if (obj_type == T_CLASS) { /* an array of references */

long n = obj_length(h);
gcvar.dbg.nRefsFreedInCycle += n;

}
#endif // RCDEBUG

P = h->logPos;
if (p) {
#ifdef RCDEBUG
dbgprn( 1, "\t\tfree:dirty: %x\n", h);

mokAssert( h == (GCHandlex) (»p~BUFF_HANDLE_MARK) );

h->logPos = NULL;

gcvar.dbgpersist.nFreeCyclesBroken++;
#endif

*p = *p | BUFF_DUP_HANDLE_MARK;

P~
while (1) {
GCHandle *child = (GCHandlex)#*p;
uint type = 3 & *p;
mokAssert( child );
if (type) break;
#ifdef RCDEBUG
dbgprn( 3, "\t\tfree:dirty:dec %x\n", child);
#endif
_decrementHandleRCInDeletion( child );
| gt
}
}
else {
register GCHandle #*child;

w

end-start );



else {
#ifdef RCDEBUG
nDel++;
#endif
gcBuffLogWord( gcvar.ee, tmpZCT, (unsigned)h );

P
}
else { /*type==BUFF_LINK_MARK*/
mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof (uint));
/* free the more recent buffer »/
_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);
if (tptr) {
mokAssert ( buff+N_RESERVED_SLOTS == p);
goto __end;

mokAssert( *ptr == BUFF_LINK_MARK| (uint)p );
p = ptr-1; /* skip forward pointer */

}
—-end:;
#ifdef RCDEBUG
end = GetTickCount();

mokAssert( gcvar.tmpZctBuff.start [LOG_OBJECTS_IDX] == nDel );
mokAssert ( nThrown+nDel+nPend == n0ld );

gevar.dbg.nInZct = gevar.tmpZctBuff.start [LOG_OBJECTS_IDX];
gevar .dbgpersist.nPendInCycle= nPend;

dbgprn( 2, "\tn0ld=%d\n", n0ld );

dbgprn( 2, "\tnDel=%d\n", nDel );

dbgprn( 2, "\tnPend=Yd\n", nPend );

dbgprn( 2, "\tnThrown=%d\n", nThrown );

dbgprn( 2, "\tnInZct=%d\n", gcvar.dbg.nInZct );

dbgprn( 2, "\tnInNextZct=Y%d\n", gcvar.dbgpersist.nPendInCycle );

dbgprn( 2, "_throwNonZerosFromCurrentZCT(end) time=Yd delta=d\n", end, end-start );
#endif
}

static void _processCreateBuffsIntoZCT( void )
{

#ifdef RCDEBUG
uint nCreate = 0, nDel = 0, nThrown=0, nPend=0;
uint nAlreadyInZct=0;
uint start, end;

#endif

uint *ptr, type, *p;
uint *buff = gcvar.createBuffList, *nextBuff;
BUFFHDR *tmpZCT = &gcvar.tmpZctBuff;

#ifdef RCDEBUG

start = GetTickCount();

dbgprn( 0, "_processCreateBuffIntoZCT(start) time=Jd\n", start );
#endif

while (buff) {
nextBuff = (uint*)buff[0];

mokAssert( (((uint)buff) & LOWBUFFMASK) == 0);
mokAssert( buff );

p = (uint*)buff [LAST_POS_IDX];
mokAssert( p );
mokAssert( *p == 0 );

mokAssert( *p );

for G (
ptr = (uint*) (*p & “3);
type = *p & 3;

mokAssert( type != BUFF_HANDLE_MARK );
mokAssert( type != BUFF_DUP_HANDLE_MARK );
if (type==0) {
GCHandle *h = (GCHandlex)ptr;
#ifdef RCDEBUG
nCreate++;
#endif
mokAssert( h );
mokAssert ( gcNonNullValidHandle(h) );
if (gcGetHandleRC(h) == 0) {
if (!_isInZCT(h)) {
_markInZCT( h );
#ifdef RCDEBUG
nDel++;
#endif
gcBu ffLogWord( gcvar.ee, tmpZCT, (unsigned)h );

#ifdef RCDEBUG
else {
nAlreadyInZct++;

}
#endif // RCDEBUG
}
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gevar .updateBuffList = NULL;

static void _updateRCofCreateLog( void )
{

uint *log = gcvar.createBuffList;
while (log) {
_updateRCofSingleCreateLog( log );
log = (uint*)logl0];
}
}

static void _Update_Reference_Counters( void )

#ifdef RCDEBUG
uint start, end;

mokAssert( gcvar.zctBuff.start[LOG_OBJECTS_IDX] == gcvar.dbg.nInZct );
start = GetTickCount();

dbgprn( 0, "__Update_Reference_Counters(begin) time=Yd\n", start);
#endif // RCDEBUG

_updateRCofUpdateLog() ;
_updateRCofCreateLog();

#ifdef RCDEBUG
end = GetTickCount();

dbgprn( 3, "\tnUpdateRCObjects=/d\n", gcvar.dbg.nUpdateRCObjects );
dbgprn( 3, "\tnUpdateRCChilds=%d\n", gcvar.dbg.nUpdateRCChilds );
dbgprn( 3, "\tnUpdateRCDuplicates=Yd\n", gcvar.dbg.nUpdateRCDuplicates );
dbgprn( 3, "\tnCreateRCObjects=/d\n", gcvar.dbg.nCreateRCObjects );
dbgprn( 2, "\tnDetermined=%d\n", gcvar.dbg.nDetermined );

dbgprn( 2, "\tnUndetermined=%d\n", gcvar.dbg.nUndetermined );

dbgprn( 2, "\tnInZct=Yd\n", gcvar.dbg.nlnZct );

mokAssert( gcvar.dbg.nDetermined+gcvar.dbg.nUndetermined ==

gevar.dbg.nUpdateObjects + gcvar.dbg.nCreateObjects -

(gcvar.dbg.nUpdateDuplicates + gcvar.dbg.nActualCyclesBroken) );
mokAssert( gcvar.dbg.nUpdateRCObjects == gcvar.dbg.nUpdateObjects);
mokAssert( gcvar.dbg.nUpdateRCChilds == gcvar.dbg.nUpdateChilds);
mokAssert( gcvar.dbg.nUpdateRCDuplicates ==

gevar.dbg.nUpdateDuplicates +gcvar.dbg.nActualCyclesBroken);
mokAssert( gcvar.dbg.nCreateRCObjects == gcvar.dbg.nCreateObjects );
mokAssert( gcvar.zctBuff.start[LOG_OBJECTS_IDX] == gcvar.dbg.nInZct );

dbgprn( 0, "_Update_Reference_Counters(end) time=Yd delta=)d\n", end, end-start
#endif // RCDEBUG
b5

/xsrsrereeeeersinex Reclamation /
static void _throwNonZerosFromCurrentZCT( BUFFHDR *tmpZCT )
uint #*ptr, type, *p, *buff;

#ifdef RCDEBUG
uint n0ld = 0, nDel = 0, nThrown =0, nPend=0;
uint start, end;

start = GetTickCount();
dbgprn( 0, "_throwNonZerosFromCurrentZCT(start) time=%d\n", start );
#endif

buff = gcvar.zctBuff.start;

mokAssert( (((uint)buff) & LOWBUFFMASK) == 0);
mokAssert( buff );

p = gcvar.zctBuff.pos-1;

mokAssert( p );
mokAssert( *p );

for (;;) {
ptr = (uintx) (*p & "3);
type = *p & 3;
mokAssert( type != BUFF_HANDLE_MARK );
mokAssert( type != BUFF_DUP_HANDLE_MARK );

if (type==0) {
GCHandle *h = (GCHandle*)ptr;
#ifdef RCDEBUG
n0ld++;
#endif
mokAssert( h );
mokAssert( gcNonNullValidHandle(h) );
mokAssert( _isInZCT(h) );
if (gcGetHandleRC(h) > 0) {
_markNotInZCT(h);
#ifdef RCDEBUG
nThrown++;
#endif // RCDEBUG
}
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}
mokAssert( *ptr == BUFF_LINK_MARK| (uint)p );
p = ptr-1; /» skip forward pointer */
break;

}

case BUFF_HANDLE_MARK: {
GCHandle *h = (GCHandle*)ptr;
mokAssert( h );
mokAssert( gcNonNullValidHandle(h) );
_determineHandleContents( h );
#ifdef RCDEBUG
gevar.dbg.nUpdateRCObjects++;
#endif // RCDEBUG
for(;;) {
GCHandle *h;
P
h = (GCHandle*)*p;
type = ((uint)h) &3;
if (type) goto next_round;
mokAssert( gcNonNullValidHandle(h) );
_decrementHandleRCInUpdate( h );
#ifdef RCDEBUG
gevar.dbg.nUpdateRCChilds++;
#endif // RCDEBUG
}

}

case BUFF_DUP_HANDLE_MARK: {
GCHandle *h = (GCHandle*)ptr;
mokAssert( h );

#ifdef RCDEBUG
gcvar.dbg.nUpdateRCObjects++;
gcvar.dbg.nUpdateRCDuplicates++;

#endif // RCDEBUG
for(;;) {

P
type = *p & 3;
if (type) goto next_round;

#ifdef RCDEBUG

gcvar.dbg.nUpdateRCChilds++;

#endif // RCDEBUG
3

}
}
}
}

static void _updateRCofSingleCreateLog(uint *buff)
{

uint *ptr, type, *p;

mokAssert( buff );

p = (uint*)buff [LAST_POS_IDX];
mokAssert( p );
mokAssert( *p == 0 );

P~
mokAssert( *p );

for (5;) {
ptr = (uint*)(*p & "3);
type = *p & 3;
mokAssert( type != BUFF_HANDLE_MARK );
mokAssert( type != BUFF_DUP_HANDLE_MARK );

if (type==0) {
GCHandle *h = (GCHandle*)ptr;
mokAssert( h );
mokAssert( gcNonNullValidHandle(h) );
_determineHandleContents( h );
#ifdef RCDEBUG
gcvar.dbg.nCreateRCObjects++;
#endif // RCDEBUG
P
}
else { /* type==BUFF_LINK_MARK+/

mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof (uint));

if (iptr) {
mokAssert ( buff+N_RESERVED_SLOTS == p);
return;

}
mokAssert( *ptr == BUFF_LINK_MARK| (uint)p );
P = ptr-1; /* skip forward pointer */

}
}

static void _updateRCofUpdateLog( void )
1

uint =*log = gcvar.updateBuffList;
vhile (log) {
uint *nextLog = (uint#*)log(0];
_updateRCofSingleUpdateLog( log );
log = nextLog;

}
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GCHandle *»tempbuff = gcvar.tempReplicaSpace;
register GCHandle *child;
register GCHandle **objslots;

switch (obj_flags(h)) {

case T_NORMAL_OBJECT:{
register ClassClass *cb = obj_classblock(h);
register unsigned short offset;
register unsigned short *object_offsets ;

if (cb == classJavalangClass || unhand(cb)->n_object_offsets==0) {
#ifdef RCDEBUG
gcvar.dbg.nDetermined++;
#endif
return;

object_offsets = cbObjectDffsets(cb);
objslots = (GCHandle **)(((char *)unhand(h)) - 1);
while ((offset = *object_offsets++)) {
child = »(GCHandle **) ((char *) objslots + offset);
if (child) {
tempbuff++;
*tempbuff = child;

}
break;
}

case T_CLASS: { /* an array of classes */
register long n = obj_length(h);
GCHandle *#*body = (GCHandle**) (((Array0DfObject*)gcUnhand(h))->body);
while (--n >= 0) {
child = body[n];
if (child) {
tempbuff++;
*tempbuff = child;

}
break;
}

}
if (h->logPos) {
goto start;

/* OK, the replica we have at this point is valid
* so use it as the reference to the objects’
* contents.
*/
#ifdef RCDEBUG
gecvar .dbg.nDetermined++;
#endif // RCDEBUG
while( tempbuff > gcvar.tempReplicaSpace) {
child = »tempbuff;
_incrementHandleRC( child );
tempbuff--;
}
}
}

static void _updateRCofSingleUpdateLog(uint *buff)
{
uint *ptr, type, *p;

mokAssert( buff );

/*

* go backwards since its better to

* first increment and only then decrement
* (it will cause less entries in the ZCT)
* 50 we want to first see the handle and
* only then its contents.

*/

p = (uint*)buff [LAST_POS_IDX];

mokAssert( p );
mokAssert( *p==0 );

mokAssert( *p );

for (5;) {
type = *p & 3;
next_round:
ptr = (uint*)(»p & "3);
mokAssert( type != 0 );
switch (type) {
case BUFF_LINK_MARK: {
mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof (uint));
/* free the more recent buffer */
_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);
if (lptr) {
mokAssert( buff+N_RESERVED_SLOTS == p);
return;
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bool allOK;
#ifdef RCDEBUG
uint start, end;

start = GetTickCount();
dbgprn( 0, "_Consolidate(begin) time=%d\n", start);
#endif

if (gcvar.collectionType == GCT_TRACING)
_traceSetup();

/* init buffer of local objects */
buffInit( gcvar.ee, &gcvar.uniqueLocalsBuff );

/* snoop global objects */
_snoopGlobals( );

#ifdef RCDEBUG
gcvar.dbg.nGlobals = gcvar.dbg.nLocals;
gecvar.dbg.nLocals = 0;

#endif

/* do fourth handshake */
QUEUVE_LOCK( gcvar.sys_thread );

gcvar.stage = GCHS4;
mokAssert( gcvar.snoopBuffList == NULL );

/* add snoop buffers of dead threads and

* clear the list

*/
gecvar.snoopBuffList = gcvar.deadThreadsSnoopBuffList;
gcvar .deadThreadsSnoopBuffList = NULL;

#ifdef RCDEBUG
gecvar .dbg.nSnooped = gcvar.dbgpersist.nDeadSnooped;
gcvar .dbgpersist.nDeadSnooped = 0;

#endif

/* now add the threads buffers */
for(;;) {
allOK = true;
mokThreadEnumerateOver ( _HS4Helper, %allOK );
if (allOK) break;
mokSleep( 10 );
}

QUEUE_UNLOCK( gcvar.sys_thread );
/* process thread buffers */

_markSnoopedAsLocal () ;

#ifdef RCDEBUG
end = GetTickCount();

dbgprn( 2, "\tnHS4Threads=)d\n", gcvar.dbg.nHS4Threads );
dbgprn( 2, "\tnSnooped=jd\n", gcvar.dbg.nSnooped );

dbgprn( 4, "\tnActualSnooped=jd\n", gcvar.dbg.nActualSnooped );
dbgprn( 2, "\tnLocals=%d\n", gcvar.dbg.nLocals );

dbgprn( 2, "\tnGlobals=Yd\n", gcvar.dbg.nGlobals );

mokAssert( gcvar.dbg.nActualSnooped == gcvar.dbg.nSnooped );
dbgprn( 0, "_Consolidate(end) time=)d delta=)d\n", end, end-start);

#endif // RCDEBUG
}

/ /
[rxerroneononooooooooekx UPDATE PHASE  sokoksorsorskonskooroR R ko skor ko ok ok /
/ /

rrrrrnnnnrrerrkrnooonos Updating Counters xkkkkssstsskanmrtrss/
static void _determineHandleContents(GCHandle *h)
uint *p;

start:
p = h->logPos;

if () {
mokAssert( h == (GCHandlex) (*p BUFF_HANDLE_MARK) );
#ifdef RCDEBUG
gevar.dbg.nUndetermined++;
#endif // RCDEBUG
while (1) {
GCHandle *hSon = (GCHandlex)*p;
uint type = 3 & *p;
mokAssert( hSon );
if (type) return;
_incrementHandleRC( hSon );
pe=i
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_snoopExactHandle( (JHandles) (*cpp).p );

} /* loop over constant pools/

/* Scan class definitions looking for statics */
if (cbFields(cb) &&
(cbFieldsCount(cb) > 0)) { /* defensive check */
int i;
struct fieldblock *fb;
for (i = cbFieldsCount(cb), fb = cbFields(cb); --i >= 0; fb++) {
if (fieldsig(fb) && /* Extra defensive */
(fieldIsArray(fb) || fieldIsClass(fb)) &k (fb->access & ACC_STATIC)) {
JHandle *sub = *(JHandle **)normal_static_address(fb);
_snoopExactHandle( sub );

}
}

h = (JHandle *)cbClassname(cb);
_snoopExactHandle( h );

h = (JHandle *)cbLoader(cb);
_snoopExactHandle( h );

h = (JHandle *)cbSigners(cb);
_snoopExactHandle( h );

h = (JHandle *)cbProtectionDomain(cb);
_snoopExactHandle( h );
}

static void _snoopBinClasses(void)

Clas sClass **pcb;
int i;

BINCLASS_LOCK( sysThreadSelf() /»gcvar.sys_thread*/ );
pcb = binclasses;
for (i = nbinclasses; --i >= 0; pcb++) {

ClassClass *cb = *pcb;

_snoopExactHandle( (JHandle*)cb );

_snoopClass( cb );

}
BINCLASS_UNLOCK( sysThreadSelf() /*gcvar.sys_threads/ );
}

static void _snoopPrimitiveClasses(void)

{

stat ic ClassClass *#primitive_classes[] = {

&class_void, &class_boolean, &class_byte, &class_char, &class_short,
&class_int, &class_long, &class_float, &class_double, NULL

}
ClassClass ***cbpp = primitive_classes;

while (*cbpp) {
ClassClass *cb = #*cbpp;
_snoopExactHandle( (JHandle*)cb );
_snoopClass( cb );
cbpp++;

}
static void _snoopMonitorCacheHelper(monitor_t *mid, void *cookie)

JHan dle *h = (JHandle*) mid->key;
if (_isHandle(h) && sysMonitorInUse(sysmon(mid)) ) {
_snoopExactHandle( h );
}
}

static void _snoopMonitorCache(void)

CACH E_LOCK( sysThreadSelf() /*gcvar.sys_thread*/ );
monitorEnumerate( _snoopMonitorCacheHelper, 0);
CACHE_UNLOCK( sysThreadSelf() /*gcvar.sys_thread*/ );

}

static void _snoopJNIGlobalsRefs( void )
{

_sno opJavaFrame(globalRefFrame, globalRefFrame->optop);
}

static void _snoopInternedStrings(void);

static void _snoopGlobals(void)
{

_sno opBinClasses( );
_snoopPrimitiveClasses( );
_snoopMonitorCache( );
_snoopInternedStrings( );
_snoopJNIGlobalsRefs( );

static void _Consolidate( void )
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static int _HS4Helper( sys_thread_t *thrd, bool *allOK )

{

Exec Env *ee;

ee = SysThread2EE( thrd );
mokAssert( gcvar.ee != ee );

if (ee->gcblk.stage == GCHS4) return SYS_OK;
if (ee->gcblk.cantCoop) {

*all0K = false;

return SYS_OK;

while(gcvar.nPreAllocatedBuffers < 1) {
buffInit( gcvar.ee, &gcvar.preAllocatedBuffers[gcvar.nPreAllocatedBuffers] );
gecvar.nPreAllocatedBuffers++;

mokThreadSuspendForGC( thrd );
mokAssert ( ee->gcblk.stage == GCHS3 );
if (ee->gcblk.cantCoop) {

mokThreadResumeForGC( thrd );

*allOK = false;

return SYS_OK;

ee->gcblk.snoop = false;

/* put into the snooped object set

* all of the locally reachable objects
*/

_snoopThreadLocals( thrd );

/* now steal the snooped objects set */

if (buffIsModified(&ee->gcblk.snoopBuffer)) {
*ee->gcblk. snoopBuffer.pos = 0;
ee->gcblk.snoopBuffer.start [LAST_POS_IDX] = (uint)ee->gcblk.snoopBuffer.pos;
ee->gcblk.snoopBuffer.start [LINKED_LIST_IDX] = (uint)gcvar.snoopBuffList;
gcvar.snoopBuffList = ee->gcblk.snoopBuffer.start;

#ifdef RCDEBUG

gcvar.dbg.nSnooped += ee->gcblk.snoopBuffer.start [LOG_OBJECTS_IDX];

#endif // RCDEBUG

/* give the thread a new snoop buffer to play with */

gevar.nPreAllocatedBuffers--;

ee->gcblk.snoopBuffer = gcvar.preAllocatedBuffers [gcvar.nPreAllocatedBuffers];
}

#ifdef RCDEBUG

gevar.dbg.nHS4Threads++;

#endif // RCDEBUG

}

/* restart the thread */
ee->gcblk.stage = GCHS4;

mokThreadResumeForGC( thrd );
return SYS_OK;

static void _snoopClass(ClassClass *cb)

/* We must be extra careful in scanning the internals of a class

* structure, because this routine may be called when a class
* is only partially loaded (in createlnternalClass).

YLRC --

*
»
* No need to recursively trace super classes as we mark all
* classes anyway. This also holds for classes referred

* to from the constant pool.

*

JHandle *h;

if (cbConstantPool(cb) &&

cbConstantPool (cb) [CONSTANT_POOL_TYPE_TABLE_INDEX] .type) {
union cp_item_type *constant_pool = cbConstantPool(cb);
union cp_item_type *cpp =

constant_pool+ CONSTANT_POOL_UNUSED_INDEX;
union cp_item_type *end_cpp =

&constant_pool [cbConstantPoolCount (cb)];
unsigned char *type_tab =

constant_pool [CONSTANT_POOL_TYPE_TABLE_INDEX].type;
unsigned char *this_type =

&type_tab [CONSTANT_POOL_UNUSED_INDEX] ;

for ( ; cpp < end_cpp; cpp++, this_type++) {
if (*this_type == (CONSTANT_String|CONSTANT_POOL_ENTRY_RESOLVED)) {
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long *regs;
int nregs;

/* Scan the saved registers */

regs = sysThreadRegs(t, &nregs);

for (nregs--; nregs >= 0; nregs--) {
_snoopHandleOrObjectOrScalar( (JHandle*)regs[nregs] );

base = ee->stack_base;
ssc = sysThreadStackPointer(t);
¥

if (ssc == 0 || base == 0 || (ssc == base)) {

/>
* If the stack does not have a top of stack pointer or a base
* pointer then it hasn’t run yet and we don’t need to scan
* its stack. When exactly each of these data becomes available
* may be system-dependent, but we need both to bother scanning.
*/

goto ScanJavaStack;

/* Align stack top, important on Windows 95. »/
if ((long)ssc % sizeof (void *)) {

ssc = (unsigned char **)((long)(ssc) & ~(sizeof (void *) - 1));
¥

limit = (unsigned char **) base;
mokAssert(ssc != limit);

/*

* The code that scans the C stack is assuming that the current

* stack pointer is at a lower address than the limit of the stack.
* Obvioulsy, this is only true for downward growing stacks. For
* upward growing stack, we exchange ssc and limit before we start
* to scan the stack.

*/

#if defined(STACK_GROWS_UP)
{

unsigned char **tmp;

tmp = limit;
limit = ssc;
ssc = tmp;

#endif /* STACK_GROWS_UP */

while (ssc < limit) {
register unsigned char *ptr = #*ssc;
_snoopHandleOrObjectOrScalar( (JHandle*)ptr );
SSCH++;

}

/*
* Whether or not we scan the thread stack, we decide independently
* whether to scan the Java stack. Doing so should be more robust
* in the face of partially-initialized or partially-zeroed threads
* during thread creation or exit, or changes to any of that code.
*/

ScanJavaStack:

JavaFrame *frame;

/*

* Because of the Invocation API, the EE may not be on the C
* stack anymore.

*/

_snoopExactHandle( ee->exception.exc );

_snoopExactHandle(ee->pending_async_exc) ;

if ((frame = ee->current_frame) != 0) {
struct methodblock *prev_current_method = 0;
while (frame) {
struct methodblock *current_method = frame->current_method;

* If the previous frame was a transition frame from C back
* to Java (indicated by prev_current_method == NULL), then
* this new frame might not have set its optop. We must be
* conservative. Otherwise, we can use the optop value.

*

*

Also permit two consecutive frames with NULL current
* methods, in support of JITs. See bug 4022856.

stack_item *top_top_stack =
(prev_current_method == 0 &k current_method != NULL k&
((current_method->fb.access & ACC_NATIVE) == 0))
? &frame->ostack[frame->current_method->maxstack]
: frame->optop;
_snoopJavaFrame (frame, top_top_stack);
frame = frame->prev;
prev_current_method = current_method;

134



{

}

static void _snoopHandleOrScalar(JHandle *h)

{

if ('h) return;

if (_isHandle(h))

mokAssert( _isHandle(h) );
_setLocal( h );

_setLocal(h);

static void _snoopHandleOrObjectDrScalar(JHandle *h)
{

}

static void _snoopJavaFrame(JavaFrame *frame, stack_item *top_top_stack)

if (_isHandle(h))

_setLocal(h);
else {
JHandle *obj = gcRehand(h);
if (_isHandle(obj)) {
-setLocal( obj );

¥

stac k_item *ssc, *limit;

}

JHandle *ptr;
JavaStack *javastack;
struct methodblock *mb = frame->current_method;

limit = top_top_stack;
javastack = frame->javastack;

/* Scan the operand stack. */
/*CONSTCOND*/
while (1) {

int is_first_chunk = IN_JAVASTACK((stack_item *)frame, javastack);

for (ssc = is_first_chunk ? frame->ostack : javastack->data;
ssc < limit; ssc++) {
ptr = ssc->h;

_snoopHandleOrScalar( (JHandlex)ptr ); /* Never an object pointer */

}
if (is_first_chunk)
break;
javastack = javastack->prev;
limit = javastack->end_data;

}

/* Nothing more to do for pseudo and JIT frames. */
if (mb == 0 || IS_JIT_FRAME(frame)) {

mokAssert( !IS_JIT_FRAME(frame) ); /* YLRC -- don’t support JIT ...

return;

if (mb->fb.access & ACC_NATIVE) {
/* For native frames, we scan the arguments stored at the top
of the previous frame. */
JavaFrame »prev_frame = frame->prev;
if (prev_frame == 0)
return;
ssc = prev_frame->optop;
limit = ssc + mb->args_size;
else {
/* Scan local variables in Java frame */
ssc = frame->vars;
if (ssc == 0)
return;
limit = (stack_item *)frame;

}

-

for (; ssc < limit; ssc++) {
ptr = ssc->h;
_snoopHandleOrScalar(ptr); /* Never an object pointer *»/

}

static void _snoopThreadlocals( sys_thread_t »*t )

Exec Env *ee = SysThread2EE(t);

JHandle *tobj = ee->thread;
unsigned char **ssc, **limit;
void *base;

mokAssert( EE2SysThread(ee) != sysThreadSelf());

if (ee->initial_stack == NULL) {
/* EE already destroyed. */
return;

/* Mark thread object */

if (tobj) {
mokAssert( gcNonNullValidHandle((GCHandle*)tobj) );
_snoopExactHandle( tobj );
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for(;;) {
allOK = true;
mokSleep( 10 );
mokThreadEnumerateOver ( _HS3Helper, &allOK );
if (allOK) break;

QUEUE_UNLOCK( gcvar.sys_thread );

#ifdef RCDEBUG
end = GetTickCount();

dbgprn( 2, “\tnHS2Threads=/d\n", gcvar.dbg.nHS2Threads );
dbgprn( 2, "\tnHS3Threads=/d\n", gcvar.dbg.nHS3Threads );
dbgprn( 2, "\tnHS3CoopThreads=/d\n", gcvar.dbg.nHS3CoopThreads );

if (gcvar.dbg.nReinforceObjects || gcvar.dbg.nReinforceChilds) {
dbgprn( 1, "\tnReinforceChilds=%d\n", gcvar.dbg.nReinforceChilds );
dbgprn( 1, "\tnReinforceObjects=%d\n", gcvar.dbg.nReinforceObjects );

mokAssert ( gcvar.dbg.nActualReinforceObjects == gcvar.dbg.nReinforceObjects );
mokAssert ( gcvar.dbg.nActualReinforceChilds == gcvar.dbg.nReinforceChilds );

dbgprn(
0,
" _Reinforce_Clearing Conflict_Set(end) time=%d delta=Yd\n",
end,
end-start );
#endif // RCDEBUG
3

static void _markHandlesInSnoopBufferAsLocal(uint *buff)
{
uint *ptr, type, *p;

mokAssert( buff );

/* go backwards */

p = (uint*)buff [LAST_POS_IDX];
mokAssert( p );

mokAssert( *p==0 );

P~

mokAssert( *p );

for (i) {
ptr = (uint*) (*p & ~3);
type = *p & 3;
mokAssert( type != BUFF_HANDLE_MARK );
mokAssert( type != BUFF_DUP_HANDLE_MARK );
#ifdef DEBUG
if (!ptr)
mokAssert ( buff+N_RESERVED_SLOTS == p);
if ( buff+N_RESERVED_SLOTS == p)
mokAssert( »p == BUFF_LINK_MARK) ;
#endif
if (type==0) {
GCHandle *h = (GCHandle*)ptr;
mokAssert( h );
mokAssert( gcNonNullValidHandle(h) );
_setLocal( h );
#ifdef RCDEBUG
gcvar.dbg.nActualSnooped++;
#endif // RCDEBUG
P

}
else { /*type==BUFF_LINK_MARK+*/
mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS#*sizeof (uint));
/* free the more recent buffer »/
_freeBuff ( gcvar.ee, p - N_RESERVED_SLOTS);
if (!ptr)
return;
mokAssert( *ptr == BUFF_LINK_MARK| (uint)p );
p = ptr-1; /= skip forward pointer */

}
}

static void _markSnoopedAsLocal(void)

uint #*buff = gcvar.snoopBuffList;

while (buff) {
uint *nextBuff = (uint#*)buff[0];
_markHandlesInSnoopBufferAsLocal (buff) ;
buff = nextBuff;

}

gcvar . snoopBuffList = NULL;

/ Hs4 /

#define SAFETY_MARGINE 20

static void _snoopExactHandle(JHandle *h)
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res = gcCompareAndSwap( &ee->gcblk.stageCooperated, GCHS3, GCHSNONE);
if (res) {
ee->gcblk.stage = GCHS3;
#ifdef RCDEBUG

gcvar .dbg.nHS3Threads += 100;
#endif /* RCDEBUG */
return SYS_OK;

/* DK, we will suspend the thread, but only
* if it’s in cooperative mode.
*
* Pesimistic check:
*/
if (ee->gcblk.cantCoop) {
*allOK = false; /* try later */
return SYS_OK;

/> Suspend the thread */
mokThreadSuspendForGC( thrd );

/*

* Now we have to check cantCoop again.
*/

if (ee->gcblk.cantCoop) {
mokThreadResumeForGC( thrd );
*allOK = false; /* try later */
return SYS_OK;

mokAssert ( ee->gcblk.stageCooperated == GCHS3 ||
ee->gcblk.stageCooperated GCHSNONE ) ;

ee->gcblk.stageCooperated = GCHSNONE;
ee->gcblk.stage = GCHS3;
mokThreadResumeForGC( thrd );

#ifdef RCDEBUG
gcvar.dbg .nHS3Threads++;
#endif /* RCDEBUG */

return SYS_OK;
}

static void _Reinforce_Clearing_Conflict_Set(void)
{
bool allOK;

#ifdef RCDEBUG
uint start, end;

start = GetTickCount();
dbgprn( 0, "_Reinforce_Clearing_Conflict_Set(begin) time=)d\n", start);
#endif

/* do second handshake */
mokAssert ( gcvar.reinforceBuffList == NULL );

QUEUE_LOCK( gcvar.sys_thread );

gcvar.stage = GCHS2;

/*

* Link for reinforcemenr buffers of threads who

* died between HS1 and HS2

*/

gevar.reinforceBuffList = gcvar.deadThreadsReinforceBufflist;
gcvar.deadThreadsReinforceBuffList = NULL;

#ifdef RCDEBUG
gecvar.dbg.nReinforceObjects = gcvar.dbgpersist.nDeadReinforceObjects;
gcvar .dbgpersist.nDeadReinforceObjects = 0;

gecvar.dbg.nReinforceChilds = gcvar.dbgpersist.nDeadReinforceChilds;
gevar .dbgpersist.nDeadReinforceChilds = 0;
#endif

/*
* Link update buffers of live threads
*/
for(;;) {
allOK = true;
mokThreadEnumerateOver ( _HS2Helper, &allOK );
if (allOK) break;
mokSleep( 10 );

QUEUE_UNLOCK( gcvar.sys_thread );

while ( gcvar.reinforceBuffList ) {
uint *p = gcvar.reinforceBuffList;
uint *limit = (uint*)gcvar.reinforceBuffList [LAST_POS_IDX];
_reinforceUpdateBuffer( p, limit );
gevar.reinforceBuffList = (uint*)p[REINFORCE_LINKED_LIST_IDX];
}

/* do third handshake */

QUEUE_LOCK( gcvar.sys_thread );
gcvar.stage = GCHS3;
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* Dtherwise, this should be a back-pointer to the
* previous chunk.

*/

else {
mokAssert( (((uint)*(pos-1))) == BUFF_LINK_MARK );

gcvar .dbg.nHS2Threads++;
gcvar.dbg.nReinforceObjects += ee->gcblk.updateBuffer.start [LOG_OBJECTS_IDX];
gevar.dbg.nReinforceChilds += ee->gcblk.updateBuffer.start [LOG_CHILDS_IDX];

}
#endif /* RCDEBUG */

/* restart the thread */
ee->gcblk.stage = GCHS2;
mokThreadResumeForGC( thrd );
return SYS_OK;

}

static void _reinforceUpdateBuffer( uint *p, uint *limit )
mokA ssert( p );

p += N_RESERVED_SLOTS;
p++; /* skip the first back pointer */

for (53D €
uint *ptr = (uint*) (%p & ~3);
uint type = *p & 3;
#ifdef DEBUG
if (Iptr)
mokAssert( p == limit);
#endif DEBUG
if (p==limit)
return;
mokAssert( type != BUFF_DUP_HANDLE_MARK );
switch (type) {
case BUFF_LINK_MARK: {
mokAssert ( ptr );
mokAssert ( *ptr == BUFF_LINK_MARK| (uint)p );
mokAssert( (LOWBUFFMASK & (uint)ptr) == N_RESERVED_SLOTS*sizeof (uint));
p = ptr+l; /» skip backward pointer */
break;

case BUFF_HANDLE_MARK: {
GCHandle *h = (GCHandle*)ptr;
mokAssert( h );
mokAssert ( gcNonNullValidHandle(h) );
/* reinforce, if needed */
if (1h->logPos)
h->logPos = p;
+4;
#ifdef RCDEBUG
gcvar.dbg.nActualReinforceObjects ++;
#endif // RCDEBUG
break;

case 0: {
GCHandle *h = (GCHandle*)ptr;
mokAssert( h );
mokAssert( gcNonNullValidHandle(h) );
#ifdef RCDEBUG
gevar.dbg.nActualReinforceChilds ++;
#endif // RCDEBUG
p++;
break;
}
}
}
}

static void _HS3Cooperate(ExecEnv *ee)
{

bool res = gcCompareAndSwap( &ee->gcblk.stageCooperated, GCHSNONE, GCHS3 );
mokAssert( res );

#ifdef RCDEBUG
gevar .dbg.nHS3CoopThreads++;

#endif /» RCDEBUG */

}

static int _HS3Helper(sys_thread_t *thrd, bool *allOK)
{

Exec Env *ee;

bool res;

ee = SysThread2EE( thrd );

mokAssert( gcvar.ee != ee );

/* already moved to the next state? */
if (ee->gcblk.stage == GCHS3) return SYS_OK;

/* only the collector advances the stage field */
mokAssert( ee->gcblk.stage == GCHS2 );

/* did the thread cooperate voluntarily? */
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{
#ifdef RCDEBUG
DWORD start, end;

start = GetTickCount();
dbgprn( 0, "_Clear_Dirty_Marks(begin) time=/d\n", start);
#endif

_clearFlagsInCreateBufferList( );
_clearFlagsInUpdateBufferList( );

#ifdef RCDEBUG
end = GetTickCount();

dbgprn( 2, "\tnHS1Threads=%d\n", gcvar.dbg.nHS1Threads );

dbgprn( 2, "\tnUpdateObjects=%d\n", gcvar.dbg.nUpdateObjects );

dbgprn( 2, "\tnUpdatdChilds=Y%d\n", gcvar.dbg.nUpdateChilds );

dbgprn( 2, "\tnActualUpdateObjects=/d\n", gcvar.dbg.nActualUpdateObjects );
dbgprn( 2, "\tnActualUpdateChilds=%d\n", gcvar.dbg.nActualUpdateChilds );
dbgprn( 2, "\tnFreeCyclesBr =7%d\n", gcvar.dbgpersist.nFreeCyclesBroken );
dbgprn( 2, "\tnCreateObjects=)d\n", gcvar.dbg.nCreateObjects );

dbgprn( 2, "\tnActualCreateObjects=/d\n", gcvar.dbg.nActualCreateObjects );

if (gcvar.dbg.nUpdateDuplicates) {
dbgprn( 1, "\tnUpdateDuplicates=/d\n", gcvar.dbg.nUpdateDuplicates );

if (gcvar.dbgpersist.nFreeCyclesBroken) {
dbgprn( 1, "\tnFreeCyclesBroken=)d\n", gcvar.dbgpersist.nFreeCyclesBroken );
¥

mokAssert ( gcvar.dbg.nActualUpdateObjects == gcvar.dbg.nUpdateObjects );
mokAssert( gcvar.dbg.nActualUpdateChilds == gcvar.dbg.nUpdateChilds );

mokAssert( gcvar.dbg.nActualCyclesBroken == gcvar.dbgpersist.nFreeCyclesBroken );
mokAssert( gcvar.dbg.nActualCreateObjects == gcvar.dbg.nCreateObjects );

gcvar.dbgpersist.nFreeCyclesBroken = 0;

dbgprn( 0, "_Clear_Dirty_ Marks(end) time=%d delta=Y%d\n", end, end-start );
#endif // RCDEBUG
¥

static int _HS2Helper(sys_thread_t *thrd, bool *allOK)
Exec Env *ee;

ee = SysThread2EE( thrd );

mokAssert( gcvar.ee != ee );

if (ee->gcblk.stage == GCHS2) return SYS_OK;
if (ee->gcblk.cantCoop) {

*all0K = false;

return SYS_OK;

mokThreadSuspendForGC( thrd );
mokAssert ( ee->gcblk.stage == GCHS1 );
if (ee->gcblk.cantCoop) {
mokThreadResumeForGC( thrd );
*allOK = false;
return SYS_OK;
}

/* mark current position in the buffer */
ee->gcblk.updateBuffer.start [LAST_POS_IDX] = (uint)ee->gcblk.updateBuffer.pos;
/*

link the buffer into the reinforce buff
list. Note that the buffer stays at the
mutator.

We link the buffers instead of going again
through the thread ring in order not to
lock it when we really do the reinforce
stage.

PR T

*/
ee->gcblk.updateBuffer.start [REINFORCE_LINKED_LIST_IDX] =
(uint)gcvar.reinforceBuffList;
gecvar.reinforceBuffList = ee->gcblk.updateBuffer.start;

#ifdef RCDEBUG
{

uint *pos = ee->gcblk.updateBuffer.pos;

P |
* i.e., we never point to the reserved area:
*/

mokAssert( (((uint)pos)&LOWBUFFMASK) >= N_RESERVED_SLOTS );

/*

* If there is something in the current chunk, then
* the last entry is a containing handle entry.
* i.e., we don’t see partial entries.
*/
mokAssert( (((uint)pos)&LOWBUFFMASK) >= (N_RESERVED_SLOTS+1)*sizeof (int) );
if ( (((uint)pos)&LOWBUFFMASK) > (N_RESERVED_SLOTS+1)*sizeof (int)) {
mokAssert( (((uint)*(pos-1))&3) == BUFF_HANDLE_MARK ) ;
2
/*
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* only those which are duplicates.
*/
gcvar.dbg.nActualUpdateObjects++;
#endif
if (h->logPos == p) { /* yep */
mokAssert( gcNonNullValidHandle(h) );
h->logPos = NULL; /* clear dirty flag */
} else {
*p = BUFF_DUP_HANDLE_MARK | (uint)h;
#ifdef RCDEBUG
gcvar .dbg.nUpdateDuplicates++;
#endif

P~
break;
}
¥
}
}

static void _clearFlagsInUpdateBufferList(void)
{

uint *buffList = gcvar.updateBuffList;
while (buffList) {
_clearFlagsInUpdateBuffer( buffList );
buffList = (uint*)buffList [LINKED_LIST_IDX];
}
}

static void _clearFlagsInCreateBuffer(uint *p)

#ifdef RCDEBUG
uint *last_entry = (uint*)p[LAST_POS_IDX];
#endif

mokAssert( p );

p += N_RESERVED_SLOTS;
p++; /* skip the first back pointer */

foxr (;3) {
uint *ptr = (uint*) (*p & ~3);
uint type = *p & 3;
mokAssert( type != BUFF_HANDLE_MARK) ;
mokAssert( type != BUFF_DUP_HANDLE_MARK) ;
#ifdef RCDEBUG
/*
* the one and only entry which
* is supposed to be NULL is the
* last one.
*/
if (p==last_entry)
mokAssert( *p == 0 );
if (!*p)
mokAssert(p == last_entry );
#endif
if (type==0) {
GCHandle *h = (GCHandle*)ptr;
#ifdef RCDEBUG
dbgprn( 4, "\t\tclear:cr: %x\n", ptr );
#endif
if ('h) return;
mokAssert( gcValidHandle(h) );
/* In the create buffer all entries
* are cycle closing since there is
* no contention for these objects.
*/
mokAssert( h->logPos == p );
h->logPos = NULL; /* clear dirty mark */
#ifdef RCDEBUG
gcvar.dbg.nActualCreateObjects++;
#endif
PH;

}
else { /*type==BUFF_LINK_MARKx*/
mokAssert( ptr );
mokAssert( *ptr == BUFF_LINK_MARK| (uint)p );
mokAssert( (LOWBUFFMASK & (uint)ptr) == N_RESERVED_SLOTS*sizeof (uint));
P = ptr+l;

static void _clearFlagsInCreateBufferList( void )

uint x*buffList = gcvar.createBuffList;
while (buffList) {
_clearFlagsInCreateBuffer( buffList );
buffList = (uint*)buffList [LINKED_LIST_IDX];
}
}

static void _Clear_Dirty_Marks(void)
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for(;;) {
allOK = true;
mokThreadEnumerateOver( _HS1Helper, %allOK );
if (allOK) break;
mokSleep( 10 );

QUEUE_UNLOCK( gcvar.sys_thread );

#pragma optimize( "", on )

Jrxrrrnnaexxxasrnnrses  HS2 & HS3 /
static void _clearFlagsInUpdateBuffer(uint *p)

uint *ptr;

uint type;
#ifdef RCDEBUG

uint *first_entry = p+N_RESERVED_SLOTS;
#endif

mokAssert( p );

p = (uint*)p[LAST_POS_IDX];
mokAssert( ! *p );

mokAssert( *p );

for (3:) €
type = *p & 3;
next_entry:
ptr = (uint#*)(*p & “3);
#ifdef RCDEBUG
/*
*the one and only entry which
* is supposed to be NULL is the
* last one.
*/
if (p==first_entry)
mokAssert( *p == BUFF_LINK_MARK );
if (*p == BUFF_LINK_MARK)
mokAssert(p == first_entry );
#endif
switch (type) {

case BUFF_DUP_HANDLE_MARK: {
#ifdef RCDEBUG
gcvar .dbg.nActualCyclesBrokent++;
gevar.dbg.nActualUpdateObjects++;
/*
* can happen becuase of deletion
* cycle breaking.
*/
dbgprn( 3, "\t\tclear:up:broken %x\n", ptr );
#endif
for (;;) {
P
type = *p & 3;
if (type) goto next_entry;
#ifdef RCDEBUG
gevar.dbg.nActualUpdateChilds++;
#endif

}

case 0: {/* Logged slot entry */
GCHandle *h = (GCHandle*)ptr;
mokAssert( gcNonNullValidHandle(h) );

SildeprCDEBUG
dbgprn( 4, "\t\tclear:up:slot %x\n", ptr );
gevar.dbg.nActualUpdateChilds++;

#endif
break;

case BUFF_LINK_MARK: {
if (iptr) {
#ifdef RCDEBUG
mokAssert (p==first_entry);
#endif
return;

}
mokAssert( *ptr == BUFF_LINK_MARK| (uint)p );
p = ptr-1; // skip forward pointer
break;
}

case BUFF_HANDLE MARK: { /* Containing object entry */
GCHandle »h = (GCHandle#)ptr;
mokAssert( h );
#ifdef RCDEBUG
dbgprn( 4, "\t\tclear:up:hand %x\n", ptr );
/* is this entry cycle closing ?
* we assume that the striking majority
* of entries are, so we modify




/* now steal the buffers (if they were modified) */

if (buffIsModified(kee->gcblk.createBuffer)) {
/* make sure that the last word in the buffer is NULL */
*ee->gcblk.createBuffer.pos = 0;
/* make sure the second entry in the buffer points to
* the last entry
*/
ee->gcblk.createBuffer.start [LAST_POS_IDX] = (uint)ee->gcblk.createBuffer.pos;
/* the first entry is the linked list pointer */
ee->gcblk.createBuffer.start [LINKED_LIST_IDX] = (uint)gcvar.createBufflist;
gevar.createBuffList = ee->gcblk.createBuffer.start;
/* give the thread new buffers to play with »/
gcvar.nPreAllocatedBuffers--;
ee->gcblk.createBuffer = gcvar.preAllocatedBuffers[gcvar.nPreAllocatedBuffers];

¥
#ifdef RCDEBUG
else {
mokAssert ( ee->gcblk.dbg.nBytesAllocatedInCycle==0 );
mokAssert( ee->gcblk.dbg.nRefsAllocatedInCycle==0 );

#endif

if (buffIsModified(&ee->gcblk.updateBuffer)) {
/% do the same for the update buffer */
*ee->gcblk.updateBuffer.pos = 0;
ee->gcblk.updateBuffer.start [LAST_POS_IDX] = (uint)ee->gcblk.updateBuffer.pos;
ee->gcblk.updateBuffer.start [LINKED_LIST_IDX] = (uint)gcvar.updateBuffList;
gevar.updateBuffList = ee->gcblk.updateBuffer.start;
gevar.nPreAllocatedBuffers--;
ee->gcblk.updateBuffer = gcvar.preAllocatedBuffers[gcvar.nPreAllocatedBuffers];

#ifdef RCDEBUG
gevar.dbg.nBytesAllocatedInCycle += ee->gcblk.dbg.nBytesAllocatedInCycle;
gcvar .dbg.nRefsAllocatedInCycle += ee->gcblk.dbg.nRefsAllocatedInCycle;
gevar .dbg.nNewObjectUpdatesInCycle += ee->gcblk.dbg.nNewDbjectUpdatesInCycle;
gevar .dbg.n01d0bjectUpdatesInCycle += ee->gcblk.dbg.n0ldObjectUpdatesInCycle;

ee->gcblk.dbg.nBytesAllocatedInCycle = 0;

ee->gcblk.dbg.nRefsAllocatedInCycle = 0;

ee->gcblk.dbg.nNewObjectUpdatesInCycle = 0;

ee->gcblk.dbg.n0ldObjectUpdatesInCycle = 0;
#endif

/* restart the thread */

ee->gcblk.stage = GCHS1;

mokThreadResumeForGC( thrd )
#if 0O

ee->gcblk.gcSuspended = true;
#endif

return SYS_OK;

#pragma optimize( "", off )
static void _Initiate_Collection_Cycle(void)

bool allOK;
mokAssert( gcvar.stage == GCHS4);

// if (gcvar.

/* raise snoop flags */

QUEUE_LOCK( gcvar.sys_thread );
mokThreadEnumerateOver( _setSnoopFlagHelper, NULL );
QUEUE_UNLOCK( gcvar.sys_thread );

#ifdef RCDEBUG
memset( &gcvar.dbg, 0, sizeof(gcvar.dbg) );
gevar.dbg.nInZct = gcvar.dbgpersist.nPendInCycle;
gcvar.dbgpersist.nPendInCycle =0;

#endif // RCDEBUG

/* do first handshake */
QUEUE_LOCK( gcvar.sys_thread );

gcvar.stage = GCHS1;
mokAssert( gcvar.createBuffList == NULL );
mokAssert( gcvar.updateBuffList == NULL );

gevar.createBuffList = gcvar.deadThreadsCreateBuffList;
gcvar.deadThreadsCreateBuffList = NULL;
gcvar .updateBuffList = gcvar.deadThreadsUpdateBuffList;
gcvar .deadThreadsUpdateBuffList = NULL;

#ifdef RCDEBUG
gevar.dbg.nUpdateObjects = gcvar.dbgpersist.nDeadUpdateObjects;
gcvar.dbgpersist.nDeadUpdateObjects = O;

gevar.dbg.nUpdateChilds = gcvar.dbgpersist.nDeadUpdateChilds;
gevar .dbgpersist.nDeadUpdateChilds = 0;

gcvar.dbg.nCreateObjects = gcvar.dbgpersist.nDeadCreateObjects;

gevar.dbgpersist.nDeadCreateObjects = 0;
#endif
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-enlargeZctStack();

*gcvar.zctStackSp++ = (GCHandle)h;

static void _decrementLocalHandleRC(void *h)

uint prevRC;
H2BIT DecInlined( gcvar.rcBmp.entry, (unsigned)h, prevRC );
mokAssert( !_isInZCT(h) );
mokAssert( prevRC > 0 );
if (prevRC==1) {
_markInZCT(h) ;
_putInNextZCT( h );

}

/axannnnsannenenrnsnrns  Local Marks /

static bool _isLocal(void *h)

uint res;
H1BIT_GetInlined( gcvar.localsBmp.entry, (unsigned)h, res );
return res;

}
static void _setLocal(void *h)

if (!_isLocal(h)) {
H1BIT_Set( gcvar.localsBmp.entry, (unsigned)h);
_incrementHandleRC(h);
gcBuffLogWord( gevar.ee, (&gcvar.uniqueLocalsBuff), (uint)h );
#ifdef RCDEBUG
gevar.dbg.nLocals++;
#endif
}
}

static void _unsetLocal(void *h)
{

/* This also resets the local mark of near by objects,
* but we don’t care since we’re turning everybody
* off.
*/

H1BIT_ClearByte( gcvar.localsBmp.entry, (unsigned)h);

static int _setSnoopFlagHelper(sys_thread_t * thrd, void *dummy)
{.

Exec Env *ee = SysThread2EE( thrd );

mokAssert( ee != gcvar.ee );

ee->gcblk.snoop = true;
return SYS_OK;

}
static int _HS1Helper(sys_thread_t *thrd, bool *allOK)
{

Exec Env *ee;

ee = SysThread2EE( thrd );
mokAssert( ee != gcvar.ee );

if (ee->gcblk.stage == GCHS1) return SYS_OK;
if (ee->gcblk.cantCoop) {

*allOK = false;

return SYS_OK;

while( gcvar.nPreAllocatedBuffers < 2) {
buffInit( gcvar.ee, &gcvar.preAllocatedBuffers[gcvar.nPreAllocatedBuffers]
gevar.nPreAllocatedBuffers++;

-

mokThreadSuspendForGC( thrd );
mokAssert (ee->gcblk.stage==GCHS4) ;
if (ee->gcblk.cantCoop) {
mokThreadResumeForGC( thrd );
*allOK = false;
return SYS_OK;

}
#ifdef RCDEBUG

gcvar .dbg.nHS1Threads++;

gevar.dbg.nUpdateObjects += ee->gcblk.updateBuffer.start[LOG_OBJECTS_IDX];

gecvar.dbg.nUpdateChilds += ee->gcblk.updateBuffer.start [LOG_CHILDS_IDX];

gevar.dbg.nCreateDbjects += ee->gcblk.createBuffer.start[LOG_OBJECTS_IDX];
#endif // RCDEBUG




#endif

#define _markInZCT(h) H1BIT_Set( gcvar.zctBmp.entry, (unsigned)h )
#define _markNotInZCT(h) H1BIT_ Clear( gcvar.zctBmp.entry, (unsigned)h )
static bool _isInZCT(GCHandle *h)

{

bool res;
H1BIT GetInlined( gcvar.zctBmp.entry, (unsigned)h, res );
return res;

}

GCFUNC uint gcGetHandleRC( GCHandle *h)

{

uint res;
H2BIT GetInlined( gcvar.rcBmp.entry, (unsigned)h, res );
return res;

}
static void _incrementHandleRC( void * h)

H2BI T_Inc( gcvar.rcBmp.entry, (unsigned)h );
}

static uint _incrementHandleRCWithReturnValue( void * h)

uint res;
H2BIT_IncRVInlined( gcvar.rcBmp.entry, (unsigned)h, res );
return res;

static void _decrementHandleRCInUpdate( void * h)

uint prevRC;
H2BIT DecInlined( gcvar.rcBmp.entry, (unsigned)h, prevRC );
if (prevRC==1 && !_isInZCT(h)) {
_markInZCT( h );
gcBuffLogWord( gevar.ee, &gcvar.zctBuff, (uint)h );
#ifdef RCDEBUG
gevar.dbg.nInZct++;
gevar.dbg.nUpdate2ZCT++;
#endif // RCDEBUG

}

static void _enlargeZctStack(void)

GCHa ndle *#*p;
uint sz = ((char*)gcvar.zctStackTop)-((char*)gcvar.zctStack);

mokAssert ( gcvar.zctStackSp == gcvar.zctStackTop );
p = (GCHandle**)mokMemReserve( gcvar.zctStack, sz );
if (p) {
mokAssert( p == gcvar.zctStack );
mokMemCommit( p, sz, false );
gevar.zctStackTop = (GCHandle*x) (sz + (char*)gcvar.zctStackTop);

else {
uint newsz = sz*2;
GCHandle **oldstack = gcvar.zctStack;
gevar.zctStack = (GCHandle**)mokMemReserve( NULL, newsz );
gevar.zctStackTop = (GCHandle**) (newsz + (char*)gcvar.zctStack);
gevar.zctStackSp = (GCHandle*») ( sz + (char*)gcvar.zctStack );
mokMemCommit ( (char*)gcvar.zctStack, newsz, false );
CopyMemory( gcvar.zctStack, oldstack, sz );
mokMemDecommit ( (char*)oldstack, sz );
mokMemUnreserve( (char*)oldstack, sz );

static void _decrementHandleRCInDeletion(void *child)
{
uint prevRC;
H2BIT DecInlined( gcvar.rcBmp.entry, (unsigned)child, prevRC );
mokAssert( !_isInZCT(child) );
mokAssert( prevRC > 0 );
if (prevRC==1) {
#ifdef RCDEBUG
gcvar.dbg.nRecursiveDel++;
_freeHandle( child );
#else
if (gcvar.zctStackSp == gcvar.zctStackTop) {
_enlargeZctStack();

*gcvar.zctStackSp++ = child;
#endif // RCDEBUG

}
static void _putInMarkStack(void *h)

if (gcvar.zctStackSp == gcvar.zctStackTop) {
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bh->pos++;

#ifdef RCDEBUG
// increment counter of logged objects
bh->start [LOG_OBJECTS_IDX] ++;

#endif // RCDEBUG
mokAssert( gcGetHandleRC(h)==0 );
ee->gcblk.cantCoop = false;
gcBuf fReserveWord( ee, bh );

mokAssert( gcNonNullValidHandle(h) );
}

#endif /* RCNOINLINE */

[rxxxnnnnnnnnrnnrnrs VALIDATION
GCFUNC bool _isHandle(void *h)
{

BlkA llocHdr *bah;
int status;

if ((byte*)(h) <blkvar.heapStart) return false;
if ((bytex)(h) >= blkvar.heapTop) return false;
if ((((unsigned)h) & OBJMASK) != (unsigned)h) return false
if ((byte*)unhand((JHandle*)h) != (byte*)gcUnhand((JHandle*)h)) return false;
#ifdef RCDEBUG
if (((GCHandle*)h)->status != Im_used) return false;
#endif

bah = OBJBLOCKHDR(h) ;
status = bhGet_status( bah );

if (status==ALLOCBIG) {
if ( ((uint)h & BLOCKMASK) == 0)
return true;
return false;

if (status<OWNED || status>PARTIAL)
return false;

#ifdef RCDEBUG
{

int bin_idx = bhGet_bin_idx( bah );
mokAssert( (((uint)h & BLOCKMASK) % chkconv.binSize[bin_idx]) == 0);

#endif

/* check if on same page or ALLOC_LIST terminator */
if ((uint) ((GCHandle*)h)->logPos == (uint)ALLOC_LIST_NULL) return false;
if ( ((uint)h = (uint) ((GCHandle*)h)->logPos) < BLOCKSIZE )

return false;

#ifdef RCDEBUG
{

uint val;

uint *pos = ((GCHandle*)h)->logPos;

if (pos) {
val = *pos;
if ( (val & "3) != (uint)h ) {

/*

*

This is a problem only if we’re the collctor,
this means that someone has garbaled the log, the
logPos pointer or both.

If we’re a mutator then this is not an error since
the log could have already been freed by the collector.

DI

*/
if (gcvar.ee == EE()) {
mokAssert (0) ;
}
}
}

#endif

return true;

/ /

/ ZCT + RC /

#ifndef RCDEBUG
#define _putInNextZCT(h)\
do {\
gcBuffLogWord( gcvar.ee, (&gcvar.nextZctBuff), (uint)h );\
} while(0)
#else
static void _putInNextZCT(void *h)
{

gcBu ffLogWord( gcvar.ee, (&gcvar.nextZctBuff), (uint)h );
gevar.dbgpersist.nPendInCycle++;
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register long n = obj_length(h);
GCHandle **body = (GCHandle*#*) (((ArrayOfObject*)gcUnhand(h))->body);

mokAssert( obj_flags(h) == T_CLASS); /* an array of classes */
mokAssert( n > 0 );

p = (GCHandle**)bh->pos;
avail = bh->limit - (uint*)p;
if (n > avail) {
ee->gcblk.cantCoop = false;
gcBuffAllocAndLink( ee, bh );
p = (GCHandle**)bh->pos;
#ifdef RCDEBUG
avail = bh->limit - bh->pos;
mokAssert( n <= avail );
#endif /* RCDEBUG */
ee->gcblk.cantCoop = true;

while (=-n >= 0) {
GCHandle *child = *body;
body++;
if (child) {
*p = child;

pt+;
#ifdef RCDEBUG
nLoggedChilds++; // increment counter of logged slots
#endif // RCDEBUG
}
}
}

/* commit ? or discard ? »/
if (!h->logPos) { /* commit */
*p = (GCHandle*) (BUFF_HANDLE_MARK | (unsigned)h);
/*
* actually the order of instructions here
* should be reversed in order to enable
* async reading of buffers.
*/
h->logPos = (uint*)p;
bh->pos = (unsigned*) (p+1);
#ifdef RCDEBUG
// increment counters of logged slots
bh->start (LOG_CHILDS_IDX] += nLoggedChilds;
bh->start [LOG_DOBJECTS_IDX] ++;
#endif // RCDEBUG
}

}

#pragma optimize( "", on )

#ifdef RCNOINLINE

GCEXPORT void gcBuffConditionalLogHandle(ExecEnv* ee, GCHandle *h)
{

if ('h->logPos)
gcBuffSlowConditionalLogHandle( ee, h);

GCEXPORT void gcBuffLogWordUnchecked(ExecEnv *ee, BUFFHDR *bh, uint w)
{
*bh- >pos = w;
bh->pos++;
#ifdef RCDEBUG
// increment counter of logged objects
bh->start [LOG_OBJECTS_IDX] ++;
#endif // RCDEBUG
}

GCEXPORT void gcBuffReserveWord(ExecEnv *ee, BUFFHDR *bh)
(mokA ssert( bh &k ee );

if ( bh->pos >= bh->limit) {

gcBuffAllocAndLink( ee, bh );

}
GCEXPORT void gcBuffLogWord(ExecEnv *ee, BUFFHDR *bh, uint w)
{mokA ssert( w && bh &k ee );

gcBuf fReserveWord( ee, bh );

gcBuffLogWordUnchecked( ee, bh, w );
GCEXPORT void gcBuffLogNewHandle(ExecEnv *ee, GCHandle *h)
(BUFF HDR *bh;

mokAssert( ee );

bh = kee->gcblk.createBuffer;

ee->gcblk.cantCoop = true;

*bh->pos = (uint)h;
h->logPos = bh->pos;
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/* forward link */

/* from the current position to the new chunk */

*bh->pos = ((uint)&newBuff [N_RESERVED_SLOTS]) | BUFF_LINK_MARK;
/* from the beginning of the current buffer to the next buffer */
bh->currBuff [NEXT_BUFF_IDX] = (uint)newBuff;

/* update record */

bh->pos = imewBuff [N_RESERVED_SLOTS+1];
bh->limit = newBuff + BUFFSIZE/sizeof (uint);
bh->currBuff = newBuff;

/*
* Reserve place for"
* 1. the handle and forward pointer (2 words).
* 2. and a reserved place for a snooped object.
*/
bh->limit -= 3;
¥

static void buffInit(ExecEnv *ee, BUFFHDR *bh)

int i;
bh->start = _allocBuff(ee);

_initBuffReservedSlots( ee, bh->start );

/* backword link */
bh->start [N_RESERVED_SLOTS] = ((unsigned)NULL) | BUFF_LINK_MARK;
bh->pos = &bh->start [N_RESERVED_SLOTS+1];
bh->1limit = bh->start + BUFFSIZE/sizeof (uint);
bh->limit -= 3; /* for the handle, forward pointer and reserved snoop */
bh->currBuff = bh->start;
}

#define buffIsModified(bh) ((bh)->pos != &(bh)->start[N_RESERVED_SLOTS+1])

#pragma optimize( "", off )
GCEXPORT void gcBuffSlowConditionallLogHandle(ExecEnv* ee, GCHandle *h)
{

int avail;

GCHandle **objslots;

GCHandle **p;

ClassClass *cb;

BUFFHDR *bh;

#ifdef RCDEBUG
uint nLoggedChilds = 0;
#endif // RCDEBUG

bh = &ee->gcblk.updateBuffer;

if (obj_flags(h)==T_NORMAL_OBJECT) {
cb = obj_classblock(h);
mokAssert( cb != classJavalangClass);
{ /* 0K, it’s a non-class object */
unsigned short *offs = cbObjectDffsets(cb);
int nrefs = unhand(cb)->n_object_offsets;
objslots = (GCHandlex*) (((char*)unhand(h))-1);

mokAssert( objslots && h && bh && ee &k offs &% nrefs>0);
p = (GCHandle**)bh->pos;
avail = bh->limit - (uint*)p;
if (nrefs > avail) {
ee->gcblk.cantCoop = false;
gcBuffAllocAndLink( ee, bh );
p = (GCHandle**)bh->pos;
#ifdef RCDEBUG
avail = bh->limit - bh->pos;
mokAssert( nrefs <= avail );
#endif /* RCDEBUG */
ee->gcblk.cantCoop = true;

}

for (;;) {
unsigned short slot = *offs;
GCHandle *child;

if (slot==0) break;

child = *(GCHandle*#) (slot + (char*)objslots);
if (child) {
*p = child;
p++;
#ifdef RCDEBUG
nLoggedChilds++; // increment counter of logged slots
mokAssert( nrefs > 0 );
nrefs--;
#endif // RCDEBUG
}

offs++;

else {
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bf [USED_IDX] = Im_used;
#endif
return bf;

static uint* _allocBuff (ExecEnv *ee)
uint *bf;

if (buffList==NULL) {
bf = _allocFreshBuff();
_buffListLockEnter( (unsigned)ee );
gecvar.nAllocatedChunks++;
gevar .nUsedChunks++;
mokAssert( gcvar.nFreeChunks+gcvar.nUsedChunks == gcvar.nAllocatedChunks );
_buffListLockExit( (unsigned)ee );
goto checkout;

}
_buffListLockEnter( (unsigned)ee );
bf = buffList;
if (1bf) {
gcvar .nUsedChunks++;
gevar.nAllocatedChunks++;
mokAssert( gcvar.nFreeChunks+gcvar.nUsedChunks == gcvar.nAllocatedChunks ) ;
_buffListLockExit( (unsigned)ee );
bf = _allocFreshBuff();

else {
gcvar .nUsedChunks++;
gcvar .nFreeChunks--;
mokAssert( gcvar.nFreeChunks+gcvar.nUsedChunks == gcvar.nAllocatedChunks );
#ifdef RCDEBUG
mokAssert( bf [USED_IDX] == Im_free );
bf [USED_IDX] = Im_used;
#endif // RCDEBUG
bufflList = (unsigned*)bf [LINKED_LIST_IDX];
_buffListLockExit( (unsigned)ee );
}
checkout:
if (ee != gcvar.ee) {
gevar.nChunksAllocatedRecentlyByUser++; // allow inaccuracy due to race condition
if (gcvar.nChunksAllocatedRecentlyByUser >= gcvar.opt.userBuffTrig
&& gcvar.initialized
&k !gcvar.gcActive) {
#ifdef RCVERBOSE
jio_printf("ALLOC BUFF used=)d TRIGERRING ASYNC RC\n", gcvar.nUsedChunks );
fflush( stdout );
#endif
gcRequestAsyncGC( ) ;

}
return bf;

}
static void _freeBuff( ExecEnv *ee, uint» buff)
mokA ssert( ee == gcvar.ee );

#ifdef RCDEBUG
mokAssert( buff [USED_IDX] == Im_used );
#endif

_buffListLockEnter( (unsigned)ee );
buff [LINKED_LIST_IDX] = (uint)buffList;
buffList = buff;
gecvar .nFreeChunks++;
gcvar .nUsedChunks--;
mokAssert( gcvar.nFreeChunks+gcvar.nUsedChunks == gcvar.nAllocatedChunks );
#ifdef RCDEBUG
buff (USED_IDX] = Im_free;
#endif // RCDEBUG
_buffListLockExit( (unsigned)ee );
}

static void _initBuffReservedSlots( ExecEnv* ee, uint *newbuff )

| newb uff [LINKED_LIST_IDX] =0;
newbuf f [REINFORCE_LINKED_LIST_IDX] = O;
| newbuf f [NEXT_BUFF_IDX] =0;
| newbuff [LAST_PDS_IDX] = 0;
t #ifdef RCDEBUG
newbuff [ALLOCATING_EE] = (uint)ee;
newbuff [LOG_CHILDS_IDX] = 0;
newbuff [LOG_OBJECTS_IDX] =0;
newbuf f (USED_IDX] = Im_used;
#endif

GCEXPORT void gcBuffAllocAndLink(ExecEnv* ee, BUFFHDR *bh)
t

uint i;
uint *newBuff = _allocBuff( ee );

_initBuffReservedSlots( ee, newBuff );

/* backword link */
newBuff [N_RESERVED_SLOTS] = ((uint)bh->pos) | BUFF_LINK_MARK;
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/#*¥xxxxxxxanas Debug Prints AR R AR AR [
static FILE *fDbg;

#ifdef RCDEBUG
static void dbgprn(int level, char *fmt, ...)

char buff[1000];
if (level <= 2) {
va_list args;

va_start( args, fmt );
if (£Dbg==NULL)

£Dbg = fopen("test.txt", "wt" );
viprintf( fDbg, fmt, args );
vsprintf( buff, fmt, args );
jio_printf( "%s", buff );
fflush( stdout );
va_end( args );

}
}
#endif
7k /
/% atomic op */ l
// int ___compare_and_swap(unsigned *addr, unsigned oldv, unsigned newv);

#pragma optimize( "", off )
GCFUNC void gcSpinLockEnter(volatile unsigned *p, unsigned id)
{int i;
for(i=0; i<N_SPINS; i++) { I
if (*p) continue;

if (___compare_and_swap((unsigned*)p, 0, id))
// jio_printf("gcSpinLockEnter ended (1)\n");

return;
i=:1;
for (;;) {

mokSleep( 1/1000 );
if (___compare_and_swap((unsigned*)p, 0, id)) {
return;

2
i o= 2;

}
}
GCFUNC void gcSpinLockExit(volatile unsigned *p, unsigned id)
{
#ifdef RCDEBUG

bool res;
#endif

mokAssert( *p == id );

#ifdef RCDEBUG
res = ___compare_and_swap((unsigned*)p, id, 0); .
mokAssert( res );

#else
_-_compare_and_swap((unsigned*)p, id, 0);

#endif /* RCDEBUG */

}

#pragma optimize( "", on )

Jrrnrnrnnrnrnnsns  BUFFER MANAGEMENT sk omsons donh dondonon ko /

\
static uint* buffList = NULL; I
static uint pad_against_false_sharingl[256];

static uint bufflistLock;

static uint pad_against_false_sharing2[256];

void _buffListLockEnter(uint ee)
{

gcSp inLockEnter( &buffListLock, (unsigned)ee );

void _buffListLockExit(uint ee)
{ \
)chp inLockExit( &bufflistLock, (unsigned)ee );

static uint* _allocFreshBuff (void)
uint *bf;

bf = (uint*)mokMemReserve( NULL, BUFFSIZE );
mokMemCommit ( bf, BUFFSIZE, false );
if (1of) {
jio_printf("YLRC: out of log buffers space\n");
fflush( stdout );
exit(-1);

}
#ifdef RCDEBUG




__scan_with_list;

goto

}
h = (GCHandle*) (objsz + (char*)h);
}

#ifdef RCDEBUG
gevar.dbg.nFreedInCycle += count;
gevar .dbg.nBytesFreedInCycle += count*objsz;
#endif
rlce.recycledList->count = count;
chkFlushRecycledListEntry( &rlce );
}

/*exxrrxrnnsnxrnxsxx Allocation /
GCEXPORT BLKOBJ *chkAllocSmall(ExecEnv* ee, unsigned binIdx )
{

int retries;
ALLOCLIST #*allocList = & ee->gcblk.allocLists[ binldx ];
BLKOBJ* ores;

ores = _allocFromOwnedBlock( allocList );
if (ores) {
return ores;

/* now is a good time to cooperate ! */
// if (ee->gcblk.stage != gcvar.stage)
// gcThreadCooperate(ee) ;

for (retries=0; retries<3; retries++) {
if (_getPartialBlock( allocList, ee )) {
ores = _allocFromOwnedBlock( allocList );
mokAssert( ores );
return ores;

}

if (_getBlkMgrBlock( allocList, ee )) {
ores = _allocFromOwnedBlock( allocList );
mokAssert( ores );
return ores;

}

/* Sync GC */

if (gcvar.initialized) {
gevar .memStress = true;
gcRequestSyncGC();

else
break;
}
OutOfMemory () ;
return NULL;

/rrrrrxnknenrenrnrsx Initialization /
GCFUNC void chkInit(unsigned nMB)
{

unsi gned sz;
unsigned nPages;

/* init conversion tables */
-initChunkConv () ;

/* Allocate page headers cache, ZEROED OUT */

nPages = nMB << (20 - BLOCKBITS);

chunkvar.nCacheEntries = nPages / RLCACHE_RATIO;

if (chunkvar.nCacheEntries < 117)
chunkvar.nCacheEntries = 117;

sz = chunkvar.nCacheEntries * sizeof (RLCENTRY);

chunkvar.rlCache = (RLCENTRY*)mokMemReserve( NULL, sz );

mokMemCommit ( chunkvar.rlCache, sz, true );

End of file source listing

D.5 rcge.c

rcgc.c contains the code for the reference counting and tracing garbage collection algorithms.
Source listing for file rcge.c

/*

* File: rcge.c

* Author: Mr. Yossi Levanoni

* Purpose: implementation of the garbage collector

*/

/* forward declarations */

static void _snoopThreadLocals( sys_thread_t* t );
static void _incrementHandleRC( void * h);

static void _traceSetup(void);

static void _freeHandle(GCHandle* h);
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bhLock( ph );

status = bhGet_status(ph);
mokAssert( status==PARTIAL || status==0WNED || status==VOIDBLK);

(volatile BLKOBJ*)freeList = ph->freelList;

if (freeList) {
BLKOBJ *t;
mokAssert( freeList->count );
nFree = freeList->count + recycledList->count;
t = recycledList->next;
recycledList->next = freeList->next;
freeList->next = t;

}

else {
nFree = recycledList->count;
freeList = recycledList;

freeList->count = nFree;
ph->freeList = freeList;

bhUnlock( ph );

if (status == PARTIAL) {
/*
* Have we freed all chunks on a
* partial page 7
*/
int binldx = bhGet_bin_idx( ph );
PARTIALLIST *pList = &chunkvar.partialLists[ binIdx J;
int maxChunks = chkconv.binToObjectsPerBlock[ binIdx ];
if (maxChunks == nFree)
_handleFullPartialBlock( pList, ph );

}
else if (status == VOIDBLK) {

J*x

* either put the VOIDBLK page into the partial list or
‘ * return it to the block manager.
‘ */
‘ int binldx = bhGet_bin_idx( ph );
| int maxChunks = chkconv.binToObjectsPerBlock[ binldx 1;
if (maxChunks==nFree) {
blkFreeChunkedBlock (ph) ;

else {
_addPageToPartialList(ph);

}
rlce->recycledList = NULL;

GCFUNC void chkFlushRecycledListsCache( void )
{

int i;
RLCENTRY #*rlce = chunkvar.rlCache;
for (i=chunkvar.nCacheEntries; i>0; i--, rlce++)
if (rlce->recycledList)
chkFlushRecycledListEntry( rlce );
}

GCFUNC void chkSweepChunkedBlock( BlkAllocHdr *ph, int status)

int binidx = bhGet_bin_idx( ph );

int objsz = chkconv.binSize[ binidx ];

int nobj = chkconv.binToObjectsPerBlock[ binidx ];
GCHandle *h = (GCHandle*)BLOCKHDROBJ(ph) ;
RLCENTRY rlce;

int count = O;

while (nobj>0) {

nobj--;

if (gcGetHandleRC(h)==0 && !'h->logPos) {
BLKOBJ *o0 = (BLKOBJ*)h;
o->next = o;
rlce.recycledList = o;
count = 1;
goto __scan_with_list;

}

h = (GCHandle#*) (objsz + (char#)h);

return; /+ found nothing */

—-scan_with_list:
/* here recycled list is non-empty */

h = (GCHandle#*) (objsz + (char*)h);
while (nobj>0) {
nobj--;
if (gcGetHandleRC(h)==0 && !'h->logPos) {
BLKOBJ *o = (BLKOBJ*)h;
count++;
o->next = rlce.recycledList->next;
rlce.recycledList->next = o;
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return true;

}

/

ssssssessssssnsesss  Exported Functions

7 Collection 74

#ifdef RCDEBUG
GCFUNC void chkPreCollect (BLKOBJ *0)
{

word blockid;

RLCENTRY #*rlce;

BLKOBJ *head;

blockid = OBJBLOCKID(o);
rlce = kchunkvar.rlCache[blockid % chunkvar.nCacheEntries];
head = rlce->recycledList;

/e

* Is the cache entry currently owned by this block ?
*/

if ((((word)head) " ((word)o)) < BLOCKSIZE) {

mokAssert ( OBJBLOCKID (head)==blockid );
{
int binldx = bhGet_bin_idx( OBJBLOCKHDR(o) );
int objSize = chkconv.binSize[ binldx ];
int maxObjs = chkconv.binToObjectsPerBlock[ binIdx ];

/%
* since some but not all BLKBOJs of the block are linked
* the following should hold.
*/
mokAssert( head->count>0 && head->count<maxObjs );
}
o->next = head->next;
head->next = o;
head->count ++;
return;

}

if (head)
chkFlushRecycledListEntry( rlce );

/* now the entry is vacant and we can use it */
o->count = 1;
o->next = o;
rlce->recycledList = o;
}
#endif /* RCDEBUG */

Flush an entry in the recycled lists cache.

First of, the block is locked then its state is read, the free list
is merged with the recycled list and then the lock is released.

== If the block is in the VOIDBLK state:

a. The free list must be empty.

b. If the free list now contains all elements in the block then the
block is returned directly to the block manager (without going
through the "observed full" set). Otherwise, the state is changed
to PARTIAL (no lock is taken). Then the corresponding partial list
is locked and the block is added to it.

-- Additional action for PARTIAL
a. If the block is now fully freed, then it is marked as "observed full"
which may lead to the flushing of the "observed full" set.

Note: free lists and recycled lists are circular.

EOE O K R K R K R K R K X R KK N K KR N NN

*/
GCFUNC void chkFlushRecycledListEntry(RLCENTRY *rlce)
:
BlkA 1locHdr *ph;
int nFree, nRecycled;
BLKOBJ #recycledList, *freeList;
unsigned status;

recycledList = rlce->recycledList;
ph = OBJBLOCKHDR( recycledList );

mokAssert( recycledList ); /* or else it woudn’t be in the cache */
mokAssert( recycledList->next ); /* it’s a circular list */

nRecycled = recycledList->count;

mokAssert( nRecycled ); /* or else it woudn’t be in the cache */
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BlkAllocHdr *ph = allocList->allocBlock;
if (!ph) return NULL;

/* see if there is something on the free list */
bhLock( ph );
(volatile BLKOBJ*)head = ph->freeList;
if (head) {
/* copy and clear */
ph->freeList = NULL;
bhUnlock(ph) ;
{

BLKO BJ *ret = head->next;

head->next = ALLOC_LIST_NULL;
allocList->head = ret->next;
return ret;

}

/* UK, we have to abandon the page, i.e.,
* transfrom it into a VOIDPG page
*/

bhSet_status(ph, VOIDBLK );

bhUnlock( ph );

allocList->allocBlock = NULL;

#ifdef RCDEBUG
delta = GetTickCount() - delta;
if (delta > deltaMax) {
deltaMax = delta;
jio_printf(" #*x3 ALLOC_OWNED delta=%d\n", delta );
fflush( stdout );
}
#endif
}

return NULL;

/

*
* Allocate a single block from the block manager and

* chunk it into the given allocation list.

*/

static bool _getBlkMgrBlock( ALLOCLIST» allocList, ExecEnv *ee )
{

#ifdef RCDEBUG
static int deltaMax = -1;
int delta = GetTickCount();
#endif

BlkAllocHdr *ph = blkAllocBlock( ee );
int sz;

int count;

BLKOBJ *start, *curr, *next;

it (!ph) {
#ifdef RCDEBUG
delta = GetTickCount() - delta;
if (delta > deltaMax) {
deltaMax = delta;
jio_printf(" »»*4 ALLOC_BLK delta=)%d\n", delta );
fflush( stdout );
}
#endif
return false;

sz = chkconv.binSize[ allocList->binldx ];
count = chkconv.binToObjectsPerBlock[ allocList->binIdx ];

mokAssert( count >= 2 );
count--;
start = curr = BLOCKHDROBJ(ph);

for ( ;count>0; count--) {
next = (BLKOBJ*) (((word)curr) + sz );
curr->next = next;
curr = next;

}
curr->next = ALLOC_LIST_NULL;

allocList->head = start;

allocList->allocBlock = ph;

ph->nextPartial = ph->prevPartial = NULL;

ph->freeList = NULL;

ph->StatusLockBinidx = (OWNED << 24) | allocList->binIdx;

#ifdef RCDEBUG
delta = GetTickCount() - delta;
if (delta > deltaMax) {
deltaMax = delta;
jio_printf(" ***5 ALLOC_BLK delta=%d\n", delta );
fflush( stdout );

#endif




}
#endif

return FALSE;

}

else {
BlkAllocHdr *next = ph->nextPartial;
pList->firstBlock = next;
if (next)

next->prevPartial = (BlkAllocHdr*)pList;

bhSet_status( ph, OWNED );
#ifdef RCDEBUG

chunkvar.nBlocksInPartialList[ allocList->binldx ] --;
#endif /» RCDEBUG */

_unlockPartialList( pList, ee );

allocList->allocBlock = ph;
_stealFreeList(allocList);

mokAssert( allocList->head );
mokAssert( allocList->head->count );

#ifdef RCDEBUG
delta = GetTickCount() - delta;
if (delta > deltaMax) {
deltaMax = delta;
jio_printf(" **x2 ALLOC_PARTIAL delta=%d\n", delta );
fflush( stdout );
}
#endif
return TRUE;
}

Tries allocating object from the allocation list or from
the block which is currently owned by it.

If the allocation list is non-empty, then the first element
is extracted and returned (no locking required).

Otherwise, if the allocation list has no allocation block
associated with it, then the function fails.

Othetwise, the page is locked and its free list is probed.
If the free list is empty then the page is transformed into
a VOIDBLK block, the block is disassociated with the
allocation list and the fucntion fails.

Otherwise, the free list is stolen and merged into the
allocation list. The first element is extracted and
returned.

RO R K K R R KK KK R KR E RN

*

*/
static BLKOBJ *_allocFromOwnedBlock( ALLOCLIST* allocList )
{

BLKO BJ *head = allocList->head;
if (head != ALLOC_LIST_NULL) {
#ifdef RCDEBUG
BLKO BJ firstObj;

mokAssert( allocList->allocBlock );
mokAssert( bhGet_status( allocList->allocBlock) == OWNED );
firstObj = BLOCKHDROBJ(allocList->allocBlock);
if ((char*)firstObj < blkvar.heapStart ||
(char*)firstObj >= blkvar.heapTop ||
(char*)head < blkvar.heapStart ||
(char*)head >= blkvar.heapTop ) {
jio_printf(
"Blk=Yx first=Yx head=%x\n",
allocList->allocBlock,
firstObj,
head );
fflush( stdout );
mokAssert( 0 );

mokAssert( (((word)head) & ((word)firstObj)) == ((word)firstObj));
if (allocList->head)
mokAssert (
((((int)allocList->head) -
((int)head)) % chkconv.binSize[ allocList->binldx ]) == 0 );
}
#endif

allocList->head = head->next;
return head;

{
#ifdef RCDEBUG
static int deltaMax = -1;
int delta = GetTickCount();
#endif
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*/
static void _handleFullPartialBlock( PARTIALLIST *pList, BlkAllocHdr* ph )
{

pLis t->observedFull[ pList->nObservedFull++ ] = ph;
chunkvar.nObservedFull++;
if (pList->nObservedFull >= MAX_OBSERVED_FULL_PER_LIST ||
chunkvar.nObservedFull >= MAX_OBSERVED_FULL)
_flushObservedFull();

/

soxorooorkrrkr Allocation #sskkskkokkkorkkok Rk kR

/

Moves all the items in a page’s free list into
the allocation list passed as a parameter.

This function is called by a mutator which is
the owner of this block. It is invoked for
a page which has just been extracted from a
partial list so it’s clear that the free

list is non-empty.

Locks taken:
The page’s lock

Competing operations:
_flushRecycledListEntry(). Contention is
resolved by the page’s lock.

FOR R R KRR KRN RN R NN

*/
static void _stealFreeList( ALLOCLIST *allocList )
{

BlkA 1llocHdr *ph = allocList->allocBlock;
BLKOBJ *prev, *head;

mokAssert ( allocList->binIdx == bhGet_bin_idx( ph ) );
mokAssert( bhGet_status(ph) == OWNED );

bhLock( ph );

(volatile BLKOBJ*)prev = ph->freeList;
ph->freeList = NULL;

bhUnlock(ph) ;

mokAssert( prev );

head = prev->next;

prev->next = ALLOC_LIST_NULL;

allocList->head = head;
¥

Tries extracting a block from a partial list.

If the partial list corresponding to the allocation
list is non-empty then the first element is extracted.

block is changed to OWNED. This protects against
freeing the block by the collector back to the block
manager.

The partial list lock is then released.

Then the blocks free list is stolen (i.e., moved onto the
allocation list) which entails locking the block.
*/
static BOOL _getPartialBlock( ALLOCLIST *allocList, ExecEnv *ee )
{

/
»
*
*
*
*
*
* While the partial 1list lock is held, the state of the
*
*
*
*
»
*
*
*

#ifdef RCDEBUG
static int deltaMax = -1;
int delta = GetTickCount();
#endif

BlkAllocHdr *ph;
PARTIALLIST *pList = &chunkvar.partialLists[ allocList->binldx ];

_lockPartialList( pList, ee );
ph = pList->firstBlock;
if ( tph) {
_unlockPartialList( pList, ee );
#ifdef RCDEBUG
delta = GetTickCount() - delta;
if (delta > deltaMax) {
deltaMax = delta;
jio_printf(" *+#1 ALLOC_PARTIAL delta=Yd\n", delta );
fflush( stdout );
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Competing operations:
mutators executing _getPartialBlock.

State changes:
PARTIAL ---> Block Mgr states. Contention resolved
by block mgr lock.

PR

=/
static void _flushObservedFull(void)
{

int  1listldx, status, count, maxObj, currentListldx;
int  blockldx;

PARTIALLIST *pList;

BlkAllocHdr #ph;

chunkvar.nTrulyFull = 0;

for (listIdx = 0; listIdx<N_BINS; listIdx++) {
pList = &chunkvar.partialLists[ listIdx ];
maxObj = chkconv.binToObjectsPerBlock([listIdx] ;

lockPartialList( pList, gcvar.ee);

for (blockIdx=0; blockldx<pList->nObservedFull; blockIdx++) {
ph = pList->observedFull[ blockIdx ];

/* Did some mutator took it 7 */

status = bhGet_status(ph);

if (status != PARTIAL) { /* yep */
continue;

/*
* Is it in the original partial list
* where it was observed to be full 7
*/
currentListIdx = bhGet_bin_idx(ph);
if (currentListIdx != 1listIdx ) /* nop */
continue;

/**

* Is it still fully free ?
*/

if (!ph->freeList) /» nop */
continue;

count = ph->freeList->count;
mokAssert( count>=0 &% count<=maxObj );

if (count < maxObj) /* nop */
continue;

/>

* Protect against extracting a single block
* mutiple times.

=/

bhSet_status( ph, DUMMYBLK );

/* extract the page */
ph->prevPartial->nextPartial = ph->nextPartial;
if (ph->nextPartial)
ph->nextPartial->prevPartial = ph->prevPartial;
#ifdef RCDEBUG
chunkvar.nBlocksInPartialList[ listIdx ] --;
#endif /* RCDEBUG */

chunkvar. trulyFull[ chunkvar.nTrulyFull++ ] = ph;

_unlockPartialList( pList, gcvar.ee );
pList->nObservedFull = 0; /* reset the list specific counter */

/* reset global counter #/
chunkvar.nObservedFull = 0;

/* return blocks to the block manager */

blkFreeS locks ( .trulyFull, ar.nTrulyFull );
}
/
»
* Take a note that a block has been observed to be fully free.
*
» For each partial list we keep a buffer and a counter of blocks that
* were observed as full. Additonally, we keep a global counter of
* all the blocks in all the partial lists that were observed to be full.
-
* If either the list specific counter or the global counter crosses a
* threshold, the lists are flushed using _flushObservedFull()
*
*
* Locks taken:
* the call to _flushObservedFull() may lock partial lists and/or
* the block manager (one at a time).
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target = chkconv.binSize[i];

for (; j<=target; j++) {
chkconv.szToBinIdx[ j ] = i;
chkconv.szToBinSize[ j ] = target;

}
}

for (i=0; i<N_BINS; i++) {
chkconv.binToObjectsPerBlock [i] = BLOCKSIZE / chkconv.binSize[i];
#ifdef RCDEBUG
chunkvar.nBlocksInPartialList[i] = 0;
#endif /= RCDEBUG */
}

}
/ /

[axxanxrxnnsannsrsss COLLECTION /
Y /

Adds a block to a partial list.

A block is added to the partial list by a
collector when it finds that it’s in the
VDIDBLK state.

The state is changed and the block is added to
the appropriate list.

Locks taken:
the partial list lock

Competing operations:
mutators executing _getPartialBlock

state changes:
VOIDBLK =---> PARTIAL. No contention.

P T I I

*/
static void _addPageToPartialList( BlkAllocHdr* ph b |

{
BlkA 1llocHdr *head;
int idx = bhGet_bin_idx(ph);
PARTIALLIST *pList = &chunkvar.partialLists[ idx ];

mokAssert ( bhGet_status(ph)
bhSet_status(ph, PARTIAL );

VOIDBLK );

_lockPartialList( pList, gcvar.ee );
head = pList->firstBlock;
ph->nextPartial = head;
ph->prevPartial = (BlkAllocHdr#*)pList;
if (head)
head->prevPartial = ph;
pList->firstBlock = ph;
#ifdef RCDEBUG
chunkvar.nBlocksInPartialList[ idx ] ++;
#endif /» RCDEBUG */
_unlockPartialList( pList, gcvar.ee );

Flush the buffers that contains block headers
which have observed to be full.

Each partial list is locked and the buffer
corresponding to it is examined.

Each element has been already observed to be
entirely free may have undergone many changes
since:

1. It could have been reallocated and now
it is either OWNED or VOIDBLK.

2. If it turned into VOPIDBLK then the collector
could have already freed it.

We protect against each of these possibilities
by checking that the block is indeed full, and
in the original partial list where it was observed.

Additionally, we mark such a block as DUMMYBLK in
order not to free it twice.

When the candidates for freeing are verifired, the
array of truly deletable blocks is passed to the
block manager.

Locks taken:
1. the partial list lock. Each at a time.
2. Afterwards, the block manager lock.

FOE K R K E R R R R K N K R OE E N R K KRR R E KRN E X RN
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int *pFreeBlocks,
int *pFreeBytes )
{
Exec Env *ee = EE();
PARTIALLIST #*pList = &chunkvar.partialLists[ iList ];
int objSz = chkconv.binSize[ iList ];
int maxObj = chkconv.binToObjectsPerBlock[ iList ];
int status, count;
BlkAllocHdr *ph, *nextPh;
BLKOBJ *freeList;

*pFreeBlocks = 0;
*pFreeBytes = 0;

-lockPartialList( pList, ee);

ph = pList->firstBlock;
while (ph) {
(*pFreeBlocks)++;
status = bhGet_status( ph );
mokAssert( status == PARTIAL );
freeList = (BLKOBJ*)ph->freeList;
if (freeList) {
mokAssert ( OBJBLOCKHDR(freeList) == ph );
count = (int)freeList->count;
mokAssert ( count<=maxObj &k count>0 );
*pFreeBytes += count;

ph = ph->nextPartial;

_unlockPartialList( pList, ee );
*pFreeBytes *= objSz;

GCEXPORT void chkGetPartialBlocksStats( int freeBlocks([], in

{
int i;
for (i=0; i<N_BINS; i++)

_getPartialListStats( i, &freeBlocks([i], &freeBytes[i] );

GCEXPORT int chkCountPartialBlocks(void)
{

int n=0, i;
for (i=0; i<N_BINS;i++)

n += chunkvar.nBlocksInPartialList[i];
return n;

}
/

freeBytes[])

sxxxxxxaxerirs Mutual Services

Initialize conversion tables.

* ow o~

*/
static void _initChunkConv( void )
{

int target,i, j;
i=0;

chkconv.binSize[ i++ ] = 8;
chkconv.binSize[ i++ ] = 16;
chkconv.binSize[ i++ ] = 24;
chkconv.binSize[ i++ ] = 32;
chkconv.binSize[ i++ ] = 40;
chkconv.binSize[ i++ ] = 48;
chkconv.binSize[ i++ ] = 56;
chkconv.binSize[ i++ ] = 64;
chkconv.binSize[ i++ ] = 80;
chkconv.binSize[ i++ ] = 96;
chkconv.binSize[ i++ ] = 112;
chkconv.binSize[ i++ ] = 128;
chkconv.binSize[ i++ ] = 160;
chkconv.binSize[ i++ ] = 192;
chkconv.binSize[ i++ ] = 224;
chkconv.binSize[ i++ ] = 256;
chkconv.binSize[ i++ ] = 320;
chkconv.binSize[ i++ ] = 384;
chkconv.binSize[ i++ ] = 448;
chkconv.binSize[ i++ ] = 512;
chkconv.binSize[ i++ ] = 640;
chkconv.binSize[ i++ ] = 768;
chkconv.binSize[ i++ ] = 1024;
chkconv.binSize[ i++ ] = 1280;
chkconv.binSize[ i++ ] = 2048;
chkconv.binSize[ i++ ] = 4096;
chkconv.binSize[ i++ ] = 8192;

mokAssert( i == N_BINS );

j=0;
for (i=0; i<=N_BINS; i++) {
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#endif

#pragma optimize( "", off )

GCFUNC void blkSweep(void)

{

BlkR egionHdr *wildernessHdr = blkvar.wildernessRegion;
BlkRegionHdr *brh = (BlkRegionHdr»)blkvar.allocatedBlockHeaders;
volatile int *volatile p;

while (brh < wildernessHdr) {
volatile int size, status;

p = (volatile int *volatile)&brh->regionSize;
size = *p;
p++;

status = (*p) >> 24;

--next_round:
switch (status) {
case BLK:
case BLKLIST:
mokAssert( size >= 1 );
brh += size;
break;

case ALLOCBIG:
_sweepBig( (BlkAllocBigHdr*)brh );
mokAssert( size >= 1 );
brh += size;
break;

case OWNED:
case VOIDBLK:
case PARTIAL: {
int nextStatus;
BlkRegionHdr *nextBrh = brh + 1;
p = (volatile int *volatile)&nextBrh->regionSize;
size = *p;
PH+;
nextStatus = (xp) >> 24;
chkSweepChunkedBlock( (BlkAllocHdr*)brh, status );
brh = nextBrh;
status = nextStatus;
if (nextBrh >= wildernessHdr) return;
goto __next_round;

}

default:
mokAssert ( status == CHUNKING );
brh++;
break;
}
}
}
#pragma optimize( "", on )

End of file source listing

D.4 rcchunkmgr.c

This file contains the code of the chunks manager (see section 8.9 for more details).

Source listing for file rcchunkmgr.c

/*

* File: rcchunkmgr.c

* Author: Mr. Yossi Levanoni

* Purpose: implementation of the chunk manager
*/

7/
*
* Lock a partial list. Implemented by a spin
* lock which is imbedded in the list header.
»/
#define _lockPartialList(pList, ee)\
do {\

mokAssert( ee );\

gcSpinLockEnter ( &pList->lock, (unsigned)ee );\
} while(0)

/

-
* Unlock a partial list
*/
#define _unlockPartialList(pList, ee)\
do {\

mokAssert( ee );\

gcSpinLockExit( &pList->lock, (unsigned)(ee) );\
} while(0)

static void _getPartialListStats( int iList,
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it (tph) {
_UnlockBlkMgr( self );
return NULL;

lastBlk = ph + (nBlocks-1);
lastBlk->StatusUnused = ALLOCBIG << 24;
lastBlk->blobSize = nBlocks;

ph->allocInProgress = 1;
ph->StatusUnused = ALLOCBIG << 24;
ph->blobSize = nBlocks;
_UnlockBlkMgr( self );
#ifdef RCDEBUG
inter = (BlkAllocInternalHdr *)(ph+1);
for (; inter < (BlkAllocInternalHdr *)lastBlk; inter++) {
inter->startBlock = ph;
bhSet_status( inter, INTERNALBIG );
#endif
gcCheckGC() ;

return ph;

GCFUNC void blkFreeSomeChunkedBlocks( BlkAllocHdr »*pph, int n )

int i, status;
BlkAllocHdr *ph;

_LockBlkMgr( gcvar.sys_thread );

for (i=0; i<n; i++) {
ph = pph[il;
status = bhGet_status(ph);
mokAssert( status == DUMMYBLK );
_blkFreeRegion_locked( (BlkRegionHdr*)ph, 1 );
}

_UnlockBlkMgr( gcvar.sys_thread );

GCFUNC void blkFreeChunkedBlock( BlkAllocHdr *ph )
{
#ifdef RCDEBUG
int status = bhGet_status( ph );
mokAssert ( status==VOIDBLK || status==PARTIAL );
#endif
_LockBlkMgr( gcvar.sys_thread );
-blkFreeRegion_locked( (BlkRegionHdr*)ph, 1 );
_UnlockBlkMgr( gcvar.sys_thread );
GCFUNC void blkFreeRegion( BlkAllocBigHdr *ph )
£
unsi gned sz = ph->blobSize;
#ifdef RCDEBUG
BlkAllocBigHdr *lastBlk;
BlkAllocInternalHdr *inter;
unsigned i;

lastBlk = ph + (sz-1);

kA t( ph->! = ALLOCBIG << 24 );
mokAssert( lastBlk->StatusUnused = ALLOCBIG << 24 );
mokAssert( lastBlk->blobSize == sz );
mokAssert( ! ph->allocInProgress );

inter = (BlkAllocInternalHdr *)(ph+1);

for (; inter < (BlkAllocInternalHdr *)lastBlk; inter++) {
uint status = bhGet_status( inter );
mokAssert( status == INTERNALBIG );
mokAssert( inter->startBlock == ph );

}
#endif

_LockBlkMgr( gcvar.sys_thread );
_blkFreeRegion_locked( (BlkRegionHdr *)ph, sz );
_UnlockBlkMgr( gcvar.sys_thread );

}

#ifdef RCDEBUG
GCFUNC void blkPrintStats(void)

jio_ printf(" BEK STATS oo o
jio_printf("wild=Y%d list=)d used=Yd\n",
blkvar.nWildernessBlocks, blkvar.nListsBlocks, blkvar.nAllocatedBlocks );
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if (gcGetHandleRC(h)>0) return;

P = h->logPos;

if (p) {
mokAssert( ((»p)&~3) (uint)h );
mokAssert( ((*p)&3) 0 || ((*p)&3) == BUFF_HANDLE_MARK) ;
/* leave it for next cycle */
return;

}
#ifdef RCDEBUG

gevar .dbg.nFreedInCycle++;

gevar.dbg.nBytesFreedInCycle += ph->blobSize * BLOCKSIZE;
#endif

blkFreeRegion( ph );

/
* Allocate "nBlocks" of memory. Self explaining.
*

static BlkAllocHdr* _blkAllocRegion_locked( int nBlocks )
{
BlkA 1llocHdr *res;

if (nBlocks < N_QUICK_BLK_MGR_LISTS) {
res = _allocFromQuickLists( nBlocks );
if (res) {
blkvar.nAllocatedBlocks += nBlocks;
blkvar.nListsBlocks -= nBlocks;
goto __checkout;

}
res = _allocFromRegionLists( nBlocks );
if (res) {
blkvar.nAllocatedBlocks += nBlocks;
blkvar.nListsBlocks -= nBlocks;
goto __checkout;

res = _allocFromWilderness( nBlocks );
if (!res) return NULL;
blkvar.nAllocatedBlocks += nBlocks;
blkvar.nWildernessBlocks -= nBlocks;

__checkout:
return res;

static int _calcAllocSize(int nBytes)
int blocks = nBytes / BLOCKSIZE;
if (blocks==0 || nBytes’%BLOCKSIZE)

blocks++;
return blocks;

/*#** Exported Functions ssssxssxssxsiss/
GCFUNC BlkAllocHdr* blkAllocBlock( ExecEnv *ee )

{
BlkA 1locHdr *ph;
sys_thread_t *self = EE2SysThread( ee );

_LockBlkMgr( self )
ph = (BlkAllocHdr *)_blkAllocRegion_locked( 1 );
if (ph) {
bhSet_status( ph, CHUNKING );
}
_UnlockBlkMgr( self );
gcCheckGC() ;

return ph;

}

GCEXPORT BlkAllocBigHdr* blkAllocRegion( unsigned nBytes, ExecEnv *ee

{
sys_ thread_t *self = EE2SysThread( ee );

#ifdef RCDEBUG
BlkAllocInternalHdr *inter;
unsigned i;

#endif

unsigned nBlocks;

BlkAllocBigHdr *ph;

BlkAllocBigHdr *lastBlk;

nBlocks = _calcAllocSize( nBytes );

_LockBlkMgr( self );
ph = (BlkAllocBigHdr *)_blkAllocRegion_locked( nBlocks );

~
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unsigned i;

for (i=sz; i<N_QUICK_BLK_MGR_LISTS; i++, pList++) {
brh = »pList;
if (brh)

goto __found_list;

return NULL;
-_found_list:

nextB = brh->nextRegion;
if (nextB)

nextB->prevRegion = (BlkRegionHdr *)pList;
(BlkRegionHdr*)*pList = nextB;

if (sz != 1) {
BlkRegionHdr *leftover = brh + sz;
int newSz = i - sz;
_insertRegionIntoQuickLists( leftover, newSz );

return (BlkAllocHdr#*)brh;

~

Allocates "sz" blocks from the lists of regions.
Try finding a list with elements at list of size
“sz".

If the found list contains additional elements
besides the header, then the element after the
header is extracted from the list.

Otherwise, the list header itself is extracted
from the list of lists.

Finally, if the list is not an exact match, the
leftover is returned to the system.

R R R R R R R R R R E RN

/
static BlkAllocHdr* _allocFromRegionLists( int sz )
{

BlkR egionHdr *brh;
BlkListHdr »pList = blkvar.pRegionLists->nextList;
int regionSize, leftover;

for (; pList; pList = (BlkListHdr *)pList->nextList) {
regionSize = pList->listRegionSize;
if (sz <= regionSize)
goto __found_list;

¥
return NULL;
__found_list:

brh = pList->nextRegion;
if (brh) { // extract next element in the list
BlkRegionHdr *nextB = brh->nextRegion;
if (nextB)
nextB->prevRegion = (BlkRegionHdr#*)pList;
pList->nextRegion = nextB;

else { // extract list header itself
BlkListHdr *prevList = bhGet_prev_region_list( pList );
if (pList->nextList) {
bhSet_prev_region_list( pList->nextList, prevList);

/**
* the next assignment may update *blkvar.pRegionLists
* itself since the first element in the list
* has its prevList pointer pointing at this
* variable.
*/
prevList->nextList = pList->nextList;
brh = (BlkRegionHdr*)pList;

// do we have leftover
leftover = regionSize - sz;

if (leftover >= N_QUICK_BLK_MGR_LISTS) {
_insertRegionIntoRegionLists( brh + sz, leftover );

¥
else if (leftover >= 1) {
_insertRegionIntoQuickLists( brh + sz, leftover );

return (BlkAllocHdr#*)brh;
)]

static void _sweepBig(BlkAllocBigHdr *ph)

GCHa ndle *h;
uint *p;

if (ph->allocInProgress) return;

h = (GCHandle*)BLOCKHDROBJ( (BlkAllocHdr*)ph );
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#endif

if (status == BLK) {
_extractFromRegionList( nbr );
blkvar.nListsBlocks -= size;
*pSz += size;

}

else if (status == BLKLIST) {
BlkListHdr *blh = (BlkListHdr *)nbr;
_extractFromListOfLists( blh );
blkvar.nListsBlocks -= size;
*pSz += size;

}

}

/
* See if the region adjacent to the argument region
* from the left (i.e., with lower address) is in

* the hands of the block manager.

*

*

If so, extract it from wherever it is.

/
static void _tryExtractLeftNbr( BlkRegionHdr **pph, int *pSz)
{

BlkR egionHdr *nbr = *pph - 1;
int status = bhGet_status( nbr );
int size = nbr->regionSize==1 7 1 : -nbr->regionSize;

s

* That’s because items in the list are
* bigger than a single block and their
* final block is marked with BLK.
*/

mokAssert( status != BLKLIST );

if (status == BLK) {
mokAssert( size > 0 );

nbr = nbr + 1 - size;

status = bhGet_status( nbr );
mokAssert ( nbr->regionSize == size );

if (status == BLK) {
_extractFromRegionList( nbr );

}

else {
mokAssert ( status == BLKLIST );
_extractFromListOfLists( (BlkListHdr *)nbr );

blkvar.nListsBlocks -= size;

*pSz += size;

*pph = nbr;

}
}
/
* Free the specified region:
*
* 1. see if it can be added to the wildernmess.
* 2. if not, try coalescing from the left and right.
* 3. finally, add the resulting block to either the
* quick lists or the list of lists, depending on its
* size.

s
static void _blkFreeRegion_locked( BlkRegionHdr *ph, int sz )
{

blkv ar.nAllocatedBlocks -= sz;
_tryExtractLeftNbr( &ph, &sz );

if (ph + sz == blkvar.wildernessRegion) {
blkvar.wildernessRegion = ph;
blkvar.nWildernessBlocks += sz;
return;

_tryExtractRightNbr( &ph, &sz );
blkvar.nListsBlocks += sz;

if (sz<N_QUICK_BLK_MGR_LISTS )
_insertRegionIntoQuickLists( ph, sz )3
else
_insertRegionIntoRegionLists( ph, sz );

¥

¥
* Find the first non-empty list with size at least

* "sz". Then take the first element out.

» If there is leftover, put it in the respective list.

/
static BlkAllocHdr* _allocFromQuickLists( unsigned sz )
{

BlkR egionHdr** pList = &blkvar.quickLists(sz];
BlkRegionHdr* brh, #*nextB;




brh->nextRegion = pList->nextRegion;
brh->prevRegion = (BlkRegionHdr *)pList;
if (pList->nextRegion)
pList->nextRegion->prevRegion = brh;
pList->nextRegion = brh;

return;

}

/*x
* Create new empty list.
*/

blh->nextRegion = NULL;

blh->StatusPrevListID = BLKLIST << 24;
blh->1listRegionSize = sz;

s
* we want to insert after pPrevList and before
* plList.
*/
bhSet_prev_region_list( blh, pPrevList );
blh->nextList = pList;
pPrevList->nextList = blh;
if (pList) {
bhSet_prev_region_list( pList, blh);
¥
¥

/
* Extract the argument region from the list it’s

* in. Assumes that the region is not a list header.

7

static void _extractFromRegionList( BlkRegionHdr *ph )
{

ph-> prevRegion->nextRegion = ph->nextRegion;
if (ph->nextRegion)
ph->nextRegion->prevRegion = ph->prevRegion;
}

/
* Extract the argument region, which is a list header,
* from the list of lists.

static void _extractFromListOfLists( BlkListHdr *ph )

{

BlkL istHdr *newHeader = (BlkListHdr *)ph->nextRegion;
BlkListHdr *prevList = bhGet_prev_region_list( ph );

/x*

* Change list header to the next element in the

* list

*/

if (newHeader) {
int sz = ((BlkRegionHdr *)newHeader)->regionSize;
bhSet_prev_region_list( newHeader, prevList );
newHeader->nextList = ph->nextList;

prevList->nextList = newHeader;
if (newHeader->nextList) {
bhSet_prev_region_list( newHeader->nextList, newHeader );

}
bhSet_status( newHeader, BLKLIST );
newHeader->listRegionSize = sz;
return;
¥
[
* Eliminate the list.
*/
prevList->nextList = ph->nextList;
if (ph->nextList) {
BlkListHdr *prevList = bhGet_prev_region_list( ph );
bhSet_prev_region_list( ph->nextList, prevList );

/

* See if the region adjacent to the argument region
* from the right (i.e., with higher address) is in
* the hands of the block manager.
*
*

If so, extract it from wherever it is.

/4
static void _tryExtractRightNbr( BlkRegionHdr **pph, int *pSz)
{

BlkR egionHdr *nbr = *pph + *pSz;
int status = bhGet_status( nbr );
int size = nbr->regionSize; // conicides with the size field of BLKLIST

#ifdef RCDEBUG
if (status==BLK || status==BLKLIST) {
BlkRegionHdr *lastBlock = nbr + size - 1;
mokAssert( size > 0 );
mokAssert( bhGet_status( lastBlock ) == BLK );
mokAssert( lastBlock==nbr || lastBlock->regionSize == -size );
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* LOCKING *

static void _LockBlkMgr(sys_thread_t *thrd)
£

‘ sysM onitorEnter( thrd, blkvar.blkMgrMon );
}

static void _UnlockBlkMgr(sys_thread_t* thrd )
{
sysM onitorExit( thrd, blkvar.blkMgrMon );

/
* Allocate nBlocks from the part of the heap that
* hasn’t been touched thus far.

/
static BlkAllocHdr* _allocFromWilderness( int nBlocks )
{
BlkR egionHdr* base = blkvar.wildernessRegion;

BlkRegionHdr* target = base + nBlocks;

if (target > blkvar.heapTopRegion)

return NULL;
blkvar.wildernessRegion = target;

return (BlkAllocHdr*)base;

8

Insert this block, with the specified size, into the
respective quick list.

No merging with neighboring regions is attempted nor
should be applicable.

R R R R O W

The limitting blocks have their "regionSize" set.

static void _insertRegionIntoQuickLists( BlkRegionHdr *brh, int sz )
{
B1kR egionHdr *lastBlk = brh + (sz-1);

brh->StatusUnused = BLK << 24;
brh->regionSize = sz;

if (lastBlk != brh) {
lastBlk->StatusUnused = BLK << 24;
lastBlk->regionSize = -sz;

brh->nextRegion = blkvar.quickLists([sz];
if (brh->nextRegion)
brh->nextRegion->prevRegion = brh;
brh->prevRegion = (BlkRegionHdr *)&blkvar.quickLists[sz];
blkvar.quickLists([sz] = brh;

}

/

* Insert a region into the list of lists of regions. If a list
* for the region size exists then it is added to it. Othervise,
* a new list is inserted to the list of lists for holding regions
* of "sz" blocks.

*

* If the region becomes an element in a list of regions than its
* "regionSize" field is updated to "sz". The last block in the

*

region has its size updated to "-sz" at any rate.

/
static void _insertRegionIntoRegionLists( BlkRegionHdr *brh, int sz )
{

int regionSize = -1;
BlkListHdr »pPrevList, *pList;
BlkListHdr #*blh = (BlkListHdr *)brh;

BlkRegionHdr *lastBlk = brh + (sz-1);

lastBlk->StatusUnused = BLK << 24;
lastBlk->regionSize = -sz;

mokAssert( sz > 1 );

pList = blkvar.pRegionLists->nextList;
pPrevList = blkvar.pRegionLists;
for (; pList; pPrevList = pList, pList = pList->nextList) {
regionSize = pList->listRegionSize;
if (sz <= regionSize)
break;

/e

* Perfect match

*/

if (regionSize == sz ) {

brh->StatusUnused = BLK<<24;
brh->regionSize = sz;
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int mokThreadEnumerateOver( int(*f)(sys_thread_t *, void*), void *param)
{

xxpa ir xx;
int ret;

xx.func = f;
XX.param = param;

#ifdef RCDEBUG
{

sys_thread_t* self = sysThreadSelf();
mokAssert( self == gcvar.sys_thread );
¥
#endif
ret = sysThreadEnumerateOver( _mokThreadEnumerateOverHelper, &xx );
return ret;

End of file source listing

D.3 rcblkmgr.c

This file contains the code of the block manager (see section 8.9 for more details).
Source listing for file rcblkmgr.c

/>

* File: rcblkmgr.c

* Author: Mr. Yossi Levanoni

* Purpose: implementation of the block manager
*/

/#wsnmnnnnrnnsrrennx Initialization /4
GCFUNC void blkInit(unsigned nMB)
{

unsi gned sz;

/* Zero out all vars */
memset( &blkvar, 0, sizeof(blkvar) );

/* Allocate the heap */
mokAssert( nMB < (1<<BLOCKBITS) && nMB>0);
blkvar.heapSz = nMB << 20;
blkvar.heapStart = (byte*)mokMemReserve( NULL, blkvar.heapSz );
blkvar.heapTop = blkvar.heapStart + blkvar.heapSz;
y! ommit( blkvar t, blkvar.heapSz, false );

ap:

#ifdef RCVERBOSE
jio_printf(
"heap [%x<-->%x]\n",
(unsigned)blkvar.heapStart,
blkvar.heapSz + (unsigned)blkvar.heapStart);
fflush( stdout );
#endif

/* Allocate block headers table */

blkvar.nWildernessBlocks = blkvar.nBlocks = blkvar.heapSz >> BLOCKBITS;
sz = sizeof ( BlkAllocHdr ) * (blkvar.nBlocks + 3);
blkvar.allocatedBlockHeaders = (BlkAllocHdr*)mokMemReserve( NULL, sz );
mokMemCommit ( blkvar.allocatedBlockHeaders, sz, true );

blkvar.allocatedBlockHeaders ++;

blkvar.pRegionLists =
(BlkListHdr*)blkvar.allocatedBlockHeaders + blkvar.nBlocks + 1;

bhSet_status( (blkvar.allocatedBlockHeaders-1) , DUMMYBLK );
bhSet_status( (blkvar.allocatedBlockHeaders+blkvar.nBlocks) , DUMMYBLK );

blkvar.blockHeaders =
blkvar.allocatedBlockHeaders - ((unsigned)blkvar.heapStart>>BLOCKBITS);

blkvar.heapTopRegion = (BlkRegionHdr*)OBJBLOCKHDR( blkvar.heapTop );
blkvar.wildernessRegion = (BlkRegionHdr*)0OBJBLOCKHDR( blkvar.heapStart );

/* Allocate mutex */
blkvar.blkMgrMon = sysMalloc(sysMonitorSizeof());
sysMonitorInit( blkvar.blkMgrMon );

#ifdef RCDEBUG
jio_printf("headers1 [%x<-->Y%x]\n",
(unsigned)blkvar.allocatedBlockHeaders,

sz + (unsigned)blkvar.allocatedBlockHeaders);
jio_printf("headers2[%x<-->%x]\n",

OBJBLOCKHDR (blkvar . heapStart),

OBJBLOCKHDR( (((byte*)blkvar.heapStart)+(nMB<<20)) ) );

#endif

}
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sysAssert( start );
sysAssert( sz );
res = VirtualFree( start, sz, MEM_DECOMMIT );
sysAssert( res );
}

/* C style »/
void* mokMalloc( unsigned sz, bool zero_out )

void *p;
sysAssert( sz );
p = malloc( sz );
sysAssert( p );
if (zero_out)
memset( p, 0, sz );
return p;

}
void mokFree( void * p)
{
sysA ssert( p );
free( p );
}

/* zero out */
void mokMemZero( void *start, unsigned sz )

mokM emDecommit( start, sz );
mokMemCommit ( start, sz, TRUE );

YLRC --
The functions:

mokThreadSuspendForGC
mokThreadResumeForGC

are needed for on the fly garbage collection

T E R

*/
void mokThreadSuspendForGC(sys_thread_t *tid)
{

sysA ssert( tid != sysThreadSelf() );
if (SuspendThread(tid->handle) == OxfffEEEEFUL) {

jio_printf( "sysThr pendForGC: pendThread failed" );
_-asm { int 3 }

CONTEXT context;
DWORD *esp = (DWORD *)tid->regs;

context.ContextFlags = CONTEXT_INTEGER | CONTEXT_CONTROL;

if (!GetThreadContext(tid->handle, &context)) {
jio_printf( "sysThreadSuspendForGC: GetThreadContext failed" );
_.asm { int 3 }

}

*esp++ = context.Eax;

*esp++ = context.Ebx;

*esp++ = context.Ecx;

*esp++ = context.Edx;

*esp++ = context.Esi;

*esp++ = context.Edi;

*esp = context.Ebp;

}
}

void mokThreadResumeForGC(sys_thread_t *tid)
sysA ssert( tid != sysThreadSelf() );

if (ResumeThread(tid->handle) == OxffffffffUL) {
printf( "sysThreadResumeForGC: ResumeThread failed" );
_-asm { int 3 }
}
}

typedef struct xxpair {
int (*func) (sys_thread_t*, void*);
void *param;

} xxpair;

static int _mokThreadEnumerateOverHelper( sys_thread_t *thrd, xxpair* xx)

int res;

ExecEnv *ee;

if (thrd == gcvar.sys_thread) return SYS_OK;
ee = SysThread2EE( thrd );

if (lee->gcblk.gcInited) return SYS_OK;

res = xx->func( thrd, xx->param );

return res;




./src/share/javavm/include/mok_win32.c
./src/share/javavm/include/rcblkmgr.c
./src/share/javavm/include/rcchunkmgr.c
./src/share/javavm/include/rcgc.c
./src/share/javavm/include/rcgc.h
./src/share/javavm/include/rcbmp.c
./src/share/javavm/include/rcbmp_inline.h
./src/share/javavm/include/rcgc_internal.h
./src/share/javavm/include/rchub.c
./src/share/javavm/include/ylrc_protocol.h
./src/share/javavm/runtime/gc.c

D.1 Organization of the code

The garbage collector code contains only one translation unit, which is the file gc.c. This
file is inherited from the original JVM. It contains, among other things, the entry point to
user’s allocation code. This is the only file that was inherited from the original JVM, all
other files are specific to the new collector.

The file gc. c includes the file rchub. ¢, which in turn includes the files rcblkmgr.c (the
block manager), rcchunkmgr.c (the chunk manager) and rcge.c. Thus, all code is lumped
into one translation unit. This allows us to use static and inline functions extensively,
which opens the room for compiler optimizations.

D.2 mok_win32.c

We tried to keep the garbage collector portable. For that end, we encapsulated the required
Win32 into a single file: mok_win32.c. The services include low level memory management

and thread support.
Source listing for file mok_win32.c

/* File name: mok_win32.c

* Author: Yossi Levaoni

* Purpose: Win32 abstraction layer
*/

/*
* Memory
»*
*/
/* Advanced */
#define WIN32PGGRANULE (64%1024)
void* mokMemReserve(void *starting_at_hint, unsigned sz )
void *p = VirtualAlloc( starting_at_hint, sz, MEM_RESERVE, PAGE_READWRITE );
sysAssert( sz );
sysAssert( p );
return p;
void mokMemUnreserve( void *start, unsigned sz )
BOOL res;
mokMemDecommit ( start, sz );
res = VirtualFree( start, O, MEM_RELEASE );
sysAssert( res );
}

void* mokMemCommit( void *start, unsigned sz, bool zero_out )

void #p = VirtualAlloc( start, sz, MEM_COMMIT, PAGE_READWRITE );
sysAssert( start );

sysAssert( sz );

sysAssert( p );

return p;

void mokMemDecommit( void *start, unsigned sz )

BOOL res;
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Appendix D

Source Code

In this appendix we bring the source code listings of the garbage collector. We had to
change many files in the Javasoft JVM is order to implement the write barrier required by
the on-the-fly algorithms. This is the complete list of files that required a change due to
the implementation of the write barrier:

./src/share/javavm/include/alloc_cache.h
./src/share/javavm/include/gc.h
./src/share/javavm/include/interpreter.h
./src/share/javavm/include/oobj.h
./src/share/javavm/runtime/classinitialize.c
./src/share/javavm/runtime/classload.c
./src/share/javavm/runtime/classresolver.c
./src/share/javavm/runtime/classruntime.c
./src/share/javavm/runtime/executeJava.c
./src/share/javavm/runtime/executeJava_p5.inc
./src/share/javavm/runtime/executeJava_p5.m4
./src/share/javavm/runtime/interpreter.c
./src/share/javavm/runtime/javai.c
./src/share/javavm/runtime/jni.c
./src/share/javavm/runtime/jvm.c
./src/share/javavm/runtime/jvmpi.c
./src/share/javavm/runtime/threads.c
./src/share/javavm/runtime/util.c
./src/win32/hpi/src/threads_md.c
./src/win32/javavm/runtime/signals_md.c
./src/win32/native/sun/awt_common/awt_makecube.cpp
./src/win32/native/sun/windows/awt.h
./src/win32/native/sun/windows/awt_Component . cpp
./src/win32/native/sun/windows/awt_Cursor.cpp
./src/win32/native/sun/windows/awt_Dialog.cpp
./src/win32/native/sun/windows/awt_DnDDS.cpp
./src/win32/native/sun/windows/awt_Font.cpp
./src/win32/native/sun/windows/awt_Graphics.cpp
./src/win32/native/sun/windows/awt_Menultem.cpp
./src/win32/native/sun/windows/awt_PrintJob.cpp
./src/win32/native/sun/windows/awt_Robot.cpp
./src/win32/native/sun/windows/awt_Toolkit.cpp
./src/win32/native/sun/windows/awt_Window.cpp

The list of files that actually implement the garbage collector and allocator themselves
is considerably shorter and is given below. In the rest of this appendix we list the source of
this files along with a description of the role of each one of them.
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1. o remained inaccessible during the interval from any local reference of any thread in
the set P % {85 s T §-

2. o remained inaccessible during the interval from any global reference.
3. o was inaccessible from T; at HS4(7).

In order to prove the claims (1) and (2) we note that any individual load or store
operation by a thread 7} € P cannot render o reachable from 7} if it was unreachable
before the operation was scheduled. Similarly, a load by a thread Tj ¢ P cannot make o
accessible to any thread in P. We conclude that the only possibility that an object will
become reachable again from a thread in P is due to a store operation carried out by a
thread which is not in P. We now show that such a store is impossible.

Assume, by way of contradiction, that the claim holds in the interval [HS4yi — 1,
where HS4;(i — 1) <t < HS4;(i) and that T; ¢ P indeed executes a store of a reference
to the object z into a slot or a global reference which renders o reachable from some thread
in P at time t. Thus, the claim breaks for the first time at time ¢ + 1.

Note that when the reference to z is stored, it is marked local, since T} has its Snoop;
flag set during the interval. Now there are three possibilities:

e if x and o are the same object then o is marked local and thus not reclaimed later.

e otherwise, if the chain of references that exists from z to o (note that z # o) at the
time of the store exists in Vi as well, then o will be eventually blackened, according
to our observation.

e finally, if the chain that exists at time ¢ + 1 and Vj differ in some point, then we
again consider the longest suffix of the chain which hasn’t been modified relatively to
ok. Denote the first object in the suffix y. When the pointer to y was stored into
the slot referring to it in the chain, o was reachable from the storing thread. Since
this operation took place prior to the current operation, we can apply the inductive
hypothesis for it and deduce that the storing thread could have not responded to the
fourth handshake before executing the update. Thus, it must have marked y local.
The claim then follows.

In order to prove the second claim we assume by way of contradiction that o is indeed
reachable from T; at HS4,(i). Again we note that if o is directly reachable from either a
local or a global reference, or reachable through a non-empty chain which exists in Vj, then
it will be blackened. Thus, o must be reachable by a chain which differs in some point from
its respective values in Vi. By arguing that the reference to the first object in the longest
suffix of the chain mutual to time HS4(i) andVj was stored to its referring slot in the
chain by a thread which still hasn’t responded to the fourth handshake we again conclude
that o will be eventually blackened.

We conclude that:

Theorem C.1 The tracing sliding view algorithm is safe.
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Otherwise, o has been allocated prior to the fourth handshake of the previous tracing
cycle. As such, it has been examined by the sweeping process of that cycle and was found
to be marked, or otherwise it would have been reclaimed. Again, due to the color toggle, it
is considered white in the tracing of cycle k.

O

From the above lemma we conclude that any object which is reachable by a chain of
objects, induced by Vi, where the first object is marked local, will be eventually blackened
since, by the arguments from the proof of the reference counting sliding view algorithm,
tracing indeed proceeds according to Vi and all objects referenced by the chain are colored
white when tracing starts, so there is no obstacle in tracing through a referenced object,
i.e., the “if” in procedure Trace is bound to succeed exactly once for any object in the
chain. We take advantage of this observation in the next lemma which proves that elderly
reachable objects are not reclaimed by mistake.

Lemma C.2 Let o be an object which is allocated by thread T; before HS4y(i)and which
is reclaimed during cycle k. For each thread T} it holds that o is inaccessible from T} from
HS4(l) onward.

Proof. We assume that the threads are ordered by their response time to the fourth
handshake, i.e., HS4;(1) < HS4x(2)... < HS4x(n). We prove that the claim holds by
induction on the events in the algorithm’s execution. For the basis we have to show that
when 7T} responds to the fourth handshake, o is reachable neither from any of Ti’s local
references nor from any global root. Suppose the contrary. o could not have been directly
reachable from 7Tj at the time of the handshake or it would have been marked local and
thus not reclaimed. o could not have been directly reachable from a global reference at
HS4,(1) as the collector reads any global root prior to the fourth handshake and marks
the read objects local. Any store into a global reference that is scheduled between the time
the collector read the reference and HS4x(1) is bound to snoop its operand, as the Snoop;
flags are all set at HS4;(1) and updates are non-interruptible.

So the only remaining option is that o is indirectly reachable from 77 or from a global
reference at HS4;(1). That is, there exists a local reference of T; or a global reference r
such that at H.S4;(1):

¥ =& Ndsy €&y 8= T

dso € x9:8 9 = T3

Im > 1,8m € Tm Sm = ZTms+l =0

If the chain existed in this exact form in Vi, ie., Vj < m : s;@HS4;(1) = Vi(s;), then
tracing through r will eventually blacken o, according to the observation. If, on the other
hand, there exists a slot s; in the chain which has been modified since oy (s;) then let s; be
the highest indexed slot with a modified value, that is, VI < j < m : s;QHS4;(1) = Vi(s).
By lemma B.2 we know that when the pointer to x4 was stored into the slot s; the storing
thread marked z;.; local, thus we have the chain of objects from z;4 to @, with 2,4
marked local and the entire chain contained in Vi, we conclude that each element in the
chain will be blackened, o included. We have proved the claim, restricted to the interval
[HS4(1), HS44(1))].

We now show that if the claim holds in the interval [HS4(1), HS4x(i—1)], where ¢ > 0
then it holds in the interval [HS4y(i — 1), HS4y(7)]. Specifically, we have to show that:
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Appendix C

Tracing Sliding View Algorithm
Safety Proof

The tracing algorithm possess the same properties of the sliding view reference counting
algorithm with respect to logging, determining of slots and resolution of undetermined slots.
Therefore, in this proof, we take these properties for granted and we are concerned only
with their application to tracing and sweeping. Thus appendix B is a prerequisite for this
proof.

In order to prove safety we consider two kinds of reachable objects: those that were
allocated prior to the fourth handshake, juxtaposed with those allocated after it. For the
first kind, we show that mistaken reclamation is impossible since there exist a chain in the
graph induced by the sliding view of the cycle that starts from a local object and leads to the
reachable object in question and that tracing proceeds uninterrupted along such a chain,
so reclamation is impossible. The second kind of objects are protected from reclamation by
the object coloring protocol.

As in the proof of correctness of the sliding view algorithm, we abandon our assumption
that there are no global references in the system. Instead, we assume that the collector,
between carrying the third and fourth handshakes of a cycle, reads any global reference and
marks the pointed objects local. In addition, mutators perform the following write-barrier
for global references:

1. § 1= new
2. if Snoop; then
// mark new as local.
3. Locals; := LocalsiU {new}

Let MARK}, be the time at which procedure Mark is invoked in cycle k. The next
lemma shows that any object which is allocated by some thread prior to the response to the
fourth handshake is interpreted by the collector as “unmarked”. i.e., it assumes the color
of whiteQM ARK when tracing starts.

Lemma C.1 Let s be a slot such that Vi(s) = o # null. Then o.color@QM ARK, =
whiteQM ARK},.

~ Proof. if Vj(s) # null then s must be allocated prior to the fourth handshake, and so must
be o, the referred object. If o is allocated after the fourth handshake of the previous tracing
cycle, then by the code, it is colored using the previous black color, which is considered the
white color of cycle k.

96



So (1), (2) and (3) are not violated by a store by T; ¢ P.

e it remains to show that (4) is not violated. Suppose that at HS4y(i) o; is reachable
from T;. o; could not have been directly reachable at the time, or it would have been
marked local. By the validity of (2) for HS4;(i) we know that if o; is reachable from
T; then it is reachable through some object o4, with @ < j. This implies that o, is
reachable from T; at HS4;(z). Again, a contradiction to the inductive assumption on
Ui

That completes the proof that I5 and therefore I1 hold for o;.

Applying I1 for any object which is processed we learn that any such object is garbage at
HSA4EN Dy, (which equals, by definition, HS4;(n).) Since the objects which are eventually
reclaimed are a subset of those processed (the rest have their reclamation deferred to the
next cycle) the algorithm is indeed safe.

O

Last but not least we have to prove lemma B.7, whose correctness was assumed by
lemma B.6. The lemma asserts that the collector sensibly de-allocates objects. That is,
that it decrements the rc field of slots in a manner which is not discordant with their linkage
to the sliding view.

Lemma B.7 Let o be an object which is reclaimed during cycle k and let s be a slot of the

object. Then the collector decrements Vi(s) exactly once due to recursive deletion in cycle
k.

Proof. The claim vacuously holds for cycle £ = 0. We prove that it holds for cycle £ > 0
provided theorem B.1 and lemma B.5 hold for cycle k.

As the reference count of an object is monotonically non-increasing due to recursive
deletion and since an object is processed by Collect only when its rc field reaches zero, o
is processed exactly once before being reclaimed.

Since o is reclaimed, the collector resets all its slots, including s. When the collector
considers s it probes the value of Dirty(s) and finds it off. As noted in lemma B.5, s could
not have been modified by any thread between responding to the first handshake and fourth
handshake. So s is not in the digested history for the next cycle.

If s ¢ Histyth en og(s) = HSg. By lemma B.4 Dirty(s)Qoy(s) = false thus no thread
T; could have changed s between oi(s) and HSg(i). If s € Histy then it must be that
s € R3j. So in that case ox(s) = HS2EN Dy. At any rate, no thread T; changed s between
ok(s) and HS4x (7).

Theorem B.1 asserts that s was inaccessible for any thread after responding to the fourth
handshake.

Assembling these facts we get that any rate s was not modified between o (s) and the
time the collector read its value, prior to resetting it in procedure Collect. So the collector
indeed decremented the rc¢ value of Vi(s).

This completes the safety proof of the algorithm.
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Define I5 as the logical conjunction of I1 and I4. We prove that I5 holds for o;.

We have already said that at H.S4;(1) there existed exactly c references to o;. All these
references were contained in objects that, according to the inductive hypothesis on objects,
were unreachable from 77 at HS4;(1). Additionally, o; was not directly reachable from T}
at HS4;(1), or it would have been marked local. o; has not been directly reachable from
a global reference at HS4(1) since that would have caused it being marked local, for the
same arguments that were applied for o1. Finally, had o; been indirectly reachable from a
global reference r at HS4j(1) then the chain of references must have passed through some
of the ¢ slots which are contained in objects which are assumed to be inaccessible from T}
at HS4x(1), contradicting the inductive hypothesis on objects. Thus, I1, restricted to the
interval [H S4;(1), HS4x(1)] holds for o;.

14, restricted to the interval [HS4x(1), HS4k(1)], holds as well since HS4x(1) is the
time at which 77 responded to the handshake and naturally it did not execute a store at
the same time.

We now show by similar arguments to those applied for o; that I5 restricted to the
interval [HS4y(i — 1), HS4x(7)], where 1 < i < n, holds provided it holds during the
interval [H S4y(1), HS4y(i—1)]. We also use the inductive hypothesis on j that asserts that
for any object o4, a < j, I1 holds for the entire interval [HS4x(1), HS4(n)].

Invariant I5 applied to o; and restricted to the interval [HS4 (i — 1), HS4x ()] requires
that:

1. ojis not reachable continuously during the interval from any local reference of a thread
in P.

2. a reference to o; is not stored during the interval.
3. oj is not reachable continuously during the interval from any global reference.

4. oj is not reachable from T; at HS4(i).

We show that any instruction of time t € [HS4x(i — 1), HS4(4)] cannot violate (1), (2)
or (3) provided (1), (2) and (3) hold up to time ¢t — 1 then we show that (4) holds.

e aload by a thread 7; could not have maid o; reachable from 7j unless it was reachable
from it prior to the load. It also has no effect on the reachability of o; from other
threads. Therefore such an action cannot violate neither (1) nor (3), assuming (1)
and (3) hold for previous steps. Naturally it cannot violate (2).

e a store by a thread 7} € P cannot make o; reachable for any thread in P unless o;
has been already reachable from 7} just before the action took place, which is not the
case. So a store by T; preserves (1), (2) and (3) provided (1) and (3) hold for previous
steps.

e a store by a thread T} ¢ P cannot make o; reachable from any thread in P for the
following reasons:

— Tj could not have stored a reference to o; itself since the Snoop; flag is set during
the interval and such a step would have marked o; local, preventing its processing
by Collect.

— T; could not have stored a pointer to x from which o; is reachable since all
references to o; at the time of the store, by the validity of (2) for previous steps,
are a subset of the the set of c¢ references that pointed to o; at H.S4;. Thus,
the chain of references from x to o; must pass through an object o,, with a < j.
The store would have rendered o, reachable from some thread in P, which is
contradictory to the inductive assumption on o,.
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2. 01 was not directly reachable from any of the threads in the set P = I
continuously during the interval, and

3. 01 was not directly reachable from any global root continuously during the interval,and

4. 01 was inaccessible from T; at H.S4y(1).

The inductive hypothesis (on i) assures us that o; was not directly reachable from all
the threads in P and from any global root at HS4x(i — 1) and that RC(01)QH S4x(i—1) =
0. Examining any possible operation which is scheduled during the interval [HS4x(i —
1), HS44()] we learn that I3 remained continuously in effect. We show that any instruction
of time t € [HS4(i — 1), HS4x(4)] cannot violate (1),(2) or (3) provided (1),(2) and (3)
hold up to time ¢ — 1 then we show that (4) holds.

e a load cannot violate requirements (1) or (3) simply because it is a load, and not a
store. It cannot violate requirement (2) since no object or global root is referring to
o1, due to the validity of (1) and (3) in previous steps.

a store operation cannot violate (2) since only a load can.

a store by a thread 7; € P cannot violate (1) or (3) since the operand of the store
cannot be o7, due to the validity of (2) in previous steps.

a store by a thread T; ¢ P cannot violate (1) or (3) because the operand of the store
cannot be o1 since the Snoop; flag is set during the interval and such a step would
have marked o; local.

to prove that (4) is satisfied: at time HS4x(i) o1 is not indirectly reachable, from any
thread or global root, since (1) holds at HS4x (). It is not directly reachable from
T;, because that would have caused it being marked local. It is not directly reachable
from a global root at HS4y (i) since (3) holds at that moment.

That completes the proof that I3, and therefore I1 in particular, hold for o;.
Consider now the object 0j, 1 < j < m. If 0jrc@QCOLLECT, = 0 then the same
arguments that were employed for o; are repeated. Otherwise, we have

¢ 6,.rc@COLLECT} > 0

Since o is eventually processed by Collect there must have been c¢ slots pointing at
o; that were cleared and oj.rc decremented accordingly, in lines (7-8) of Collect. Note
that the collector tested the dirty flags of these slots and found that they were off prior to
their processing. Since the dirty flag is off for these slots after HS4EN Dy, no thread could
have changed them after, or at HS; and before responding to the fourth handshake (due
to lemma B.3).

Moreover, since these c slots were contained in objects that were processed prior to o;
the inductive lemma (on objects) apply and we know that no thread had access to any of
the ¢ slots after responding to the fourth handshake. We conclude that these ¢ slots have
not been changed after HS4rand before the collector processed them.

In order to prove I1 we prove an additional invariant:

Invariant B.4 (I4) No reference to o has been stored during the interval [H S4; (1), HS4x(n)]
to either a heap slot or a global reference.
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requirement, proved by lemma B.2, we are now ready to prove our main claim.

Theorem B.1 An object o is garbage when it is reclaimed. More specifically, ois not
reachable from any thread T; after HS4y(i) and hence o is garbage at HS4EN Dj,.

Proof. We prove the claim by induction on the cycle number, k. For kK = 0 we have an
empty ZCTp therefore no object is reclaimed during this cycle and the claim vacuously
holds. For k > 0 We prove that the claim is correct provided lemma B.6 holds for cycle k.

Let {T1,T»,...T,} be the set of all mutator threads, ordered by the time they respond
to the fourth handshake. i.e., HS4;(1) < HS4;(2) < ... < HS4i(n). Let {o1,...,0m} be
the set of objects which Collect is invoked for during cycle k, ordered chronologically by
the time of the invocation (i.e., 0; was processed first and o,,—last.)

Consider any object o; that was processed by Collect. We prove that the following
invariant holds for o;:

Invariant B.1 (I1) For each thread T;, o; was continuously unreachable from T; in the
time interval [H S4x(i), HS4y(n)]. i.e., was not reachable through any of T;’s local references
and through any global root at any time point in the interval.

The proof is by double induction: the outer induction variable is j, subscripting the
objects that were processed. The inner induction variable is i, denoting the index of threads
in the order they responded to the fourth handshake.

For the basis, we consider o;. In order to prove that I1 holds for 0; we prove that an
additional assertion holds:

Invariant B.2 (I2) RC(01) =0 continuously in the time interval [HS4x(1), HS4x(n)].

Define I3 as the logical conjunction of I1 and I2. First we show that I3 holds for o; in
the (single-pointed) interval [HS4y (1), HS4x(1)]. Then we show that given that I3 holds
in the interval [HS4x(1), HS4x(i — 1)], then it holds in the interval [HS4y (i — 1), HS4(i)]
as well and hence in the entire interval [H S4;(1), HS4(i)].

Note that I3, restricted to the interval [HS4;(1), HS4(1)] simply asserts that o; was
not directly reachable from any of T1’s local references and from any global root at HS4;(1)
and that RC(01)@QH S4;(1) = 0. We prove that this is indeed the case.

Since o1 was processed the first, Collect must have been invoked directly from Reclaim-
Garbage for it. Thus, 0 = 01.rc@QCOLLECT;,. This implies

0 = ARC(Vi,0) > RC(0)@H S4, = RC(0)@H S4;, = 0

by lemmas B.6 and B.2 and the fact that a reference count is non-negative. Additionally,
01 was not directly reachable from T at HS44(1), or it would have been marked local when
Ty’s state was scanned when it responded to the fourth handshake. Finally, o, was not
directly reachable from any global root at HS4y(1). To see that this is indeed the case
consider any global root 7. The collector read r prior to starting the fourth handshake and
marked the referenced object local. Since the time the collector read r and up to HS4,(1)
all threads would have marked an object local had they stored a reference to the object into
r. Thus, at any rate, the object which is pointed by r at HS}, is marked and thus it cannot
be o;.

If n = 1 then we are done. Otherwise, we prove that I3 holds for the interval [H S4y (i —
1), HS4(i)], where 1 < i < n, provided it holds during the interval [H S4 (1), HS44(i —1)].

I3, restricted to the interval in question, requires that:

1. RC(01) = 0 continuously during the interval, and
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We conclude that at any rate, by the time s is allocated, it contains null and all necessary
adjustments have been made to the rc field of Vi_1(s) in order to reflect that.

Now we have to show that if Vi(s) #null then the rc field of Vi(s) is incremented and
otherwise no field is incremented, and, that no rc field is decremented due to s in updating
of cycle k.

If no thread modifies s between its allocation point and before HSi(7), then, according

to lemma B.5, s ¢ Histy and ok(s) 4f §S,. At or(s) s still assumes the value of null and
thus Vi(s) =null. Therefore, we would expect that no rc field will be incremented due to
s in cycle k. Since Histydo es not contain any reference of s, this is actually the case. For
the same reason no rc field will be decremented as well.

If, on the other hand, some thread T; modifies s between its allocation point and before
H Si(i) then according to lemma B.5, applied for cycle k, VAL(Histy;0) = {null}. Thus,
the collector would adjust rc field due to s during the execution of Update-Reference-
Counters. No rc field will be decremented due to s as null is associated with the slot
in Histy. The collector will then either determine s, or declare it undetermined. If s
is determined, it will increment the rc value of the determined value, which we have
shown to be equal to V(s). Otherwise, when s is undetermined, the collector adds it to
the set Undetermineds. It will subsequently consolidate s during the operation of Fix-
Undetermined-Slots. The rc field of the resolved value, which also equals V(s), will be
incremented exactly once, due to the Handled set. No matter whether s is determined or
not, we’ve shown that the rc field of Vi (s) is incremented exactly once.

Adjusting rc fields due to allocated old slots. Since s is not reclaimed during cycle
k — 1 there is no rc adjustments due to it during the recursive deletion of cycle k — 1. It is
left to consider the effects due to s in the course of updating during cycle k.

If s is an allocated old slot for cycle k then it may be either modified or non-modified
during cycle k.

If s is modified, then (due to lemma B.5) VAL(Histg;s) = {Vi-1(s)}. Consequently,
Vi_1(s).rc will be decremented during Update-Reference-Counters. Then, s will be
either determined or consolidated and the rc value of Vi (s) will be incremented accordingly
as shown in the previous paragraphs for new slots.

Otherwise, s is not modified. Then we have VAL(Histy;s) = @ and no rc updating
due to it occur during cycle k, which is the desired result since Vi_1(s) = Vi(s).

Adjusting rc fields due to non-allocated slots. If s has not ever been allocated then
the claim trivially holds.

If s has been reclaimed during cycle k — 1 then we have shown, while dealing with new
slots, that at the time s is reclaimed null is assigned to it and the respective rc¢ value of
Vi—1(s) is decremented accordingly.

Consider a slot s which is not allocated for cycle k that has been most recently been
reclaimed during cycle m < k — 1. According to the safety theorem, applied for cycle m,
no thread T; had access to s after HS4END,,. Thus, at HSk_; no thread had access to
s which leads to s ¢ Histy. Additionally, s could not be the subject of recursive deletion
during cycle k — 1, because that would have meant that the object containing s was deleted
twice in a row, which is contradictory to the safety theorem. We conclude that s is neither
the subject of recursive deletion during cycle k — 1, nor of rc field updating during cycle k,
as desired.

Since we have covered all possible options for the state of s, the claim holds.

O

Building on the foundations provided by the link between the conceptual asynchronous
reference count and the concrete rc field and by the correct implementation of the snooping
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that s was unreachable from its reclamation point up to the time it was re-allocated, during
cycle k — 1. If, on the other hand, s was reclaimed during cycle k — 1, then as the safety
theorem tells us, no thread T; had access to s after HS4;_1(i). s could have not occurred
in the digested part of Hist) as that would have caused the deferral of the reclamation of
its containing object to cycle k. So there are no leftovers in this case as well.

Applying the safety theorem to cycle m, we know that the object that contained s was
garbage when it was reclaimed. Its dirty marks, the one of s included, were off. When the
collector freed the object it stored null into s. Since the object was unreachable, s remained
inaccessible up to the time it was re-allocated. Just when s was re-allocated, there was no
update of it ongoing, it contained null, and the dirty flag for it was false. We conclude
that the lemma holds due to the same arguments employed for the previous cases.

We have considered all possible cases for old and new allocated slots and have shown
that they always satisfy the claims.

=

It has just been demonstrated that the collector has full knowledge on which slots have
changed since the most recent scan and what were their contents. We now show that the
collector can find out what are these slots values in a current cycle as well. These two
abilities combined amount for the collector’s ability to calculate the asynchronous reference
count of each object, relative to the sliding view of the current cycle.

Lemma B.6 For any object o which is allocated at time COLLECT) it holds that o.rc
equals ARC(Vy,o0).

Proof. The claim trivially holds for collection cycle zero, since there are no allocated

objects at COLLECTy. To prove that the claim holds for cycle k > 0 we assume that it

holds for cycle £ — 1 and that lemmas B.7 hold for cycle k£ — 1 and B.5 hold for cycle k.
We note that it suffices to show that:

1. for any slot s due to which rc fields are adjusted by the algorithm the rc field of Vi_1(s)
is decremented exactly once, during the interval [COLLECT_;,COLLECT}), while
the rc field of Vi(s) is incremented exactly once during the same interval.

2. if Vk—1(s) # Vik(s) then the algorithm adjusts rc fields due to s.

Consider a memory word s, it is in exactly one of three states, with respect to cycle k:
allocated new, allocated, not allocated.

Adjusting rc fields due to allocated new slots. If s has been collected during cycle
k — 1 then according to lemma B.7, the collector decremented the rc field of Vi_;(s) when
the object containing s was reclaimed. At that point, s assumed the value of null, which
remained in effect at least until s was reallocated, assuming that theorem B.1 holds for
cycle k — 1.

Another possibility is that the object containing s was reclaimed during cycle m, where

m < k — 1. Since s is new to cycle k, it was not allocated for cycle £ — 1 and we have

ok—1(8) o HS)_y and by the definition of sliding views we have Vi_1(s) =null. Thus,

we would expect that no rc field will be decremented due to s. Indeed, since the object
containing s was not reclaimed during cycle k£ — 1, no decrement was applied due to s as
the result of recursive deletion of cycle £k — 1. Again, due to theorem B.1, we know that
when s was reallocated it assumed the value of null.

Finally, if s has not been ever allocated before then surely it was not subject to recursive
deletion during cycle k — 1 and it contained null at the time it was allocated.
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4. if s is new for cycle k and is not modified during cycle k — 1 then VAL(Histy;s) 2
{null}.

Proof. For garbage collection number zero the claims trivially hold since Histg = @ and
indeed no slot is modified prior to the cycle. We prove that the claim holds for cycle & > 0
provided it itself hold for cycle k£ — 1 and that theorem B.1 and lemma B.4 hold for earlier
cycles.

We divide into cases according to the state of s:

s is old for cycle kand s € R1ly_;. Suppose that s ¢ Histy. In that case we have

or(s) def H S}, and we have to show that s is not changed between HSy_; and H Sy.

Since s ¢ Histy—1 we conclude, by the inductive hypothesis, that no thread modified
s between o_o(s) and HSk_;. Additionally we know that at HSi_; the dirty mark of
s is off. The dirty mark must be off at HS4ENDj_5 as well and no update is ongoing
at the moment as that update would have rendered s part of Histy_;. Using the same
arguments of lemma A.1 applied for s and HS4FEN Dy_sand since s is not cleared before
HSENDj, any update whose store proper operation is scheduled between HS4EN Dy _»
and H S would result in the association of SQHS4EN Dy._» with s in either Hist;_q, or
Histy, neither of which is the case. We conclude that s is indeed not modified during cycle
k-1.

Now suppose s € Histy. In that case we want to show that VAL(Histy; s) = sQH Sy_1.
Again, we've concluded that any thread T; that would log s prior to HSk(i) would as-
sociate it with sQHS4EN Dy_o. Since a store to scould not have been scheduled be-
tween SQHS4EN Dy._o and HSy_, without logging the slot we conclude that sQHS;_; =
$SQHS4FE N Dj._o, which is the desired result.

s is old for cycle k and s € R2;_;. Since some thread modified and logged s between
the first and third handshakes of cycle £ — 1 We have to show that claim (1) holds for s.
Due to the reinforcement step, the dirty flag of s must be on at HS4_;, thus, there is no
possibility that a thread would log s after responding to the fourth handshake. As for the
records kept regarding s between the first and fourth handshakes, the collector chooses a
single pair, say (s,v) and moves it to Histy. By definition of o we have Vi_;(s) = v.

s is old for cycle s and s € R3;_;. We have noted in lemma B.4 that tx_1(s) = ox_1(s) =
HS2EN Dy._; and no update is occurring at that moment. Suppose s ¢ Histy. In that case
or(s) = HSy and we have to show that no store is scheduled between HS2EN Dj._; and
HSj.. But this is trivial since the probing of the dirty mark associated with such a store
must start after HS2EN Dy._1, as no updates occur at that moment. Thus, had such an
update been scheduled, it must have sensed that the flag is off and s would have become a
member of Histy a contradiction.

Suppose now that s € Histy. We have to show that VAL(Histy;s) = sQHS2EN Dy._;.
Again, since at HS2EN Dj._; the dirty bit is off and no update of it is occurring. And since
the dirty mark is reset only after all threads have responded to the first handshake of cycle
k, by lemma A.1 they are bound to associate sQHS2EN Dy_; with s.

new slots allocated for the first time. If s is allocated for the first time, then o;_ et
HSj_jand at that time s contained null and its dirty flag was initialized to false. These
values remain in effect until s is allocated. Additionally, no update of s occurs at the
moment it is allocated. Again, the claim follows using the arguments of the previous cases.

new slots which are reallocated. We first show that Histicann ot contain “leftovers”:
i.e., logging that refer to the “previous life” of s, before it was reallocated. Suppose that s
was last reclaimed during cycle m, m < k. If m < k — 1, then there will be no record of the
“previous life” of s in Histy due to the safety theorem applied to cycle m that assures us
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Lemma B.4 Let s be a memory word. There ezists a time point, denoted ty(s)at which
the dirty slot for s is off. Specifically:

def

o if s € R1y than ti(s) def ok(s) = HSy.

o if s € R2y then ty(s) exists and it satisfies HSEN Dy, < tr(s) < HS2y.

e if s € R3 then ti(s) i HS2ENDy. There are no ongoing updates of s at ti(s).

Proof. The proof is by induction on the cycle number, k. For k = 0 the claim holds since
all slots are cleared at HSy and all slots are members of R1ly. For kK > 0 we prove the
claim correct provided it holds for the previous cycle and theorem B.1 holds for all previous
cycles. We divide to cases:

o if s € R1j then either s € R1;_; or s € R3x_;. R2j_ is impossible because it implies
that s € Histg.

If s € R1j_1 then by the inductive hypothesis Dirty(s)@H Sy_; = false. Had some
thread T; turned on the flag on after HS;_; and before HSk(i) then s would have
been recorded in either Histy_1 or Histy, neither of which is the case, so the dirty
flag must be continuously off from HSy_; to HSj.

Otherwise, s € R3j_1. Thus, according to the inductive hypothesis Dirty(s)@QHS2END =

false. By definition of R3;_1, no thread logged s before responding to the third hand-
shake of cycle k — 1. Thus no thread had turned the flag on prior to responding to
that handshake. Had some thread logged s after the third handshake of cycle k& — 1
but before the first handshake of cycle k£ then we would have s € Histy, which is not
the case. Again we have that Dirty(s)QHS} is false.

o if s € R2; then the collector has turned off Dirty(s) during the clearing stage. We
define t1(s) to be the time instance just after the clearing of Dirty(s) was scheduled.

o if s € R3 then the collector has turned off Dirty(s) during the clearing stage and no
thread has turned it on prior to responding to the third handshake. We conclude that
the flag must have been off at the time the second handshake ended. At HS2EN D,
only updates of threads that have already responded to the second handshake may
be ongoing. But had such an update occurred, it must have sensed that the flag is
off and it would consequently log s, contradicting the definition of R3;. We conclude
that there are no ongoing updates at HS2EN Dy.

O

We proceed to consider the properties of the write-barrier. The next lemma, which is the
equivalent of lemma A.2 of the snapshot algorithm, states that any slot which is modified
between scans is recorded along with its value in the previous sliding view and that no other
value is associated with the slot.

Lemma B.5 Let s be a slot. The following claims hold:
1. if s is old for cycle k and modified during cycle k—1 then VAL(Histk; s) = {Vi_1(s)}.
2. if s is new for cycle k and modified during cycle k — 1 then VAL(Histy;s) = {null}.
3. if s is old for cycle k and is not modified during cycle k — 1 then V AL(Histy;s) D
{Vi-1(s)}-
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above definition allows us to escape dealing with garbage collection cycle number one as a
special case.

The proof is naturally by induction on the cycle number. We have several interdependent
claims that jointly prove that the algorithm is safe. In the next section we present the claims
and show their inter-dependencies. Then, we prove the claims.

The goal of the proof is to show that any object is reclaimed only if it is garbage. This
claim is contained in the safety theorem—theorem B.1.

The validity of theorem B.1, for cycle k, stems from lemma B.6 which links the computed
rc field of each object to its ARC in Vi, the sliding view associated with cycle k.

This linking is proved correct for cycle k, provided:

e the linking argument holds for cycle k — 1
e theorem B.1 holds for previous cycles.

e all differences between Vji_; and V}. are recorded consistently by mutators. This claim
is contained in lemma B.5.

e the collector reclaimed objects in a sensible manner during cycle k — 1. “In a sensible
manner” means it took into account the values of reclaimed slots as they appeared in
Vi—1. This claim is contained in lemma B.7.

Lemma B.7 itself builds on the logging capabilities of mutators (lemma B.5) and on
theorem B.1.

Lemma B.5 which summarizes the algorithm properties with respect to thread buffers
and logging is proved correct based on the validity of theorem B.1 and lemma B.4 for
previous cycles.

Lemma B.4 itself asserts that any slot has a time point in the beginning of each cycle
whence the dirty flag of the slot is off. This rather lame-looking lemma is crucial for the
operation of the logging mechanism. Its proof relies on the correctness of the same claim
for previous cycles.

Using the notation of the proof of the snapshot algorithm we summarize the interde-
pendencies:

e cach of the claims is proved correct for cycle zero independently.
e for a cycle kK >0

— LBA4y <= LB.4;_,

LB.5y <= LB.4x_1 A \j<i SafetyTheorem;

LB.6y <= LB.5y A LB.6x_1 A LB.Tx_1 A \j<i(SafetyTheorem;)
SafetyTheoremy <= LB.6

LB.T;, <= LB.5; A SafetyTheoremy,

B.5 Inductive safety arguments

Compensating for the lack of the hard handshake of the snapshot algorithm, during which
all dirty marks were turned off we have procedure Clear-Dirty-Marks in the sliding view
algorithm. The following lemma asserts that indeed each slot experiences a point in time,
after the start of a cycle, at which the dirty flag is off. This is essential for the logging
mechanism to operate correctly since it instructs mutators to start logging modifications
from fresh, relating to the new cycle.
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B.3 Some basic claims

Recall that as asserted for the generic algorithm, we have to implement the snooping re-
quirement in order to deduce on the “real” reference count of an object, based on its
asynchronous reference count. The following lemma shows that the requirement is indeed
enforced and that thus its implications hold:

Lemma B.2 Any object o which is not marked local (i.e., o ¢ Localsy) at COLLECT}
satisfies
ARC(Vi;0) > RC(0)QH S4y,

Moreover, the set of pointers that point to o at HS4xis a subset of those that point to it in
Vi-

Proof. According to lemma 5.1 it suffices to show that if a reference to o is stored to a slot
s at, or after o (s) and before End(oy,), then o is marked local. By lemma B.1 we know that
End(or) < HS4y, hence we can replace End(o) with HS4, hardening the requirements
of lemma 5.1. i.e., we require that if a reference to o is stored to a slot s during the interval
[ok(s), HS4k) then o is marked local.

Since updates are not interruptible and since the Snoop; flag is reset only after H S4, (i),
it suffices to show that the test of Snoop; in the Update procedure returns true in the case
that the store proper into s is executed after o(s) and before HS4x(i). Consider a store
of o into s which is scheduled at, or after ox(s) and before HS4(i). Due to lemma B.1,
the store is scheduled at or after HSy. At that time, for any thread Tj, the Snoop; flag is
set. Since the test of Snoop;, in line (7) of procedure Update, is executed after the store
proper, of line (6), it would return true and the object will be marked accordingly local.

O

Lemma B.3 The following claims hold: (1) if thread T; logs s between responding to the
first and third handshakes then Dirty(s)QH S3y(i) =true. (2) if thread T; logs s between
responding to the first and fourth handshakes then Dirty(s)QH S4;(i) =true.

Proof. Claim (1): The only reason the flag might be off after T; has raised it is that
the collector has reset it in procedure Clear-Dirty-Marks. If that is the case, then the
collector has reset the flag after the it has completed logging the slot. Hence, in procedure
Reinforce-Dirty-Mark, the collector will see the slot in T}’s buffer and would reinforce
it. This happens before HS2. Claim (2) is trivial due to the validity of claim (1).

B.4 Road map for the proof

In the proof of the algorithm we assume again that a garbage collection cycle number zero
takes place just before any mutator is started, i.e., at initialization time. As stated for the
first algorithm, there is no loss of generality involved, this is just a mere issue of convenience.
Convenience is also the cause for the following definition:

HS_ ¥ 1S,

Or, equivalently, we may assume that yet another garbage collection cycle is occurring
before cycle number zero. The reason we need this definition is that we can reason freely
about what happened in the interval [H Sk_2, H Sk_1], while reasoning on cycle k > 0. The
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We need modify our notions of “being allocated” of the snapshot algorithm’s proof due
to the lack of the hard handshake. This is done in the following definitions:

e We say that an object o is allocated for cycle k if some thread T; allocated o after
HS,,(1) but before HS,,+1(7), where m < k, and there had not been a cycle I, where
m < [ < k, such that o was reclaimed on cycle [.

e 0 is allocated new for cycle k if m = k — 1 in the above definition.
e If m < k—1, ois allocated old for cycle k.

e We abbreviate and say that o is new (old) to cycle k if it is allocated new (old) for
cycle k.

e Any of the above definitions apply to slots. The implied meaning is that the definition
holds for the object containing the slot.

B.2 The sliding view associated with a cycle

In this section we define a per-cycle sliding view that we later show that is computed
implicitly by the collector and mutators (bearing similarity to the conceptual snapshot
taken at HSj by the first algorithm which is never explicitly computed.)

Let us define the scan oy that we associate with each cycle. We abbreviate V;, to Vj.
Consider any memory word s.

e Rule 1: if s ¢ Histyth en we set og(s) = HSy.
e if s € Histith en:

— Rule 2: if s is logged by some T; between H Sy (i) and HS3 (i) then let v be the
consolidated value chosen for s. Let 7 be the time a particular thread T} loaded

v before logging the pair (s,v). Set o (s) .,

— em Rule 3: otherwise, no thread T; logs s prior to HS3(7), but s is logged by

df HS2END;.

some thread Tj prior to HS(i). On such an event set oy (s)
Note that ok (s) is uniquely defined. We denote by R1j the set of all slots whose definition
of o, is derived by rule (1). Similarly we define the sets R2;and R3y.

The next lemma characterizes the span of oy.
Lemma B.1 Start(oy) > HSk A End(or) < HSU3EN Dy,

Proof. Let s be a memory word. Certainly if s € R1; U R3j then oy(s) lies within the
specified time limits. Otherwise, s is defined according to rule (2). we note that 7 must be
earlier than HS3FE N Dy, as some thread is logging s prior to responding the third handshake.
If this logging is done during clearing than the flag will be reinforced. Otherwise, the flag
must remain on until the clearing of the next cycle. In particular, it’s on at HS3EN Dj..
Thus no thread could load a value from s after HS3EN Dy, and then log it since it is bound
to sense that the dirty flag of s is on.
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Appendix B

Sliding View Algorithm Safety
Proof

In this appendix we prove that the sliding view algorithm is safe.

In the proof we abandon our assumption that there are no global references in the system
(consult chapter 3 for the definition of global roots). Instead, we assume that the collector,
between carrying the third and fourth handshakes of a cycle, reads any global reference and
marks the pointed object local. In addition, mutators carry the following write-barrier for
global references:

1. s = new
2. if Snoop; then
// mark new as local.
3. Locals; := Locals;U {new}

B.1 Definitions

First we need to stretch our definitions a bit in order to accommodate the looser timing of
the second algorithm.

Let us define the time instances at which a thread T; is suspended during the four
handshakes of each cycle: HSk(i), HS2x(:), HS3(i) and H S4x(7) denote the time instances
at which thread T; is suspended during the first, second, third and fourth handshakes of
cycle k, respectively. Next, we define the “global” time markers at which each handshake
starts and ends:

HS, & ming, HS(7)
HSEND; % maxy, HSk (i)

HS2, © ming, HS2 (i)

HS2EN Dy, ® maxy, HS24(i)

HS3;, < ming, HS3,(i)

HS3EN D “ maxy, HS3,(i)
HS4;, % ming, HS4(i)

HSAEN Dy < maxy, HS4;(i)

Additionally we define COLLECT} to be the time at which procedure Reclaim-
Garbage starts its operation.
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(b) Otherwise, 0.rc@QCOLLECT;_y > 0 A 0orc@ENDy_1 = 0. This implies that
o.rc had reached zero by the decrements applied by one of the invocations of
procedure Collect. By the code (lines (5-9)), when an object reference count
reaches zero but it is not reclaimed, it is moved to the ZCT of the next cycle.

O

Ideally, we would like the algorithm to collect at cycle k any object which is garbage
at HSy. However, this algorithm has the ordinary weaknesses of reference counting, with
respect to cyclic structures, and thus only the following progress theorem can be guaranteed:

Theorem A.2 (Progress) If at HSy object ois wunreachable and additionally ois not
reachable from any cycle of objects, then o is collected in cycle k.

The theorem is quite obvious due to lemma A.6 and the fact that we use ordinary
recursive-freeing.
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of slots (carried out in line (4) of procedure Collect) taking place prior to its reclamation,
thus 01.rcQCOLLECT}, = 0. This implies, according to lemma A.5 applied to cycle k, that
RC(0)QH Sy, = 0. Additionally, by the code, 0 is collected only if 0;.rc = 0A 0y ¢ Localsy,
so we conclude that in addition of not being pointed by any heap slot at H Sy, o; is also not
pointed by any global or local reference at that particular moment, or it would have been
marked local. Thus, 0; is unreachable at HSy.

f

For the inductive step, consider o; which has ¢ & 0;.7cQCOLLECT), = RC(0)QH Sk
(the last equality is again by lemma A.5). If c= 0 then the same arguments that were
employed for o; are repeated in order to demonstrate that o; is garbage at HS.

Otherwise, we have ¢ > 0. Since o; is recycled, it must satisfy at some point during
Reclaim-Garbage or Collect o;.rc = 0 A 0; ¢ Localsg. Thus, the value of o;.rc is
decremented c times during the operation of Reclaim-Garbage. Since decrements are
only applied to objects which are pointed from objects that are collected and since those
objects are collected prior to o; we have by the inductive hypothesis that all ¢ references to
o; were from objects that were unreachable at HSk. Thus, at HSk, o; is pointed only by
unreachable objects, and it is not pointed by any local thread state or global reference. We
conclude that o; is unreachable at HSj.

O

A.2 Progress

In this section we show the capabilities of the algorithm in collecting garbage objects.
The algorithm, in that respect, has the same limitations as the traditional single-threaded
reference counting algorithms [37].

The best that we can hope to achieve with reference counting, without employing special
techniques for detecting cycles of garbage, such as those surveyed in [36], is to detect any
object that its reference count drops to zero, in order that it would be considered for
reclamation based on the existence of local pointers to it. The following lemma tells us that
this feature is achieved by the ZCT data-structure.

Lemma A.6 (ZCT Property) If o is allocated at HSy and RC(0)QHS) = 0 then o €
ZCTy.

Proof. The proof is by induction on k. There are three cases to consider:

1. ois new to cycle k. In this case, a mutator created o between HSy_; and HS;. When
it created o it added it to its New set, which becomes part of ZCTy.

2. o is old to cycle k and it had a positive rc field at ENDj._;. Since we have 0 =
RC(0)QHSy = 0rc@COLLECT; (by lemma A.5), the value of o.rc must have
reached zero due to the decrements applied by procedure Update-Reference-Counters
of cycle k. At that point o was added to ZCTj(se e lines (8-10) of that procedure.)

3. ois old at HSy_; and it had zero rc field at ENDyg_;. This case splits into two
sub-cases:

(a) if 0.rc@QCOLLECTy_1= 0 then RC(0)@HSir_1= 0 by lemma A.5. Using the
inductive assumption we know that o € ZCTy_;. Since o was not recycled we
must have o € Localsy_1. By the code, when o is considered during Reclaim-
Garbage it satisfies

orc=0Ao0 € Localsy_

by the code (lines (5-7)), o is added to ZC'Tyin this case.
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the operation of Update-Reference-Counters, when the pair (s, sQH Sy_1) is considered,
the rc field of sSQH Si_; is decremented, as desired.

Decrementing new slots: Let s be a new slot for cycle k. According to lemma A.2
either null, or no value at all, are associated with s. Thus, there are no decrements that
occur due to s during cycle k. Let us explain why this is the desired behavior.

If s is new for cycle k then either s becomes allocated for the first time, or it was part
of an object o which was recycled during cycle j, where 7 < k.

In the former case, we know that s was initialized to null and its dirty flag was off at
system startup. Also, no thread could have accessed s at HSi_1, since it was not a part of
a reachable object (or any object) at that time. Thus, s@QH S;_; = null and therefore no
rc field should be decremented due to s during cycle k.

In the latter case, according to the safety theorem applied to cycle j, o is not reachable
at HS;. Thus, the collector has exclusive access to s, during cycle j. It follows that the
collector may decrement the rc field of the object pointed by s and clear s without being
interfered by mutators’ actions, all part of the operation of Collect during cycle j. If
j < k —1 then sQH Sj_; =null, thus there is no “old” value to decrement.

Otherwise, j = k — 1. In this case, the collector decrements the rc field of sSQHSy_,
during cycle k — 1, when it reclaims o. An object is reclaimed only if its rc field drops to
zero. Reclaim-Garbage and Collect can only reduce the value of an rc field. Thus, there
is a single point during the operation of Reclaim-Garbage at which o.rc = 0. Therefore o
is reclaimed exactly once and likewise the rc field of sQH Sy_; is decremented exactly once.

Decrementing and incrementing non-allocated slots: If s is not allocated at HS},
then the same argument that was applied to new slots is used to show that the value of
S@QH Sy_1is taken care of. Again, due to the safety theorem applied to the cycle at which
the object containing s was recycled we have s@QH Sy, =null so there is no need to increment
any field due to s. Indeed, since s is not allocated at HSpand it is unreachable at HSj_
no record of it would appear in Histy and no rc field will be manipulated due to it in cycle
k.

Incrementing old and new slots: it remains to show that the rc field of sQH Sy
is incremented exactly once due to s, when s is allocated at HSi. We have two cases:
either s is determined, or it is undetermined. If s is determined, then due to lemma A.3
we have that the collector increments the r¢ value of sQHSy. Otherwise, by lemma A .4,
V AL(Peeky;s) = {sQHS}. Thus, during the Fix-Undetermined-Slots procedure the
collector will find the value of sQH Sy associated with s. It will increment the rc¢ field of
that object exactly once, by the code.

All rc adjustments are finished by the time Fix-Undetermined-Slots terminates, so
the claim holds at COLLECTj.

A.1.5 Conclusion of safety proof

We are now ready to prove the safety theorem which claims that an object is collected at
cycle k only if it is unreachable at time H Sy.

Proof of safety theorem. The claim trivially holds for cycle zero since ZCTj is an
empty set and thus no object is recycled during the initial cycle.

Consider cycle & > 0. We prove that the theorem holds for cycle k if lemma A.5 holds
for cycle k.

Let {o1,...,0,} be the sequence of objects for which Collect is invoked, where the
sequence is chronologically ordered. We show by induction on i, that o; is unreachable at
H Sj. For the basis, consider o;. As it is the first object to be collected, there is no clearing
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What happens when the collector does not succeed determining a slot? A slot is undeter-
mined if the collector senses that its flag is raised during Update-Reference-Counters.
The only reason for the flag to be raised is that some thread, say T}, has applied line (5) of
procedure Update to the flag (i.e., raised it.)

Since updates are non-interruptible, T; has executed the preceding lines of (3) and (4)
of the same invocation after HSy. i.e., T; has stored the pair (s, sQH Si) into its buffer and
incremented CurrPos; prior to raising the flag. Thus, when the collector would process
Buf fer; during Read-Buffers it will see the logged pair (s, sQH Si) in T}’s buffer (s@H Sy,
is associated with s according to lemma A.2.) and thus the pair will be added to the set
Peekk.

We conclude the following;:

Lemma A.4 (Undetermined Slots) If the collector does not determine a slot s in cycle
k then
V AL(Peeky; s) = sQH S},

A.1.4 Linking rc field with reference count

In this section we show that the rc fields that the algorithm computes equal, eventually,
the heap reference counts at the time the conceptual snapshot is taken. We need some
definitions first.

Definition A.2 Let EN Dy denote the time at which cycle k has ended. That is, EN Dy,

15 the earliest time at which all instructions of cycle k have already been scheduled.

Definition A.3 Let COLLECT], be the time at which the invocation of Fix-Undetermined-
Slots, during cycle k, is complete. The collector starts ezecuting Reclaim-Garbage after,
or at, COLLECT.

The following lemma proves that the value of the rc field of each object, after the
collector has finished adjusting rc fields due to all logged modifications, i.e., when procedure
Reclaim-Garbage starts its operation, equals the object’s heap reference count at time
HSy.

Lemma A.5 (Meaning of The rc Field) 0.rcQCOLLECT) = RC(0)@QH Sy for any ob-
ject o which is allocated at HSj.

Proof. The claim holds for k£ = 0 since there are no objects which are allocated at HSy.

For k > 0, we prove that the lemma holds for cycle k provided this lemma and the safety
theorem both hold for previous cycles.

It’s enough to show that the algorithm adjusts rc fields due to each slot s correctly. If
s does not change after HSy_; and before HSy then, by lemma A.2, s will not be logged
and there will be no modifications to any rc fields due to s.

Let’s consider the cases in which s does change. We have to show that the rc field of
the object that s was referring to at HSy_1 is decremented. Likewise, we have to show that
the value of the object that s was referring to at H Sy is incremented. s is in exactly one of
these states at HSy: allocated old, allocated new, non-allocated.

Decremening old slots: If s is old for cycle k then s is changed by mutators, and not by
the collector (by deleting it.) Due to lemma A.2 Histy, will contain the pair (s, sQHSj_1).
Histy will not contain elements associating s with a value other than sQHSy_,. During
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1. if s is new to cycle k and is modified between HSy_1 and HSj then

VAL(Histy; s) = {null}

2. if s is old to cycle k and s modified between HSk_, and HS) then

VAL(Histy;s) = {sQHSk_1}

3. otherwise (s is not modified between HSk_; and HS}),

VAL(Histg;s) = @

Proof. The lemma vacuously holds for £ = 0 since there are no slots which are modified
during the interval HS_; to HSp.
We now show that the lemma holds for cycle k& > 0 provided that the safety theorem
hold for previous cycles.
Suppose s is new to cycle k. Let 7 be the time at which the object o containing s was
allocated. Let j < k be the cycle during which the object x that most recently contained
| s was reclaimed, or 0 if no such cycle exists. Applying the safety theorem to cycle j we
know x was unreachable at HS;. Thus, no thread could have accessed s from HS; until
7. In addition, if j > 0, when = was recycled, null was assigned to s, in line (4) of |
procedure Collect. Finally, as all dirty flags are cleated while the threads are halted, we
have Dirty(s)@HS; = false. Since these values must remain in effect until time 7 we can
apply lemma A.1 to s and 7 yielding that either claim (1) or (3) hold, depending on whether
s has been modified prior to HSk.

If, on the other hand, s is old to cycle k then we have Dirty(s)@HSy_, = false and no
update of s is occurring at HSy_;. Thus, we can apply lemma A.1 to s and time HSi_,
yielding that either claim (2) or (3) hold, depending on whether s has been modified prior
to HSk.

A.1.3 Determined vs. undetermined slots

We say that the collector determines the value of a slot s if during the Update-Reference-
Counters procedure it reads the value v from s (in line (3)) and then sees Dirty(s) =false
(in line (4)). Such a slot is determined, as opposed to undetermined slots which are taken
care of by the collector in procedures Read-Buffers and Fix-Undetermined-Slots. The
following lemma tells us that if the collector determines the contents of a slot then it has
indeed read its contents as they were at the time the recent conceptual snapshot was taken.

Lemma A.3 (Determined Slots) If the collector determines s to contain v during cycle
k then v = sQH Sy.

Proof. Let s be a determined slot. As all dirty slots are cleared when the threads are
stopped we have Dirty(s)@QH Sy = false. Let 7 be the time at which the collector executed
line (4) of Update-Reference-Counters . At time 7 the flag was still off. Thus, no line
(5) of procedure Update was scheduled in the interval HSy to 7. Hence the later store
from line (6) of Update hasn’t been scheduled in this interval as well. This means that s
remained unchanged from H Sy to 7. This interval includes the time at which the collector
read the value of s, in line (3) of Update-Reference-Counters. Hence the collector read
s to contain sQH Sy.
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1. UPD(s) = @ = ASSOC(s) = ©
2. UPS(s) # @ = ASSOC(s) = {s@t}

Proof. The first claim is quite trivial since a value is associated with s only as part of an
update. Since no update is scheduled, no value is associated.

Suppose that s is indeed modified between ¢t and HSy. Consider the set of threads,
denoted P, that apply the subset of operations of UPD(s) which read the value of Dirty(s)
as false in line (2) of procedure Update, while updating s. P is not empty since some
thread modifies s (UPD(s) is non-empty) and the dirty flag is off at t¢.

Consider a thread T; € P. We want to show that when 7} executed line (1) of procedure
Update it read the value of s at ¢t. Suppose that it did not. Let 7 be the time at which
thread T; executed line (1). Then some thread 7; must have executed a store to s after,
or at, t and before 7. Since there were no updates occurring at ¢ and since the store is the
last instruction of an update operation we conclude that the entire update operation by T;
has started after, or at, t and ended before 7. Just before T} executed the store in line (6)
the value of Dirty(s) must have been true either by line (5) or by virtue of another thread
(note that the collector resets the flag only during the next cycle) so T; should have read
a value of true from Dirty(s), in line (2), which was not the case. A contradiction. We
conclude that T; must have associated s@Qt with s. So we have

{s@t} C ASSOC(s)
According to the code, any thread T; ¢ P would not associate any value with s thus
ASSOC(s) = {s@t}
O

For a given history buffer H (be it collector or mutator maintained set) and a slot s we
define the set of values that H associates with s, denoted by VAL(H;s), as:

VAL(H;s) < {v|(s,v) € H)}

For brevity we write s € H meaning Jv :( s,v) € H
The next lemma summarizes and proves the desired properties of the write-barrier em-
ployed by the algorithm. We need some definitions first:

o We say that an object o is allocated for cycle k. If some thread has allocated o between
HS,, and HS,,+1, where m < k. And there has not been a cycle [, where m <[ < k
during which o was reclaimed.

o is allocated new for cycle k if m = k — 1 in the above definition.

If m < k — 1, we say that o is allocated old for cycle k.

We say that a slot is allocated (new/old) for cycle k if its containing object is allocated
(new/old) for cycle k.

We abbreviate and say that a slot or an object are new (old) to a cycle meaning that
the slot or the object are allocated new (old) for that particular cycle.

Lemma A.2 Let s be an allocated slot for cycle k. Then:
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Most lemmas are interdependent meaning, for example, that we prove lemma X correct
at cycle k provided lemma Y is correct at cycle K — 1. In order to make clear the relation
between the claims and to demonstrate that there is no circular logic in the proof we provide
herein a complete description of the interdependencies among the claims. We denote by
Ligth e assertion of lemma ¢ for cycle k.

Here is a short description for each of the claims involved:

e SafetyTheoremy: An object is collected during cycle k only if it is garbage at HS}.

o LA.2j: If a slot is modified between HSy_; and HSy then only and exactly the value
it assumed at HSk_1is recorded. No information is recorded for slots which are not
modified.

e LA.3j: The collector can distinguish, during cycle k, whether it is reading a slot’s
value which was current at H Sk, or, that the slot has been overwritten since.

e LA.4y: The collector finds out, eventually, in procedure Fix-Undetermined-Slots,
what are the values of undetermined slots.

e LA.5;: Just before the invocation of Reclaim-Garbage of cycle k, the rc field of
each object equals the heap reference count of the object at H Sk.

These are the dependencies between the claims:

e the basis for each claim, i.e. its correctness for cycle zero is proven independently for
each claim.

o LA2, <= \ji SafetyTheorem;
o LAS5k <= N\j<x(LA.5; A SafetyTheorem;) AN LA.2x N LA.4y

o SafetyTheoremy <= LA.5;

A.1.2 Update protocol properties

Consider any slot s which is modified between HS;_; and HSi. The snapshot algorithm
requires us to adjust rc fields due to s by decrementing the rc field of sQH S;_; and incre-
menting the rc field of sQH.Sy. The first part of the requirement, decrementing sQH S;._;,
is implemented by letting the mutators record the identity of sQH Sy_; into their buffers.
Thus, we would like to prove for any such modified slot s that only and exactly sQH Sy_
is associated with s by the mutators.

If s is not modified between the current and previous cycles, then we want to show that
no record of s is kept.

The lemmas in this section prove that the algorithm possesses these properties.

Lemma A.1 Let s be a slot and let t be a time point satisfying
1. HSy_1 <t< HSy, and
2. Dirty(s)@Qt =false, and

3. No update of s is occurring at t.

Let UPD(s) be the set of all update operations applied to s which are scheduled between
t and HS),. Let ASSOC(s) be the set of values which are associated with s by the operations
in UPD(s).

It holds that:




Appendix A

Snapshot Algorithm Correctness
Proofs

This appendix contains safety and progress proofs for the snapshot algorithm.

In the correctness proofs we abandon our assumption about the absence of global roots
(consult chapter 3 for the definition of global roots). Instead, we take the burden of showing
how to incorporate them into the algorithm: we assume that during the handshake of a cycle,
when all threads are stopped, the collector marks any object which is directly reachable from
a global root as reachable.

A.1 Safety

In this section, we will prove that the algorithm recycles an object only if it is garbage
at the time it is recycled. Actually, an object is recycled only if it garbage at the time
the conceptual snapshot is taken. Let us first define precisely this moment at which the
conceptual snapshot Rjis taken:

Definition A.1 Let HS), be the earliest time at which all dirty marks have been cleared
during the execution of procedure Read-Current-State in collection cycle number k.

We assume that at system initialization, before any mutator has taken any step, there
occurs an initial garbage collection cycle. As can easily be seen, this cycle leaves all data
structures that are carried across cycles (e.g., reference counters, ZCT) untouched, so there
is no loss of generality in our assumption. We use this assumption in order to simplify
the correctness proofs of the base cases of inductive claims. So, HSp happens at system
initialization.

We further define HS_; &f g Sp. This definition as well simplifies the proof of claims
that depend on the two preceding cycles.

Ultimately, in terms of safety, we would like to prove the following:

Theorem A.1 (Safety) An object is recycled during cycle k only if it is unreachable at
HS;.

A.1.1 Road map for the proof

Due to the cycle-by-cycle nature of the algorithm its properties are proved by induction on
the cycle number. For convenience, we will assume that there is a garbage collection cycle
numbered zero scheduled at system startup. This assumption facilitates the proof of the
induction basis and does not involve any loss of generality.
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Chapter 10

Conclusions

We have presented a reference counting garbage collector with an explicit attempt to make it
suitable for a multiprocessor. The algorithm uses extremely low synchronization overhead:
the barriers for modifying a reference and the barrier for creating a new object are very
short and in particular, require no strong synchronized operations such as a compare-and-
swap instruction. Furthermore, there is no particular point in which all threads must
be suspended simultaneously. Instead, each thread cooperates with the collector by being
shortly suspended four times during each collection cycle. In three of these four handshakes,
the time of suspension is just enough to allow a short operation that does not depend on
the heap structure or the local state of the threads. One of the four handshakes requires
reading the local roots of the thread. Thus, the overall overhead is small.

The two main new ideas presented in this work are first, the clever mechanism for
logging of reference modifications, which requires no synchronization, yet introduces no
inconsistencies due to race conditions, and second, the fact that a fuzzy snapshot of the
heap, which we denote the sliding view, is enough to get an approximation of the reference
count and perform the garbage collection.

Note that as in the previous work of DeTreville [17], our algorithm is based on the mu-
tators logging information about the modifications they apply to heap references. However,
in our algorithm, a thread takes a record of a modification at most once per slot per cycle
(as opposed to always keeping a record) and the heavy synchronization incurred due to the
logging action is completely eliminated.

In order to reclaim cyclic structures and to reinstate stuck reference count fields we have
presented an on-the-fly, scalable, tracing collector. The tracing collector relies on the same
notion of a sliding view as its reference counting counterpart and thus it is inter operable
with the reference counting sliding view algorithm. In particular, the tracing collector as
well never stops all mutators simultaneously and it uses the same write barrier used by the
reference counting algorithm.

We have implemented the proposed algorithms for Java, atop Sun’s JDK for Microsoft’s
Windows NT Operating System. Our algorithms attain a dramatic improvement in re-
sponse time over the original garbage collection algorithm. The reference counting algo-
rithm achieves throughput comparable with that of the original JVM while the on-the-fly
tracing collector outperforms the original JVM.

This work opens avenues for additional research on the following areas, among them: (1)
studying the behavior of tracing vs. reference counting collector in high heap occupancy
environments, as suggested in section 9.5, (2) combining the ideas presented in [1] with
the ideas presented in this work and (3) applying generational principals to the reference
counting algorithm.




Let us define the load factor, a, to be v/(1 — 7). We now see that the tracing overhead
is bigger than the reference counting overhead if, and only if:

a > cy/cy
This has two implications:

1. The reference counting algorithm reacts better than the tracing algorithm to a growth
in the heap occupancy factor. Note that the load factor grows very quickly as the
heap occupancy grows. Apparently, the set of benchmarks that were available to us
do allocate a lot of objects but do not maintain a large volume of live data over time.
It seems that this is not the case with true servers, such as Web servers, that utilize
the entire heap allotted to them for caching web pages etc.

2. Unfortunately, the “implementation quality factor”, c;/c, is not favorable for the
reference counting algorithm. While ¢;, depends only on the implementation of the
tracing phase, c¢; describes the complexity involved in clearing the dirty bits of newly
allocated objects, updating the reference counters for objects pointed by newly allo-
cated objects, maintaining the ZCT, and, finally, recursively deleting dead objects.
Thus, improving the overhead of the reference counting algorithm is a much harder
task than improving the mark and sweep algorithm.
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results in most cases. In this section, we try to explain this result. We characterize the
differences between the two algorithms and thus we find the conditions under which each
may perform better than the other. In our discussion, we abstract away several factors
which may still be important in some environments, for example:

e we assume that it is harmless to use the entire heap space which is allocated for the
program since this heap is backed by fast RAM. This holds for servers, but not for
memory constrained systems.

e we assume that fragmentation is not an issue. Again, this is tied to the previous point.
If we have a big heap and the access of pattern to memory is uniform, as is the case
with servers, then this assumption holds as well.

e we assume that the price of initiating a garbage collection is negligible relative to the
price of the collection itself. This can be evidently seen from our instrumentation
measurements (refer to section 9.1).

e we assume that our target programs have steady states. While this may not be the
case in reality, there is not much we can say about programs with irregular behavior.

Suppose we are given a heap of size H. Let us assume that the benchmark has a steady
state at which it consumes a fraction v of H. That is, most of the time, yvH heap space
is alive. Also, let R4 be the allocation rate, which equals the garbage production rate in
steady state, in units of memory volume per time, and let Ry; be the mutation rate which is
defined to be the rate at which the mutators mutate old data structures, i.e., data structures
that have at least survived one garbage collection cycle.

As we noted before, the overhead of a reference counting garbage collection cycle is
proportional to the amount of space allocated since the last cycle, the amount of space
that became garbage since the last cycle and the amount of space that was mutated since
the last cycle. Therefore, reference counting is less sensitive to the triggering used. i.e.,
two short reference counting cycles cost roughly the same as one longer, combined reference
counting cycle. Thus, each implementation is characterized by two constants, ¢; and cp that
characterize the overhead incurred by reference counting per unit of time. That overhead
is:

Overheadrc = c1Ra + coRnr

Referring to the set of benchmarks we have used, we sce that the actual old objects
mutation rate, Ry, is very low thus in practice we may approximate the overhead with
ClRA.

The price of a tracing cycle, on the other hand, is fixed no matter when was the last cycle
executed. The price of the cycle is proportional to the amount of live data (in the tracing
phase) and to the entire size of the heap (in the sweep phase). So the price is c;YH + s H
where ¢ and ¢y, are the proportion constants for the mark and sweep stages, respectively.
In practice, tracing dominates the price of a tracing cycle, so the price can be approximated
by ¢, vH.

Assuming that it is beneficial to use the entire heap space, we want to delay a tracing
cycle as much as possible. We can do that until we run out of heap space, which happen
after (1 —v)H/R4 units of time (the amount of free space divided by the allocation rate).
Thus, the overhead of tracing garbage collection, per unit of time, is:

Overheadrracing = ctrRay/(1 —7)
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# Threads 1 2 4 8 12 16
Original allocator || 1143 | 1768 | 1747 | 1570 | 1537 | 1525
Custom allocator 917 | 1638 | 2349 | 2356 | 2371 | 2373

Table 9.21: Objects created per second in the allocation benchmark on a four-way server.

# Threads 1 2 4 8| 12| 16
Original allocator || 1044 | 1054 | 823 | 873 | 911 | 796
Custom allocator 844 | 843 | 838 | 843 | 852 | 818

Table 9.22: Objects created per second in the allocation benchmark on a single processor
workstation.

9.4 Allocator scalability

We have designed the custom allocator with scalability in mind. In order to check whether
the collector indeed meets design goals we have written a small allocation benchmark that
tries to measure allocation overhead in isolation from garbage collection overheads. The
program works in phases. Each phase, N threads are started and each of them allocates
1,000,000 arrays of references, each with a random number of slots, chosen uniformly from
the range {1,...,5}. Each thread links 10% (chosen randomly) of the objects it allocates
into a linked list.

On the end of each phase the elapsed time of the phase is determined; the linked list
of objects from the cycle prior to the one just ended is discarded (the list from the current
cycle is held “alive” for the next cycle) and finally synchronous garbage collection is invoked.
It is verified externally that the heap is big enough so that no garbage collector ever occurs
during a phase run. The entire test is comprised of four phases with the results being the
average of the last three runs.

As described, during a measured phase, there is little happening in the system besides
concurrent allocation. Furthermore, since the heap is dotted with allocated objects from
the previous phase, allocation cannot be just a matter of bumping a pointer. This behavior
mimics real world scenarios were the heap contains differently aged objects. We do give a
chance, however, to the collector, to do compaction between phases.

The results for the four-way server with 1200MB heap are presented in figure 9.21 as the
throughput of the JVM (objects created per second) relatively to the number of working
threads. The custom allocator achieves excellent scalability where there is almost no loss
in performance when going from 4 threads to 16 threads. The original allocator, however,
performs less well, loosing 12% of its throughput over the same range. With 16 worker
threads, the custom allocator achieves a throughput higher by 56% than the one achieved
by the original allocator.

Refer to figure 9.22 for the comparison of the allocators on a client machine. For this
test we used 300MB heaps. This necessitated changing the number of objects allocated by
each thread, on each phase, from 1,000,000 to 100,000 with 8 threads or more. On the single
processor client machine the situation is less decisive compared to the server environment.
Here, the custom allocator performs less well with 1 or 2 threads by a factor of 20%. With
4 threads and more, however, it is as marginally better than the original allocator.

9.5 Discussion

As can be seen from the throughput results for our on-the-fly reference counting collector
versus the results of our on-the-fly tracing collector, the tracing collector exhibits better
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Heap | Time
(MB) | (sec)
Original 25 120
RC 20 85
Tracing 20 86

Table 9.19: Minimal heap size required to complete successfully a four thread mtrt run and
the time to completion with that heap size.

Benchmark || Original | RC | Tracing
Total 2582.2 | 2676.0 | 2610.9
compress 720.8 | 723.3 718.4
db 374.0 | 383.7 374.0
jack 264.6 | 299.7 285.0
javac 225.0 | 235.2 233.7
jess 181.7 | 209.7 182.1
mpegaudio 607.1 | 610.6 611.1

Table 9.20: Elapsed time for the execution of the entire SPECjvm98 suite and intermediate
execution time of a double-run for each of the suite’s members.

time, only elapsed running time, which corresponds to the JVM’s throughput. As can be
seen from figure 9.18 both on-the-fly collectors have outperformed the original JVM with
an improvement of up to 12.6% in the total running time.

The ordinary measure of heap consumption—probing the free space left at the run
does not capture transient effects and the ability to handle stressful situations. Figure 9.19
shows the minimal heap size (in 1MB granularity) required to complete the mtrt benchmark
successfully and the corresponding time to completion. The concurrent collectors require
about 20% less the memory to complete successfully and arrive at completion at about 70%
the time. This is clearly a defect of the original JVM as it should actually require no more
memory than our collectors and since in this stressful situation we resort to synchronous
GC there should be no gain from concurrent collection as well.

9.3 Client performance

While we have targeted our collectors for multi-processor environments we still wanted to
verify that they are competent in a single-processor setting. To that end we have used
the SPECjvm98 benchmark suite. We used the suite using the test harness, performing
standard? automated runs of all the benchmarks in the suite. In a standard automated run,
each benchmark is ran twice and all benchmarks are ran on the same JVM one after the
other. Figure 9.20 shows the elapsed time of the entire automated run and the time for each
double run of each benchmark. We see that the tracing collector was only 1.1% percent
slower than the original JVM and the reference counting collector only 3.6% slower. Given
that we pay the overheads of concurrent run while we’re not benefiting from the availability
of multiple processors these are remarkably good results.

2The standard run requires running the harness through a Web server while we performed the tests
directly off the disk. Aside from that, the executions were standard.
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Threads 1 2 4 6 8 10 15 20
Original || 0.02 | 0.02 | 14.67 | 0.05 | 0.08 | 0.01 | 0.18 | 13.03
RC 0.02 [ 0.02| 0.05|0.07|0.11 |0.15| 0.22 | 0.32
Tracing || 0.02 | 0.02 | 0.06 | 0.09 | 0.12 | 0.15 | 0.25 | 0.33

Table 9.16: Maximal response time, in seconds, of the original JVM, reference counting and
tracing collectors in a series of fixed number of threads runs with 1200MB heap.

Threads 11 2] 4 6 8 10 15| 20
Original || 24 | 39 | 70 | 100 | 139 | 160 | 236 | 312
RC 27 |44 | 77 | 108 | 170 | 171 | 251 | 329
Tracing || 27 | 44 | 77 | 108 | 130 | 171 | 251 | 330

Table 9.17: Memory consumption at the end of a series of fixed number of threads runs
with 600MB heap.

a remarkable behavior of our collectors where the original collector consumes longer and
longer pause times as the heap grows. Figure 9.16 might seem an exception to this rule at
first glance but actually what happens is that since garbage collections with such a large
heap are scarce (one or two in a run) they actually might occur when the benchmark is not
measuring response time hence the original JVM manages “to get away” with its long pause
times unnoticed on most cases. However, examining the pause time for 4 and 20 threads
we see that these pauses nonetheless occur.

We now examine our memory consumption behavior. Given that we have added an extra
pointer to each object (the log pointer) we would expect to see some increase in the memory
consumption, relative to the average object size in each benchmark. Furthermore, since we
do not compact the heap we are more vulnerable to internal fragmentation compared to
the original JVM. When our collector is asked to report the amount of free memory it sums
up (non-atomically) the amount of storage available in the block manager and in partial
blocks. It ignores owned blocks so actually the amount of free memory is larger than
reported. Given this metric, the results of used memory as reported by SPECjbb (for the
600MB test series) are summarized in figure 9.17. Note that except for an unexplained (yet
reproducible) bump in the memory consumption for 8 threads with the reference counting
collector! we consume no more than 8% more memory compared to the original JVM. This
can be further improved once we eliminate completely the handle-to-object pointer in each
object, which is not required by our collectors.

The second benchmark that we have used is MTRT (multi-threaded ray tracer), a mem-
ber of SPECjvm98 which can be used with a varying number of threads. We have ran this
benchmark with the default heap size—64MB. This benchmark does not measure response

!This bump cannot be explained by reference counting issues since the amount of consumed memory
is calculated only after the benchmark requests a synchronous garbage collection cycle, which is always
implemented by our collectors using a tracing cycle.

Threads 1 2 3 4 8 12 16
Original || 93.0 | 71.9 | 56.3 | 57.2 | 58.2 | 58.0 | 59.0
RC 88.6 | 68.5 | 52.5 | 54.2 | 52.3 | 57.9 | 59.1
Tracing || 89.1 | 68.9 | 52.3 | 55.8 | 50.8 | 53.4 | 53.5

Table 9.18: Time to completion, in seconds, of the MTRT benchmark, with varying number
of threads.
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Heap || Elapsed | % increase. No. No.
size GC | in GC time | sync | tracing
(MB) time | over original | cycles | cycles
600 51 13% 2 11.0
900 51 30% 2 7.3
1200 47 7% 2 5.0

Table 9.10: Elapsed time of garbage collection in a standard SPECjbb run with the tracing
collector; the percentage of increase in elapsed time over the original garbage collector and
the types of garbage collection cycles that were performed. “sync” is a synchronous GC
cycle requested explicitly by the benchmark.

Threads 1 2 4 6 8 10 15 20
Original 637 | 1125 | 1728 963 928 903 887 | 847
RC 0.4% | 4.0% | -5.4% | -2.0% | -1.0% | -2.2% | -0.3% | 2.4%
Tracing || 1.0% | 4.6% | 2.3% | -1.3% | 0.2% | -0.9% | 0.1% | 2.8%

Table 9.11: Scores of the original JVM on a series of fixed number of threads runs with
600MB heap; increase/decrease in score for the reference counting and tracing collectors.

Threads 1 2 4 6 8 10 15 20
Original 645 | 1137 | 1742 978 947 918 858 893
RC -1.3% | 3.2% | -3.8% | -3.3% | -3.3% | -3.3% | 3.2% | -4.0%
Tracing | -1.6% | 2.6% | 2.1% | -2.6% | -2.4% | -2.1% | 4.0% | -2.2%

Table 9.12: Scores of the original JVM on a series of fixed number of threads runs with
900MB heap; increase/decrease in score for the reference counting and tracing collectors.

Threads 1 2 4 6 8 10 15 20
Original 629 | 1155 | 1683 935 908 884 882 870
RC -25% | 1.7% | -7.1% | -8.0% | -7.8% | -6.8% | 0.2% | -0.8%
Tracing || -6.3% | 3.6% | -2.7% | -6.9% | -6.5% | -5.4% | 1.1% | -0.2%

Table 9.13: Scores of the original JVM on a series of fixed number of threads runs with
1200MB heap; increase/decrease in score for the reference counting and tracing collectors.

Threads 1 2 4 6 8 10 15 20
Original || 7.43 | 8.04 | 847 | 6.92 | 7.86 | 7.54 | 6.59 | 6.00
RC 0.02 | 0.02 | 0.05 | 0.08 | 0.11 | 0.15 | 0.25 | 0.33
Tracing | 0.02 | 0.02 | 0.06 | 0.09 | 0.13 | 0.18 | 0.25 | 0.35

Table 9.14: Maximal response time, in seconds, of the original JVM, reference counting and
tracing collectors in a series of fixed number of threads runs with 600MB heap.

Threads 1 2 4 6 8 10 15 20
Original || 0.02 | 11.17 | 12.07 | 10.70 | 10.53 | 10.30 | 9.82 | 9.23
RC 0.02 | 0.02| 0.05| 0.08| 0.11| 0.14 | 0.23 | 0.34
Tracing || 0.02 | 0.02| 0.05| 0.08 | 0.12| 0.15| 0.25 | 0.33

Table 9.15: Maximal response time, in seconds, of the original JVM, reference counting and
tracing collectors in a series of fixed number of threads runs with 900MB heap.




Heap || Score % Improv. | Maximal | % Imrov. in
size in score response response
(MB) (throughput) | time (sec) time
600 || 642.7 -2.6% 0.12 98.5%
900 || 641.0 -2.3% 0.11 99.1%
1200 || 633.3 0.7% 0.11 99.2%

Table 9.7: Reference counting performance in a standard SPECjbb run.

Heap || Elapsed | % increase. No. No. No.
size GC in GC | sync RC | tracing
(MB) time time | cycles | cycles | cycles
600 147 227% 2 11.7 1.0
900 144 269% 2 6.3 0.0
1200 143 225% 2 5.0 0.0

Table 9.8: Elapsed time of garbage collection in a standard SPECjbb run with the refer-
ence counting collector; the percentage of increase in elapsed time over the original garbage
collector and the types of garbage collection cycles that were performed. “sync” is a syn-
chronous GC cycle requested explicitly by the benchmark.

To illustrate, the original JVM may pause for as long as 16 seconds while we never cause
a mutator to pause for more than 130 milliseconds. This problem of the original JVM
becomes aggravated as the heap grows in size. As can be seen from figure 9.8, the reason
for the performance penalty is the prolonged elapsed time of garbage collection, compared
to the original JVM. This implies that by further optimizing the collector code we may
obtain better scores than the original JVM while maintaining the very short response time.

This is exactly the case with the tracing collector, which outperforms the original JVM
in both throughput and maximal response time. See figure 9.9. Figure 9.10 shows that the
elapsed time of garbage collection for this algorithm is much closer to the elapsed running
time of the original collector, resulting in improved performance.

Next we seek to check how our collectors perform relative to the original collector as
a function of the number of threads and heap size. We have performed a series of stand-
alone SPECjbb runs with 1, 2, 4, 6, 10, 15 and 20 threads; 600MB, 900MB and 1200MB
heaps; the original, reference counting and tracing collector. The results are summarized
in figures 9.11 through 9.16. From throughput perspective, our collectors have compatible
performance with that of the original collector with the tracing collector performing better
than the reference counting collector. We do see a slip in performance in the range of
4 to 10 threads and this effect worsens as the heap grows. This is probably related to
two factors: inefficient reclamation, which worsens as the heap grows, and tuning of spin
locks for these numbers of threads. Examining the maximal response time we again see

Heap || Score | % improv. | Maximal | % Imrov. in
size in score response response
(MB) time (sec) time
600 || 1124.0 -0.6% 0.14 98.3%
900 || 1129.3 1.3% 0.12 99.0%
1200 || 1146.3 4.1% 0.13 99.2%

Table 9.9: Tracing collector performance in the standard SPECjbb run.

68



jbb | compress db | jack | javac | jess | mpegaudio
No. cycles 7 4 4 7 10 10 2
GC time 18.2 03| 16| 3.3 50| 438 0.1
Clear 31% 3% | 26% | 33% | 21% | 26% 20%
Trace 15% 3% [ 19% | 3% | 28% | 6% 20%
Sweep 50% 7% | 47% | 55% | 45% | 54% 20%

Table 9.5: GC time for the tracing collector, in seconds and the time spent in clearing dirty
marking, tracing and sweeping.

jbb | compress db | jack | javac | jess | mpegaudio
No. cycles 7 2 4 9 6 10 2
GC time 46.1 01| 571103 9.0 | 17.0 0.1
Clear 12% % ™% |10% | 11% | ™% 0%
Update 36% 19% | 37% | 31% | 43% | 37% 19%
Create buff 8% 7% | 13% | 13% | 11% | 8% 7%
Reclaim 42% 21% | 41% | 41% | 33% | 43% 21%

Table 9.6: GC time for the reference counting collector, in seconds. “Clear” refers to pro-
cedure Clear-Dirty-Marks; “Update” refers to Update-Reference-Counters; “Create
buftf” refers to the pass over the create buffers, checking whether an object is garbage and
adding it to the ZCT; “Reclaim” is the final pass over the ZCT, when objects are deleted

recursively.

For benchmarks that deal with smaller amounts of larger objects, such as compress, we
see that most GC time is spent in garbage collection overheads (handshakes, etc.)

We note that the reference counter used as many garbage collection cycles as the tracing
collector (except for the case of compress and javac where the reference counter was allotted
a bigger heap). Also the elapsed time for the reference counting garbage collector is longer.
In an attempt to find the culprits for this situation we observe that the duration of both
the update of reference counters and the reclamation of dead objects is in effect browsing
almost all of the objects that were allocated during the cycle, on a one-by-one basis. Since
the heap occupancy in all of these benchmarks is quite low for the given heap sizes, a lot
of objects are created during the cycle, resulting in a better performance for the tracing
collector. We will elaborate on this point in section 9.5.

We now turn to investigate the collectors’ performance results compared to the original
JVM. We start with server performance and then continue with client performance.

9.2 Server performance

A standard execution of SPECjbb requires a multi-phased run with increasing number of
threads. Each phase lasts for two minutes with a ramp-up period of half a minute before
each phase. Prior to the beginning of each phase a synchronous GC cycle may or may not
occur, at the discretion of the tester. We decided not to perform this synchronous garbage
collection as we believe it defeats capturing real world scenarios in which the server is not
given a change for this “offline” behavior so often. The results presented here are averaged
over three standard runs.

Figure 9.7 shows the two most important performance meters for the reference counting
collector compared to the original JVM: while we do pay a small price of up to 2.6%
decreased throughput, we improve the maximal response time by two orders of magnitude.
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Benchmark No. stores | No. stores | No. object No. | Create
to new to old log | references | vs. log
objects objects actions logged ratio

jbb 61,070,693 | 9,940,664 52,410 264,115 | 0.00209

compress 63,892 1,013 13 51 | 0.00022

db 31,297,167 | 1,827,613 36 30,696 | 0.00001

jack 135,013,882 160,893 824 1,546 | 0.00012

javac 21,774,697 267,331 189,395 535,296 | 0.02946

jess 26,206,218 51,889 544 27,333 | 0.00007

mpegaudio 5,517,487 308 12 51 | 0.00021

Table 9.4: Demographics of the write barrier: number of reference stores applied to new
and old objects; number of object logging actions; total number of references that were
logged and the ratio of the number of object logging actions to the number of allocations.
This ratio is an upper bound to the percentage of objects which ever get logged in the write
barrier.

may use reference counting for most garbage collection cycles and only occasionally resort
to tracing.

We now turn our attention to the use of the write barrier. Figure 9.4 shows the number
of reference stores that have been applied to “new” vs. “old” objects (i.e., objects that
still haven’t undergone a collection cycle versus those which have survived at least one
collection cycle), the number of object logging actions, and the ratio of logging actions to
object creation actions (this is an upper bound for the percentage of objects which ever get
logged). (The figures are for the reference counted runs; very similar results were obtained
for the tracing runs.) We learn from these figures the following:

o Most reference stores are applied to new objects, probably because there are more of
them compared to old objects and because new objects have to be initialized.

e From the reference stores which are applied to old objects only a fraction leads to
logging. This means that the same old objects are accessed repeatedly. Yet we have
to log the object only the first time it is accessed in a cycle.

To conclude, due to this essentially generational behavior it is indeed beneficial to mark
new objects as dirty. Also, the price paid for the write barrier almost always equals the
price of a memory load and register test. Due to the large amount of new objects versus old,
logged, objects, the complexity of a reference counted cycle is in reality proportional to the
number of objects that were allocated during the cycle. It does appear, though, that those
old objects which are repeatedly changed contain much more references compared to the
average. See for example the ratio between the number of logged references to the number
of logged objects in the jbb, db and jess benchmarks which far exceeds the average number
of references per objects in these benchmarks. This suggests that we might need to explore
ways to log large objects “by pieces” and not in their entirety, as is currently done.

Finally, let us look at the execution times of each of the collectors. Figure 9.5 shows the
number of collection cycles, total elapsed time of the collection cycles and how this time
distributes between the major stages of a tracing garbage collection. Figure 9.6 presents
these data for the reference counting collector.

Looking at the time distribution for the tracing collector, we see that sweeping takes
more time than tracing. This is despite the fact that we sweep using the block table and
reference counters bitmap, without looking at the object unless it is actually freed. This
implies that the sweeping code has yet to be optimized.
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Benchmark Tracing RC
No. allocated | Object No. || No. allocated | Object No.
objects size | References objects size | References
jbb 26,753,615 49.9 1.6 25,113,179 52.4 1.7
compress 55,126 | 2,041.1 0.8 58,061 | 1,940.4 0.9
db 3,261,467 34.0 2.6 3,263,358 34.0 2.6
jack 6,919,637 40.3 1.7 6,917,102 40.3 1.6
javac 6,403,821 42.9 1.9 6,405,478 43.0 1.9
jess 7,994,215 46.4 3.6 7,993,946 46.4 3.6
mpegaudio 65,539 31.6 1.1 58,329 29.5 0.9

Table 9.1: Number of allocated objects, average object size and the average number of
references in an object.

Benchmark Stuck Relative

objects | percentage
ibb 141,141 0.6%
compress 2,727 4.7%
db 30,637 0.9%
jack 51,607 0.7%
javac 235,605 3.7%
jess 12,566 0.2%
mpegaudio 2,728 4.7%

Table 9.2: Number of objects that have reached a stuck count (i.e., 3) and their percentage
in the reference counted runs.

object population. These numbers support our assumption that a two-bit reference count
is enough for the striking majority of objects.

In an attempt to measure the sensitivity of each benchmark to reference counting we
compared the ratio of collected to allocated objects between the tracing and reference
counting collectors. For example, if in a tracing run 90% of the objects were reclaimed and
in the corresponding RC run only 81% of the objects were reclaimed then the amount of
sensitivity, or inherent inefficiency, of reference counting for this benchmark is estimated to
be 10%. The results are summarized is figure 9.3. Except for javac, which uses many cyclic
structures, and to a lesser degree the db benchmark, the benchmarks have demonstrated
a low degree of sensitivity to reference counting. This supports the assumption that we

Benchmark || % Reclaimed | % Reclaimed RC

by tracing by RC | Inefficiency
jbb 97.5% 96.5% 1.2%
compress 73.5% 72.1% 2.1%
db 99.6% 90.5% 9.1%
jack 99.6% 96.8% 2.8%
javac 99.6% 66.1% 33.6%
joss 99.8% 99.5% 0.3%
mpegaudio 74.2% 69.6% 6.2%

Table 9.3: Percentage of objects reclaimed by the tracing and reference counting collectors
and the associated estimate for reference counting inefficiency in collecting the benchmark.
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Chapter 9

Performance Results

In this chapter we assess our algorithms performance characteristics compared to the original
algorithm used in the JVM and comparing the tracing collector to the reference counting
collector.

9.1 The benchmarks used—instrumentation results

We used two standard testing suites: SPECjbb2000 and JPECjvm98. These benchmarks
are described in detail in SPEC’s Web site[2].

Our primary instrumentation goal was to study the memory consumption behavior of
these benchmarks. To that end, we have compiled the JVM with the GC and allocator
modules in instrumented mode and the rest of the JVM in production mode. That way, the
runs were realistic ones, with the amount of objects allocated and running times not sig-
nificantly different from an all-production JVM yet still we gained the GC instrumentation
information.

In order to appreciate the “sensitivity” of each benchmark to reference counting, i.e.,
the amount of garbage cycles and stuck reference counters that the benchmark produces,
we ran each benchmark only with the tracing collector and also only with the reference
counting collector, without the use of the auxiliary tracing collector. Figure 9.1 shows the
number of objects allocated, average object size and the average number of references in an
object. Overall, the number of allocated objects when using the reference counting collector
is comparable to the number of allocated objects using the tracing collector, though almost
always smaller by a maximal factor of 5%. This is consistent with the performance figures
we present later.

All tests were conducted with an equal setting for the two collectors: a four way Pen-
tium III at 550Mhz with 2GB of physical memory and a 600MB java heap for the JBB
server benchmark and a single Pentium IIT at 500Mhz with 256MB of physical memory
and 64MB for the jvm98 client benchmarks. However, the reference counted runs of the
compress and javac benchmarks were not able to complete with 64MB heap and therefore
the instrumentation results presented here refer to runs of these two benchmarks with a
java heap of 200MB.

As figure 9.1 shows, the small number of references per object (e.g., a reference or two
in a typical object) supports our premises that the number of references in most objects is
relatively small hence the use of a flag per object instead of a flag per slot does not involve
a significant amount of extra logging.

Figure 9.2 shows the number of objects that have reached a stuck count (i.e., 0.RC = 3)
in the reference counted runs and the relative percentage of these objects in the entire
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Objects on the chunked object lists are linked through the logPos field. This helps
maintain the invariant that an object is eligible for reclamation by the mark-and-sweep
algorithm only if it has a null pointer in this field. Essentially, this trick solves the infamous
race condition between allocation and the sweep phase which otherwise requires object

coloring schemes.
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e PARTIAL to OWNED—after some chunks have been recycled and the block is in
the partial state a thread can gain ownership over it and start allocating off it.

The last set of transitions is applied by the collector (when executing chunk manager
code that performs them):

e VOID to PARTIAL—occurs when some, but not all, objects on a VOID-marked
block are recycled. At the same time the block is linked into a partial list (see below).

e PARTIAL to BLOCK—occurs when all objects on a partial page are recycled.
This transition occurs atomically with the removal of the block from the partial list
on which it resides and handing it back to the block manager.

e OWNED to OWNED—happens when some objects on an owned page are recy-
cled. Thread ownership is not revoked but rather the newly recycled objects become
available for the thread to use.

8.9.2 Partial lists

Partial blocks are linked on partial lists. There is a partial list for each possible chunk size.
As mentioned, when a page is transitioned from the VOID state to the PARTIAL state
it is inserted into the partial list corresponding to the size of the chunks the block hosts.
Conversely, when a mutator needs to allocate a chunk of a certain size, and it does
not own a block hosting chunks of the required size, then it may take a block off the
corresponding partial list and become the owner of it.
Finally, when the collector finds that a partial block is fully vacant then it may evacuate
the block from the list and return it to the block manager.

8.9.3 Chunked object lists

Whenever a block is in one of the chunked states. i.e., OWNED, VOID and PARTIAL,
there are three lists of objects associated with it:

e Allocation list—this list contains objects which can be allocated directly by the
owning thread. The list contains elements only when the page is owned and its
header is cached by the owner thread. This list is accessed solely by the owner thread
hence there is no contention incurred for using it and allocation becomes as simple as
popping an element off a linked list. )

e Recycled list—this lists contains elements which have been recently recycled by the
collector. It is accessible only to the collector. The collector maintains a hash table
of recycled lists headers thus occasionally it needs to flush a recycled list associated
with a block. When it does so, the list is merged with the block’s free list (see below).

e Free list—is the list used to transfer objects from the recycled list to the allocation
list. As said, the collector sporadically flushes the recycled list into the free list. The
owner mutator, when it sees that the allocation list is empty, tries to move all current
elements from the free list to the allocation list. If it fails doing so (i.e., the free list
is empty) it transforms the block state into VOID.

Synchronization is only needed for accessing the free list and is achieved by a lightweight

lock implemented at the block level. The lock is imbedded in the block table entry and is
implemented using low-level atomic operations (specifically, compare-and-swap).
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e BLOCK—this state denotes blocks which are currently under the control of the block
manager and are the first or last blocks in a contiguous free region.

e BLOCKLIST—same as BLOCK but the block is also the head of a linked list of
regions, all of which are of the same size as this list-header region.

¢ BLOCKINTERNAL—denotes a block which is currently under the control of the
block manager but is not the first or last block of a region. i.e., an internal free block.
This state exists only for facilitating debugging. It does not exist in a non-debug
build.

¢ CHUNKING—denotes a single block which has been allocated by the chunk man-
ager, from the block manager, and it is currently being chunked into small pieces. This
state serves two purposes. For the manager, it signifies that the block is no longer
under its control. For the sweep phase of the collector it signifies that no objects
should be collected from this block.

e OWNED-—means that the block is currently owned by a mutator thread allocating
off this block.

e VOID—signifies that the block is no longer owned by any mutator and that the
collector has not yet recycled any chunks from this block.

o PARTIAL—signifies that the collector has recycled some chunks from this block.
The block in that case is linked in a partial list and no mutator can allocate off it.

o ALLOCBIG—marks that the page is the first or last page in a big object (at least
one block wide) that was allocated by the mutator and has not yet been reclaimed.

¢ ALLOCINTERNAL—same as ALLOCBIG only that the block is not the first or
last block in the object. This state is used only for debugging purposes!.

The block manager applies to following state transitions?:

e BLOCK to ALLOCBIG. Happens when a user requests the allocation of a big
object.

¢ BLOCK to CHUNKING. Occurs when the chunk manager requests the allocation
of a block for chunking it into small objects.

e VOID or PARTIAL or ALLOCBIG to BLOCK. Occurs whenever a chunked
block is fully freed or when a big object is reclaimed.

The user allocation code applies the following transformation to block states:

e CHUNKING to OWNED—when the block is completely chunked it becomes
owned by the thread on behalf of which it was allocated.

¢ OWNED to VOID—occurs when allocation can no longer proceed from the page,
since there are no free chunks left on it.

! Actually, this state might be required for systems that do not maintain the invariant that a base pointer
to a live object should always be present somewhere. i.e., systems that allow for pointers into the middle of
objects with no corresponding pointers to the base of the object. On such a system this state can be used
to locate the base pointer given a pointer to the middle of the object.

%in the following we treat BLOCK and BLOCKLIST interchangeably since they are equivalent logically
from an external point of view.
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there is no fragmentation problem imposed by this allocation method. However,
using this allocation method with a non-compacting collector would very quickly lead
to irrecoverable fragmentation.

2. the original allocator is synchronized on a single lock. This of course hinders scalabil-
ity.

3. the original allocator maintains two disjoint pools for handles and for objects. Yet we
want to allocate a handle contiguously with its object.

4. the original allocator maintains information needed for compaction (e.g., object pin-
ning information) which is useless for our algorithms.

Due to these reasons we decided to implement a custom allocator. Our allocator is
divided into two levels of management: the chunk manager and the block manager. We
now outline the roles of these managers.

The block manager manages big, equally sized, blocks of memory. The block size is
tunable at compile time and we elected to equate it with the hardware page size, which is
4KB. It supports the following operations:

e allocate a range of blocks.
e free a range of blocks given the start address of the range.

e free a collection of ranges of blocks.

The block manager is totally serial and it is implemented using linked lists of equally
sized regions of blocks. The block manager is utilized either directly, by the allocation code,
or indirectly, using the chunk manager. When a user requests an allocation bigger than half
a size of a block then the number of necessary blocks is allocated directly from the block
manager. Smaller allocations are satisfied by the chunk manager which chunks single blocks
into equally sized chunks that are consumed by the user.

The chunk manager is highly concurrent and efficient since it uses very fine locking,
thread local allocation and it does not support coalescing or splitting: once a block is
chunked into a specific size, all allocations from within it will use the same chunk size until
(and if) the block is completely freed, in which case it will be returned to the block manager.
Hence, allocation code need not perform costly checks due to variable sized chunks located
on the same block. There is a fixed number of allocation sizes (approximately 20). The
allocation sizes are chosen to balance between internal fragmentation (which calls for many
different allocation sizes) and external fragmentation (which calls for a small number of
allocation sizes so that blocks of one size can be used by objects of differing sizes instead of
allocating separate pages for each object size).

A typical object oriented application will issue many allocation calls that will be im-
plemented solely by the chunk manager and only relatively few calls will require allocating
entire blocks from the block manager.

Let us now review in greater detail the implementation of the block and chunk managers.

8.9.1 The block table

The block table as an array of block table entries each describing a block in the heap.

Each entry is four words (16 bytes) wide and its format changes according to the current
state of the block. However, all formats share one field: the state field. This field assumes
one of the following states at each given moment:
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e current position—address of the next slot to be written into in the current block.

Recall that in the update protocol we have to prepare a replica of the object before
committing it to the buffer. In our implementation, the replica is written directly into the
buffer. Committing the replica is done simply by writing the address of the updated object
ORed with BUFF_LOGGED _HANDLE _MARK into the buffer (after the replica of

the object’s contents) and updating the current position pointer in the log buffer header.

8.8 Cooperation model

We implemented the approach appearing in the original algorithms for cooperation. i.e.,
threads are suspended one at a time, the collector takes some action on their behalf and then
the thread is resumed. We use a per-thread flag called cantCooperate which is turned on
in sections of code during which the thread can not cooperate (i.e., during the write barrier,
snooping of writes to global pointers and the logging of newly created objects).

In order to carry out a handshake the collector suspends the threads one at a time. If
a thread is caught in non-cooperative code then the collector resumes it immediately and
proceeds to handle other threads. The collector repeats this process until all threads have
cooperated.

We were careful to limit the size of the non-cooperative code sections to a fixed and
small number of instructions. This entailed reserving space in advance, in the snoop, create
and update buffers prior to entering a non-cooperative section.

8.9 The memory manager
In the design of the memory manager we tried to satisfy these requirements:

1. allocation should be as fast as possible and should avoid synchronization bottlenecks.
i.e., the allocator should be scalable.

2. both the tracing and reference counting asynchronous algorithms do not accommodate
the relocation of objects in memory. The allocator should not suffer from fragmenta-
tion (except maybe for some pathological cases) due to this property.

3. in the asynchronous reference counting algorithm, reclamation of objects occurs spo-
radically rather than linearly as in the sweep phase of the tracing algorithm. The
memory manager should handle efficiently this sporadic reclamation of objects. Even
though objects will not be freed linearly it should still try to minimize fragmentation
and increase the locality of allocation requests. i.e., it is preferable that two objects
which are created in a row will be located closely in memory rather than chosen
randomly from the entire heap space.

4. the vast majority of objects which are created are smaller than 60 bytes. The memory
manager should take advantage of this fact by optimizing the allocation of small
object. Allocation of medium sized and large objects may be less efficient than that
of their smaller counterparts.

We found the original allocator inadequate to the requirements for the following reasons:
1. it allocates memory by assigning big chunks of memory to threads which later cut them

into smaller pieces by incrementing a pointer. Naturally, the allocated memory spaces
contain a mixture of object sizes. Since the original collector supports compaction,
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Handle* createObject(int size)

{
Handle* h = allocate(size);
LogEntry *le = logNewObject( h );
h->logPos = le;

}

8.7 Implementation of the log buffers

Principally, there are two kinds of log buffers in the sliding view algorithms:

1. sets of object references—these log buffers are “flat”; they contain one type of
data: pointers to objects. This variety includes the create buffers and the snoop
buffers. We have implemented the global ZCT (the one that lives between cycles)
using this data structure as well.

2. update buffers—the update buffers are a collection of records of the form < object, replica >
where replica is a set of object pointers that where observed to be contained in object.

The two types of buffers are implemented as a doubly linked list of memory blocks. The
size of a memory block is tunable but we have usually opted to use a block size of 64KB.

We assume objects are aligned on an 8-byte boundary thus we can utilize the lower 3
bits of a logged reference for auxiliary information. The bits are used to mark log entries
with the following tags:

e BUFF _NOMARK/(=0)—flat object reference.

e BUFF _LINK_MARK(=2)—the rest of the word is a pointer to the next or previous
log block, depending on the direction of traversal.

e BUFF_LOGGED _HANDLE_MARK{(=1)—this kind of entry appears only in up-
date buffers. It signifies that the pointer is to an object which has been logged.
The contents of the object are logged just before it in the buffer (as flat refer-
ences). The word preceding-the replica in the buffer can either be another entry
marked with the BUFF_LOGGED _HANDLE_MARK tag or an entry with the
BUFF _LINK MARK tag.

e BUFF DUPLICATE_HANDLE_MARK(=3)—this kind of entry appears only in
update buffers. It is created by the collector by ORing a value of 2 into a slot marked
with the BUFF_LOGGED _HANDLE _MARK tag. This action invalidates the
entry (and the contents of the object appearing just before it in the buffer). Recall
that the collector invalidates log entries on two occasions:

1. during deletion, so that the entry would be skipped in the next cycle.

2. during clearing, if the entry is not “cycle closing”, in order to eliminate duplicates
in the collection of mutators’ update buffers.

A log buffer is controlled by a log buffer header that contains the following information:
e start address—address of the first block in the log.
e limit address—address of last slot in the current block, minus some elbow room.

This limit address is compared against in logging, to check if there is enough space
for the logging operation.
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9. T1: h[ offset ] = val2.

10. T1: Respond to HS1.

The log entry created by T1 is not cycle closing during the clearing phase and the log
entry created by T2, as it’s created after responding to H S1, is not considered at all during
the clearing phase of the current cycle.

While it looks as if we have a bug here it actually turns out that we may ignore the
update of h by T1 altogether because the object has been changed only after the current cycle
has commenced. i.e., only after some thread has already responded to HS1 (in our case, T2
responded to HS1 before the modification). According to the sliding view algorithm, we
have to account for all changes occurring between the beginning of the previous cycle and
the beginning of the current cycle. The update of h does not qualify.

The reinforcement phase (refer to section 5.8) becomes simpler as well using this method.
All we have to do is go over the entries in the clearing conflict set and for each log entry
le check the object, h, it refers to. If h->logPos is null, then reinforce the log entry by
re-closing the cycle. i.e., perform h->logPos := le.

The consolidation phase becomes unnecessary because no two log entries which are
logged before HS4 can be cycle closing by the time the next cycle will commence.

To conclude, the “cycle closing?” predicate is a powerful tool that arbitrates automati-
cally between log entries that refer to the same object. This mechanism solves all cases of
multiple occurrences of log entries by itself with no need for extra data-structures and/or
procedures for conflict resolution.

8.6 The Create Procedure

Recall that in the original algorithm an object is created “clean”, i.e., with it’s dirty flag
turned off, and it is logged in a special create buffer which is treated as a thread local ZCT.

If we were to take the same approach in our implementation then immediately after
creating the object, as “clean”, we would have to dirty it because of initialization code to
its fields.

We had not the development resources to explore the initialization approach suggested
in section 7.1.2 so we implemented a simpler yet efficient method. In our implementation,
we create objects as “dirty”. According to the principles of the sliding view algorithms we
have to supply the collector with a log entry containing the contents of the object when we
dirtied it. But the contents of the object at initialization are void.

Therefore, the mutator puts a reference to the object in a special “create buffer” and
makes logPos point to the log entry. The collector knows that entries in create buffers
signify objects which were logged when created, i.e., with empty contents and treats them
accordingly:

1. the dirty flag is cleared

2. the current contents of the object are determined and the corresponding reference
counters are incremented

3. no reference counters are decremented
4. the object is considered a candidate for deletion (i.e., it’s in the ZCT).

Below we outline procedure createObject
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8.5 Additional advantages of the logPos field

Beside the easier determination of objects’ contents we derive the following two advantages
from using the logPos field:

Using the logPos field in the resolution of the Create vs. Sweep conflict in
the sliding view tracing collector. The memory manager, in concert with the garbage
collector, use the logPos filed, along with other means, to resolve the race condition between
the Create and Sweep procedures. The net gain from this scheme is that we don’t have
to use a per object color entry any more. We will elaborate on this subject after describing
the memory manager.

Eliminating duplicates in the update buffers. Recall that the original algorithm
allowed two mutators to log the same slot (in our case object). In such a case it was
guaranteed that the two log entries will be identical. The collector had to eliminate the
duplicates and process exactly one log entry per each object that was logged by any number
of threads.

When using the logPos field we have a method for identifying duplicates without using
auxiliary data structures other then the log entries and the objects themselves.

We say that a log entry is “cycle closing” if the object it refers to has its logPos field
pointing back at the log entry.

During the clearing phase, i.e., between HS1 and HS2 the collector examines the mu-
tators’ buffers that were passed to it during HS1. For each log entry, the collector checks
whether the entry is “cycle closing”. If it is, then it clears the logPos field of the referred
object. Otherwise, it invalidates the log entry so that the rest of the collection cycle ignores
it completely.

Let us explain why this method eliminates all duplicates and only duplicates. Consider
an object at address h which is logged by at least one thread before responding to HS1.
Assume further that this object is not logged by any thread between HS1 and HS2. Ob-
viously, h->logPos is constant during the clearing phase and therefore the collector will
identify exactly one log entry as cycle closing. Any other log entry referring to h will be
marked as invalid. So the method works in this case.

What happens in the case that h is logged by at least one thread before HS1 but it
is also logged by some thread between HS1 and HS2? In such a case the collector may
identify a single log entry (the one that was created before responding to H.S1—the latter
is not looked-at at all by the collector) as cycle closing. However, the log entry created
between HS1 and H.S2 might as well “overtake” the prior assignment to logPos resulting
in the collector identifying no cycle closing log entries for h.

This is the sequence of events we are describing:

1. T1: rl = create a replica of the handles in ‘h’.
2. T1: write ‘rl’ into the update log buffer.

3. T2: Respond to HS1.

4. T2: r2 = create a replica of the handles in ‘h’.
5. T2: write ‘r2’ into the update buffer.

6. T1: h->logPos = position in T1’s buffer.

T T2 h->logPos = position in T2’s buffer.

8. T1i: h[ offset ] = vall.
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the object is undetermined dictated a multi-phased algorithm in which the threads’ log
buffers are repeatedly read asynchronously in order to read the values of modified slots (see
procedure Mark in figure 6.4).

Using the logPos field in the same manner as for the case of updating reference counters
eliminates the need for multiple phases and the related data structures. Tracing then always
proceeds immediately after accessing the object’s logPos field, either as dictated by the
current objects’ contents or according to the previous state of the object, as recorded in
the log entry. Which of the two routes is taken is determined by the value of logPos in the
same manner done in the update of reference counters.

Procedure traceThroughObject demonstrates the principal described above:

void traceThroughObject (Handle *h)

{
/* trace only once through any reachable object */
if (getObjectRC(h) > 1) return;

/* trace through the object */
LogEntry le = h->logPos;
if (le) {
ObjectIsLogged:
/* object has been logged */
for each reference ‘child’ logged in ‘le’ do {
/*
* account for the pointer to ‘child’
* which is currently being traced
* through.
*/
incrementObjectRC( child );
traceThroughObject( child );
}
return

}

/*

* Prepare a replica of the references contained
* in the object.

*/

Replica r = copies of all references contained in ‘h’

/* check if object was modified in the meanwhile */
LogEntry le = h->logPos;
if (le) goto objectIsLogged;

/* OK, replica is valid */
for each reference ‘child’ in the replica ‘r’ do {
/*
* account for the pointer to ‘child’
* which is currently being traced
* through.
*/
incrementObjectRC( child );
traceThroughObject( child );
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Replica r = copies of all references contained in ‘h’

/* check if object was modified in the meanwhile */
le = h->logPos;
if (le) goto objectIsLogged;

/* 0K, replica is valid */
for each reference ‘child’ in the replica ‘r’ do
incrementRC( child )

Determining the contents of an object when deleting it. Recall that in procedure
Collect (figure 5.9) we had to postpone the collection of garbage objects which where
modified by some thread between HS1 and HS4. The reason for that was that we had
no reasonable means to eliminate the redundant log entry. Deleting the object without
eliminating its corresponding log entry (or entries) would have caused inconsistencies in the
next cycle.

Using the logPos field, however, facilitates the elimination of log entries. If the object
is indeed logged then we have to:

1. decrement the reference counters of the objects appearing in the log entry (rather
then the counters of the objects appearing currently inside the object).

2. invalidate the log entry.

These changes are illustrated in the following pseudo-code for freeObject:

void freeObject(Handle *h)
{
if (h->logPos) {
/* object has been logged */
LogEntry le = h->logPos;
for each reference ‘child’ logged in ‘le’ do {
decrementRC( child) /* takes care for recursive deletion */
}
/* invalidate log entry, for next cycle */
markInvalid( le );

}
else {
/*
* Delete based on current contents
*/
for each reference ‘child’ contained in ‘h’ {
decrementRC( child) /* takes care for recursive deletion */
¥
}

Note the difference between freeObject and determineObjectContents : freeObject
does not have to prepare a replica of the object’s contents and then recheck its validity since
we are guaranteed that the object is garbage at the time freeObject examines it, hence no
contention with mutators is possible.

Determining the contents of an object when tracing through it. In the tracing
algorithm we have to determine an object’s contents when tracing through it (see procedure
Trace in figure 6.5). The inability to gain immediate access to the object’s log entry when
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/* snoop store operand */
if (currentThread->snoop) {
/* write ‘value’ into snoop buffer */

Note that we optimistically probe the logPos pointer before preparing the replica of the
object’s contents, hoping to minimize the number of replicas which are eventually discarded.
Later in this chapter we show that the number of updates that actually execute the “if”
body is very small and therefore the use of the optimistic conditional is indeed beneficial.

8.4 Simplifying the determination of object’s contents using
the logPos field

By paying the extra price of allotting a whole word for the flag and transforming it into a
pointer that identifies the logged contents of an object, rather than using a boolean byte-
sized flag, we obviate all the cases in the original asynchronous algorithms in which the
collector failed determining an object and had to take extra and elaborate measures to deal
with the failure. This includes:

Determining the contents of an object when updating reference counters. In
the sliding view reference counting algorithm, when updating the reference counters of
modified slots (see procedure Update-Reference-Counters in figure 4.5) the collector
had to determine the contents of a logged slot.

In our case, the collector has to determine the contents of a logged object.

In the original procedure, if the slot is undetermined the collector knows that some
thread logged it along with its value but it has no clue which thread did the logging and
where to find the log entry. It therefore postpones the dealing with such a slot to procedure
Fix-Undetermined-Slots (figure 4.7) in which it iteratively goes through the mutators’
log buffers and makes sure it accounts for every undetermined slot.

In the modified procedure, if the object is undetermined then the value of logPos gives
the collector an immediate access to the log entry where a thread has logged the objects’
contents. The collector therefore proceeds directly to the log entry and reads its contents.
This scheme deems the Undetermined set and the Fix-Undetermined-Slots procedure
unnecessary.

The following code fragment illustrates the process of determining the contents of an
object.

void determineObjectContents(Handle *h)
{
LogEntry le = h->logPos;

if (Qe) {
/* object has been logged */
objectIsLogged:
for each reference ‘child’ logged in ‘le’ do
incrementRC( child )
return

}
/* Prepare a replica of the references contained
* in the object

*/




In order to allocate an instance of a class, an object and a handle are allocated, the
object is zeroed out and the handle is initialized to point at the object and at the class’s
runtime information. See figure 8.1.

Handles are completely transparent to the user. They are used in order to facilitate
memory compaction [33] yet they introduce to the system the overhead of extra indirection,
decreased locality of reference and increased memory consumption (due to the handle to
object pointer).

The garbage collection method which is employed in the original JVM is mark-sweep-
compact. Garbage collection occurs in a stop-the-world manner, when all threads are
stopped.

8.3 Object structure in the modified JVM

Since our collector does not support the moving of objects in memory, we derive no ad-
vantage from using the handles. However, eliminating the handles from the original JVM
was too complicated a task to undertake. As a compromise, we have unified the handle
with the object (see figure 8.1). The handle and object are allocated as a single chunk of
memory and are treated as such by the memory manager. This layout increases locality.
Additionally, an object is located at a fixed offset from its handle. Therefore we were able
to change most of the code in the JVM to calculate the object’s address, given the handle’s
address, by a simple add instruction rather than de-referencing the object pointer inside
the handle.

We have based our implementation on the “flag per object” scheme discussed in sec-
tion 7.1.1. The flag is termed logPos and is located between the (original) handle and the
object (see figure 8.1). As the name of this field implies, it is not a mere flag but it has
added functionality: when the field is non-zero then indeed the object has been logged, as
in the original scheme. Moreover, the value of the field in such a case is a pointer to the
location in the thread’s buffer where the object’s contents have been logged. Below we give
the pseudo-code of the Update procedure given this policy:

void updateHandle( Handle *h, int offset, Handle *value )
{
if (h->logPos==NULL) {
/* object has not been logged yet */
Replica r = copies of all references contained in ‘h’

/* check if object was modified in the meanwhile */
if (h->logPos==NULL) {
/* 0K, replica is valid, commit it */
/* write into log, remember position */
LogEntry *le = loglntoUpdateBuffer( h, r)

/*
* write position into the object and
* thereby also turn on the flag
*/
h->logPos = le;
}
}

/* do the store proper */
hloffset] = value;
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Object layout in the original JVM:
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Figure 8.1: Object layout in the original and modified JVMs. In the original JVM, data
is accessed indirectly through a handle in order to support the relocation of object data.
In the modified JVM, object data is almost always referenced directly by the user yet the
data pointer is retained for compatibility. The logPos field is either null or a pointer to a
log entry that contains the logged object’s reference data.




Chapter 8

An Implementation for Java

We have implemented a variant of the Asynchronous Reference Counting and Asynchronous
Tracing algorithms for Java. This chapter describes the implementation and its performance
characteristics.

8.1 Java—the target platform

There is probably no need to introduce Java [3]. We chose to implement the Asynchronous
Reference Counting and Tracing algorithms atop Java because of the following reasons:

1. Javais an object-oriented garbage-collected language. Obviously it needs some garbage
collector.

2. Java is very popular and accepted as a true, rather than just academic, programming
language. This allows us to check our algorithm in a realistic setting.

3. Java supports shared-memory multi-threading in the language level. The need for a
garbage collector that can handle multiple threads running concurrently on multiple
processors and referring to the same address space is inherent to Java.

4. Java has been recently portrayed as the language of choice for implementing portable
servers (consult, for example, [4], for a coverage of contemporary server-side java based
technologies). An obstacle to overcome on the path to achieving scalability for such
servers is the scalability of the garbage collection process. This is exactly what we
aim at in our work.

We started with Sun’s JDK1.2.2 for Win32 and replaced the default collector supplied
with the JDK with our on-the-fly collectors.

8.2 Object structure and garbage collection in the original
Java Virtual Machine

The original Java Virtual Machine (JVM) supports a so-called “handled” model in which
each object is referenced indirectly through a handle. The object itself contains the actual
data members declared by the object’s class while the handle contains two pointers: the
first is a pointer to the object data; the second points to a memory block containing the
class’s runtime information (virtual table, reflection information etc.)

The heap is divided into two disjoint pools: the object pool and the handles pool.
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In the context of logging we have relied on the order of store operations by the mutator,
i.e., first logging the value and then the slot, to allow the collector to read a mutator’s buffer
reliably without stopping it (see section 7.2.)

We note that under processor ordering the collector may execute the loads (of the slot
and value parts of a record in a mutator’s buffer) in any order for if the slot field of the
record does not contain null, then the store into the slot field by the mutator must have
preceded the collector’s load in the linear sequence. But that implies that the mutator’s
store into the value field precedes both collector’s load operations in the linear sequence,
providing the collector with an accurate account of both value and slot parts of the record.

Under weaker memory models than processor ordering we eschew the problem of collec-
tor’s perceived partial logging by reading the buffers in an additional soft handshake.
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The load of (3) cannot pass the store of (2) as they refer to the same granule. The store
of (2) cannot pass the load of (1) as a store may not pass a load. Thus we are guaranteed
that the load of the slot will precede the load of its flag is the linear sequence.

Although this protocol operates on any processor ordered system it is inefficient since
it requires doubling the space needed for the already space demanding dirty flags and it
incurs an additional write access on each invocation of the barrier.

However, in practice, we can identify the origins of reordering and therefore we can
take advantage of this knowledge and efficiently eliminate reordering when needed. We
consider as an example a PowerPC system with a MESI cache protocol. MESI is a cache
protocol that requires the processors to gain exclusive ownership over memory locations
prior to modifying them. At the time a location is owned it may not be cached neither for
reading nor for writing by any processor other than the owner. Thus, it is easy to see that
the requests which are serviced by the cache protocol adhere to sequential consistency. It
follows that reordering can only emanate from the processor itself, which issues its external
cache requests in an out of order fashion. In order to eliminate the out of order execution
of the loads in the write barrier it suffices to guarantee that the processor presents these
load requests in their original order to the cache mechanism. This is achieved by creating a
faked dependency among the two loads, fooling the processor to believe that it must carry
out the first fetch prior to starting the second one. Such a dependency can be created using
this code fragment:

void Update(WORD *s,...) {
register WORD val;

register BYTE x*flag_calc_addr;
register BYTE flag_val;

val = *s;
flag_calc_addr = (val & 3) + calc_flag_addr(s);
flag_value = xflag_calc_addr;

In the code fragment we assume that a pointer value is aligned on a four-byte boundary,
such that the expression (val & 3) is bound to equal zero and flag_calc_addr evaluates
to calc_flag_addr(s) . However, the processor does not possess this knowledge a priori
and it is fooled to believe that in order to load the flag it must first know the value of
the slot. The extra price paid is two additional arithmetic operations (perhaps a single
operation on some architectures.)

We admit that an aggressively speculative processor could have executed the second
load prior to the first load if it is designed to predict the results of load operations and
can accordingly execute code speculatively based on the predications. We know not of a
processor which behaves in this manner.

We now turn to the lighter problems of snooping and logging under weak memory
constraints.

Snooping requires that a mutator would first execute the store proper into the slot and
only then would load its Snoop; flag. Under processor ordering the load may pass the
store. However, we care that these two instructions would not be reordered only in order
to snoop stores into slots by mutators which still haven’t responded to the first handshake.
Otherwise, i.e., between the first and fourth handshakes, the flag is continuously raised and
the test is bound to succeed even if the instructions are reordered (of course, we assume that
a soft handshake synchronizes the mutator’s view of the memory with that of the collector.)
Instead of combating this reordering we may simply carry out an additional handshakes
before the one that used to be the first handshake. In the additional handshake we would
raise the Snoop flags.
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Implicit in the above definitions of sequential and processor ordering is the requirement
that the linear sequences are sensible in the sense that they maintain the semantics of load
operations, i.e., the result of a load from location X should be the value which is most
recently stored into X in the linear sequence, or some prescribed initial value, if no such
store exists.

Concisely, processor ordering amounts to sequential consistency with these two excep-
tions:

e “a load can pass a load” unless the two instructions address the same consistency
granule and unless a non-communicating program can tell that the two instructions
were performed out of order.

e “aload can pass a store” unless the two instructions address the same consistency
granule. Note that a non-communicating program can never tell whether such a
reordering occurred (unless it can tell that another reordering of the form “a load can
pass a load” occurred).

The most crucial aspect of adapting our algorithm to processor ordering is how to
preserve the validity of the write barrier. Note that, aside from logging and snooping, the
write barrier is comprised of a read-only part followed by a write-only part:

e read-only part. Read from s, then read from Dirty(s).
e write-only part. Optionally Write to Dirty(s), then write to s.

We note that under processor ordering the only pair of instructions that may be per-
formed out of order are the load of s and the load of Dirty(s). It is easy to see that the
algorithms do not operate correctly when such a reordering occurs. In order to prevent
it, we may issue a synchronizing instruction between the loads. This is, however, a very
expensive operation’. N

If we have no knowledge on the specific mechanisms that allow this reordering to hap-
pen, that is, we don’t know which opportunities are exploited by the system to reorder
instructions, then we don’t know as well how to eliminate these opportunities and we may
rely only on the constraints provided by processor ordering n order to prevent the reorder-
ing. For example, we can allocate two adjacent bytes for the dirty flag where the two bytes
reside on the same consistency granule. Then, in order to read the slot and then its flag we
execute this code snippet:

Update(WORD *s, ...) {

register WORD  slot_val;

register BYTE xflag_addr,
*dummy _addr,

flag_val;
(1) slot_val = xs; // LOAD slot
flag_addr = calc_flag addr( s );

dummy_addr = flag_addr + 1;
(2) *dummy_addr = MAGIC_NUM; // WRITE dummy
(3) flag_val = xflag_addr; // LOAD flag

Tt may involve flushing the processor’s pipeline and/or cache.
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mistakenly collected starts in a store into r by a thread which has already responded to the
fourth handshake. But it is an invariant which is kept by the algorithm, and is not broken
by this protocol for global roots, that any object which is collected is unreachable from
any thread (considering global roots as immediately reachable to the thread as well) after
the thread has responded to the fourth handshake. Hence such a store is impossible in the
first place, since it implies that the reachable object that has been mistakenly collected was
already directly reachable from the thread which executed the store after it has responded
to the fourth handshake. The detailed proof is in chapter B.

This protocol is effective when the number of global references is low relative to the
number of modified slots that the collector has to process so that the constant time spent
marking global roots does not dominate the overall running time of a cycle. Another
advantage of it is the lighter write barrier. To conclude, we would opt treating global
references using this protocol rather than as ordinary heap slots whenever the number of
global references is relatively low or it is cumbersome to associate a dirty flag with each
global reference.

7.4 Memory consistency

Throughout the paper we have assumed that the system conforms to sequential consis-
tency constraints. In a sequential consistent system all memory accesses, carried out by
all processors, are seemed to be serialized one after the other while preserving the order
of instructions carried out by individual processors. However, some modern SMP systems
do not provide sequential consistency but weaker consistency models in order to improve
performance through processor level parallelism, speculative execution and non-uniform
memory access. In this section we show how our algorithms can be adapted to weaker
memory models. In particular, we show how our algorithms can operate on a platform
which is processor ordered. Processor ordering is a memory model which is adhered to by
contemporary platforms such Intel’s P6 processors’ family.

In a processor ordered system, like in a sequential consistent system, there is a linear
sequence of all memory accesses carried out by all processes, however, it is not guaranteed
that any two instructions that were carried out by a particular processor would appear
in the linear sequence in the same order that they appeared in the processor’s program.
Rather, only these orderings are guaranteed:

1. any two store instructions that are performed by a processor are bound to appear in
the linear sequence in the same order as in the processor’s program.

2. if a processor contains in its program a load followed by a store then the store will
follow the load in the linear sequence as well.

3. any two instructions that are performed by a processor which access the same con-
sistency granule (see below) are bound to appear in the linear sequence in the same
order as in the processor’s program.

4. a processor that does not communicate with other processor’s through shared memory
(i.e., it doesn’t access locations that other processors access) may not witness that
the instructions issued on its behalf are reordered.

The consistency granule of a system is an implementation dependent parameter that
specifies the size and alignment of memory chunks for which rule (3) applies. Usually the
consistency granule coincides with a cache line.
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Implementing the second requirement, i.c., that the collector can read asynchronously
the set of completely logged pairs can be achieved efficiently in the following manner.

e before the mutator starts using a buffer-chunk it zeroes it out.

e in order to store a record in the buffer a mutator first writes the value read, then it
writes the slot address.

e the collector reads the records in the thread’s buffer sequentially. It knows that it has
read a record which has not been completely logged when it sees a slot field with the
value of null (note that the mutator never logs a slot whose address is null.)

Thus, the mutator can manipulate the buffer using only a single register that points to
the next address to be written.

7.3 Global roots

We have left the treatment of global roots outside the specification of the algorithms. This
choice has rendered the specification simpler while, as is next explained, it does not involve
any loss of generality.

To see that this is indeed the case, we postulate that global roots can be treated exactly
as heap slots. That is, each global root has a dirty flag corresponding to it and it is subject
to the write barrier. This treatment is valid for the following reason. We picture all global
roots as being the slots of a conceptual “globals” object. The “globals” object is directly
reachable from any thread. Thus, reads and writes of global roots are equivalent to reads
and writes of the respective slots of the directly reachable “globals” object. The “globals”
object itself need not be marked or otherwise be operated on explicitly since it does not
really exist and therefore there is no risk that it would be collected.

This argument directly suggests a concrete method for treating global references: asso-
ciating a dirty flag with any such reference and applying the write barrier to it. However, all
is not well. Implementing this policy can be quite involved because unlike for heap objects
it is hard to find a systematic manner to associate a dirty flag with each global reference.
We therefore propose alternative approaches to global variables.

In the snapshot algorithm, global references may be simply treated as their local coun-
terparts. i.e., when all threads are stopped during the hard handshake, all objects which
are directly reachable from a global reference are marked local. No write barrier is employed
for global references.

In the sliding view algorithm we may treat global references in the following manner.
1) a mutator T; executes the following write-barrier in order to perform a global reference
update, which includes the familiar snooping test:

1. S 1= new
2. if Snoop; then
3. mark new as local

2) the collector, before carrying the fourth handshake, reads all global roots and marks
the pointed objects local.

To gain some intuition that safety is indeed provided by this protocol we consider a global
root r. 7 is read by the collector before the fourth handshake and the object referenced
is marked; so is any other object which is stored into r by a mutator which still hasn’t
responded to the fourth handshake, as the mutator has its Snoop; flag raised. We conclude
that the only baleful scenario in which a reachable object (when reclamation commences) is




Using a flag per object and a flags bitmap can be quite wasteful in terms of space: we
need to allocate a flag in the bitmap per the granule of object alignment. Since objects
are usually aligned on 16 bytes or smaller granules and since a typical object is some 50
bytes long, inlining the flag inside the object results in a substantial saving of space (not to
mention the cases in which some unused bit in the object header is waiting to be exploited).

7.1.2 Initialization

This section discusses an optimization regarding the initialization of slots when the method
of a flag-per-object is used.

By an initializing update we mean an update to an object’s slot that is bound to occur
within a small fixed number of instructions from the object allocation site. For example,
referring to languages such as C++ or Java, we expect initializing updates to abound in
inlined constructors. As noted by [57, 31] initializing updates comprise the majority of
updates in functional languages and garbage collected object oriented languages.

By treating the entire code block that executes the object creation and the initializing
updates as a single transaction (i.e., we treat it as a protected piece of code), we can save
a substantial amount of our algorithms’ overhead: after the object is created it is logged in
the thread buffer with no contained pointers. The initializing updates then proceed without
any write barrier.

Note that this protocol also deems the use of the local ZCT unnecessary as newly created
objects are tracked using the ordinary history buffer.

7.2 Log buffers

The primary design factor in the implementation of the log buffers is how to make writing
into them as fast as possible for a mutator executing an update. A secondary consideration
is how to allow the collector to read those records that have been fully logged (i.e., both
slot and value members of a logged pair) without interrupting the mutator.

In order to satisfy the primary goal we suggest the following design, which is similar
to the one described in [17]: a buffer will be implemented as a linked list of buffer-chunks.
Each chunk is of size 2¥, aligned on a 2* boundary (k is a parameter.)

A mutator that is executing an update will always have enough room to log the current
transaction. This is an invariant which is maintained in the following manner: after logging
a pair to the current chunk, the mutator checks whether the next update would cause the
chunk to overflow (this check is a simple arithmetic one due to the chunk size alignment.)
If that is the case, it tries extracting a new chunk from a list of free chunks. If it succeeds,
it lets the new chunk point to the old one and starts using the new one. Otherwise,
a new garbage collection cycle is started. The mutator then waits for the collector to
notify it when there are free chunks. The collector makes part of the chunks available to
mutators after processing them in the procedure Update-Reference-Counters and the
rest after the execution of procedure Fix-Undetermined-Slots. In case the collector falls
behind freeing chunks, a mutator may initiate a synchronous reference counting cycle or a
synchronous tracing cycle.

Using a linked list of chunks allows the Update operation to be efficient in the common
case that there is no overflow, yet it allows a finer grained load-balancing by letting each
thread consume a different amount of chunks from its peers.

New sets can be implemented in much the same way, even sharing the same pool of
chunks with the log buffers.
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7.1.1 Allotting a flag per a chunk of memory

In this section we elaborate on the idea according to which a flag can serve an indicator to
a change in any of the slots within a fixed chunk of memory. The ideas contained in this
section are similar to those that arise in the context of tracking inter-generational pointers
in a generational collector that uses card marking. Details on the method of card marking
can be found in [43].

If we let a single flag signify a change in a chunk of memory then the write barrier takes
the following form, assuming that we want to store into the slot s the value v:

e the flag for the chunk of memory containing s is optimistically probed, assuming
that it is turned on. If it is indeed turned on, then we proceed directly to the store
operation.

e otherwise, a replica of the slots that reside inside the chunk is created and stored
locally.

e the flag for the chunk is then probed again. If it is now turned on, we proceed to the
store operation.

e otherwise, we commit the replica just prepared to the log buffer, raise the flag and
only then execute the store.

The collector code for determining a slot is changed accordingly. The collector tries to
determine the value of an entire chunk instead of a single slot.

The scheme is characterized by a decreased memory consumption yet by spurious work
imposed on the mutator and collector that have to process slots which haven’t really
changed.

We think of three feasible methods for associating a group of slots with a flag: (1)
associating each card, i.e., aligned chunk of 2! bytes (where [ is a parameter) with a flag, the
flags reside in a bitmap. (2) associating a flag with an object, the flags reside in a bitmap,
and (3) a flag per object, where the flag is located inside the object.

Options (1) and (2) are suitable for both algorithms while (3) is appropriate only for
the sliding view algorithm.

We note that it is not needed to log the identity of individual slots within a chunk.
It suffices simply to log which non-null pointers the chunk contains. This property may
ameliorate the cost of spurious logging. There is a tradeoff between: (1) logging the entire
chunk conservatively and letting the collector figure out which part of the chunk’s replica
are pointer slots and: (2) letting the mutator store precisely only true references. This is
related to the nature of a chunk: does it correspond to an object or is it just an aligned
piece of memory.

Working on an object basis lets the mutator efficiently record precisely object slots: we
can produce a per-type slot-storing code that stores any heap slots contained in the object
into the history buffer of the thread, or produce a per-type vector of slots’ indices and an
efficient routine that logs the slots specified by the vector, given a base pointer to the object.

Identifying a flag with an object is also quite natural in terms of locality, i.e., we might
expect that when a slot of an object is changed, then its sibling slots are likely to change
as well, so the amount of unneeded information recorded is minimized. This might not be
the case for an arbitrary chunk of memory that is prone to hosting unrelated objects.

The disadvantage of working with a flag-per-object scheme is dealing with objects which
are too big. Applying the scheme for them will result in a wasteful replication of probably
unchanged data. This can be avoided by treating big objects differently. Special care need
be taken that the methods for small and big objects coexist.
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Chapter 7

Implementation Issues

In this chapter we shift from the abstract treatment of the dirty flags and the log buffers
and suggest concrete implementations for these data structures. Then we show how to treat
global roots. Finally we address the issue of memory consistency.

After considering the implementation options described in this chapter we describe in
chapter 8 and 9 the actual implementation we prepared and its performance results.

7.1 Dirty Flags

Both the snapshot and the sliding view reference counting algorithms were presented in
a rather high level and generic manner that leaves the implementation of several data
structures unspecified. This method of exposition is useful for showing the algorithms
correct and it reveals the ideas behind the algorithms more clearly. In order to implement
the algorithms, we must select concrete data-structures for each abstract data-structure
that is used. The algorithms share most data structures and access them similarly. Yet
the most crucial data structure, the dirty flags, are accessed in a fundamentally differing
manner by the two algorithms.

The snapshot reference counting algorithm calls for an implementation of the slots’ dirty
marks that allows setting and reading by the mutators and collector on one hand and that
supports a fast “clear all” operation by the collector, on the other hand. The “clear all”
operation need be fast since mutators are halted whilst it takes place. The sliding view
reference counting algorithm is less demanding in that respect. Dirty flags may be cleared
less hastily as the mutators are running during the operation. While the expeditiousness
of the clearing operation is still important, it may yield to other factors, such as space
conservation and increased locality. Thus, the snapshot algorithm calls for bitmapped
solutions, since bitmaps are easier to clear quickly, while the sliding view algorithm can
work both with bitmapped and non-bitmapped solutions.

Non-bitmapped solutions locate the flags interspersed with the data. This has two
notable benefits: (1) conservation of space, since we can allocate space per flags on a per
type basis, rather then conservatively for every word of memory, as is done in a bitmapped
solution and (2) increased locality of reference, as the flags are accessed by the mutators in
conjunction with their respective slots and there is no need for the collector to implement
the “clear all” operation. The downside of non-bitmapped solutions is the inability to clear
the dirty flags quickly; they must be cleared one at a time, or in small batches, depending
on the specific solution.

In section 7.1.1 we show how it is possible to associate a flag with a group of slots,
rather then a flag for a single slot, thus saving space. Section 7.1.2 demonstrates how the
overhead of initializing assignments can be eliminated.
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Procedure Sweep
begin
for each pair (s,v) € Histy; do

Let o be the object containing s

if o.color = white then

Histgy1 := Histg41 — {(s,v)}

ZCT)C+1 =0
Let swept point to the first
object in the heap
7. while swept does not point pass the heap do

S el

8. if swept.color = white then

9. clear the slots and flags of swept

10. swept.color := blue

11. return swept to the allocator

12. else if swept.color = black N swept.rc = 0 then
13. ZCTyt1 := ZCTyy41 U {swept}

14. advance swept to the next object

end

Figure 6.6: Tracing Alg.—Collector Code—Procedure Sweep
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Procedure Trace(o: Object, rcInc: Integer
begin
if o.color = white then
o.color := black
orc:=0
for each slot s of o do
v := read(s)
if =Dirty(s) then
Trace(v,1)
else
Undetermined := Undetermined U {s}
0. o.rc:=orc+relne

- 2HG0i =Y RN oo -

]
=
=3

Figure 6.5: Tracing Alg.—Collector Code—Procedure Trace

Procedure Trace (figure 6.5). Actual tracing is carried out by this procedure. The
procedure takes two arguments: a reference to an object to trace through and a reference
count increment value. An object is traced only if its color is white, i.e., it was not traced
before. If this is indeed the case then the reference count field of the object is reset and it
is colored black. Then, the collector tries to determined each slot contained in the object
and trace through it. If a slot is determined then the collector carries out line (7) which
traces recursively through the determined value, which is the value of the slot at the sliding
view associated with the cycle. If a slot is undetermined then line (9) adds it to the
Undetermined set where it will wait until its resolution.

It is important to note that the trace cannot be interrupted by objects which are al-
located black by procedure New. Let us explain this point. The collector traces through
the graph induced by the sliding view and the corresponding scan of the cycle. The scan
is complete before the fourth handshake starts hence it cannot reference an object which
is created black because a thread may leave a newly allocated object blackened only after
responding to the fourth handshake.

The reference count increment argument signifies whether Trace has been invoked for
o by virtue of being pointed from a heap slot or rather by a local reference. In the latter
case, no adjustment to o.rc is needed, while in the former o.rc should be incremented by
one. Thus, procedure Mark passes 0 for this argument when tracing local objects (in lines
(7-8)), while all other invocations pass 1 as they are due to heap slot references to the traced
object.

Sweeping is carried out by procedure Sweep (figure 6.6). The first step it takes is to
eliminate from Histg) any records of slots that it is about to reclaim. This stage is
needed in order that the next cycle will not adjust rc fields incorrectly due to the slot,
trying to determine its value etc. Such a slot may exist since the algorithm is capable
of reclaiming objects which are reachable (and therefore modifiable) between the first and
fourth handshakes.

Sweeping then proceeds in the following manner: any object which is colored black and
has a zero computed reference count field is added to the ZCT of the next cycle (anticipating
a reference counting cycle.) White objects are returned to the allocator not before being
colored blue. Blue objects are ignored.
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Procedure Mark

begin

1. for each thread T; do

2. ScannedPos; == 1

3. Hash-Clear

4. for each pair (s,v) € Histgy1 do

5. Hash-Insert(s,v)

6. Undetermined := @

7. for each object o € Localsy do

8. Trace( 0, 0)

9. while Undetermined # @ do

10. for each thread T; do

11. ProbedPos := CurrPos;

12. while ScannedPos; < ProbedPos do
13. (s,v) := Buf f;[ScannedPos;]

14. Hash-Insert(s,v)

15. ScannedPos; := ScannedPos; + 1
16. PrevUndetermined := Undetermined
17. Undetermined := @

18. for each slot s € PrevUndetermined do
19. v := Hash-Lookup-And-Remove(s)
20. Trace( v, 1)

end

Figure 6.4: Tracing Alg.—Collector Code—Procedure Mark

it resolves those undetermined slots by looking up their associated values in the threads’
buffers.

The collector uses a hash table or a similar data structure in order to store and retrieve
the values which mutators have associated with slots. We assume that the hash table
supports these operations:

e Hash-Clear. Clear the hash table.
e Hash-Insert(s,v). Associate v with s.

e Hash-Lookup-And-Remove(s). Lookup the value associated with s. Remove the
association for s and return the value which has been read.

Initially, the collector clears the hash table and fills in the associations contained in
Histyyq (i.e., the digested history of threads’ modifications to heap slots between the first
and fourth handshakes). After each non-terminal tracing phase, when the collector can no
longer proceed tracing through determined slots but still there are undetermined slots to
trace through, the collector reads the portions of the thread buffers which have accumulated
since the read of the last phase and populates the hash table with the associations contained
therein. Then, it looks up any undetermined slot in the hash table and finds its associated
value. The associated value is then traced through. Since a slot is traced at most once, a
slot which has been looked up will not be needed in the future hence the collector deletes
the association of s jointly with looking it up.

The collector knows which portions of the buffer have been accumulated since the last
tracing phase by using the thread specific marker ScannedPos; which equals the value of
CurrPos; at the time the thread buffer was most recently read, during the previous phase.




Procedure Consolidate-For-Tracing
begin

// initially black = 1 and white =0
*1.  black := 1 — black
*2.  white :== 1 — white

3. local Temp := @
4. Localsy, := @
5. for each thread T; do

6. suspend thread T;
*7. AllocColor; := black
8. Snoop; := false
// copy and clear snooped objects set
9. Localsy, := Localsy, U Locals;
10. Locals; :== @
// copy thread local state.
11. Localsy, := Localsy U State;
// clear thread local ZCT.
12. New; := @
// copy local buffer for consolidation.
13. Temp := Temp U Buf fer;[1...CurrPos; — 1]
// clear local buffer.
14. CurrPos; =1
15. resume thread T;

// consolidate Temp into Histj.
16. Histpyq := Q@
17. local Handled := @
18. for each (s,v) € Temp

19. if s ¢ Handled then

20. Handled := Handled U {s}
21. Histyyy := Histg1 U{(s,v)}
end

Figure 6.3: Tracing Alg.—Procedure Consolidate-For-Tracing

Consolidate-For-Tracing. This procedure, given in figure 6.3, is the counterpart of pro-
cedure Consolidate from the reference counting algorithm. As such, it carries out the
fourth handshake during which thread local states are marked and the buffers accumulated
between the first and fourth handshakes are retrieved for consolidation. However, note the
differences from Consolidate, which are highlighted with an asterisk in front of the rele-
vant lines of code: the values of black and white are toggled; the AllocColor; variable of
each thread is toggled, signaling to the mutator that any creation of objects after the fourth
handshake and until sweeping is over should color a newly created object black. Another
thing to note is the omission of the addition of the New; sets to ZCT}. Actually, ZCT}
has no use in a tracing cycle.

Procedure Mark (figure 6.4) implements the tracing stage of the algorithm. Tracing
proceeds according to the graph induced by the sliding view associated with the cycle and
starting from objects in Localsy. Recall from the reference counting sliding view algorithm
that after taking the fourth handshake the collector may coherently try to determine what
is a slot’s value in the sliding view of the cycle. It reliably can tell whether it has succeeded
or failed in determining. In case it succeeds, it simply need continue tracing from the object
pointed by the determined slot. Otherwise, it is guaranteed that some thread has recorded
the undetermined slot’s value in its buffer. The collector tries to determine and trace more
and more slots, until all slots that have to be traced through are all undetermined. Then,
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Procedure New(size: Integer) : Object
begin

1. Obtain an object o from the allocator,
according to the specified size.

2. o.color := AllocColor;

3. New; := New,U {o}

4 return o

Figure 6.1: Allocation code that supports tracing cycles

Procedure Tracing-Collection-Cycle
begin

1. Initiate-Collection-Cycle

2. Clear-Dirty-Marks

3. Reinforce-Clearing-Conflict-Set
4. Consolidate-For-Tracing

5. Mark

6. Sweep

end

Figure 6.2: Tracing Alg.—Collector Code

When a thread responds to the fourth handshake we assign the current black color to
the AllocaColor; variable. Thus, during tracing and sweeping the mutator colors newly
allocated objects black. During sweeping, the collector considers each object in heap. If
the object is black, then it is retained. If it is colored blue, then it is ignored. Otherwise,
the object is white. In that case the collector reclaims the object by coloring it blue and
passing it back to the allocator.

Thus, when sweeping is over, the heap contains only black or blue objects since any
object which had been white was turned blue and mutators color newly allocated objects
black. Before starting the tracing of the next cycle the collector toggles the values of black
and white variables, so all objects allocated prior to the next cycle’s fourth handshake are
considered “unmarked”.

We now proceed to specify the algorithm’s pseudo-code.

6.3 Mutator code

As required, the algorithm uses the same write-barrier used in the reference counting sliding
view algorithm. The code for the Update procedure is given in figure 5.2.

The New procedure is modified to support both tracing and reference counting cycles.
New carries out the mutator’s part in the object coloring protocol. The modified procedure
is given in figure 6.1.

6.4 Collector Code

The code for a tracing collection cycle is given in figure 6.2. Procedures Initiate-Collection-
Cycle, Clear-Dirty-Marks and Reinforce-Clearing-Conflict-Set are the same ones
used in the cycles of the reference counting sliding view algorithm. They are given in fig-
ures 5.4, 5.5 and 5.6, respectively. They serve for the same purpose here as well: after they
are executed logging and determining of slots is consistent.
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objects which have been already traversed in the trace. On each subsequent cycle the black
and white colors are toggled, i.e., the meanings of zero and one are reversed.

A mutator toggles during the handshake of stage (3) the color using which it colors
newly allocated objects and the collector reverses the meaning of black and white prior to
starting a new trace.

6.2 The algorithm

The tracing algorithm uses exactly the same mechanisms used in the reference counting
sliding view algorithm in order to implicitly compute a sliding view based on which collection
decisions are made. Specifically, it uses the same four handshakes. Only the operations
carried out in the fourth handshake are modified in order to support the subsequent tracing
and sweeping, rather than reference counting. Let us elaborate on the tracing and sweeping
stages.

Tracing. After the consolidation stage the collector starts tracing according to the sliding
view associated with the cycle. When in need to trace through a slot the collector tries to
determine its value in the sliding view as was done in the previous algorithms, i.e., by first
reading the slot and then its flag. Determining the slot is successful if the flag is off. In that
case the value read from the slot is the slot’s value in the cycle’s sliding view. If determining
is not successful, then the collector retrieves the slot’s value from the threads’ buffers. This
is done in phases: first, the collector tries to determine and then trace through any slot that
it can. Then, when all the slots which need to be traced are all undetermined slots, it reads
threads’ buffers, resolves the slots and resumes tracing. Resolving a slot means looking-up
the value mutators have associated with it in their buffers. Resolution is always successful
since it is guaranteed that any undetermined slot is logged by some mutator prior to the
time the collector inspects mutators’ buffers.

Since any undetermined slot is due to appear in some buffer when trying to resolve it
each phase contributes to the progress of tracing. Additionally, the graph induced by the
sliding view is finite, so tracing is bound to complete after a finite number of phases. We
believe that in practice only handful phases will be actually needed in order to complete
tracing since if the collector traces fast enough then it reveals quickly the picture of the heap
contained in the sliding view. If, on the other hand, it falls behind a mutator which rapidly
changes the heap, then it learns about the contents of the sliding view from the mutator’s
buffer in few phases as well. Thus, sustained tracing can occur only when the collector is
running almost in unison with the mutator, falling just behind it, as they compete for the
same slots in memory, which is an improbable scenario.

As tracing proceeds, the collector incrementally computes the rc field for each object.
Eventually, when tracing is done, the rc field has the same semantics which are expected
by a reference counting cycle. i.e., it equals the asynchronous reference count according to
the sliding view associated with the cycle (disregarding pointers from garbage objects).

Sweeping. Finally, the collector proceeds to reclaim garbage objects by sweeping the
heap. As said, the algorithm can infer whether an object is garbage or not only if it has
been allocated prior to the fourth handshake. Thus, we need a mechanism to prevent the
collector from sweeping objects which have been allocated after the handshake. We use a
color toggle scheme in order to prevent the reclamation of such objects.

Each thread has a variable, denoted AllocColor;, that holds the color the thread has
to color, i.e, assign, to the color field of newly allocated objects. The variable is toggled
between two dichotomic colors, black and white, which are interpreted by the collector as
“marked” and “not marked” respectively.
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Suppose we are given a scan o and a corresponding sliding view V. Using the scan,
we want to deduce which objects are garbage at End(c). To that end, we ask ourselves
what is the value of a slot s at time End(c). The trivial answer is of course either V,(s)
or any other value which has been stored into s between o(s) and End(c). If we want to
trace any object which is reachable at time End(o) it suffices to start tracing from a root
set which includes the true root set at End(o) and adopt the following tracing discipline:
whenever a slot s is traced, trace through all of the candidate values it assumed at End(o),
i.e., proceed tracing through V,(s) and through any value that has been stored into it in
the interval o(s) to End(c). These stored values are known to the collector since they are
snooped by mutators. i.e., the mutators keep a record of any such value which might be
stored in the specified interval.

It still remains to identify a set of pointers that includes the true root set at End(c). This
can be done using the same mechanism that was employed in the reference counting sliding
view algorithm: “snooping” and the fourth handshake that marks thread states. Any local
reference that exists at End(o) is either still existent at the time of the fourth handshake or
is discarded before the thread responds to the fourth handshake. If it is discarded without
being stored into a heap slot (and thus snooped) then it has no contribution to reachability
after the fourth handshake ends and we may simply ignore it (although it is a valid local
reference at End(o)).

We thus arrive at the following garbage collection algorithm:

e A mutator T; executes the following write-barrier in order to perform a heap slot
update, which includes the snooping test:

1. S 1= new
2. if Snoop; then
3. mark new as local

e A collection cycle contains the following stages:

1. the collector raises the Snoop; flag of each thread. This indicates to the mutators
that they should start snooping.

2. the collector computes a scan o and a corresponding sliding view, V,; concur-
rently with mutators’ computations.

3. each thread is then suspended (one at a time) and its Snoop; flag is turned off.
Each object which is directly reachable from the thread is marked local. The
thread is then resumed.

4. The collector traces the heap according to the image of it contained in V,,. The
starting point for the trace is all objects which are marked local.

5. After tracing is completed, any object which is not marked and which has been
allocated by thread T; before T; was stopped in order that its state be scanned
(in stage (3) above), is garbage.

Note that we can reason only regarding objects which were allocated prior to the hand-
shake of stage (3). Since sweeping occurs after the handshake we need devise a mechanism
that prevents the collector from collecting objects that were allocated after the handshake.
We use a variant of the color toggle trick, first introduced in [35]. It is assumed that every
object has a color field associated with it. The field can take on three different values, say
0, 1 and 2. The value of 2 is interpreted as the color blue, which is assigned to unallocated
objects. In the initial cycle, the color white, which is the color of objects which still haven’t
been traced, is represented by zero and black is represented by one. Black is the color of




Chapter 6

A Supplemental Sliding View
Tracing Algorithm

We chose to tackle the problems of cyclic data structures and stuck reference count fields
using a supplemental concurrent mark&sweep algorithm that reclaims those cyclic garbage
structures and reinstates stuck reference count fields. The algorithm is designed to be inter-
operable with the sliding view algorithm meaning that it is possible to decide on a cycle by
cycle basis which algorithm should be invoked and that the code for updating a pointer is
common to both algorithms. However, we do have to change the New operation in order
to support object coloring which is needed for the tracing algorithm.

6.1 Tracing using a sliding view

This section demonstrates how it is possible to use a sliding view in order to develop a
tracing procedure which assures that any reachable object at the end time of the sliding
view is marked and therefore not reclaimed later.

The basic markéfsweep algorithm operates by stopping all threads, marking any object
which is directly reachable (either from a local or a global reference) and then recursively
marking any object which is pointed by a marked object. Then, any object which is not
marked is swept, i.e., reclaimed. Finally, mutator threads are resumed.

Concurrent mark&sweep collectors perform some, or all, of the above steps concurrently
with mutators. Snapshot at the beginning [51, 25] mark&sweep collectors exploit the fact
that a garbage object remains garbage until the collector recycles it. i.e., being garbage is
a stable property. Thus, snapshot at the beginning operates by:

1. stopping the mutators,
2. taking a snapshot of the heap and roots,
3. resuming the mutators,

4. tracing the replica,

5. sweeping all objects in the original heap whose replicated counterparts are unmarked.
These reclaimed objects must have been garbage at the time the snapshot was taken
and hence they are garbage also when the collector eventually frees them.

We take the idea of “snapshot at the beginning” one logical step further and show how
it is possible to trace and sweep given a “sliding view at the beginning”.
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Procedure Collect(o: Object)
begin

1 local DeferCollection := false
2 foreach slot s in o do

3 if Dirty(s) then

4. DeferCollection := true
5. else

6 val := read(s)

7 val.rc := val.rc — 1

8 write(s, null)

9 if val.r¢ = 0 then

10. if val ¢ Localsy then

11. Collect(val)

12. else

13. ZCTy41 := ZCT41 U {val}

14. if ~DeferCollection then

15. return o to the general purpose allocator.

16. else |
17. ZCTyy1 := ZCTy41 U {0} 1
end i

Figure 5.9: Sliding View Algorithm: Procedure Collect
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rithm. Due to the extended meaning of the Localsy, set the conditions for reclaiming objects
in Reclaim-Garbage need not be changed.

Procedure Collect (figure 5.9) does require modifications, however. The dirty flag of each
slot of the candidate object is checked. If all flags are off, then there cannot be any record
of a constituent slot of it in the digested history for the next cycle and there will not be
any further logging of such a slot after the fourth handshake as well, as o is unreachable
then. Hence, the collector may simply clear o’s slots and return it to the memory manager
without causing inconsistencies.

If, however, some slot has its dirty flag set, then some thread modified the slot prior to
responding to the fourth handshake and logged the slot’s previous value before hand. Only
afterwards did the containing object become unreachable and the collector detected that
fact. This is possible, for example, due to the following scenario: object o is only directly
reachable from thread T;. After responding to the first handshake, T; stores a value, vy,
into the slot s of 0. Then it stores a second value v, into the slot. Then it discards its local
reference to o, before responding to the fourth handshake. Thus, s is both a part of Histy,
and is supposed to be reclaimed during cycle k. Note that when the collector consolidated
s it considered v; as its current value, rather than ve. Consequently, the collector may not
simply clear s and decrement va.7c, as this will not undo the previous action of incrementing
v1.TC.

The solution we adopted to the problem is to defer the collection of o to the next cycle.
Since it is unreachable already in the current cycle, the problem described above cannot
reoccur during the next cycle. This is computationally efficient but has the drawback of
retaining uncollected garbage more than is really needed.

An alternative solution is to let the collector find what is the value of s in the sliding
view of the current cycle as it appears in the digested history Histg+,. Suppose v stands for
this looked-up value. The collector then decrements v.rc and discards the pair (s, v) from
Hiisty, in order to avoid another, spurious, decrement during cycle k+ 1. We have preferred
the former solution to the latter since the latter incurs the computational overhead of the
search, introducing an O(nlogn) term to the step complexity of a cycle, which is otherwise
of linear complexity.
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Procedure Consolidate

begin

1. local Temp := @

2 Localsy, :== @

3 for each thread T; do
4. suspend thread T;
5 Snoop; := false

// copy and clear snooped objects set

6. Localsy := Localsy U Locals;
7. Locals; := @
// copy thread local state and ZCT.
8. Localsy := Localsy U State;
9. ZCTy := ZCT, U New;
10. New; .= @
// copy local buffer for consolidation.
11. Temp := Temp U Buf fer;[1...CurrPos; — 1]
// clear local buffer.
12. CurrPos; =1
13. resume thread T;

// consolidate Temp into Histy1.
14. Histgy = Q@
15. local Handled := @
16. for each (s,v) € Temp

17. if s ¢ Handled then

18. Handled := Handled U {s}
19. Histgy := Histgeq U{(s,v)}
end

Figure 5.7: Sliding View Algorithm: Procedure Consolidate

Procedure Merge-Fix-Sets
begin

1. Peeky, := Peeky U Histrq
end

Figure 5.8: Sliding View Algorithm: Procedure Merge-Fix-Sets




Procedure Clear-Dirty-Marks
begin

1. for each (s,0) € Histy do
2. Dirty(s) := false

end

Figure 5.5: Sliding View Algorithm: Procedure Clear-Dirty-Marks

Procedure Reinforce-Clearing-Conflict-Set
begin

1. ClearingConflictSety = @

2. for each thread T; do

3. suspend thread T;

4. ClearingConflictSety := ClearingCon flictSet; U Buf fer;[1...CurrPos; — 1]
5. resume thread T;

6. for each s € ClearingCon flictSety do
7 Dirty(s) := true

8. for each thread T; do

9. suspend thread T;

10. nop

11. resume T;

end

Figure 5.6: Sliding View Algorithm: Procedure Reinforce-Clearing-Conflict-Set

the mutators are running.

Procedure Reinforce-Clearing-Conflict-Set (figure 5.6) implements the reinforcement
step and assures that it is visible to all mutators. A second handshake takes place, during
which thread buffers are read. The unified set of pairs is stored in the set ClearingCon flictSet,.
Then, flags of slots that appear in ClearingCon flictSet;. are reinforced to be true. Finally,
the third handshake of the cycle takes place. There is no action taken during it. The reason
for this additional handshake is that a thread can fall behind a sibling thread by at most
one handshake. Thus threads that have responded to the fourth handshake will not be
interfered by operations carried out by threads during the clearing or reinforcement stages,
i.e., threads that still haven’t responded to the third handshake.

Procedure Consolidate (figure 5.7). The task of the procedure is to implement the
fourth handshake, during which mutators’ buffers are read again and then are cleared. The
accumulated set of pairs is stored in a temporary set, denoted Temp. The temporary set is
then consolidated into the set Histyi.

Additionally, the Locals; sets, which record snooped objects are copied onto the set
Localsy and are cleared. Objects directly reachable from a thread’s local state (denoted in
the algorithm by State;) are copied onto Localsy as well. The thread local ZCTs, which
reside in the New; sets, are copied onto the set ZCTrand are then cleared.

Procedures Update-Reference-Counters, Read-Buffers and Fix-Undetermined-
Slots are the same ones used by the snapshot algorithm (see figures 4.5, 4.6, 4.7). Note,
however that there is an additional procedure, Merge-Fix-Sets (figure 5.8), invoked be-
tween Read-Buffers and Fix-Undetermined-Slots. Since an undetermined slot may
appear either in the set of buffers read after the fourth handshake, or in the set of buffers
read before the handshake, we need merge the two sets into a single set in order to resolve
undermined slots. This is done by procedure Merge-Fix-Sets.

Procedure Reclaim-Garbage (figure 4.8) is the same procedure used in the first algo-
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end

Procedure Update(s: Slot, new: Object)
begin

Object old := read(s)

if = Dirty(s) then
Buf fer;[CurrPos;] := (s, old)
CurrPos; := CurrPos;+ 1
Dirty(s) := true

write( s, new)

if Snoop; then
Locals; := Locals;U {new}

Figure 5.2: Sliding View Algorithm: Update Operation

Procedure Collection-Cycle

begin
1. Initiate-Collection-Cycle
2. Clear-Dirty-Marks
3. Reinforce-Clearing-Conflict-Set
4. Consolidate
5. Update-Reference-Counters
6. Read-Buffers
7. Merge-Fix-Sets
8. Fix-Undetermined-Slots
9. Reclaim-Garbage
end
Figure 5.3: Sliding View Algorithm: Collector Code

1. before the handshake is started, the Snoop; flag is raised, signaling mutators that they
should start snoop stores into heap slots.

2. the set Hist}, is not cleared as the first step of each cycle. Rather, the set already
contains digested information about part of the logging relating to cycle & which has
been accumulated by the collector during cycle £ — 1.

3. the New; sets are not retrieved by the collector during the handshake. Rather, they

Procedure Clear-Dirty-Marks (figure 5.5) clears all dirty marks that were set by mu-
tators prior to responding to the first handshake. Note that the clearing takes place while

will be retrieved during the forthcoming fourth handshake.

Procedure Initiate-Collection-Cycle

begin
1. for each thread T; do
2. Snoop; := true
3. for each thread T; do
4. suspend thread T;
// copy (without duplicates) and clear buffer.
5. Histy := Histy U Buf fer;[1...CurrPos; — 1]
6. CurrPos; :=1
T resume T;
end

Figure 5.4: Sliding View Algorithm: Procedure Initiate-Collection-Cycle
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3. each slot which is modified between two consecutive scans (i.e., a store to the slot is
scheduled at, or after ox(s) and before o1(s)) should be logged, making the value
it assumed during the last sliding view available to the collector.

4. any update of s whose store proper operation is scheduled at, or after o4 (s) and before
End(o}) should snoop its operand; i.e., mark it local.

It turns out that these requirement are all met by the algorithm with respect to the
sliding view we have just defined. We give intuition for this according to the rule by which
o(s) is defined.

If o(s) is defined according to rule (1) then because no thread logged s up to the moment
the first handshake of cycle k started the dirty flag of s is clear at that particular moment.
If some thread would log s after responding to the first handshake it is bound to associate
s with the value it assumed when the handshake started. Similarly, if the collector will
succeed determining the slot, it will find the value it assumed at that moment as well.

Otherwise, if o(s) is defined according to rule (2) then it is easy to see that at the time
the second handshake ends the dirty flag of s is clear (because the collector cleared it and
no mutator raised it) and no update is occurring. This implies that any subsequent updates
and determining will relate to this point of time, as required.

Finally, if o(s) is defined by rule (3), i.e., by picking the time at which a thread which
logged the “winning pair” (s, v)3 loaded v from s, we trivially have that the digested history
agrees with Vi (s). Also, since some thread logs s prior to responding to the third handshake
no thread will log s after responding to the fourth handshake. Therefore, the non-digested
part of the history for the next cycle will not contain any record of s. Similarly, the collector
would fail determining s, satisfying our requirement for determining slots.

Note that the scan of a cycle spans, at most, from the beginning of the first handshake
up to the end of the third handshake. Since the Snoop flags are turned on prior to the first
handshake and are turned off only at the fourth handshake we conclude that the snooping
requirement is kept.

We now turn to specify the pseudo-code for the algorithm.

5.7 Mutator code

Mutator code in the second algorithm is almost identical to the one in the first algorithm.
In particular, the New procedure is unchanged.

The Update procedure (in figure 5.2) includes an additional test, that checks whether
the thread-specific flag Snoop; is set. If so, the object whose reference is stored into the slot
is marked local by adding it to the thread-specific set Locals;. This marking implements
the “snooping” requirement of the generic algorithm.

5.8 Collector code

Collector’s code for cycle k is depicted in figure 5.3. Let us describe briefly the role of each
of the collector’s procedures.

Procedure Initiate-Collection-Cycle (figure 5.4) is the counterpart of procedure Read-
Current-State of the snapshot algorithm of chapter 4. However, since it stops each thread
at a time (i.e., it carries out a soft handshake,) there is no atomic state being read. Also
note these additional actions:

3

“winning” in the sense that v is chosen to be the consolidated value of s.
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as in the snapshot algorithm. Recall that the collector may fail determining what is the
”current” value of a slot. Such a slot is undetermined.

Gathering information on undetermined slots. The collector asynchronously reads
mutators’ buffers. It then unifies the set of read pairs with the digested history computed
in the consolidation step. The set of undetermined slots is a subset of the slots appearing in
the unified set so the collector may now proceed to look up the values of these undetermined
slots.

Incrementing rc fields of objects referenced by undetermined slots. Any unde-
termined slot is looked up in the unified set and the rc field of the associated object is
incremented.

Reclamation. Reclamation generally proceeds as in the previous algorithm, i.e., recur-
sively freeing any object with zero rc field which is not marked local. Due to the extended
meaning of locality, that is, it encapsulates the “snooping” requirement of the generic al-
gorithm, the condition for being garbage is the same as in the snapshot algorithm. There
is a problem, however, with reclaiming objects whose slots appear in the digested history.
i.e., objects which were modified since the cycle commenced but became garbage before it
ended. We elaborate on this problem in the sequel.

5.6 Intuition: where’s the sliding view?

Each cycle of the algorithm has a conceptual scan and a corresponding sliding view associ-
ated with it which encapsulate the agreed knowledge of the mutators and collector regarding
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