
ספריות הטכניון
The Technion Libraries

בית הספר ללימודי מוסמכים ע"ש ארווין וג'ואן ג'ייקובס
Irwin and Joan Jacobs Graduate School

©
All rights reserved to the author

 This work, in whole or in part, may not be copied (in any media), printed,
 translated, stored in a retrieval system, transmitted via the internet or

 other electronic means, except for "fair use" of brief quotations for
 academic instruction, criticism, or research purposes only.

 Commercial use of this material is completely prohibited.

©
כל הזכויות שמורות למחבר/ת

אין להעתיק (במדיה כלשהי), להדפיס, לתרגם, לאחסן במאגר מידע, להפיץ באינטרנט, חיבור זה או
כל חלק ממנו, למעט "שימוש הוגן" בקטעים קצרים מן החיבור למטרות לימוד, הוראה, ביקורת או

מחקר. שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט.

4 ;

מחליקים מבטים באמצעות תרך­כדי­מעוף זבל איסוף

_. ו

■ i

מחליקים מבטים באמצעות תוך­כדי­מעוף זבל איסוף

מחקר על חיבור

התואר קבלת לשם הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

לבנוני יוסף

לישראל טבבולוגי מכון ­ הטכניון לסנט הוגש

2001 יבואר חיפה תשס"א שבט

המחשב. למדעי במחלקה פטרנק ארז דוקטור בהנחיית נעשה המחקר

במהלך עבורי השראה מקור שהיוו הרב והידע ניסיונו המצוינת, הנחייתו על פטרנק ארז לדר' מודה אני
השתלמותי.

המחקר. ברעיון שהשקיע הלב ותשומת עצותיו על קולודנר הילל לדוקטור להודות ברצוני
אפשרה הרבה שעזרתה לבנוני, עמליה לאימי, תודה אסיר אני תמיכתה. על דורית לאישתי לב מקרב תודה
בהגשת הכרוכה הניירת לכל שדאגה בכך אלא לעולם, אותי שהביאה בכך רק לא (כוונתי, זו עבודה הגשת

הוא ההפך (למעשה, החיבור בהכנת עזר כל­כך שלא בני ליואב תודה ואחותי. לאבי נתונות תודותיי החיבור).
הוריו. לחיי אושר סוף אין הכניס אך הנכון)

לבנוני. אביגדור סבי, של לזכרו מוקדשת זו עבודה

בהשתלמותי. הנדיבה הכספית התמיכה על גוטווירט לקרן מודה אני

העניינים תוכך

1 בעברית מורחב תקציר
1 תקציר
3 סמלים רשימת
4 מבוא 1

4 רב­מעבד על אוטומטי זיכרון ניהול 1.1
5 מחוונים ספירת 1.2
5 זו עבודה 1.3
6 הבזק תצלום אלגוריתם 1.3.1
7 המחליק המבט אלגוריתם 1.3.2
7 הסורק המחליק המבט אלגוריתם 1.3.3
7 המחליק המבט אלגוריתם יעילות 1.4
8 ארגון 1.5
9 ספרותית סקירה 2
10 משלים מחקר 2.1
11 וקיצורים סמלים הגדרות, המערכת, מודל 3
14 הבזק תמונת אלגוריתם 4
14 . בזק תצלומי בין ההבדל על המבוסס נאיבי אלגוריתם 4.1
14 הנאיבי האלגוריתם מימוש 4.2
16 המתמיר פעולת סקירת 4.3 ;
16 הזבל איסוף מחזור סקירת 4.4 י
17 נתונים מבני 4.5
17 המתמיר קוד 4.6
18 הזבל אוסף קוד 4.7
21 אינטואיציה 4.8
22 המחליק המבט אלגוריתם 5

22 מחליקים ומבטים סריקות 5.1
23 עצמים איסוף לצורך מחליקים במבטים שימוש 5.2
24 האלגוריתם רעיון 5.3
25 המתמיר מצד הפעולה שיתוף סקירת 5.4
25 הזבל איסוף מחזור סקירת 5.5
27 המחליק? המבט הוא היכן אינטואיציה: 5.6
28­ המתמיר קוד 5.7
28 הזבל אוסף קוד 5.8
34 משלים מחליק מבט סריקת אלגוריתם 6
34 מחליק מבט באמצעות סריקה 6.1
36 האלגוריתם 6.2
37 המתמיר קוד 6.2
37 הזבל אוסף קוד 6.3
42 האלגוריתמים במימוש נושאים 7
42 דגליליכלוך 7.1
43 זיכרון פיסת עבור דגל הקצאת 7.1.1
44 איתחול 7.1.2
44 יומן חוצצי 7.2
45 גלובליים שורשים 7.3
46 הזיכרון עקיבות 7.4 ­

50 גיאוה עבור מימוש 8

50 המטרה ג'אוה­פלטפורמת 8.1

(המשך) העניינים תוכך

50 המקורית הוירטואלית ג'אוה במכונת זבל ואיסוף העצמים מבנה 8.2
52 החדש JVM­n העצמים מבנה 8.3
53 10gP0s­n בשדה השימוש בעזרת עצמים תוכן על ההכרעה פישוט 8.4
56 logPos­n בשדה מהשימוש הנובעים נוספים יתרונות 8.5
57 Create הפרוצדורה 8.6
58 היומן חוצצי מימוש 8.7
59 הפעולה שיתוף מודל 8.8
59 הזיכרון מנהל 8.9
60 הגושים טבלת 8.9.1
62 חלקיות רשימות 8.9.2
62 עצמים פיסות רשימות 8.9.3
64 ביצועים תוצאות 9
64 אינסטרומנטציה הבדיקה­תוצאות תוכניות 9.1
67 שרת ביצועי 9.2
71 .. לקוח ביצועי 9.3
72 הזיכרון מקצה סקאלאביליות 9.4
72 דיון 9.5
75 מסקנות 10
76 הבזק תמונת אלגוריתם של נכונותו הוכחת A
76 ■ בטיחות .A1
76 ההוכחה עבור דרכים מפת .A1.1
77 העדכון פרוטוקול תכונות A. 1.2
79 ערכם נקבע שלא אלו לעומת ערכם שנקבע שדות A. 1.3
80 המחוונים מספר עם המחוון ספירת שדה קשירת A. 1.4
81 הבטיחות הוכחת השלמת .A1.5
82 התקדמות .A2
84 המחליק המבט אלגוריתם עבור בטיחות הוכחת B
84 הגדרות .B1
85 זבל איסוף למחזור המשויך המחליק המבט .B2
86 בסיסיות טענות מספר .B3
86 ההוכחה עבור דרכים מפת .B4
87 אינדוקטיביים בטיחות טיעוני .B5
96 הסורק המחליק המבט אלגוריתם עבור בטיחות הוכחת C
99 מקור קוד D
100 הקוד ארגון .D1
.100 mok_win32.c D2
102 rcblkmgr.c D.3
109 rcchunkmgr.c D.4
118 rcgc.c D.5
156 rcgc.h D.6
167 rcmbpinline.h ו­ rcbmp.c D.7
171 rcgcintemal.h D.8
172 rchub.c D.9
173 ylrc_protocol.h D.10
173 gc.cD.ll
177 מקורות רשימת

האיורים רשימת

18 העדכון המתמיר­פעולת קוד 4.1
18 ההקצאה המתמיר­פעולת קוד 4.2
18 הזבל אוסף קוד 4.3
19 Read­Current­State הזבל­פרוצדורת אוסף קוד 4.4
19 Update­Reference­Counters הזבל­פרוצדורת אוסף קוד 4.5
20 Read­Buffers הזבל­פרוצדורת אוסף קוד 4.6
20 Fix­Undetermined­Slots הזבל­פרוצדורת אוסף קוד 4.7
20 Reclaim­Garbage הזבל­פרוצדורת אוסף קוד 4.8
21 Collect הזבל­פרוצדורת אוסף קוד 4.9
26 המחליק המבט אלגוריתם עבור תזמון תרשים 5.1
29 העדכון פעולת המחליק: המבט אלגוריתם 5.2
29 הזבל אוסף קוד המחליק: המבט אלגוריתם 5.3
29 Initiate­Collection­Cycle פרוצדורת המחליק: המבט אלגוריתם 5.4
30 Clear­Dirty­Marks פרוצדורת המחליק: המבט אלגוריתם 5.5 !

30 Reinforce­Clearing­Conflict­Setm1­cr1­1D המחליק: המבט אלגוריתם 5.6
31 Consolidate פרוצדורת המחליק: המבט אלגוריתם 5.7
31 Merge­Fix­Sets פרוצדורת המחליק: המבט אלגוריתם 5.8
33 Collect rnariiD :p^rmx onnn nrp­n;^ 5.9
37 סריקה מסוג זבל איסוף במחזורי תומך אשר הקצאה קוד 6. 1

37 הזבל אוסף קוד הסריקה: אלגוריתם 6.2
38 Consolidate­For­Tracing פרוצדורת הסריקה: אלגוריתם 6.3
39 Mark פרוצדורת הזבל: אוסף קוד הסריקה: אלגוריתם 6.4
40 ' Trace פרוצדורת הזבל: אוסף קוד הסריקה: אלגוריתם 6.5
41 Sweep פרוצדורת הזבל: אוסף קוד הסריקה: אלגוריתם 6.6

הוירטואלית במכונה והחדשה. המקורית הוירטואלית ג'אוה במכונת עצם מבנה 8. 1

נתונים. בהזזת לתמוך על­מנת י7י7/ באמצעות עקיף באופן נגישים הנתונים המקורית, !

זאת בכל אולם ישיר באופן תמיד כמעט נגישים הנתונים החדשה, הוירטואלית במכונה
או null הערך את מכיל logPos ה­ שדה תאימות. למטרות הושאר הידית מחוון

51 העצם של המחוון שדות של השמורים הערכים את מכילה אשר יומן לכניסת מחוון ;

ן

הטבלאות רשימת

65 בעצם הממוצע המחוונים ומספר ממוצע עצם גודל המוקצים, העצמים מספר 9.1
העצמים אוכלוסיות מכלל ואחוזם נתקע שלהם המחוונים מונה אשר העצמים מספר 9.2

65 בריצה
המחוונים סופר הזבל אוסף לעומת הסורק הזבל אוסף בידי שוחררו אשר העצמים אחוז 9.3
תוכנית עבור המחוונים ספירת שיטת של הטבועה היעילות חוסר של המוערכת והכמות

65 הבדיקה
חדשים עצמים על בוצעו אשר המחוונים כתיבות מספר הכתיבה: מחסום של דמוגרפיות 9.4
בין והיחס ביומן שנשמרו המחוונים מספר ביומן, עצם שמירת פעולות מספר וישנים,
חסם מהווה זה יחס ההקצאה. פעולות מספר לבין ביומן עצם שמירת פעולות מספר

65 ביומן. נשמרו פעם שאי העצמים לאחוז עליון
ניקוי פעולות עבור שנדרש והזמן בשניות הסורק, הזבל אוסף עבור הזבל איסוף זמן 9.5

66 והאיסוף הסריקה הלכלוך, סימני
עבור שנדרש והזמן בשניות המחוונים, סופר הזבל אוסף עבור הזבל איסוף זמן 9.6

חוצצי עיבוד ,Update­Reference­Counters ,Clear­Dirty­Marks הפעולות
67 הדקורטיבית והמחיקה ZCT­n לתוך ההקצאה
68 תקנית SPECjbb בריצת המחוונים סופר הזבל אוסף ביצועי 9.7

המחוונים, סופר הזבל אוסף עם תקנית SPECjbb בריצת זבל לאיסוף הנדרש כולל זמן 9.8
הזבל איסוף מחזורי וסוגי המקורי הזבל לאוסף יחסית הנוסף הנדרש הזמן אחוז

באופן ביקשה הבדיקה תוכנית אשר סינכרוני זבל איסוף מחזור הנו "sync" שבוצעו.
68 ביצועו את מפורש
68 תקנית SPECjbb בריצת הסורק הזבל אוסף ביצועי 9.9

אחוז הסורק, הזבל אוסף עם תקנית SPECjbb בריצת זבל לאיסוף הנדרש כולל זמן 9.10
שבוצעו. הזבל איסוף מחזורי וסוגי המקורי הזבל לאוסף יחסית הנוסף הנדרש הזמן

את מפורש באופן ביקשה הבדיקה תוכנית אשר סינכרוני זבל איסוף מחזור הנו "sync"
69 ביצועו

ו­18\600 חוטים של קבוע מספר עם ריצות של סידרה עבור המקורית JVM­n ציוני 9.11
69 והסורק המחוונים סופר הזבל אוספי עבור בציון העליה/ירידה ערמה. זיכרון

ו­18\900 חוטים של קבוע מספר עם ריצות של סידרה עבור המקורית JVM­n ציוני 9.12
69 והסורק המחוונים סופר הזבל אוספי עבור בציון העליה/ירידה ערמה. זיכרון

ו­ חוטים של קבוע מספר עם ריצות של סידרה עבור המקורית JVM­n ציוני 9.13
המחוונים סופר הזבל אוספי עבור בציון העליה/ירידה ערמה. זיכרון 1200MB

69 והסורק
בסדרה סריקה מחוונים ספירת המקורית, JVM­n של בשניות, המרבי, התגובה זמן 9.14

69 ערמה. זיכרון ו­18\600 חוטים של קבוע מספר עם ריצות של
בסדרה סריקה מחוונים ספירת המקורית, JVM­n של בשניות, המרבי, התגובה זמן 9.15

69 ערמה. זיכרון 900­MB1 חוטים של קבוע מספר עם ריצות של
בסדרה סריקה מחוונים ספירת המקורית, ה­4>/ת של בשניות, המרבי, התגובה זמן 9.16

70 ערמה. זיכרון 1200MB^ חוטים של קבוע מספר עם ריצות של
זיכרון ו­48?600 חוטים של קבוע מספר עם ריצות סידרת בסיום הזכרון תצרוכת 9.17

70 ערימה
70 חוטים של משתנה מספר עם ,MTRT הבדיקה תוכנית של בשניות, לסיום, עד זמן 9.18

הריצה וזמן MTRT הבדיקה תוכנית של מוצלחת להשלמה הדרוש מזערי ערמה גודל 9.19
71 הנ"ל הערמה גודל עם הבדיקה תוכנית של

החלקיים הזמן ופרקי SPECjvm98 הבדיקה ערכת להשלמת הדרוש הזמן פרק 9.20
71 בערכה הבדיקה מתוכניות אחת כל של כפולה ריצה להשלים הדרושים

בעל שרת על בריצה להקצאה הבדיקה בתוכנית בשניה המוקצים העצמים מספר 9.21
72 מעבדים ארבעה

עבודה תחנת על בריצה להקצאה הבדיקה בתוכנית בשניה המוקצים העצמים מספר 9.22
72 יחיד מעבד בעלת

תקציר

זבל איסוף זאת, עם יחד אמינות. תוכנה מערכות של מהיר לפיתוח חשוב ככלי מוכר אוטומטי זכרון ניהול
של החישוב מזמן כ­300/0 עד לגזול יכול רבים, במקרים אוטומטי"), זכרון "ניהול למונח הנפוץ (השם
מבוססות תוכנה שפות ביישום במעלה ראשונה מטרה הוא הזבל איסוף מערכת של חכם תכנון לכן, המערכת.

עצמים.
לשכיחות הפכו רבי­מעבד מערכות רבי­מעבדים. מערכות על זבל איסוף בנושא מתרכזים אנו זו בעבודה
אינם בעבר שנחקרו הזבל איסוף מאלגוריתמי רבים עוצמה. רבות עבודה כתחנות ואף כשרתים ביותר
ג'אווה במכונת הממומש האלגוריתם (בכללם רבים אלגוריתמים בפרט, לרבי­מעבדים. כלל מתאימים
עצור­ נקראת זו (גישה מלכת עומדת כולה שהתוכנית בעוד יחיד מעבד על רצים סאן) חברת של הוירטואלית

סקאלאביליות. בפני כמכשול ועומדת המעבדים של גרוע לניצול גורמת מטבעה זו גישה את­העולם).
אוסף­זבל בעבר. ונחקרו הוצגו בו­זמניים1 אלגוריתמים יותר, טובה בצורה רב­המעבד את לנצל על­מנת
שלה.' חוטי­הבקרה את לעצור מבלי הרגילה, התוכנית פעולת עם יחד בו­זמנית פעולתו רוב את מבצע בו­זמני
על­מנת האיסוף, בזמן נקודה שהיא באיזו התוכנית את לעצור נזקקים עדיין הבו­זמניים הזבל אוספי מרבית
הוא בו­זמנית מושעים התוכנית של הבקרה חוטי שבו הזמן סך זאת, בכל אבל האיסוף, את לסיים או להתחיל

יחסית. קצר
אינם החוטים בדרך­כלל, עצמה. בפני יקרה פעולה היא התוכנית של חוטי­הבקרה כל עצירת עדיין,
המכונות מסוימות בנקודות ורק אך לעצור מסוגלים הם אלא, בתוכנית, שרירותי מקום בכל לעצור מסוגלים
את ולאסוף בתוכנית העצמים של הקשירות גרף את אמינה בצורה לבנות יכול הזבל אוסף בהן בטוחות נקודות
כל מבין שהאחרון עד לפחות לחכות חייב בו­זמני, באלגוריתם בקרה, חוט כל מכך, יוצא בטוחה. בצורה הזבל
הבו­ האלגוריתמים של זו תכונה הרגילות. בפעולותיו להמשיך יוכל שהוא לפני בטוחה לנקודה הגיע החוטים
מחזור בכל הנדרש התוכנית השעית פרק יארך כן חוטי­הבקרה, שירבו ככל שכן סקאלאביליות מכשילה זמניים
עצורים התוכנית של הבקרה שחוטי בזמן אזי מקבילי, איננו עצמו הזבל אוסף אם מכך, יתרה זבל. איסוף ,

מנוצל. במערכת מהמעבדים אחד רק מלכת,
חוטי כל את עוצרים אינם לעולם אלו אלגוריתמים תוך­כדי­מעוף2 באלגוריתמי להשתמש כדאי לכן,
באמצעות שלו בקצב הזבל אוסף עם פעולה משתף בקרה חוט כל זאת, במקום בבת­אחת. התוכנית של הבקרה

לחיצת­ידיים. המכונה מנגנון
חקרנו לא אנחנו במקביל. הזבל איסוף את לבצע היא רב­מעבד על זבל לאיסוף נוספת שאפשרות נציין

בעבודתנו. זאת שדירה
בספירת המשתמשים אלגוריתמים ככזאת, אוטומטי. זכרון לניהול למדי טבעית שיטה היא מחוונים ספירת
את הסופר מונה עצם כל עבור לשמור הוא השיטה של המרכזי הרעיון השישים. משנות החל יושמו מחוונים
ע את למחזר ניתן כי מסיקים אנו מתאפס ע העצם עבור המונה כאשר לעצם. המצביעים המחוונים מספר
במערכת החופשיים העצמים של לרשימה מתווסף v זו, בנקודה בו. מלהשתמש חדלה והתוכנית היות בבטחה
מוקטנים ב­ע) המובלים המחוונים ע"י ישירות המוצבעים העצמים של אומרת, (זאת צאצאיו כל של והמונים

עצמם. אלו נוספים עצמים של למחיקתם לגרום העשויה פעולה בהתאם,
ההולכת תפוצתן עם במיוחד זבל. איסוף של עתידיות למערכות למדי מבטיחה נראית מחוונים ספירת
היא לכך הסיבה במיוחד. גדולות וערמות סיביות וארבע שישים בעלות ארכיטקטורות של ומתרחבת
זבל. איסוף מחזור בכל הערימה בתוך החיים העצמים כל את לסרוק חייבים הערימה סריקת שאלגוריתמי
שהמשתמש העבודה לכמות פרופורציונית עבודה כמות להשקיע חייבים מאידך, מחוונים, ספירת אלגוריתמי

החי. המידע בכמות תלויה אינה סיבוכיותם אבל האיסוף מחזורי בין ייצר
בשיטות השימוש כמו עד­כה נרחב היה לא ברבי­מעבדים המחוונים ספירת בשיטת והשימוש המחקר
ישנה המחוונים ספירת לשיטת שלכאורה היא לכך הסיבה והמקבילית. תוך­כדי­מעוף הבו­זמנית, הסריקה
אטומית בצורה להיעשות חייב המונים עדכון תוך­כדי­מעוף): לגבי שכן כל (ולא בו­זמניות לגבי טבועה מגבלה
מחוון, עדכון בעת לכך, בנוסף שונים. חוטי­בקרה ע"י בו­זמנית מעודכנים להיות עשויים שהמונים מכיוון
יכול אחרת, במקביל. קורים כאלו שעדכונים למרות הקודם המחוון ערך מהו לדעת חייב המעדכן החוט
בו­זמנית מחוונים לספירת הנאיבי הפתרון מכך, יוצא המחוונים. מוני של החשבונות בניהול בלבול להיווצר
מפעולת התקורה את הוריד לאחרונה שבוצע יותר מתקדם מחקר מחוון. עדכון פעולת כל עבור נעילה דורש

יקרה. פעולה זו עדיין אך השווה­והחלף לפעולת נעילה

באנגלית. Concurrent 1

באנגלית. On­the­fly2

1

לרבי­ והמתאים מחוונים ספירת על המבוסס זכרון לאיסוף אלגוריתם לראשונה מציגים אנו זו בעבודה
המחוון עדכון בפעולת סנכרון דורש שאיננו מעוף תוך­כדי אלגוריתם הנו להלן שנציג האלגוריתם מעבדים.
על המבוסס אלגוריתם לכל יחסית טובים וביצועיו יעיל האלגוריתם השווה­והחלף). מסוג פעולה לא (אפילו

הערימה. סריקת
מחשב על ביצועיו את ובדקנו סאן חברת של הוירטואלית גיאווה מכונת ע"ג המוצע האלגוריתם את מימשנו
בעל י.ב.מ חברת של נטפיניטי מסוג מגה­הרץ 550 בתדר 111 קסאון פנטיום אינטל מעבדי ארבעה בעל שרת
להפליא נמוכה השהייה בעל הוא שמימשנו שהאלגוריתם לדעת נוכחנו אקראית. גישה זכרון בייט גיגה שני

התקני. הסריקה אלגוריתם של לזו דומה תפוקתו ואילו
זבל מעגלי האוסף סריקה, מבוסס משלים, אלגוריתם מציעים אנו המחוונים ספירת לאלגוריתם בנוסף
על מבוססים האלגוריתמים שני עצמו. בכוחות לאסוף מסוגל לא המחוונים ספירת שאלגוריתם נוספים ועצמים
אלגוריתם של הביצועים האטומי. הבזק תצלום מושג של הכללה שהוא מחליקים", "מבטים של הרעיון אותו

המחוונים. ספירת אלגוריתם של לאלו דומים הנ"ל הסריקה
סנכרון ברמת המצטיין תוך­כדי­מעוף מחוונים לספירת חדש אלגוריתם מציגים אנו זו בעבודה כאמור,
הרעיונות של סקירה עם עתה נמשיך העדכון. במחסום סנכרון של סוג מכל נמנעים אנו בפרט, ביותר. נמוכה

זה. יתרון השגנו בעזרתם אשר באלגוריתם, לראשונה המובאים החדשניים
דורשת אינה זו שיטה דחרר,3 פחותים ספירת הנקראת ובוברוו דויטש של שיטתם את מאמץ האלגוריתם
הם אלו שעדכונים משום גדול ובאוגרים)­חסכון (במחסנית מקומיים במחוונים הנעשים שינויים אחר מעקב
(כשנדרש פעם מדי בחשבון. מובא הערימה מתוך עצם לכל המחוונים מספר רק זאת, במקום ביותר. התכופים
שאינם העצמים אלו, מבין התאפס. שלהם הערימה מחווני שמונה העצמים כל את בוחן הזבל אוסף זבל), איסוף
מהעדכונים שרבים היא הראשונה אבחנתנו לאיסוף. וניתנים זבל הם מקומיים מחוונים ע"י ישירות מוצבעים
סדרת את הכיל זבל איסוף מחזורי שני שבין כלשהו מחוון על למשל נסתכל מיותרים. הם זו בשיטה המבוצעים
שינויי נ עבור בערמה. עצמים של כתובות הן ענ ע2, ען, ע0, כש­ ■# ,■■■ ע2, ען, ,"!? הבאים: הערכים

המחוונים: מוני של עדכונים 2*נ נעשו הנ"ל הערכים
ע./. של המונה הגדלת ע", של המונה הפחתת .
ע2. של המונה הגדלת ען, של המונה הפחתת .

.

ענ. של המונה הגדלת ע(נ.ן), של המונה הפחתת .
לעדכן שעל­מנת למדים אנו זו, אבחנה על בהסתמך בדיעבד. נחוצים והאחרון הראשון העדכון רק אולם,
מאז השתנו מחוונים אילו לדעת רק מספיק זבל, איסוף מחזור לפני העצמים כל של הערימה מחווני מוני את
מסוגלים אנו הנ"ל, במידע מצוידים הנוכחי. ובמחזור הקודם במחזור אלו מחוונים ערכי ומהם הקודם המחזור

הקודם. המחזור מאז שהשתנה מחוון כל עבור האמורות הפעולות שתי את רק לבצע
האחרון. המחזור מאז ששונה מחוון כל עבור רשומה באלגוריתם מחזיקים אנחנו זה, מידע להשיג מנת על
הקודם. המחזור מאז הראשונה בפעם שונה שהמחוון בעת תקף שהיה ה"ישן" הערך את גם שומרים אנו בנוסף,
חוטי עם בו­זמנית פועל הזבל שאוסף מכיוון המחוון של ה"נוכחי" הערך את להשיג בעיה קיימת לכאורה,
אנו אולם נקרא. החוקי הערך שאכן להבטיח מנת על מוקדשת יתרה לב תשומת ואכן, התוכנית של הבקרה
במחסום והכתיבה הקריאה פעולות של מחושב לסידור תודות יקרה סנכרון פעולת כל לבצע בלא זו תכונה משיגים

הבזק. תצלום אלגוריתם בשם עתה בו שדנו האלגוריתם את מציינים אנו הזבל. אוסף של ובקוד הכתיבה
החוטים כל את לעצור קורא לעיל שהצגנו הגישה של הנאיבי המימוש עצמו. הזבל באיסוף נתבונן עתה,
זהו הקודם. המחזור מאז שהשתנו המחוונים כל של הנוכחיים הערכים את לקרא מושעים החוטים שכל ולאחר
אינה זו גישה האחרון. המחזור מאז שנשתנה הערימה של חלק אותו של או הערימה של בזק תצלום בעצם
מעולם רעיון שואלים אנו בו­זמניות לאפשר על­מנת התוכנית. וחוטי הזבל אוסף של בו­זמניות מאפשרת
בסביבה. השונים התהליכים את עוצרים לא מבוזרת, סביבה של בזק תצלום לוקחים כאשר המבוזר. החישוב
מידי באופן נאסף שלא המידע אותו לגבי בלבול למנוע לא ונזהרים בנפרד תהליך כל מצלמים זאת, במקום
מצולמים שהתהליכים בזמן התהליכים בין בתנועה שנמצאות ההודעות כל למשל, תהליך. כל לגבי ונפרד
המחוונים של אטומית לא תמונה נצלם אנחנו אף דומה. בפתרון נשתמש שלנו, במקרה הן. אף נשמרות
בלבול. למניעת מיוחד מכניזם נפעיל אלו מחוונים של ערכיהם את שנבדוק בעת אולם בערמה ה"מעניינים"

מחליק. המבט אלגוריתם בשם הערימה של זו אטומית לא תמונה על המתבסס זה אלגוריתם נציין
והרצנו ,1.2.2 גירסה סאן, חברת של הוירטואלית גיאווה מכונת עבור המחליק המבט אלגוריתם את מימשנו
גייגה בשני המצויד קסאון 111 פנטיום אינטל מעבדי ארבעה בעל י.ב.מ חברת של נטפיניטי שרת גבי על אותו
גיאווה: עבור תקניות הערכה ערכות בשתי במדידותינו השתמשנו אקראית. גישה זכרון של בתים

באנגלית. Deferred Reference Counting3

זז

הכלל, מן יוצאת השהיה בעל הוא המחליק המבט אלגוריתם כי לנו התברר .SPECjvm98­1 SPECjbb2000
התפוקה, מבחינת כן, כמן הוירטואלית. במכונה המקורי האלגוריתם של מזו גודל סדרי בשני קצרה
ואילו הבדיקה מתוכנית בחלק הוירטואלית המכונה של מזו ב­100/0 עד הגבוהה תפוקה השיג שלנו האלגוריתם

דומה. והמקורי החדש האלגוריתם של התפוקה הבדיקה תוכניות בשאר
במרחב, צורת לסריקת מקבילית תוכנית ,MTRT תוכנית של ההרצה תוצאות את מראה להלן 1 טבלה
החוטים מספר של כפונקציה שפותח, האלגוריתם את המכילה וזו המקורית הוירטואלית המכונה עבור
בכ­ יותר נמוכים ביצוע זמני משיגה המחוונים ספירת אלגוריתם את המכילה הוירטואלית המכונה במערכת.

המקורית. המכונה של מאלו 100/0 עד סי^

בקרה חוטי של משתנה מספר עם MTRT הבדיקה תוכנית של בשניות, לסיום, זמן :1 טבלה
זו בעבודה שמומש המחוונים ספירת ובאלגוריתם המקורי באלגוריתם

8 4 3 21 מספר
החוטים

58.2 57.2 56.3 71.9 93.0 אלגוריתם
מקורי

52.3 54.2 52.5 68.5 88.6 ספירת
מחוונים

10.10/0 5.20/0 6.70/0 4.70/0 4.70/0 אחוז
השיפור

הבדיקה בתוכנית המקורי, לאלגוריתם יחסית המחוונים, ספירת אלגוריתם ביצועי את מראה להלן 2 טבלה
בעוד וחוטים. מעבדים מרובי שרתים של והשהייתם תפוקתם את בודקת זו תוכנית .SPECjbb2000
האלגוריתם למשל, כך, גודל. סדרי בשני קוצרה המרבית שההשהיה הרי השתנתה ולא כמעט שהתפוקה
לעולם המחוונים ספירת שאלגוריתם בעוד שניות מעשר יותר למשך התוכנית חוטי כל את לעצור עשוי המקורי

שניות. מ­0.13 ליותר התוכנית מחוטי אחד אף עוצר לא

לאלגוריתם יחסית SPECjbb2000 הבדיקה בתוכנית המחוונים ספירת אלגוריתם ביצועי :2 טבלה
המקורי

אחוז זמן אחוז ציון גודל
בזמן השיפור ההשהיה השיפור בתוכנית ערימה
ההשהיה המקסימלי בציון הבדיקה (מגה

(שניות(בתים)
98.5"/0 0.12 ­2.60/0 642.7 600

| 99.20/0 | 0.11 0.70/0 ­633.3 1200

111

]44[Guy L. Stecle, editor. Conference Record 0} the 1984 ACM Symposium on Lisp and
Functional Programming, Austin, TX, August 1984. ACM Press.

[45] Will R. Stoye, T. J. W. Clarke, and Arthur C. Norman. Some practical methods for
rapid combinator reduction. In Steele [44], pages 159­166.

[46] George S. Taylor, Paul N. Hilifnger, James R. Larus, David A. Patterson, and Ben­
jamin G. Zorn. Evaluation of the SPUR Lisp architecture. In Proceedings of the
Thirteenth Symposium on Computer Architecture, June 1986.

[47] David M. Ungar. Generation scavenging: A non­disruptive high performance storage
reclamation algorithm. ACM SIGPLAN Notices, 19(5):157­167, April 1984. Also
published as ACM Software Engineering Notes 9. 3 (May 1984) ­ Proceedings of the
ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, 157­167, April 1984.

[48] Larry Wall and Randal L. Schwartz. Programming Perl. O'Reilly and Associates, Inc.,
1991.

[49] J . Weizenbaum. Symmetric list processor. CommunicationsoftheACM, 6(9):524­544,
September 1963.

[50] J. Weizenbaum. More on the reference counter method. Communications of the ACM,
7(1):38, 1964.

]51] Paul R. Wilson. Uniprocessor garbage collection techniques. Technical report, Univer­
sity of Texas. January 1994. Expanded version of the IWMM92 paper.

]52] David S. Wise. Stop and one­bit reference counting. Information Processing Letters,
46(5):243­249, July 1993.

]53] David S. Wise. Stop andone­bit reference counting. Technical Report 360, Indiana
University, Computer Science Department, March 1993.

]54] David S. Wise, Brian Heck, Caleb Hess, Willie Hunt, and Eric Ost. Uniprocessor
performance of a reference­counting hardware heap. Technical Report TR­401, Indiana
University, Computer Science Department, May 1994.

]55] David S. Wise, Caleb Hess, Willie Hunt, and Eric Ost. Research demonstration of
a hardware reference­counting heap. Lisp and Symbolic Computation, 10(2):151­181,
July 1997.

]56] Taichi Yuasa. Real­time garbage collection on general­purpose machines. Journal of
Software and Systems, 11(3):181­198, 1990.

]57] Benjamin Zorn. Barrier methods for garbage collection. Technical Report CU­CS­494­
90, University of Colorado, Boulder, November 1990.

180

.­..­"■; ">r,a>,}..י ■­^';i'etiV.:■.,'.­.■■'' ■­

[29] Robert H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4):501­538, October 1985.

]30] Maurice Herlihy and J. Eliot B Moss. Non­blocking garbage collection for multipro­
cessors. Technical Report CRL 90/9, DEC Cambridge Research Laboratory. 1990.

]31] Anthony L. Hosking, J. Eliot B. Moss, and Darko Stefanovic. A comparative per­
formance evaluation of write barrier implementations. In Andreas Paepcke, editor,
OOPSLA'92 ACM Conference on Object­Oriented Systems, Languages and Applica­
tions. volume 27(10) of ACM SIGPLAN Notices, pages 92­109, Vancouver, British
Columbia, October 1992. ACM Press.

]32] Lorenz Huclsbcrgen and James R. Larus. A concurrent copying garbage collector for
languages that distinguish (im)mutable data. In Fourth Annual ACM Symposium on
Principles and Practice of Parallel Programming. volume 28(7) of ACM SIGPLAN
Notices, pages 73­82, San Diego, CA. May 1993. ACM Press.

]33] Richard E. Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley, Novemcber 1998.

]34] Elliot K. Kolodner and Erez Petrank. Parallel copying garbage collection using delayed
allocation. Technical Report 88.384, IBM Haifa Rsearch Lab, November 1999.

]35] Leslie Lamport. Garbage collection with multiple processes: an exercise in parallelism.
In Proceedings of the 1976 International Conference on Parallel Processing, pages 50­
54, 1976.

]36] Rafael D. Lins and Marcio A. Vasques. A comparative study of algorithms for cyclic
reference counting. Technical Report 92, Computing Laboratory, The University of
Kent at Canterbury, August 1991.

]37] J. Harold McBeth. On the reference counter method. Communications of the ACM,
6(9):575, September 1963.

]38] James S. Miller and B. Epstein. Garbage collection in MultiSchcme. In US/Japan
Workshop on Parallel Lisp, LNCS 441. pages 138­160. June 1990.

]39] David A. Moon. Garbage collection in a large LISP system. In Stcele [44], pages
235­245.

]40] James W. O'Toole and Scott M. Nettles. Concurrent replicating garbage collection.
Technical Report MIT­LCS­TR­570 and CMU­CS­93­138, MIT and CMU, 1993.
Also LFP94 and OOPSLA93 Workshop on Memory Management and Garbage Collec­
tion.

]41] Young G. Park and Benjamin Goldberg. Static analysis for optimising reference count­
ing. Information Processing Letters, 55(4):229­234, August 1995.

]42] David J. Roth and David S. Wise. One­bit counts between unique and sticky. In
Richard Jones, editor. Proceedings of the First International Symposium on Memory
Management, volume 34(3) of ACM SIGPLAN Notices, pages 49­56, Vancouver, Oc­
tober 1998. ACM Press. ISMM is the successor to the IWMM series of workshops.

]43] Patrick Sobalvarro. A lifetime­based garbage collector for Lisp systems on general­
purpose computers. Technical Report AITR­1417, MIT AI Lab, February 1988. Bach­
clor of Science thesis.

179

]15[George E. Collins. A method for overlapping and erasure of lists. Communications of
the ACM, 3(12):655­657, December 1960.

[16] Jim Crammond. A garbage collection algorithm for shared memory parallel processors.
International JournalOf Parallel Programming, 17(6) 1497­522, 1988.

[17] John DeTreville. Experience with concurrent garbage collectors for Modula­2+. Tech­
nical Report 64, DEC Systems Research Center, Palo Alto. CA, August 1990.

[18] John DeTreville. Experience with garbage collection for modula­2+ in the topaz envi­
ronment. In Eric Jul and Niels­Christian Juul, editors, OOPSLA/ECOOP '90 Work­
shop on Garbage Collection in Object­Oriented Systems, Ottawa, October 1990.

[19] L. Peter Deutsch and Daniel G. Bobrow. An eiffcient incremental automatic garbage
collector. Communicationsof the ACM, 19(9):522­526, September 1976.

[20] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M. Steffens.
On­the­lfy garbage collection: An exercise in cooperation. Communications of the
ACM, 21(ll):965­975, November 1978.

[21] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection for
multiprocessor systems. In Conference Record of the Twenty­first Annual ACM Sympo­
sium on Principlesof Programming Languages, ACM SIGPLAN Notices. ACM Press,
January 1994.

[22] Damien Doligez and Xavier Leroy. A concurrent generational garbage collector for a
multi­threaded implementation of ML . In Conference Recordof the Twentieth Annual
ACM Symposium on Principlesof Programming Languages, ACM SIGPLAN Notices,
pages 113­123. ACM Press, January 1993.

[23] Toshio Endo, Kcnjiro Taura, and Akinori Yonezawa. A scalable mark­sweep garbage
collector on large­scale shared­memory machines. In Proceedings of High Performance
Computing and Networking (SC'97), 1997.

[24] Daniel P. Friedman and David S. Wise. Reference counting can manage the circular
environments of mutual recursion. Information Processing Letters, 8(l):41­45, January
1979.

[25] Shinichi Furusou, Satoshi Matsuoka, and Akinori Yonezawa. Parallel conservative
garbage collection with fast allocation. In Paul R. Wilson and Barry Hayes, editors,
OOPSLA/ECOOP '91 Workshop on Garbage Collection in Object­Oriented Systems,
Addendum to OOPSLA'91 Proceedings, October 1991.

[26] Edward F. Gehringcr and Ellis Chang. Hardware­assisted memory management. In
Eliot Moss, Paul R. Wilson, and Benjamin Zorn, editors, OOPSLA/ECOOP '93 Work­
shop on Garbage Collection in Object­Oriented Systems, October 1993.

[27] Adele Goldberg and D. Robson.Smalltalk­80: The Language and its Implementation.
Addison­Wesley, 1983.

[28] Atsuhiro Goto, Y. Kimura. T. Nakagawa, and T. Chikayama. Lazy reference counting:
An incremental garbage collection method for parallel inference machines. In Proceed­
ings of Fifth International Conference on Logic Programming, pages 1241­1256. 1988.
Also ICOT Technical Report TR­354, 1988.

178

Bibliography

[1] David Bacon, Dick Attanasio, Han Lee, and Stephen Smith. Java without the coffee
breaks: A nonintrusive multiprocessor garbage collector Manuscript Nov. 2001.

[2] Standard Performance Evaluation Corporation, http://www.spcc.org

[3] Bill Joy, Guy Steele, James Gosling and Gilad Bracha. The Java Language Speciifed­
tion, Second Edition (The Java Series)Addison­Wesley, 2000.

[4] Andrew Patzer, Sing Li, Paul Houle, Mark Wilcox. Ron Phillips, Danny Ayers, Hans
Bergsten. Jason Diamond, Mike Bogovich, Matthew Ferris, Marc Fleury, Ari Halber­
stadt, Piroz Mohseni. Krishna Vcdati and Stefan Zeiger. Professional Java Server
Programming: with Servlets, JavaServer Pages (JSP), XML, Enterprise JavaBeans
(EJB), JNDI, CORBA, Jini and Javaspaces Wrox Press. 1999.

[5] Alfred V. Aho. Brian W. Kernighan, and Peter J. Weinberger.TheAWK Programming
Language.Addison­Wesley, 1988.

[6] Andrew W. Appel. Simple generational garbage collection and fast allocation. Software
Practice and Experience, 19(2):171­183, 1989.

[7] Andrew W. Appel, John R. Ellis, and Kai Li. Real­time concurrent collection on stock
multiprocessors.ACMSIGPLAN Notices, 23(7)111­20, 1988.

[8] Thomas H. Axford. Reference counting of cyclic graphs for functional programs. Com­
puter Journal, 33(5):466­470, 1990.

[9] Henry G. Baker. List processing in real­time on a serial computer. Communications
of the ACM, 21(4)1280­94, 1978. Also AI Laboratory Working Paper 139, 1977.

[10] Henry G. Baker. Minimising reference count updating with deferred and anchored
pointers for functional data structures. ACM SIGPLAN Notices, 29(9), September
1994.

[11] Daniel G. Bobrow. Managing re­entrant structures using reference counts. ACM Trans­
actions on Programming Languages and Systems, 2(3):269­273, July 1980.

]12] Hans­Juergen Bochm, Alan J. Demers, and Scott Shcnker. Mostly parallel garbage
collection. ACM SIGPLAN Notices, 26(6):157­164. 1991.

]13] T. Chikayama and Y. Kimura. Multiple reference management in Flat GHC. In 4th
International Conference on Logic Programming, pages 276­293, 1987.

]14] T. W. Christopher. Reference count garbage collection. Software Practice and Experi­
ence. 14(6):503­507, June 1984.

177

int64_t
TotaiabjoctMemory(void)
{
retu rnblkvar.heapSz ;

}

int64_t
FreeObjectMemory(void)
{ intfreePartial Bytes [N.BINS] , freePartialBlocks [N.BINS] ;

int nBlockBlocks = blkvar.nWildernessBlocks + blkvar.nListsBlocka;
int nBlockBytes, nPartialBytes, nPartialB10ck3, nBytes, i;
float avgRes;

printf (".***..♦*♦♦*.****.. FreeObjectMemory statistics (begin) \n") ;

nBlockBytea = nBlockBlocks­BLOCKSIZE;
printf ("BlkMgr blocks=7.d MB=­/,d\n" . nBlockBlocks, nElockBytes>>20);

chkGetPartialBlocksStats(freePartialBlocks, freePartialByte 8);
printf ("Partial:\n");
printf ("binsz\tblocks\tMBW) ;

nPartialBytes . 0;
nPart i alB locks ■= 0;

for (i­'0; KN.BIHS; i++) {
printf)'7.d\t7.d\t'/.d\n" ,

cnkconv.binSize[i],
freePartialBlocks [i] ,
freePartialBytes [i]>>20);

nPartialBlocks += freePartialBlocks [i] ;

nPartialBytes += freePartialBytes [i] ;

}

ifC nPartialBlocks)
avgRes = (f 10at)nPartialBvtes /C(float)BLDCKSIZE*(float)11PartialBlocks);

else
avgRea = ­1 ;

printf ("Total partial: blocks='/.d MB='/.d avg­res=­/.f\n".
nPartialBlocks,
nPartialBytes >>20,
avgRes
);

nBytes = nBlockBytes + nPartialBytes;
printf ("Total free MB='/,d\n­' , nBytes>>20);
printf ("+***.***♦*♦♦♦***.. FreeObjectHemory statistics (end) \n") ;

return nBytes;
}

int64_t
TotalHandleMemory(void)
{
retu rn 0;

}

int64_t
FreeHandleMemory(void)
{

retu rn 0;
>

/.
* User interface to synchronous garbage collection. This is called
* by an explicit call to GC.
./
void
gc (unsigned int free_space_goal)
{
gcRe questSyncGCO ;

}

bool_t isHandle(void *p)
{
retu rn isHandle(p) ;

>

bool.t isGbject(void .p)
{
GCHa ndle *h = (GCHandle.)(((char*)p)­sizeof(CCHandle));
return isHandle(h);

}

bool.t isValidHandleCJHandle .h)
{
retu rn _isHandle(h);

175

*ifdef RCDEBUG

static int deltaMax = ­1;
int delta ­GetTickCount O;

*endif

GCHandle .h;
JHandle *_h;
uint *obj;
int bin;

uint nbytes = sizeof (GCHandle) + size;

if (nbytes <­ MAX_CHUNK_ALLGC) {
bin * chkconv . szToBinldx [nbytes] ;

chkAllocSmalllnllnedC ee, bin, _h);

if (!_h) return NULL;

*ifdef RCDEBUG
ee­>gcblk.dbg.nBytesAllocatedInCycle +* chkconv .binSize [bin];

#endif

h ­)GCHandle*)_h;
obj = (uint .)(h + 1);
if (size > 0)
memset(obj, 0, size);

ifdef RCDEBUG
a­>status = Im_used;

*endif
h­>methods = mptr;
h­>obj ­ obj;

gcBuffLogNevHandle (ee, h);

.ifdef RCDEBUG
delta = GetTickCount O ­ delta;
if (delta > deltaMax) {

deltaMax = delta;
printf (" ♦.♦CACHE (small,nbytes='/.d)delta='/.d\n" , nbytes , delta);

}
#endif

}
else {
BlkAllocBigHdr *ph;
iat i;
for(i=0; i<3; i++) {

ph = blkA110cRegion(nbytes, ee);
if (ph) goto __good;
gcvar.memStress = true;
gcRequestSyncGCO ;

}

return NULL;

good:
h ­ (GCHandle*)BLDCKHDROBJ((BlkAllocHdr*)ph);

*ifdef RCDEBUG
ee­>gcblk.dbg.nByteaAllocatedlnCycle += ph­>blobSize * BLOCKS IZE;

.endif

obj = (uint ♦) (b+1) ;

ZeroMemory(obj, size);
*ifdef RCDEBUG

h­>status = Im_used;
*endif

h­>methods 3 mptr;
h­>obj = obj;

gcBuffLogNewHandle(ee, h);

pb*>alloclnprogress = 0;

.ifdef RCDEBUG
delta = GetTickCount 0 ­ delta;
if (delta > deltaMax) {
deltaHax = delta;
printf (" *.. CACHE (big, nbytes=7,d) delta"y,d\n" , nbytes, delta);

}
*endif
}
sysAssert(h);

return (HGbject*)h;
}

************* Heap Meters ******************

.+**+******+***************+*****+*********+**************/

174

struct BLKVAR blkvar;
struct CHKCONV chkconv;

Btatic struct CHUNKVAR chunkvar;

.include "mok_win32.c"
*include "rcbmp.c"
*include "rcblkmgr.c"
include "rcchunkmgr.c"
t include "rcgc.c"

End of ifle source listing

D.10 ylrc_protocol.h

This ifle (the name of which stands for "The Yossi Levanoni's Reference Counting Protocol")

deifnes the write barrier that must be adhered to when changing references. i.e., this is the
declaration of the write barrier. ny , .Source listing for hie ylrc_protocol.n
/.
* File: ylrc_protocol.h
* Author: Mr. Yossi Levanoai
* Purpose; Definition of the write barrier
./

(tifndef YLRC

*define YLRC

struct execenv;
typedef struct execenv ExecEnv;

void gcDo_gcupdate(ExecEnv .ee, void *_h, void ♦^slot, void ♦,newval);
void gcDo_gcupdate_array(ExecEnv .ee, void *,arrayh, void* _slot, void *newval);
void gcDo_gcupdate_class (ExecEnv* ee, ClassClass. cb, void ..slot, void ♦_newval);
void gcDo_gcupdate_j vmglobal(ExecEnv* ee , void. .global, void ._newval);
void gcDo_gcupdate_static(ExecEnv. ee, struct f ieldblock. fb, void* slot, void. _newval);

*define gcupdate(ee,_h,_slot,_newval) I
gcDo^gcupdate(ee,_h, _slot,_newval)

*define gcupdate _array (ee,_arrayh, _slo t , neuval) I
gcDo_gcupdate_ array (ee,_arrayh, _slot,newval)

*define gcupdate_class(ee,cb,_slot,_newval) \
gcDo_gcupdate_c lass (ee,cb,_slot, ,newval)

*definegcupdate, j vmglobal (ee , _global , _newal) \
gcDo_gcupdate_j vmglobal (ee , ,global , _newal)

*define gcupdate_static(ee,fb, slot, ,newval) \
gcDo_gcupdate_ static (ee,fb.slot,_newval)

endif / ! YLRC */

End of ifle source listing

D.ll gc.c

This ifle contains code mostly from the original JVM. Most importantly, this ifle includes
rchub.c and deifnes the entry point for allocation code.

Due to the author's non­disclosure agreement. with Javasoft, only those parts of the ifle
which are new to the collector arc listed below.

Source listing for ifle gc.c

*include "rchub.c"

/*,*.*,*.*.*******.****,.****,**.****.**­**.*.­**­*­*.*......*.*..*.

HObject * cacheAlloc(ExecEnv .ee , struct methodtable *arptr, long size)
{

173

/. Advanced */
GCFUNC void. mokMemReserve(void *start ing_at_hint , unsigned sz);
GCFUNC void mokMemUnreserve(void .start, unsigned sz);
GCFUNC void. mokHemCommit(void .start, unsigned sz, bool zero_out);
GCFUNC void mokMemDecommit (void .start, unsigned s7.) ;

/. C style ./
GCFUNC void* mokMalloc(unsigned sz, bool zero_out);
GCFUNC void mokFree (void *) ;

/* zero out */
GCFUNC voidmokHemZero (void .start, uns igned 3z);
#def ine mokAssert sysAssert
*define gcAssert sysAssert

*ifdef RCDEBUG
*def ine lm used0 x 1 o adbad X

*define Im.free 0x12344321
tfendif

int x86CompareAndSwap Cuns igned .addr, unsigned oldv, unsigned new) ;

*define compare_and_swap x86C0mpareAndSuap
*define gcCompareAndSwap x86C0mpareAndSwap

/*
. p is a pointer to BlkAllocHdr. Lock and unlock the page
*/
*pragma optimize (MH, off)
static void bhLock(BlkAllocHdr *p)
{
vola tile word .ptr = (volatile word*)tp­>StatusLockBinidx;
for (;;) {

oldv = ♦ptr;
oldv = oldv k ­­LOCKMASK;

newv = oldv I LOCKHASK;
if (gc Compare AndSw ap ((word*)ptr, oldv, newv))
goto do_bh_lack_end;

}

do_bh_lock_end:;
>

staticbhUnlock (BlkAllocHdr. p)
{
for (;;) {
volatile word *ptr = (volatile word*)tfp­>StatusLockBinidx;
word oldv, new;
oldv = ♦ptr;
if (!(oldv k LOCKMASK)) {

asm { int 3 }
}
newv " oldv k ­LOCKHASK;
if (gcCompareAndSwap((word♦)ptr, oldv, newv))
goto do_bh_unlock end;

}
do_bh unlock end:;

>

*pragma optimize ("", on)

*define gcNonMullValidftandle .isHandle
.define gcValidHandle(h) ((h)==NULL I I _isHandle((h)))

*endif /♦ __RCGC_INTERNAL__ ./

End of ifle source listing

D.9 rchub.c

This file simply includes the block manager, chunk manager and collector into a single
translation unit.

Source listing for file rchub.c ,
/*
* File: rcbmp.c
. Aurhor: Yossi Levanoni
* Purpose: Includes all of the allocator and collector into a single
* translation unit.
*/
*define GCINTERNAL

*define geUnhand(h) ((JHandle**)(((char*)h)*sizeof(GCHandle)))
define gcRehand(obj) ((JHandle)(((char*)obj)­sizeof(GCHandle)))

*include "rcgc.h"
*include "rcgc_internal . h"
*include "../../../win32/hpi/include/threads_md.h"

172

else
jio.printf ("Good RC for j­'/.d, val­'/.x\n" . j. v);

H2BIT_Inc(bmp­>entry, (unsigned)cfhandleSpace[j]);
>

}
for (i­2; i>­0;i­) {
for (j=0; j<N_HANDLES; j++) {

uint v = H2BIT_Get(bmp­>entry, (unsigned)£handleSpace[J]);
if (v !■ (uint)i)
jio.printf ("Bad RC for j­'/.d, val­Xx exoect­'/,i\n" , j, V, i J;

else
Jio.printf ("Good RC for]­'/.d, val­'/,x\n" ,j.v);

H2BIT_Dac(bmp­>entry, (unsigned) ihandleSpace[J])i
}

}

}

.endif /. RCNOINLINE ./

End of ifle source listing

D.8 rcgcJnternal.h

rcgc_internal.h contains declarations which are needed internally by the collector and allo­
cator (forward declarations etc.)

Source listing for file rcgcJnternal.h
/.
. File: rcblkmgr.h
* Author : Mr. Yossi Levanoni
. Purpose: Header for internal use of the collector/allocator.
./
#ifndef _RCGC_INTERNAL__
*define __RCGC_INTERNAL__

CCFUNC bool gcCompareAndSvapC unsigned ♦addr, unsigned oldv, unsigned new);
GCFUNC voidgcSpinLockEnter(volatile unsigned +p, unsigned id) :

GCFUNC void gcSpinLockExit(volatile unsigned .p, unsigned id) ;

GCFUNC void gcCheckGC(void);

GCFUNC void blklnit(unsigned nMB);
GCFUNC BlkAllocHdr* blkAllocBlockC ExecEnv .ee);
GCFUNC void blkFreeChunkedBlock(BlkAllocHdr .ph);
GCFUNC void blkFreeSomeChunkedBlocks (BlkAllocHdr .*pph, int nBlocks);
GCFUNC void blkFreeRegion(BlkAllocBigHdr .ph);
GCFUNC void blkSaeep(void);

GCFUNC void chkFlushRecycledListEntry(RLCENTRY *rice);
GCFUNC void chkFlushRecycledListsCache(void);
GCFUNC void chkSweepChunkedBlock(BlkAllocHdr *ph, int status);
GCFUNC voidchklnit (unsignednHB) ;

#ifdef RCDEBUG
GCFUNC void chkPreCollect(BLKOBJ* o);
tendif /. RCDEBUG ./

.ifdef RCNOINLINE

GCFUNC voidHlBIT_Set (byte. entry, unsigned h) ;

GCFUNC void HlBIT_Clear(byte* entry, unsigned h);
GCFUNC void HlBIT_ClearByte(byte* entry, unsigned h);
GCFUNC void HIBIT.Put (byte. entry, unsigned h, unsigned val);
GCFUNC byte HlBIT_Get(byte. entry, unsigned h);
GCFUNC void HlBIT_Init(HlBIT_BMP. bmp, unsigned. rep.addr, unsigned rep_3ize);

GCFUNC void H2BIT_Put(byte. entry , unsigned h, unsigned val);
GCFUNC void H2BIT_Clear(byte. entry, unsigned h);
GCFUNC void H2BIT_Stuck(byte. entry, unsigned h);
GCFUNC byte H2BIT_Get(byte. entry , unsigned h);
GCFUNC void H2BIT_Inc(byte. entry, unsigned h);
GCFUNC byte H2BIT_IncRV(byte. entry, unsigned h);
GCFUNC byte H2BIT_Dec(byte* entry, unsigned h);
GCFUNC void H2BIT.Init(H2BIT_BHP. bmp, unsigned* rep.addr, unsigned rep.siz­ (;
ttendif /* RCNOINLINE ./

GCFUNC uint gcGetHandleRC(GCHandle. h);

/ . * ♦*.
* System utilities layer (MDK)

■/
*define mokSleep Sleep

/.
. Memory
./

171

.bbmp = val;
}

.ifdef RCDEBUG

_f orcelncSanityCheck (entry, h, f) ;

#endif
returnf ;

}

byte H2BIT_Dec(byte. entry, unsigned h)
{/. entry address into the bitmap.*/
byte *bbmp = H2BIT_BYTE(entry, h);
byte val = *bbmp;
uintf ;

/. we include the upper zero in the selector ./
uint field_3elector ­ GET_BIT_FIELD(h, H_GRAIN_BITS­1 , H2B_FS_BITS+1);
mokAssert (1ield_selector'/,2 " 0(;

uokAssert(field.selector<=30) ;

1 " GET_BIT_FIELD(val, field.selector, 2);
mokAssert (f>­3 (;
mokAssert (f>= 1); /♦ we should never go below zero ./
if (f<3) { /* STUCK remains STUCK */
SET_BIT_FIELD(val, f­1, field.selector, 2);
.bbmp = val;
mokAssert (H2BITGet(entry,h)= f­l);

}
return f ;

}

/.
* Create a new 2­bit per handle BMP with the handles starting
* at address 'rep.addr' and the handles area being 'rep_size*
* bytes long.
*/
void H2BIT_Init(H2BIT_BMP* bmp, unsigned* rep_addr, unsigned rep.size)

/. each 2 bits in the bimtap represents a handle, which
. takes 2"H_GRAIN_BITS bytes. So a byte in the
* bitmap repreesnts 2" (H_GRAIN_BITS+2) bytes in the
* handle space.

*/
bmp­>bmp. size = rep.size >> (H_GRAIN_BITS+2) ;
bmp­>bmp_size * ROUND_PAGE(bmp­>bmp_size);
bmp­>bmp ­)byte*)mokMemReserve(NULL,bmp­>bmp_size);
mokHemCommitC bmp­>bmp, bmp­>bmp_size, true);
bnp­>rep_addr = (byte.)rep_addr ;
bmp­> entry ­ bmp­>bmp ­ (((unsigned)rep.addr)>>H2B_NDN BS BITS);

}

char . write_bits (unsigned x)
{

char *s = (char *)mokHalloc(33, false);
unsigned 2 = 1<<31;
int j­0;
for (;j<32;j++) {
s[j[­xtfi ? 'I' : .0';
i >>­ 1;

}
s[j[= '\0';

{

void testBitFielda(void)
{
int shift, length;
unsigned m=0, val;

while (1) {

jio_printf ("Enter shift length val, please: ") ;
scanf("*/.d '1.6.'/.x" , *shift, *length, tval);
SET_BIT_FIELD(m, val, shift, length);
jio.printf)"m'=)7.x)'/.3field=(V.x)7.s\n" . m, write_bits(m),

CET_BIT_FIELD(m, shift, length), write_bits(GET_BIT_FIELD(m, shift, length)));

>

typedef struct HandleTAG { unsigned hi, h2; } Handle;

H2BIT_BMP Bmp;

*define N_HANDLES 10000

void test2BitBmp(void)
{
int i,j;
Handle* handleSpace = CHandle*)mokMalloc(N_HAKDLES*sizeof (Handle) , false);
H2BIT.BMP *bmp " *Bmp;

H2BIT_Init(bmp,(unsigned*) handleSpace, N_HANDLES*s izeof (Handle));
for (i­0; i<2 ;i++) {
for (j=0; j<N_HANDLES; j++) {

uint v ­ H2BIT_Get(bmp­>entry, (unsigned)*handleSpace[j]);
if (v !­ (uint)i)
jio.printf ("Bad RC for j='/,d, val='/.x\n■­,j,v) ;

170

V­ . ­ ' ' ■ ­­

byte v = .bbmp;
/. we indlude the upper zero in the selector ■/
uintf ield^selector ­ GET_BIT_FIELDC h, H_GRAIN_BITS­1 , H2B_FS_BITS+1);

mokAssertC field_selector'/,2 == 0) ;

mokAssertC field.selector <= 30) ;

CLEAR_BIT_FIELD(v, field.selector, 2);

{

void H2BIT Stuck(byte♦ entry, unsigned h)
}
/♦ entry address into the bitmap../
byte *bbmp = H2BIT_BYTE(entry, h);
byte v = *bbmp;
/* we indlude the upper zero in the selector */
uint f ield_selector ­ GET_BIT_FIELD(h, H_GRAIK_BITS­1, H2B_FS_BITS*1);

mokAssertCfi81d.selector*/.2 ­= 0);
mokAssertC field_selector<­30) ;

OR_BIT_FIELD(v, 3, field.selector);
*bbmp = v;

{

byte H2BIT Get(byte* entry, unsigned h)
}
/♦ entry address into the bitmap.*/
byte .bbmp = H2BIT_BYTE(entry, h);
byte v = ■.bbmp;
byte res;
/♦ we indlude the upper zero in the selector */
uint f ield^selector = GET_BIT_FIELD(h, H_GRAIN_BITS­1, H2B_FS_BITS+1);

mokAssertC field_selector7.2 == 0) ;
mokAssert C f ield.selector >" 30) ;

res ­■ GETJBIT_FIELD(v, field.selector, 2);
return res;

{

#ifdef RCDEBUG
*pragma optimize C "", off)

void forcelncSanityCheckCbyte ♦entry, unsigned h, int f)
}
int nextF ­ (f­=3) ? 3 : f+1;

mokAssertC H2BIT_GetCentry,h) == nextF);
if Cl==2) {
gcvar.dbg.nStuckCountersInCycle++;

{
{
*pragma optimize C "", on)
*endif

void H2BIT_IncCbyte♦ entry, unsigned h)
}
/■ entry address into the bitmap.♦/
byte .bbmp = H2BIT.BYTE (entry, h);
byte val = ♦bbmp;
uint f;
/. we indlude the upper zero in the selector ♦/
uint f ield.selector = GET_BIT_FIELDC h, H_GRAIN_BITS­J. H2B_FS_BITS+1);
mokAssertC field_selector'/.2 == 0) ;

mokAssertC f ield_selector <= 30) ;

f = GET_BIT_FIELDCval, field_selector, 2);
mokAssertC f<= 3);
if Cf<3) { /. STUCK remains STUCK ♦/
SET_BIT_FIELDC val, f+1, field.selector, 2);
*bbmp = val;

{
#ifdef RCDEBUG

_forceIncSanityCheclt(entry, h, f);
.endif
{

byte H2BIT_IncRVCbyte* entry, unsigned h)
} /. entry address into the bitmap.*/
byte .bbmp = H2BIT_BYTE(entry, h);
byte val = ♦bbmp;
uint f;
/. we indlude the upper zero in the selector ♦/
uint 1 ield_selector ­­ GET_B IT_ FIELD (h, H_GRAIN_BITS­1 , H2B_FS_BITS+J);

mokAssert (f ield_selector'/.2 == 0) ;

mokAssertC field.selector <= 30 } ;

f = GET_BIT_FIELD(val, field.selector, 2);
mokAssert (f<= 3);
if Cf<3) { /* STUCK remains STUCK ./
SET_BIT_FIELD(val, f+1, field.selector, 2);

169

{
mokA ssert(val >­ 1);
if (val==0)
HlBIT_Clear(entry, h);

else
HIBIT.Set (entry, h);

{

byte H1BIT_Get (byte. entry, unsigned h)
}
/* entry address into the bitmap../
byte .bbop ­ HlBIT_BYTE(entry, h);
byte v = *bbmp;
uintf ield.selector = CET_BIT_FIELD(h, H.GRAINJBITS, H1B_FS_BITS);
uint res = GET_BIT_FIELD(v, 1ield_aelector. 1);

>

/.
* Create a new 1­bit per handle BMP with the handles starting
■ at address 'rep_addr' and the handles area being 'rep_size'
. bytes long.
♦/
void HlBIT_Init (H1BIT BMP. bop, unsigned* rep addr, unsigned rep size)
}
/* each bit in the bimtap represents a handle, which
. takes 2­H_GRAIN_BITS bytes. So a byte in the
♦ bitmap repreesnts2" (H_GRAIN_BITS+3) bytes in the
* handle space.

./
bmp­>bmp_size = rep.size >> (H_GRAIN_BITS+3);
bmp­>bnip_5ize = RDUND_PAGE(bmp­>bmp_size) ;

bmp­>bmp = (byte*) mokMemReserve (NULL, bmp­>bmp_8ize);
mokHemCommit(bmp­>bmp, bmp­>bmp_size, true);
bmp­>rep_addr = (byte*)rep_addr;
bmp­> entry = bmp­>bmp ­ (((unsigned)rep_addr)>>H1B NGN BS.BITS);

>

Implementation of a 2 bit per handle BMP.

Layout of a handle:

| 31 514­312­01
I BSIFS| Z |

Where:

­ Z: these bits are always zero (because handles are 8­byte aligned).
­ FS: Field Select. Selects a 2­bit field in a byte 01 the

bitmap. The selector is 4 bits wide cause there are 4
possibilies.

­ BS: Word selector. relatively to the beginning of the heap, this is
the bitmap word selector.

/*
* Field selector bits. There are 16 options. If the
♦ selector value is s (with 0<=s<=15), then the field
♦ begins at bit s*2.
*/
*define H2B_FS_BITS 2
/*
* The rest of the handle selects
* the bmp word inside the bitmap.
*/
.define H2B_BS_BITS (32­(H_GRAIN_BITS+H2B_FS_BITS))
*define H2B_N0N_BS_BITS (32­H2B_BS_BITS)

*define H2BIT_BYTE(entry ,h) ((((uint)h)>>H2B_NDN_BS_BITS) + entry)

void H2BIT_Put(byte. entry, unsigned h, unsigned val)
}
/. entry address into the bitmap.1*/
byte .bbmp = H2BIT_BYTE(entry, h);
byte v =" *bbmp;
/. we include the third least bit in the selector (it is always zero). */
/* to get selection of 0,2,4,...,30, and not 0,115. ./
uint field_selector = GET_BIT_FIELD(h, H_GRAIN_BITS­1 , H2B_FS.BITS+1);

mokAssert(f ield_selector'/.2 == 0) ;

mokAssert(f ield.selector>■­30) ;

mokAssert(val <= 3);

SET_BIT_FIELD(v, val, field, selector, 2);
*bbmp = v;

{

void H2BIT_Clear(byte* entry. unsigned h)
}

/* entry address into the bitmap.*/
byte .bbmp = H2BIT_BYTE(entry, h);

168

End of file source listing

D.7 rcbmp.c and rcbmpJnline.h

These two files contain the declaration and implementation of a 1­bit­per­word and 2­bit­
per­word data structures which are used extensively by the (e.g., for the ZCT and reference
counters). Since the declarations are repeated in the definition, we bring here only the
listing of rcbmp.c.

Source listing for file rcbmp.c

/.
♦ File: rcbmp.c
* Aurhor: Yossi Levanoni
* Purpose: 1 bit per word and 2 bit per word bitmap implementation.
./
.ifdef RCNDINLINE

**include <stdio.h>

*include "rcgc.h"

*define PAGE_SIZE 4096
*define RDUND.PAGEU)(((u) t­)PAGE_SIZE­1)) ♦PACE.SIZE)

/.
. BIT FIELD MANIPULATION
./
*define MAXE_MASK(shift, length) (((K<(length))­l)<<(shift))
(defineGET.BIT.FIELD(w,shift ,length)(((u)iMAKE_MASK(shift, length))>>shift)

*define OR_BIT_FIELD Cm ,V , shift) do{ (w) = (y) I ((v)<<(shift)); I
}uhile(0)

*define CLEAR_BIT_FIELD)",shift , length) do{ (u) ­ (w) k)­KAKE_MASK(shift, length)) ; I
}vhile(0)

.define SET.BIT.FIELD(u,v. shift, length) do{CLEAR_BIT_FIELD(v, shift, length) ;I
0R_BIT_FIELD(w,v,5hift);\
}vhlle(0)

/.
* Specify (log) allignment of handles.
./
.define H_GRAIN_BITS 3
/ .
. Field selector bits. The next 3 bits select
. the bit inside the bmp word. there
. are 8 options.
./
*define H1B.FS.BITS 3

/ .
. The rest of the bits handle selects
* the bmp byte inside the bitmap.
./
.define H1B_BS_BITS (32­(H_GRAIN_BITS*lUB_FS_BITS))
.define H1B_NDN_BS_BITS (H_GRAIN_BITS<MB_FS_BITS)

.define HlBIT.BYTE(entry,h) (byte.) (((uint)h>>HlB_NON_BS_BITS) ♦ <byte*)entry)

void HlBIT_Set(byte. entry , unsigned h)
{
/* entry address into the bitmap.*/
byte .bbmp " HlBIT_BYTE(entry, h);
byte v = *bbmp;
uint f ield.selector . GET.BIT.FIELD(h, H_GRAIN_BITS , H1B_FS_BITS);
OR_BIT_FIELD(v, 1, field.selector);
.bbmp ­ v;

}

void H1BIT Clear(byte* entry, unsigned h)
<

/♦ entry address into the bitmap../
byte .bbmp = HlBIT_BYTE(entry, h);
byte v = .bbmp;
uint field.selector ­■ GET_BIT_FIELD(h, H_CRAIN_BITS, H1B_FS_BITS)i
CLEAR_BIT_FIELD(v, field.selector. 1);
.bbmp = v;

}

void H1BIT ClearByte(byte* entry, unsigned h)
{
byte .batup ­ HlBIT_BYTE(entry, h);
.bbmp = 0;

}

void HIBIT.Put (byte* entry, unsigned h, unsigned val)

167

{ dbgpersiat ;

struct {
uint nHSlThreads ;
uint nHS2Threads;
uiat nHS3Threads;
uint nHS4Threads;

uint nHSlCoopThreads;
uint nHS2CoopThreada;
uint nHS3C00pThreads;
uint nHS4C00pThxeads;

// update logs
uint nUpdateQbjects;
uint nUpdateChilds;
uint nActualUpdateObj ects ;

uint nActualUpdateChilda;
uint nUpdateDuplicate8;
uint nUpdate2ZCT;
uint nActualCyclesBroken;

// update logs, for reinforcement
uint nReinf orceObjects ;

uintnReinf orceChilds ; /
uint nActualReinf orceObjects ;

uint nActualReinf orceChilds ;

// create logs t
uint nCreateObjects;
uint nActualCreateObjecta;
uint nCreateDel;

// same checks, during RC updating
uint nUpdateRCObjects;
uint nUpdateRCChilds;
uint nUpdateRCDuplicates;
uint nCreateRCGbjecta;

// more RC updating...
uint nDetermined;
uint nUndet*rmined ;

// roots
uint nLocals ;

uint nGlobals;
uint nSnooped;
uint nActualSnooped;

// freeing
uint nlnZct;
uint nRecursiveDel;
uint nFreedlnCycle;
uint nRecursivePend;
uint nBytesAllocatedlnCycle;
uint nBytesFreedlnCycle;
uint nRef3A110catedInCycle;
uintnRef sFreedlnCycle ;

// tracing stuff
uint nTracedlnCycle;

// counters
uint nStuckCountersInCycle;

// updates
int nNevDbjectUpdatesInCycle;
int nOldDbjectUpdatesInCycle;

} dbg;
#endif // RCDEBUG
};

* GC Exports
*/
GCEXPORT void gcGetlnfoC uint .pUc, uint ♦pFc, uint *pAc, int *iGc };
GCEXPORT void gcBuffSlowConditionalLogHandleC ExecEnv *ee, GCHandle .h);
GCEXPDRT void gcBuff AllocAndLink(ExecEnv *ee, BUFFHDR *bh);
GCEXPORT void gcRequestSyncGC(void);
GCEXPDRT void gcRequestAsyncGCO ;

CCEXPORT void gclnit(int nHegs);
GCEXPDRT void gclnstallBlk(ExecEnv♦ ee);
GCEXPORT void gcUninstallBlk (ExecEnv­ ee);
GCEXPORT bool gcNonNullValidHandle(GCHandle .h);
GCEXPORT bool gcValidHandle(GCHandle .h);
GCEXPORT void gcThreadAttach (ExecEnv .ee);
GCEXPORT void gcThreadDetach(ExecEnv .ee);
GCEXPDRT void gcThreadCo ope rate (ExecEnv *ee);

extern struct BLKVAR blkvar;
extern struct CHKCDNV chkconv;

Send if /* _RCGC__ */

166

))define N_GC_STAGES 4

enum GCTYPE { GCT_TRACING=O, GCT_RCINC­1 };

*define !!,SAMPLES 4

struct GCVAR {
bool initialized;
bool gcActive;
int iCollectio□;
int reque 3tPhas e;
int collectionType;
iat nextCollectionType;

// triggering
bool memStress;
bool usrSyncGC; |
int gcTrigHigh; I
int runHist[2][N.SAMPLES]; I

ExecEnv* ee;
sys_thread_t* 5ys_thread;
int stage;
uint* createBuf f List ;

uint* updateBuffList;
uint* a no opBuffLi st ;
uint* deadThreadsCreateBuffList;
uint* deadThreadsUpdateBuffList;
uint* deadThreadsSnoopBuffList;
uint* deadThreadsReinf orceBuffList;
uint*reinforeeBuff List ;

GCHandle ** tempReplicaSpace;
H1BIT_BHPlocal sBcrp ;
H2BIT_BHP rcBmp;
H1BIT_BMP zctBmp;
BUFFHDRzctBuff ;

BUFFHDR nextZctBuff;
BUFFHDR tarpZctBuff;

' BUFFHDR uniqueLocalsBuff;
BUFFHDRpreAllocatedBuif era [2] ;

iiitnPreAllocatedBuff ers ;

GCHandle** zctStack;
GCHandle** zctStackSp;
GCHandle** zctStackTop;
sys_mon_t* gcMon;
sys_mon_t* requesterHon;
SAVEDALLDCLISTS *pListQfSavedAllocLists;

// chunk mgmt
uint nAllocatedChunkE;
uint nChunksAllocatedRecentlyByUser;
uintnUsedCh unks ;
uint nFreeChunks;

// settable options
struct {
int recommendDnlyRCGC;
int useOalyRCGC;
int useOnlyTracingGC;
int listBlkWorth;
int userBufiTrig;
Int initialHighTrigMark;
int louTrigDelta;
int raiseTriglnc;
int lowerTrigDec;
int uniPrio;
int multiPrio;

> opt;

Jtifdef RCDEBUG

struct {
// running totals
uintnObjectsAllocated;
uint nGbjectsFreed;

uintnBytes Allocated;
uint nBytesFreed;

uint nRefsAllocated;
uint nRefsFreed;

uint nGldObj ectUpdates ;

uint nNewObj ectUpdates ;

uint nLoggedUpdates;
uint nLoggedSlots;
uint nStuckCounters;

// from prev to curr cycle
uint nPendlnCycle;
uint nFreeCyclesBroken;
uint nDeadUpdateObjects;
uint nDeadUpdateChilds;
uint nDeadCreateGb j ects;
uiat nDeadReinf orceObjects;
uint nDeadReinf orceChilds;
uint nDeadSnooped;

165

1

/*.*,*.,*......**.....,,♦*,...***,..*...*,..*..*.....*.****.....*♦.*.*♦**/
/♦*♦■.# *♦*../

, /..,,.,...... ,,,,...♦......,......♦.,.,,,,./
/ < /
/"."" * " /

/. .♦♦...♦.♦...♦....♦.....♦..♦..............

. Buffer mgjnnt.

./
*define BUFFBITS 18
*define BUFFS I ZE Cl<<BUFFBITS)
*define BUFFMASK (BUFFSIZE­1)
*define LGWBUFFMASK (Cl<<16)­1)

*define BUFF_LINK_HARK 1U
*defineBUFF.HANDLE_MARK 2U
*define BUFF_ DUP_HANDLE.MARK 3U

*ifdef RCDEBUG
*define N.RESERVED.SLOTS 8

*else
*define N_RESERVED_SLOTS 4
*endif //RCDEBUG

*define LINKED_LIST_IDX 0
*define REINFORCE.LINKED_LIST_IDX 1

*define NEXT_BUFF_IDX 2
*define LAST_PGS_IDX 3
*ifdef RCDEBUG

.define ALLGCATING.EE 4
*define LDG_CHILDS_IDX 5
*define LOG_GBJECTS_IDX 6
*define USED.IDX 7
*endif

typedef struct BUFFHDR BUFFHDR;
struct BUFFHDR {
uint *pos;
uint ♦limit;
uint .start;
uint*currBuf f ;

>;

* Thread specific GC block

* It conatains the create, uodate and snoop buffer3.

. Also it contains the thread GC state and allocation lists.

./
struct GCTHREADBLK {
bool gclnited;
bool gcSuspended;
bool cantCoop;
bool snoop;
int stage;
iatstageCoope rat ed ;

BUFFHDR updateBuffer;
BUFFHDR createBuffer;
BUFFHDR snoopBuifer;

ALLOCLIST allocListst N.BINS];
*ifdef RCDEBUG
struct {

int nHefsAllocatedlnCycle;
int nNewDbjectUpdatesInCycl.;
int nOldObjectUpdatesInCycle;

{ dbg;
*endif // RCDEBUG

h
typedef struct SAVEDALLDCLISTS {
struct SAVEDALLQCLISTS .pNext;
ALLGCLIST allocLists[(J.BINS];

{ SAVEDALLGCLISTS;

. Global GC block

* GCHS4 is defined as zero so that the GC is in this state when the system
. is initialized.I */

M enum GCSTAGE < GCHS1=1, GCHS2=2, GCHS3=3, GCHS4=0, GCHSNQNE=0xl2345678};

I 164

/­ ­■ ­ :4S .;Vu ­■>■■,; /.■r

*define chkAllocSmalllnlinedC ee, binldx, ~res)\ t

do <\
(BLKOB>)__res ­ chkAllocSmalK ee, binldx);\

} uhile(O) I

.endif /. ! RCDEBUG ./ J

/........ ♦ .,,,,,",.,,,,,,♦,.,♦,*,,../
/ . /
/***.** *♦*.*/
/.♦.**. BITMAPS ♦♦..*/
/****** ♦.*.♦/
/,,,,,.,,,,.,.,..... /
/ /
/ <> . * /

/.♦.♦...*♦....*....♦♦.♦♦♦.♦*..♦...♦.*.....♦****♦*♦♦♦♦***..♦♦***.**♦♦...♦*.
*

. 1 Bit per handle BMP

typedef struct H1BIT.BMP H1BIT.BMP;
struct H1BIT.BMP {
byte *entry;
byte .bmp;
byte *rep_addr;
unsigned bmp size;

};

/... ..,.,,..,.....,..,.,...,.,. .,**,.....,to.. ..*.......*

* 2 Bits per handle BMP

./
typedef struct H2BIT.BMP H2BIT_BMP;
struct H2BIT_BMP {
byte *entry;
byte *bmp;
byte*rep_addr ;
unsigned bmp_size;

};

/.

* Include inline vert ions of bmp functions:

void HIBIT.Set (byte* entry, unsigned h);
void HlBIT_Clear(byte* entry, unsigned h);
void HlBIT_Put (byte* entry, unsigned h, unsigned val);
byte HlBIT_Get(byte* entry, unsigned h) ;

void HlBIT_Init(HlBIT_BMP* bmp, unsigned♦ rep_addr, unsigned rep_size);

voidH2BIT_Put (byte* entry, unsigned h, unsigned val) ;

void H2BIT_Clear(byte* entry, unsigned h);
void H2BIT_Stuck(byte* entry, unsigned h);
byte H2BIT_Get(byte* entry, unsigned h);
void H2BIT_Inc(byte. entry, unsigned h); .
byte H2BIT_IncRV(byte* entry, unsigned h);
byte H2BIT_Dec(byte" entry, unsigned h);
void H2BIT_Init(H2BIT.BMP. bmp, unsigned* rep.addr, unsigned rep.size 5;

Functions that have a return value have "Inlined" appended to their name
e.g HlBIT_GetInlined(entry, h, __res_var) where res_var is the *name*
of the variable onto which the result should be stored.
*/

#ifdef RCNDINLINE

Sdefine HlBIT_GetInlined(entry, h, __res_var)\
do n

__res_var = HIBIT.Get (entry, h);\
} while (0)

*define H2BIT_GetInlined(entry, h, __res_var)\
do {\

__res_var = H2BIT_Get (entry, h);\
} while (0)

*define H2BIT_IncRVInlined(entry, h, __res_var)\
do {\

__res_var = H2BIT_IncRV(entry, h);\
} while (0)

*define H2BIT_DecInlined(entry, h, __res_var)\
do {\

__res_var = H2BIT_Dec(entry, h) ;\
} while (0)

#else /. י RCNDINLINE */
*include "rcbmp, inl ine .h"

endif / RCNDIMLINE ./

163

ו

ו

*

. The list also contains a remembered set of blocks which have been observed to
* be full.

. Finally the list contains a lock and therefore it is padded to a total size
* of 256 bytes (assuming this is bigger or equal to the contention granule)
* in order to prevent false sharing with other partial lists.
./
structPARTIALLISTtag {

BlkAllocHdr .firstBlock;
word lock;
int nGbservedFull;
BlkAllocHdr ■observedFullt MAX. DBSERVED_FULL_PER_LI ST];
wordpad [64 ­ (MAX_OBSERVED_FULL_PER_LIST +3)];

{;

typedef structPARTIALLISTtagPARTI ALLIST;

* Chunk manager structure.
*

♦/
struct CHUNKVAR {' PARTI ALLIST partialLists[N.BINS];
int nBlocksInPartialList[N.BINS] ;
int nCacheEntries;
RLCENTRY .rlCache;
int nDbservedFull;
int nTrulyFull;
BlkAllocHdr. trulyFull [MAX OBSERVED FULL];

>;

♦ Chunk Manager exports

./
GCEXPORT int chkCountPartialBlocks(void);
GCEXPORT BLKDBJ. chkAllocSmall(ExecEnv. ee, unsigned binldx);
GCEXPORT void chkReleaseAllocLists(ExecEnv ♦ee);

.ifndef RCDEBUG

.define chkPreCollect(__o) I
do{\
word block1d;\
RLCESTRY .rlce;\
BLKOBJ .head;\
BLKOBJ .o ­ (BLKOBJ.) (__o) A

I
bloc kid = OBJBLDCKID(o);\
rice = tfchunkvar . rlCache [blockid 'I.chunkvar. nCacheEntries] ;\
head = rlce­>recycledList;\

I
if ((((yord)head) ­ ((word)o)) < BLOCKSIZE) <\
0­>next = head­>next ;\
head­>next = 0;\
head­>count ++;\
goto chkPreCollect_done_;I

>\
if (head) I
chkFlushRecycledListEatryC rice);\

t
o­>count = 1;\
0­>aext * o;\
rlce­>recycledList =. 0;\

__chkPreCollect_done_: /I
) ­hile(O)

.define ^allocFroojDwnedBlocklnlinedC allocList, _res)\
do {\

BLKOBJ .head ­ allocList­>head;\
if (head !­ ALLOC_LIST_NULL) {\

allocList­>head = head­>next;\
)BUDBJ.) res ■ head;\

{\
else {\
_,res = KULL;\

{ I
{ while (0)

.define chkA110cSoallInlined(ee, blnldx, res)\
do {\

ALLOCLIST .allocList ­ * (ee)­>gcblk.allocLists[(binldx) J/\
_allocFron!awnedBlockInlined(allocList, res);\
if (!.,res) {\

)BLKOBJ.) res ­ chkAllocSmalK ee, binldl);\
>\| } while (0)

I (else /. RCDEBUG ./

I 162

*defineFREE_BLOCKS () \ 1
)C(blkvar.nI.istsBlocks*gcvar.opt.listBlkWorth)/100)+bllcvar.nWildernessBlocks)

* Block manager exports
*/

GCEXPORT BlkAllocBigHdr* blkAllocRegionC unsigned nBytes, ExecEnv .ee);

****.********.*******.*****..********/

/**.*** .♦♦♦♦/
/****** CHUNK MANAGEMENT *****/
/*...** *****/

■ Recycled lists cache.

. The cache is simply an array of pointers to blocks. The blocks are

. linked in a circular list with the first element holding the number
* of elements in the list.

* Collisions are treated by flushing an entry. Meaning: adding the
* list to the block's free list.
./

/.
* this ration defines the number of blocks per recycled lists cache
. entry.
./
*define RLCACHE_RATIO 10

typedef struct RLCacheEnteryTAG RLCENTRY;

struct RLCacheEnteryTAG {
BLKOBJ ♦recycledList;

{;

* Partial Lists to Block Manager evacuation thresholds.

*/
*define MAX_DBSERVED_FULL_PER_LIST 2
*defineMAX.OBSERVED.FULL 4

♦ Allocation lists

* These structures are embedded in the threads EE for fast allocation.
. Each thread has an allocation list per bin size.
*
*/

typedef struct AllocListTAG ALLOCLIST;

.define ALLOC_LIST_NULL CCBLKGBJ*)0xl2baab21)

struct AllocListTAG {
BLKOBJ* head;
BlkAllocHdr. .llocBlock;
int binldx;

>;

*defineOutOfMemoryO mokAssertCO)
*define ALLDC_RETHY (20)

/ .,..,,.,♦,,..,. ""....

. Bins conversion tables.

</
*define N.BINS (27)

struct CHKCONV {
int szToBinldxt BLOCKSIZE];
int szToBinSizet BLOCKSIZE];
int binSize[N.BINS];
int binToObjectsPerBlock[N_BIK3];

/.... ♦.* ..

. Partial lists.

. A partial list is a list of blocks uhich have some free chunks on them. The

. pages are linked in a doubly linked list whose head is in this structure.

* There is a list per each bin size.

161

ו

struct BlkListHdrTAG {
BlkRegionHdr .nextRegion;
BlkListHdr .nextList;■ volatile int listRegionSize;
volatile word StatusPrevListID; .

{;

struct BlkRegionHdrTAG {

BlkRegionHdr .nextRegion;
BlkRegionKdr .prevRegion;
volatile iiit regionSize; ;

volatile word StatusUnused;
{;

struct BlkAnyHdrTAC <

volatile word wO;
volatile word wl;
volatile word v2;
volatile union {
volatile byte b[4] ;

volatile unsigned short 8 [2] ;

volatile word w;
>u;

>;

/.
. Utility macros
./

/*
.p is a pointer to AllocPgHdr. Set and get the chunk size
*/
.define bhGet_bin_idx(p) (Clot)(((p) ­>StatusLockBinidx) JtBINIDXMASO)

*define bhSet_bin_idx(p,idx) do i\
word v; \
mokA3Bert((idx)< N.BINS); \
v = p­>StatusLockBinidx; I
v ­ v tf ­BINIDXMASK; I
v =■v I idx; I
p­>StatusLockBinidx = v; \

{while (0)

/.
* p is a pointer to BlkRegionHdr. Set and get the previous list IS.
*/
*define bhGet_prev_region_list(p) I

)(BlkLi8tHdr*)4blkvar.allocatedBlockHeaders[(p) ­>StatusPrevList ID k PREVLISTMASK])

*define bhSet_prev_region_list(p,pBlkListHeader) I
do {\
word idx; I
word v; I
idx ­ (pBlkListHeader) ­ (BlkLiatHdr­)blkvar. allocatedBlockHeaders; I
mokAssert (idx < (word)(blkvar.nBlocks+2)); I
v = p­>StatusPrevListID; I
v­v tf ­PREVLIST7USK; I
v = v | idx; I
)p) ­>StatusPrevListID­­v; \

>while (0)

/.
* Set and get the status of any page
./

define bhGet.status(p) {((BlkAnyHdr)p)­>u.b[3])
*define bhSet_status(p,s) do{ bhGet_status(p)=(s); >wh11e(0)

/**mm.***.*.**.***

. Block manager structure

./
*define H_QUICK_BLK_MGR_LISTS 5

struct BLKVAR {
BlkListHdr* pRegionLists;
BlkRegionHdr* quickLists[N_QUICK_BLK.MGR.LISTS];
byte. heapStart;
byte* heapTop;
BlkRegionHdr. heapTopRegion;
BlkRegionHdr* wildernessRegion;
wordheapS z ;

word nBlocks;
BlkAllocHdr .blockHeaders;
BlkAllocHdr* allocatedBlockHeaders;
sys_mon_t* blkMgrMon;
int nWildernessBlocks;
int nListsBlocks;
int nAl1oc at edBlo cks ;

>;

160

state from BLKxxx to ALLOCBIG till the object is logged in the allocating ■

thread create log. This prevents sweep from reclaiming such an object
just after it has been allocated.

"size" is the size of this large object, in blocks. "

Page header format for INTERNALBIG:

Word 0: < startBlock(32) >

Word 1: < unused (32) >

Word 2: < unused (32) >

Word 3: <­status (8) ­­>< unused(24) >

Where "start page" is the address where this large object begins.

THIS FORMAT IS GUARANTEED ONLY IN DEBUG MODE.

Page header format for BLK:

Word 0: < nextRegion(32) >

Word 1: < prevRegion(32) >

Word 2: < size (32) >

Word 3: <­status (8) ­ >< unusedC24) >

Next and prev are linked list pointers. size is the size in pages of the
regions.

Page header format for BLKLIST:

Word 0: < firstRegion >

Word 1: < ­ nextList (32) >

Word 2: < size (32) >

Word 3: <­­ status(8) ­­>< prevListlDX (24) >

"firstRegion" is a pointer to a BLK block, the first on a linked list
of regions with the same size.

"nextList" points to the next list header (of type BLKLIST). The pointer
to the previous list is encoded in the field "prevListlDX" as an index

/ ♦

♦ Field selectors
./
*define STATUSHAKOxff 000000
.define LQCKMASK OxOOffOOOO
Kdefine BINIDXMASK OxOOOOffff
*define PREVLISTMASK OxOOffffff

typedef struct BlkAllocHdrTAG BlkAllocHdr;
typedef struct BlkAllocBigHdrTAG BlkAllocBigHdr;
typedef struct BlkAllocInternalHdrTAG BlkAllocInternalHdr;
typedef struct BlkRegionHdrTAG BlkRegionHdr;
typedef struct BlkListHdrTAG BlkListHdr;
typedef struct BlkAnyHdrTAG BlkAnyHdr;

struct BlkAUocHdrTAG {
BlkAllocHdr .nextPartial;
BlkAllocHdr .prevPartial;
volatile BLKOBJ ♦freeList;
volatile word StatusLockBinidx;

};

struct BlkAllocBigHdrTAG {
volatile word allocInProgress;
word unused2;
volatile int blobSize; :
volatile uord StatusUnused;

}; 1

struct BlkAllocInternalHdrTAG <

BlkAllocBigHdr .startBlock;
wordunused 1;
word unused2;
volatile word StatusUnused;

};

159

* least 8 bits vide in order to allow 4GB regions.

. Since in pracrice we use blocks which are at least 4KB big, thi3 is
* not a problem.

* Additionally, we store the size of chunks in a block on a 16 bit
/ * entity. Thus, a block cannot be much bigger than 64KB or we'll

. have to encode this field etc.
*/
*define HIKBLOCKBITS 8
.define MAXNGHBLOCKBITS (32­MINBLOCKBITDS)

.define MAXBL0CKB1TS 16

.define MAXGBJPERBLOCK (BLDCKSIZE/MINOBJ)

/.
. Actual block size. This coincides with the PC page size.
./
.define BLDCKBITS (14)
.define NDNBLOCKBITS (32­BLDCKBITS)
.define BLOCKS I ZE (1<<BLOCKBITS)
.define BLDCKMASK ((1<<BLOCKBITS)­1)

/ .
* Size of maximal chunk, Allocations larger than this size
♦ are given full blocks.

.define MAX_CHUNK_ALLOC (BLOCKSIZE/2)

/. address of first object on the block ♦/
.define OBJPAGE(o) ((OBJECT*) (((unsigned)o) tf) ­­BLDCKMASK)))

/. offset of object in the block */
.define OBJDFFSET(o) (((unsigned) (o)) t BLDCKMASK)

/. number of block relative to address 0 ./ ■

.define OBJBLOCKID(o) (((unsigned) (0))>>BLDCKBITS)

/. Object's block header */
*define DBJBLOCKHDR(o) (tfblkvar.blockHeaders[GBJBLOCKID(o)])

/* convert from block header to the block's address */
.define BLOCKHDRDBJ(ph) (CBLKOB>)(((ph)­blkvar.blockHeaders)<<BLDCKBITS))

/.♦.... BLOCK MANAGER aa.../
/.♦.*.* **..*/

+ /

/.
* Page States
*/

.define BLK 1 /* In the block manager */

.define BLKLIST 2 /* " " */

.define CHUNKING 3 /. Just out of the block manager, going to be OWNED ./

.define ALLOCBIG 4 /♦ Multiple­blocks object ./

.define INTERNALBIG 5 /* In the middle of ALLDCBIG, only in DEBUG */
**define OWNED 6 /* Chunked block which is owned by some thread ./
.define VDIDBLK 7 /* Chunked block, allocation exhausted. ./
.define PARTIAL 6 /* Chunked block. sitting in a partial blocks list */
.define DUWMYBLK 9 /* Temporary state */

.define LASTMGRSTATE BLKLIST

/.
Page header format for: OWNED, VOIDPG, PARTIAL.

Word 0: < nextPartial(32) >

Word 1: < prevPartal(32) >

Word 2: <­ freeList(32) >

Word 3: <­­status (8) ­­><­ lock(6)­ >< binidx(16) >

In this case, the second word in the object pointed by "freeList"
contains the number of objects in the list. recycledList is cached
(see below), the number of elements is held in the same manner at the
second word of the first element of the list.

Page header format for ALLDCBIG:

Word 0: < AllocInProgres3(32) >
Word 1: < unused(32) >
Word 2: < ­ size(32) >
Word 3: <­­status (8)­ >< unused (24) >

"AllocInProgress" is true in the interval between the changing of the

158

(

*include <assert h>
*include <stdio.h>
.include*:windows. h>

.include"monitor. h"

//Kifdef DEBUG

.define RCDEBUC
//.endif

.define RCVERBOSE

.define RCNOINLINE

.define GCEXPORT

.define GCFOTIC static

.ifdef RCDEBUG

.define RCDEBUGVJR 1

.else

.define RCDEBUGVAX 0

.endif

/
*

* Forward declarations for external structures
*/
*define DECSTRUCT(T) Btruct T; typedef struct T T;

DECSTRUCT(BUFFKDR);
struct execenv;
typedef struct execenv ExecEnv;
typedef bool_t bool;

typedef struct GCHandle {

unsigned *obj;
struct met hodtable *methods;
unsigned *logPos;

*ifdef RCDEBUG

unsigned statusI
*endif
{ GCHandle ;

*define false FALSE
*define true TRUE

,__ */
*define N.SPINS 4000

/,.,...............*,,.,.........,.,.,.".....,,.....,.............,..

'. Some primitive data structures .

typedef unsigned word;
typedef unsigned uint;
typedef unsigned char byte;
typedef unsigned short PAGE ID;
typedef unsigned short PAGECNT;

' . An object (chunk of memory) as the chunk manager sees it.
*/

typedef struct BLKQBJtag BLKOBJ;

struct BLKOBJtag {

int count;
int unused;
BLKGBJ *next;

>;

*

* Gbject and page sizes.

. We assume that objects are at least 8 bytes aligned. This leaves 3
* bits for playing.

. The minimal object size is 16 bytes because ve have (at least) two

. words overhead per object: class pointer and log pointer. In the

./
*define OBJGRAIN 8
*define GBJBITS 3
*deiineMINOBJ 16
*define GBJMASK (­(GBJGRAIN­1))
/*
. Minimal size of a page for the design to work: 256 bytes.
* The reason for this is that we sometimes (in BLKLIST blocks) keep
. a block identifier as a 24 bit entity. Thus, a block has to be at

157

GCEXPORT void gcPutstatic(ExecEnv .ee, struct fieldblock .fb, JHandle .val)
{
sysA ssert(f b);
sysAssert(ValidHandle(fb­>clazz));

}

GCEXPORT void gcPutf ield(ExecEnv *ee, JHandle .h, int offset, JHandle .val)
<

Clas sjava_lang_Class *ucb;
JHandle .*slot;
GCHandle ._h;

9
.ifdef RCDEBUG

{
Class java_lang_Class .ucb;

mokAssertCh) ;

mokAssert(isKandle(h));

ucb ­ unhand(obj^classblockCh));

mokAssert(ucb­>is_ref erence [offset]);
mokAssert (!val || isHandle(val));

>

Sendif

slot =C JHandle*.) (((uint*)unhand (h)) + offset) ;

gcupdateC ee, n, slot, val);
>

GCEXPORT void gcAastore(ExecEnv .ee, ClassArrayOfObject .arr, int offset, JHandle .val)
i
JHan die ..slot;
JHandle .arrh;

> Jfifdel RCDEBUG
ClassClass .cb;
long n;

#endif

arrh = gcRehand(arr);

.ifdef RCDEBUG
mokAssert (arr);
mokAssert C arrh);
mokAssertC isHandle(arrh));

#endif

slot = tarr­>body[offset] ;

#ifdef RCDEBUG
mokAssert(!.slot I! isHandle(*slot));
mokAssert C !val I I isHandleCval));
mokAssert(obj_f lags(arrh) == T.CLASS);

n ■* obj_length(arrh) ;

mokAssert (offset < n);
mokAssert (offset >=0);

cb ­ CClassClass*)arr­>body[n];

' mokAssert (cb);
mokAssert (isHandle(cb));

#endif

gcupdatearray (ee, arrh, slot, val);
}

End of file source listing

D.6 rcgc.h

rcgc.h contains declarations and macros which are needed by the rest of the JVM. In par­
ticular, it defines the GC blocks which are associated with threads, layout of objects and
page headers and the definition of frequently used functions that were turned into macros.

Source listing for file rcgc.h

/.
. File: rcgc.h
♦ Author: Mr. Yossi Levanoni
. Purpose: Publicly visible interface to garbage collection and allocation.
./
/**.***********.***** Initialization .****.*..***********.***********/
#ifndef __RCGC__
*define __RCGC__

156

else {
ee­>gcblk .dbg .nOldObject Updates InCycle++ ;

}
}

}
.endif // RCDEBUG

ee­>gcblk.cantCoop = true;
if Oh­>logPos> {

gcBuffSlovCondit ionalLogHandle(ee, (GCHandle*)h);
}
.slot = newal;
if (newal Atf ee­>gcblk . snoop) {

BUFFHDR .bh = tee­>gcblk.snoopBuffer;
gcBuf fLogWordUncheckedC ee, bh, (uint)nevval);
ee­>gcblk.cantCoop => false; I
gcBuf fReserveWordC ee, bh); I

else {

ee­>gcblk.cantCoop ­ false;
}

.ifdef RCDEBUG
delta = GetTickCountO ­ delta;
if (delta > deltaMax) {
deltaHax = delta;
dbgprnt 0. " ...UPDATE(off set­'/.d)delta­'/.d\n" , (char­)slot ­ (char<)h, delta);

>

#endif
}

void gcDo_gcupdate_ array (ExecEnv *ee, void ._arrayh, void♦ slot, void . 31/ת1פם (

{
gcup dateC ee, _arrayh, _slot, _newval);

>

void gcDo_gcupdate_jvmglobal(ExecEnv* ee, void. .global, void *,newval)
}
#ifdef RCDEBUG
static int deltaHax = ­1;
int delta = GetTickCountO ;

.eodif

GCHandle .*slot = (GCHandle**)_global;
GCHandle *newval = (GCHandle*) ,newval;
3yaAssert{ !newval I| ValidHandleCnewval));

ee­>gcblk.cantCoop = true;
"slot = newval;
if (newval tt ee­>gcblk.snoop) {

BUFFHDR *bh = tfee­>gcblk.snoopBuffer;
gcBuf fLogWordUncheckedC ee, bh,(uint) newval);
ee­>gcblk.cantCoop = false;
gcBuffReserveWord(ee, bb);

{

else {
ee­>gcblk.cantCoop = false;

{

itifdei RCDEBUG

delta = GetTickCountO ­ delta;
if (delta > deltaHax) {
deltaMax = delta;
dbgprn(0, " *** UPD GLOBAL delta='/.d\n" , delta);

{
#endif
{

void gcOo scupuate c lass(£]xe cEnv* gg , (,^^ssClass* cb , vo Ld * ^ 1 ot t vo id * newval f

GCHa ndle ..slot . (GCHandle")_slot;

sysAssert(ValidHandle(cb));
sysAssert (!.slot II ValidHandle('slot));

gcupdate_jvmglobal C ee . slot , _newal);
{

voidgcDo_gcupdate_static (

ExecEnv. ee,
struct fieldblock. fb.
void ._slot,
void* aewal

(

}
GCHa ndle ..slot . (CCHandle")_slot;
char isig ­ fieldsig(fb)[0];
if (isig >­ SIGNATURE_CLASS I I isig " SIGNATTJRE.ARRAY) (
sysAssert (!.slot II ValidHandle(*slot));
gcupdate.jvmglobalC ee, slot, _newval);

{
else {
.slot = (GCHandle*) newval;

>
>

155

<

CCEXPORT void gcThreadDetach(ExecEnv* ee)
}
3ya_ thread_t *self = EE2SysThread(ee);
SAVEDALLOCLISTS ♦3al;

sal " (SAVEDALLOCLISTS­)sysHalloc(sizeof (SAVEDALLOCLISTS));

mokAssert (sizeaf (5al­>allocLists) =■= sizeof (ee­>gcblk.allocLists));
mokAssert (sizeof (sal­>allocLists) == sizeof(ALLOCLIST)*N.BINS);

memcpy(sal­>allocLists, ee­>gcblk.allocLists, sizeof (ee­>gcblk.allocLists));

QUEUE_LOCK(self);

sal­>pNext = gcvar. pListOfSavedAllocLists;
gcvar. pListOf SavedAllocLists = sal;

#ifdef RCDEBUG
gcvar. dbgpersist.nDeadUpdateObjects +=
ee­>gcblk.updateBuffer.start[LDG_OBJECTS. IDX] ;

gcvar.dbgpersist.nDeadUpdateChilds +­
ee­>gcblk.updateBuffer.start[LOC.CHILDS.IDX];

gcvar.dbgpersist.nDeadCreateObjects +=
ee­>gcblk.createBuffer.start[LOG. OBJECTS. IDX] ;

gcvar.dbgpersist.nDeadSnooped +■
ee­>gcblk . snoopBuffer .start [LOG_OBJECTS_IDX] ;

#endif

/* link the create buffer into a list for dead threads */
*ee­>gcblk.createBuffer.pos = 0;
ee­>gcblk. createBuffer. start [LAST.POS.IDX] =(uint)ee­>gcblk. createBuffer. pos;
ee­>gcblk .createBuffer . start [LINKED.LIST.IDX] =
)uint) gcvar. deadThreadsCreateBuffList;

r gcvar. deadThreadsCreateBuffList = ee­>gcblk.createBuffer.start;

/. do the same for the update buffer */
*ee­>gcblk.updateBuffer.pos = 0;
ee­>gcblk.updateBuffer.start[LAST_PDS_IDX] ­ (uint)ee­>gcblk.updateBuffer.pos;
ee­>gcblk. updateBuffer. start [LINXED_LIST_IDX] =
)uint)gcvar.deadThreadsUpdateBuffList;

gcvar .deadThreadsUpdateBuffList * ee­>gcblk.updateBuffer.start;

/ * do ^he 3ame f or ^Qg si^QQp Qyff eir 4/
*©e­>gcblk .snoopBuffer.pos = 0\
ee­<gcblk.snoopBuffer.start[LAST_POS_IDX] = (uint)ee­>gcblk.snoopBuffer.pos;
ee­>gcblk.snaopBuffer. start[LI NKED_LIST_IDX] = (uint) gcvar .deadThreadsSnoopBuff List ;
gcvar. deadThreadsSnoopBuf f List = ee­>gcblk.snoopBuffer.start;

/. If we're between HS1 k HS2 then also link the update buffer
. into the dead threads reinforce list
*/
if (ee­>gcblk. stage == GCHS1) {

#ifdef RCDEBUG
gcvar. dbgpersist.nDeadReinf orceObJects +=
ee­>gcblk.updateBuffer. start[LOG.DBJECTS.IDX];

gcvar.dbgpersist.nDeadReinf orceChilds +=
ee­>gcblk.updateBuffer .start [LOG_CHILDS_IDX] ;

*endif
ee­>gcblk .updateBuffer .start [REINFORCE_LINKED_LIST_IDX] ­
)utnt)gcvar.deadThreadsReinf orceBuf fList;

gcvar. deadThreadsReinf orceBuf fList ­ ee­>gcblk.updateBuffer.start;
{

ee­>gcblk.gclnited = false;

QUEUE_UNLOCK(self);
>

void gcDo_gcupdate(ExecEnv .ee, void . h, void ♦ slot, void *_newval)

}
#ifdef RCDEBUG
static int deltaMax = ­1;
int delta = GetTickCountO ;

#endif

GCHandle *h = (GCHandle*)_h;
GCHandle **slot = (GCHandle**)_slot;
GCHandle *neuval = (GCHandle♦) _newval ;

Jtifdef RCDEBUG
sysAssertf h);
sysAssert(ValidHandle(h));
sysAssert(!*slot tI ValidHandle(*slot));
sysAssert(!newval [I ValidHandle(newval));

}
uint *p = h­>logPos;
if Cp) {
uint val = .p;
uint type = valcf3;
sysAssert((valtf"3) == (uint)h);
if (type==0) { // create log
ee­>gcblk.dbg.nNewObjectUpdatesInCycle♦♦;

154

­ ­ ­ ­ . ■ . ^­ Jt

. Otherwise, we choose priority"9 which translates into Win32

. "highest priority"

./
if CsysGetSysIn100­>isMP)
priority * gcvar.opt.multiPrio ;

else
priority = gcvar.opt.uniPrio;

createSystemThread)"YLRC Garbage Collector (YEH!)", 9, 10*1024, gcThreadFunc, NULL);
}

GCEXPDRT void gcThreadCooperate(ExecEnv *ee)
{
int gcStage;

mokAssertC !ee­>gcblk.cantCoop);
ee­>gcblk. cantCoop = true; I
gcStage = gcvar. stage; I
if (ee­>gcblk. stage == gcStage) goto __exit; I

if (ee­>gcblk.stageCooperated =■ gcStage) goto __exit; I

mokAssert(ee­>gcblk.stageCooperated == GCHSNOME);
switchCgcStage) {
case GCHS1:
mokAssert (ee­>gcblk. stage " GCHS4);
goto ­exit;

case GCHS2:
mokAssert (ee­>gcblk. stage =* GCHS1);
goto exit;

case GCHS3:
mokAssert (ee­>gcblk. stage == GCHS2);
_HS3Cooperate (ee);
goto exit;

case GCHS4:
mokAssert (ee­>gcblk. stage ­■= GCHS3);
goto __exit;

}

__exit:
ee­>gcblk.cantCoop = false;

>

GCEXPDRT void gcThreadAttach (ExecEnv. ee)
{
int i, Stage;
sys_thread_t *self = EE2SysThread (ee); 1

#ifdef RCDEBUG
dbgprnC 0, "gcThreadAttach starting for ee='/,x thread=*/,x\n" , ee, self);

.endif

ee­>gcblk.cantCoop = false;

bufflnitC ee, tee­>gcblk. updateBuf f er);
bufflnitC ee, tee­>gcblk. createBuf f er);
bufflnitC ee, tee­>gcblk. snoopBuff er);

Kifdef RCDEBUG

dbgprnC 2, "QUEUE.LOCK Xx\n". self);
#endif

QUEUE.LOCKC self);
.ifdef RCDEBUG
dbgprnC 2, '­QUEUE.LOCK 'U took the lock\n" , self);

#endif

<

SAVEDALLOCL.ISTS ­sal = gcvar. pListGf SavedAllocLists ;

if (sal) {
gcvar. pListDfSavedAllocLists = sal­>pNext;
memcpy(ee­>gcblk.allocLists, 8al­>allocLists, sizeof (sal­>allocLiBts));
sysFree(sal);

>
else {
for (i=0; KN.BIKS; i++) {

ee­>gcblk.allocLists[i] .binldx = i;
ee­>gcblk. allacLists [i] .head = ALLDC_LIST_NULL;

}

>

}

stage =gcvar. stage;
ee­>gcblk.stageCooperated ­ GCHSNONE;
ee­>gcblk. stage = stage;
if (ee­>gcblk. stage != GCHS4)
ee­>gcblk. snoop = true;

else
ee­>gcblk. snoop = false;

ee­>gcblk.gclnited = true;
QUEUE.UKLOCKC self);

#ifdef RCDEBUG
dbgprnC 0, "gcThreadAttach ee=Xx stage=y,d\n", ee, stage) ;
dbgprn(0, "gcThreadAttach ended for ee='/,x self=Xx\n", ee, self) ;

Sendif

153

*TimeAdjustmentDisabled // disable option
};

#ifdef RCDEBUG

dbgprn(0, "TimeAdjustment='/,d,Time Incremented, TimeAdjustmentDisabled='/,d\n" ,
TimeAdjustment , // size of time adjustment
Tiaelncrearent , // time between adjustments
TimeAdjustmentDisabled // disable option
);

#endif

f = fopen("gcopt.txt", "r");
if Of) {
jio.printf ("GCDPT.txt could not be opened\nn);
exit(­l);

>
for (;;) {
char buff[200];
char opt[100];
int val;

if (! fgets(buff, sizeof (buff) , f)) break;
if (buff[0[=='#'(continue; /♦ remark line */
if (2 != sscanfC buff, "'/,a 1/.d" , opt, cfval)) {
jio.printf ("Error reading GCGPT.TXT\n");
exit(­l);

}
*define CHECKGCDPT(optname) if (strcmp(opt , #optname)==0) {\

gcvar .opt. optname = val;\
; jio.printf ("GCDPT set: Is = 7,d\n" , #optname, val);\

} else do {} while (0)
CHECKGCDPT(recomniendDnlyRCGC) ;

CHECKGCDPT (useOnlyTracingGC) ;

CHECKGCDPT(useOnlyRCGC);
CHECKGCDPT(1 istBlkWorth) ;

' CHECKGCOPT (userBuf fTr ig) ;

CHECKGCOPT(init ialHighTr igHark);
CHECKGCOPT(1owTrigDe Ita) ;

CHECKGCDPT (raiseTriglnc) ;

CHECKGCDPT (1 ouerTr igDec) ;

CHECKGCDPT(uniPrio);
CHECKGCDPT(multiPrio);
j io_printf ("GCDPT unknown option V.s\n" , opt);
exit(­l);

>
fclose(f);
/* Init blocks manager */
blklnit(HEAP.SIZE >> 20) ;

/* Init chunks manager */
chklnit(HEAP.SIZE >> 20) ;

gcvar. stage = GCHS4;
gcvar. createBuff List = MULL;
gcvar. updateBuffList = NULL;
gcvar. snoopBuf fList = NULL;
gcvar. deadThreadsCreateBuf f List = NULL;
gcvar. deadThreadsUpdateBuff List = NULL;
gcvar . deadThreadsSnoopBuf f List = NULL;
gcvar. reinf orceBuf f List = NULL;

gcvar. tempReplicaSpace = (GCHandle**)mokMemReserve(NULL, BUFFS I ZE);
mokMemCommit((char*)gcvar. tempRepl icaSpace , BUFFS IZE, false);
gcvar .zctStack = (GCHandle"(mokMemReserve (NULL, ZCT_SIZE);
arokMemCommit((char*) gcvar .zctStack, ZCT_SIZE, false);
gcvar. zctStackTop = (GCHandle**) (ZCT.SIZE +(char­)gcvar. zctStack);
gcvar. zctStackSp = gcvar. zctStack;

HlBIT_Init(tfgcvar.localsBmp, (uint*)blkvar.heapStart , HEAP.SIZE);
H2BIT_Init(tfgcvar .rcBmp, (uint*)blkvar.heapStart, HEAP.SIZE);
HlBIT_Init(tfgcvar.zctBmp, (uint*)blkvar. heapStart, HEAP.SIZE);

buff Init (gcvar.ee, tfgcvar.zctBuff);

gcvar. gcMon =(3ys_mon_t*1)sysHalloc(sysHonitorSizeof()) ;
gcvar.requesterHon = (sys_mon_t*) sysMalloc (sysMonitorSizeof ()) ;

sysMonitorlnit (gcvar. gcHon);
sysHonitorlnit(gcvar.requesterMon);

gcvar.collectionType = GCT.RCING;

gcvar. gcTrigHigh = (gcvar.opt.initialHighTrigMark ♦ blkvar.nBlocks)/100;
}

GCEXPDRT void gc Start GCThread(void)
{
int priority;

/*
* If we're on an HP then the GC thread should be alloted a processor
* of its own when it needs it. So we select the priority to be
♦ 10 which is translated in threads_md.c into Win32 time critical
+ priority.
*

152

<

HANDLE hGCEvent, hMutEvent;

void gcThreadFunc(void *par am)
}
gcva r.ee = EEC);
gcvar. sys_thread = EE2SysThread (gcvar.ee);

fifdef RCDEBUG

dbgprnC
0,
"GC Thread starting ... ee='/,x sys_thread3'/,x\n" ,
gcvar.ee,
gcvar .sys.thread);

.eodif
gcvar.initialized = true; I

fort;;) {
PulseEventC hMutEvent); I

#i1def RCDEBUG
dbgprn C 0, " *.*.**.....**** GC ­ sleeping C/,d)\n", gcvar. iCollection);

.eadif
WaitForSingleObject{ hGCEvent, INFINITE);

.ifdef RCDEBUG
jia.printfC ­ *************** GC ­ wakeup C­/.d)\n",gcvar. iCollection);
fflushC stdout);

#endif
gcvar. nChunksAllocatedRecentlyByUser = 0;
­gcO;

Kifdef RCDEBUG
dbgpr□ C 0_ " **.**..****..** GC ­ done C/.d)\n" , gcvar. iCollection);

ftendii
gcvar .!Collection♦♦;

{
{

/********,****... USER REQUESTS *♦****,***♦**♦♦***/
*****.*******/

GCEXPGRT void gcRequestSyncGC(void)
}

sys_ thread.t *self ­ sysThreadSelf C) ;

int uasPhase *=gcvar. iCollection;
int waitT = 100;

#ifdef RCVERBOSE
jio_printf ("SYNC GC thread='/,x (iCollection=7.d) stress­'/dNn1■ ,

self,
vasPhase,
gcvar.memStress) ;

filusht stdout);
#endif
gcvar.usrSyncGC " true;
SetEvent(hGCEvent);
uhile (was Phase == gcvar.iCollection) {
UaitForSingleDbjectC hHutEvent, waitT);
waitT .­ 2;

#ifdef RCDEBUG
dbgprn (0,

"SYNC GC thread­'/^ GGT GC LOCK CiCollect='/,d)\n",
self,

ttendif
{

Jtifdef RCDEBUG
dbgprn C 0. "SYNC GC thread=/U DONE (iCollect=y.d)\n\ self,gcvar. iCollection);

#endif
{

GCEXPORT void gcRequestAsyncGC (void)
}
if(!gcvar. gcActive) {

Set Event (hGCEvent);
{

{

/.­ Init ■►/

static void gclnitdnt nMegs)
}
DWOR D HEAP^SIZE ­ __nMegs << 20;
DWORD ZCT.SIZE = HEAP.SIZE/OxlOO;

FILE*f ;

DWORD TimeAdjustment; // size of time adjustment
DWORD Timelocrement; // time between adjustments
BOOL TimeAdjustmentDisabled; // disable option

hGCEvent = CreateEventC NULL, FALSE, FALSE, NULL);
hMutEvent = CreateEventC NULL, FALSE, FALSE, NULL);

GetSystemTimeAdjustmentC
iTimeAdjustment, // size of time adjustment
tfTimeIncrement , // time between adjustments

151

gcvar. nextZctBuf f .pos = MULL;

end = GetTickCountO;
delta = end ­ start;

_updateRunHi3t(delta);

.ifdef RCDEBUG

if {gcvar.collectionType == GCT_RCING) {

gcvar. dbgpersist .nPendlnCycle = gcvar. nextZctBuf f .start[LOG_DBJECTS_IDX];
mokAssert(gcvar .dbg .nFreedlnCycle == gcvar.dbg.nlnZct + gcvar.dbg.nRecursiveDel);

Sendif //RCDEBUG

I * OK, now see where we stand and set the strategy for the
[* next cycle.

int nNowFree, nLowMark;
int prevTrig;
bool failed, gotlntoSync;

nNowFree = FREE.BLDCKSO;
nLouHaxk =gcvar. gcTrigHigh + (gcvar.opt.lowTrigDelta ♦ blkvar. nBlocks)/100;

failed = nNovFree < nLowHark;
gotlntoSync ­gcvar. memStress;

jio.printf)''*♦** high='/.d low='/.d fxee='/A was=7.d failed='/.d sync=*/.d\n" ,
gcvar. gcTrigHigh,
nLowHark,
nNowFree,
nWasFree,
failed,
gotlntoSync
);

fflushC stdout);

prevTrig =gcvar. gcTrigHigh;

if (gcvar. collectionType ­­ GCT_TRACING) {
if (gotlntoSync kk failed) {
gcvar .nextCollectionType = GCT.TRACING;
gcvar. gcTrigHigh ­= Cgcvar.opt.raiseTriglnc ♦ blkvar.nBlocks)/100;

}
else if CgotlntoSync kk !failed) {
gcvar .nextCollectionType = GCT.TRACING;
gcvar .gcTrigHigh += Cgcvar.opt.lowerTrigDec ♦ blkvar. nBlocks) /100 ;

}
else if (!gotlntoSync kk failed) {
gcvar. nextCollectionType = GCT.TRACING;
gcvar. gcTrigHigh ­= (gcvar.opt.raiseTriglnc . blkvar. nBlocks) /100 ;

}
else /* (!gotlntoSync kk .failed) */ {
gcvar.nextCollectionType = recommendCollectionMethodO;

}
}
else /*(gcvar.collectionType == GCT_RCING)*/ {
if (gotlntoSync kk failed) {

gcvar. nextCollectionType = GCT.TRACING;
}
else if (gotlntoSync kk !failed) {
gcvar.nextCollectionType = GCT TRACING;

>

else if (!gotlntoSync kk failed) {
gcvar.nextCollectionType = GCT.TRACING;

}
else /* (!gotlntoSync kk !failed) */ {

gcvar .nextCollectionType = recommendCollectionMethodO;
}

>

jio.printf ("**** prevTrig='/.d currTrig=7.d curCycle­'/.s nextCycle="/.s\n" ,
prevTrig,
gcvar. gcTrigHigh,
gcvar . collectionType == GCT_RCING 7 "RC" : "TRACING",
gcvar.nextCollectionType == GCT RCING ? "RC" : "TRACING"
);

fflushC stdout);
}

#ifdef RCDEBUG

_printStats() ;

#endif

gcvar. gcActive = false;

#ifdef RCVERBOSE
jio_printf (

" end gc('/.d) delta="/.d \n­\
gcvar. iCollect ion,
end­start);

fflushC stdout);
Wendif

150

for (t=0; t<2; t++) {

!!Samples = 0;
avg [t] ­ 0;
far (i=0; i<N_SAMPLES; i++) {
if(gcvar. runHistM[i:]) {
avgM +­ gcvar. runHist (t] [i] ;

nSamples++;
>

else break;
>

avg[t] ­ □Samples ? avg [t] /!!Samples : 0;
}

printf ("**. _reco1mendCollectio11Method trace='/,frc='/,f \n" ,
avglGCT.TKACIKG], avgCGCTJICING]);

if Cavg[GCT_TRACING] < 0.001) return GCT.TMCING; I
if Cavg[GCT_RCING] < 0.001) return GCT.RCING; I

/* I

* Normalize so that prob ~ 1/avg
* and prob[0]+prob[l] == 1
./
norm = (avg[O] * avg[l]) / (avg[0] + avg[l]);
prob[0] = norm / avg[0];
prob[l] = norm / avg[l];

printf ("p[O]=7.f p[l]='/.f sum='/.1W , prob[0] , probfl] , prob[0]+prob[l]);
r ­ (noat)rand() / (float)RAND_MAX;

if (r < prob[0]) m = 0;
else m = 1;

printf ("r­y,f­ > n='/,d\n" ,r,m) ;

return m;
}

static void updateRunHistCint runTime)
{
int i;
int t =gcvar.collect ionType;

for (i=N_SAMPLES­2; i>=0;i­)
gcvar.runHist[t][i+1] = gcvar.runHist[t][i];

gcvar. runHist [t] [0] = runTime;
>

static void gc(void)
{
uint delta, end, start;
int nWasFree;

start = GetTickCountO ;

gcvar. gcActive = true;
gcvar. collect ionType = gcvar. nextCollect ionType ;

gcvar. nextCollectionType = GCT.HCING;
if Cgcvar.usrSyncGC) {
gcvar. collectionType = GCT,TRACING;
gcvar.usrSyncGC = false;

}
ifCgcvar. aremStress) {
gcvar .memStress = false;
gcvar. collectionType = GCT.TRACING;

>

if (gcvar.opt.useDnlyTracingGC)
gcvar . collectionType = GCT_TRACING;

if (gcvar.opt.useOnlyRCGC)
gcvar.collectionType = GCT.RCING;

nWasFree = FREE_8L0CKSO ;

#ifdef RCVERBDSE
jio_printf (" start gc('/.d­ 1/.3) time='/.d \n­\

gcvar . collectionType == GCT.TRACING ? "TRACING" : "RC",
start);

fflusht stdout);
ffendif
_Initiate_Collection_Cycle() ;

_Clear_Dirty_Marks();
_Reinforce_Clearing_Conflict_Set();
,ConsolidateO;
if (gcvar. collectionType == GCT.RCING) {
_Update_Ref erence_Counters ();
_Reclaim_Garbage();

}
else {
.Trace O;
­Sveepf);
/* re­commit the "zct" bmp */
mokMemCommit(gcvar.zctBmp.bmp, gcvar. zctBmp. bmp_size , true);

}

_processLocalsIntoNextZCTO ;

gcvar. zctBuff = gcvar. nextZctBuff ;

149

.endif /♦ 0 */

Kifdef RCDEBUG
static void _printStats(void)
{
floa t avg, avgs;
dbgparC 1, " THIS CYCLE STATS :\d");
dbgpm (1, H STORE : new='/,d old='/,d\n" ,

gcvar.dbg.nNevObjectUpdates InCycle,
gcvar. dbg. nOldObjectUpdatesInCycle);

dbgpmC 1, "UPDATE: updated='/,d logged­slots=­/.dW ,

gcvar.dbg.nUpdateQbjects, gcvar.dbg.nUpdateChilds);
If (gcvar .dbg. nCreateObjects) {

avg = (float)gcvar.dbg. nBytesAllocatedlnCycle/gcvar. dbg. nCreateObjects;

}

dbgprnC 1, "CREATE: objects='/,dbytes =*/.d avg=­/.f refs=7.d avg­'/,f\n",
gcvar.dbg. aCreateObj ects , gcvar.dbg.nBytesAllocatedlnCycle, avg,
gcvar.dbg.nRef sAllocatedlnCycle , avgs);

dbgpm (1 ,

"RECLAIM: objects­Xd bytes=y.d\n\

gcvar.dbg.nBytesFreedlnCycle);
dbgprn(1 , " STUCK : */,d\n" , gcvar .dbg . nStuckCountersInCycle);

gcvar . dbgpers i st . nLoggedUpdates += gcvar . dbg . nUpdateObjects ;

gcvar. dbgpers ist .nLoggedSlots += gcvar.dbg.nUpdateChilds;

gcvar. dbgpers ist.nObj ect sAllocated += gcvar.dbg. nCreateObjects ;

gcvar. dbgpers ist.nBytesAl located += gcvar.dbg.nBytesAllocatedlnCycle;
gcvar.dbgpersist. nRefsAllocated += gcvar.dbg. nRef sAllocatedlnCycle ;

gcvar.dbgpersist.nObjectsFreed += gcvar.dbg.nFreedlnCycle;
gcvar . dbgpers ist . nBytesFreed += gcvar .dbg . nBytesFreedlnCycle ;

gcvar . dbgpers i st .nRef sFreed += gcvar . dbg .nRef sFreedlnCycle ;

gcvar.dbgpersist. nNeuObjectUpdates += gcvar.dbg.nNewObjectUpdatesInCycle;
gcvar.dbgpersist.nOldObjectUpdates += gcvar.dbg.nOldObjectUpdatesInCycle;
gcvar.dbgpersist.nStuckCounters += gcvar.dbg.nStuckCountersInCycle;

dbgprn(1, " ACCUMULATING STATS :\nn);
dbgprn(1, "STORE: new­7.d old='/.d\n" ,

gcvar.dbgpersist.nNevObjectUpdates,
gcvar.dbgpersist. nOldObjectUpdates);

dbgprnC 1, "UPDATE:updated­­ '/.d logged­slots='/,d\n" ,
gcvar.dbgpersist.nLoggedUpdates, gcvar.dbgpersist.nLoggedSlots);

if(gcvar.dbgpers ist.nObjsets Allocated) {
avg =(float)gcvar.dbgpersist.nBytesAllocated /gcvar.dbgpersist.nDbjectsAllocated;
avgs = (float)gcvar.dbgpersist. nRef sAllocated / gcvar . dbgpersist. nObjectsAllocated;

}
else {

avg = ­I!
avgs = ­1;

}
dbgpm(1, "CREATE: objects='/.dbytes =7.d avg­Xf refs='/.d avg­W\n" ,

gcvar.dbgpersist.nObjects Allocated,
gcvar.dbgpersist. nBytesAllocated,
avg,
gcvar.dbgpersist. nRef sAllocated ,
avgs);

dbgprnC
1,
"RECLAIM: objects='/.d bytes=­/,d\n" ,

gcvar. dbgpers ist. nObjectsFreed, ,

gcvar.dbgpersist. nBytesFreed) ;
dbgprn(1 , " STUCK : "/,d\n" , gcvar . dbgpersist . nStuckCounters);
{

int nAllocated = gcvar .dbgpersist .oBytesAllocated ­ gcvar.dbgpersist.nBytesFreed;
int nFree = blkvar.heapSz ­ nAllocated;
dbgprn(1, "USAGE: free='/,10d used­ '/,10d\n" , nFree , !!Allocated);

}
blkPrintStatsO ;

dbgprn(1, "PARTIAL: */,d\n" , chkCountPartialBlocksO);
}
endif / RCDEBUG ♦/

GCFUNC void gcCheckGC(void)
{
int nFreeBlocks ­ FREE.BLOCKSO;
if (nFreeBlocks < gcvar.gcTrigHigh)
gcRequestAsyncGCC);

}

static int recommendCollectionMethod(void)
{
int nSamples, i, t, m;
float norm,avg [2] , prob[2] , r;

if (gcvar.opt.recommendOnlyRCGC)
return GCT.RCINC;

148

­­ ­ ­ . ­_ ■■ T ■ ­ \1 ■ ■ rr t,

markHandleSons(h);
}

>

static void traceFromLocals (void)
{
uint .buff ­gcvar.uniqueLocal3Buff .start;
uint *ptr, type, .p;

mokAssert C (((uint) buff) tf LOUBUFFMASK) == 0);
mokAssert (buff);

p =* gcvar .uniqueLocalsBuf f .pos ­ 1 ;
mokAssert (p);
mokAssert C .p);
for (;;) < I
ptr =■ (uint*) (.p k '3) ; 1

type= .ptf 3;
mokAssert (type! = BUFF_DUP_HANDLE_MARK);
mokAssert (type ! ­ BUFF_HANDLE_MARK);

if(type­ 0) {
GCHandle ♦h =­)GCHandle­)ptr;
mokAssert (_isHandle(h));

#ifdef RCDEBUG

{
int re ­ gcGetHandleRC (h);
mokAssert (re <" 1(;

{
#endif

,markHandleSonsC h);
_emptyMarkSt ack ();
P":

else { /* type==BUFF_LINK_MARK*/
mokAssert C (LOUBUFFHASK k (uint)p) == N_FUESERVED_SLGTS*3izeof Cuint)) ;

if (!ptr) {
mokAssert (buff+N_RESERVED_SLOTS == p) ;

return;
}
mokAssert (.ptr == BUFF_LINK_MARK|(uint)p);
p = ptr­1; /. skip forward pointer ./

}

}

}

static voidTrace (void)
{
Sifdef RCDEBUG
uint start, end;
start ­ GetTickCountO ;

dbgprn (0, "_Trace(3tart) time='/,d\n" , start);
ffendif

_traceFromLocals() ;

Kifdef RCDEBUG
end = GetTickCountO ;

dbgprn (2, "\tnTracedInCycle=Xd\n", gcvar. dbg. nTracedlnCycle);
dbgprn (0, "_Trace(end) delta"Xd\n", end­start);

.endif
>

static void _Sueep(void)
{
Sifdef RCDEBUG
uint start, end;
start = GetTickCountO;
dbgprn (0,"_Sweep (start) time**/,d\n'. , start);

Jtendif

blkSweepO;

#ifdef RCDEBUG
end = GetTickCountO ;

dbgprn (2, "\tnFreedInCycle='/.d\n" , gcvar . dbg . nFreedlnCycle);
dbgprn (0. "_Sweep(end)delta='/,d\n" .end­3 tart);

*endif
}

/...♦.*****.....*♦. GC Driver Func ****,♦,.*******/
#if 0
static int ResumeHelper(sys_thread_t *thrd, bool *allDK)

{
Exec Env *ee;

mokAssert (gcvar.sys_ thread != thrd);
ee = SysThread2EE(thrd);
if (ee­>gcblk.gcSuspended)
mokThreadResumeForGC(thrd);

return SYS.DK;
>

147

GCHandle .nSon = (GCHandle*)*p;
uint type­3tf *p;
mokAssert(hSon);
if (type) return;
_8canHandle(hSon);
p­ ;

>
}

<

GCHandle .♦tempbuff = gcvar.tempReplicaSpace;
register GCHandle *child;
register GCHandle**obj slots;

­_o o __j ,

if (cb " classJavaLangClass I I unhand(cb) ­>n_ob Ject_of fsets­ 0) {
*ifdef RCDEBUG

gcvar.dbg.!!Determined♦♦; ,
.endif

return;
}

object.offsets = cbObjectDff sets(cb) ; :
objalots ­ (GCHandle *♦)(((char*)unhand (h)) ­ 1);
while ((offset * ♦object_off sets++)) {
child ­ *(GCHandle **) ((char .) obj slots + offset);
if (child) {
tenpbuff++;
*teapbuff ­ child; 1

>

} i
break; \

}

case T.CLASS: { /* an array of classes ./
register long n = obj_length(h);
GCHandle **body = (GCHandle.*) (((ArrayOfDbject*)gcUnhand(h))­>body) ;

while(­ n >= 0) {
child " body[n];
if (child) {

tempbuff++;
.tempbuff = child;

}
}
break;

>

}
if (h­>10gP03) {
goto start;

>
/. OK, the replica we have at this point is valid
. so use it as the reference to the objects'
* contents.
./

*ifdef RCDEBUG
gcvar , dbg.nDetennined++;

*endif // RCDEBUC . .

uafileC tempbujf > gcvar. tempAeplicaSpace) {
child ­ .tempbuff;
.scaaHaadleC child);
tempbuff ­ ;

}
y

>

static void emptyMarkStack(void)
{

for (;;) {
GCHandle .h;

if (gcvar . zctStackSp == gcvar . zctStack)
return;

gcvar.zctStackSp­;
h " .gcvar.ZctStackSp;

#ifdef RCDEBUG

DokA9sert(,isHandleth));
nokAssert(gcGetHandleRC(h) > 0);
{
/ .

■ Check that if ue see an object nested in
* another one then this object cannot be
* a one created since the beginning of the
. cycle.
./
uint .p =. h­>logPos;
if <p) {
mokAssert (h ")GCHandle.) (.p­BUFF HANDLE MARK));

}

}
tendif

146

­­­ ■■ ­ ­­ ­ ­­. TJ'U­­

dbgprnC 2, '.\tnPendInCycle=7,d\n" , gcvar . dbgpersist .nPendlnCycle);
dbgprnC 0, "_processLocalsIntoNextZCT (start) delta=Xd\n", end­start);

.endif
}

static void Reclaim Garbage (void)

buff Init(gcvar.ee, igcvar.tmpZctBuif);

,throwHonZerosFromCurrentZCT(tfgcvar. tmpZctBuff);

processCreateBuff3IntoZCT()j

_f reeHandlesOnTempZCT C tfgcvar. tmpZctBuf f);

dill _
..**.*.♦*.*** Tracing Cycle Stuff ..**.*****.a***************

static void _freeLiatGfBuffers(uint. buff)
{
vhil e (buff) {

uint .next;
next = (uint*)buff [NEXT_BUFF_IDX] ;
_freeBuff (gcvar.ee, buff);
buff = next;

}
>

static void _freeListOfListsOfBuffers(uint .buff)
{
whil e (buff) {

uint *next;
next ­ (uint*)buff [LINKED_LIST_IDX] ;

_freeListOfBuff ers (buff);
buff = next;

>

>

static void traceSetup (void)

{
_freeListOfListsOfBuffers (gcvar. createBuffList);
gcvar. c reat eBuf f Li s t = null;

.freeListGfListsOfBuffers (gcvar. updateBuffList);
gcvar. updateBuf f List = MULL;

*gcvar. zctBuff .pos = 0;
gcvar .zctBuff .start [LAST.POS.IDX] = (int)gcvar.zctBuff .pos;
_f reeListDfBuff ers (gcvar.zctBuff.start);

/* Decommit the "zct" bmp ♦/
mokMemDe commit (gcvar . zctBmp . tarp ,gcvar .zctBmp.bmp_size);

/. Clear the "re" bmp */
moW4emDecommit(gcvar.rcBmp.bmp, gcvar. rcBmp. bmp_3ize);
mokHemCommit (gcvar.rcBmp.bmp, gcvar.rcBmp.bmp size, true);

}

static void _scanHandle(CCHandle .h)
{
int prevRC = .incrementHandleRCWithReturnValue (h);
if (prevRC =** 0)
_putInMarkStack(h);

}

static void markHandleSons(GCHandle ♦h)
{
uint *p;

start:
p = h­>logPos;

.ifdef RCDEBUG
gcvar .dbg.nTracedInCycle++ ;

#endif // RCDEBUG

if (p) {
#ifdef RCDEBUG

gcvar.dbg.nUndetermined++;
Jtendif // RCDEBUG

if ((ק*)) k 3) == 0) { /. newly created object ♦/
/.
+ must be called directly from _traceFromLocal3
*/
mokAssert (_isLocal(h)) ;

return;
>

mokAssert (h ==(GCHandle■.) (.p­BUFF,HANDLE_MARK));
p­ ;
"hile (1) {

145

mokAssertC type != BUFF_HANDLE_MARK);

if Ctyps­O) {
GCHandle *h = (GCHandle*)ptr;
mokAssertCh) ;

mokAssertC ^isInZCTCh));
mokAssert(gcNonNullValidHandle(h));
mokAssertC gcGetHandleRC(h)==O);
,freeHandle C h) ;

_markNotInZCTCh);
tifdef RCDEBUG

nlnZCT♦♦;
#endif // RCDEBUG

p~;
­

if (!ptr) I
mokAssert (buff­HIJtESERVED_SLOTS " p);

.ifdef RCDEBUG

mokAssert C nlnZCT == gcvar. tmpZctBuf f .start[L0G_0BJECTS_IDX]);
.endif // RCDEBUG

goto end;

mokAssert (*ptr ­=­­ BUFF_LINK_MARKI (uint)p);
p =*ptr­ 1 ; /* skip forward pointer */

>

}
__end :;
tfifdef RCDEBUG
end = GetTickCountC);
dbgprnC 2, "\tnFreedInCycle='/,d\n" , gcvar . dbg . nFreedlnCycle);
dbgprnC 2, "\tnRec11rsiveDel='/.d\n" , gcvar . dbg . nRecursiveDel);
dbgprn(2, "\tnRecursivePend='/,d\n" , gcvar . dbg . nRecursi vePend);
dbgprnC 0, "_freeHandlesGnTempZCT (start) delta=Vid\n", end­ atart);

lfendif
>

{
uint *buff = gcvar.uniqueLocalsBuif.start;
uint *ptr, type, ♦p;

#ifdef RCDEBUG
uint start, end;
3tart = GetTickCountC);
dbgprnC 0, "_processLocalsIntoNextZCT(start) time='/,d\n", start);

#endi1 // RCDEBUG

mokAssert C (((uint)bufi) £ LOWBUFFHASK) == 0);
mokAssert C buff);

/. allocate buffer for next ZCT ♦/
bufflnitC gcvar.ee, tgcvar.nextZctBuff);

p = gcvar .uniqueLocalsBuff .pos ­ 1;
mokAssert (p);
mokAssert (♦p);

for (;;) {
ptr = (uint*)(*p k ­3(;
type=*Pcf 3;
mokAssert (type != BUFF_DUP_HANDLE_MARK);
mokAssert C type != BUFF_HANDLE_MARK);

if Ctype=­O) {

GCHandle .h = C GCHandle*) ptr;
mokAssert C h);
mokAssert (.isHandleC h));
mokAssert (!,isInZCTCh));

_unsetLocal(h);
_decrementLocalHandleRC(h);

p­ ;

else { /. type==BUFF.LINK.HARK*/
mokAssert (CLGWBUFFHASK k Cuint)p) == N ,RESERVED .SLOTS* sizeof Cuint));
/* free the more recent buffer */
_f reeBuf f C gcvar.ee, p ­ N_RESERVED_SLOTS);
if (!ptr) {
mokAssertC buff+N_RESERVED_SLGTS == p);

Sifdef RCDEBUG

gcvar.uniqueLocalsBuff.pos = NULL;
ffendif

goto checkout;
}
mokAssert (*ptr == BUFF_LINK_MARKI(uint)p);
p = ptr­1; /* skip forward pointer */

}
}
checkout:;

#ifdef RCDEBUG

end = GetTickCountC);

144

register char *objslots;
unsigned obj_type = obj ,flags (h) ;

if (obj.type =­■ T_N0RMAL_0BJECT) {
register ClassClass .cb = obj_classblock(h);
uns lgned short * ob 1©ct oxrsgt s \

int offset;

mokAssert(cb != classJavaLangClasa);

object_offsets = cbDbjectDf f sets(cb) ;

if (object.offsets) {

objslots = ((char ■OgcUnhand(h)) ~ 1;
while ((offset ~ .object_offsets++)) {

child = .((GCHandle ..) (((char Oobjslots) + offset));
if (child) {
mokAssert (gctJonNullValidHandle(child)); I
_decrementHandleRCInDeletion{ child); I

<<­
<

<

else if (obj.type == T.CLASS) { /. an array of references */
register long n = obj_length(h);
GCHandle *.body;

body = (GCHandle*♦)(((ArrayOfGbj ect ­)gcUnhand(h))­>body);
while(­ n >= 0) {
child = body [n] ;
if (child) {
_decrementHandleRCInDeletion(child);

}
}

}
}

ffifdef RCDEBUG

gcvar.dbg.nFreedInCycle++;
h­>5tatus = Im_f ree;

#endif
bh = (BlkAllocBigHdr *)GBJBL0CKHDR(h);
status = bhGet.status(bh);

mokAssert (status==ALLOCBIG ||
status==VOIDBLK I I
status==PARTIAL ||
status==DWNED);

mokAssert (ALLDCBIG < OWNED);
mokAssert(GWNED < VOIDBLK);
mokAssert(VQIDBLK < PARTIAL);

if (status == ALLOCBIG) {

tfifdef RCDEBUG
gcvar.dbg.nBytesFreedlnCycle +=

((BlkAllocBigHdr .) OB JBLOCKHDR(h))­>blobSize * BLDCKSIZE;
#endif

blkFreeRegion((BlkAllocBigHdr .)QBJBLOCKHDR(h));
}
else {

Sifdef RCDEBUG

gcvar .dbg .nBytesFreedlnCycle +=
chkconv.binSize[bhGet_bin_idx((BlkA110cHdr*)bh)];

ffendif
chkPreCollect ((BLK0BJ*)h);

}
if (gcvar.zctStackSp == gcvar. zctStack) "

gcvar.zctStackSp­;
h = .gcvar.zctStackSp;

}

}
*pragma optimize("", on)

static void _f reeHandl es DnTempZCT (BUFFHDR .tmpZCT)
i
uint .buff = tmpZCT­>start;
uint *ptr, type, .p;

#ifdef RCDEBUG

uint start, end;
uint nlnZCT = 0;

start = GetTickCountO ;

dbgprn (0, "_freeHandlesOnTempZCT(start) time=:'/,d\n" , start);
#endif // RCDEBUG

mokAssert ((((uint)buf f) £ LOWBUFFMASX) == 0);
mokAssert (buff);

p = tmpZCT­>pos ­ 1;
mokAssert(p);
mokAssert (*p);

for (;;) {

ptr = (uint'H'p t ­­3(;

type= .P* 3;
mokAssert (type != BUFF_DUP_HANDLE_MARK);

143

י; ­ ­ ..­

ftifdef RCDEBUG

else <

nThrown++;
{

#endif // RCDEBUG

p­ ;

else { /♦ type==BUFF_LINX_MARK*/
mokAssert((LOWBUFFMASK tf (uint)p) == N_RESERVED_SLOTS*sizeof (uint)) ;

/♦ free the more recent buf f er */
.freeBuff (gcvar.ee, p ­N.RESERVED _SLDTS) ;
if Optr) {

mokAssert {buff+N_RESERVED_SLOTS == p);
goto end..chunk;

>
I mokAssertC *ptr ­= BUFF^LINK.MARKI(uint)p);
I p = ptr­1; /. skip forward pointer */

end_chunk :
buff = nextBuff ;

>
gcvar. createBuf f List = NULL;

)tifdef RCDEBUG
end = GetTickCountO ;

mokAssertC gcvar. tmpZctBuf f .start[LDG_GBJECTS_IDX] *­­ nDel + gcvar. dbg. nlnZct);
gcvar .dbg. nlnZct ­ gcvar. tmpZctBuf f .start [LOG. OBJECTS, IDX] ;

gcvar.dbgpersist.nPendlnCycle += nPend;

mokAssertC gcvar.dbg.nCreateObjects == BCreate):
mokAssert(nThrown+nDel+nPend+nAlreadyIn2ct =­ nCreate);

gcvar .dbg .nCreateDel == nDel;

dbgprnf 1, "\tnCreate='/.d\n" , nCreate);
dbgpm(2, "\tnDel='/,d\n­' , nDel);
dbgprn(2,"\tnPend=*/,d\n" , nPend);
dbgprn(2. "\tnThrown­'/,d\n■., nThrown);
dbgprnf 2,"\tnInZct='/,d\n" , gcvar.dbg. nlnZct) ;

dbgprn(2, "\tnInNextZct='/,d\n" , gcvar . dbgperaist . nPendlnCycle);
dbgprn (0,"_processCreateBuff IntoZCT(end) t ime='/,d delta=y,d\n" , start,end­ start);

#endif
>

*pragma optimize C "", off)
static void f reeHandle (GCHandle* h)
<
for (;;) <

unsigned *p;
BlkAllocBigHdr .bh;
int status;

mokAssert(h);
mokAssert (gcMonNullValidHandle(h));
mokAssert C gcGetHandleRC (h) "0);

#ifdef RCDEBUG I

} :
unsi gned obj_type = obj_flags(h);
if (obj.type == T .NORMAL. OBJECT) {

register ClassClass *cb = obj.classblock(h);
gcvar.dbg. nRefsFreedlnCycle +" unhand (cb)­>n object offsets;

{

else if (obj.type =* T.CLA5S) { /. an array of references ./
long n = obj_length(h);
gcvar .dbg .nRefsFreedlnCycle +" n;

{

>
#endif // RCDEBUG

p " h­>logPos;
if (p) {

#ifdef RCDEBUG

dbgprn (1, "\t\tfree:dirty: '/,x\n" , h) ;

mokAssertC h == (GCHandle*)(.p­BUFF_HANDLE_MARK));
h­>logPos = NULL;
gcvar. dbgpersist.nFreeCyclesBroken*■*.;

.endif
.p = .p I BUFF_DUP_HANDLE_HARK; .

p­ ;
while (1) {
GCHandle *child = (GCHandle*)*p;
uint type = 3 tf *p;
mokAssertC child);
if (type) break;

ttifdef RCDEBUG
dbgprn C 3, "\t\tfree: dirty: dec Xx\nH. child);

Jtendif
.decrementHandleRCInDeletion(child);
p";

<

else {
register GCHandle ♦child;

142

else {
ttifdef RCDEBUG

nDel++;
ttendif

gcBuffLogUordC gcvar.ee, tmpZCT, (unsigned) h);
}
p­ ;

>
else { /.type­=BUFF_LINK_MAR)W
mokAssertC (LOWBUFFMASK k (uint)p(­= N_RESEHVED_SLOTS*sizeafCuint));
/* free the more recent buffer */
.freeBuffC gcvar.ee, p ­^RESERVED. SLOTS) ;

if (!ptr) {
mokAssertC buff+N_RESERVED_SLOTS == p);
goto __end;

>
mokAssertC *ptr = BUFF.LIKK.HARKl(uint)p);
p ­ ptr­1; /. skip forward pointer */

t

end:;
#ifdef RCDEBUG

end " GetTickCount();

mokAssertC gcvar .tmpZctBuf f . start[LOG,OBJECTS.I DX] == nDel);
mokAssert(nThrown+nDel+nPend " nQld);

gcvar.dbg.nlnZct = gcvar. tmpZctBuf f .start [LDG_0B JECTS^IDX] ;

gcvar. dbgpersist .nPendInCycle= nPend;

dbgprn(2, "\tn01d='/.d\n", nOld);
dbgprnC 2,"\tnDel=*/.d\n" , nDel);
dbgprnC 2,"\tnPend=7.d\n" , nPend);
dbgprnC 2, "\tnThroun=Xd\n", nThrown);
dbgprnC 2,"\tnInZct='/.d\n" , gcvar.dbg. nlnZct);
dbgprnC 2, "\tnInNextZct='/,d\n", gcvar . dbgpersist . nPendlnCycle);
dbgprnC 2. "_throwNonZerosFromCurrentZCTCend) time='/.d delta=*/.d\n" , end, end­start);

#endif
}

static void _processCreateBuf fsIntoZCTC void)
{
#ifdef RCDEBUG

uint nCreate = 0, nDel = 0, nThrown=0 , nPend=0;
uint nAlreadyInZct=O;
uint start, end;

Send if

uint *ptr, type, *p;
uint *buff = gcvax .createBuffList , .nextBuff ;

BUFFHDR *tmpZCT = Sgcvar. tmpZctBuf f;

.ifdef RCDEBUG
atart = GetTickCountC);
dbgprn(0,M_processCreateBuffIntoZCTCstart) time='/.d\n" , start);

#endif

while Cbuff) {
nextBuff = Cuint*)buff[O];

mokAssert(((Cuint)buff) k LOWBUFFMASK) == 0);
mokAssertC buff);

p *Cuint*)buf f [UST_PDS_IDX] ;

mokAssert(p);
mokAssertC .p ==0) ;

p";
nokAssert(.p);

for C;;) {

ptr = Cuint*)C*p tf ­3(;
type=*pt 3;
mokAssertC type != BUFF_HANDLE_MARK);
mokAsaert(type != BUFF _DUP .HANDLE .MARK);
if (type==0) {

GCHandle .h = (GCHandle*)ptr;
.ifdef RCDEBUG

nCreate++;
#endif

mokAssertC h);
mokAssertC gcNonNullValidHandleCh));
if (gcGetHandleRC(h(=­­ 0(}

if C'.isInZCT(h)) {
.marklnZCTC h);

(tifdef RCDEBUG

nDel++;
#endif

gcBu ffLogWord(gcvar.ee, tmpZCT, (unsigned)h);
}

#ifdef RCDEBUG
else {
nAlready In2ct++ ;

}
.endif // RCDEBUG

>

141

gcvar.updateBuf fList = NULL;
>

static void _updateRCof CreateLog (void)

{
uint .log = gcvar. createBuffList ;

while Clog) {
_updateRCofSiDgleCreateLog (log);
log = (uint*)log[0];

}
>

static void .Update .Reference_Counters (void)

I #ifdef RCDEBUG

I uint start, end;

moltAssertC gcvar . zctBuff . start [LDG_DB JECTS_IDX] == gcvar.dbg. iilnZct);

start = GetTickCountO ;

dbgprn(0, "__Update_Reference_Counters (begin) time='/,d\n'­, start) ;

tendif // RCDEBUG

_ updat eRCof Updat eLog();
_updateRCofCreateLogC);

Kifdef RCDEBUG
end = GetTickCountO ;

dbgprnC 3, "\tr1UpdateRCQbJects='/,d\n" , gcvar . dbg . nUpdateRCDbjects);
dbgprnC 3, "\tnUpdateRCChilds­"/,d\n­' , gcvar . dbg .nUpdateRCChilds);
dbgprn (3, "\tnUpdateRCDuplicates='/,d\n" , gcvar . dbg . nUpdateRCDuplicates);
dbgprnC 3, 1■\tnCreateRCObjects=t/,d\n" , gcvar . dbg . nCreateRCObjects);
dbgprnC 2, H\tnDetermined=*/,d\n" , gcvar .dbg. nDetermined);
dbgprnC 2, "\tnUndetermined='/,d\n" , gcvar . dbg . nUndetermined);
dbgprnC 2,H\tnInZct='/.d\n" ,gcvar.dbg. nlnZct);

mokAssertC gcvar.dbg. nDetermined+gcvar .dbg.!!Undetermined ™
gcvar. dbg. nUpdateDb jects + gcvar.dbg. nCreateDb jects ­
Cgcvar.dbg.nUpdateDuplicates + gcvar.dbg.nActualCyclesBroken));

mokAssertC gcvar . dbg . nUpdateRCObj ects " gcvar . dbg . nUpdateObj ects) ;

mokAssertC gcvar.dbg.nUpdateRCChilds ==gcvar.dbg. nUpdateChilds) ;
mokAssertC gcvar. dbg. nUpdateRCDuplicates ==

gcvar .dbg. nUpdateDuplicates ♦gcvar . dbg .nActualCyclesBroken) ;

mokAssertC gcvar.dbg.nCreateRCDbjects == gcvar.dbg.nCreateObjects);
oiokAssertC gcvar . zctBuff . start[LOG.OBJECTS.IDX[=­­ gcvar.dbg. nlnZct);

dbgprnC 0, ".Update.Reference.Counters Cead) time='/.d delta='/.d\n" , end, end­start);
ffendif // RCDEBUG

}

/*,*...*,*,*,,,..**♦*** Reclamation ..♦,*.,,,,,,,♦**♦,*****,,**♦♦♦*♦***.,/

static void throwNonZerosFromCurrentZCTC BUFFHDR .tmpZCT)
i
uint *ptr, type, .p, .buff;

#ifdef RCDEBUG
uint nGld = 0, nDel = 0, nThroun "0, nPend"0;
uint start, end;

start ­ GetTickCountO ;

dbgprnC 0,",throwNonZerosFromCurrentZCTCstart) time='/,d\n", start);
Vendif

buff = gcvar.zctBuff.start;

mokAssertC (((uint)buff) k LDWBUFFMASK(" 0(;
mokAssertC buff);

p == gcvar . zctBuff .pos­1 ;

mokAssertC p);
mokAssertC *p);

for (;;) {

ptr = Cuint*) C*p k "3) ;

type":*Ptf 3;
mokAssert(type !­ BUFF_HANDLE_MARK);
mokAssertC type .­ BUFF.DUP _HANDLE_MARK);
if (type==0) {
GOiandle .h ­­ CGCHandle*)ptr;

#ifdef RCDEBUG
nDld++;

ttendif
mokAssertC h);
mokAssertC gcNonNullValidHandleCh));
mokAssertC _isInZCT(h));
if CgcGetHandleRC(h) > 0) {
_markNotInZCT(h);

#ifdef RCDEBUG
nThrown++;

#endif // RCDEBUG

}

140

}
mokAssert(.ptr == BUFF_LINK_MARKI(uint)p);
p ­ ptr­1;/ . skip forward pointer ./
break;

>

caae BUFFJUNDLE.MARK: <

GCHandle *h ­ (GCHandleOptr;
mokAssert(h);
mokAssert(gcNonNullValidHandle(h));
_determineHandleContentsC h);

.ifdef RCDEBUC
gcvar.dbg.nUpdate.RCObjacts++;

.endif // RCDEBUG
fort;;) {

GCHandle .h; t
?­■ I
h ­ (GCHandle*)*p; ■ I
type ­ ((uint)h) 43; I
if (type) goto next_round; I

■okAssertt gcNonNullValidHandle(h));
_decrementHandleRCInUpdate(h);

)tifdef RCDEBUG
gcvar.dbg.nUpdateRCChilds++;

#endif // RCDEBUG

>

{

case BUFF.DUP.HAKDLE.MARK: {
GCHandle .h ­ (GCHandlet)ptr;
mokAssertC h);

.ifdef RCDEBUC

gcvar . dbg .nUpdateRCGbj ects++ ;

gcvar.dbg.nUpdateRCDuplicates++;
.endif // RCDEBUG

for(;;) {

p­ ;

type . ♦P' 3;
if (type) goto next_round;

*ifdef RCDEBUG
gcvar.dbg.nUpdateRCChilds++;

.endif // RCDEBUG
>

{
>

{
{

static void _updateRCofSingleCreateLog(uint .buff)
}
uint +ptr, type, +p;

mokAssert(buff);

p ­ (uinfObuff [LAST_POS_IDX] ;
mokAssert(p);
mokAssert(*p ==0) ;

p­­;
mokAssert(*p);

for <;;) {
ptr = Cuint*)(*p k ­3);
type­ .P* 3;
mokAssert(type != BUFF_HANDLE_MARK);
mokAssert(type != BUFF.DUP.HANDLE.HARK);
if(type­ 0) {

GCHandle .h ­ (GCHandle.) ptr;
mokAssert(h);
mokAssert(gcNonKullValidHandle(h));
_determineHandleContents (h) ;

.ifdef RCDEBUC

gcvar.dbg.nCreateRCGbjects++;
.endif // RCDEBUG

p­­;
>

.lse { /. type­­BUFF_LINK_MARX./
mokAssert((LOWBUFFMASK b (uint)p) == N_RESERVED_SLDTS*sizeof (uint)) ;

if (Iptr) {
nokAssert(buf f+N_RESERVED_SLDTS == p);
return;

{
BOkAssertC .ptr ­ BUFF.LINK.MARKI(uint)p);
p " ptr­1 ; /* skip forward pointer ./

{
>

{

static void updateRCofUpdateLogt void)

<

uint .log =gcvar.updateBuff List;
uhile (log) {
uint ♦nextLog = (uint*)log[0];
_updateRCof SingleUpdateLog (log);
log = nextLog; *

{

139

}

{

GCHandle .♦tempbuf f = gcvar . tempReplicaSpace ;

register GCHandle ■child;
register GCHandle ♦.objslots;

switch (obj_flags(h)) {

case T_NGRMAL_DBJECT:{
register ClassClass ♦cb = obj_classblock(h);
register unsigned short offset;
register unsigned short *object_of f sets ;

if (cb ==class JavaLangClass I I unhand(cb)­>n_object_offsets==0) {

object.offsets = cbObjectOffsets(cb);
objslots =CGCHandle ♦*)(((char*)unhand (h)) ­ 1);
uhile ((offset = .object.off set3++)) {
child ­ ♦(GCHandle ♦♦) {(char *) objslots + offset);
if (child) {
tempbuff ++;
.tempbuff ­ child;

{

{
break;

>

case T_CLASS : { /* an array of classes */
register long n ■* obj_length(h) ;
GCHandle ♦♦body ­ (GCHandle♦♦) (((ArrayQfObject*)gcUnhand(h))­>body);
while (~n >= 0) {
child ■ bodyCn];
if (child) {
tempbuff++;
.tempbuff = child;

{

>

break;
>
{
if (h­>logPos) {

goto start;
{/. OK, the replica we have at this point is valid
. so use it as the reference to the objects1
* contents.
./

.ifdef RCDEBUG
gcvar.dbg.nDetermined++;

.*ndif // RCDEBUG
while (tempbuff > gcvar.tempReplicaSpace) {
child = ♦tempbuff;
.incrementHandleRC(child);
tempbuff­;

>

>

static void updateRCofSingleUpdateLogCuint .buff)
}
uint *ptr, type, ♦p;

mokAssert(buff);

/ .
. go backwards since its better to
. first increment and only then decrement
. (it "ill cause less entries in the ZCT)
* 80 we want to first see the handle and

./
p = (uint­)buff[LAST_POS_IDX];

aokAssert (p) ;
mokAssert(*p==0);
p­ ;
mokAssert(*p);

for (;;) {

typ­­ .p* 3;next.round:
ptr . (uint>)(*p 11 ­3);
mokAssert f type!­0);
switch (type) {

case BUFF_LINK_MARX: {
mokAssert ((LOWBlfFFMASK tf (uint)p) ==N_RESERVED_SLDTS*sizeof (uint));

/. free the more recent buffer */
_freeBuff(gcvar.ee, p ­ N_RESERVEI>_SLOTS);
if (!ptr) {

nokAssert(buff*N_RESERVED_SLOTS ­­ p);
return;

138

bool allOK;
#ifdef RCDEBUG
uiut start, end;

start = CetTickCountQ;
dbgprn C 0,".Consolidate (begin.)time=*/.d\n" , start) ;

ftendif

if (gcvar.collectionType *= GCT.TRACING)
_traceSetup();

/* init buffer of local objects */
buffInit (gcvar.ee, tgcvar. uniqueLocalsBuff);

/. snoop global objects ./
_snoopGlobals() ;

Jtifdef RCDEBUG
gcvar.dbg.nGlobals = gcvar.dbg.□Locals;
gcvar.dbg.nLocal3 = 0;

*fendif

/. do fourth handshake ■/
QUEUE_LQCK(gcvar.sys_thread);
gcvar .stage = GCHS4;
mokAssertC gcvar. snoopBuffList == NULL);

/. add snoop buffers of dead threads and
♦ clear the list
♦/
gcvar. snoopBuf f List = gcvar. deadThreadsSnoopBuf f List ;
gcvar. deadThreadsSnoopBuff List = NULL;

Sifdef RCDEBUG
gcvar . dbg . nSnooped = gcvar . dbgpers i st . nDeadSnooped ;

gcvar.dbgpersist.nDeadSnooped = 0;
#endif

/. nov add the thread3 buffers */
for(;;) {
allGK = true;
mokThreadEnumerateOverC _HS4Helper, tallDK);
if (allDK) break;
mokSleepC 10);

}

QUEUE_UNLDCK { gcvar.sys_thread);
t

/♦ process thread buffers */
jnarkSnoopedAsLocal ();

Jtifdef RCDEBUG

end = GetTickCountO ;

dbgprn (2, "\tnHS4Threads=7.d\n" . gcvar . dbg . nHS4Threads);
dbgprn (2, "\tnSnooped='/,d\n" , gcvar . dbg . nSnooped);
dbgprn (4, ­'\tnActualSnooped='/,d\n" , gcvar . dbg . nActualSnooped);
dbgprn C 2, "\tnLocals=*/,d\n" , gcvar . dbg .nLocal s) ;

dbgprn C 2,"\tnG10bals='/.d\n" ,gcvar. dbg.nGlobals) ;

mokAssert(gcvar.dbg.nActualSnooped == gcvar.dbg.nSnooped);
dbgprn (0,".Consolidate (end) time='/.d delta='/,d\n", end, end­start) ;

#endif // RCDEBUG
}

/**♦*.*♦,♦**,**♦****♦**** UPDATE PHASE ***♦,*♦♦**♦♦♦♦*♦,,*******./

/*****tf****************** Updating Counters ***.****.**.*********/

static void _determineHandleContents(GCHandle *h)

uint .p;

start:

p = h­>logPos;

if Cp) {
mokAssert (h == (GCHandle­) (*p­BUFF_HANDLE_MARK));

#ifdef RCDEBUG
gcvar.dbg.nUndetermined**;

#endif // RCDEBUG

p~;
while (1) {

GCHandle .hSon = (GCHandle.)*?;
uint type * 3 tf .p;
mokAssert (hSon);
if (type) return;
_incrementHandleRC(hSon);
p­­;

{

137

,snoopExactHandle((JHandle*) (.cpp).p);
}

f/ . loop over const Ant pool ./
}

/. Scan class definitions looking for statics */
if (cbFields(cb) U

(cbFieldsCount(cb) > 0)) { /* defensive check ♦/
int i;
struct fieldblock *fb;
for Ci "cbFleldsCount(cb) , fb = cbFields(cb);­ i >=■ 0; fb++) {
if (fieldsig(fb) kk /* Extra defensive */

(f ieldlsArray(fb) I I fieldlsClass(ib)) tt (fb­>access 4 ACC_STATIC)) {

JHandle ♦sub = ♦(JHandle .*)normal_static_address(fb);
_8aoopExactHandle(sub);

>
>

>

h = (JHandle .)cbClassname(cb);
_snoopExactHandle(h);

h = (JHandle ­)cbLoader(cb);
_3noop£xactHandle(b);

h = C JHandle *)cbSigners(cb);
_3noopExactHandle(h);

h = (JHandle *)cbProtectionDomain(cb);
snoopExactHandle(b);

}

static void snoopBinCla^ses(void)
{
Clas sClass ..pcb;
int i;
BINCLASS_LOCK(sysThreadSelf () /.gcvar.sys.thread./ >;
pcb = binclasses;
for (i = nbinclasses; ­i >= 0; pcb++) {
ClassClass *cb = .pcb;
_snoopExactHandle((JHandle*)cb);
_snoopClass(cb);

}
BINCLASS_UNLDCK(sysThreadSelf () /*gcvar.sys thread*/);

>

static void snoopPrimitiveClasses(void)
{
stat ic ClassClass .*primitive^classes[] = {

tfclass.void, 4class_boolean, tclass_byte, tfclass_char, tfclass_short,
tfclass_int, tfclass_long, tfclass_float , Aclass double, NULL

};
ClassClass .■*cbpp = primitive _clas9e3 ;

uhile (♦cbpp) {
ClassClass *cb = .*cbpp;
,snoopExactHandle((JHandle *)cb);
,snoopClass(cb);
cbpp++;

}
}

static void snoopHonitorCacheHelper(monitor_t .mid, void .cookie)
{
JHan die .h = (JHandle.) mid­>key;
if (,isHandle(h) bk sysMonitorlaUseCsysmonOnid))) {

.snoopExactHandleC h);

>}

static void _3noopH0nitorCache(void)
{
CACH E_L0CK(sysThreadSelf () /.gcvar.sys.thread./);
monitor Enumerate (_3noopHonitorCacheHelper, 0);
CACHE.UNLDCK (sysThreadSelf () /*gcvar.3ys_thread./);

}

static void _snoopJNIGlobalsRefs (void)

{
sno opJavaFrame (global Ref Frame , globalHef Frame­>optop) ;

}

static void _3noopInternedStrings(void);

static void _snoopGlobals(void)

_sno 0pBinClasses();
_3noopPrimitiveClasses();
_3noopH0nitorCache();
_snoopInterDedStri11gs();
.snoopJHIGlobalsRefsC);

}

static void _Consolidate(void)

{

136

}
}

<

static int HS4Helper(sys thread, t *thrd, bool *allDK)

}
Exec Env .ee;

ee = SysThread2EE(thrd);

mokAssert(gcvar.ee != ee);

if (ee­>gcblk. stage == GCHS4) return SYS.DK;
if (ee­>gcblk.cantCoop) {
*allDK = false;
return SYS.OK;

{

while Cgcvar .nPreAllocatedBuffers< 1) {
buff Init { gcvar .ee , tfgcvar .preAUocatedBuf fers [gcvar . nPreAllocatedBuffers]);
gcvar. nPreAllocatedBuf fers++ ;

{

mokThreadSuspendForGC(thrd);
mokAssertC ee­>gcblk. stage == GCHS3);
if (ee­>gcblk.cantCoop) {
mokThreadResumeForGC(thrd);
*allDK . false;
return SYS.OK;

{

ee­>gcblk.snoop = false;

/* put into the snooped object set
* all of the locally reachable objects
*/
_snoopThreadLocals(thrd);

/. now steal the snooped objects set */
if (buffIsModified(tfee­>gcblk. snoopBuf fer)) {
♦ee­>gcblk. snoopBuf fer .pos = 0;
ee­>gcblk. snoopBuf fer .start[LAST_POS_IDX] = (uint)ee­>gcblk. snoopBuf fer .pos;
ee­>gcblk. snoopBuf fer . start [LINKED_LIST_IDX] = (uint)gcvar . snoopBuf f List ;
gcvar .snoopBuff List = ee­>gcblk. snoopBuf fer .3tart;

.ifdef RCDEBUG

gcvar . dbg . nSnooped += ee­>gcblk .snoopBuf fer . start [LOG_OBJECTS_IDX] ;

#endif // RCDEBUG

/* give the thread a new snoop buffer to play with ./
gcvar. nPreAllocatedBuf f ers­;
ee­>gcblk . snoopBuf fer =gcvar.preAllocatedBuff ers[gcvar .nPreAllocatedBuffers] ;

{

#ifdef RCDEBUG
gcvar.dbg.nHS4Threads*+;

#endif // RCDEBUG

/* restart the thread ./
ee­>gcblk. stage = GCHS4;

mokThreadResumeForGC (thrd);
return SYS.OK;

{

static void snoopClass(ClassClass *cb)
}
/* We must be extra careful in scanning the internals of a class
. structure, because this routine may be called when a class
* is only partially loaded (in createlnternalClass).
*/
/ ♦
. YLRC ­

* No need to recursively trace super classes as we mark 811
* classes anyway. This also holds for classes referred
* to from the constant pool.

*/
JHandle *h;

if (cbConstantPool(cb) bk . ■.

cbConstantPoolCcb) [CGKSTANT.POOLJTYPE_TABLE_ INDEX].type) {
union cp_item_type * constant_pool = cbConstantPool(cb);
union cp_item_type *cpp 3
constant_pool> CONSTANT_POOL_UNUSED_ INDEX ;

union cp.item.type *end^cpp =
tfconstant_pool[cbConstantPoolCountCcb)];

unsigned char *type_tab =

constant_pool[CONSTANT_POOL..TYPE.TABLE. INDEX] .type ;

unsigned char *this_type =
tftype_tab[CONSTANT_PDDL_UNUSED_INDEX];

for (; cpp < end.cpp; cpp++, this_type++) {
if (.this.type == (CONSTANT.StringICDNSTANT_P0aL_ENTHY.RES0LVED)) {

135

long .regs;
int nregs;
/. Scan the saved registers ♦/
rags = 3ysThreadRegs(t, cfnregs);
for (uregs­; nrega >= 0; nregs­) {

_snoopHandleOrObjectOrScalar((JHandle.) regs [nregs]) ;
}

base * ee­>stack_base;
88c = sysThreadStackPointerCt);

}

if (sac =■=0 I I base ==011 Cssc == base)) {
/.
. If the stack does not have a top of stack pointer or a base
* pointer then it hasn £ t^uti yet 3jjo we don t need to scan
. its stack. When exactly each of these data becomes available
. may be system­dependent, but we need both to bother scanning.
./
goto ScanJavaStack;

}

/. Align stack top, important on Windows 95. */
if (Clong)ssc 7. sizeoftvoid .)) {

asc = (unsigned char .■) ((long) Cssc) t"(sizeof (void *) ­ 1)) ;

}

limit = (unsigned char ♦.) base;

mokAssert(ssc != limit);

/♦
. The code that scans the C stack is assuming that the current
♦ stack pointer is at a lower address than the limit of the stack.
* Gbvioulsy, this is only true for downward growing stacks. For
. upward growing stack, we exchange ssc and limit before we start
* to scan the stack.
./

#if def ined (STACK.GROWS _UP)

{
unsigned char ..trap;

tmp ­ limit;
limit ­ ssc;
ssc = tmp;

>

#endif /* STACK_GRDWS_UP */

while (ssc < limit) {

register unsigned char *ptr * *ssc;
_3noopHandleDrDbjectDrScalar((JHandle■*) ptr);

>

/.
* Whether or not we scan the thread stack, we decide independently
* whether to scan the Java stack. Doing so should be more robust
* in the face of partially­initialized or partially­zeroed threads
* during thread creation or exit, or changes to any of that code.
./

ScanJavaStack:
{
JavaFrame .frame;

/.
. Because of the Invocation API, the EE may not be on the C

. stack anymore.

./
_snoopExact Handle (ee­>except ion .exc);

_snoopExactHandle(ee­>pending_async_exc);

if ((frame = ee­>current_f rame) /= 0) {

struct methodblock ♦prev_current_method = 0;
while (frame) {

struct methodblock .current .method = frame­>current_method;
/ .
* If the previous frame was a transition frame from C back
* to Java (indicated by prev_current_method ­ NULL), then

h ♦ this ogv j r^rnp migQ^ not have s&c its optop We must 0&

* conservative. Gtherwise, we can use the opt op value.
.

. Also permit two consecutive frames with NULL current
* methods, in support of JITs. See bug 4022856.
*/
stack, item *top_top_3tack =

(prev.current .method == 0 tb current.method !=■= NULL kt
((current_method­>f b .access k ACCUSATIVE) =­ 0))

? aframe­>ostack[f rame­>current_method­>max3tack]
:f rame­>optop;

.snoopJavaFraae (frame , top_top_stack) ;

frame " frame­>prev;
prev current method = current _method;

>

134

>

if C!h) return;
mokAssert(_isHandle(h));
_setLocal(h);

>

static void _3noopHandle0rScalar(JHandle *h)
}
if (_isHandle(h))

setLocal(h);
{

static void _snoopHandleOrObjectDrScalar(JHaodle *h)
}
if CisHandle(h))

.setLocal<h);
­1­­ {
JHandle .obj = gcRehand(h);
if (_isHandl­(obj)) {
_setLocalC obj);

{
{

{

static void _3noopJavaFrame(JavaFrame .frame, stack_item .top_top_stack)
}

JHandle .ptr;
JavaStack .javastack;
St ITUCtHIethodb 1OCk 4[qq =: f ram€ ­ ~*€lJ£~£~0ifCIlieth0Q j

limit = top_top_stack;
javastack = frame­>javastack;

/. Scan the operand stack. ♦/
/*CQNSTCDNW
while CD {
intis.first. chunk = IN_JAVASTACKC(5tack_item ■Oframe, javastack);
for (asc = is_£irst_chunk ? frame­>ostack : javastack­>data;

ssc < limit; ssc++) {
ptr = ssc­>h;
snoopHandleOrScalar((JHandle*) ptr); /* Never an object pointer */

{
if (is_first_chunk)
break;

javastack = javastack­>prev;
limit = javastack­>end data;

>

if (mb ­■­■Oil IS_JIT_FRAME(frame)) {
mokAssert(!IS_JIT_FRAME(f rame)); /* YLRC ­ don't support JIT ... */

{

if(mb­>fb. access k ACC.KATIVEJ {

/* For native frames, we scan the arguments stored at the top
of the previous frame. ./

JavaFrame ­prev^f rame = frame­>prev;
if (prev.frame == 0)
return;

ssc = prev_frame­>optop;
limit = ssc + mb­>args_size;

{ else {
/* Scan local variables in Java frame */
asc =■frame­>vara ;

if (ssc " 0)
return;

{

for (; ssc < limit; ssc++) {
ptr = ssc­>h;
_3noopHandleGrScalar(ptr); /* Hever an object pointer ./

{
{

static void _snoopThreadLocals(sys_thread_t *t)

}
Exec Env .ee = SysThread2EE(t);
JHandle .tobj = ee­>thread;

void .base;

. mokAssert(EE2SysThreadCee) != sysThreadSelf ());

if (ee­>initial_stack =­■ NULL) {
/* EE already destroyed. */

>

/* Mark thread object */
if (tobj) {
mokAssert(gcNonNullValidHandle((GCHandle*)tobj));
_snoopExactHandle(tobj);

{

<

133

fort;;) {
all OK " true;
mokSleepC 10);
mokThreadEnumerate Over C _HS3Helper, tfall OK);
if (allOK) break;

}
QUEUE.UNLDCK C gcvar. sys.thread);

.ifdef RCDEBUG

end ■ GetTickCountQ ;

dbgprn (1, " \tnHS2Threads='/,d\n" , gcvar . dbg .nHS2Threads);
dbgprn (2, ''\tnHS3Threads=­/,d\n­< , gcvar . dbg . aHS3Threads);
dbgprn { 2, H\tnHS3CoopThreads=7.d\n" , gcvar . dbg . nHS3CoopThread8);

if (gcvar.dbg. nReinf orceQbjects]I gcvar. dbg. nReinf orceChilds) {
dbgprn C I ."\tnReinf0rceChilds='/,d\n" , gcvar . dbg .nReinforceChi Ida);
dbgprn (1 , "\taReiniorceObjects='/,d\n" , gcvar. dbg. nReinforceDbjects);

}

mokAssert(gcvar.dbg. nActualReinf orceObj ects == gcvar.dbg. nReinf orceGbjects);
mokAssert (gcvar.dbg. nActualReinf orceChi Ids ­ gcvar.dbg. nReinf orceChi Ids);

dbgprn (
0,
"_Reinf orce_Clearing_Conflict.Set (end) tin1e=>/,d delta='/,d\nn.
end,
end­start);

*endif // RCDEBUG

>

static void jnarkHandlesInSnoopBuff erAsLocal (uint .buff)

uint .ptr, type, .p;

mokAssert (buff);

/* go backwards ./
p = (uint*)buff [LAST_PDS_IDX] ;

mokAssert (p);
nokAssert(.p"0 (;
p" ;
mokAssert (.p);

for (;;) {
ptr . (uint*)(*p t ­3(;
type ­ .ptf 3;
mokAssert (type != BUFF_HANDLE_MARK);
mokAssert (type != BUFF_DUP_HANDLE_HARK);

#ifdef DEBUG

if (!ptr)
mokAssert (buf f +N_RESERVED^SLOTS =­ p);

if (buf f+N_RESERVED_S LOTS == p)
mokAssert (.p ■=■= BUFF_LINK_MARK) ;

*eodif
if (type==0) {

GCHandle *h = (GCHandle*)ptr;
mokAssert(h);
mokAssert (gcNonNullValidHandle(h));
_aetLocal(h);

iifdef RCDEBUG
gcvar.dbg. nActual5noope<l++;

.endif // RCDEBUG

P­­ i
}
else { /.type==BUFF_LINK_MARK*/
mokAasert((LGWBUFFHASK k (uint)p(" N.RESERVED_SL0TS'3izeof(uint));
/■ free the more recent buffer ./
_freeBuff(gcvar.ee, p ­ N ,RESERVED _SLOTS) ;

if (!ptr)
return;

mokAssert (■.ptr " BUFF.LINKJURKI (uint)p) ;
p " ptr­1; /* skip forward pointer ./

}

}

}

static void mar kSnoopedAs Local (void)
{
uint .buff =■ gcvar .snoopBuff List ;
while (buff) {
uint .nextBuff = (uint*)buff [0] ;

_markHandlesInSnoopBufferAsLocal(buff);
buff = nextBuff ;

}
gcvar.snoopBuf f List = NULL;

}

/.**.*..**...*.*****.**..**... HS4 ♦*♦*.*.*♦♦.*.*♦**♦.,*,**♦*,,*♦*****♦*****/

*define SAFETY_MARG INE 20

static void _3noopExactHandle(JHandle .h)

132

res = gcCompareAndSwap(4ee­>gcblk.stageCooperated, GCHS3, GCHSNONE);
if (res) {
ee­>gcblk. stage = GCHS3;

#ifdef RCDEBUG

gcvar.dbg.nHS3Threads += 100;
#endif /. RCDEBUG */

return SYS.OK;
}

/* OK, we will suspend the thread, but only
. if it's in cooperative mode.

* Pesimistic check:
♦/
if (ee­>gcblk.cantCoop) {
*allOK = false; /♦ try later ./
return SYS OK;

}

/* Suspend the thread */
mokTbxe adSuspendForGC (thrd);

/.
* Now we have to check cantCoop again.
*/
if (ee­>gcblk.cantCoop) {
mokThreadResumeForGC(thrd);
allOK = false; / try later */
return SYS_OK;

}

mokAssertC ee­>gcblk.stageCooperated == GCHS3 I|
ee­>gcblk.stageCooperated == GCHSNQNE);

ee­>gcblk.stageCooperated = GCHSHONE;
ee­>gcblk. stage ­ GCHS3;
mokThreadResumeForGCC thrd);

#ifdef RCDEBUG
gcvar.dbg.nHS3Threads++;

ffendif /♦ RCDEBUG */

return SYS OK;
}

static void _Reini orce_Clearing_Conflict_Set(void)

bool allDK;

Sifdef RCDEBUG

uint start, end;

start = GetTickCountO ;

dbgprn(0,"_Reinforce_Clearing_Conflict_Set (begin)time='/.d\n" , start) ;

Kendif

/* do second handshake ./
mokAssert(gcvar. reinforceBuffList == NULL);

QUEUE_LOCK(gcvar. sys_thread);
gcvar. stage = GCHS2;
/*
* Link for r e inf or cemenr buffers of threads who
* died between HS1 and HS2
*/
gcvar.reinforceBuffList =gcvar.deadThreadsReinforceBuffList;
gcvar. deadThreadsReinforceBuffList = NULL;

#ifdef RCDEBUG
gcvar. dbg .nReinf orceObjects = gcvar.dbgpersist. nDeadReinforceObj ects;
gcvar.dbgpersist. nDeadReinforceObjects = 0;

gcvar.dbg. nReinf or ceChilds = gcvar.dbgpersist.nDeadReinforceChilds;
gcvar.dbgpersist.nDeadReinforceChilds = 0;

#endif

/*
* Link update buffers of live threads
*/
for(;;) {
all OK = true;
mokThreadEnunierateOver (_HS2Helper , efallOK);
if (allDK) break;
mokSleep(10);

}
QUEUE_UNLOCK (gcvar. sys.thread);

while (gcvar. reinforceBuffList) {
uint *p = gcvar .reinforceBuffList ;
uint *limit = (uint*)gcvar.reinf orceBuffList(LAST_POS_IDX] ;
_reinforceUpdateBuf fer(p, limit);
gcvar. reinforceBuffList = Cuint*)p[REINFQRCE_LINKED_LIST_IDX];

}

/* do third handshake ./
QUEUE_LOCK(gcvar. sys.thread);
gcvar. stage = GCHS3; ' ,

131

* Otherwise, this should be a back ­pointer to the
' ♦ previous chunk.

./
else {
mokAssert((((uint)*(pos­1))) == BUFF_LINK_MARK);

}
gcvar.dbg.nHS2Threads++;
gcvar.dbg. nReinforceObjects += ee­>gcblk.updateBuffer. start [LOG_DBJECTS_IDX] ;

gcvar . dbg . nReinf orceChilds += ee­>gcblk . updateBuif er . start [LOG CHILDS IDX] ;

}
#endif /♦ RCDEBUG ./
/* restart the thread */
ee­>gcblk. stage = GCHS2;
mokThreadResumeForGC(thrd);
return SYS.DK;

}

static void _reinforceUpdateBuffer(uint *p, uint *limit)

i
mokA ssert(p);

p +=N.RESERVED.SLOTS ;

p++; /. skip the first back pointer ./
for (;;) {
uint *ptr = (uint*) (*p £ ­3(;

uint type = *p tf 3;
#ifdef DEBUG

if (!ptr)
mokAssert (p == limit);

ttendif DEBUG

if (p==limit)
return;

nokAssert(type != BUFF_DUP_HANDLE_MARK);
switch (type) {
case BUFF_LINK_MARK: {
mokAssert(ptr);
mokAssert< *ptr == BUFF_LINK_MARK|(uint)p);
mokAssert((LOWBUFFHASK k (uint)ptr) == N_RESERVED_SLOTS*sizeof (uint)) ;

p = ptr+1; /. skip backward pointer */
break;

}

case BUFF_HANDLE_HARK: {
GCHandle .h ­ (GCHandle*)ptr;
mokAssert(h);
mokAssert(gcKonNullValidHandle(h));

/* reinforce, if needed ./
if Oh­>logPos)
h­>10gP0s =■ p;

p++;
#ifdef RCDEBUG

gcvar .dbg.nActualReinf orceDbjects ++;
.endif // RCDEBUG

break;
}

case 0: {
GCHandle *h = (GCHandle*)ptr;
mokAssert(h);
mokAsaert(gcNanNullValidHandle(h));

#ifdef RCDEBUG
gcvar. dbg. nActualReinf orceChilds ++;

#endif // RCDEBUG

p++;
break;

}
>

>

}

static void _HS3Coope rate (ExecEnv *ee)
<

bool res ­ gcCompareAndSwap(tfee­>gcblk. stageCooperated, GCHSNOKE, CCHS3);
mokAssert (res);

lfifdef RCDEBUG

gcvar.dbg.nHS3CoopThreads++;
#endif /* RCDEBUG ./

; }

static int_HS3Hel per(sys _thread.t *thrd, bool *allOK)
{
Exec Env .ee;
bool res;

ee 3 SysThread2EE(thrd);
uokAssert(gcvar.ee != ee);
/* already moved to the next state? */
if (ee­>gcblk. stage == GCHS3) return SYS.GK;

/. only the collector advances the stage field ./
mokAssert (ee­>gcblk. stage " GCHS2);

/* did the thread cooperate voluntarily? ./

130

{
ftifdef RCDEBUG

DWORD start, end;

start = GetTickCountO ;

dbgprn (0, "_Clear_Dirty .Marks (begin)time='/,d\n" , start) ;

#endif

_clearFlagsInCreateBufferList();
_clearFlagsInUpdateBufferList();

#ifdef RCDEBUG
end = GetTickCountO ;

dbgprn C 1, "\tnHSlThreads=y,d\nH ,gcvax. dbg .nHSlThreads);
dbgprn (1, "\tnUpdateQbjects='/,d\nn , gcvar. dbg. nUpdateDbjects);
dbgprn (2, "\tnUpdatdChilds='/.d\n" , gcvar .dbg. nUpdateChilds);
dbgprn (2,"\tnActualUpdateDbjects=­/.d\n" , gcvar . dbg . nActualUpdateObj ect3);
dbgprn C 2, "\tnActualUpdateChilds='/,d\n" , gcvar . dbg . nActualUpdateChilda);
dbgprn (2, ■■\tnFreeCyclesBroken=y,d\nH , gcvar . dbgpersist . nFreeCyclesBroken);
dbgprn (2, "\tnCreateQbjects=*/,d\n" , gcvar . dbg . nCreateOb jects };
dbgprn (2, ■'\tnActualCreateObjects=y.d\n" , gcvar .dbg . nActualCreateObjects);

if (gcvar.dbg.nUpdateDuplicates) {
dbgprn (1, "\tnUpdateDuplicates=>/,d\n" ,gcvar.dbg. nUpdateDuplicates);

{

if (gcvar.dbgpersist.nFreeCyclesBroken) {

dbgprn (1, "\tnFreeCyclesBroken='/,d\n" ,gcvar.dbgpersist. nFreeCyclesBroken);
{

mokAssertC gcvar.dbg.nActualUpdateObj ects ­ gcvar. dbg. nUpdateGbjects);
mokAssert(gcvar.dbg.nActualUpdateChilds == gcvar.dbg.nUpdateChilds);
mokAssert(gcvar.dbg.nActualCyclesBroken == gcvar.dbgpersist.nFreeCyclesBroken);
mokAssertC gcvar.dbg.nActualCreateObjects == gcvar ­dbg .nCreateObjects);

gcvar.dbgpersist.nFreeCyclesBroken = 0;
dbgprn (0, " _Clear_Dirty .Marks (end) time='/,d delta='/.d\n", end,end­start);

#endif // RCDEBUG
>

static int _HS2Helper(sys thread t ♦thrd, bool *allGK)
}
Exec Env *ee;

ee = SysThread2EE(thrd);

mokAssert(gcvar.ee /= ee);

if (ee­>gcblk. stage == GCHS2) return SYS.OK;
if (ee­>gcblk.cantCoop) {
*allGK = false;
return SYS.OK;

{

mokThreadSuspendForGC(thrd);
mokAssertC ee­>gcblk. stage == GCHS1);
if (ee­>gcblk.cantCoop) {
mokThreadRe s umeForGC C thrd);
*allOK = false;
return SYS_OK;

{

/* mark current position in the buffer */
ee­>gcblk.updateBuf f er .start[LAST_PDS_IDX] = (uint)ee­>gcblk.updateBuffer.pos;
/*
* link the buffer into the reinforce buff
* list. Note that the buffer stays at the
* mutator .
♦

* We link the buffers instead of going again
. through the thread ring in order not to
* lock it uhen we really do the reinforce
* stage.
*/
ee­>gcblk.updateBuffer.start[REINF[)RCE_LINKED_LIST_IDX] =

)uint)gcvar.reinforceBuffList;
gcvar.reinf orceBuf f List = ee­>gcblk.updateBuffer.start;

Sifdef RCDEBUG
}

uint *pos = ee­>gcblk.updateBuffer.pos;
/*
* i.e. , ue never point to the reserved area:
*/
mokAssertC (((uint)pos)tfLOVBUFFMASK) >= N_RESERVED_SLOTS);
/ .
. If there is something in the current chunk, then
* the last entry is a containing handle entry.
. i.e., we don't see partial entries.
*/
mokAssertC (((uint)pos)tfLDWBUFFMASK) >= (N_RESERVED_SLGTS+l)*sizeof(int));
if ((C(uint)pos)cfLOWBUFFMASK) > (N_RESERVED_SLOTS+1) *sizeof (int)) i
mokAssert((((uint)*(pos­l))cf3) == BUFF_HANDLE_HARK);

{
/*

129

* only those which are duplicates.
+ 1

gcvar.dbg.nActualUpdateObjects++;
rfendif

if (h­>10gP0s == p) { /* yep */
mokAssert < gcNonNullValidHandle(h));
h­>logPos = NULL; /♦ clear dirty flag */

} else {
*p = BUFF_DUP_HANDLE_MARK I (uint)h;

.ifdef RCDEBUG
gcvar.dbg.nUpdat eDupl i cates++ ;

#eadif
}

p­ ;
break;

>

>
}

}

static void clearFlagsInUpdateBufferList(void)
{
uint ♦buffList = gcvar. updateBuf f List ;
while (buffList) {

_clearFlagsInUpdateBuffer(buffList);
buffList ­)uint*)buffList[LINKED_LIST_IDX];

}
>

static void _clearFlagsInCreateBuffer(uint *p)
<

#ifdef RCDEBUG

uint .last.entry = (uint*)p[LASTJ>OS_IDX];
; #endif

mokAssertC p);

p += N_RESERVED_SLGTS;
p++; /. skip the first back pointer */

for (;;) {
uint *ptr = (uint*)(.p k "3);
uint type=*ptf 3;
mokAssertC type != BUFF_HANDLE_MARK);
mokAssertC type! = BUFF_DUP_HANDLE_MARK);

#ifdef RCDEBUG

/*
* the one and only entry which
* is supposed to be NULL is the
* last one.
./
if (p==last_entry)
mokAssert (*p ==0) ;

if <!*p)
mokAssert (p == last .entry);

ffendif
if Ctype==O) {
GCHandle *h = CGCHandle*)ptr;

#ifdef RCDEBUG
dbgprn C 4,"\t\tclearrcr : 7,x\n" , ptr) ;

Send if
if Oh) return;
mokAssert(gcValidHandleCh));
/. In the create buffer all entries

. no contention for these objects.
*/

mokAssert(h­>10gP0s == p) ;

h­>10gP0s = NULL; /* clear dirty mark +/
.ifdef RCDEBUG

gcvar.dbg.nActualCreateObjects++;
#endif

p++;
>

else { /*type==BUFF_LINK_HARK*/
mokAssertC ptr);
mokAssertC ♦ptr == BUFF_LIHK_HARK|(uint)p);
mokAssertC (LOWBUFFHASK k (uint)ptr) == N_RESERVED_SLDTS*sizeof Cuint)) ;

p = ptr+1;
}

>
>

static void ,clearFlagsInCreateBuf f erList (void)
{
uint .buffList = gcvar. createBuf fList ;
while (buffList) {
_clearFlagsInCreateBuf fer(buffList);
buffList = (uint*)buf f List [LINKED LIST IDX];

}
>

static void _Clear_Dirty_Harks(void)

128

for(;;) {
allOK =­ true;
mokThreadEnumerateOverC_HS1Helper,tfall OK);
if (allQK) break;
mokSleepC 10) ;

}

QUEUE UNLOCK (gcvar. sys.thread);
}
*pragma optimize C "", on)

/*..**■■*■a**..**■*... US2 £ [{S3 .*****.■*a.******.********/

static void _c 1earFlags InUpdateBuffer(uint .p)
{
uint .ptr;
uint type;

#ixdef RCDEBUG

uint .first_entry = p+N_RESERVED_SLDTS;
#endif

mokAssert (p);

p ­ Cuint*)p[LAST_POS_IDX];
mokAssert (!*p) ;

p~;
mokAssertC ♦p);
for (;;) { 1
type = ■P* 3;

ptr = (uint*)(.p £ "3);
*ifdef RCDEBUG

/*
"the one and only entry which
* is supposed to be NULL is the
* last one.
./
if(p==f irst_entry)
mokAssert (♦p == BUFF_LINK_MARK);

if (.p == BUFF_LINKJ1 ARK)
mokAssert (p ==first _entry);

#endif
switch (type) {

case BUFF_DUP.HANDLE_HARK: {
.ifdef RCDEBUG

gcvar.dbg.nActualCyclesBroken++;
gcvar.dbg.nActualUpdateGbject3++;
/ .

* can happen becuase of deletion
* cycle breaking.
♦/

dbgprn(3, " \t \tclear : up : broken 7,x\n" , ptr);
ttendif

for (;;) {

P­­ :

type =*P* 3;
if (type) goto next .entry;

#ifdef RCDEBUG

gcvar.dbg.nActualUpdateChilds++;
#endif

}

}

case 0: {/* Logged slot entry */
GCHandle .h = (GCHandleOptr;
mokAssert (gcNonNullValidHandle(h));
p­ ;

Jtifdef RCDEBUG
dbgprnC 4, "\t\tclear:up: slot Zx\a", ptr);
gcvar.dbg.oActualUpdateChilds++;

#endif
break;

>

case BUFF_LINK_MARK: {
if)'ptr) {

*ifdef RCDEBUG
mokAssert (p==1irst_entry) ;

.endif

}
mokAssert (­ptr == BUFF_LINK_MARKI(uint)p);
p = ptr­ I ; // skip forward pointer
break;

}

case BUFF_H ANDLE_MARK : { /* Containing object entry */
GCHandle *h = (GCHandleOptr;
mokAssert (h);

#ifdef RCDEBUG
dbgprn(4,"\t\tclear :up:hand */,x\n" , ptr);
/* is thia entry cycle closing ?
* ue assume that the striking majority
* of entries are, so ue modify

127

/* now steal the buffers (if they were modified) ./

if (bufflsModif led (cfee­>gcblk. createBuf fer)) {
/♦ D&ke sure that the last word in the buffer 13 NTJLL ♦/
*ee­>gcblk. createBuff er .pos = 0;
/. make sure the second entry in the buffer points to
* the last entry
ee­>gcblk.createBuffer.start[LAST_PGS_IDX] = (uint)ee­>gcblk.createBuffer.poa;
/* the first entry is the linked list pointer */
ea­>gcblk. createBuffer. start [LINKED_LIST_IDX] ­ (uint)gcvax. createBuf f Li at;

/* give the thread new buffers to play with */
gcvar. nPreAllocatedBuf f ers­;
ee­>gcblk. createBuf fer = gcvar .preAllocatedBuff ers [gcvar. nPreAllocatedBuffera] ;

}
*if del RCDEBUG
else {

nrokAssert(ee­>gcblk.dbg.nBytesAllocatedInCycle==0);
mokAssertC ee­>gcblk . dbg .nRef sAllocatedInCycle"0 (;

{
*endif

if(buffIsModified(cfee­>gcblk. updateBuf fer)) {
/* do the same for the update buffer +/
*ee­>gcblk. updateBuf f er .pos = 0;
.a­ >gcblk. updateBuf fer. start [LAST_PQS_IDX] = (uint)ee­>gcblk . updateBuf fer .pos;
ee­>gcblk. updateBuf fer .start[LINKED_LIST_IDX] = (uint)gcvar. updateBuf f List;
gcvar. updateBuf f List ­ ee­>gcblk. updateBuffer .start;
gcvar. nPreAllocatedBuff ers­;
ee­>gcblk. updateBuffer = gcvar .preAllocatedBuff ers [gcvar. nPreAllocatedBuff ers] ;

>

#ifdef RCDEBUG
gcvar.dbg.nBytesAllocatedlnCycle +­ ee­>gcblk.dbg.nBytesAllocatedlnCycle;
gcvar.dbg. nRefsAllocatedlnCycle += ee­>gcblk.dbg.nHefsAllocatedInCycle;
gcvar. dbg. nNewDbjectUpdatesInCycle *­ ee­>gcblk.dbg.nNewQbjectUpdatesInCycle;
gcvar. dbg. aDldDbjectUpdateslnCycle ♦­= ee­>gcblk.dbg.nOldObjectUpdatesInCycle;

ee­>gcblk. dbg. nBytesAllocatedlnCycle = 0;
ee­>gcblk.dbg. nRefsAllocatedlnCycle ' 0;
ee­>gcblk.dbg.nNewObjectUpdatesInCycle = 0;
ee­>gcblk.dbg. nDldGbj ectUpdatesInCycle a 0;

Sendif

/* restart the thread */
ee­>gcblk.stage = GCHS1;
mokThreadResumeForGC(thrd);

#if 0

ee­>gcblk.gcSuspended = true;
#endif
return SYS DK;

}

.pragma optimize C "", off)
static void Initiate Collection Cycle(void)
{

bool allQK;

mokAssert(gcvar .stage " GCHS4);

// if (gcvar.
/* raise snoop flags ./
QUEUE_LOCK(gcvar. sys.thread);
mokThreadEnumerateOver(_setSnoopFlagHelper, MULL);
QUEUE.UNLDCK (gcvar. sys.thread);

#ifdef RCDEBUG
mearset(tfgcvar.dbg, 0, sizeof(gcvar.dbg));
gcvar.dbg.nlnZct = gcvar. dbgpers 1st. nPendlnCycle;
gcvar . dbgpers ist .nPendlnCycle =0;

#endif // RCDEBUG

/. do first handshake */
QUEUE_LOCK(gcvar. sys.thread);

gcvar.stage ­ GCHS1;
■0kAssert(gcvar.createBuf f Li st == HULL);
mokAssertC gcvar. updateBuf f List == NULL);

gcvar. createBuf fList = gcvar. deadThreadsCreateBuff Liat ;
gcvar. deadThreadsCreateBuf f List = NULL;
gcvar .updateBuf f List = gcvar. deadThreadsUpdateBuff List ;

#ifdef RCDEBUG
gcvar .dbg. nUpdateGbjects = gcvar. dbgpers ist .nDeadUpdateObjects;
gcvar .dbgpers ist nDeadUpdateQbjects = 0;

gcvar.dbg.nUpdateChilds = gcvar.dbgpersist.nDeadUpdateChilds;
gcvar. dbgpersist .nDeadUpdateChilds = 0;

gcvar.dbg.nCreateObjects ­ gcvar. dbgpers ist . nDeadCreateDbject s ;
gcvar. dbgpersist .nDeadCreateObjects = 0;

(Jendif

126

­" " *­1 . י.י

enlargeZctStackO;
{
♦gcvar.zctStackSp++ = (GCHandle*)h;

>

static void _decrementLocalHandleRC(void .h)
}

uint prevRC ;
H2BIT_DecInl ined (gcvar . rcBmp . entry ,(unsigned) b, prevRC);
nokAssertC l.isInZCT(h));
mokAssertC prevRC > 0) ;

if(prevRC" 1) >
_markInZCT(h) ;

putInNextZCT(h);
{

{

/.***...*...*.*.*...... Local Marks *.***a******.*************/

static bool _isLocal(void *h)
}

HIBIT.GetlnlinedC gcvar.localsBmp.entry, (unsigned)h, res);
return res;

{

static void aetLocal(void *h)
}
if (!_isLocal(h)) {

HlBIT_Set(gcvar .localsBmp . entry , (unsigned)tO ;

_incrementHandleRC(h);
gcBuffLogftordC gcvar.ee, (tfgcvar.uniqueLocalsBuff) , (uint)h);

*ifdef RCDEBUG
gcvar.dbg.nLocals**;

.endif
{

>

static void unsetLocal(void *h)
i /. This also resets the local mark of near by objects,

* but ue don't care since we're turning everybody
. off.
*/
HlBIT_ClearByte(gcvar.localsBmp.entry. (unsigned)h);

{

/*♦♦♦*♦***++*,***+*** COLLECTIONmm ! ,,,,,♦*,*,,,♦,♦**♦,*,,,/

/*,,,**.*.*,..***,*, HS1 *♦*♦**,,.*♦***,*,**♦♦,*,,**,*♦"*,,,/

static int _setSnoopFlagHelper(sys thread t . thrd. void .dummy)

Exec Env *ee = SysThread2EE (thrd);

mokAssert(ee != gcvax.ee);
ee­>gcblk.snoop = true;
return SYS_OK;

{

static intHSlHelper(systhread_t .thrd, bool *allDK)
­C

Exec Env *ee;

ee = SysThread2EE(thrd);

nokAssert C ee \­ gcvar.ee);

if<ee­>gcblk. stage == GCHS1) return SYS_­CK;
if Cee­>gcblk.cantCoop) {

.allGK = false;
return SYS.QK;

{

while (gcvar. nPreA110catedBuffer3<2) {
bufflnitf gcvar.ee, igcvar. preAllocatedBuff era [gcvar. nPreAllocatedBuffer3]);
gcvar. nPreAllocatedBuf fer3++ ;

{

mokThreadSuspendForGC(thrd);
mokAssert(ee­>gcblk. s t age==GCHS4) ;
if (ee­>gcblk.cantCoop) {
mokThreadResumeForGC < thrd);
.allDK = false;
return SYS_DK;

{
#ifdef RCDEBUG
gcvar . dbg . t1HSlThreads++ ;

gcvar.dbg. nUpdateOb jects += ee­>gcblk­ updateBuf fer .start[LDG_OBJECTS_IDX];
gcvar . dbg . nUpdateChilds ♦= ee­>gcblk .updateBuf fer . start [LDG_CHILDS_ IDX] ;

gcvar.dbg. nCreateDb jects += ee­>gcblk. createBuf fer .start [LDG_ OBJECTS. IDX] ;

#endif // RCDEBUG

125

Itendif

*define _markIt1ZCT(h) HlBIT_Set(gcvar.zctBmp.entry, (unsigned) h)

*define .markNotlnZCT(h) HlBIT_Clear(gcvar.zctBmp.entry ,(unsigned) h)

static bool _iaInZCT(GCHandle .h)
{
bool res;
HlBIT_GetInIined(gcvar. zctBmp. entry , (unsigned) h, res);
return res;

}

GCFUNC uint gcGetHandleRC(GCHandle *h)
{
uint res;
H2BIT_GetInlined(gcvar.rcBmp.entry, (unsigned) h, res);
return res; '

{

static void _incrementHandleRC(void * h)
{
H2BI T Inc(gcvar.rcBmp.entry, (unsigned) b); .

}

static uint _incrementHandleRCUithReturnValue (void * h)
{
uint res;
H2BIT_IncRVInlined(gcvar. rcBmp. entry, (unsigned)h, res);
return res;

}

static void _decrementHandleRCInUpdate(void . h)
{
uint prevRC;
H2BIT_DecInlined(gcvar.rcBmp. entry,(unsigned) h, prevRC);
if (prevRC==l tk !.isInZCT(h)) {
_markInZCT(h);
gcBuffLogUord(gcvar.ee, *gcvar. zctBufx , (uint)h);

#ifdef RCDEBUG

gcvar.dbg.n!nZct++;
gcvar.dbg .nUpdate2ZCT++; 1

#endif // RCDEBUG
}

}

static void enlargeZctStack(void)
{
GCHa ndle ..p;
uint sz = ((char.) gcvar .zctStackTop)­ ((char.) gcvar.zctStack);

nokAssert (gcvar . zctStackSp ==gcvar. zctStackTop);
p ­ (GCHandle ..) mokMemRe 3 erve (gcvar.zctStack, sz);
if (p) {

mokAssert(p == gcvar.zctStack);
mokMem Commit (p, sz, false);
gcvar.zctStackTop = (GCHandle..)(sz +(char*)gcvar. zctStackTop) ;

>
else {
uint nevsz = sz*2;
GCHandle ..oldstack =gcvar. zctStack;
gcvar. zctStack = (GCHandle.*)mokMemReserve(NULL, neusz);
gcvar.zctStackTop = (GCHandle..)(neusz + (char.) gcvar. zctStack) ;

gcvar.zctStackSp = (GCHandle..)(sz + (char*) gcvar. zctStack);
mokMemCommit((char.) gcvar. zctStack, neusz, false);
CopyMemory(gcvar. zctStack, oldstack, sz);
mokMemDe commit ((char■) oldstack, sz);
mokMemUnreserve((char.)oldstack , sz) ;

>
>

static void _decrementHandleRCInDeletion(void *child)
i
uint prevRC;
H2BIT_DecInlined(gcvar. rcBmp. entry , (unsigned) child, prevRC);
mokAssert(LisInZCT(child));
mokAssert (prevRC > 0) ;

if (prevRC==l) {

ffifdef RCDEBUG
gcvar.dbg.nRecursiveDel++;
_freeHandle(child);

#else
if (gcvar.zctStackSp " gcvar.zctStackTop) {

enlargeZctStackO ;

}
.gcvar.zctStackSp++ = child;

#endif // RCDEBUG
}

}

static void putInMarkStack(void .h)
<
if(gcvar .zctStackSp ==gcvar. zctStackTop) i

124

bh­>pos++;
.ifdef RCDEBUC

// increment counter of logged objects
bh­>3tart[LDC_OBJECTS_IDX] ♦+;

.endif // RCDEBUG
mokAssert(gcGetHandleRC(h)==O);
ee­>gcblk . cantCoop =* false;
gcBuf fReserv­Word(ee, bh);

mokAssert(gcNonNullValidHandle(h));
}

.endif /. RCNOINUNE ./

/...,...,,.. VALIDATION ,.,...,.,.,,.,..,.,.,,,,,...,/

GCFUNC bool _isHandle(void .h)
{
BlkA llocHdr .bah;
int status;

if ((byte*)(h) <blkvar.heapStart) return false;
if ((byte.)Ch) >n blkvar.heapTop) return false;
if ((((unsigned)h) k OBJHASK) !­ (unsigned)h) return false;
if ((byte>)unhand((JHandle*)h(!­)byte>)gcUnhand(UHandle­)h)) return false;

.ifdef RCDEBUG
if (((GCHandle*)b) ­>status != Im_used) return false;

#endif

bah ­ OBJBLOCKHDR(h);
status "bhGet.status (bah);

if (status"ALLOCBIG) { .:

if (((uint)h i BLOCKMASK(" 0(
return true;

return false;
}

if (3tatu3<GWNED |I status>PARTIAL)
. return false;

if ifdef RCDEBUG
{
int bin_idx = bhGet_bin_idx(bah);
mokAssert((((uint)h if: BLOCKMASK) '/. chltconv.binSize[bln idx[(=­ 0(;

{
#endif

/'. check if on sane page or ALLDC_LIST terminator ./
if ((uint) ((GCHandle*)h)­>logPos == (uint)ALLOC_LIST_NULL) return false;
if ((Cuint)h " (uint)((GCHandle*)h)­>logPos) < BLOCKSIZE)

return false;

#ifdef RCDEBUG

{
uint val;
uint .pos = ((GCHandle*)h)­>logPos;
if (pos) {
val m *pos;
if ((val t ­3(!­)uint)h) {

/ .
* This is a problem only if ue're the collctor,
. this means that someone has garbaled the log, the

' . logPos pointer or both.

♦ If ue're a mutator then this is not an error since
* the log could have already been freed by the collector.
./
if (gcvar.ee " EEO) {
mokAssert (0) ;

}
>

y

}
.endif

return true;
>

/...a***..*..♦***. ZCT + RC a*****...*******.*.******..***********/

.ifndef RCDEBUG

.define .putlnNextZCTChA
do{ \
gcBuffLogUord(gcvar.ee, Ugcvar.nextZctBuf f) , (uint)h);\

}while (0)
.else
static void_putInNextZCT (void ■h)
{
gcBu ffLogWord(gcvar.ee, (tfgcvar.nextZctBuf f) , (uint)h);
gcvar . dbgpersist .nPendInCycle++ ;

}

123

register long a * obj_length(h);
CCHandle **body ­ (GCHandls**) (((ArrayOf abject*)gcUnhand(h)) ­>body) ;

nokAssert(obj .flags (h(" T^CLASS); /* an array of classes ./
mokAssert(n > 0) ;

p = (GCHandle**)bh­>pos;
avail = bh­>limit ­ (uint*)p;
if (n > avail) {
ee­>gcblk.cantCoop = false;
gcBuff Al locAndLini(ee, bh);
p ­ (GCHandle'*)bh­>pos;

#ifdef RCDEBUG
avail = bh­>limit ­ bh­>po8; *

mokAssert(ם >■ avail);
#endif /* RCDEBUG */

ee­>gcblk. cantCoop = true;
>
while (­­n >­ 0) {

GCKandle .child ­ *body;
body++;
if (child) {

♦p = child;
p++;

*ifdef RCDEBUG
^^* ^£R^ dCh 11ds^^ ; If ^£CfGlffsj3£ c ouute r of lQffff©d slots

Sendit // RCDEBUG
>

{
>

/* commit ? or discard ? */
if (lh­>logPos) { /. commit ./
.p ­ (GCHandle.)(BUFF HANDLE.MARK I (unsigned)h)I
/.

* should be reversed in order to enable
. async reading of buffers.
./
h­>logPos ­ (uint*)p;
bh­>pos ­ (unsigned*)(p+1); .

<ifdef RCDEBUG
// increment counters of logged slots
bh­>start[LDG.CHILOS_IDX] *­ nLoggedChilds;
bh­>start[LOG_OBJECTS_IDX] ♦+;

*endif // RCDEBUG
{

{
#pragma optimizeC "", on)

.ifdef RCBOINLINE

GCEXPQRT void gcBuffConditional LogHandleCExecEnv* ee, GCHandle .h)
< if C!h­>logPos)

gcBuffSlowConditionalLogHandle(ee, h);
{

GCEXPaRT voidgcBuffLogWordUnchecked (ExecEnv *ee, BUFFHDR *bh, uint v)
i
*bh­ >pos = w;
bh­>pos++;

.ifdef RCDEBUG

// increment counter of logged objects
bh­>start [LDG_OBJECTS_IDX] ♦♦;

.endif // RCDEBUG
{

GCEXPORT voidgcBuffReserveWord (ExecEnv .ee, BUFFHDR .bh)
}
mokA ssert (bh Atf ee);
if (bh­>pos <­ bh­>limit) {

gcBuffillocAndLink(ee, bh);
>

{

GCEXPORI voidgcBuffLogWord(ExecEnv .ee, BUFFHDR .bh, uint y)
}
mokAssert (u btc bhkt ee);

gcBuf fReserveWord (ee, bh);
gcBuf fLogUordUnchecked(ee,bh,u);

{

GCEXPGRT void gcBuffLogKewHandle (ExecEnv *ee, GCHandle .h)
<

BUFF HDR .bh;

mokAssert(ee);

baf ­ 4ee­>gcblk .createBuffer ;
ee­>gcblk.cantCoop " true;
*bh­>pos = (uint)h;
h­>logPos = bh­>pos;

122

/. forvard link ./
/. from the current position to the new chunk */
.bh­>pos ­ ((uint)inevBuf fW.RESERVED.SLDTS]) I BUFF_LINK_M*RK;
/^f roo tnebeg i nn ing 01 the c ur rent bur xer to the next duxf er .^
bh­>currBuf f [NEXT_BUFF_IDX] = (uint)neuBuff ;

/. update record */
bh­>pos = inewBuff [N_RESERVED_SLDTS+1] ;

bh­>limit = newBuff + BUFFSIZE/sizeof (uint);
bh­>currBuff = newBuff;

/*
. Reserve place for"
* 1. the handle and forward pointer (2 words).
. 2. and a reserved place for a snooped object.
*/
bh­>limit ­= 3;

}

static void buf f InitCExecEnv *ee, BUFFHDR .bh)
{
int i;
bh­>start = _allocBuff (ee) ;

_initBuffReservedSlota(ee, bh­>start);

/* backword link */
bh­>start[PRESERVED.SLOTS] =((unsigned) NULL) I BUFF_LINK_MARK;
bh­>pos = 4bh­>start [N_RESERVED_SLDTS+1] ;

bh­>limit = bh­> start + BUFFSIZE/sizeof (uint) ;

bh­>lin1it ­= 3; /. for the handle, forward pointer and reserved snoop +/
bh­>currBuf f = bh­>start;

>

*define buffIsModif ied(bh) ((bh)­>pos != Jt(bh)­>3tart[N_RESERVED_SLGTS+1])

*pragmaoptimize ("" , off)

GCEXPDRT voidgcBuffS10wC0nditionalL0gHandle(ExecEnv" ee, GCHandle .h)
{
int avail;
GCHandle .*objslots;
GCHandle **p;
ClassClass .cb;
BUFFHDR .bh;

#ifdef RCDEBUG
uint nLoggedChilds = 0;

#endif // RCDEBUG

bh = tfee­>gcblk. updateBuffer ;

if(obj_f lags (h)=T_NORMAL_OBJECT) {

makAssertC cb != classJavaLangClass);
{ /. OK, it's a non­ class object ./
unsigned short *off s = cbQbjectDf f setsCcb) ;

intnref s =unhand(cb)­>n_object_off sets;
objslots = (GCHandle..) (((char.)unhand(h))­l);

mokAssert(0bjslot3 bk h bk bh kk ee bk of fs kk nrefs>0);
p = (GCHandle*Obh­>pos;
avail = bh­>limit ­ (uint*)p;
if (nrefs > avail) {
ee­>gcblk­cantCoop = false;
gcBuf f AllocAndLink(ee, bh);
p = (GCHandle..) bh­>pos;

#ifdef RCDEBUG
avail = bh­>limit ­ bh­>pos;

#endif /* RCDEBUG */
ee­>gcblk.cantCoop = true;

}
for (;;) {

unsigned short slot = "off s;
GCHandle *child;

if (slot==O) break;

child = *(GCHandle..) (slot + (char*)objslots);
if (child) {
♦p = child;
p++;

#ifde1 RCDEBUG
nLoggedChilds*♦; // increment counter of logged slots
nokAssert(nrefs > 0) ;

fendif // RCDEBUG :

> f
offs++;

}

}
}
else {

121

bf [USED.IDX] = Im_u3ed;
.endif
returnbf ;

}

static uint. _allocBuf f (ExecEnv *ee)
{
uint *bf;

if (buffList­=NULL) {

bf = _allocFreshBuff () ;
_buffListLockEnter((unsigned) ee);
gcvar. nAllocatedChunks++;
gcvar.nUsedChunk3++;
mokAssert(gcvar.nFreeChunks>gcvar.nUsedChunks ­= gcvar.nAllocatedChunks (;

­ ­­

bf =buffList;
if (!bf) {

I gcvar . nl)sedChunks++ ;

' gcvar. nA110catedChunks++;
mokAssertC gcvar.nFreeChunks+gcvar.nUsedChunks == gcvar.oAUocatedChunks);
_buffListLockExit((unsigned)ee);
bf = _allocFreshBuff O ;

)
else {

gcvar.nUsedChunks++;
gcvar.nFreeChunks­;
mokAssert(gcvar.nFreeChunks+gcvar.nUsedChunks " gcvar.nAllocatedChuoks);

Oifdef RCDEBUC

.okAssertt bf[USED.IDXJ ­­ Ia.frae);
bf [USED.IDX] ­ Im.used;

.endif // RCDEBUO
buffLiat ­ (unsigned*)bf[LINKED_LIST_IDX1;
_buffListLockExit((unsigned) eo);

y
checkout:
if (ee != gcvar.ee) {

gcvar nChunksAll 0catedRecentlyByUser++; // allow inaccuracy due to race condition
if (gcvar . nChunksAllocatedRecentlyByUser >= gcvar . opt ­userBuffTrig

tit gcvar. initialized
kk!gcvar. gcActive) {

#ifdef RCVERBOSE
jio_printf ("ALLQC BUFF used=­/)d TRIGERRING ASYNC RC\n" .gcvar. DUsedChunks);
fflush(stdout);

#endif
gcRequestAsyncGCC);

}
>
return bf;

>

static void _freeBuff (ExecEnv *ee, uint* buff)
{
mokA ssert(ee == gcvar.ee)\

#ifdef RCDEBUG
mokAssert (buff [USED.IDX] == Im.used);

#endif

.buffListLockEnterC (unsigned}ee);
buff[LIHKED_LIST_IDX] ­ (uint)buifLiat;
buffList = buff;
gcvar.nFreeChunks++;
gcvar.nUsedChunks­­;
mokAssert (gcvar. nFreeChunks+gc var .nUsedChunks == gcvar.nAllocatedChunks);

#ifdef RCDEBUG

buff [USED.IDX] = Im.free;
#endif // RCDEBUG

.buffListLock£xit((unsigned) ee) ;

}

, static void _initBuf f ReservedSlots (ExecEnv* ee, uint *neubuff)

]■ I . riewbuff [LINKED_LIST_IDX] = 0;' "newbuff [REINFORCE_LINKED_LIST.IDX] = 0;
newbuf f [NEXT_BUFF_IDX] = 0;
newbuf f [LAST.PDS^IDX] = 0;

{ .ifdef RCDEBUGw\newbuf f [ALLDCATIKG.EE] = (uint)ee;
£■ newbufך f[L0G.CHILDS_IDX3 = 0;

newbuf f [LM_DBJECTS_IDX] ­ 0;
, / .newbuff [USED.IDX] = Im_u3ed;
WA dendif

M GCEXPDRT void gcBuffAll 0cAndLink(ExecEnv* ee, BUFFHDR .bh)

uint i;
uint*neuBuf f =_allocBuff (ee);

_initBuffReaervedS10ts(ee , newBuff);

/* backword link */
newBuf f[N,RESERVED. SLOTS] =((uint)bh­>pos) I BUFF_LINK_MARK;

120

/m************* Debug Prints ***■*■****.***.****./
static FILE .fDbg;

*ifdef RCDEBUG
static void dbgpm(int level, char *fmt,.. .)
{
charbuff [1000];
if (level <= 2) {

va_list args;

va_start(args, fmt);
ifCfDbg­­ ­NULL)
fDbg = fopenCtest.txt­', "wt");

vf printf (fDbg, fmt, args);
vsprintf(buff, fmt, args);
jio_printf("7,3", buff);
fflushC stdout);
va_end(args);

}
}
*endif

/* atomic op */ H|

// int coopare_and_ swap(unsigned .addr, unsigned oldv, unsigned new);

*pragma optimize ("", off)

GCFUNC void gcSpinLockEnter (volatile unsigned 'p, unsigned id)
{
int i;

for(i=0; i<K_SPINS; i++) { . ■j
if (.p) continue; J
if (compare_and_swap((unsigned*)p, 0, id))
// jio_printf ("gcSpinLockEnter ended (l)\n");
return;

}
i = 1;
for (;;) {
mokSleep(i/1000);
if (compare_and_swap((unsigned­Op, 0, id)) {
return;

;­" ■
y

GCFUNC void gcSpinLockExit (volatile unsigned *p, unsigned id)
{
#ifdef RCDEBUG
bool res;

#endif
mokAssert (.p ==id) ; ^^

tifdef RCDEBUG H
res = compare_and_swap((unsigned*)p, id, 0) ; ' ^H
mokAssert (res);

*else
compare_and_swap((unsigned*)p, id, 0);

#endif /♦ RCDEBUG ./
}

*pragma optimize ("", on)

/...***.....*<...* BUFFER HANACEHENT ********************.**/

static uint. buffList = NULL; I
static uintpad_against_f alse_sharingl [256] ;

static uint buffListLock;
static uintpad_against_f alse_sharing2 [256] ;

void _buffListLockEnter(uint ee) i
{ *
gcSp inLockEnterCtfbuf fListLock,(unsigned) ee);

>

voidbuffListLockExit (uint ee)
<

gcSp inLockExitCtfbuffListLock,(unsigned) ee);
}

static uint.allocFreshBuff (void)
{
uiot *bf ;

bf ­ (uint*)1nok>lemReserve(HULL, BUFFSIZE);
mokHeaCommit (bf, BUFFSIZE, false);
if (!bf) {

jio.printf CYLRC: out of log buffers spaceW) ;

fflusht stdout J;
exit(­l);

}
.ifdef RCDEBUG

119

goto scan vith list ;

>
h = (GCHandle.) (objsz +(char ■Oh);

}

ftifdef RCDEBUG
gcvar .dbg.nFreedlnCycle +■ count;
gcvar.dbg.nBytesFreedlnCycle += counfobjsz;

tendif
rice.recycledList­>count = count;
chkFlushRecycledListEntryC tfrlce);

}

/♦♦♦**♦****♦♦♦.♦.*** Allocation *.*.*+*.*.*.*****.*..*...**,..**/

GCEXPORT BLKGBJ * chkA1 1 ocSmal 1(ExecEnv. ee, unsigned binldx)

{
int retries;
ALLOCLIST *allocList = .b ee­>gcblk.allocLists[binldx];
BLKGBJ. ores;

ores ­ _allocFromOvnedBlock(allocList);
if (ores) <
return ores;

}

/* now is a good time to cooperate \ ./
// if (ee­>gcblk.stage != gcvar. stage)
// gcThreadCooperate(ee);

for (retries=O; retriesO; retries++) {

if LgetPartialBlockC allocList, ee)) {
ores ■ _allocFromDwnedBlock(allocList);
mokAssert(ores);
return ores;

}
if (_getBlkMgrB10ck(allocList, ee)) <

ores = _allocFromDwnedBlockC allocList);
mokAssert(ores);
return ores;

}
/* Sync GC ♦/
if(gcvar. initialized) <
gcvar.memStress * true;
gcRequestSyncGCO ;

}
else
break;

}
GutOfMemoryO ;

return NULL;
}

/*****♦♦in**.*...♦*** Initialization *..*****.**.*************.******/
GCFUNC void chklnit(unsigned nHB)
{
unsi gned sz;
unsigned nPages;

/* init conversion tables ♦/
_initChunkConv();

/* Allocate page headers cache, ZEROED OUT ./
nPages ■­nHB << (20 ­ BLOCKBITS) ;

chunkvar .nCacheEntries = nPages / RLCACHE.RATIO;
if (chunkvar.nCacheEntries < 117)
chunkvar.nCacheEntries = 117;

sz = chunkvar.nCacheEntriea * aizeofCRLCENTRY);
chunkvar. rlCache = (RLCENTRY*)mokHemReserve(NULL, sz);

if mokMemCommit(chunkvar.rlCache, sz , true);

JJ y

l\ ' End of file source listing

D.5 rcgc.c

rcgc.c contains the code for the reference counting and tracing garbage collection algorithms.
Source listing for file rcgc.c

/.
♦ File: rege.c
. Author : Mr. Yossi Levanoni
. Purpose: implementation of the garbage collector
./
/♦ forward declarations */
static void _snoopThreadLocals(sys_thread_t* t);
static void _incrementHandleRC(void . h);
static void ,traceSetup(void) ;

static void _f reeHandle (OCHandle. h);

118

bhLock< ph);
status ■ bhGet_status(ph);
mokAs3ert(status=­=PARTIAL I I status "OWNED II status==VOIDBLK) ;

(volatile BLKOB>)freeList ­ ph­>freeList;

if (freeList) {
BLKOBJ .t;
mokAssert(freeList­>count);
nFree = freeList­> count + recycledList­>count;
t = recycledList­>next;
re eye 1edLi st ­ >next = freeList­>next;
freeList­>next = t;

}
else {

nFree ­ recycledList­>count;
freeList ­ recycledList;

}

freeList­>count = nFree;
ph­>freel"ist ­* freeList;

bhUnlock(ph);

if (status =­ PARTIAL) {
/*
* Have ue freed all chunks on a
. partial page ?
./
int binldx ■­ bhGet_bin_idx(ph);
PARTI ALLIST *pList = tfchunkvar.partialLists[binldx];
int maxChunk3 = chkc0nv.binT0GbjectsPerB10ck[binldx];
if (maxChunks ==■ nFree)
,handleFullPartialBlockC pList, ph);

>

else if (status =­ VOIDBLK) {
/..
* either put the VOIDBLK page into the partial list or
* return it to the block manager.
*/
int binldx = bhGet_bin_idx(ph);
int maxChunks ­ chkconv.binT00bject3PerBlock[binldx] ;

if (maxChunks==nFree) {
blkFreeChunkedBlock(ph);

>
else {

addPageToPartialList(ph);
>

}
rlce­>recycledList = NULL;

}

GCFUNC void chkFlushRecycledListsCache(void)
{
int i;
RLCENTRY .rice = chuokvar.rlCache;
for (i=chunkvar.nCacheEntries; i>0; i­ , rlce++)
if (rlce­>recycledList)
chkFlushRecycledListEntryt rice);

>

GCFUNC void chkSweepChunkedBlock(BlkAllocHdr .ph, int status)
{
int binidx ­■ bhGet_bin_idx(ph);
int objsz = chkconv.binSize[binidx];
int nobj = chkconv . binToDbj ectsPerBlock [binidx];
GCHandle .h = (GCHandle*)BLDCKHDRQBJ(ph);
RLCENTRY rice;
int count " 0;

while (nobj>0) <

nobj ­ ;

if (gcGetHandleRC (h) ==0 kk !h­>10gP0s) {
BLKOBJ .o = (BLKDBJ­)h;
o­>next ­ o;
rice.recycledList = o;
count ­ 1;
goto scan with Hat;

>
b ­ (GCHandle.) (objsz + (char*)h);

>

return; /. found nothing ./

scan_with_list:
/* here recycled list is non­empty */

h .­)GCHandle.) (objsz + (char*)h) ; .
uhile (nobj>0) {
nobj­;
if CgcGetHandleRC(h(­=O U !h­>logPos) <

BLKOBJ ♦o = (BLKGBJ*)h;
count++;
0­>next = rice.recycledList­>next;
rlce.recycledList­>next * o;

117

return true;
>

.*********mm***.*...****

#i1def RCDEBUG

GCFUNC void chkPreCollect(BLKOBJ *0)
{

RLCENTRY .rice;
BLKOBJ *head;

blockid = OBJBLDCKID(o);
rice = tfchunkvar . rlCache [blockid */, chunkvar.nCacheEntries] ;
bead * rlce­>recycledList;

/**
. Is the cache entry currently owned by this block ?
./
if ((((word)head(­ C(word)o)) < BLOCKSI 2E) {

nokAssertC DBJELQCKID(head)==blockid);
i
int binldx = bhGet_bin_idx(aBJBLOCKHDR(o));
int objSize = chkconv.binSize[binldx] ;

int maxObjs = chkconv.binToQbjectsPerBlock[binldx];

/**
. since some but not all BLKBQJs of the block are linked
* the following should hold.
*/
mokAssert(head­>count>0 tftf head­>count<maxObjs);

}

0­>next = head­>next;
head­>next = o;
head­>count ++;
return;

}

if (head)
chkFlushRecycledListEntryC rice);

/* nov the entry is vacant and we can use it */
o­>count ­ 1;
o­>next ­ o;
rlce­>recycledList ­ o;

}
ttendif /* RCDEBUG */

♦ Flush an entry in the recycled lists cache.
*

* First of, the block is locked then its state is read, the free list
* is merged with the recycled list and then the lock is released.

* ­ If the block is in the VDIDBLK state:
*
* a. The free list must be empty.
* b. If the free list now contains all elements in the block then the 1

* block is returned directly to the block manager (without going
* through the "observed full" set). Otherwise, the state is changed
. to PARTIAL (no lock is taken). Then the corresponding partial list
* is locked and the block is added to it.

. ­ Additional action for PARTIAL
* a. If the block is now fully f reed , then it is marked as "observed full"
* which may lead to the flushing of the "observed full" set.

. Note: free lists and recycled lists are circular.

./
GCFUNC void chkFlushRecycledListEntry(RLCENTRY .rice)
{
BlkA llocHdr *ph;
int nFree, nRecycled;
BLKOBJ *recycledList , .freeList;
unsigned status;

recycledList = rlce­>recycledList;
ph ­ GBJBLOCKHDR(recycledList);

mokAssert(recycledList); I* or else it woudn't be in the cache ./
mokA3sert(recycledList­>next); /. it's a circular list */

nRecycled = recycledList­>count;

mokAssert(nRecycled); /* or else it woudn 't be in the cache ./

116

BlkAllocHdr .pb = allocList­>allocB10ck;
if)'ph) return NULL;

/. see if there is something on the free list */
bhLock(ph);

' (volatile BLKDBJ­Ohead = ph­>freeList; *

if (head) {
/. copy and clear ./
ph­>freeList = NULL;
bhUulock(ph);
{
BLKO BJ .ret = head­>next;

head­>next = ALLDC_LIST_NULL;
allocList­>head = ret­>next;
return ret;

>
>

/* OK, we have to abandon the page, i.e.,
♦ transirom it into a VDIDPG page
*/
bhSet_status(ph, VDIDBLK);
bhUnlockC ph);
allocList­>allocBlock = NULL;

*ifdef RCDEBUG
delta = GetTickCountQ ­ delta;
if (delta > deltaHax) {
deltaMax = delta;
jio.printf (" .*.3 ALLOC_OWNED delta=*/,d\n" , delta);
filushC stdout);

}
*end if
}
return NULL;

>

* Allocate a single block from the block manager and
. chunk it into the given allocation list.
./
static bool getBlkMgrBlockC ALLDCLIST­ allocList, ExecEnv .ee)

{
ftifdef RCDEBUG
static int deltaMax = ­1;
int delta = CetTickCount () ;

.endif

BlkAllocHdr .ph = blkAllocBlockC ee);
int sz;
int count;
BLKQBJ .start, .curr, .next;

if <!ph) {
#ifdef RCDEBUG

delta = GetTickCountO ­ delta;
if (delta > deltaMax) {

deltaHax = delta;
jio^printf (" .♦*4 ALLDC_BLK delta='/.d\n" , delta);
if lush (stdout);

}
#endif

return false;
}

5z ~ ^hkconv . gi/ijizg L all ocList ­^qj_njq3c j *

count = chiconv. binToDbjectsPerBlock [allocList­>binIdx];

mokAssert(count >­ 2) ;

count­;

start = curr = BLOCKHDRDBJ(ph);

for (;count >0; count ­) {

next = (BLKOBJ*) (((word) curr)+sz);
curr­>next * next;
curr = next;

}

curr­>next = ALLOC_LIST_NULL;

allocList­>head = start;

ph­>nextPartial = ph­>prevPartial ­ NULL;
ph­>freeList = NULL;
ph­>StatusLockBinidx = (OWNED << 24) I allocList­>binIdx;

ftifdef RCDEBUG

delta = GetTickCountO ­ delta;
if (delta > deltaHax} {
deltaHax * delta;
jio_printf(H ..♦5 ALLOC_BLKdelta­./,d\n", delta);
fflush(stdout);

}
*endif

115

<
.endif

return FALSE;
>

t else {
BlkAllocHdr *next = ph­>nextPartial;
pList­>f irstBlock = next;
if (next)
next ­>prevP art ial = (BlkAllocHdr*)pList;

{
bhSet_status(ph, OWNED);

#ifdef RCDEBUG

chunkvar.nBlocksInPartialLlst[allocList­>binIdx] ";
*endif /. RCDEBUG */
.unlockPartialList (pList, ee);

allocList­>allocBlock ­ ph;

_stealFreeList(allocList) ;

aokAssert(allocList­>bead);
mokAssert(allocList~>head­>count);

Sifdef RCDEBUG

delta = GetTickCount () ­ delta;
if (delta > deltaMax) {
deltaMax = delta;
jio.printf (" ***2 ALLOC.PARTIAL delta­'/.d\n" , delta);
fflushC stdout);

{
#endif
return TRUE;

>

/.it*** **********a****

* Tries allocating obj ect from ths allocation list or from
* the block which is currently ovned by it.
. If the allocation list is non­empty, then the first element
♦ is extracted and returned (no locking required).

* Otherwise, if the allocation list has no allocation block
* associated with it, then the function fails.

+ Othetwiae, the page is locked and its free list is probed.
* If the free list is empty then the page is transformed into
. a VDIDBLK block, the block is disassociated with the
* allocation list and the fucntion fails.

* Othervise, the free list is stolen and merged into the
♦ allocation list. The first element is extracted and
* returned.
*/
static BLKOBJ *_allocFromOunedBlock(ALLDCLIST. allocList)

}
BLKO BJ *head = allocList­>head;

if (head != ALLGC_ LIST. NULL) {

#ifdef RCDEBUG

BLKO BJ *firstObj;

mokAssert(allocList­>allocBlock);
mokAssert (bhGet.status(allocList­>allocBlock) =*= OWNED);
firstObj = BLGCKHDROBJ(allocList­>allocBlock);
if ((char*)f irstDbj < blkvar.heapStart ||

)char*)f irstDbj >= blkvar.heapTop I I

)char*) head < blkvar.heapStart ||
)char.) head >= blkvar.heapTop) {

jio_printf (
"Blk=y.x first=*/.x head­='/,x\n",
allocLiet­>allocBlock,
firstObj,
head);

fflushC stdout);
mokAssert (0) ;

{
mokAssert((((word) head) tf ((word)f irstObj)) =­ (Cuord)firstObj));
if (allocList­>head)
mokAssert (

)(((int)allocl.ist­>head) ­
)(int)head)) 1 chkconv.binSize[allocList­>bin!dx]) ­­ 0);

}
itendif

allocList­>head = head­>next;
return head;

>

<
#ifdef RCDEBUG

static int deltaHax ­ ­1;
int delta " GetTickCountO;

#endif

114

*/
static void _handleFullPartialB10ck(PART IALL1ST *pList, BlkAllocHdr* ph)
}
pLis t­>observedFull[pList­>nObservedFull++] = ph;
chunkvar.nDbse rvedFul 1 ++;
if (pList­>nDbservedFull >=HAX_OBSERVED_FULL_PER_L1ST II

chunkvar.nObservedFull >= MAX_OBSERVED_FULL)
_flushObservedFull () ;

}

/,,,,,,.,,♦,,..",.,",,.,,.,,.,,*,...,."....*.,*

/>."♦.. .>.♦"♦. ♦
*

* Moves all the items in a page's free list into
. the allocation list passed as a parameter.

. This function is called by a mutator which is
* the owner of this block. It is invoked for
* a page which has juat been extracted from a
. partial list so it's clear that the free
. list is non­empty.

. Locks taken:
♦ The page's lock

* Competing operations:
* _f lushRecycledListEntryO . Contention is
* resolved by the page's lock.
./
static void _stealFreeList(ALLOCLIST .allocList)

}

BlkA llocHdr *ph = allocList­>allocBlock;
BLKOBJ ♦prev, *head;

mokAssert(allocLiat­<binIdx == bhGet_bin_idxt ph));
mokAssert (bhGet_status(ph) == OWNED);

bhLock(ph);
)volatile BLKOBJ.) prev = ph­>freeLi3t;
ph­>freeList ~ NULL;
bhUnlock(ph);

mokAssert(prev);

head = prev­>next;

prev­>next " ALLOC_LIST_NULL;

allocList ­>head = head;
>

* Tries extracting a block from a partial list.
* If the partial list corresponding to the allocation
. list is non­empty then the first element is extracted.
*
* While the partial list lock is held, the state of the
♦ block is changed to OWNED. This protects against
* freeing the block by the collector back to the block
* manager.

♦ The partial list lock is then released.
*

* Then the blocks free list is stolen (i.e., moved onto the
. allocation list) which entails locking the block.
*/
static BGOL _getPartialB10ck(ALLOCLIST *allocList, ExecEnv "ee)
}
#ifdef RCDEBUG
static iat deltaMax = ­1;
int delta = GetTickCountC);

#endif

BlkAllocHdr *ph;
PARTI ALL 1ST *pList = tfchunkvar .part ialLists [allocList­>binIdx] ;

_10ckPartialList{ pList, ee);
ph = pList­>firstBlock;
ifC'ph) {
_unlockPartialList(pList, ee);

#ifdef RCDEBUG
delta = GetTickCountC) ­ delta;
if (delta > deltaMax) {
deltaMax = delta;
jio.printf (" ...I ALLOC.PARTIAL delta='/.d\n" , delta);
fflush(stdout);

113

* Competing operations: 1
* nutators executing _getPart ialBlock . 1
* I

* State changes:
. PARTIAL > Block Mgr states. Contention resolved 1
* by block mgr lock../ I

static void flushObservedFull(void)
{

int listldx, status, count, maxObj, currentListldx;
int blockldx;
PARTI ALL1ST .pList;
BlkAllocHdr *ph;

chunkvar.nTrulyFul1 ■ 0;

for (listldx ­ 0; listIdx<N_BINS; listldx++) {
pList =*chunkvar. partialLi sts[listldx] ;

naxObj = chkconv .binToObj ectsPerBlock [listldx] ;

_10ckPartialList(pList, gcvar.ee);

for (blockldx=0; blockIdx<pList­>nObservedFull; blockldx++) {
ph = pList­>ob3ervedFull[blockldx];

/* Did some mutator took it ? ■./
status ** bhGet_status(ph) ;

if (status != PARTIAL) { /. yep ./
continue;

}

/.
. Is it in the original partial list
* where it was observed to be full ?
*/
currentL istI dx ■* bhGet_bin_idx(ph) ;

if(current Li atIdx !­­ listldx) /. nop */
continue ;

/**
* Is it still fully free ?
♦/
if (!ph­>freeList) /♦ nop ./
continue;

count =ph­>f reeList­>count;

nrokAssert(count>=0 tt count<3max0bj);

if (count < maxQbj) /* nop ./
continue;

/.
* Protect against extracting a single block
. mutiple times.
*/
bhSet_ status (ph, DUMMYBLK);

/. extract the page ./
ph­>prevPartial­>nextPartial ­ ph­>nextPartial;
if (ph­>nextpartial)
ph­>nextPartial­>prevPartial = ph­>prevPartial;

#ifdef RCDEBUG
chunkvar .nBlocksInPartialList [listldx] ­;

#endif /. RCDEBUG */

chunkvar.trulyFull[chunkvar.nTrulyFull++] = ph;
>

_unlockPartialList(pList, gcvar.ee); ,

pList­>nObservedFull ­ 0; /* reset the list specific counter ♦/
}/. reset global counter ./
chunkvar.nDbservedFul1 = 0;

/. return blocks to the block manager ./
blkFreeSomeCliunkedBlocks(chunkvar.trulyFull, chunkvar.nTrulyFull);

}

. Take a note that a block has been observed to be fully free.

■ For each partial list we keep a buffer and a counter of blocks that
. were observed as full. Additoaally, we keep a global counter of
. all the blocks in all the partial lists that were observed to be full.
. If either the list specific counter or the global counter crosses a
. threshold, the lists are flushed using _f lushDbservedFull ()

. Locks taken: 1

* the call to _f lushObservedFull () may lock partial lists and/or
* the block manager Cone at a tine). |

112

target * chkconv.binSize[i];
for (; j<=target; j*+) {

chkconv . szToBinldx [J] = i;
chkconv . szToB inS ize [j] = target;

}
}

for (i­0; i<N_BINS; i♦♦) {
chlcconv .MnToObjectsPerBlockCi] = BLOCKSIZE / chkctmv.binSize[i];

.ifdef RCDEBUG
chunkvar. nBlocitsIaPart ialList [i] * 0;

lendif /. RCDEBUG ./
> ,

}

/,......,....,,./
/******************* COLLECTION ************** ***********+******/

* Adds a block to a partial list.
*

* A block is added to the part ial list by a
. collector vhen it finds that it's in the
* VOIDBLK state.

. The state is changed and the block is added to

. the appropriate list.

* Locks taken:
. the partial list lock

* Competing operations:
. mutatora executing _getPartialBlock

* state changes:
* VOIDBLK > PARTIAL. No contention.
*/
static void _ addPageToPart ialList C BlkAllocHdr. ph)

{
BlkA llocHdr .head;
int idx = bhGet_bin_idx(ph);
PARTI ALL 1ST *pList = tfchunkvar .partialLists [idx];
mokAssertt bhGet_status(ph) == VOIDBLK);
bhSet_status(ph, PARTIAL);

_lockPartialList (pList, gcvar . ee);
head = pList~>firstB10ck;
ph" <nextP art ial = head;
ph­>prevPartial = (BlkAllocHdr") pList;
if (head)
head­>prevPartial = ph;

pList­>f irstBlock = ph;
#ifdef RCDEBUG

chunkvar. nBlocksInPart ialList [idx] ++;
#endif t* RCDEBUG */
_unl ockP art ialList (pList, gcvar.ee);

}

. Flush the buffers that contains block headers
* which have observed to be full.

. Each partial list is locked and the buffer

. corresponding to it is examined.

* Each element has been already observed to be
* entirely free may have undergone many changes
. since:
*

.Lit could have been reallocated and nov

. it is either OWNED or VDIDBLK.
*

* 2. If it turned into VDPIDBLK then the collector
* could have already freed it.
* We protect against each of these possibilities
♦ by checking that the block is indeed full, and
. in the original partial list where it was observed.

. Additionally, we mark such a block as DUMHYBLK in

. order not to free it twice.

. When the candidates for freeing are verif ired, the

. array of truly del stable blocks is passed to the

. block manager.

.

. Locks taken:

. 1. the partial list lock. Each at a time.

. 2. Afterwards, the block manager lock.

111

ו

int ♦pFreeBlocks,
int .pFreeBytes)

}
Exec Env .ee = EEC);
PARTIA LUST .pList = tfchunkvar .partialLists [iLi3t] ;

int objSz = chkconv. binSize [iLiat] ;

int maxQbj = chkconv .binToDbjectsPerBlock [iLiat] ;

int status, count;
BlkAllocHdr .ph, .nextPh;
BLKOBJ .freeLiat;

*pFreeBlocks * 0;
.pFreeBytea " 0;

I

_lockPartialLiat(pList, ee); 1

paf = pLiBt­>f irstBlock;
while (ph) {
).pFre>­Blocks)++; .!

statua = bhGet_statua(ph); :
mokA3sert(status =­­ PARTIAL);
freeList = (BLKOBJ*)ph­>f reeLiat ; ■

if (freeLiat) {

mokAaaertC OBJBLOCKHDR(freeList) == ph);
count = (int)freeList­>count;
mokA3sert(count<=maxGbj tt count>0); ­
.pFreeBytes += count; ii

>

ph = ph­>nextpartial; 1

{ ' |
.unlockPartialList(pList, ee);
.pFreeBytes *= objSz;

{

GCEXPQRT void chkGetPartialBlocksStats (int freeBlocksG , intf reeBytea EJ) /

}
int i; ;

for (i­0; i<N_BINS; i++) !
_getPartialLiatStats(i, cffreeB10cks[i] , tffreeBytes[i]); 1

{ :

GCEXPGRT int chkCountPartialBlocka(void) 1
}
int n=0, i;
for (i=0; i<N_BINS;i++) ''

ם += chunkvar.nBlocksInPartialLiotU] ; ■1

return n;
{

/****.********.**********************mm******

. Initialize conversion tables. I

a

./
static void initChunkConv(void) 11

<

int target,i, j;

i=0;

chkconv .binSize [i++] = 8;
chkconv.binSize[i++] = 16;
chkconv. binSize [i++] = 24;
chkconv. binSize [i++] ­ 32;
chkconv. binSize t i++] ­ 40;
chkconv.binSize[i++] = 48;
chkconv.binSize[i++] = 56;
chkconv.binSize [i+*] ­= 64;
chkconv. binSize [i++] = 80;
chkconv.binSize[i++] = 96;
chkconv. binSize [1++] = 112;
chkconv. binSize [i++] = 128;
chkconv. binSize [i++] = 160;
chkconv. binSize [i++] = 192;
chkconv. binSize[i++] = 224;
chkconv . binS ize [i++] = 256; 1I

chkconv. binSize [i++] ­ 320; ,

chkconv. binSize [i++] = 384;
chkconv. binSizeE i++] ­ 448; j

chkconv. binSize [i++] = 512; |
chkconv. binSize [i++] = 640; 1

chkconv.binSize [i++] = 768; ■|

chkconv. binSizeE 1++] = 1024;
chkconv. binSizeE i++] = 1280;]

chkconv. binSizeE 1++] = 2048; i

chkconv. binSizeE i++] = 4096; I

chkconv. binSizeE i++] = 8192; I

mokAssertC i =­ N_BINS);

j =■ 0;
for (i=0; i<=N_BINS; i++) {

110 1

/

ftendif

*pragma optimize ("", off)

GCFUNC void blkSveep(void)
{
BlkR egionHdr .wildernessHdr = blkvar.wildernessRegion;
BlkRegionHdr .brh = (BlkHegionHdr*)blkvar.allocatedBlockHeaders;
volatile int .volatile p;

while (brh < wildernessHdr) {
volatile lot size, status;

p = (volatile int .volatile) cfbrh­>regionSize;
size = .p;
p++;
status = (*p) >> 24;

next_round:
switch (status) {
case BLK:
case BLKLIST:
mokAssertt size >­ 1);
brh +­ size;
break;

case ALLQCBIG:
_sweepBig((BlkAllocBigHdr*)brh);
mokAssert(size >= 1);
brh += size;
break;

case OWNED:
case VDIDBLK:
case PARTIAL: i
int nextStatus;
BlkRegionHdr .nextBrh = brh + 1;
p ­ (volatile int *volatile)tfnextBrh­>regionSize;
size ­ *p;
P++i
nextStatus = (*p) >> 24;
chkSweepChunkedBlock((BlkA110cHdr*)brh, status);
brh = nextBrh;
status = nextStatus;
if (nextBrh >= uildeoressHdr) return;
goto next_round;

>

default:
nokAssertC status ­­ CHUNKING)i
brh++;
breacf;

}
}

>

#pragmaoptimize ("" , on)

End of file source listing

D.4 rcchunkmgr.c

This file contains the code of the chunks manager (see section 8.9 for more details).
Source listing for ifle rcchunkmgr.c

/.
♦ File: rcchunlmgr.c
* Author : Mr. Yossi Levanoni
* Purpose: implementation of the chunk manager
</
/♦

* Lock a partial list. Implemented by a spin
* lock which is imbedded in the Ii3t header.
./
*define _lockPartialList(pList, ee)\
do <\

mok*ssert(ee);\
gcSpinLockEnterC 4pList­>lock, (unsigned) ee);\

} while CO)

/...,.......... .

. Unlock a partial list

./
*defineunlockPart ialListCpList , ee)\
do <\

mokAssert (ee); \
gcSpinLockExit (tfpList­>lock. (unsigned) (ee))A

} uhile(O)

static void _getPartialListStatsC int iList,

109

if Oph) {

.UnlockBlkMgrC self);
return NULL;

}

lastBlk ­ ph * (nBlocks­1);
lastBlk­>StatusUnused = ALLOCBIG << 24 ז

lastBlk­>blobSize ­­ nBlocks;

ph­>allocInProgre83 = 1;
ph­>StatusUnused ■ ALLOCBIG << 24;
ph­>blobSize = nBlocks;

.UnlockBlkMgrC self);

.ifdef RCDEBUG I

inter ­ (BlkAllocIntearalHdr .Xphfl);
for C; inter < (BlkAllocIncernalHdr .HastBlk; inter++) < 1

inter­>startBlock =­ ph;
bhSet_status(inter, INTERBALBIG);

{
.endif ;
gcCheckGCO ;

return ph;
>

GCFUNC void blkFreeSomeChunkedBlocksC BlkAllocHdr ..pph, int n)

} !

int i, status;
BlkAllocHdr .pb; 1

_LockBlkMgr (gcvar.sys_thread); ,

for (i=0; i<n; i++) {
ph ­ pph[i]; '
status =bhGet.status (ph);
mokAssertC status " DUHMYBLK);
blkFreeRegion lockedC (BlkRegionHdr*)ph, 1); N

>
I

_UnlockBlkHgr(gcvar.sys.thread);
{

GCFUNC void blkFreeChunkedB10ck(BlkAllocHdr .ph)

}
tifdef HCDEBUG
int status = bhGet_status(ph);
lffokAssert (status"VDIDBLK II status==PARTIAL);

#endif

_LockBlkHgr(gcvar. sys.thread);
_blkFreeRegion_locked(CBlkRegionHdr*)ph, 1);
.UnlockBlkMgrC gcvar. sys.thread);

{ 1

GCFUNC void blkFreeRegionC BlkAllocBigHdr .ph) 1

} 1

unsi gned sz ­ ph­>blobSize; :

#ifdef RCDEBUG
} :]

BlkAllocBigHdr *lastBlk; 1I

BlkAllocInternalHtlr *inter;
unsigned i; 1
lastBlk = ph + (sz­1);

mokAs3ert(ph­>StatusUnused = ALLOCBIG << 24);
mokAssertC lastBlk­>StatusUnused ­ ALLOCBIG << 24);
mokAssert(lastBlk­>blobS12e == sz);
mokAssert{ !ph­>allodnPr ogress); 1
inter = (BlkAllocInternalHdr *){ph+l);
for (; inter < (BlkAllQcInternalHdr *) lastBlk; inter++) {

mokAssert (status == IMERNALBIG);
mokAssert(inter­>startBlock == ph);

{
{ |

Sendif

_LockBlkMgrC gcvar. sys.thread);
_blkFreelfegion_locked((BlkRegionHdr *)ph, sz);
.UnlockBlkMgrCgcvar. sys.thread); |

{

#ifdef RCDEBUG

GCFUNC void blkPrintStats(void)
}
jio_ printfC" BLK STATS \n");
jio_printf ("vild='/,d list='/.d used=1/.d\n" ,

blkvar.nWildernessBlocks, blkvar.nListsBlocks, blkvar.nAllocatedBlocks)■
{

108

. _^_ i

if CgcGetHandleRC(h)>0) return;

p = h­>10gP0s;

if (p) {

mokAssert(((.p)tf­3(== Cuint)h);
mokAssert(<(*P)tf3) ==011 ((*P)cf3) =­ BUFF_HANDLE_MARK);
/* leave it for next cycle */
return;

}
#ifdef RCDEBUG
gcvar.dbg.nFreedInCycle++;
gcvar.dbg.nBytesFreedlnCycle += ph­>blobSize * BLOCKSIZE;

.endif
blkFreeRegion(ph (;

{

/,,,....,.,...,,,,,..""",,...,.........""......."....
. Allocate "nBlocks" of memory. Self explaining.
*

************************it**********************************/
static BlkAllocHdr. _blkAllocRegion_locked(int nBlocks)

{
BlkA llocHdr ♦res;

if (nB locks < N_QUICK_BLK_HGR_LISTS) {

res = allocFromQuickLists(nBlocks);
if (res) <

blkvar. nAllocatedBlocks += nBlocks;
blkvar.nListsBlocks ­= nBlocka;
goto checkout;

>

}
res = _allocFramRegionLists (nBlocks);
if Cre3) {
blkvar.nAllocatedBlocks += nBlocks;
blkvar.nListsBlocks ­= nBlocks;
goto __checkout;

>

res = _allocFromWildernessC nBlocks);
if (!res) return NULL;
blkvar. nAllocatedBlocks += nBlocks;
blkvar.nWildernessBlocks ­= nBlocks;

checkout:

}

static int _calcA110cSize(int nBytes)
{
int blocks = nBytes / BLDCKSIZE;
if (blocks==0 | [nBytes'/.BLOCKSIZE)
blocks++;

return blocks;
>

/.... Exported Functions ...*.*******■*./
GCFUKC BlkAllocHdr* blkAllocBlockC ExecEnv ■*ee)
{
BlkA llocHdr .ph;
sys_thread_t *self = EE2SysThread (ee);
_LockBlkHgr(self);

ph = (BlkAllocHdr *)_blkAllocRegion_locked(1);
if (ph) {
bhSet_5tatus(ph, CHUNKING);

}
_UnlockBlkMgr(self);

gcCheckGCO;

return ph;
}

GCEXPORT BlkAllocBigHdr* blkAllocRegionC unsigned nBytes, ExecEnv *ee)
{
sys_ thread_t .self ­ EE2SysThread(ee);

#ifdef RCDEBUG
BlkAllocInternalHdr .inter;
unsigned i;

tendif

unsigned nBlocks;
BlkAllocBigHdr .ph;
BlkAllocBigHdr .lastBlk;

nBlocks ­ _calcA110cSize(nBytes);

_LockBlkHgr(self);
ph = (BlkAllocBigHdr .) _blkAllocRegion_locked(nBlocks);

107

unsigned i;

for (i­sz; i<N_QUICK_BLK_MGR_LISTS; i++, pList++) {
brh ­ .pList;
if (brh)
goto found.list;

>
return NULL;

found_list:
I

nextB = brh­>aextRegion;
if (nextB)
nextB­ >prevRegion = (BlkRegionHdr *)pList;

(BlkRegionHdr*) ♦pList = nextB;

if (sz !■­ i) {

BlkRegionHdr *leftover = brh + 32;
int neuSz ■­i­ sz;
_insertRegionIntoQuickLists(leftover, newSz);

>

return (BlkA110cHdr*)brh;
>

/*****mm** 1

*

* Allocates "sz" blocks from the lists of regions.
* Try finding a list uith elements at list of size
. "8Z". * ;
*

* If the found list contains additional elements 1

* besides the header, then the element after the ­ 1

. header is extracted from the list.

. Otherwise, the list header itself is extracted I

* from the list of lists.

. Finally, if the list is not an exact match, the ■

. leftover is returned to the system.

static BlkAllocHdr* allocFromRegionLista(int sz)
{
BlkR egionHdr .brh;
BlkListHdr .pList ­ blkvar.pRegionLists­>nextL.ist;
int regionSize, leftover;
for C; pList; pList ­ (BlkListHdr *)pList­>nextList) {

regionSize = pList­>listRegionSize;
if (sz <= regionSize)
goto found_list;

}
return NULL;

found_list:

brh = pList­ >nextRegi on ;
if (brh) { // extract next element in the list
BlkRegionKdr *nextB = brh­>nextRegion;
if CnextB)
nextB ­>prevReg ion = CBlkRegionHdr*)pList;

pLiat­>nextRegion = nextB;
}
else { // extract list header itself
BlkListHdr ♦prevList = bhGet_prev_region_list(pList);
if (pList­>nextList) <

bhSet prev region list(pLi st­>nextList, prevList);
>

/**
* the next assignment may update .blkvar. pRegionLists
* itself since the first element in the list
. has its prevList pointer pointing at this
* variable.
*/
prevLi st­>nextLi st ­ pList­>nextList;
brh = (BlkRegionHdr*)pList;

}

// do we have leftover
leftover = regionSize ­ sz;

if (leftover >= N_qU I CK_BLK_HGR_LI STS) {
_insertRegionIntoRegionLists(brh + sz, leftover);

}
else if (leftover >. 1) {
_insertRegionl ntoQuickLists(brh + sz, leftover);

>

return (BlkAllocHdr­Obrh;
}

static void 3weepBig(BlkA110cBigHdr *ph)
{
GCHa ndle .h;
uint *p;

if (ph­>alloclnProgress) return;

h = (GCHandle­)BLOCKHDRDBJ((BlkAllocHdr­Oph);

106

1

#endif

if (status =­■ BLK) {
_extractFromRegionList(nbr);
blkvar.nListsBlocks ­= size;
.pSz += size;

{
else if (status == BLKLIST) {
BlkListHdr *blh = (BlkListHdr *)nbr;
_extractFromListQfLists (blh);
blkvar.nListsBlocks ­= size;
*pSz += size;

>

{

. See if the region adjacent to the argument region
* from the left (i.e., with lower address) is in
. the hands of the block manager.
*

. If 80, extract it from wherever it is.

static void tryExtractLeftHbr(BlkRegionHdr ♦*pph, int ■pSz)
}
BlkR egionHdr *nbr = .pph ­ 1;
int status = bhGet_status(nbr);
int size = nbr­>regionSize==l ? l : ­nbr­>regionSize;

/♦­
* That's because items in the list are
* bigger than a single block and their
* final block is marked with BLK.
*/
mokAasert(status != BLKLIST);

if (status == BLK) {
mokAssert(size > 0) ;

nbr ­ nbr + 1 ­ size;

status * bhGet_status(nbr);
mokAssert (nbr­>regioaSize == size);

if (status == BLK) {

extractFramRegionList(nbr);
{
else {
mokAssert(status == BLKLIST);
_extractFromListOfLists((BlkListHdr .)nbr);

>

blkvar.nListsBlocks ­= size;

*pSz += size;
.pph = nbr;

{
>

. Free the specified region:

* 1. see if it can be added to the wilderness. .
* 2. if not, try coalescing from the left and right.
* 3. finally, add the resulting block to either the
♦ quick lists or the list of lists, depending on its
* size.
",,..,,",,,.....*.....****................*.­......"..*­*■./
static void _bl kFreeReg ion_ locked (BlkRegionHdr .ph, int sz)

}
blkv ar . nAllocatedBlocks ­­­ sz;

_tryExtractLeftftbr(tfph, £sz);

if (ph + sz =* blkvar. vildernessRegion) {

blkvar.wildernessRegion " ph;

return;
{

_tryExtract RightNbr (iph, isz);

blkvar.nListsBlocks += sz;

if (sz<N_QUICK_BLK_MGR_LISTS)
,insertRegionlntoQuickLists (ph. sz);

else
insertRegionlntoRegionLists (ph, sz);

{

* Find the first non­empty list with size at least
* "sz". Then take the first element out.
* If there is leftover, put it in the respective list.
*.a.*********.********************■.*******************/
static BlkAllocHdr* allocFromQuickLists(unsigned sz)
}
BlkR egionHdr.♦ pList ­ tfblkvar.quickLists[sz] ;

BlkRegionHdr* brh, .nextB;

105

\

brh­>nextRegion = pList­>nextRegion;
brh­>prevRegion = (BlkRegionHdr *)pLiat;
if (PList­>nextRegion)
pList­>nextRegion­>prevRegion = brh;

pList­>nextRegion ~ brh;

return;
}

/*.
* Create new empty list.
*/
blh­>nextReglon = JfULL;

blh­>StatusPrevListID = BLKLIST << 24;
blh­>listRegionSize " sz;

/..
* we want to insert after pPrevList and before
* pList.
♦/
bhSet_prev_region_list(blh. pPrevList);
blh­>nextList = pList;
pPrevList­>nextList = blh;
if (pList) {

bhSet prev_region_list(pList, bib);
>

>

* Extract the argument region from the list it's
♦ in. Assumes that the region is not a list header.
,,.*.,,*.,,.,",,"..*,,,,.*"",,*.,, +.,,.,, ,+,*.,,***,..♦.,.,,,. /
static void extractFromRegionList(BlkRegionHdr .ph)

{
ph­> prevRegion­>nextRegion = ph­>nextRegion;
if (ph­>nextRegion)
ph­>nextRegion­>prevRegion = ph­>prevRegion;

{

/...,,,.,".,"..,.,.,....,.,,...,.,...,.......",,".
* Extract the argument region, which is a list header,
* from the list of lists.

static void extractFromListafLists (BlkListHdr ♦ph)
{
BlkL iatHdr *neuHeader = (BlkListHdr *)ph­>nextRegion;
BlkListHdr .prevList = bhGet_prev_region_liat(ph);

/**
* Change list header to the next element in the
* list
*/
if (newHeader) {
int sz = ((BlkRegionHdr ­)newHeader)­>regionSize;
bhSet_prev_region_list(newHeader, prevList);
newHeader­>nextList = ph­>nextList;

prevList ­>nextL13t = newHeader;
if (newHeader­>nextList) {
bhSet_prev_region_list(neuHeader­>nextList, newHeader);

>

bhSet_status(newHeader, BLKLIST);
newHeader­>listRegionSi2e = sz;
return;

}
/..
* Eliminate the list.
*/
prevList­>nextLi3t = ph­>nextList;
if (ph­>nextList) {
BlkListHdr .prevLiat = bhGet_prev_region_list(ph);
bhSet prev region list (ph­>nextList, prevList);

y
}

/ . ♦ *
* See if the region adjacent to the argument region
* from the right (i.e. , with higher address) is in
♦ the hands of the block manager.
*

♦ If so, extract it from wherever it is.
static void tryExtractRightKbr(BlkRegionHdr .*pph, int *pSz)
{
BlkR egionHdr *nbr ■= *pph + *pSz;
int status * bhGet_status(nbr);
int size = nbr­>regionSize; // conicides with the size field of BLKLIST

tifdef RCDEBUG

if (status==BLK I I status==BLKLIST) {
BlkRegionHdr .lastBlock = nbr + size ­ 1;
mokAssert(size > 0) ;

mokAssert(bhGet_status(lastBlock) ™ BLX);
mokAssert (lastB10ck==nbr I I lastBlock­>regionSize " ­size);

>

104

* LOCKING *
,"",,.".,.,.....,.....,.",,.,,....""..*"....,,.,*/

static void _LockBlkMgr(sys_thread_t ♦thrd)
}
sysM 0nitorEnter(thrd, blkvar. blkWgrMon);

{

static void _UnlockBlkMgr(sys_thread_t* thrd)
}
sysH onitorExitC thrd, blkvar.blkMgrMon);

{

/,,,...,,,,.......,.,,......................■**.......■*
* Allocate niflocks from the part of the heap that
* hasn't been touched thus far.

static BlkAllocHdr■ allocFrooWildernessC int nBlocks)

}
BlkR egionHdr* base = blkvar ­wildernesaRegion;
BlkRegionHdr. target ­­ base + nBlocks;
if (target > blkvar.heapTopRegion)
return NULL;

blkvar . wildernessRegion =■ target ;

return (BlkAllocHdr')base;
{

* Insert this block, with the specified size, into the
■ respective quick list.
*

■ No merging with neighboring regions is attempted nor
" should be applicable.

* The limitting blocks have their" regionSize" set.

static void _insertRegionIntoQuickLists(BlkRegionHdr ♦brh, int sz)

}
BlkR egionHdr .lastBlk = brh + (sz­1);

brh­>StatusUnused = BLK << 24;
brh­>regionSize = sz;

if (lastBlk I­ brh) {
lastBlk­>StatusUnused = BLK << 24;
lastBlk­>regionSize = ­sz;

{

brh­>nextRegion =blkvar. quickLists[sz] ;

ifCbrh­>next Region)
brh­>nextRegion­>prevRegion = brh;

brh­>prevRegion = (BlkRegionHdr *)tfblkvar.quickLi3ts[32] ;

blkvar.quickLists[sz] = brh;
{

* for the region size exists then it is added to it. Otherwise,
* a new list is inserted to the list of lists for holding regions
* of "32" blocks.

* If the region becomes an element in a list of regions than it3
. "regionSize" field is updated to "sz". The last block in the
* region has its size updated to "­sz" at any rate.

static void insertRegionlntoRegionLists(BlkRegionHdr *brh, int sz)
}
int regionSize ■= ­1 ;
BlkListHdr *pPrevList, *pList;
BlkListHdr ♦bin = (BlkListHdr *)brh;

BlkRegionHdr .lastBlk = brh + (sz­1);

lastBlk­>StatusUnused = BLK << 24;
lastBlk­>regionSize = ­sz;

mokAssert (sz > 1) ;

pList = blkvar.pRegionLists­>nextList;
pPrevList = blkvar.pRegionLists;
for (; pLiat; pPrevList = pList, pList = pList­>nextList) {
regionSize = pList­>listRegionSize;
if (sz <= regionSize)
break;

>

/.*
* Perfect tnatch
*/if (regionSize == sz) <

brh­>St atusUnus ed = BLK<<24;
brh­>r eg ionS i ze = sz;

103

ו

/

int mokThreadEnuarerateOver(int(*f) (ays thread,t *, void*), void .param)
}
xxpa ir xx;
int ret; f . ,

|
xx.iunc = f ;
xx .param = param;

.ifdef RCDEBUG I
}
sys.thread^t* self ­ sysThreadSelf () ; |
mokAssertC self == gcvar.sys_thread);

{

.endif
ret " sysThreadEnumerateDverC _m.okThread£nu1nerate0verHelper, kxx);
return ret;

>

End of file source listing

D.3 rcblkmgr.c

This ifle contains the code of the block manager (see section 8.9 for more details).
Source listing for ifle rcblkmgr.c

/. !
* File: rcblkmgr.c I
* Author: Mr. Yossi Levanoni]
* Purpose: implementation of the block manager
./
/♦*♦.*.♦..♦*♦.****** initialization *********.****************.*****/
GCFUNC void blklnit(unsigned nMB)
} ;
unsi gned sz; |

/* Zero out all vars ./
memset(iblkvar, 0, sizeof (blkvar)); |

/. Allocate the heap ♦/
mokAssert(nMB < (1<<BLOCKBITS) tt nMB>0);
blkvar .heapSz = nMB << 20;
blkvar.heapStart = (byte*)mokMemReserve(NULL. blkvar.heapSz);
blkvar . heapTop = blkvar.heapStart + blkvar. heapSz;
mokMemCommit(blkvar.heapStart, blkvar.heapSz, false);

#ifdef RCVERBDSE
jio_printf(

''heap[­/^>­­<7.x]\n".
(unsigned)blkvar.heapStart,
blkvar. heapSz + (unsigned)blkvar.heapStart);

ff lushC Stdout);
#endlf

/. Allocate block headers table */
blkvar. nWilderneasBlacks = blkvar. nBlocks = blkvar .heapSz >> BLGCKBITS;
sz ­ sizeof (BlkAllocHdr) ■ (blkvar. nBlocks + 3);
blkvar.allocatedBlockHeaders = (BlkAllocHdr*)mokMen1Reserve(NULL, sz);
mokNeaConusit(blkvar.allocatedBlockHeaders, sz, true);

blkvar. allocatedBlockHeaders ++;

blkvar.pRegionLists ­ |
CBlkListHdr*)blkvar. allocatedBlockHeaders +blkvar. nBlocks + 1;

bhSet_status((blkvar .allocatedBlockHeaders­1) , DUMMYBLK);
bhSet_status((blkvar.allocatedBlockHeaders+blkvar.nBlocks) , DUHMYBLK);

blkvar. blockHeaders =

blkvar.allocatedBlockHeaders ­ ((unsigned)blkvar.heapStart>>BLQCKBITS);

blkvar.heapTopRegion ­ (BlkRegionHdr*)QBJBLOCKHBR(blkvar. heapTop);
blkvar.wildernessRegion = (BlkRegionHdr*)aBJBLOCKHDR(blkvar. heapStart);

/* Allocate niutex ./
blkvar. blkMgrMon = sysMalloc(sysHonitorSizeof ()) ;

sysMonitorInit(blkvar. blkMgrMon);
#ifdef RCDEBUG
j io_printf("headersl t'/.x<­ >7.x] In" , I
)unsigned)blkvar .allocatedBlockHeaders,
sz ♦(unsigned)blkvar. allocatedBlockHeaders) ;
jio_printf("headers2['/.x<­ >'/jt]\nH,

0BJBL0CKHDR(blkvar. heapStart) ,
DBJBLOCKHDR (C((byte*)blkvar.heapStart)*(nMB<<20))));
#endif
{

102

sysAssertC start);
sysAssertC sz);
res = VirtualFreeC start, sz, MEK.DECGHMIT);
sysAssertC res);

}

/■ C style ./
void. mokHallocC unsigned sz, bool zero.out)
{
void .p;
sysAssertC sz) ;

p = mallocC sz);
sysAssert(P >:
if (zero_out)
memset (p, 0, sz);

return p;
}

void nokFree C void . p)
{
sysA ssertC p);
free(p);

}

/. zero out */
void mokMemZeroC void *start , unsigned sz)
{
mokM emDecommitC start,sz) ; . 1
mokMemConunit (start, sz, TRUE);

}

/♦
* YLRC ­

. The functions:

♦ mokThre adSuspendFo rGC
* mokThreadRe sumeFor GC

. are needed for on the fly garbage collection

*/
void 1nokThreadSuspendF0rGC(sys_thread_t *tid)
{
sysA ssert(tid !=sysThreadSelf ());

if CSuspendThreadCtid­>handle) ™ OxffffffffUL) {
jio_printf ("sysThreadSuapendForGC: SuspendThread failed");
__asar { int 3 }

>

<

CONTEXT context;
DWORD *esp = (DWDRD *)tid­>regs;

context.ContextFlags ­ CONTEXT. INTEGER | CDNTEXT.CaNTROL;
if (!GetThreadContext(tid­>handle, *context)) {
jio_printf ("sysThreadSuspendForGC: GetThreadContext failed");
__asm{int3 }

}
*esp++ ­ context .Eax;
esp+ ­context. Ebx;
*esp++ = context. Ecx;
*esp++ =context. Edx;
.esp++ = context. Esi;
*esp++ =context. Edi;
*esp " context.Ebp;

}
}

void 1nokThreadResun1eForGCCsys_thread_t .tid)
{
sysA ssert(tid !­ sysThreadSelf 0);

if (ResumeThread (t id­>handle) == OxffffffffUL) {
printf ("sysThreadResumeForGC: ResumeThread failed");
__asm { int 3 }

}
>

typedef struct xxpair {
int (*func) (sys_thread_t*, void*) ;

void*par am;
> xxpair;

static int _mokThreadEnumerateOverHelper(sys_thread_t ♦thrd, xxpair. xx)
{

ExecEnv .ee;
if (thrd == gcvar.sys.thread) return SYS.OK;
ee = SysThread2EEC thrd);
if }' ee­>gcblk . gclnited) return SYS. OK;
res = xx­>func(thrd, xx­>param);
return res;

>

101

. /src/share/javavm/include/mok_win32. c

./src/share/j avavm/include/rcblkmgr.c

./src/share/javavm/include/rcchunkmgr .c

./src/share/javavm/include/rcgc.c

./src/share/javavm/include/rcgc.h

./src/share/javavm/include/rcbmp.c

./src/share/javavm/include/rcbmp_inline.h

./src/share/javavm/include/rcgc_ internal .h

./src/share/j avavm/include/rchub. c

./src/share/javavm/include/ylrc_protocol.h

./src/share/javavm/runtime/gc.c

D.I Organization of the code
The garbage collector code contains only one translation unit, which is the file gc.c. This
file is inherited from the original JVM. It contains, among other things, the entry point to
user's allocation code. This is the only ifle that was inherited from the original JVM, all
other ifles are specific to the new collector.

The ifle gc .c includes the ifle rchub .c , which in turn includes the ifles rcblkmgr .c (the
block manager), rcchunkmgr .c (the chunk manager) and rcgc.c. Thus, all code is lumped
into one translation unit. This allows us to use static and inline functions extensively,
which opens the room for compiler optimizations.

D.2 mok_win32.c

We tried to keep the garbage collector portable. For that end, we encapsulated the required
Win32 into a single ifle: mok_win32.c. The services include low level memory management
and thread support.

Source listing for ifle mok.win32.c
/. File name: mok_win32.c
* Author: Yosai Levaoni
* Purpose: Win32 abstraction layer
./
/.
. Memory

./
/. Advanced ./
.define UIN32PGGRANULE (64*1024)

void* mokMemReserve(void *starting at hint, unsigned sz)

{
void *p = VirtualAlloc(starting_at_hint , sz, MEM.RESERVE, PAGE_READWRITE);
sysAsserK sz);
8ysAssert(p);
return p;

}

void mokMemUnreserve(void *start, unsigned sz)

{
BDDL res ;

mokMemDeconunit(start, sz) ;
res = VirtualFree(start, 0, HEH_R£LEASE);
3ysAssert(res);

}

void* mokMemCommit(void *start, unsigned sz, bool zero_out)

{
void *p = VirtualAllocC start, sz, MEM_COMMIT, PAGE.READWRITE);
8ysAssert(start);
sysAssertf sz);
sysAssert(p);
return p;

}

void mokMemDeconunit(void *start, unsigned sz)

{
BDDL res;

100

Appendix D

Source Code

In this appendix we bring the source code listings of the garbage collector. We had to
change many files in the Javasoft JVM is order to implement the write barrier required by
the on­the­lfy algorithms. This is the complete list of files that required a change due to
the implementation of the write barrier:

./sre/share/javavm/include/alloc_cache.h

./sre/share/javavm/include/gc.h

./sre/share/javavm/include/interpreter .h

. /src/share/javavm/include/oobj .h

./src/share/javavm/runtime/classinitialize.c

. /src/share/javavm/runtime/classload. c

./sre/share/javavm/runtime/classresolver.c

. /src/share/javavm/runtime/classruntime. c

./src/share/javavm/runtime/executeJava.c

./src/share/javavm/runtime/executeJava_p5.inc

./sre/share/j avavm/runtime/executejava_p5 .m4

./sre/share/javavm/runtime/interpreter .c
./sre/share/javavm/runtime/javai.c
./sre/share/javavm/runtime/jni.c
. /sre/share/j avavm/runtime/jvm. c
./sre/share/javavm/runtime/jvmpi .c
./sre/share/javavm/runtime/threads.c
./src/share/javavm/runtime/util.c
./src/win32/hpi/src/threads_md.c
./src/win32/javavm/runtime/signals_md.c
./src/win32/native/sun/awt_common/awt_makecube.epp
./src/win32/native/sun/windows/awt.h
./src/win32/native/sun/windows/awt_Component.epp
. /src/win32/native/sun/uindows/awt.Cursor .epp
. /src/win32/native/sun/windows/awt.Dialog .epp
./src/win32/native/sun/windows/awt_DnDDS.epp
./src/win32/native/sun/windows/awt_Font.epp
. /src/win32/native/sun/windows/awt .Graphics .epp
./src/win32/native/sun/windows/awt_MenuItem.cpp
. /src/win32/native/sun/windows/awt .Print Job .epp
./src/win32/native/sun/windows/awt_Robot.epp
. /src/win32/native/sun/windows/awt.Toolkit .epp
./src/win32/native/sun/windows/aut_Window.epp

The list of files that actually implement the garbage collector and allocator themselves
is considerably shorter and is given below. In the rest of this appendix we list the source of
this files along with a description of the role of each one of them.

99

1. 0 remained inaccessible during the interval from any local reference of any thread in
thesetP^r!,...,^!}.

2. 0 remained inaccessible during the interval from any global reference.

3. o was inaccessible from Ti atHS4k(i) ■

In order to prove the claims (1) and (2) we note that any individual load or store
operation by a threadT/e P cannot render 0 reachable from T; if it was unreachablc
before the operation was scheduled. Similarly, a load by a thread Tj £ P cannot make 0
accessible to any thread in P. We conclude that the only possibility that an object will
become reachable again from a thread in P is due to a store operation carried out by a
thread which is not in P. We now show that such a store is impossible.

Assume. by way of contradiction, that the claim holds in the interval [HSAki­ 1,£]
where HS4k(i­ 1)<t < HS4k(i) and that Tj £ P indeed executes a store of a reference
to the object x into a slot or a global reference which renders 0 reachable from some thread
in P at time t. Thus, the claim breaks for the first time at time t + I.

Note that when the reference to x is stored, it is marked local. since Tj has itsSnoopj
lfag set during the interval. Now there are three possibilities:

. if a; and 0 are the same object then 0 is marked local and thus not reclaimed later.

. otherwise, if the chain of references that exists fromxto o (note thata;^o) at the
time of the store exists in Vk as well, then 0 will be eventually blackened, according
to our observation.

. ifnally, if the chain that exists at time t + 1 and Vk differ in some point, then we
again consider the longest sufifx of the chain which hasn^ been modiifed relatively to
<7cf. Denote the ifrst object in the suffix y. When the pointer to y was stored into
the slot referring to it in the chain, 0 was reachable from the storing thread. Since
this operation took place prior to the current operation, we can apply the inductive
hypothesis for it and deduce that the storing thread could have not responded to the
fourth handshake before executing the update. Thus, it must have marked y local.
The claim then follows.

In order to prove the second claim we assume by way of contradiction that 0 is indeed
reachable from Tj atHS4k(i) ■ Again we note that if 0 is directly reachable from either a
local or a global reference, or reachable through a non­empty chain which exists in Vcf, then
it will be blackened. Thus, 0 must be reachable by a chain which differs in some point from
its respective values in Vk. By arguing that the reference to the ifrst object in the longest
suffix of the chain mutual to time HS4k{i) andVcf was stored to its referring slot in the
chain by a thread which still hasn't responded to the fourth handshake we again conclude
that 0 will be eventually blackened.

ם

We conclude that:

Theorem C.I The tracing sliding view algorithm­ is safe.

98

Otherwise, 0 has been allocated prior to the fourth handshake of the previous tracing
cycle. As such, it has been examined by the sweeping process of that cycle and was found
to be marked, or otherwise it would have been reclaimed. Again , due to the color toggle, it
is considered white in the tracing of cycle k.

ם

From the above lemma we conclude that any object which is reachable by a chain of
objects, induced by Vcf, where the first object is marked local, will be eventually blackened
since, by the arguments from the proof of the reference counting sliding view algorithm,
tracing indeed proceeds according to Vcf and all objects referenced by the chain arc colored
white when tracing starts, so there is no obstacle in tracing through a referenced object,
i.e., the "if" in procedure Trace is bound to succeed exactly once for any object in the
chain. We take advantage of this observation in the next lemma which proves that elderly
reachable objects are not reclaimed by mistake.

Lemma C.2 Let o be an object which is allocated by thread Ti before HS4k(i)and which
is reclaimed during cycle k. For each thread T\ it holds that o is inaccessible from 7/ from
HS4k(l) onward.

Proof. We assume that the threads arc ordered by their response time to the fourth
handshake, i.e., #S4cf(l) < HS4k{2) ... < HS4k(n). We prove that the claim holds by
induction on the events in the algorithm's execution. For the basis we have to show that
when 7} responds to the fourth handshake, 0 is reachable neither from any of Xi's local
references nor from any global root. Suppose the contrary. o could not have been directly
reachable from 7] at the time of the handshake or it would have been marked local and
thus not reclaimed. 0 could not have been directly reachable from a global reference at
HS4k{\) as the collector reads any global root prior to the fourth handshake and marks
the read objects local. Any store into a global reference that is scheduled between the time
the collector read the reference and i/54cf(l) is bound to snoop its operand, as the Snoopi
lfags are all set at HS4k(l) and updates arc non­interruptible.

So the only remaining option is that 0 is indirectly reachable from 7] or from a global
reference at HS4k{\). That is, there exists a local reference of 7] or a global reference r
such that at HS4k{\):

r =.T1 A 3s 1 6 x\ :s 1 = X2

3s2 G x2 :s2= X'S

3m > l,sm e xm :s m = xm+i = 0

If the chain existed in this exact form in Vk, i.e.,Vj<m : Sj@HS4k(l) = Vk(sj). then
tracing through r will eventually blacken 0, according to the observation. If. on the other
hand, there exists a slot s/ in the chain which has been modified since o­k(si) then let S[be
the highest indexed slot with a modified value, that is,\/l<j<m : Sj@HS4k(l) = Vjt(s).
By lemma B.2 we know that when the pointer to x/+j was stored into the slot s; the storing
thread marked xi+\ local, thus we have the chain of objects from xi+\ to xm with xi+\
marked local and the entire chain contained in Vk, we conclude that each element in the
chain will be blackened, 0 included. We have proved the claim, restricted to the interval
]HS4k(l),HS4k(l)}.

We now show that if the claim holds in the interval [HS4k{l), HS4k(i ­ 1)], wherei> 0
then it holds in the interval [HS4k{i ­ l),HS4k(i)\. Specifically, we have to show that:

97

Appendix C

Tracing Sliding View Algorithm
Safety Proof

The tracing algorithm possess the same properties of the sliding view reference counting
algorithm with respect to logging, determining of slots and resolution of undetermined slots.
Therefore. in this proof, we take these properties for granted and we are concerned only
with their application to tracing and sweeping. Thus appendixB is a prerequisite for this
proof.

In order to prove safety we consider two kinds of reachable objects: those that were
allocated prior to the fourth handshake, juxtaposed with those allocated after it. For the
first kind, we show that mistaken reclamation is impossible since there exist a chain in the ■

graph induced by the sliding view of the cycle that starts from a local object and leads to the
reachable object in question and that tracing proceeds uninterrupted along such a chain,
so reclamation is impossible. The second kind of objects are protected from reclamation by
the object coloring protocol.

As in the proof of correctness of the sliding view algorithm, we abandon our assumption
that there are no global references in the system. Instead, we assume that the collector,
between carrying the third and fourth handshakes of a cycle, reads any global reference and
marks the pointed objects local. In addition, mutators perform the following write­barrier
for global references:

1. s := new
2. if Snoopi then

// mark new as local.
3. Localsi :­ LocalsiU {new}

Let MARK^ be the time at which procedure Mark is invoked in cycle k. The next
lemma shows that any object which is allocated by some thread prior to the response to the
fourth handshake is interpreted by the collector as "unmarked" . i.e., it assumes the color
ofwhite@MARK^when tracing starts.

Lemma C.I Lets be a slot such that Vcf(s) =o ^ null. Then o.color@MARKk =
white@MARKk.

Proof. if Vcf(s) ^ null then s must be allocated prior to the fourth handshake, and so must
be 0, the referred object. If o is allocated after the fourth handshake of the previous tracing
cycle, then by the code, it is colored using the previous black color, which is considered the
white color of cycle k.

96

So (1). (2) and (3) arc not violated by a store by 7/ .$ P.

. it remains to show that (4) is not violated. Suppose that at HS4k(i) Oj is reachable
from Ti. 0j could not have been directly reachable at the time, or it would have been
marked local. By the validity of (2) for i/54cf(i) we know that if Oj is reachable from
Ti then it is reachable through some object oa, with a < j. This implies that oa is
reachable from Ti at HSAk{i)■ Again, a contradiction to the inductive assumption on
oa.

That completes the proof that 15 and therefore II hold for Oj.
Applying II for any object which is processed we learn that any such object is garbage at

HS4ENDk (which equals, by deifnition, i/S4/c(n).) Since the objects which arc eventually
reclaimed are a subset of those processed (the rest have their reclamation deferred to the
next cycle) the algorithm is indeed safe.

D

Last but not least we have to prove lemma B.7. whose correctness was assumed by
lemma B.6. The lemma asserts that the collector sensibly de­allocates objects. That is,
that it decrements the re field of slots in a manner which is not discordant with their linkage
to the sliding view.

Lemma B.7 Let 0 be an object which is reclaimed during cycle k and lets be a slot of the
object. Then the collector decrements Vcf(s) exactly once due to recursive deletion in cycle
k.

Proof. The claim vacuously holds for cycle cf = 0. We prove that it holds for cyclecf> 0
provided theorem B.I and lemma B.5 hold for cycle cf.

As the reference count of an object is monotonically non­increasing due to recursive
deletion and since an object is processed by Collect only when its re ifeld reaches zero, o
is processed exactly once before being reclaimed.

Since o is reclaimed, the collector resets all its slots, including s. When the collector
considers s it probes the value of Dirty(s) and ifnds it off. As noted in lemma B.5, s could
not have been modiifed by any thread between responding to the ifrst handshake and fourth
handshake. So s is not in the digested history for the next cycle.

If3 ^ Hist^th en o~k{s) ­ HSk■ By lemma B.4Dirty(s)@o­h(s) = false thus no thread
Ti could have changed s between ak{s) and HSk(i).Ifs 6 Histk then it must be that
s S R3k■ So in that case <7cf(s) = HS2ENDk■ At any rate, no thread Ti changed s between
ak(s) and HS4k{i).

Theorem B.I asserts that s was inaccessible for any thread after responding to the fourth
handshake.

Assembling these facts we get that any rate s was not modiifed between ok{s) and the
time the collector read its value, prior to resetting it in procedure Collect. So the collector
indeed decremented the re value of Vcf(s(.

ם

This completes the safety proof of the algorithm.

95

Define 15 as the logical conjunction of II and 14. We prove that 15 holds for Oj.
We have already said that at HSAk{l) there existed exactly c references to 0j. All these

references were contained in objects that, according to the inductive hypothesis on objects,
were unreachable from 7] at #54^(1). Additionally, Oj was not directly reachable from 7]
at HS4k(l), or it would have been marked local. Oj has not been directly reachable from
a global reference at HS4k{\) since that would have caused it being marked local, for the
same arguments that were applied for 01. Finally, had 0j been indirectly reachable from a
global reference r at //S4/t(l) then the chain of references must have passed through some
of the c slots which are contained in objects which are assumed to be inaccessible from 7]
at i7S4cf(l), contradicting the inductive hypothesis on objects. Thus, II. restricted to the
interval [HS4k(l),HS4k(l)} holds for 0j.

14, restricted to the interval [i/S4cf(l),i/S4cf(l)], holds as well since if54cf(l) is the
time at which 7] responded to the handshake and naturally it did not execute a store at
the same time.

We now show by similar arguments to those applied for 01 that 15 restricted to the
interval [i/S4cf(i ­ 1), //S4cf(i)]. where 1<i< n, holds provided it holds during the
interval[HSAk{\),HSAk{i ­ 1)]. We also use the inductive hypothesis on j that asserts that
for any object oa, a < j, II holds for the entire interval [//54^(1), H54cf(n)].

Invariant 15 applied to 0j and restricted to the interval [HS4k(i ­ l),i7S4jt(i)] requires
that:

1 . oy/s not reachable continuously during the interval from any local reference of a thread
in P.

2. a reference to 0j is not stored during the interval.

3. Oj is not reachable continuously during the interval from any global reference.

4. 0j is not reachable from Ti atHSAk{i) ■

We show that any instruction of time t 6 [HS41­(i ­ 1), HS4k{i)] cannot violate (1), (2)
or (3) provided (1). (2) and (3) hold up to timet­ \ then we show that (4) holds.
. a load by a thread Xj could not have maid 0j reachable from 7} unless it was reachable
from it prior to the load. It also has no effect on the reachability of 0j from other
threads. Therefore such an action cannot violate neither (1) nor (3), assuming (1)
and (3) hold for previous steps. Naturally it cannot violate (2).

. a store by a threadTiG P cannot make 0j reachable for any thread in P unless 0j
has been already reachable from 7/ just before the action took place, which is not the
case. So a store by 7/ preserves (1), (2) and (3) provided (1) and (3) hold for previous
steps.

. a store by a thread7/^ P cannot make 0j reachable from any thread in P for the
following reasons:

­ T{ could not have stored a reference to 0j itself since the Snoopi lfag is set during
the interval and such a step would have marked 0j local, preventing its processing
by Collect.

­ 7} could not have stored a pointer to x from which 0j is reachable since all
references to 0j at the time of the store, by the validity of (2) for previous steps,
are a subset of the the set of c references that pointed to 0j at HSA^. Thus,
the chain of references from x to 0j must pass through an object oa, with a < j.
The store would have rendered oa reachable from some thread inP , which is
contradictory to the inductive assumption on oa.

94

2. o\ was not directly reachable from an{' of the threads in the set P ­ {T\, 7V1}
continuously during the interval, and

3. o\ was not directly reachable from any global root continuously during the interval,and

4. 01 was inaccessible from Ti at HS4k{i).

The inductive hypothesis (on i) assures us that 01 was not directly reachable from all
the threads in P and from any global root at HS4k{i ­ 1) and that RC(o1)@HS4k(i­1) =
0. Examining any possible operation which is scheduled during the interval [HS4k(i ­
1), /fS4jt(2)] we learn that 13 remained continuously in effect. We show that any instruction
of time t g [HS4k(i ­ l),HS4k(i)] cannot violate (1),(2) or (3) provided (1),(2) and (3)
hold up to timet ­\ then we show that (4) holds.

. a load cannot violate requirements (1) or (3) simply because it is a load, and not a
store. It cannot violate requirement (2) since no object or global root is referring to
01, due to the validity of (1) and (3) in previous steps.

. a store operation cannot violate (2) since only a load can.

. a store by a thread7/£ P cannot violate (1) or (3) since the operand of the store
cannot be 01, due to the validity of (2) in previous steps.

. a store by a thread 7}10 P cannot violate (1) or (3) because the operand of the store
cannot be 01 since the Snoopi lfag is set during the interval and such a step would
have marked o\ local.

. to prove that (4) is satisfied: at time HS4k(i) 01 is not indirectly reachable, from any
thread or global root, since (1) holds at HS4k(i). It is not directly reachable from
Tj. because that would have caused it being marked local. It is not directly reachable
from a global root at HS4k(i) since (3) holds at that moment.

That completes the proof that 13. and therefore II in particular, hold for oi.
Consider now the object 0j, 1 < j < m. If 0j.rc@C0LLECTk = 0 then the same

arguments that were employed for 01 arc repeated. Otherwise , we have

c =f Oj.rc@COLLECTk > 0

Since 0j is eventually processed by Collect there must have been c slots pointing at
0j that were cleared and Oj.rc decremented accordingly, in lines (7­8) of Collect. Note
that the collector tested the dirty flags of these slots and found that they were off prior to
their processing. Since the dirty flag is off for these slots after HS4ENDk, no thread could
have changed them after, or at HSk and before responding to the fourth handshake (due
to lemma B.3).

Moreover, since these c slots were contained in objects that were processed prior to 0j
the inductive lemma (on objects) apply and we know that no thread had access to any of
the c slots after responding to the fourth handshake. We conclude that these c slots have
not been changed after HS4kand before the collector processed them.

In order to prove II we prove an additional invariant:

Invariant B.4 (14) No reference to 0j has been stored during the interval[HS4k(l).HS4k(n)]
to either a heap slot or a global reference.

93

requirement. proved by lemma B.2. we are now ready to prove our main claim.

Theorem B.I An object o is garbage when it is reclaimed. More specifically, ois not
reachable from any thread T{ after HS4k(i) and hence o is garbage atHS4ENDk.

Proof. We prove the claim by induction on the cycle number, k. ForA;=0 we have an
empty ZCTo therefore no object is reclaimed during this cycle and the claim vacuously
holds. Forcf> 0 We prove that the claim is correct provided lemma B.6 holds for cycle k.

Let {71,72, ■ ■ ■Tn) be the set of all mutator threads. ordered by the time they respond
to the fourth handshake. i.e., HS4k{\) < HS4k(2)<... < i/S4cf(n). Let {01, .. .,om} be
the set of objects which Collect is invoked for during cycle k, ordered chronologically by
the time of the invocation (i.e., 01 was processed first and om­ last.)

Consider any object 0j that was processed by Collect. We prove that the following
invariant holds for 0j\

Invariant B.I (II) For each thread Ti, 0j was continuously unreachable from Ti in the
time interval [HS4k(i), HS4k(n)}. i.e., was not reachable through any ofTj 's local references
and through any global root at any time point in the interval.

The proof is by double induction: the outer induction variable is j, subscripting the
objects that were processed. The inner induction variable is 1, denoting the index of threads
in the order they responded to the fourth handshake.

For the basis, we consider 01. In order to prove that II holds for 01 we prove that an
additional assertion holds:

Invariant B.2 (12) RC{01) = 0 continuously in the time interval [HS4k(l),HS4k(n)}.

Define 13 as the logical conjunction of II and 12. First we show that 13 holds for 01 in
the (single­pointed) interval [HS4k(l),HS4k(l)]. Then we show that given that 13 holds
in the interval [HS4k(l),HS4k(i ­ 1)], then it holds in the interval \HSAk{i ­ 1), HS4k{i)}
as well and hence in the entire interval[HS4k(l),HS4k(i)].

Note that 13, restricted to the interval[HS4k(l),HS4k(l)} simply asserts that 01 was
not directly reachable from any of Ti 's local references and from any global root at HS4k(l)
and that RC(o\)@HS4k(l) = 0. We prove that this is indeed the case.

Since 01 was processed the first, Collect must have been invoked directly from Reclaim­
Garbage for it. Thus, O = 0\.rc@C0LLECTk. This implies

0 = ARC{Vk, o) > RC{0)@HS4k => RC(0)@HS4k = 0 1

by lemmas B.6 and B.2 and the fact that a reference count is non­negative. Additionally,
o\ was not directly reachable from T\ at HS4k(l), or it would have been marked /oca/ when
jT s state was scanned when it responded to the fourth handshake. Finally, 01 was not
directly reachable from any global root at HS4k{\). To see that this is indeed the case
consider any global root r. The collector read r prior to starting the fourth handshake and
marked the referenced object local. Since the time the collector read r and up to HS4k(l)
all threads would have marked an object local had they stored a reference to the object into ' 1
r. Thus, at any rate, the object which is pointed by r at HSk is marked and thus it cannot ;
be 0\.

If n = 1 then we arc done. Otherwise, we prove that 13 holds for the interval [HS4k(i ­
l),HS4k(i)}, where 1<i< n, provided it holds during the interval [HS4k(l).HS4k(i ­ 1)].
13, restricted to the interval in question, requires that:

1. RC(0\) ­ 0 continuously during the interval, and

92

:_

We conclude that at any rate, by the time s is allocated, it contains null and all necessary
adjustments have been made to the re field of Vjt­i(s) in order to reflect that.

Now we have to show that if Vjt(s) /null then the re ifeld of Vcf(s) is incremented and
otherwise no ifeld is incremented, and, that no re ifeld is decremented due to s in updating
of cycle k.

If no thread modiifes s between its allocation point and before HSk(i), then, according
to lemma B.5, s £ Histk and <7cf(s) d=HSk ■ At Ok{s) s still assumes the value of null and
thus V'it(s) =111111. Therefore, we would expect that no re ifeld will be incremented due to
s in cycle k. Since Histkdo es not contain any reference of s, this is actually the case. For
the same reason no re ifeld will be decremented as well.

If, on the other hand, some thread Ti modiifes s between its allocation point and before
HSk(i) then according to lemma B.5. applied for cycle k, VAL(Histk;o) = {null}. Thus,
the collector would adjust re ifeld due to s during the execution ofUpdate­Reference­
Counters. No re ifeld will be decremented due to s as null is associated with the slot
in Histk■ The collector will then either determine s, or declare it undetermined. If s
is determined, it will increment the re value of the determined value, which we have
shown to be equal to V(s). Otherwise, when s is undetermined. the collector adds it to
the set Undetermined^. It will subsequently consolidate s during the operation of Fix­
Undetermined­Slots. The re ifeld of the resolved value, which also equals V(s), will be
incremented exactly once, due to the Handled set. No matter whether s is determined or
not, we've shown that the re field of Vjt(s) is incremented exactly once.
Adjusting re ifelds due to allocated old slots. Since s is not reclaimed during cycle
A; ­ 1 there is no re adjustments due to it during the recursive deletion of cyclek­ 1. It is
left to consider the effects due to s in the course of updating during cycle k.

If s is an allocated old slot for cycle k then it may be either modified ornon­modiifed
during cycle k.

If s is modiifed, then (due to lemma B.5) VAL(Histk;s) = {Vk­i(s)}. Consequently.
Vk­1(s).rc will be decremented duringUpdate­Reference­Counters. Then, s will be
either determined or consolidated and the re value of Vk(s) will be incremented accordingly
as shown in the previous paragraphs for new slots.

Otherwise, s is not modiifed. Then we have VAL(Histk\s) = 0 and no re updating
due to it occur during cycle k, which is the desired result since Vcf_1(s) = Vcf(s).

Adjusting re fields due to non­allocated slots. If s has not ever been allocated then
the claim trivially holds.

If s has been reclaimed during cyclecf ­ 1 then we have shown. while dealing with new
slots, that at the time s is reclaimed null is assigned to it and the respective re value of
Vk­\(s) is decremented accordingly.

Consider a slot s which is not allocated for cycle k that has been most recently been
reclaimed during cyclem< k ­ 1. According to the safety theorem, applied for cycle 771,

no thread T; had access to s after HS4ENDm. Thus, at HSk­1 no thread had access to
s which leadstos ^ Histk■ Additionally. s could not be the subject of recursive deletion
during cyclecf­ 1, because that would have meant that the object containing s was deleted
twice in a row, which is contradictory to the safety theorem. We conclude that s is neither
the subject of recursive deletion during cyclek~ 1, nor of re ifeld updating during cycle k,
as desired.

Since we have covered all possible options for the state of s, the claim holds.

ם

Building on the foundations provided by the link between the conceptual asynchronous
reference count and the concrete re ifeld and by the correct implementation of the snooping

91

ו

1

that s was unrcachablc from its reclamation point up to the time it was re­allocated, during 1

cycle cf ­ 1. If, on the other hand, s was reclaimed during cycle cf ­ 1, then as the safety]

theorem tells us, no thread Ti had access to s after HS4k­i(i). s could have not occurred
in the digested part of Histk as that would have caused the deferral of the reclamation of
its containing object to cycle cf. So there are no leftovers in this case as well.

Applying the safety theorem to cycle m, we know that the object that contained s was
garbage when it was reclaimed. Its dirty marks, the one of s included, were off. When the I

collector freed the object it stored null into s. Since the object was unreachable, s remained I

inaccessible up to the time it was re­allocated. Just when s wasre­allocated, there was no i

update of it ongoing, it contained null, and the dirty lfag for it was false. We conclude
that the lemma holds due to the same arguments employed for the previous cases.

We have considered all possible cases for old and new allocated slots and have shown
that they always satisfy the claims.

ם

It has just been demonstrated that the collector has full knowledge on which slots have
changed since the most recent scan and what were their contents. We now show that the
collector can find out what are these slots values in a current cycle as well. These two
abilities combined amount for the collector's ability to calculate the asynchronous reference
count of each object, relative to the sliding view of the current cycle.

Lemma B.6 For any object 0 which is allocated at time COLLECT^ it holds that o.rc
equals ARC(Vk)0).

Proof. The claim trivially holds for collection cycle zero, since there are no allocated
objects at COLLECT^, To prove that the claim holds for cyclecf>0 we assume that it
holds for cycle cf ­ 1 and that lemmas B.7 hold for cycle k ­ \ and B.5 hold for cycle k.

We note that it suffices to show that:

1 . for any slot s due to which re fields are adjusted by the algorithm the re field of Vcf_j(s)
is decremented exactly once, during the interval[COLLECTk­1, COLLECT^), while
the re field of Vcf(s) is incremented exactly once during the same interval.

2. if Vcf­i(s) ^ Vcf(s) then the algorithm adjusts re fields due to s.

Consider a memory word s. it is in exactly one of three states, with respect to cycle cf:

allocated new, allocated, not allocated.
Adjusting re fields due to allocated new slots. If s has been collected during cycle
cf ­ 1 then according to lemma B.7, the collector decremented the re field of V]t_1(s) when
the object containing s was reclaimed. At that point, s assumed the value of null, which
remained in effect at least until s was reallocated, assuming that theorem B.I holds for
cycle cf ­ 1.

Another possibility is that the object containing s was reclaimed during cycle m. where
m < cf ­ 1. Since s is new to cycle cf, it was not allocated for cycle cf ­ 1 and we have
0>_1(s) = HS^­i and by the definition of sliding views we have Vcf_1(s) =111111. Thus,
we would expect that no re field will be decremented due to s. Indeed, since the object
containing s was not reclaimed during cycle cf­ 1, no decrement was applied due to s as
the result of recursive deletion of cycle cf ­ 1. Again, due to theorem B.I, we know that
when s was reallocated it assumed the value of null.

Finally, if s has not been ever allocated before then surely it was not subject to recursive
deletion during cycle cf ­ 1 and it contained null at the time it was allocated.

90

^.if s is new for cycle k and is not modified during cycle k ­ \ thenVAL(Histfc; s) כ
{null}.

Proof. For garbage collection number zero the claims trivially hold since Histo = 0 and
indeed no slot is modified prior to the cycle. We prove that the claim holds for cycleA;> 0
provided it itself hold for cycle k ­ 1 and that theorem B.I and lemma B.4 hold for earlier 1

cycles.
We divide into cases according to the state of s:

s is old for cycle cfand s £ R\k­\. Suppose that s ^ Histk­ In that case we have
^(s) = HSk and we have to show that s is not changed between HS^­i andHSk ■

Since s £ Histk­\ we conclude, by the inductive hypothesis, that no thread modified
s between ak­2(s) andHSk­1 ■ Additionally we know that at HSk­1 the dirty mark of
s is off. The dirty mark must be off at HSAENDk­2 as well and no update is ongoing
at the moment as that update would have rendered s part ofHistk­ 1­ Using the same
arguments of lemma A.I applied for s and HS4ENDk­2and since s is not cleared before
HSENDk any update whose store proper operation is scheduled between HS4ENDk­2
and HSk would result in the association ofs@HSAENDk­2 with s in either Histk­1, or
Histk, neither of which is the case. We conclude that s is indeed not modified during cycle
cf­1.

Now suppose s £ Histk■ In that case we want to show that VAL(Histk; s) =s@HSk­1 ■

Again, we've concluded that any thread Tj that would log s prior to HSk{i) would as­
sociate it with s@HS4ENDk­2■ Since a store to scould not have been scheduled be­
tween s@HS4.ENDk­2 and HSk­\ without logging the slot we conclude that s@HSk­i =
s@HS4ENDk­2, which is the desired result.
s is old for cycle k and s 6 R2k­1■ Since some thread modified and logged s between
the first and third handshakes of cycle A; ­ 1 We have to show that claim (1) holds for s.
Due to the reinforcement step, the dirty lfag of s must be on at HS4k­1, thus, there is no
possibility that a thread would log s after responding to the fourth handshake. As for the
records kept regarding s between the ifrst and fourth handshakes, the collector chooses a
single pair, say {s. v) and moves it to Hist^■ By definition of Ok we have Vk­i(s) = v.
s is old for cycle s and s GR2>k­1 . We have noted in lemma B.4 that tk­i(s) = Ok­\{s) =
HS2ENDk­\ and no update is occurring at that moment. Suppose s £ Histk■ In that case
<7cf(s) ­ HSk and we have to show that no store is scheduled between HS2ENDk­i and
HSk■ But this is trivial since the probing of the dirty mark associated with such a store
must start after HS2ENDk­1, as no updates occur at that moment. Thus. had such an
update been scheduled, it must have sensed that the flag is off and s would have become a
member of Histk a contradiction.

Suppose now that s 6 Histk■ We have to show thatVAL{Histk\ s) =s@HS2ENDk­i ■

Again, since at HS2ENDk­\ the dirty bit is off and no update of it is occurring. And since
the dirty mark is reset only after all threads have responded to the first handshake of cycle
k. by lemma A.I they arc bound to associates@HS2ENDk­1 with s.

new slots allocated for the first time.Ifs is allocated for the first time, then Ok­1 =
HSk­i&nd at that time s contained null and its dirty lfag was initialized to false. These
values remain in effect until s is allocated. Additionally, no update of s occurs at the
moment it is allocated. Again, the claim follows using the arguments of the previous cases.
new slots which arc reallocated. We ifrst show that Histkcann ot contain "leftovers" :

i.e., logging that refer to the "previous life" of s, before it was reallocated. Suppose that s
was last reclaimed during cycle m. m< k.If77t< A; ­ 1 , then there will be no record of the
"previous life:' of s in Histk due to the safety theorem applied to cycle m that assures us

89

ו

■

Lemma B.4 Lets be a memory word. There exists a time point, denoted tk(s)at which
the dirty slot for s is off. Speciifcally:

.ifs e R\k than tk{s) d= ak(s) =f HSk.

.ifs e R2k then tk(s) exists and it satisifes HSENDk < tk(s) < HS2k.

.ifs a RZk then tk(s) = HS2ENDk. There are no ongoing updatesof s at tk{s).

Proof. The proof is by induction on the cycle number, k. Fork= 0 the claim holds since
all slots are cleared at HSq and all slots are members of RIq. Fork>0 we prove the
claim correct provided it holds for the previous cycle and theorem B.I holds for all previous
cycles. We divide to cases:

.ifs g R\k then either s £ Rlk­\ors e R3k­j■ R2k­\ is impossible because it implies
that s € Histk.
Ifs e R\k­\ then by the inductive hypothesisDirty(s)@HSk­\ = false. Had some
thread T{ turned on the flag on after HSk_\ and before HSk(i) then s would have
been recorded in cither Histk_\ or Histk, neither of which is the case, so the dirty
lfag must be continuously off from HSk_\ to HSk.

Otherwise, s £ R\­\. Thus, according to the inductive hypothesisDirty(s)@HS2END =
false. By deifnition of R?>k­\, no thread logged s before responding to the third hand­
shake of cycle k ­ I. Thus no thread had turned the lfag on prior to responding to
that handshake. Had some thread logged s after the third handshake of cycle k ­ 1
but before the first handshake of cycle k then we would have s 6 Histk, which is not
the case. Again we have that Dirty{s)@HSk is false.

.ifs e R2k then the collector has turned off Dirty{s) during the clearing stage. We
deifne tk(s) to be the time instance just after the clearing of Dirty(s) was scheduled.

.ifs e R2>k then the collector has turned off Dirty(s) during the clearing stage and no
thread has turned it on prior to responding to the third handshake. We conclude that
the lfag must have been off at the time the second handshake ended. At HS2ENDk
only updates of threads that have already responded to the second handshake may
be ongoing. But had such an update occurred, it must have sensed that the lfag is
off and it would consequently log s, contradicting the definition of R3k. We conclude
that there are no ongoing updates at HS2ENDk.

ם

We proceed to consider the properties of thewirte­barrier. The next lemma, which is the
equivalent of lemmaA.2 of the snapshot algorithm, states that any slot which is modified
between scans is recorded along with its value in the previous sliding view and that no other
value is associated with the slot.

Lemma B.5 Lets be a slot. The following claims hold:

1.ifs is old for cycle k and modified during cyclecf­ 1 then VAL(Histk; s) = {Vcf_1(s)}.

2.if s is new for cycle k and modiifed during cyclek ­\ thenVAL{Histk;s) = {null}.

3. if s is old for cycle k and is not modiifed during cycle k ­ I thenVAL(Histk; s) D
}Vk­x(s)} ■

88

._.. _. ■ _ __ ­ __ _ . ._ _. I

above definition allows us to escape dealing with garbage collection cycle number one as a
special case.

The proof is naturally by induction on the cycle number. We have several interdependent
claims that jointly prove that the algorithm is safe. In the next section we present the claims
and show their inter­dependencies. Then, we prove the claims.

The goal of the proof is to show that any object is reclaimed only if it is garbage. This
claim is contained in the safety theorem­ theorem B.I.

The validity of theorem B.I, for cycle k, stems from lemma B.6 which links the computed
re field of each object to its ARC in Vj., the sliding view associated with cycle k.

This linking is proved correct for cycle k. provided:

. the linking argument holds for cycle k ­ \

. theorem B.I holds for previous cycles.

. all differences between Vk­1 and Vk are recorded consistently by mutators. This claim
is contained in lemma B.5.

. the collector reclaimed objects in a sensible manner during cycle cf ­ 1. "In a sensible
manner" means it took into account the values of reclaimed slots as they appeared in
Vk­\■ This claim is contained in lemma B.7.

Lemma B.7 itself builds on the logging capabilities of mutators (lemma B.5) and on
theorem B.I.

Lemma B.5 which summarizes the algorithm properties with respect to thread buffers
and logging is proved correct based on the validity of theorem B.I and lemma B.4 for
previous cycles.

Lemma B.4 itself asserts that any slot has a time point in the beginning of each cycle
whence the dirty lfag of the slot is off. This rather lame­looking lemma is crucial for the
operation of the logging mechanism. Its proof relies on the correctness of the same claim
for previous cycles.

Using the notation of the proof of the snapshot algorithm we summarize the interde­
pendencies:

. each of the claims is proved correct for cycle zero independently.

. for a cyclecf> 0

­ LBAk <= LBAk_x
­ LB.5k <= LBAk_\ A/\j<k SafetyTheorerrij
­ LB.6k <= LB.5k A LS.6t_1 A LB.7k_l A /\j<k{SafetyTheoremj)
­SafetyTheoremk <= LB.6k
­ LB.7k. <= LB.hk A SafetyTheoremk

B.5 Inductive safety arguments
Compensating for the lack of the hard handshake of the snapshot algorithm, during which
all dirty marks were turned off we have procedure Clcar­D irty­Marks in the sliding view
algorithm. The following lemma asserts that indeed each slot experiences a point in time,
atfer the start of a cycle, at which the dirty lfag is off. This is essential for the logging
mechanism to operate correctly since it instructs mutators to start logging modiifcations
from fresh, relating to the new cycle.

87

B.3 Some basic claims

Recall that as asserted for the generic algorithm, we have to implement the snooping re­
quirement in order to deduce on the "real" reference count of an object, based on its
asynchronous reference count. The following lemma shows that the requirement is indeed
enforced and that thus its implications hold:

Lemma B.2 Any object 0 which is not marked local (i.e., 0 £ Localsk) at COLLECT^
satisifes

ARC{Vk; 0) > RC(o)@HSAk

Moreover, the setof pointers that point to o at HS^is a subset of those that point to it in
vk.

Proof. According to lemma 5.1 it suffices to show that if a reference to 0 is stored to a slot
s at, or after ak{s) and before End(ak), then o is marked local. By lemma B.I we know that
End(crk) < HS4k, hence we can replace End(ak) with HS4k, hardening the requirements
of lemma 5.1. i.e., we require that if a reference to o is stored to a slot s during the interval
[crk(s),HS4k) then o is marked local.

Since updates are not interruptible and since the Snoopi lfag is reset only after HSAk(i),
it suffices to show that the test of Snoopi in the Update procedure returns true in the case
that the store proper into s is executed after ak(s) and before HSAk{i). Consider a store
of 0 into s which is scheduled at, or after ak{s) and before HS4k(i). Due to lemma B.I,
the store is scheduled at or after HSk. At that time, for any thread 1;, the Snoopi flag is
set. Since the test of Snoops in line (7) of procedure Update, is executed after the store
proper, of line (6). it would return true and the object will be marked accordingly local.

י. י ם

Lemma B.3 The following claims hold: (1) if thread Ti logs s between responding to the
ifrst and third handshakes thenDirty(s)@HS3k(i) =true. (2) if thread Ti logs s between
responding to the ifrstand fourth handshakes thenDirty(s)@H S4k(i) =true.

Proof. Claim (1): The only reason the flag might be off after 7} has raised it is that
the collector has reset it in procedure Clear­D irty­Marks . If that is the case, then the
collector has reset the lfag after the it has completed logging the slot. Hence, in procedure
Reinforce­D irty­Mark. the collector will see the slot in T/s buffer and would reinforce
it. This happens before HS2k. Claim (2) is tirvial due to the validity of claim (1).

ם

B.4 Road map for the proof
In the proof of the algorithm we assume again that a garbage collection cycle number zero
takes place just before any mutator is started, i.e., at initialization time. As stated for the
first algorithm, there is no loss of generality involved, this is just a mere issue of convenience.
Convenience is also the cause for the following definition:

Or. cquivalently, we may assume that yet another garbage collection cycle is occurring
before cycle number zero. The reason we need this definition is that we can reason freely
about what happened in the interval [HSk­2, HSk­i], while reasoning on cycleA;> 0. The

86

We need modify our notions of "being allocated" of the snapshot algorithm's proof due
to the lack of the hard handshake. This is done in the following definitions:

. We say that an object 0 is allocated for cycle k if some thread Ti allocated 0 after
HSm(i) but before HSm+\{i)> wherem< k. and there had not been a cycle 1, where
m<I< k, such that 0 was reclaimed on cycle I.

.o is allocated new for cycleA;if m = A; ­ 1 in the above deifnition.

. If771< A: ­ 1,o is allocated old for cycle k. , '

. We abbreviate and say that 0 is new (old) to cycle /? if it is allocated new (old) for
cycle k.

. Any of the above deifnitions apply to slots. The implied meaning is that the definition
holds for the object containing the slot.

B.2 The sliding view associated with a cycle

In this section we deifne a per­cycle sliding view that we later show that is computed
implicitly by the collector and imitators (bearing similarity to the conceptual snapshot
taken at HSk by the ifrst algorithm which is never explicitly computed.)

Let us deifne the scan ak that we associate with each cycle. We abbreviate Vak to Vk.

Consider any memory word s.

. Rule 1:ifs ^Hist^th. en we set <7cf(s) = HSk­

.ifs £ Hist^th. en:

­ Rule 2: if s is logged by some Tj between HSk(i) and HS3k(i) then let v be the
consolidated value chosen for s. Let r be the time a particular thread Tj loaded
v before logging the pair (s,v). Set crk(s) = t.

­ em Rule 3: otherwise . no thread Ti logs s prior to HS3k(i), but s is logged by
some thread Tj prior to HSk{i)■ On such an event set crk(s) =HS2ENDk■

Note that o­k(s) is uniquely deifned. We denote by Rlk the setof all slots whose deifnition
oi 0~k is derived by rule (1). Similarly we deifne the sets i?2^and R2>k­

The next lemma characterizes the span of0~k ■

Lemma B.I Start{ak) > HSk A End(cTk) < HSUSENDk

Proof. Lets be a memory word. Certainlyifs € Rlk U R3k then crk(s) lies within the
speciifed time limits. Otherwise, s is deifned according to rule (2). we note that t must be
earlier than HS3ENDk as some thread is logging s prior to responding the third handshake.
If this logging is done during clearing than the lfag will be reinforced. Otherwise, the lfag
must remain on until the clearing of the next cycle. In particular. it's on atHS3ENDk ■

Thus no thread could load a value from s after HS3ENDk and then log it since it is bound
to sense that the dirty lfag of s is on.

85

Appendix B

Sliding View Algorithm Safety
Proof

In this appendix we prove that the sliding view algorithm is safe.
In the proof we abandon our assumption that there are no global references in the system

(consult chapter 3 for the definition of global roots) . Instead, we assume that the collector,
between carrying the third and fourth handshakes of a cycle, reads any global reference and
marks the pointed object local. In addition, mutators carry the followingwrite­barrier for
global references:

1. s := new
2. if Snoopi then

// mark new as local.
3. Localsi := LocalsiU {new}

B.I Definitions

First we need to stretch our definitions a bit in order to accommodate the looser timing of
the second algorithm.

Let us define the time instances at which a thread T{ is suspended during the four
handshakes of each cycle: HSk(i), HS2k{i), HS3k(i) and HS4k{i) denote the time instances
at which thread Tt is suspended during the first, second, third and fourth handshakes of
cycle k, respectively. Next, we define the "global" time markers at which each handshake
starts and ends:

HSkd=mmTi HSk(i)
HSENDk =f maxT1 HSk(i)
HS2k d= minTi HS2k(i)
HS2ENDk d= maxTl HS2k(i)
HS3k d= minTi HS3k(i)
HS3ENDk d= maxT, HS3k(i)
HS4kd=minTiHS4k{i)
HSAENDk =f maxT1 HSAk{i)

Additionally we define COLLECTk to be the time at which procedure Reclaim­
Garbage starts its operation.

84

)b) Otherwise, o.rc@COLLECTk.l>0 Ao.rc@ENDk_x = 0. This implies that
o.rc had reached zero by the decrements applied by one of the invocations of
procedure Collect. By the code (lines (5­9)), when an object reference count
reaches zero but it is not reclaimed, it is moved to the ZCT of the next cycle.

ם

Ideally. we would like the algorithm to collect at cycle k any object which is garbage
at HSk. However, this algorithm has the ordinary weaknesses of reference counting, with
respect to cyclic structures, and thus only the following progress theorem can be guaranteed:

TheoremA.2 (Progress) If at HSk object ois unreachable and additionally ois not
reachable from any cycle of objects, then 0 is collected in cycle k.

The theorem is quite obvious due to lemmaA.6 and the fact that we use ordinary
recursive­freeing,

83

of slots (carried out in line (4) of procedure Collect) taking place prior to its reclamation,
thus 0\.rc@C0LLECTk = 0. This implies, according to lemmaA.5 applied to cycle k, that
RC(o)@HSk = 0. Additionally, by the code, 01 is collected only if01 .re =0 A 01 / Localsk
so we conclude that in addition of not being pointed by any heap slot at HSk, 01 is also not
pointed by any global or local reference at that particular moment, or it would have been
marked local. Thus, 01 is unreachable at HSk.

For the inductive step, consider 01 which has c d=f 0i.rc@C0LLECTk = RC(o)@HSk
(the last equality is again by lemmaA.5). If c= 0 then the same arguments that were
employed for 01 are repeated in order to demonstrate that 0j is garbage atHSk ■

Otherwise, we havec> 0. Since 0j is recycled, it must satisfy at some point during
Reclaim­Garbage or Collect 0{.rc=0A o, $ Localsk■ Thus, the value of Oi.rc is
decremented c times during the operation of Reclaim­Garbage . Since decrements arc
only applied to objects which arc pointed from objects that are collected and since those
objects are collected prior to 0; we have by the inductive hypothesis that all c references to
01 were from objects that were unreachable at HSk■ Thus, at HSk, 0i is pointed only by
unreachable objects, and it is not pointed by any local thread state or global reference. We
conclude that 0i is unreachable atHSk ■

a

A. 2 Progress
In this section we show the capabilities of the algorithm in collecting garbage objects.
The algorithm, in that respect, has the same limitations as the traditional single­threaded
reference counting algorithms [37].

The best that we can hope to achieve with reference counting, without employing special
techniques for detecting cycles of garbage, such as those surveyed in [36], is to detect any
object that its reference count drops to zero, in order that it would be considered for
reclamation based on the existence of local pointers to it. The following lemma tells us that
this feature is achieved by the ZCT data­structure.

LemmaA.6 (ZCT Property) If 0 is allocated at HSk and RC(o)@HSk = 0 then 0 S
ZCTk.

Proof. The proof is by induction on k. There arc three cases to consider:

1. 0 is new to cycle k. In this case, a mutator created o between HSk­1 and HSk■ When
it created 0 it added it to its New set, which becomes part ofZCTk ■

2. 0 is old to cycle k and it had a positive re field at ENDk­\. Since we have 0 =
RC(o)@HSk = o.rc@COLLECTk (by lemmaA.5), the value of o.rc must have
reached zero due to the decrements applied by procedureUpdate­Reference­Counters
of cycle k. At that point 0 was added to ZCTk(sc e lines (8­10) of that procedure.)

3. o is old at HSk­\ and it had zero re ifeld at ENDk­\■ This case splits into two
sub­cases:

(a) \i o.rc@COLLECTk_l= 0 then /?,C(0)@i7Scf_1= 0 by lemma A.5. Using the
inductive assumption we know that 0 € ZCTk­1■ Since 0 was not recycled we
must have o € Localsk­i■ By the code, when o is considered during Reclaim­
Garbage it satisfies

o.rc =0Ao 6 Localsk_\
by the code (lines (5­7)), 0 is added to ZCT^in this case.

82

]

the operation ofUpdate­Reference­Counters, when the pair (s,s@HSk­\) is considered,
the re field of s@HSk­\ is decremented, as desired.

Decrementing new slots: Lets be a new slot for cycle k. According to lemmaA.2
either null, or no value at all, arc associated with s. Thus. there are no decrements that
occur due to s during cycle k. Let us explain why this is the desired behavior.

If s is new for cycle k then either s becomes allocated for the first time, or it was part
of an object 0 which was recycled during cycle j, wherej< k.

In the former case, we know that s was initialized to null and its dirty lfag was off at
system startup. Also, no thread could have accessed s at HSk­1, since it was not a part of
a reachable object (or any object) at that time. Thus, s@HSk­1 = null and therefore no
re field should be decremented due to s during cycle k.

In the latter case, according to the safety theorem applied to cycle j, o is not reachable
at HSj. Thus, the collector has exclusive access to s, during cycle j. It follows that the
collector may decrement the re field of the object pointed by s and clear s without being
interfered by mutators' actions, all part of the operation of Collect during cycle j. If
j< k ­ 1 then s@HSk­\ =111111, thus there is no "old" value to decrement.

Otherwise,j= k ­ 1. In this case, the collector decrements the re field of s@HSk­i
during cycle cf ­ 1. when it reclaims o. An object is reclaimed only if its re ifeld drops to
zero. Reclaim­Garbage and Collect can only reduce the value of an re ifeld. Thus, there
is a single point during the operation of Reclaim­Garbage at which o.rc = 0. Therefore 0

is reclaimed exactly once and likewise the re ifeld of sQ­ffS/t­i is decremented exactly once.
Decrementing and incrementing non­allocated slots: If s is not allocated at HSk

then the same argument that was applied to new slots is used to show that the value of
s@i?5cf_1is taken care of. Again, due to the safety theorem applied to the cycle at which
the object containing s was recycled we have s@///Si­ =111111 so there is no need to increment
any ifeld due to s. Indeed, since s is not allocated at HSk&nd it is unrcachable at HSk­1
no record of it would appear in Histk and no re ifeld will be manipulated due to it in cycle
k.

Incrementing old and new slots: it remains to show that the re ifeld of s@HSk
is incremented exactly once due to s. when s is allocated atHSk ■ We have two cases:
either s is determined, or it is undete1­mined. If s is determined, then due to lemmaA. 3
we have that the collector increments the re value of s@HSk■ Otherwise, by lemmaA.4,
VAL{Peekk\s) = {s@HSk}■ Thus, during the Fix­Undetermined­Slots procedure the
collector will ifnd the value of s@HSk associated with s. It will increment the re ifeld of
that object exactly once, by the code.

All re adjustments are ifnished by the time Fix­Undetermined­Slots terminates, so
the claim holds at COLLECTk.

ם

A. 1.5 Conclusion of safety proof
We are now ready to prove the safety theorem which claims that an object is collected at
cycle k only if it is unreachable at timeHSk ■

Proof of safety theorem. The claim trivially holds for cycle zero since ZCTq is an
empty set and thus no object is recycled during the initial cycle.

Consider cycleA;> 0. We prove that the theorem holds for cycle k if lemmaA.5 holds
for cycle cf.

Let {01, ..., on} be the sequence of objects for which Collect is invoked, where the
sequence is chronologically ordered. We show by induction on i. that 0; is unreachable at
HSk■ For the basis, consider 01. As it is the ifrst object to be collected, there is no clearing

81

ם

What happens when the collector does not succeed determining a slot? A slot is undetcr­
mined if the collector senses that its lfag is raised duringUpdate­Reference­Counters.
The only reason for the lfag to be raised is that some thread, say T{. has applied line (5) of
procedure Update to the lfag (i.e., raised it.)

Since updates are non­interruptiblc, Ti has executed the preceding lines of (3) and (4)
of the same invocation after HSk. i.e., Tj has stored the pair (s,s@HSk) into its buffer and
incremented CurrPosi prior to raising the lfag. Thus, when the collector would process
Bufferi during Read­Buffers it will see the logged pair (s, s@HSk) in 7Vs buffer (s@HSk
is associated with s according to lemmaA.2.) and thus the pair will be added to the set
Peekk ■

We conclude the following:

LemmaA.4 (Undetermined Slots) If the collector does not determine a slot s in cycle
k then

VAL(Peekk;s)= s@HSk

A. 1.4 Linking re field with reference count
In this section we show that the re ifelds that the algorithm computes equal, eventually,
the heap reference counts at the time the conceptual snapshot is taken. We need some
deifnitions ifrst.

DefinitionA. 2 Let ENDk denote the time at which cycle k has ended. That is, ENDk
is the earliest time at which all instructions of cycle k have already been scheduled.

DefinitionA. 3 Let C0LLECTk be the time at which the invocation o/Fix­Undetermined­
Slots, during cycle k, is complete. The collector starts executing Reclaim­Garbage after,
or at, COLLECTk.

The following lemma proves that the value of the re ifeld of each object, after the
collector has ifnished adjusting re ifelds due to all logged modiifcations, i.e., when procedure
Reclaim­Garbage starts its operation, equals the object's heap reference count at time
HSk.

LemmaA. 5 (Meaning of The re Field) o.rc@COLLECTk = RC(o)@HSk for any ob­
ject o which is allocated atHSk ■

Proof. The claim holds forA;= 0 since there are no objects which are allocated at HSq.
Forcf>0. we prove that the lemma holds for cycle k provided this lemma and the safety

theorem both hold for previous cycles.
It's enough to show that the algorithm adjusts re ifelds due to each slot s correctly. If

s does not change after HSk­\ and before HSk then, by lemmaA.2, s will not be logged
and there will be no modiifcations to any re ifelds due to s.

Let's consider the cases in which s does change. We have to show that the re ifeld of
the object that s was referring to at HSk­\ is decremented. Likewise, we have to show that
the value of the object that s was referring to at HSk is incremented. s is in exactly one of
these states at HSk: allocated old, allocated new, non­allocated.

Decremening old slots: If s is old for cycle k then s is changed by mutators, and not by
the collector (by deleting it.) Due to lemmaA. 2 Histk will contain the pair(s, sOi/St­i).
Histk will not contain elements associating s with a value other than s@HSk­i■ During

80

1.if s is new to cycle k and is modified between HSk­\ and HSk then

VAL(Histk;s) = {null}

2.if s is old to cycle k and is modiifed between HSk­1 and HSk then

VAL(Histk;s) = {s@HSk­l}

3. otherwise (s is not modiifed between HSk­\ and HSk),

VAL{Histk;s)= 0

Proof. The lemma vacuously holds forcf= 0 since there are no slots which are modified
during the interval HS­1 to HSq.

We now show that the lemma holds for cyclecf> 0 provided that the safety theorem
hold for previous cycles.

Suppose s is new to cycle cf. Let t be the time at which the object 0 containing s was
allocated. Letj< cf be the cycle during which the object x that most recently contained
s was reclaimed, or 0 if no such cycle exists. Applying the safety theorem to cycle j we
know x was unreachable at HSj. Thus. no thread could have accessed s from HSj until
r. In addition, if j > 0, when x was recycled, null was assigned to s. in line (4) of
procedure Collect. Finally, as all dirty flags are cleated while the threads are halted, we
have Dirty(s)@HSj ­ false. Since these values must remain in effect until time r we can
apply lemma A.I to s and r yielding that either claim (1) or (3) hold, depending on whether
s has been modified prior to HSk.

If, on the other hand, s is old to cycle k then we haveDirty(s)@HSk^i = false and no
update of s is occurring at HSk­\. Thus, we can apply lemma A.I to s and time HSk­\
yielding that either claim (2) or (3) hold, depending on whether s has been modified prior
to HSk.

D

A. 1.3 Determined vs. undetermined slots
We say that the collector determines the value of a slot s if during theUpdate­Reference­
Counters procedure it reads the value v from s (in line (3)) and then sees Dirty(s)=false
(in line (4)). Such a slot is determined, as opposed to undetermined slots which are taken
care of by the collector in procedures Read­Buffers and Fix­Undetermined­Slots. The
following lemma tells us that if the collector determines the contents of a slot then it has
indeed read its contents as they were at the time the recent conceptual snapshot was taken.

LemmaA. 3 (Determined Slots)If the collector determines s to contain v during cycle
k then v = sQi/Scf.

Proof. Lets be a determined slot. As all dirty slots are cleared when the threads are
stopped we haveDirty(s)@HSk = false. Let r be the time at which the collector executed
line (4) ofUpdate­Reference­Counters . At time r the flag was still off. Thus, no line
(5) of procedure Update was scheduled in the interval HSk to r. Hence the later store
from line (6) of Update hasn't been scheduled in this interval as well. This means that s
remained unchanged from HSk to r. This interval includes the time at which the collector
read the value of s. in line (3) of Update­Reference­ C ounters . Hence the collector read
s to contain s@HSk.

79

1. UPD(s)= 0= > ASSOC(s) = 0
2. UPS(s) ^0=> ASSOC(s) = {s@t}

Proof. The ifrst claim is quite trivial since a value is associated with s only as part of an
update. Since no updaet is scheduled. no value is associated.

Suppose that s is indeed modified between t and HSk■ Consider the set of threads,
denoted P, that apply the subset of operations of UPD(s) which read the value of Dirty(s)
as false in line (2) of procedure Update, while updating s. P is not empty since some
thread modiifes s (UPD(s) is non­empty) and the dirty lfag is off at t.

Consider a thread Xi G P. We want to show that when Tj executed line (1) of procedure
Update it read the value of s at t. Suppose that it did not. Let r be the time at which
thread T; executed line (1). Then some thread Tj must have executed a store to s after,
or at, t and before t. Since there were no updates occurring at t and since the store is the
last instruction of an update operation we conclude that the entire update operation by Tj
has started after, or at, t and ended before t. Just before Tj executed the store in line (6)
the value of Dirty(s) must have been true either by line (5) or by virtue of another thread
(note that the collector resets the lfag only during the next cycle) so T{ should have read
a value of true fromDirty(s), in line (2), which was not the case. A contradiction. We
conclude that Ti must have associated s@t with s. So we have

{s@t} C ASSOC{s)

According to the code, any thread Tj $ P would not associate any value with s thus

ASSOC(s) = {s@t{

ם

For a given history buffer H (be it collector or mutator maintained set) and a slot s we
deifne the set of values that H associates with s, denoted byVAL{H;s), as:

VAL(H;s)d= {v\{s,v) eH}

For brevity we writes€ H meaning3v:(s,v)£ H
The next lemma summarizes and proves the desired properties of the write­barrier em­

ployed by the algorithm. We need some deifnitions ifrst:

. We say that an object o is allocated for cycle k. If some thread has allocated o between
HSm and HSm+i, wherem< k. And there has not been a cycle /, wherem<l< k
during which 0 was reclaimed.

.0 is allocated new for cycleA;if 7n =cf ­ 1 in the above deifnition.

.Ifm< cf ­ 1, we say that 0 is allocated old for cycle k.

. We say that a slot is allocated (new/old) for cycle k if its containing object is allocated
)new/old) for cycle k.

. We abbreviate and say that a slot or an object are new (old) to a cycle meaning that
the slot or the object are allocated new (old) for that particular cycle.

LemmaA.2 Let s be an allocated slot for cycle k. Then:

78

Most lemmas are interdependent meaning, for example. that we prove lemma X correct
at cycle k provided lemma Y is correct at cycle k ­ 1. In order to make clear the relation
betweeii the claims and to demonstrate that there is no circular logic in the proof we provide
herein a complete description of the interdependencies among the claims. We denote by
Likth. e assertion of lemma i for cycle k.

Here is a short description for each of the claims involved:

. SafetyTheorernk: An object is collected during cycle k only if it is garbage atHSk■

. LA.2k: If a slot is modified between HSk­1 and HSk then only and exactly the value
it assumed atHSk­ jjs recorded. No information is recorded for slots which are not
modified.

. LA.Zk■' The collector can distinguish, during cycle k. whether it is reading a slot's
value which was current at HSk, or, that the slot has been overwritten since.

. LAAk: The collector finds out, eventually, in procedure Fix­Undetermined­Slots,
what are the values of undetermined slots.

. LA.5k: Just before the invocation of Reclaim­Garbage of cycle cf, the re field of
each object equals the heap reference count of the object at HSk­

These are the dependencies between the claims:

. the basis for each claim, i.e. its correctness for cycle zero is proven independently for
each claim.

. LA.2k <= /\j<k SafetyTheorerrij

. LA.hk <= /\j<k(LA.5j A SafetyTheorerrij) A LA.2k A LAAk

. SafetyTheorernk ■^= LA.^tc

A. 1.2 Update protocol properties
Consider any slot s which is modified between HSk­1 and HSk. The snapshot algorithm
requires us to adjust re ifelds due to s by decrementing the re field of s@i/5cf_1 and incre­
menting the re ifeld of s@Zt$■. The first partof the requirement, decrementing s@HSk­\,
is implemented by letting the imitators record the identity of s@HSk~1 into their buffers.
Thus, we would like to prove for any such modified slot s that only and exactly s@HSk­i
is associated with s by the mutators.

If s is not modified between the current and previous cycles, then we want to show that
no record of s is kept.

The lemmas in this section prove that the algorithm possesses these properties.

Lemma A.I Let s be a slot and lett be a time point satisfying

1. HSk­j < t < HSk, and

2. Dirty{s)@t = false, and

3. No update of s is occurring at t.

Let UPD(s) be the set of all update operations applied to s which are scheduled between
t and HSk. Let ASSOC(s) be the setof values which are associated with s by the operations
inUPD{s).

It holds that:

77

Appendix A

Snapshot Algorithm Correctness
Proofs

This appendix contains safety and progress proofs for the snapshot algorithm.
In the correctness proofs we abandon our assumption about the absence of global roots

(consult chapter 3 for the definition of global roots). Instead, we take the burden of showing
how to incorporate them into the algorithm: we assume that during the handshake of a cycle,
when all threads are stopped, the collector marks any object which is directly reachable from
a global root as reachable.

A.I Safety
In this section, we will prove that the algorithm recycles an object only if it is garbage
at the time it is recycled. Actually, an object is recycled only if it garbage at the time
the conceptual snapshot is taken. Let us first define precisely this moment at which the
conceptual snapshot Rkis taken:

Definition A.I Let HSk be the earliest time at which all dirty marks have been cleared
during the execution0{ ■procedure Read­Current­State in collection cycle number k.

We assume that at system initialization, before any mutator has taken any step, there
occurs an initial garbage collection cycle. As can easily be seen, this cycle leaves all data
structures that are carried across cycles (e.g., reference counters, ZCT) untouched, so there
is no loss of generality in our assumption. We use this assumption in order to simplify
the correctness proofs of the base cases of inductive claims. So, HSq happens at system
initialization.

We further deifne HS­\ =if So. This definition as well simplifies the proof of claims
that depend on the two preceding cycles.

Ultimately, in terms of safety, we would like to prove the following:

Theorem A.I (Safety) An object is recycled during cycle k only if it is unreachable at
HSk.

A. 1.1 Road map for the proof
Due to the cycle­by­cycle nature of the algorithm its properties are proved by induction on
the cycle number. For convenience, we will assume that there is a garbage collection cycle
numbered zero scheduled at system startup. This assumption facilitates the proof of the
induction basis and does not involve any loss of generality.

76

Chapter 10

Conclusions

We have presented a reference counting garbage collector with an explicit attempt to make it
suitable for a multiprocessor. The algorithm uses extremely low synchronization overhead:
the barriers for modifying a reference and the barrier for creating a new object are very
short and in particular. require no strong synchronized operations such as acompare­and­
swap instruction. Furthermore. there is no particular point in which all threads must
be suspended simultaneously. Instead, each thread cooperates with the collector by being
shortly suspended four times during each collection cycle. In three of these four handshakes,
the time of suspension is just enough to allow a short operation that does not depend on
the heap structure or the local state of the threads. One of the four handshakes requires
reading the local roots of the thread. Thus, the overall overhead is small.

The two main new ideas presented in this work are first, the clever mechanism for
logging of reference modifications, which requires no synchronization, yet introduces no
inconsistencies due to race conditions, and second, the fact that a fuzzy snapshot of the
heap, which we denote the sliding view, is enough to get an approximation of the reference
count and perform the garbage collection.

Note that as in the previous work of DeTreville [17], our algorithm is based on the 11111­

tators logging information about the modifications they apply to heap references. However,
in our algorithm, a thread takes a record of a modiifcation at most once per slot per cycle
(as opposed to always keeping a record) and the heavy synchronization incurred due to the
logging action is completely eliminated.

In order to reclaim cyclic structures and to reinstate stuck reference count fields we have
presented an on­the­fly, scalable, tracing collector. The tracing collector relies on the same
notion of a sliding view as its reference counting counterpart and thus it is inter operable
with the reference counting sliding view algorithm. In particular, the tracing collector as
well never stops all mutators simultaneously and it uses the same write barrier used by the
reference counting algorithm.

We have implemented the proposed algorithms for Java, atop Sun's JDK for Microsoft's
Windows NT Operating System. Our algorithms attain a dramatic improvement in re­
sponse time over the original garbage collection algorithm. The reference counting algo­
rithm achieves throughput comparable with that of the original JVM while the on­the­lfy
tracing collector outperforms the original JVM.

This work opens avenues for additional research on the following areas, among them: (1)
studying the behavior of tracing vs. reference counting collector in high heap occupancy
environments, as suggested in section 9.5, (2) combining the ideas presented in [1] with
the ideas presented in this work and (3) applying generational principals to the reference
counting algorithm.

75

Let us define the load factor, a. to be 7/(1 ­ 7). We now see that the tracing overhead
is bigger than the reference counting overhead if, and only if:

a > Ci/Ctr

This has two implications:

1. The reference counting algorithm reacts better than the tracing algorithm to a growth
in the heap occupancy factor. Note that the load factor grows very quickly as the
heap occupancy grows. Apparently, the set of benchmarks that were available to us
do allocate a lot of objects but do not maintain a large volume of live data over time.
It seems that this is not the case with true servers, such as Web servers, that utilize
the entire heap allotted to them for caching web pages etc.

2. Unfortunately, the "implementation quality factor" , c\/ctr, is not favorable for the
reference counting algorithm. While ctr depends only on the implementation of the
tracing phase, c\ describes the complexity involved in clearing the dirty bits of newly
allocated objects, updating the reference counters for objects pointed by newly allo­
cated objects, maintaining the ZCT, and, finally, recursively deleting dead objects.
Thus, improving the overhead of the reference counting algorithm is a much harder
task than improving the mark and sweep algorithm.

74

results in most cases. In this section, we try to explain this result. We characterize the
differences between the two algorithms and thus we ifnd the conditions under which each
may perform better than the other. In our discussion, we abstract away several factors ,

which may still be important in some environments, for example: I

. we assume that it is harmless to use the entire heap space which is allocated for the
program since this heap is backed by fast RAM. This holds for servers, but not for
memory constrained systems.

. we assume that fragmentation is not an issue. Again, this is tied to the previous point.
If we have a big heap and the access of pattern to memory is uniform, as is the case
with servers, then this assumption holds as well.

. we assume that the price of initiating a garbage collection is negligible relative to the
price of the collection itself. This can be evidently seen from our instrumentation
measurements (refer to section 9.1).

. we assume that our target programs have steady states. While this may not be the
case in reality, there is not much we can say about programs with irregular behavior.

Suppose we are given a heap of sizeH. Let us assume that the benchmark has a steady
state at which it consumes a fraction 7 of H. That is, most of the time,7if heap space
is alive. Also, let Ra be the allocation rate, which equals the garbage production rate in
steady state, in units of memory volume per time, and let Rm be the mutation rate which is
defined to be the rate at which the mutators mutate old data structures, i.e., data structures
that have at least survived one garbage collection cycle.

As we noted before, the overhead of a reference counting garbage collection cycle is
proportional to the amount of space allocated since the last cycle, the amount of space
that became garbage since the last cycle and the amount of space that was mutated since
the last cycle. Therefore, reference counting is less sensitive to the triggering used. i.e.,
two short reference counting cycles cost roughly the same as one longer, combined reference
counting cycle. Thus, each implementation is characterized by two constants, c\ and C2 that
characterize the overhead incurred by reference counting per unit of time. That overhead
is:

OverheadRc = c\Ra+ c2Rm

Referring to the set of benchmarks we have used, we see that the actual old objects
mutation rate. Rm, is very low thus in practice we may approximate the overhead with
cxRA.

The price of a tracing cycle, on the other hand, is ifxed no matter when was the last cycle
executed. The price of the cycle is proportional to the amount of live data (in the tracing
phase) and to the entire size of the heap (in the sweep phase). So the price isctr~/H +cswH
where ctr and csw are the proportion constants for the mark and sweep stages, respectively.
In practice , tracing dominates the price of a tracing cycle, so the price can be approximated
by CtrlH.

Assuming that it is beneifcial to use the entire heap space, we want to delay a tracing
cycle as much as possible. We can do that until we run out of heap space, which happen
after (1 ­ jJj¥/Ra units of time (the amount of free space divided by the allocation rate).
Thus, the overhead of tracing garbage collection, per unit of time, is:

OverheadTracing = ctrRAll{\ ­ 1)

73

­­­­­­ Threads 11 11 21 41 8 [12 [16

Original allocator 1143 1768 1747 1570 1537 1525
Custom allocator 917 1638 2349 2356 2371 2373

Table 9.21: Objects created per second in the allocation benchmark on a four­way server.

II # Threads [I1 I2 I4 I 8 1 12 I ­16"
Original allocator 1044 1054 823 873 911 796
Custom allocator 844 843 838 843 852 818

Table 9.22: Objects created per second in the allocation benchmark on a single processor
workstation.

9.4 Allocator scalability
We have designed the custom allocator with scalability in mind. In order to check whether
the collector indeed meets design goals we have written a small allocation benchmark that
tries to measure allocation overhead in isolation from garbage collection overheads. The
program works in phases. Each phase, N threads are started and each of them allocates
1,000,000 arrays of references, each with a random number of slots, chosen uniformly from
the range {1, ..., 5}. Each thread links 10(?0 (chosen randomly) of the objects it allocates
into a linked list.

On the end of each phase the elapsed time of the phase is determined; the linked list
of objects from the cycle prior to the one just ended is discarded (the list from the current
cycle is held "alive1' for the next cycle) and finally synchronous garbage collection is invoked.
It is verified externally that the heap is big enough so that no garbage collector ever occurs
during a phase run. The entire test is comprised of four phases with the results being the
average of the last three runs.

As described, during a measured phase, there is little happening in the system besides
concurrent allocation. Furthermore, since the heap is dotted with allocated objects from
the previous phase, allocation cannot be just a matter of bumping a pointer. This behavior
mimics real world scenarios were the heap contains differently aged objects. We do give a
chance, however, to the collector, to do compaction between phases.

The results for the four­way server with 1200MB heap are presented in figure 9.21 as the
throughput of the JVM (objects created per second) relatively to the number of working
threads. The custom allocator achieves excellent scalability where there is almost no loss
in performance when going from 4 threads to 16 threads. The original allocator, however,
performs less well, loosing 1290 of its throughput over the same range. With 16 worker
threads, the custom allocator achieves a throughput higher by 5Q7o than the one achieved
by the original allocator.

Refer to ifgure 9.22 for the comparison of the allocators on a client machine. For this
test we used 300MB heaps. This necessitated changing the number of objects allocated by
each thread, on each phase, from 1,000,000 to 100,000 with 8 threads or more. On the single
processor client machine the situation is less decisive compared to the server environment.
Here, the custom allocator performs less well with 1or 2 threads by a factor of 20^0. With
4 threads and more, however, it is as marginally better than the original allocator.

9.5 Discussion
As can be seen from the throughput results for our on­the­fiy reference counting collector
versus the results of our on­the­lfy tracing collector, the tracing collector exhibits better

72

; ^­.­5 חי'וד­­ץ^"'ו^ ■.יי*­ ■■

Heap Time
(MB) (sec)

­Original 25 120
RC ­ 20 85
Tracing 20 86"

Table 9.19: Minimal heap size required to complete successfully a four thread mtrt run and
the time to completion with that heap size.

Benchmark Original RC Tracing
Total 2582.2 2676.0 2610.9

­ compress 720.8 723X 718.4
_db 374.0 383.7 374.0
jack 264.6 299.7 285.0
javac 225.0 235.2 233.7
Jess 181.7 209.7 182.1
mpegaudio 607.1 610.6 611.1

Table 9.20: Elapsed time for the execution of the entire SPECjvm98 suite and intermediate
execution time of a double­run for each of the suite's members.

time, only elapsed running time, which corresponds to the JVM's throughput. As can be
seen from figure 9.18 both on­the­lfy collectors have outperformed the original JVM with
an improvement of up to12.6*^ in the total running time.

The ordinary measure of heap consumption­ probing the free space left at the run
does not capture transient effects and the ability to handle stressful situations. Figure 9.19
shows the minimal heap size (in 1MB granularity) required to complete the mtrt benchmark
successfully and the corresponding time to completion . The concurrent collectors require
about 20*^ less the memory to complete successfully and arrive at completion at about 709?>

the time. This is clearly a defect of the original JVM as it should actually require no more
memory than our collectors and since in this stressful situation we resort to synchronous
GC there should be no gain from concurrent collection as well.

9.3 Client performance

While we have targeted our collectors for multi­processor environments we still wanted to
verify that they are competent in a single­processor setting. To that end we have used
the SPECjvm98 benchmark suite. We used the suite using the test harness, performing
standard2 automated runs of all the benchmarks in the suite. In a standard automated run,
each benchmark is ran twice and all benchmarks are ran on the same JVM one after the
other. Figure 9.20 shows the elapsed timeof the entire automated run and the time for each
double run of each benchmark. We see that the tracing collector was only X.1% percent
slower than the original JVM and the reference counting collector only S.6% slower. Given
that we pay the overheads of concurrent run while we're not benefiting from the availability
of multiple processors these are remarkably good results.

2The standard run requires running the harness through a Web server while we performed the tests
directly off the disk. Aside from that. the executions were standard.

71

11 Threads | 11 21 41 61 8 1 10 1 15 1 20
Original 0.02 002 14.67 0.05 0.08 0.01 0.18 13.03
RC 0.02 O02 005 007 Oil 015 O22 0.32
Tracing ­O02­ 0.02 0.06 0.09 012 015 025 0.33

Table 9.16: Maximal response time, in seconds.of the original JVM. reference counting and
tracing collectors in a series of fixed number of threads runs with 1200MB heap.

| Threads]I1 12 1 4 16 I8110I 15 1 20­
Original ­­24 3970" 300 139 160" ­236 312"
­RC27­­ ­44 77­ 108 170 171 251 329
Tracing ­­­­­­­44 77­ 108 130­ 171 ­251 330"

Table 9.17: Memory consumption at the end of a series of ifxed number of threads runs
with 600MB heap.

a remarkable behavior of our collectors where the original collector consumes longer and
longer pause times as the heap grows. Figure 9.16 might seem an exception to this rule at
first glance but actually what happens is that since garbage collections with such a large
heap arc scarce (one or two in a run) they actually might occur when the benchmark is not
measuring response time hence the original JVM manages "to get away" with its long pause
times unnoticed on most cases. However, examining the pause time for 4 and 20 threads
we see that these pauses nonetheless occur.

We now examine our memory consumption behavior. Given that we have added an extra
pointer to each object (the log pointer) we would expect to see some increase in the memory
consumption, relative to the average object size in each benchmark. Furthermore, since we
do not compact the heap we arc more vulnerable to internal fragmentation compared to
the original JVM. When our collector is asked to report the amount of free memory it sums
up (non­atomically) the amount of storage available in the block manager and in partial
blocks. It ignores owned blocks so actually the amount of free memory is larger than
reported. Given this metric, the results of used memory as reported by SPECjbb (for the
600MB test series) are summarized in figure 9.17. Note that except for an unexplained (yet
reproducible) bump in the memory consumption for 8 threads with the reference counting
collector1 we consume no more than SVo more memory compared to the original JVM. This
can be further improved once we eliminate completely thehandle­to­object pointer in each
object, which is not required by our collectors.

The second benchmark that we have used is MTRT (multi­threaded ray tracer) , a mem­
ber of SPECjvm98 which can be used with a varying number of threads. We have ran this
benchmark with the default heap size­ 64MB. This benchmark does not measure response

1This bump cannot be explained by reference counting issues since the amount of consumed memory
is calculated only after the benchmark requests a synchronous garbage collection cycle, which is always
implemented by our collectors using a tracing cycle.

| Threads II1 I2 I3 I4 I8112I 16­
Original 93.0 71­9 561$ 57­­­ 58­2 58.0 59.0
RC ­88.6 68.5 52.5 54.2 5273 57.9 59.1

!­Tracing | 89.1 68.9 '52.3 55.8 50.8 53.4 53.5

Table 9.18: Time to completion, in seconds,of the MTRT benchmark, with varying number
of threads.

70

Heap Elapsed 70 increase. No. No.
size GC in GC time sync tracing

(MB) time over original cycles cycles
600 51 13­­ 2 11.0
900 51 30­­­ 2 7T
1200 47­­ ­­­ 2 5­T

Table 9.10: Elapsed time of garbage collection in a standard SPECjbb run with the tracing
collector; the percentage of increase in elapsed time over the original garbage collector and
the types of garbage collection cycles that were performed. "sync" is a synchronous GC
cycle requested explicitly by the benchmark.

Threads |1 I2 I4 I6 I8 I10 I15 I20 [I

Original 637 1125 1728 963 928 903 887 847"
RC "0.470 4.070 ­ ­5.470 ­2.070 ­1.070 ­2.270 ­­0.370 2.470
Tracing | 1.070 | 4.670 | 2.370 | ­1.370 | Q.2% | ­Q.9% I Q.1% I 2.870

Table 9.11: Scores of the original JVM on a series of fixed number of tlireads runs with
600MB heap; increase/decrease in score for the reference counting and tracing collectors.

Threads |1 I2 I4 16 18 110I 15 120 [I

­­­­^­­­­af 645 1137 ­­1742 978 947 918 858 893­
­­RC ­1.370 3.270 ­3.870 ­3.370 ­3.370 ­3.370 3.290 ­4.070
Tracing [­1.670 | 2.670 | 2.170 | ­2.670 | ­2.470 I ­2.170 14.070 I ­2.270 I

Table 9.12: Scores of the original JVM on a series of fixed number of threads runs with
900MB heap; increase/decrease in score for the reference counting and tracing collectors.

Threads 11 11 214 |6 |8 |10| 15 | 20­­|
Original 629 1155 ­­­­­683­ 935 908 884 882 870­­
RC ­2.570 T77T ­7.170 ­8.070 ­7.870 ­6.870 ­0­2­­­~ ­0.870
Tracing | ­6.370 | 3.670 | ­2.770 [­6.970 [­6.570 | ­5.470 I 1.170 | ­0.270 I

Table 9.13: Scores of the original JVM on a series of fixed number of threads runs with
1200MB heap; increase/decrease in score for the reference counting and tracing collectors.

­Threads | 11 214 |6 |8|10|15 I20 | |

­Original ­­7­43­ 8.04 ­8­­­ 6.92 ­­­­86­ 7.54 6.59 6.00
RC ­­­­02­ 0.02 ­005­ 0.08 ­­I­­ 0.15 ­0.25 0.33
Tracing 0.02 0.02 0.06 0.09 0.13 0.18 0­25 0.35

Table 9.14: Maximal response time, in seconds,of the original JVM, reference counting and
tracing collectors in a series of fixed number of threads runs with 600MB heap.

I Threads | 11 214 |6 |8 110|15 |2 0 I

Original 0.02 ­11.17 12.07­ 10.70 10.53 10.30 9­­2 9.23
RC 0.02 ­ 0.02 0.05 0.08 0.11 0.14 023 0.34
Tracing 0.02 002 005 008 012 0­15 025 0.33

Table 9.15: Maximal response time. in seconds. of the original JVM, reference counting and
tracing collectors in a series of fixed number of threads runs with 900MB heap.

69

Heap Score 70 Improv. Maximal Vo Imrov. in
size in score response response

(MB) (throughput) time (sec) time
600" 642.7 ­2.670 012 98.596
900 ­641.0 ­2.370 0.11 99.170

| 1200 | 633.3 | Q.7% 1 0.11 | 99.270 I

Table 9.7: Reference counting performance in a standard SPECjbb run.

Heap Elapsed 70 increase. No. No. No.
size GC in GC sync RC tracing

(MB) time time cycles cycles cycles
600 147 227­ 2 11­ 1­­­
900 144­ 26970 2 dJ 0­­
1200 143 22570 2 5­ ­­­

Table 9.8: Elapsed time of garbage collection in a standard SPECjbb run with the refer­
ence counting collector; the percentage of increase in elapsed time over the original garbage
collector and the types of garbage collection cycles that were performed. "sync" is a syn­
chronous GC cycle requested explicitly by the benchmark.

To illustrate, the original JVM may pause for as long as 16 seconds while we never cause
a mutator to pause for more than 130 milliseconds. This problem of the original JVM
becomes aggravated as the heap grows in size. As can be seen from figure 9.8, the reason
for the performance penalty is the prolonged elapsed time of garbage collection, compared
to the original JVM. This implies that by further optimizing the collector code we may
obtain better scores than the original JVM while maintaining the very short response time.

This is exactly the case with the tracing collector, which outperforms the original JVM
in both throughput and maximal response time. See ifgure 9.9. Figure 9.10 shows that the
elapsed time of garbage collection for this algorithm is much closer to the elapsed running
time of the original collector, resulting in improved performance.

Next we seek to check how our collectors perform relative to the original collector as
a function of the number of threads and heap size. We have performed a series of stand­
alone SPECjbb runs with 1, 2. 4. 6. 10, 15 and 20 threads; 600MB, 900MB and 1200MB
heaps; the original, reference counting and tracing collector. The results are summarized
in figures 9.11 through 9.16. From throughput perspective, our collectors have compatible
performance with that of the original collector with the tracing collector performing better
than the reference counting collector. We do see a slip in performance in the range of
4 to 10 threads and this effect worsens as the heap grows. This is probably related to
two factors: inefficient reclamation, which worsens as the heap grows, and tuning of spin
locks for these numbers of threads. Examining the maximal response time we again see

Heap Score 70 improv. Maximal 70 Imrov. in
size in score response response

(MB) time (sec) time
600­ 1124.0 ­ ­Q.6% 0.14 98.37­
900­ 1129.3 ­3­ 012 99.070
1200 1146.3 4.170 013 99­­­

* Table 9.9: Tracing collector performance in the standard SPECjbb run.

68

jbb comperss db jack javac jess mpcgaudio
No. cycles 7 4­ 4 7 10 10 2­
GC time 18.2 0.3 ~T6~ 3.3 ­ 5.0 4.8 0.1
"Clea^ 3170 370 2670 3370 2170 269k 2070
Trace 1570 ­ 370 190/0 370 ­­2870 670 2070
Sweep | 5070 | 770 | 470/0 [5570 1 4570 I 5470 | 2070 I

Table 9.5: GC time for the tracing collector, in seconds and the time spent in clearing dirty
marking, tracing and sweeping.

jbb compress db jack javac jess mpegaudio
No. cycles 7 2 4 9 6 10 2~
GC time ­16.1 0.1­ 5.7 10.3 9.0 17.0­ 0.1
Clear 1270 770 770 10^­ 1170 770 070
Update 3670 1970 3770 3170 4370 3770 1970
Create buff 870 770 1370 1370 1170 870 770

­l^­kim | 4270 | 2170 | 4170 | 4170 | 3370 I 4370 I 2170 I

Table 9.6: GC time for the reference counting collector, in seconds. "Clear" refers to pro­
cedurc Clear­D irty­Marks ; "Update" refers toUpdate­Reference­Counters; "Create
buff" refers to the pass over the create buffers, checking whether an object is garbage and
adding it to the ZCT; "Reclaim" is the final pass over the ZCT, when objects are deleted
recursively.

For benchmarks that deal with smaller amounts of larger objects. such as compress, we
see that most GC time is spent in garbage collection overheads (handshakes, etc.)

We note that the reference counter used as many garbage collection cycles as the tracing
collector (except for the case of compress and javac where the reference counter was allotted
a bigger heap) . Also the elapsed time for the reference counting garbage collector is longer.
In an attempt to find the culprits for this situation we observe that the duration of both
the update of reference counters and the reclamation of dead objects is in effect browsing
almost all of the objects that were allocated during the cycle, on a one­by­one basis. Since
the heap occupancy in all of these benchmarks is quite low for the given heap sizes, a lot
of objects are created duirng the cycle, resulting in a better performance for the tracing
collector. We will elaborate on this point in section 9.5.

We now turn to investigate the collectors' performance results compared to the original
JVM. We start with server performance and then continue with client performance.

9.2 Server performance
A standard execution of SPECjbb requires a multi­phased run with increasing number of
threads. Each phase lasts for two minutes with aramp­up period of half a minute before
each phase. Prior to the beginning of each phase a synchronous GC cycle may or may not
occur. at the discretion of the tester. We decided not to perform this synchronous garbage
collection as we believe it defeats capturing real world scenarios in which the server is not
given a change for this "olffine" behavior so often. The results presented here are averaged
over three standard runs.

Figure 9.7 shows the two most important performance meters for the reference counting
collector compared to the original JVM: while we do pay a small price of up to 2.670
decreased throughput, we improve the maximal response time by two orders of magnitude.

67

Benchmark No. stores No. stores No. object No. Create
to new to old log references vs. log
objects objects actions logged ratio

jbb 61,070,693~~ 9,940,664 ­ 52,410 264,115 0.00209
compress 63,892 1,013 13 5T­ 0.00022
_db ­31,297,167 1,827,613 36 30,696 0.00001
jack 135,013,882 160,893 ­ 824 1,546 0.00012
javac 21,774,697 267,331 189,395 535,296 0.02946
jess 26,206,218 51,889 544 27,333 0.00007
mpegaudio 5,517,487 ­ 308 ­ 12 51 0.00021

Table 9.4: Demographics of the write barrier: number of reference stores applied to new
and old objects; number of object logging actions; total number of references that were
logged and the ratio of the number of object logging actions to the number of allocations.
This ratio is an upper bound to the percentage of objects which ever get logged in the write
barrier.

may use reference counting for most garbage collection cycles and only occasionally resort
to tracing.

We now turn our attention to the use of the write barrier. Figure 9.4 shows the number
of reference stores that have been applied to "new" vs. "old" objects (i.e., objects that
still haven't undergone a collection cycle versus those which have survived at least one
collection cycle), the number of object logging actions, and the ratio of logging actions to
object creation actions (this is an upper bound for the percentage of objects which ever get
logged). (The figures are for the reference counted runs; very similar results were obtained
for the tracing runs.) We learn from these figures the following:

. Most reference stores are applied to new objects, probably because there are more of
them compared to old objects and because new objects have to be initialized.

. From the reference stores which are applied to old objects only a fraction leads to
logging. This means that the same old objects are accessed repeatedly. Yet we have
to log the object only the first time it is accessed in a cycle.

To conclude, due to this essentially generational behavior it is indeed beneficial to mark
new objects as dirty. Also, the price paid for the write barrier almost always equals the
price of a memory load and register test. Due to the large amount of new objects versus old,
logged, objects, the complexity of a reference counted cycle is in reality proportional to the
number of objects that were allocated during the cycle. It docs appear, though, that those
old objects which are repeatedly changed contain much more references compared to the
average. See for example the ratio between the number of logged references to the number
of logged objects in the jbb, db and jess benchmarks which far exceeds the average number
of references per objects in these benchmarks. This suggests that we might need to explore
ways to log large objects "by pieces" and not in their entirety, as is currently done.

Finally, let us look at the execution times of each of the collectors. Figure 9.5 shows the
number of collection cycles, total elapsed time of the collection cycles and how this time
distributes between the major stages of a tracing garbage collection. Figure 9.6 presents
these data for the reference counting collector.

Looking at the time distribution for the tracing collector, we sec that sweeping takes
more time than tracing. This is despite the fact that we sweep using the block table and
reference counters bitmap, without looking at the object unless it is actually freed. This
implies that the sweeping code has yet to be optimized.

66

Benchmark Tracing RC
No. allocated Object No. No. allocated Object No.

objects size References objects size References
­jbb 26,753,615 491) L6 25,113,179 5274 IT­
compress 55,126 '2,041.1 0.8 ~~ 58,061" 1.940.4 ~ 0.9
~db ~ 3,261,467 34.0 ­ 2.6 " 3,263,358" 34.0 2.6
jack 6,919,637 4073 IT 6,917,102 4073 176"
javac 6,403,821 4~9 179 6,405,478 431) F79­
jess 7,994,215­ 46.4 3.6 7,993,946­ 46.4 3.6
mpegaudio 65,539 31.6 LI 58,329 29.5 0.9

Table 9.1: Number of allocated objects, average object size and the average number of
references in an object.

Benchmark Stuck Relative
objects percentage

Jbb 141,141 ­ Q.6%
compress 2,727 ­ 4.770
~db 30,637 0.970
jack 51,607 Q.7%
javac 235,605 3.770
~ess 12,566 ­ Q.2%
'mpegaudio 2,728 ~ 4.770

Table 9.2: Number of objects that have reached a stuck count (i.e., 3) and their percentage
in the reference counted runs.

object population. These numbers support our assumption that a two­bit reference count
is enough for the striking majority of objects.

In an attempt to measure the sensitivity of each benchmark to reference counting we
compared the ratio of collected to allocated objects between the tracing and reference
counting collectors. For example, if in a tracing run 9070 of the objects were reclaimed and
in the corresponding RC run only 817 of the objects were reclaimed then the amount of
sensitivity, or inherent inefficiency, of reference counting for this benchmark is estimated to
be 1090. The results are summarized is ifgure 9.3. Except for javac, which uses many cyclic
structures, and to a lesser degree the db benchmark. the benchmarks have demonstrated
a low degree of sensitivity to reference counting. This supports the assumption that we

Benchmark 70 Reclaimed 70 Reclaimed RC
by tracing by RC Inefficiency

jbb 97.570 96.570 1.270
compress 73.570 72.170 2.170
~db 99.670 90.570 9.170
jack 99.670 96.870 ­ 2.870
­javac 99.670 66.170 ­ 33.670
jess 99.870 99.570 ­ 0.370
mpegaudio | 74.270 I 69.670 | 6.270 I

Table 9.3: Percentage of objects reclaimed by the tracing and reference counting collectors
and the associated estimate for reference counting inefficiency in collecting the benchmark.

65

Chapter 9

Performance Results

In this chapter we assess our algorithms performance characteristics compared to the original
algorithm used in the JVM and comparing the tracing collector to the reference counting
collector.

9.1 The benchmarks used­ instrumentation results
We used two standard testing suites: SPECjbb2000 and JPECjvm98. These benchmarks
are described in detail in SPEC'S Website [2].

Our primary instrumentation goal was to study the memory consumption behavior of
these benchmarks. To that end, we have compiled the JVM with the GC and allocator
modules in instrumented mode and the rest of the JVM in production mode. That way, the
runs were realistic ones. with the amount of objects allocated and running times not sig­
niifcantly different from an all­production JVM yet still we gained the GC instrumentation
information.

In order to appreciate the "sensitivity" of each benchmark to reference counting, i.e.,
the amount of garbage cycles and stuck reference counters that the benchmark produces,
we ran each benchmark only with the tracing collector and also only with the reference
counting collector, without the use of the auxiliary tracing collector. Figure 9.1 shows the
number of objects allocated, average object size and the average number of references in an
object. Overall, the number of allocated objects when using the reference counting collector
is comparable to the number of allocated objects using the tracing collector, though almost
always smaller by a maximal factor of 590. This is consistent with the performance figures
we present later.

All tests were conducted with an equal setting for the two collectors: a four way Pen­
tium III at 550Mhz with 2GB of physical memory and a 600MB Java heap for the JBB
server benchmark and a single Pentium III at 500Mhz with 256MB of physical memory
and 64MB for the jvm98 client benchmarks. However, the reference counted runs of the
compress and javac benchmarks were not able to complete with 64MB heap and therefore
the instrumentation results presented here refer to runs of these two benchmarks with a
Java heap of 200MB.

As ifgure 9.1 shows, the small number of references per object (e.g., a reference or two
in a typical object) supports our premises that the number of references in most objects is
relatively small hence the use of a flag per object instead of a flag per slot does not involve
a significant amount of extra logging.

Figure 9.2 shows the number of objects that have reached a stuck count (i.e., o.RC = 3)
in the reference counted runs and the relative percentage of these objects in the entire

64

Objects on the chunked object lists are linked through the logPos field. This helps
maintain the invariant that an object is eligible for reclamation by the mark­and­sweep
algorithm only if it has a null pointer in this field. Essentially, this trick solves the infamous
race condition between allocation and the sweep phase which otherwise requires object
coloring schemes.

63

. PARTIAL to OWNED­ after some chunks have been recycled and the block is in
the partial state a thread can gain ownership over it and start allocating off it.

The last set of transitions is applied by the collector (when executing chunk manager
code that performs them):

. VOID to PARTIAL­ occurs when some, but not all, objects on a VOID­marked
block are recycled. At the same time the block is linked into a partial list (see below) .

. PARTIAL to BLOCK­ occurs when all objects on a partial page are recycled.
This transition occurs atomically with the removal of the block from the partial list
on which it resides and handing it back to the block manager.

. OWNED to OWNED ­ happens when some objects on an owned page are recy­
cled. Thread ownership is not revoked but rather the newly recycled objects become
available for the thread to use.

8.9.2 Partial lists
Partial blocks are linked on partial lists. There is a partial list for each possible chunk size.

As mentioned, when a page is transitioned from the VOID state to the PARTIAL state
it is inserted into the partial list corresponding to the size of the chunks the block hosts.

Conversely, when a mutator needs to allocate a chunk of a certain size, and it does
not own a block hosting chunks of the required size, then it may take a block off the
corresponding partial list and become the owner of it.

Finally, when the collector finds that a partial block is fully vacant then it may evacuate
the block from the list and return it to the block manager.

8.9.3 Chunked object lists
Whenever a block is in one of the chunked states. i.e., OWNED, VOID and PARTIAL,
there are three lists of objects associated with it:

. Allocation list­ this list contains objects which can be allocated directly by the
owning thread. The list contains elements only when the page is owned and its
header is cached by the owner thread. This list is accessed solely by the owner thread
hence there is no contention incurred for using it and allocation becomes as simple as
popping an element off a linked list.

. Recycled list­ this lists contains elements which have been recently recycled by the
collector. It is accessible only to the collector. The collector maintains a hash table
of recycled lists headers thus occasionally it needs to lfush a recycled list associated
with a block. When it docs so, the list is merged with the block's free list (see below).

. Free list­is the list used to transfer objects from the recycled list to the allocation
list. As said, the collector sporadically lfushes the recycled list into the free list. The
owner mutator, when it sees that the allocation list is empty, tries to move all current
elements from the free list to the allocation list. If it fails doing so (i.e., the free list
is empty) it transforms the block state into VOID.

Synchronization is only needed for accessing the free list and is achieved by a lightweight
lock implemented at the block level. The lock is imbedded in the block table entry and is
implemented using low­level atomic operations (speciifcally, compare­and­swap) .

62

. BLOCK­ this state denotes blocks which are currently under the control of the block
manager and are the first or last blocks in a contiguous free region.

.BLOCKLIST­ same as BLOCK but the block is also the head of a linked list of
regions, all of which are of the same size as this list­header region.

. BLOCKINTERNAL­ denotes a block which is currently under the control of the
block manager but is not the first or last block of a region. i.e., an internal free block.
This state exists only for facilitating debugging. It does not exist in a non­dcbug
build.

. CHUNKING­ denotes a single block which has been allocated by the chunk man­
agcr, from the block manager, and it is currently being chunked into small pieces. This
state serves two purposes. For the manager, it signiifes that the block is no longer
under its control. For the sweep phase of the collector it signifies that no objects
should be collected from this block.

. OWNED­ means that the block is currently owned by a mutator thread allocating
off this block.

. VOID­ signiifes that the block is no longer owned by any mutator and that the
collector has not yet recycled any chunks from this block.

. PARTIAL ­ signiifes that the collector has recycled some chunks from this block.
The block in that case is linked in a partial list and no mutator can allocate off it.

. ALLOCBIG­ marks that the page is the ifrst or last page in a big object (at least
one block wide) that was allocated by the mutator and has not yet been reclaimed.

. ALLOCINTERNAL­same as ALLOCBIG only that the block is not the ifrst or
last block in the object. This state is used only for debugging purposes1 .

The block manager applies to following state transitions2:

. BLOCK to ALLOCBIG . Happens when a user requests the allocation of a big
object.

. BLOCK to CHUNKING. Occurs when the chunk manager requests the allocation
of a block for chunking it into small objects.

. VOID or PARTIAL or ALLOCBIG to BLOCK. Occurs whenever a chunked
block is fully freed or when a big object is reclaimed.

The user allocation code applies the following transformation to block states:

. CHUNKING to OWNED­ when the block is completely chunked it becomes
owned by the thread on behalf of which it was allocated.

. OWNED to VOID ­ occurs when allocation can no longer proceed from the page,
since there are no free chunks left on it.

1Actually, this state might be required for systems that do not maintain the invariant that a base pointer
to a live object should always be present somewhere. i.e., systems that allow for pointers into the middle of
objects with no corresponding pointers to the base of the object. On such a system this state can be used
to locate the base pointer given a pointer to the middle of the object.

2in the following we treat BLOCK and BLOCKLIST interchangeably since they are equivalent logically
from an external point of view.

61

there is no fragmentation problem imposed by this allocation method. However,
using this allocation method with a non­compacting collector would very quickly lead
to irrecoverable fragmentation.

2. the original allocator is synchronized on a single lock. This of course hinders scalabil­
ity.

3. the original allocator maintains two disjoint pools for handles and for objects. Yet we
want to allocate a handle contiguously with its object.

4. the original allocator maintains information needed for compaction (e.g., object pin­
ning information) which is useless for our algorithms.

Due to these reasons we decided to implement a custom allocator. Our allocator is
divided into two levels of management: the chunk manager and the block manager. We
now outline the roles of these managers.

The block manager manages big, equally sized, blocks of memory. The block size is
tunable at compile time and we elected to equate it with the hardware page size, which is
4KB. It supports the following operations:

. allocate a range of blocks.

. free a range of blocks given the start address of the range.

. free a collection of ranges of blocks.

The block manager is totally serial and it is implemented using linked lists of equally
sized regions of blocks. The block manager is utilized either directly, by the allocation code,
or indirectly, using the chunk manager. When a user requests an allocation bigger than half
a size of a block then the number of necessary blocks is allocated directly from the block
manager. Smaller allocations are satisifed by the chunk manager which chunks single blocks
into equally sized chunks that are consumed by the user.

The chunk manager is highly concurrent and efficient since it uses very fine locking,
thread local allocation and it does not support coalescing or splitting: once a block is
chunked into a speciifc size, all allocations from within it will use the same chunk size until
(and if) the block is completely freed, in which case it will be returned to the block manager.
Hence, allocation code need not perform costly checks due to variable sized chunks located
on the same block. There is a ifxed number of allocation sizes (approximately 20). The
allocation sizes arc chosen to balance between internal fragmentation (which calls for many
different allocation sizes) and external fragmentation (which calls for a small number of
allocation sizes so that blocks of one size can be used by objects of differing sizes instead of
allocating separate pages for each object size).

A typical object oriented application will issue many allocation calls that will be im­
plemented solely by the chunk manager and only relatively few calls will require allocating
entire blocks from the block manager.

Let us now review in greater detail the implementation of the block and chunk managers.

8.9.1 The block table
The block table as an array of block table entries each describing a block in the heap.

Each entry is four words (16 bytes) wide and its format changes according to the current
state of the block. However, all formats share one ifeld: the state ifeld. This ifeld assumes
one of the following states at each given moment:

60

. current position­ address of the next slot to be written into in the current block.

Recall that in the update protocol we have to prepare a replica of the object before
committing it to the buffer. In our implementation, the replica is written directly into the
buffer. Committing the replica is done simply by writing the address of the updated object
ORed withBUFFJLOGGED.HANDLE_MARK into the buffer (atfer the replica of
the object's contents) and updating the current position pointer in the log buffer header.

8.8 Cooperation model
We implemented the approach appearing in the original algoirthms for cooperation. i.e.,
threads are suspended one at a time, the collector takes some action on their behalf and then
the thread is resumed. We use a per­thread flag called cantCooperate which is turned on
in sections of code during which the thread can not cooperate (i.e., during the write barrier,
snooping of writes to global pointers and the logging of newly created objects).

In order to carry out a handshake the collector suspends the threads one at a time. If
a thread is caught in non­cooperative code then the collector resumes it immediately and
proceeds to handle other threads. The collector repeats this process until all threads have
cooperated.

We were careful to limit the size of the non­cooperative code sections to a ifxed and
small numberof instructions. This entailed reserving space in advance, in the snoop, create
and update buffers prior to entering a non­cooperative section.

8.9 The memory manager
In the design of the memory manager we tried to satisfy these requirements:

1. allocation should be as fast as possible and should avoid synchronization bottlenecks.
i.e., the allocator should be scalable.

2. both the tracing and reference counting asynchronous algorithms do not accommodate
the relocation of objects in memory. The allocator should not suffer from fragmenta­
tion (except maybe for some pathological cases) due to this property.

3. in the asynchronous reference counting algorithm. reclamation of objects occurs spo­
radically rather than linearly as in the sweep phase of the tracing algorithm. The
memory manager should handle efficiently this sporadic reclamation of objects. Even
though objects will not be freed linearly it should still try to minimize fragmentation
and increase the locality of allocation requests. i.e., it is preferable that two objects
which arc created in a row will be located closely in memory rather than chosen
randomly from the entire heap space.

4. the vast majority of objects which are created are smaller than 60 bytes. The memory
manager should take advantage of this fact by optimizing the allocation of small
object. Allocation of medium sized and large objects may be less efifcient than that
of their smaller counterparts.

We found the original allocator inadequate to the requirements for the following reasons:

1. it allocates memory by assigning big chunks of memory to threads which later cut them
into smaller pieces by incrementing a pointer. Naturally, the allocated memory spaces
contain a mixture of object sizes. Since the original collector supports compaction,

59

Handle* createObject (int size)
{

Handle♦ h = allocate(size) ;
LogEntry *le = logNewObject(h) ;

h­>10gP0s = le;
} .

8.7 Implementation of the log buffers
Principally, there are two kinds of log buffers in the sliding view algorithms:

1. sets of object references­ these log buffers are "flat" ; they contain one type of
data: pointers to objects. This variety includes the create buffers and the snoop
buffers. We have implemented the global ZCT (the one that lives between cycles)
using this data structure as well.

2. update buffers­ the update buffers are a collection of records of the form < object, replica >
where replica is a set of object pointers that where observed to be contained in object.

The two types of buffers are implemented as a doubly linked list of memory blocks. The
size of a memory block is tunable but we have usually opted to use a block size of 64KB.

We assume objects are aligned on an 8­byte boundary thus we can utilize the lower 3
bits of a logged reference for auxiliary information . The bits arc used to mark log entries
with the following tags:

.BUFF_NOMARK(=0)­flat object reference.

. BUFF_LINK_MARK(=2)­ the restof the word is a pointer to the next or previous
log block, depending on the direction of traversal.

.BUFF.LOGGED_HANDLE_MARK(=l)~this kindof entry appears only in up­
date buffers. It signifies that the pointer is to an object which has been logged.
The contents of the object are logged just before it in the buffer (as lfat refer­
ences). The word preceding the replica in the buffer can either be another entry
marked with theBUFF.LOGGED.HANDLE_MARK tag or an entry with the
BUFF_LINK_MARK tag.

.BUFF.DUPLICATE HANDLE_MARK(=3)­this kindof entry appears only in
update buffers. It is created by the collector by ORing a value of 2 into a slot marked
with theBUFF"LOGGED_HANDLE_MARK tag. This action invalidates the
entry (and the contents of the object appearing just before it in the buffer) . Recall
that the collector invalidates log entries on two occasions:

1 . during deletion, so that the entry would be skipped in the next cycle.
2. during clearing, if the entry is not "cycle closing" , in order to eliminate duplicates

in the collection of mutators' update buffers.

A log buffer is controlled by a log buffer header that contains the following information:

. start address­ address of the first block in the log.

. limit address­ address of last slot in the current block. minus some elbow room.
This limit address is compared against in logging, to check if there is enough space
for the logging operation.

58

9. Tl: h[offset] = val2.

10. Tl: Respond to HS1.

The log entry created by Tl is not cycle closing during the clearing phase and the log
entry created by T2, as it's created after responding to HSl, is not considered at all during
the clearing phase of the current cycle.

While it looks as if we have a bug here it actually turns out that we may ignore the
update ofh by Tl altogether because the object has been changed only after the current cycle
has commenced. i.e., only after some thread has already responded to HSl (in our case, 11
responded to HSl before the modification). According to the sliding view algorithm, we
have to account for all changes occurring between the beginning of the previous cycle and
the beginning of the current cycle. The update of h does not qualify.

The reinforcement phase (refer to section 5.8) becomes simpler as well using this method.
All we have to do is go over the entries in the clearing conlfict set and for each log entry
le check the object, h, it refers to. If h­>10gP0s is null. then reinforce the log entry by
re­closing the cycle. i.e., perform h­>logPos := le.

The consolidation phase becomes unnecessary because no two log entries which arc
logged before HSA can be cycle closing by the time the next cycle will commence.

To conclude, the "cycle closing?" predicate is a powerful tool that arbitrates automati­
cally between log entries that refer to the same object. This mechanism solves all cases of
multiple occurrences of log entries by itself with no need for extra data­structures and/or
procedures for conlfict resolution.

8.6 The Create Procedure

Recall that in the original algorithm an object is created "clean" , i.e., with it's dirty lfag
turned off, and it is logged in a special create buffer which is treated as a thread local ZCT.

If we were to take the same approach in our implementation then immediately after
creating the object, as "clean" . we would have to dirty it because of initialization code to
its fields.

We had not the development resources to explore the initialization approach suggested
in section 7.1.2 so we implemented a simpler yet efficient method. In our implementation,
we create objects as "dirty" . According to the principles of the sliding view algorithms we
have to supply the collector with a log entry containing the contents of the object when we
dirtied it. But the contents of the object at initialization are void.

Therefore, the mutator puts a reference to the object in a special "create buffer" and
makes logPos point to the log entry. The collector knows that entries in create buffers
signify objects which were logged when created, i.e., with empty contents and treats them
accordingly:

1. the dirty lfag is cleared

2. the current contents of the object arc determined and the corresponding reference
counters are incremented

3. no reference counters are decremented

4. the object is considered a candidate for deletion (i.e.. it's in the ZCT).

Below we outline procedure createGbject

57

8.5 Additional advantages of the logPos ifeld
Beside the easier determination of objects' contents we derive the following two advantages
from using the logPos field:

Using the logPos field in the resolution of the Create vs. Sweep conflict in
the sliding view tracing collector. The memory manager, in concert with the garbage
collector, use the logPos filed, along with other means, to resolve the race condition between
the Create and Sweep procedures. The net gain from this scheme is that we don't have
to use a per object color entry any more. We will elaborate on this subject after describing
the memory manager.
Eliminating duplicates in the update buffers. Recall that the original algorithm
allowed two mutators to log the same slot (in our case object). In such a case it was
guaranteed that the two log entries will be identical. The collector had to eliminate the
duplicates and process exactly one log entry per each object that was logged by any number
of threads.

When using the logPos field we have a method for identifying duplicates without using
auxiliary data structures other then the log entries and the objects themselves.

We say that a log entry is "cycle closing" if the object it refers to has its logPos field
pointing back at the log entry.

During the clearing phase, i.e., between HSl and HS2 the collector examines the mu­
tators' buffers that were passed to it during HSl. For each log entry, the collector checks
whether the entry is "cycle closing" . If it is, then it clears the logPos field of the referred
object. Otherwise. it invalidates the log entry so that the rest of the collection cycle ignores
it completely.

Let us explain why this method eliminates all duplicates and only duplicates. Consider
an object at address h which is logged by at least one thread before responding to HSl.
Assume further that this object is not logged by any thread between HSl and HS2. Ob­
viously, h­>10gP0s is constant during the clearing phase and therefore the collector will
identify exactly one log entry as cycle closing. Any other log entry referring to h will be
marked as invalid. So the method works in this case.

What happens in the case that h is logged by at least one thread before HSl but it
is also logged by some thread between HSl and HS21 In such a case the collector may
identify a single log entry (the one that was created before responding to HSl­ the latter
is not looked­at at all by the collector) as cycle closing. However, the log entry created
between HSl and HS2 might as well "overtake" the prior assignment to logPos resulting
in the collector identifying no cycle closing log entries for h.

This is the sequence of events we are describing:

1. Tl: rl = create a replica of the handles in 'h'.

2. Tl: write 'rl' into the update log buffer.

3. T2: Respond to HSl.

4. T2 : r2 = create a replica of the handles in 'h' .

5.T2 : write ­r2' into the update buffer.

6. Tl: h­>10gP0s = position in Tl's buffer.

7. T2 : h­>10gP0s = position in T2's buffer.
8. Tl: h[offset] = vail.

56

the object is undetermined dictated a multi­phased algorithm in which the threads' log
buffers are repeatedly read asynchronously in order to read the values of modiifed slots (see
procedure Mark in figure 6.4).

Using the logPos ifeld in the same manner as for the case of updating reference counters
eliminates the need for multiple phases and the related data structures . Tracing then always
proceeds immediately after accessing the object's logPos ifeld, either as dictated by the
current objects' contents or according to the previous state of the object, as recorded in
the log entry. Which of the two routes is taken is determined by the value of logPos in the
same manner done in the update of reference counters.

ProceduretraceThroughObj ect demonstrates the principal described above:

void traceThroughObj ect(Handle *h)
{

/* trace only once through any reachable object */
if (getObjectRC(h) > 1) return;

/* trace through the object */
LogEntry le = h­>logPos;
if (le) {

ObjectlsLogged:
/* object has been logged ♦/
for each reference 'child' logged in 'le' do {

/*
* account for the pointer to 'child'
* which is currently being traced
* through.
*/
incrementObj ectRC (child);
traceThroughObject(child) ;

>
return

>

/♦
* Prepare a replica of the references contained
* in the object.
*/
Replica r = copies of all references contained in 'h'

/* check if object was modified in the meanwhile */
LogEntry le = h­>10gP0s;
if (le) goto ObjectlsLogged;

/* OK, replica is valid */
for each reference 'child' in the replica'r ' do ­C

/*
* account for the pointer to 'child'
* which is currently being traced
* through.
*/
increment Ob jectRC(child);
traceThroughObject (child) ;

}

>

55

Replica r = copies of all references contained in 'h'

/* check if object was modified in the meanwhile */
le = h­>logPos;
if (le) goto objectlsLogged;

/* OK, replica is valid */
for each reference 'child' in the replica 'r' do
incrementRCC child)

}

Determining the contents of an object when deleting it. Recall that in procedure
Collect (figure 5.9) we had to postpone the collection of garbage objects which where
modified by some thread between HSl and HS4. The reason for that was that we had
no reasonable means to eliminate the redundant log entry. Deleting the object without
eliminating its corresponding log entry (or entries) would have caused inconsistencies in the
next cycle.

Using the logPos field, however, facilitates the elimination of log entries. If the object
is indeed logged then we have to:

1. decrement the reference counters of the objects appearing in the log entry (rather
then the counters of the objects appearing currently inside the object).

2. invalidate the log entry.

These changes are illustrated in the following pseudo­code for freeObject :

void freeObject (Handle ♦h)
{

if (h­>10gP0s) {
/* object has been logged */
LogEntry le = h­>10gP0s;
for each reference 'child' logged in 'le' do /­

decrementRC(child) /* takes care for recursive deletion */
}
/* invalidate log entry, for next cycle */
marklnvalid(le);

}
else {

/♦
* Delete based on current contents
*/
for each reference 'child' contained in 'h' {

decrementRC(child) /♦ takes care for recursive deletion */
}

}
y

Note the difference between freeObject and determineObjectContents : freeObject
does not have to prepare a replica of the object's contents and then recheck its validity since
we are guaranteed that the object is garbage at the time freeObject examines it, hence no
contention with mutators is possible.
Determining the contents of an object when tracing through it. In the tracing
algorithm we have to determine an object's contents when tracing through it (see procedure
Trace in figure 6.5). The inability to gain immediate access to the object's log entry when

54

/* snoop store operand */
if (currentThread­>snoop) {
/* write 'value' into snoop buffer */

}
}

Note that we optimistically probe the logPos pointer before preparing the replica of the
object's contents, hoping to minimize the number of replicas which are eventually discarded.
Later in this chapter we show that the number of updates that actually execute the "if"
body is very small and therefore the use of the optimistic conditional is indeed beneficial.

8.4 Simplifying the determination ofobject 5s contents using
the logPos field

By paying the extra price of allotting a whole word for the lfag and transforming it into a
pointer that identifies the logged contents of an object, rather than using a boolean byte­
sized flag, we obviate all the cases in the original asynchronous algorithms in which the
collector failed determining an object and had to take extra and elaborate measures to deal
with the failure. This includes:
Determining the contents of an object when updating reference counters. In
the sliding view reference counting algoirthm. when updating the reference counters of
modified slots (see procedureUpdate­Reference­Counters in figure 4.5) the collector
had to determine the contents of a logged slot.

In our case. the collector has to determine the contents of a logged object.
In the original procedure, if the slot is undetermined the collector knows that some

thread logged it along with its value but it has no clue which thread did the logging and
where to find the log entry. It therefore postpones the dealing with such a slot to procedure
Fix­Undetermined­Slots (figure 4.7) in which it iteratively goes tlirough the mutators'
log buffers and makes sure it accounts for every undetermined slot.

In the modified procedure, if the object is undetermined then the value of logPos gives
the collector an immediate access to the log entry where a thread has logged the objects'
contents. The collector therefore proceeds directly to the log entry and reads its contents.
This scheme deems the Undetermined set and the Fix­Undetermined­Slots procedure
unnecessary.

The following code fragment illustrates the process of determining the contents of an
object.

void determineObj ectContents(Handle *h)
{

LogEntry le = h­>logPos;

if (le) {
/♦ object has been logged */

objectIsLogged:
for each reference 'child' logged in 'le' do

incrementRC(child)

return
}
/* Prepare a replica of the references contained
* in the object
*/

53

In order to allocate an instance of a class, an object and a handle are allocated, the
object is zeroed out and the handle is initialized to point at the object and at the class's
runtime information. See figure 8.1.

Handles are completely transparent to the user. They are used in order to facilitate
memory compaction [33] yet they introduce to the system the overhead of extra indirection,
decreased locality of reference and increased memory consumption (due to the handle to
object pointer).

The garbage collection method which is employed in the original JVM is mark­sweep­
compact. Garbage collection occurs in a stop­thc­world manner, when all threads are
stopped.

8.3 Object structure in the modiifed JVM
Since our collector does not support the moving of objects in memory, we derive no ad­
vantage from using the handles. However, eliminating the handles from the original JVM
was too complicated a task to undertake. As a compromise, we have uniifed the handle
with the object (see figure 8.1). The handle and object are allocated as a single chunk of
memory and are treated as such by the memory manager. This layout increases locality.
Additionally, an object is located at a fixed offset from its handle. Therefore we were able
to change most of the code in the JVM to calculate the object's address, given the handle's
address, by a simple add instruction rather than de­referencing the object pointer inside
the handle.

We have based our implementation on the "flag per object" scheme discussed in sec­
tion 7.1.1. The lfag is termed logPos and is located between the (original) handle and the
object (see ifgure 8.1). As the name of this ifeld implies, it is not a mere lfag but it has
added functionality: when the ifeld is non­zero then indeed the object has been logged, as
in the original scheme. Moreover, the value of the field in such a case is a pointer to the
location in the thread's buffer where the object's contents have been logged. Below we give
the pseudo­code of the Update procedure given this policy:

void updateHandle(Handle *h, int offset, Handle *value)
{
if (h­>10gP0s==NULL) {

/♦ object has not been logged yet */
Replica r = copies of all references contained in 'h'

/* check if object was modified in the meanwhile */
if (h­>10gP0s==NULL) {

/* OK, replica is valid, commit it */
/* write into log, remember position */
LogEntry *le = loglntoUpdateBuf fer (h, r)

/*
* write position into the object and
* thereby also turn on the flag
♦/
h­>logPos = le;

>
>

/* do the store proper */
h [offset] = value;

52

Object layout in the original JVM:

/ Data Pointer '''^1^ 1 ­ I/ field 1

User's Object class Block ­ r~^j­
Reference L p™t­­LJvN:1

■* I ­
field N

Vitrual Table,
Class Metadata

Object layout in the modiifed JVM:

User's Object / \^
Reference/n f_. , I/ Data Pointer

/^ Class Block ,^­­' \ \
>T Pointer \
\ logPos

\ Vitrual Table,
"e/a י Class Metadata

field 2 X ,: /■'

ifeld N

Figure 8.1: Object layout in the original and modiifed JVMs. In the original JVM, data
is accessed indirectly through a handle in order to support the relocation of object data.
In the modiifed JVM, object data is almost always referenced directly by the user yet the
data pointer is retained for compatibility. The logPos ifeld is either null or a poinetr to a
log entry that contains the logged object's reference data.

51

Chapter 8

An Implementation for Java

We have implemented a variant of the Asynchronous Reference Counting and Asynchronous
Tracing algorithms for Java. This chapter describes the implementation and its performance
characteristics.

8.1 Java­ the target platform
There is probably no need to introduce Java [3] . We chose to implement the Asynchronous
Reference Counting and Tracing algorithms atop Java because of the following reasons:

1. Java is an object­oriented garbage­collected language. Obviously it needs some garbage
collector.

2. Java is very popular and accepted as a true, rather than just academic, programming
language. This allows us to check our algorithm in a realistic setting.

3. Java supports shared­memory multi­threading in the language level. The need for a
garbage collector that can handle multiple threads running concurrently on multiple
processors and referring to the same address space is inherent to Java.

4. Java has been recently portrayed as the language of choice for implementing portable
servers (consult, for example, [4], for a coverage of contemporary server­side Java based
technologies). An obstacle to overcome on the path to achieving scalability for such
servers is the scalability of the garbage collection process. This is exactly what we
aim at in our work.

We started with Sun's JDK1.2.2 for Win32 and replaced the default collector supplied
with the JDK with our on­the­fly collectors.

8.2 Object structure and garbage collection in the original
Java Virtual Machine

The original Java Virtual Machine (JVM) supports a so­called "handled" model in which
each object is referenced indirectly through a handle. The object itself contains the actual
data members declared by the object's class while the handle contains two pointers: the
first is a pointer to the object data; the second points to a memory block containing the
class's runtime information (virtual table, relfection information etc.)

The heap is divided into two disjoint pools: the object pool and the handles pool.

50

In the context of logging we have relied on the order of store operations by the mutator,
i.e., ifrst logging the value and then the slot, to allow the collector to read a imitator's buffer
reliably without stopping it (sec section 7.2.)

We note that under processor ordering the collector may execute the loads (of the slot
and value parts of a record in a mutator's buffer) in any order for if the slot ifeld of the
record does not contain null, then the store into the slot ifeld by the mutator must have
preceded the collector's load in the linear sequence. But that implies that the mutator's
store into the value ifeld precedes both collector's load operations in the linear sequence,
providing the collector with an accurate account of both value and slot parts of the record.

Under weaker memory models than processor ordering we eschew the problem of eollec­
tor's perceived partial logging by reading the buffers in an additional soft handshake.

49

The load of (3) cannot pass the store of (2) as they refer to the same granule. The store
of (2) cannot pass the load of (1) as a store may not pass a load. Thus we are guaranteed
that the load of the slot will precede the load of its lfag is the linear sequence.

Although this protocol operates on any processor ordered system it is ineiffcient since
it requires doubling the space needed for the already space demanding dirty lfags and it
incurs an additional write access on each invocation of the barrier.

However, in practice. we can identify the origins of reordering and therefore we can
take advantage of this knowledge and eiffciently eliminate reordering when needed. We
consider as an example a PowerPC system with a MESI cache protocol. MESI is a cache
protocol that requires the processors to gain exclusive ownership over memory locations
prior to modifying them. At the time a location is owned it may not be cached neither for 1

reading nor for writing by any processor other than the owner. Thus, it is easy to see that
the requests which are serviced by the cache protocol adhere to sequential consistency. It
follows that reordering can only emanate from the processor itself, which issues its external
cache requests in an out of order fashion. In order to eliminate the out of order execution
of the loads in the write barrier it suiffces to guarantee that the processor presents these
load requests in their original order to the cache mechanism. This is achieved by creating a
faked dependency among the two loads, fooling the processor to believe that it must carry
out the first fetch prior to starting the second one. Such a dependency can be created using
this code fragment:
void Update (WORD*s,.. .) {
register WORD val;
register BYTE *flag_calc_addr; j

register BYTE f lag_val;]

val = *s; I

flag_calc_addr = (valtf 3) +calc_f lag_addr(s) ; . /

f lag_value =*f lag_calc_addr; ;

In the code fragment we assume that a pointer value is aligned on a four­byte boundary, \

such that the expression (val k 3) is bound to equal zero andflag_calc_addr evaluates 1

tocalc_flag_addr(s) . However, the processor does not possess this knowledge a priori <

and it is fooled to believe that in order to load the lfag it must first know the value of
the slot. The extra price paid is two additional arithmetic operations (perhaps a single
operation on some architectures.)

We admit that an aggressively speculative processor could have executed the second
load prior to the ifrst load if it is designed to predict the results of load operations and ;

can accordingly execute code speculatively based on the predications. We know not of a 1

processor which behaves in this manner. ■

We now turn to the lighter problems of snooping and logging under weak memory I

constraints. 11

Snooping requires that a mutator would first execute the store proper into the slot and !

only then would load its Snoapi lfag. Under processor ordering the load may pass the
store. However, we care that these two instructions would not be reordered only in order I

to snoop stores into slots by mutators which still haven't responded to the ifrst handshake. j

Otherwise, i.e., between the ifrst and fourth handshakes, the lfag is continuously raised and
the test is bound to succeed even if the instructions are reordered (of course, we assume that |

a soft handshake synchronizes themutator 's view of the memory with that of the collector.)
Instead of combating this reordering we may simply carry out an additional handshakes j

before the one that used to be the ifrst handshake. In the additional handshake we would
raise the Snoop lfags.

48 ■

i

Implicit in the above definitions of sequential and processor ordering is the requirement
that the linear sequences are sensible in the sense that they maintain the semantics of load
operations, i.e., the result of a load from location X should be the value which is most
recently stored into X in the linear sequence, or some prescribed initial value, if no such
store exists.

Concisely, processor ordering amounts to sequential consistency with these two excep­
tions:

. "a load can pass a load" unless the two instructions address the same consistency
granule and unless a non­communicating program can tell that the two instructions
were performed out of order.

. "a load can pass a store" unless the two instructions address the same consistency
granule. Note that a non­communicating program can never tell whether such a
reordering occurred (unless it can tell that another reordering of the form "a load can
pass a load" occurred).

The most crucial aspect of adapting our algorithm to processor ordering is how to
preserve the validity of the write barrier. Note that, aside from logging and snooping, the
write barrier is comprised of a read­only part followed by awrite­ only part:

. read­only part. Read from s, then read from Dirty(s).

. write­only part. Optionally Write to Dirty(s). then write to s.

We note that under processor ordering the only pair of instructions that may be per­
formed out of order are the load of s and the load of Dirty(s). It is easy to see that the
algorithms do not operate correctly when such a reordering occurs. In order to prevent
it, we may issue a synchronizing instruction between the loads. This is, however, a very
expensive operation1.

If we have no knowledge on the speciifc mechanisms that allow this reordering to hap­
pen. that is, we don't know which opportunities are exploited by the system to reorder
instructions, then we don't know as well how to eliminate these opportunities and we may
rely only on the constraints provided by processor ordering n order to prevent the reorder­
ing. For example, we can allocate two adjacent bytes for the dirty lfag where the two bytes
reside on the same consistency granule. Then, in order to read the slot and then its lfag we
execute this code snippet:

Update (WORD *s, ...) {
register WDR.D slot_val;
register BYTE *flag_addr,

*dummy_addr,
f lag_val;

(1) slot_val = *s; // LOAD slot
f lag_addr =calc_flag_addr(s);
dummy_addr =f lag_addr + 1 ;

(2) *dummy_addr = MAGIC_NUM; // WRITE dummy
(3) flag_val = *flag_addr; // LOAD flag

It may involve lfushing the processor's pipeline and/or cache.

47

mistakenly collected starts in a store intor by a thread which has already responded to the
fourth handshake. But it is an invariant which is kept by the algoirthm, and is not broken
by this protocol for global roots, that any object which is collected is unreachable from I

any thread (considering global roots as immediately reachable to the thread as well) after
the thread has responded to the fourth handshake. Hence such a store is impossible in the
first place, since it implies that the reachable object that has been mistakenly collected was
already directly reachable from the thread which executed the store after it has responded
to the fourth handshake. The detailed proof is in chapter B.

This protocol is effective when the number of global references is low relative to the
number of modified slots that the collector has to process so that the constant time spent
marking global roots does not dominate the overall running time of a cycle. Another
advantage of it is the lighter write barrier. To conclude, we would opt treating global 1

references using this protocol rather than as ordinary heap slots whenever the number of
global references is relatively low or it is cumbersome to associate a dirty flag with each
global reference.

7.4 Memory consistency
Throughout the paper we have assumed that the system conforms to sequential consis­
tency constraints. In a sequential consistent system all memory accesses, carried out by
all processors, are seemed to be serialized one after the other while preserving the order !

of instructions carried out by individual processors. However, some modern SMP systems
do not provide sequential consistency but weaker consistency models in order to improve
performance through processor level parallelism, speculative execution and non­uniform
memory access. In this section we show how our algorithms can be adapted to weaker
memory models. In particular, we show how our algorithms can operate on a platform
which is processor ordered. Processor ordering is a memory model which is adhered to by
contemporary platforms such Intel's P6 processors' family.

In a processor ordered system, like in a sequential consistent system, there is a linear
sequence of all memory accesses carried out by all processes, however, it is not guaranteed
that any two instructions that were carried out by a particular processor would appear
in the linear sequence in the same order that they appeared in the processor's program.
Rather, only these orderings are guaranteed:

1. any two store instructions that are performed by a processor are bound to appear in
the linear sequence in the same order as in the processor's program.

2. if a processor contains in its program a load followed by a store then the store will
follow the load in the linear sequence as well.

3. any two instructions that arc performed by a processor which access the same con­
sistency granule (see below) are bound to appear in the linear sequence in the same
order as in the processor's program.

4. a processor that does not communicate with other processor's through shared memory
(i.e., it doesn't access locations that other processors access) may not witness that
the instructions issued on its behalf are reordered.

The consistency granule of a system is an implementation dependent parameter that
specifies the size and alignment of memory chunks for which rule (3) applies. Usually the
consistency granule coincides with a cache line.

46

Implementing the second requirement, i.e.. that the collector can read asynchronously
the set of completely logged pairs can be achieved eiffciently in the following manner.

. before the mutator starts using a buffer­chunk it zeroes it out.

. in order to store a record in the buffer a mutator first writes the value read, then it
writes the slot address.

. the collector reads the records in the thread^ buffer sequentially. It knows that it has
read a record which has not been completely logged when it sees a slot field with the
value of null (note that the mutator never logs a slot whose address is null.)

Thus, the mutator can manipulate the buffer using only a single register that points to
the next address to be written.

7.3 Global roots
We have left the treatment of global roots outside the specification of the algorithms. This
choice has rendered the specification simpler while, as is next explained, it does not involve
any loss of generality.

To sec that this is indeed the case, we postulate that global roots can be treated exactly
as heap slots. That is, each global root has a dirty lfag corresponding to it and it is subject
to the write barrier. This treatment is valid for the following reason. We picture all global
roots as being the slots of a conceptual "globals" object. The "globals" object is directly
reachable from any thread. Thus, reads and writes of global roots are equivalent to reads
and writes of the respective slots of the directly reachable "globals" object. The "globals"
object itself need not be marked or otherwise be operated on explicitly since it does not
really exist and therefore there is no risk that it would be collected.

This argument directly suggests a concrete method for treating global references: asso­
ciating a dirty flag with any such reference and applying the write barrier to it. However, all
is not well. Implementing this policy can be quite involved because unlike for heap objects
it is hard to find a systematic manner to associate a dirty lfag with each global reference.
We therefore propose alternative approaches to global variables.

In the snapshot algorithm, global references may be simply treated as their local coun­
terparts. i.e., when all threads are stopped during the hard handshake. all objects which
are directly reachable from a global reference are marked local. No write barrier is employed
for global references.

In the sliding view algorithm we may treat global references in the following manner.
1) a mutator T; executes the following writc­barrier in order to perform a global reference
update, which includes the familiar snooping test:

1. s := new
2. ifSnoopi then
3. mark new as local

2) the collector, before carrying the fourth handshake, reads all global roots and marks
the pointed objects local.

To gain some intuition that safety is indeed provided by this protocol we consider a global
root r. r is read by the collector before the fourth handshake and the object referenced
is marked; so is any other object which is stored into 7­ by a mutator which still hasn't
responded to the fourth handshake, as the mutator has its Snoopt lfag raised. We conclude
that the only baleful scenario in which a reachable object (when reclamation commences) is

45

Using a flag per object and a flags bitmap can be quite wasteful in terms of space: we
need to allocate a lfag in the bitmap per the granule of object alignment. Since objects
are usually aligned on 16 bytes or smaller granules and since a typical object is some 50
bytes long, inlining the lfag inside the object results in a substantial saving of space (not to
mention the cases in which some unused bit in the object header is waiting to be exploited).

7.1.2 Initialization

This section discusses an optimization regarding the initialization of slots when the method
of a lfag­per­object is used.

By an initializing update we mean an update to an object's slot that is bound to occur
within a small ifxed number of instructions from the object allocation site. For example,
referring to languages such as C++ or Java, we expect initializing updates to abound in
inlined constructors. As noted by [57, 31] initializing updates comprise the majority of
updates in functional languages and garbage collected object oriented languages.

By treating the entire code block that executes the object creation and the initializing
updates as a single transaction (i.e., we treat it as a protected piece of code), we can save
a substantial amount of our algorithms' overhead: after the object is created it is logged in
the thread buffer with no contained pointers. The initializing updates then proceed without
any write barrier.

Note that this protocol also deems the useof the local ZCT unnecessary as newly created
objects are tracked using the ordinary history buffer.

7.2 Log buffers

The primary design factor in the implementation of the log buffers is how to make writing
into them as fast as possible for a mutator executing an update. A secondary consideration
is how to allow the collector to read those records that have been fully logged (i.e., both
slot and value members of a logged pair) without interrupting the mutator.

In order to satisfy the primary goal we suggest the following design, which is similar
to the one described in [17]: a buffer will be implemented as a linked list of buffer­chunks.
Each chunk is of size 2k, aligned on a 2k boundary (A; is a parameter.)

A mutator that is executing an update will always have enough room to log the current
transaction. This is an invariant which is maintained in the following manner: after logging
a pair to the current chunk, the mutator checks whether the next update would cause the
chunk to overlfow (this check is a simple arithmetic one due to the chunk size alignment.)
If that is the case, it tries extracting a new chunk from a list of free chunks. If it succeeds,
it lets the new chunk point to the old one and starts using the new one. Otherwise,
a new garbage collection cycle is started. The mutator then waits for the collector to
notify it when there are free chunks. The collector makes part of the chunks available to
mutators after processing them in the procedureUpdate­Reference­Counters and the
rest after the execution of procedure Fix­Undetermined­Slots. In case the collector falls
behind freeing chunks, a mutator may initiate a synchronous reference counting cycle or a
synchronous tracing cycle.

Using a linked list of chunks allows the Update operation to be efficient in the common
case that there is no overlfow, yet it allows a ifner grained load­balancing by letting each
thread consume a different amount of chunks from its peers.

New sets can be implemented in much the same way, even sharing the same pool of
chunks with the log buffers.

44

7.1.1 Allotting a lfag per a chunk of memory
In this section we elaborate on the idea according to which a lfag can serve an indicator to
a change in any of the slots within a fixed chunk of memory. The ideas contained in this
section are similar to those that arise in the context of tracking inter­gencrational pointers
in a generational collector that uses card marking. Details on the method of card marking
can be found in [43].

If we let a single flag signify a change in a chunk of memory then the write barrier takes
the following form, assuming that we want to store into the slot s the value v:

. the lfag for the chunk of memory containing s is optimistically probed, assuming
that it is turned on. If it is indeed turned on, then we proceed directly to the store
operation.

. otherwise, a replica of the slots that reside inside the chunk is created and stored
locally.

. the lfag for the chunk is then probed again. If it is now turned on, we proceed to the
store operation.

. otherwise, we commit the replica just prepared to the log buffer, raise the lfag and
only then execute the store.

The collector code for determining a slot is changed accordingly. The collector tries to
determine the value of an entire chunk instead of a single slot.

The scheme is characterized by a decreased memory consumption yet by spurious work
imposed on the mutator and collector that have to process slots which haven't really
changed.

We think of three feasible methods for associating a group of slots with a lfag: (1)
associating each card, i.e., aligned chunkof 2' bytes (where / is a parameter) with a lfag, the
lfags reside in a bitmap. (2) associating a lfag with an object, the lfags reside in a bitmap,
and (3) a lfag per object, where the lfag is located inside the object.

Options (1) and (2) are suitable for both algorithms while (3) is appropriate only for
the sliding view algorithm.

We note that it is not needed to log the identity of individual slots within a chunk.
It suffices simply to log which non­null pointers the chunk contains. This property may
ameliorate the cost of spurious logging. There is a tradeoff between: (1) logging the entire
chunk conservatively and letting the collector ifgure out which part of the chunks replica
arc pointer slots and: (2) letting the mutator store precisely only true references. This is
related to the nature of a chunk: does it correspond to an object or is it just an aligned
piece of memory.

Working on an object basis lets the mutator efficiently record precisely object slots: we
can produce a per­type slot­storing code that stores any heap slots contained in the object
into the history buffer of the thread, or produce a per­type vector of slots' indices and an
efficient routine that logs the slots speciifed by the vector, given a base pointer to the object.

Identifying a lfag with an object is also quite natural in terms of locality, i.e., we might
expect that when a slot of an object is changed, then its sibling slots are likely to change
as well, so the amount of unneeded information recorded is minimized. This might not be
the case for an arbitrary chunk of memory that is prone to hosting unrelated objects.

The disadvantage of working with a lfag­per­object scheme is dealing with objects which
are too big. Applying the scheme for them will result in a wasteful replication of probably
unchanged data. This can be avoided by treating big objects differently. Special care need
be taken that the methods for small and big objects coexist.

43

Chapter 7

Implementation Issues

In this chapter we shift from the abstract treatment of the dirty lfags and the log buffers
and suggest concrete implementations for these data structures. Then we show how to treat
global roots. Finally we address the issue of memory consistency.

After considering the implementation options described in this chapter we describe in
chapter 8 and 9 the actual implementation we prepared and its performance results.

7.1 Dirty Flags
Both the snapshot and the sliding view reference counting algorithms were presented in
a rather high level and generic manner that leaves the implementation of several data
structures unspecified. This method of exposition is useful for showing the algorithms
correct and it reveals the ideas behind the algorithms more clearly. In order to implement
the algorithms, we must select concrete data­structures for each abstract data­structure
that is used. The algorithms share most data structures and access them similarly. Yet
the most crucial data structure, the dirty lfags, are accessed in a fundamentally differing
manner by the two algorithms.

The snapshot reference counting algorithm calls for an implementation of the slots' dirty
marks that allows setting and reading by the mutators and collector on one hand and that
supports a fast "clear all" operation by the collector, on the other hand. The "clear all"
operation need be fast since mutators are halted whilst it takes place. The sliding view
reference counting algorithm is less demanding in that respect. Dirty lfags may be cleared
less hastily as the mutators are running during the operation. While the expeditiousness
of the clearing operation is still important, it may yield to other factors. such as space
conservation and increased locality. Thus, the snapshot algorithm calls for bitmapped
solutions, since bitmaps are easier to clear quickly, while the sliding view algorithm can
work both with bitmapped and non­bitmapped solutions.

Non­bitmapped solutions locate the lfags interspersed with the data. This has two
notable beneifts: (1) conservation of space, since we can allocate space per lfags on a per
type basis, rather then conservatively for every word of memory, as is done in a bitmapped
solution and (2) increased locality of reference, as the lfags are accessed by the mutators in
conjunction with their respective slots and there is no need for the collector to implement
the "clear all" operation. The downside of non­bitmapped solutions is the inability to clear
the dirty lfags quickly; they must be cleared one at a time, or in small batches, depending
on the specific solution.

In section 7.1.1 we show how it is possible to associate a lfag with a group of slots,
rather then a lfag for a single slot, thus saving space. Section 7.1.2 demonstrates how the
overhead of initializing assignments can be eliminated.

42

.,:■ ­ f

■ . ■ ■■ ■ ' ■ j !* ■ י­ ,"

Procedure Sweep
begin
1. for each pair {s,v) G Histk+1 do
2, Let o be the object containing s
3. if o.color = white then
4. Histk+1 := Histk+1 ­ {{s,v)}
5. ZCTk+l := 0
6. Let swept point to the ifrst

object in the heap
7. while swept does not point pass the heap do
8. if swept.color = white then
9. clear the slots and lfags of swept
10. swept.color := blue
11. return swept to the allocator
12. else if swept.color = black A swept.rc = 0 then
13. ZCTcf+1 := ZCTcf+1 U {swept}
14. advance swept to the next object
end

Figure 6.6: Tracing Alg.­ Collector Code­ Procedure Sweep

41

ProcedureTrace(o: Object, rclnc: Integer
begin
1. if o.color = white then
2. o.color := black
3. o.rc := 0
4. for each slotsof o do
5. v := read(s)
6. if ­*Dirty(s) then
7. Trace(tU)
8. else
9. Undetermined := Undetermined U {s}
10. o.rc:= o.rc + rclnc
end

Figure 6.5: Tracing Alg.­ Collector Code­ Procedure Trace

Procedure Trace (figure 6.5). Actual tracing is carried out by this procedure. The
procedure takes two arguments: a reference to an object to trace through and a reference
count increment value. An object is traced only if its color is white, i.e., it was not traced
before. If this is indeed the case then the reference count field of the object is reset and it
is colored black. Then, the collector tries to determined each slot contained in the object
and trace through it. If a slot is determined then the collector carries out line (7) which
traces recursively through the determined value, which is the value of the slot at the sliding
view associated with the cycle. If a slot is undetermined then line (9) adds it to the
Undetermined set where it will wait until its resolution.

It is important to note that the trace cannot be interrupted by objects which are al­
located black by procedure New. Let us explain this point. The collector traces through
the graph induced by the sliding view and the corresponding scan of the cycle. The scan
is complete before the fourth handshake starts hence it cannot reference an object which
is created black because a thread may leave a newly allocated object blackened only after
responding to the fourth handshake.

The reference count increment argument signifies whether Trace has been invoked for
0 by virtue of being pointed from a heap slot or rather by a local reference. In the latter
case, no adjustment to o.rc is needed, while in the former o.rc should be incremented by
one. Thus, procedure Mark passes 0 for this argument when tracing local objects (in lines
(7­8)), while all other invocations pass 1 as they are due to heap slot references to the traced
object.
Sweeping is carired out by procedure Sweep (ifgure 6.6). The ifrst step it takes is to
eliminate from Histk+1 any records of slots that it is about to reclaim. This stage is
needed in order that the next cycle will not adjust re ifelds incorrectly due to the slot,
trying to determine its value etc. Such a slot may exist since the algorithm is capable
of reclaiming objects which are reachable (and therefore modiifable) between the first and
fourth handshakes.

Sweeping then proceeds in the following manner: any object which is colored black and
has a zero computed reference count ifeld is added to the ZCTof the next cycle (anticipating
a reference counting cycle.) White objects are returned to the allocator not before being
colored blue. Blue objects are ignored.

40

Procedure Mark
begin
1. for each thread Ti do
2. ScannedPosl := 1

3. Hash­Clear
4. for each pair (s,v) € Histk+1 do
5. Hash­Insert(s, v)
6. Undetermined := 0
7. for each object o 6LocalSk do
8.Trace (0, 0)

9. while Undetermined/0 do
10. for each thread Ti do
11. ProbedPos := CurrPoSi
12. while ScannedPoSi < ProbedPos do
13. (s,v) := Buffi[ScannedP0Si]
14.Hash­Insert (s, v)
15. ScannedPoSi := ScannedPoSi + 1

16. PrevUndetermined := Undetermined
17. Undetermined := 0
18. for each slot s G PrevUndetermined do
19. v :=Hash­Lookup­And­Remove(s)
20.Trace (v, 1)

end

Figure 6.4: Tracing Alg.­ Collector Code­ Procedure Mark

it resolves those undetermined slots by looking up their associated values in the threads'
buffers.

The collector uses a hash table or a similar data structure in order to store and retrieve
the values which mutators have associated with slots. We assume that the hash table
supports these operations:

.Hash­ Clear. Clear the hash table.

. Hash­I11sert(s, 1'(. Associate v with s.

. Hash­Lookup­And­Remove(s). Lookup the value associated with s. Remove the
association for s and return the value which has been read.

Initially, the collector clears the hash table and fills in the associations contained in
Histk+1 (i.e., the digested history of threads' modiifcations to heap slots between the first
and fourth handshakes). After each non­terminal tracing phase, when the collector can no
longer proceed tracing through determined slots but still there are undetermined slots to
trace through, the collector reads the portions of the tlu­ead buffers which have accumulated
since the read of the last phase and populates the hash table with the associations contained
therein. Then, it looks up any undetermined slot in the hash table and ifnds its associated
value. The associated value is then traced through. Since a slot is traced at most once, a
slot which has been looked up will not be needed in the future hence the collector deletes
the association of s jointly with looking it up.

The collector knows which portions of the buffer have been accumulated since the last
tracing phase by using the thread speciifc marker ScamiedPosi which equals the value of
CurrPoSi at the time the thread buffer was most recently read, during the previous phase.

39

ProcedureConsolidate­For­Tracing
begin

// initially black = 1 and white = 0
*I. black := 1 ­ black
*2. white := 1 ­ white
3. local Temp := 0
4. Localsk := 0
5. for each thread Ti do
6. suspend thread Ti
*7. AllocColori := black
8. Snoopi := false

// copy and clear snooped objects set
9. Localsk := Localsk U Locaeti
10. Localsi := 0

// copy thread local state.
11. Locals^ := Locals^U Statet

// clear thread local ZCT.
12. Newi := 0

// copy local buffer for consolidation.
13. Temp := Temp U Buffert[l ... CurrPoSi ­ 1]

// clear local buffer.
14. CurrPoSi := 1

15. resume thread Ti
// consolidate Temp intoHistk+i ■

16. Histk+1 := 0
17. local Handled := 0
18. for each(s, v) e Temp
19.ifs ^ Handled then
20. Handled := HandledD {s}
21. Histk+1 := Histk+l U {(s,t>)}
end

Figure 6.3: Tracing Alg.­ ProcedureConsolidate­For­Tracing

Consolidate­For­Tracing. This procedure, given in figure 6.3, is the counterpart of pro­
cedure Consolidate from the reference counting algorithm. As such, it carries out the
fourth handshake during which thread local states are marked and the buffers accumulated
between the first and fourth handshakes are retrieved for consolidation. However, note the
differences from Consolidate, which are highlighted with an asterisk in front of the rele­
vant lines of code: the values of black and white are toggled; the AllocColori variable of
each thread is toggled, signaling to the mutator that any creation of objects after the fourth
handshake and until sweeping is over should color a newly created object black. Another
thing to note is the omission of the addition of the Newi sets to ZCT^. Actually. ZCTk
has no use in a tracing cycle.

Procedure Mark (figure 6.4) implements the tracing stage of the algorithm. Tracing
proceeds according to the graph induced by the sliding view associated with the cycle and
starting from objects in Locals^■ Recall from the reference counting sliding view algorithm
that after taking the fourth handshake the collector may coherently try to determine what
is a slot's value in the sliding view of the cycle. It reliably can tell whether it has succeeded
or failed in determining. In case it succeeds, it simply need continue tracing from the object
pointed by the determined slot. Otherwise, it is guaranteed that some thread has recorded
the undetermined slot's value in its buffer. The collector tries to determine and trace more
and more slots, until all slots that have to be traced through are all undetermined. Then,

38

Procedure New(size: Integer) : Object
begin
1. Obtain an object 0 from the allocator,

according to the speciifed size.
2.o. color := AllocColori
3. Newt := NewiU {0}
4. return o
end

Figure 6.1: Allocation code that supports tracing cycles

Procedure Tracing­Collection­Cycle
begin
1. Initiate­Collection­Cycle
2. Clear­Dirty­Marks
3. Reinforce­Clearing­Conlfict­Set
4.Consolidate­For­ Tracing
5. Mark
6. Sweep
end

Figure 6.2: Ti­acing Alg.­ Collector Code

When a thread responds to the fourth handshake we assign the current black color to
the AllocaColori variable. Thus. during tracing and sweeping the mutator colors newly
allocated objects black. During sweeping, the collector considers each object in heap. If
the object is black. then it is retained. If it is colored blue, then it is ignored. Otherwise,
the object is white. In that case the collector reclaims the object by coloring it blue and
passing it back to the allocator.

Thus, when sweeping is over, the heap contains only black or blue objects since any
object which had been white was turned blue and mutators color newly allocated objects
black. Before starting the tracing of the next cycle the collector toggles the values of black
and white variables. so all objects allocated prior to the next cycle's fourth handshake arc
considered "unmarked" .

We now proceed to specify the algorithm's pseudo­code.

6.3 Mutator code

As required, the algorithm uses the same write­barricr used in the reference counting sliding
view algorithm. The code for the Update procedure is given in figure 5.2.

The New procedure is modified to support both tracing and reference counting cycles.
New carries out the mutator's part in the object coloring protocol. The modified procedure
is given in figure 6.1.

6.4 Collector Code
The code for a tracing collection cycle is given in figure 6.2. Procedures Initiate­Collection­
Cycle. Clear­D irty­Marks and Reinforce­Clearing­Conflict­Set are the same ones
used in the cycles of the reference counting sliding view algorithm. They are given in ifg­
ures 5.4. 5.5 and 5.6, respectively. They serve for the same purpose here as well: after they
are executed logging and determining of slots is consistent.

37

objects which have been already traversed in the trace. On each subsequent cycle the black
and white colors are toggled, i.e., the meanings of zero and one are reversed.

A mutator toggles during the handshake of stage (3) the color using which it colors
newly allocated objects and the collector reverses the meaning of black and white prior to
starting a new trace.

6.2 The algorithm
The tracing algorithm uses exactly the same mechanisms used in the reference counting
sliding view algorithm in order to implicitly compute a sliding view based on which collection
decisions are made. Specifically, it uses the same four handshakes. Only the operations
carried out in the fourth handshake are modified in order to support the subsequent tracing
and sweeping, rather than reference counting. Let us elaborate on the tracing and sweeping
stages.
Tracing. After the consolidation stage the collector starts tracing according to the sliding
view associated with the cycle. When in need to trace through a slot the collector tries to
determine its value in the sliding view as was done in the previous algorithms, i.e., by first
reading the slot and then its lfag. Determining the slot is successful if the flag is off. In that
case the value read from the slot is the slot's value in the cycle's sliding view. If determining
is not successful, then the collector retrieves the slot's value from the threads' buffers. This
is done in phases: first, the collector tries to determine and then trace through any slot that
it can. Then, when all the slots which need to be traced are all undetermined slots, it reads
threads' buffers, resolves the slots and resumes tracing. Resolving a slot means looking­up
the value mutators have associated with it in their buffers. Resolution is always successful
since it is guaranteed that any undetermined slot is logged by some mutator prior to the
time the collector inspects mutators' buffers.

Since any undetermined slot is due to appear in some buffer when trying to resolve it
each phase contributes to the progress of tracing. Additionally, the graph induced by the
sliding view is finite, so tracing is bound to complete after a finite number of phases. We
believe that in practice only handful phases will be actually needed in order to complete
tracing since if the collector traces fast enough then it reveals quickly the picture of the heap
contained in the sliding view. If, on the other hand, it falls behind a mutator which rapidly
changes the heap, then it learns about the contents of the sliding view from the mutator's
buffer in few phases as well. Thus, sustained tracing can occur only when the collector is
running almost in unison with the mutator, falling just behind it, as they compete for the
same slots in memory, which is an improbable scenario.

As tracing proceeds, the collector incrementally computes the re field for each object.
Eventually, when tracing is done, the re field has the same semantics which are expected
by a reference counting cycle. i.e., it equals the asynchronous reference count according to
the sliding view associated with the cycle (disregarding pointers from garbage objects).
Sweeping. Finally, the collector proceeds to reclaim garbage objects by sweeping the
heap. As said, the algorithm can infer whether an object is garbage or not only if it has
been allocated prior to the fourth handshake. Thus, we need a mechanism to prevent the
collector from sweeping objects which have been allocated after the handshake. We use a
color toggle scheme in order to prevent the reclamation of such objects.

Each thread has a variable, denoted AllocColori, that holds the color the thread has
to color, i.e, assign, to the color field of newly allocated objects. The variable is toggled
between two dichotomic colors, black and white, which are interpreted by the collector as
"marked" and "not marked" respectively.

36

Suppose we are given a scan a and a corresponding sliding view Va. Using the scan,
we want to deduce which objects are garbage at End(cr). To that end, we ask ourselves
what is the value of a slot s at time End(a), The trivial answer is of course either Vcr(s)
or any other value which has been stored into s between a(s) and End(a). If we want to
trace any object which is reachable at time End(<7) it suffices to start tracing from a root
set which includes the true root set at End(a) and adopt the following tracing discipline:
whenever a slot s is traced, trace through all of the candidate values it assumed at End(cr),
i.e., proceed tracing through Va{s) and through any value that has been stored into it in
the interval a(s) to End(a). These stored values are known to the collector since they are
snooped by mutators. i.e., the mutators keep a record of any such value which might be
stored in the specified interval.

It still remains to identify a set of pointers that includes the true root set at End(a). This
can be done using the same mechanism that was employed in the reference counting sliding
view algorithm: "snooping" and the fourth handshake that marks thread states. Any local
reference that exists at End(cr) is either still existent at the time of the fourth handshake or
is discarded before the thread responds to the fourth handshake. If it is discarded without
being stored into a heap slot (and thus snooped) then it has no contribution to reachability
after the fourth handshake ends and we may simply ignore it (although it is a valid local
reference at End(<j)).

We thus arrive at the following garbage collection algorithm:

. A mutator 2­i executes the followingwrite­bai'rier in order to perform a heap slot
update, which includes the snooping test:

1. s := new
2. if Snoopi then
3. mark new as local

. A collection cycle contains the following stages:

1. the collector raises the Snoopi flag of each thread. This indicates to the mutators
that they should start snooping.

2. the collector computes a scan a and a corresponding sliding view, Va, concur­
rently with mutators' computations.

3. each thread is then suspended (one at a time) and its Snoop/ lfag is turned off.
Each object which is directly reachable from the thread is marked local. The
thread is then resumed.

4. The collector traces the heap according to the image of it contained in Va. The
starting point for the trace is all objects which are marked local.

5. After tracing is completed, any object which is not marked and which has been
allocated by thread Tj before Ti was stopped in order that its state be scanned
(in stage (3) above) , is garbage.

Note that we can reason only regarding objects which were allocated prior to the hand­
shake of stage (3). Since sweeping occurs after the handshake we need devise a mechanism
that prevents the collector from collecting objects that were allocated after the handshake.
We use a variant of the color toggle trick, first introduced in [35] . It is assumed that every
object has a color ifeld associated with it. The field can take on three different values, say
0, 1 and 2. The value of 2 is interpreted as the color blue, which is assigned to unallocated
objects. In the initial cycle. the color white, which is the color of objects which still haven't
been traced, is represented by zero and black is represented by one. Black is the color of

35

Chapter 6

A Supplemental Sliding View
Tracing Algorithm

We chose to tackle the problems of cyclic data structures and stuck reference count fields
using a supplemental concurrent mark&sweep algorithm that reclaims those cyclic garbage
structures and reinstates stuck reference count fields. The algorithm is designed to be inter­
operable with the sliding view algorithm meaning that it is possible to decide on a cycle by
cycle basis which algorithm should be invoked and that the code for updating a pointer is
common to both algorithms. However, we do have to change the New operation in order
to support object coloring which is needed for the tracing algorithm.

6.1 Tracing using a sliding view
This section demonstrates how it is possible to use a sliding view in order to develop a
tracing procedure which assures that any reachable object at the end time of the sliding
view is marked and therefore not reclaimed later.

The basic mark&sweep algorithm operates by stopping all threads, marking any object
which is directly reachable (either from a local or a global reference) and then recursively
marking any object which is pointed by a marked object. Then, any object which is not
marked is swept, i.e., reclaimed. Finally, mutator threads are resumed.

Concurrent mark&sweep collectors perform some, or all, of the above steps concurrently
with mutators. Snapshot at the beginning [51, 25] mark&sweep collectors exploit the fact
that a garbage object remains garbage until the collector recycles it. i.e., being garbage is
a stable property. Thus, snapshot at the beginning operates by:

1. stopping the mutators,

2. taking a snapshot of the heap and roots,

3. resuming the mutators,

4. tracing the replica,

5. sweeping all objects in the original heap whose replicated counterparts are unmarked.
These reclaimed objects must have been garbage at the time the snapshot was taken
and hence they are garbage also when the collector eventually frees them.

We take the idea of "snapshot at the beginning" one logical step further and show how
it is possible to trace and sweep given a "sliding view at the beginning" .

34

r

Procedure Collect(o: Object)
begin
1. localDeferCollection := false
2. foreach slot s in o do
3. if Dirty{s) then
4. DeferCollection := true
5. else
6. val := read(s)
7. val.rc := val.rc ­ 1

8. write(s, null)
9. if val.rc = 0 then
10. if val £ Localsk then
11. Collect)"a/)
12. else
13. ZCTk+l := ZCTk+1 U {val}
14. if­*DeferCollection then
15. return 0 to the general purpose allocator.
16. else
17. ZCTk+1 := ZCTk+l U {o}
end

Figure 5.9: Sliding View Algorithm: Procedure Collect

33

rithm. Due to the extended meaning of the Locals^ set the conditions for reclaiming objects
in Reclaim­Garbage need not be changed.
Procedure Collect (figure 5.9) does require modiifcations, however. The dirty lfag of each
slot of the candidate object is checked. If all lfags are off, then there cannot be any record
of a constituent slot of it in the digested history for the next cycle and there will not be
any further logging of such a slot after the fourth handshake as well, as o is unreachable
then. Hence, the collector may simply clear o's slots and return it to the memory manager
without causing inconsistencies.

If, however, some slot has its dirty lfag set, then some thread modiifed the slot prior to
responding to the fourth handshake and logged the slot's previous value before hand. Only
afterwards did the containing object become unreachable and the collector detected that
fact. This is possible, for example, due to the following scenario: object o is only directly
reachable from thread 7/. After responding to the ifrst handshake, Ti stores a value, v\,
into the slot s of o. Then it stores a second value v2, into the slot. Then it discards its local
reference to o, before responding to the fourth handshake. Thus, s is both a part of Histk+\
and is supposed to be reclaimed during cycle k. Note that when the collector consolidated
s it considered 1'1 as its current value, rather thanv2 ■ Consequently, the collector may not
simply clear s and decrement v2­rc, as this will not undo the previous action of incrementing
V\.rc.

The solution we adopted to the problem is to defer the collection of o to the next cycle.
Since it is unreachable already in the current cycle, the problem described above cannot
reoccur during the next cycle. This is computationally efficient but has the drawback of
retaining uncollected garbage more than is really needed.

An alternative solution is to let the collector ifnd what is the value of s in the sliding
viewof the current cycle as it appears in the digested history Histk+\. Suppose v stands ofr
this looked­up value. The collector then decrements v.rc and discards the pair {s. v) from
Histk, in order to avoid another, spurious, decrement during cycle k+\. We have preferred
the former solution to the latter since the latter incurs the computational overhead of the
search, introducing an O(n log n) term to the step complexity of a cycle, which is otherwise
of linear complexity.

32

­■■<.­­­ ­
י* ■<. ­ :■'

Procedure Consolidate
begin
1. local Temp := 0
2. Localsk := 0
3. for each thread Ti do
4. suspend thread T,
5. Snoopt := false

// copy and clear snooped objects set
6. Localsk := Localsk U Locals^
7. Localsi := 0

// copy thread local state and ZCT.
8. Localsk :=Localsk^­i Statei
9. ZCT* := ZCTcf U iVew;
10. iVe^i := 0

// copy local buffer for consolidation.
11. Tem,p := Temp U Buffer^ ... CurrPos, ­ 1]

// clear local buffer.
12. CurrPosi := 1

13. resume thread Ti
// consolidate Temp intoHistk+1 ■

14. Histk+1 := 0
15. local Handled := 0
16. for each (5,1) € Temp
17.ifs ^ Handled then
18. Handled := Handled U {s}
19. ftis£cf+1 := #2sicf+1 U {(s,v)}
end

Figure 5.7: Sliding View Algorithm: Procedure Consolidate

Procedure Merge­Fix­Sets
begin
1. Peekk := Peekk U Histk+X
end

Figure 5.8: Sliding View Algorithm: Procedure Merge­Fix­Sets

31

Procedure Clear­Dirty­Marks
begin
1. for each (s,0) 6 Histk do
2. Dirty(s) := false
end

Figure 5.5: Sliding View Algorithm: Procedure Clear­Dirty­Marks

ProcedureReinforce­Clearing­Conlfict­Set
begin
1. ClearingConflictSetk := 0
2. for each thread Ti do
3. suspend thread Ti
4. ClearingConflictSetk := ClearingConflictSetk U Buffer^l ... CurrPoSi ­ 1]

5. resume thread Ti
6. for each s € ClearingConflictSetk do
7. Dirty(s) := true
8. for each thread T{ do
9. suspend thread Ti
10. nop
11. resume Ti
end

Figure 5.6: Sliding View Algorithm: Procedure Reinforce­Clearing­Conlfict­Set

the mutators are running.
Procedure Reinforce­Clearing­Conflict­Set (ifgure 5.6) implements the reinforcement
step and assures that it is visible to all mutators. A second handshake takes place, during
which thread buffers are read. The uniifed set of pairs is stored in the setClearingConflictSetk ■

Then, flags of slots that appear in ClearingConflictSetk are reinforced to be true. Finally,
the third handshake of the cycle takes place. There is no action taken during it. The reason
for this additional handshake is that a thread can fall behind a sibling thread by at most
one handshake. Thus threads that have responded to the fourth handshake will not be
interfered by operations carried out by threads during the clearing or reinforcement stages,
i.e., threads that still haven't responded to the third handshake.
Procedure Consolidate (ifgure 5.7). The task of the procedure is to implement the
fourth handshake, during which mutators1 buffers are read again and then are cleared. The
accumulated set of pairs is stored in a temporary set, denoted Temp. The temporary set is
then consolidated into the setHistk+1 ■

Additionally, the Localsi sets, which record snooped objects are copied onto the set
Locals^ and are cleared. Objects directly reachable from a thread's local state (denoted in
the algorithm by Stated) are copied onto Locals^ as well. The thread local ZCTs, which
reside in the Neuii sets, are copied onto the set ZCT^and are then cleared.

Procedures Update­Reference­Counters, Read­Buffers and Fix­Undetermined­
Slots are the same ones used by the snapshot algorithm (see figures 4.5, 4.6, 4.7). Note,
however that there is an additional procedure, Merge­Fix­Sets (ifgure 5.8), invoked be­
tweenRead­Buffers and Fix­Undetermined­Slots. Since an undetermined slot may
appear either in the set of buffers read atfer the fourth handshake, or in the set of buffers
read before the handshake, we need merge the two sets into a single set in order to resolve
undermined slots. This is done by procedure Merge­Fix­Sets.
Procedure Reclaim­Garbage (ifgure 4.8) is the same procedure used in the ifrst algo­

30

Procedure Update(s: Slot, new: Object)
begin
1. Object old := read(s)
2. if ­iDirty(s) then
3. Bufferi{CurrP0Si]:= {s}0ld)
4. CurrPosi := CurrP0Si+ 1

5. Dirty(s) := true
6. write(s, new)
7. if Snoopi then
8. Localsi := LocalsiL) {neii'{
end

Figure 5.2: Sliding View Algorithm: Update Operation

Procedure Collection­Cycle
begin
1. Initiate­Collection­Cycle
2. Clear­Dirty­Marks
3.Reinforce­Clearing­Conflict­Set
4. Consolidate
5.Update­ Reference­Counters
6. Read­Buffers
7. Merge­Fix­Sets
8. Fix­Undetermined­Slots
9. Reclaim­Garbage
end

Figure 5.3: Sliding View Algorithm: Collector Code

1. before the handshake is started, the Snoopi lfag is raised, signaling mutators that they
should start snoop stores into heap slots.

2. the set Histk is not cleared as the first step of each cycle. Rather, the set already
contains digested information about part of the logging relating to cycle k which has
been accumulated by the collector during cycle k ­ 1.

3. the Newi sets are not retrieved by the collector during the handshake. Rather, they
will be retrieved during the forthcoming fourth handshake.

Procedure Clear­Dirty­Marks (figure 5.5) clears all dirty marks that were set by mu­
tators prior to responding to the first handshake. Note that the clearing takes place while

Procedure Initiate­Collection­Cycle
begin
1. for each thread Ti do
2. Snoopi := true
3. for each thread Ti do
4. suspend thread Ti

// copy (without duplicates) and clear buffer.
5. Histk := Histk U Buffer^ .. . CurrPosi ­ 1]

6. CurrPosi := 1

7. resume Ti
end

Figure 5.4: Sliding View Algoirthm: Procedure Initiate­Collection­Cycle

29

3. each slot which is modified between two consecutive scans (i.e., a store to the slot is
scheduled at, or after <7>(s) and before (7k+i(s)) should be logged. making the value
it assumed during the last sliding view available to the collector.

4. any update of s whose store proper operation is scheduled at, or after 0>(s) and before
End{a^) should snoop its operand; i.e., mark it local.

It turns out that these requirement are all met by the algorithm with respect to the
sliding view we have just defined. We give intuition for this according to the rule by which
a{s) is defined.

If a(s) is deifned according to rule (1) then because no thread logged s up to the moment
the first handshake of cycle k started the dirty flag of s is clear at that particular moment.
If some thread would log s after responding to the ifrst handshake it is bound to associate
s with the value it assumed when the handshake started. Similarly, if the collector will
succeed determining the slot, it will ifnd the value it assumed at that moment as well.

Otherwise, if a(s) is deifned according to rule (2) then it is easy to see that at the time
the second handshake ends the dirty flag of s is clear (because the collector cleared it and
no mutator raised it) and no update is occurring. This implies that any subsequent updates
and determining will relate to this point of time, as required.

Finally, if a(s) is deifned by rule (3), i.e., by picking the time at which a thread which
logged the "winning pair5 (s, i'(3 loaded v from s, we trivially have that the digested history
agrees with Vcf(s). Also, since some thread logs s prior to responding to the third handshake
no thread will log s after responding to the fourth handshake. Therefore, the non­digested
part of the history for the next cycle will not contain any record of s. Similarly, the collector
would fail determining s, satisfying our requirement for determining slots.

Note that the scan of a cycle spans, at most, from the beginning of the ifrst handshake
up to the end of the third handshake. Since the Snoop lfags are turned on prior to the ifrst
handshake and are turned off only at the fourth handshake we conclude that the snooping
requirement is kept.

We now turn to specify the pseudo­code for the algorithm.

5.7 Mutator code

Mutator code in the second algorithm is almost identical to the one in the ifrst algorithm.
In particular. the New procedure is unchanged.

The Update procedure (in ifgure 5.2) includes an additional test, that checks whether
the thread­speciifc flag Snoopi is set. If so, the object whose reference is stored into the slot
is marked local by adding it to thethread­speciifc set Localsi. This marking implements
the "snooping" requirement of the generic algorithm.

5.8 Collector code

Collector's code for cycle k is depicted in figure 5.3. Let us describe brielfy the role of each
of the collector's procedures.
Procedure Initiate­Collection­Cycle (figure 5.4) is the counterpart of procedure Read­
Current­Stateof the snapshot algorithm of chapter 4. However. since it stops each thread
at a time (i.e., it carries out a soft handshake,) there is no atomic state being read. Also
note these additional actions:

"winning" in the sense that v is chosen to be the consolidated value of s.

28

as in the snapshot algoirthm. Recall that the collector may fail determining what is the
"current" value of a slot. Such a slot is undetermined.
Gathering information on undetermined slots. The collector asynchronously reads
mutators' buffers. It then unifies the set of read pairs with the digested history computed
in the consolidation step. The set of undetermined slots is a subset of the slots appearing in
the unified set so the collector may now proceed to look up the values of these undetermined
slots.
Incrementing re fields of objects referenced by undetermined slots. Any unde­
termined slot is looked up in the unified set and the re field of the associated object is
incremented.
Reclamation. Reclamation generally proceeds as in the previous algorithm, i.e.. recur­
sively freeing any object with zero re field which is not marked local. Due to the extended
meaning of locality, that is, it encapsulates the "snooping" requirement of the generic al­
gorithm, the condition for being garbage is the same as in the snapshot algorithm. There
is a problem, however, with reclaiming objects whose slots appear in the digested history.
i.e., objects which were modified since the cycle commenced but became garbage before it
ended. We elaborate on this problem in the sequel.

5.6 Intuition: where's the sliding view?
Each cycle of the algorithm has a conceptual scan and a corresponding sliding view associ­
ated with it which encapsulate the agreed knowledge of the mutators and collector regarding
the "current" value of each slot in the cycle. We denote the scan for cycle A; as errand the
corresponding sliding view is termed Vcf. Consider a slot s. The value of Ccf(s) is deifned as
follows:

. Rule 1­slots which are not logged during cycle k ­ 1. if no thread logs s prior to
responding to the ifrst handshake of cycle k then we set crk(s) as the time at which
the ifrst thread responds to the ifrst handshake. j

. Rule 2­ slots which are logged during cycle k ­ \ that were not logged between the first
and third handshakes. Here we set <Jk{s) to be the time at which the second handshake
terminates (i.e., when the last thread responds to it.)

. Rule 3­ slots which are logged during cycle cf ­ 1 that were logged between the first
and third handshakes of cycle k. Any such slot is consolidated. Let v be the chosen
consolidated value of s. We deifne <7(s) to be the time at which some particular thread
which logged the pair (s,v), between responding to the ifrst and fourth handshakes,
fetched v from memory as the ifrst instruction of its write barrier (note that this
thread might have already responded to the third handshake when fetching v).

We now explain this particular choice of a cycle's sliding view. What we require from
the sliding view. and from the algorithm with respect to this particular sliding view, is that:

1. in case the history for the next cycle contains the pair (s, v)th en v must be Vcf(s).
The history for the next cycle may not contain conlficting values for s.

2. in case the collector succeeds in determining a slot s, i.e.. it succeeds determining the
"current" value of s, we require that the determined value be the same one as the
slot's value in the cycle's sliding view, i.e., Vcf(s). Again, the history for the next cycle
may not contain conlficting values.

27

­'­'< //­,/­c'­­­ \ za f ; 2l ­"­­■■
1 ­

m1 ■■■■.­I HO HO tt€> He

. !/ '\' '

m2 ■ rl­HO HO HO­ttO

1 .

I : i/ /\\ \ Ina ­ m+o ■Vro h©­ we­

Step Update rb ifx reclaim 1

m1 ­­ . .

m2 . 1

/ffj .

LEGEND:

mj \Mutator thread f Snoopjs raised

||Q Response toa handshake # Buffe,rread async.

h i'th handshake s Signal snooping
i s

1­Read buffers
b

Meaning of other abbreviations: Clear: clearing dirty Marks. Reinforce: reinforcing
conflict slots. Consolidate: consolidating thread buffers. Update: updating reference
counters. fix: incrementing reference counters due to undetermined slots. Reclaim:

reclaiming garbage objects.

Figure 5.1: Timing diagram for the sliding view algorithm

26

5.4 Overview of mutator's cooperation
Mutators use the write barrier of the snapshot algorithm (figure 4.1) with the additional
snooping and marking added after the store proper. Object creation is unchanged from the
snapshot algorithm.

5.5 Overview of the collection cycle

Each collection cycle is comprised of the following steps, which arc visually illustrated in
figure 5.1:

Signaling snooping. The collector raises the Snoopi lfag of each thread, signaling to the
mutators that it is about to start computing a sliding view.

Reading buffers (first handshake.) This step initiates a soft handshake during which
thread's buffers1 are retrieved and then are cleared. The slots which are listed in the buffers
are exactly those slots that have been changed since the last cycle2.
Clearing. The dirty lfags of the slots listed in the buffers are cleared. Note that the clearing
occurs while the mutators are running. Clearing the dirty lfags tells the mutators that they
should start logging slots from fresh, i.e., that a new cycle and a sliding view associated
with it have begun so that the mutators should log slots' values in this new sliding view.

Reinforcing dirty marks (second handshake.) The collector carries a second hand­
shake during which it reads the contents of the threads' buffers. The collector then reinforces
the lfags of the listed slots, i.e., it turns them on.

Note that the slots listed in the read buffers are slots that have been logged between
the ifrst and second handshake. Thus, such a slot's lfag is raised by mutators and might be
concurrently turned off by the collector. Hence these slots are subjected to a race condition
between two conlficting processes and are accordingly termed clearing conlfict slots.
Assuring reinforcement is visible to all mutators (third handshake.) The third
handshake is carried out. No action is taken during it.

Consolidation (fourth handshake.) This stage has two objectives: 1) solving conlficting
logging of conlfict slots. 2) marking thread local states. In order to achieve these goals a
fourth soft handshake is performed. During the handshake thread local states are scanned
and marked local. Threads' buffers are retrieved once more and are consolidated.

Consolidating threads' buffers amounts to the following. For any slot that appears in the
threads' buffers accumulated between the ifrst and fourth handshakes, pick any occurrence
of the slot and copy it to a digested, inconsistencies free. history. All other occurrences of
the slot are discarded.

The digested history replaces the accumulated threads' buffers. i.e., the history for the
next cycle is comprised of the digested history of threads' logging between the ifrst and
fourth handshakes of the current cycle, uniifed with threads' buffers representing updates
that will occur after the fourth handshake of the current cycle but before the ifrst handshake
of the next cycle.
Updating. After clearing, reinforcing, making sure that the reinforcement is visible to
all mutators and consolidating the buffers the collector proceeds to adjust re ifelds due to
differences between the sliding views of the previous and current cycle. This is done exactly

1These are the same thread buffers as in the ifrst algorithm.
2The meaning of "changing" in this asynchronous setting is deifned as follows. A slot is changed during

cycle k if some thread changed it after responding to the ifrst handshake cycles k and before responding to
the ifrst handshake of cycle cf + 1.

25 I

1. the collector raises the Snoopt lfag of each thread. This indicates to the imitators that
they should start snooping.

2. the collector computes, using an implementation­speciifc mechanism, a scan a and a
corresponding sliding view, Va, concurrently with mutators' computations. The actual
manner using which the collector computes Va is immaterial, it's just important that
it arrives at a valid sliding view.

3. each thread is then suspended (one at a time) its Snoopi lfag is turned off and every
object directly reachable from it is marked local. The thread is then resumed.

4. now, for each object 0 we let o.rc ■.­ ARC(Va\ 6).

5. at that point, we can deduce that any object 0 that has o.rc = 0 and that was not
marked local is garbage.

Since for each thread the Snoopi lfag is set for the entire duration of the sliding view
computation we conclude that any object which is not marked local satisifes, accord­
ing to lemma 5.1, ARC(Va\o) > RC(o)@End(a) thus 0 = o.rc = ARC(Va;o) implies
RC(o)@End(a) = 0. It may be, however, that 0 is directly reachable from some thread at
End(a). Nevertheless, since no local reference to 0 was observed by any thread when its
state was scanned (in stage (3) of the collector) and it was not "snooped" prior to it, any
thread which possessed such a local reference must have discarded it prior to responding
the handshake of stage (3) without ever raising the heap reference count of o above zero.
We conclude that by the time the handshake of stage (3) ends, 0 is garbage.

The snooping mechanism may lead to some lfoating garbage as we conservatively not
collect objects which are marked local, although such objects may become garbage before
the cycle ends. However, such objects are bound to be collected in the next cycle.

We have termed this algorithm "generic" since the mechanism for computing the sliding
view is unspeciifed. In the lfeshed out algorithm that we next present we rely on the
methods of logging and arbitration that were introduced in the context of the snapshot
algorithm in order to implicitly construct a sliding view. When the implicit construction
is done, it holds for each object that o.rc = ARC(V;o), where V is the sliding view that
was constructed implicitly. Since we are not interested in the sliding view itself but rather
on its manifestation through the re ifelds, this implicit computation suffices for collection
purposes.

5.3 Algorithrrfs idea
We will present a concrete sliding view based reference counting algorithm which imple­
ments the generic sliding view algorithm of the previous chapter.

The concrete algorithm uses ideas similar to those presented in the context of the snap­
shot algorithm of chapter 4. In particular, it uses mutators' logging in order to obtain
modiifed slots' values in the last sliding view.

Whereas in the snapshot algorithm the mutators and collector cooperate synchronously,
using one hard handshake per cycle, in order to compute a reference count relfecting an
atomic snapshot, in the sliding view algorithm they cooperate asynchronously. using four
sotf handshakes per collection, in order to compute a reference count relfecting a sliding
view. This signiifcantly improves scalability at the cost of having to deal with fuzzier
information. We provide augmented arbitration and race­detection mechanisms in order to
overcome the dififculties introduced by the enhanced asynchronicity.

24

Note that a snapshot of the heap is just a special case of a sliding view in which all slots
are scanned at the same time.

For an object o and a sliding view Vo we deifne the Asynchronous Reference Countof o
with respect to Va to be the number of slots in Va referring to o:

ARC{V^o)A^ \V~\0)\

The usual reference count of heap pointers to an arbitrary object o at time t is also just
a special case of the above formulation with a set to: Vs,cr(s) = t. Then we have:

V Objecto,ARC(Va;o) = RC(o)@t

The feature of sliding views of being incrementally constructed is appealing since it
implies that one need not stop all mutator threads simultaneously in order to compute the
view. But can we ifnd a safe collection criteria based on sliding views? Of course, using
a sliding view is not as simple as using a snapshot. Clearly, trying to use the snapshot
algorithm when we are only guaranteed that logging and determining relfects some sliding
view is bound to fail. For example, the only reference to object o may "move" from slot si to
slot S2, but a sliding view might miss the value of o in both s/ (reading it after modiifcation)
and S2 (reading it before modification). Thus object o has a zero asynchronous reference
count with respect to the aforementioned sliding view, yet it never had a true zero reference
count.

Now suppose that, as in the above example, ARC{Va\o) = 0, that is, every slot in the
heap was probed and none referred to o. This time, however, we assume additionally that
for any slot s, there has not been a store of o into s performed in the time intei'val 0~(s)
to End(a). If we took an atomic snapshot of the heap at time End(a) we would have
discovered that no slot is referring to 0 for the simple reason that it did not refer to it at
0­}s) and no pointer to o was stored into it until End(a). The same arguments are used to
show the more general claim:

Lemma 5.1 (Sliding Views) Let Va be a sliding view and let o be an object. If for
any slot s, no reference to o is stored into s at, or after, 0­}s) and before End(a) then
RC(o)@End(a) < ARC(Va;o). Furthermore, the setof slots that refer to o at End(a) is a
subset of those that point to it in Va

5.2 Using sliding views to reclaim objects
Based on the above observations we present a generic garbage collection algorithm:
1. Each thread Tj has a flag, denoted Snoopi which signiifes whether the collector is in the
midst of constructing a sliding view. This lfag is modiifable by the collector and readable
by the mutator Tj.
2. Mutator Ti executes a write barrier in order to perform a heap slot update. The generic
algorithm requires that after the store proper to the slot is performed, i.e., object o is
actually written into slot s, the thread would probe its Snoopi lfag and, if the lfag is set,
would mark o as local. We call this probing of the Snoopi lfag and the subsequent marking
snooping. Any speciifc implementation of the generic algorithm may require additional steps
to be taken as part of the write barrier.
3. As usual. threads may not be suspended in the midst of an update.
4. A collection cycle contains the following stages:

23

I Chapter 5

The Sliding View Algorithm

In the snapshot algorithm we have managed to execute a major part of the collection while
the mutators run concurrently with the collector. The main disadvantage of this algorithm
is the hard handshake in the beginning of the collection. During this handshake all threads
are stopped while the collector clears the dirty lfags and receives the mutators' buffers and
local ZCTs. This hard handshake hinders both efficiency, since only one processor executes
the work and the rest are idle, and scalability, since more threads will cause more delays.
While efficiency can be enhanced by parallelizing the lfags' clearing phase, scalability calls
for eliminating hard handshakes from the algorithm. This is indeed the case with our second
algorithm, which avoids hard handshakes completely.

In this chapter, we present an algorithm which uses four soft handshakes per cycle.
Thus, the system never comes to a grinding halt. Mutators arc only stopped one at a time,
and only for a short interval, its duration depends on the size of mutators' local states.

In the snapshot algorithm we had a fixed point of time, namely, when all mutators
were stopped in a hard handshake, to which all logging and successful determining of slots
referred. By dispensing with the hard handshake we no longer have this fixed point of time.
Rather, we have a fuzzier picture of the system, formalized by the notion of a sliding view
which is essentially a non­atomic picture of the heap.

We show how sliding views can be used instead of atomic snapshots in order to de­
vise a collection algorithm. Then, we present an algorithm which implicitly computes a
sliding view (bearing similarity to the first algorithm which implicitly computes an atomic
snapshot) and collects garbage using it. In appendix B we prove the algorithm correct.

5.1 Scans and sliding views
Pictorially, a scan a and the corresponding sliding view Va can be thought of as the process
of traversing the heap along with the advance of time. Each word of memory s in the heap
is probed at time <7(s); if at that particular moment s contains a reference. then we record
that value as the value of Va{s), otherwise, the word is not a slot at <7(s), which we signify
by letting Va(s) be equal null.

That is, a scan<7 is a function that assigns a time stamp to each word in the heap.
we define Start(a) to be the earliest time assigned to any slot by a. Similarly we define
End(a).

Formally, the sliding view associated with a scan a. which is denoted Va, is a function
that assigns a pointer value to each memory word s in the heap:

y , . def J null if s is not an allocated slot at cr(s)
a^S' ~ y s@a{s) otherwise

22

Procedure Collect(o: Object)
begin
1. foreach slotsino do
2. val := read(s)
3. ual.rc := val.rc ­ 1

4. write(s, null)
5. if val.rc = 0 then
6. \ival £ Locals^ then
7.Collect (vai)
8. else
9. ZCTk+l := ZCTa,.+1 U {val}
10. return o to the general purpose allocator.
end

Figure 4.9: Collector Code­ Procedure Collect

criteria applied by the Reclaim­Garbage procedure.

4.8 Intuition
A central point in the algorithm's operation is that logging always records a slot's value at
the time the last handshake occurred. Indeed. several competing threads may log the same
slot, yet they would all associate it with one agreed value­ the one that prevailed at the
last handshake. It is easy to see that this is the case since no thread modifies the slot prior
to raising its dirty flag. In the write barrier, a thread first reads the slot and only then the
lfag. Thus, a fetched turned­off lfag implies that the previously read value is the original
one from the time of the handshake. The collector uses exactly the same mechanism in
order to determine a slot.

Another important point to note is that a slot and its associated value are full}' logged
by a mutator before it raises the slot's dirty flag. Thus, if the collector senses that a slot is
raised, it is guaranteed that it will find a record of the slot in some thread's buffer, when it
would look up threads buffers' asynchronously in order to resolve undetermined slots.

We further comment that the price that appears to be involved in copying the mutators
buffers and local ZCTs is non­existent in practice, since in a real implementat ion the mutator
would deliver its buffer to the collector and would start working using a new buffer, thus the
true overhead of delivering and clearing these sets amounts to a handful of pointer updates.
Consequently, the mutators are stopped for as long as it takes to clear the dirty lfags. Using
a bitmap and some help from the virtual memory system this can be done rather quickly.
We elaborate on the implementation of dirty lfags in section 7.1.

The algorithm's correctness proofs are in appendix A.

21

Procedure Read­Buffers
begin
1. Peekk := 0
2. for each thread Ti do
3. local ProbedPos := CurrPoSi

// copy buffer onto Peekk.
4. Peekk := Peekk UBuffen[l ... ProbedPos ­ 1]

end

Figure 4.6: Collector Code­ Procedure Read­Buffers

Procedure Fix­Undetermined­Slots
begin
1. for each pair(s, v) pair in Peekk
2.ifs £ Undeterminedk do
3. v.rc := v.rc + 1

end

Figure 4.7: Collector Code­ Procedure Fix­Undetermined­Slots

called Peekk because it allows the collector to peek at the mutators buffers without stopping
them.)
Procedure Fix­Undetermined­Slots (figure 4.7) passes item by item on the set Peek).
and ifnds the missing values of all undetermined slots. The re fields of these values are
incremented.
Procedure Reclaim­Garbage (ifgure 4.8). As a ifrst stage in the operation of Reclaim­
Garbage the collector considers all objects in ZCT^and checks their reference count and
local status. If an object has a positive reference count, then it is ignored. Otherwise, if
the object is local, then it is added toZCT^+x ■ The last case is when an object has both
zero reference count and is not local, such an object is kept inZCTk ■

After applying this sieving pass on ZCTk, it contains only objects with zero re ifeld
which are not marked local. This is a sufficient condition for the objects to be garbage,
hence the collector proceeds by deleting these objects by means of the Collect procedure,
which is next described.
Procedure Collect (figure 4.9) is responsible for deleting garbage objects. It stores null
into each of its operand's slots not before the reference counts of the pointed objects are
decremented accordingly. The referred objects are recursively deleted based on the same

Procedure Reclaim­Garbage
begin
1. ZCTk+l := 0
2. for each object 0 6 ZCTk do
3. if o.rc > 0 then
4. ZCTk := ZCTk ­ {0}
5. else if o.rc =0Ao £ Localsk then
6. ZCTk := ZCTk ­ {0}
7. ZCTk+1 := ZCTk+l U {0}
8. for each object 0 e ZCTk do
9. Collect(o)
end

Figure 4.8: Collector Code­ Procedure Reclaim­Garbage

20

Procedure Read­Current­State
begin
1. suspend all threads
2. Histk := 0
3. Locals^ := 0
4. for each thread T{ do

// copy buffer (without duplicates.)
5. Histk := Histk U Bufferi{\ ... CurrPos, ­ 1]

6. CurrPoSi := 1

// "mark" local references.
7. Localsk := Localsk U Statei

// copy and clear local ZCT.
8.ZCTk:= ZCTkUNewi
9. Newt := 0
10. Clear all dirty marks
11. resume threads
end

Figure 4.4: Collector Code­ Procedure Read­Current­State

Procedure Update­Reference­Counters
begin
1. Undeterminedk := 0
2. for each (s, v) pair in Histk do
3. curr := read(s)
4. if ^Dirty(s) then
5. curr.rc := curr.rc +1
6. else
7. Undetermined^ := Undetermined^ U {s}
8.1). re := u.rc ­ 1

9. if i>.rc =0A 1' ^ Localsk then
10. ZCT/t := ZCTk U {u}

Figure 4.5: Collector Code­ProcedureUpdate­Reference­Counters I

Procedure Update(s: Slot. new: Object)
begin
1. local old := read(s)

// was s written to since the last cycle ?

2. if ­^Dirty{s) then
// ... no; keep a record of the old value.

3. BuffenlCurrPoSi] := (s,old)
4. CurrPos, := CurrPoSi + 1

5. Dirty(s) := true
6. write(s, new)
end

Figure 4.1: Mutator Code­ Update Operation

Procedure New(size: Integer) : Object
begin
1. Obtain an object o from the allocator, according to the speciifed size.

// add o to the thread local ZCT.
2. Newi := Newi U {0}
3. return 0

end

Figure 4.2: Mutator Code­ for Allocation

i.e., a thread may not be suspended after it has executed the first instruction and before
executing the last instruction of these operations.

4.7 Collector code

1 The code for cycle k is given in procedure Collection­Cycle, in figure 4.3. Each of the
procedures invoked during a cycle is now described.
Procedure Read­Current­State (ifgure 4.4). After all threads are stopped their local
state, new object sets and buffers are delivered to the collector. Before resuming the threads
the collector clears all dirty marks.
ProcedureUpdate­Reference­Counters (figure 4.5). reference counters are updated
by decrementing the "old" values and trying to determine current values and increment
them. Undetermined slots are recorded.
ProcedureRead­Buffers (figure 4.6) asynchronously reads threads' buffers. Each thread
T; is considered at a time. The variable CurrPos{is probed. Then the range[1.. .CurrPosi ­
lj of Bufferi (which is empty if CurrPosi = 1) is copied onto the set Peekk (the set is

Procedure Collection­Cycle
begin
1. Read­Current­State
2.Update­ Reference­Counters
3. Read­Buffers
4. Fix­Undetermined­Slots
5. Reclaim­Garbage
end

Figure 4.3: Collector Code

18

4.5 Data structures

In this section we brielfy present the data­structures which are used in the algorithm.
ThreacTs history buffers. Each thread has a local buffer in which it records the value
of a slot that is modified for the first time after a snapshot is "announced" , i.e., after the
handshake of a cycle. This local buffer is denoted Buffi, and it contains pairs of the form
(s,v) where v is the contents of s as read by the thread before updating s.

The buffer is implemented as an array of pairs with an associated pointer to the next
entry to be used, denoted CurrPosi. We assume that both Bufferi and CurrPosi reside
in shared memory and thus are accessible to the collector at any moment.

If a thread logs the pair {s. v) in its buffer then we say that it associates v with s. It holds
that if Tj associated v with s then v is the object s was referring to in the last conceptual
snapshot.

The collector gathers mutators' histories and computes their union. This action is done
twice per cycle: the first time when the world is stopped, in order to learn exactly which
slots have been changed since then last cycle and what value they then assumed; the second
time is done asynchronously in order to find what are the values of undetermined slots. The
resulting sets of pairs are denoted //island Peek^re spectivcly.
Slots5 dirty lfags. A unique dirty lfag is associated with every slot. The purpose of
the slot's lfag is to signify whether the slot is being modified during the current cycle. A
mutator should be able to atomically write and atomically read the lfag. To outline a
feasible implementation, the lfag can be implemented as a byte of memory, modifiable and
accessible using ordinary memory accesses.
Global and local Zero Count Tables. The Zero Count Table or ZCT for short is a
collector maintained set which records any object that its reference count field drops to
zero at some point in the operation of the algoirthm. The set ZCT^ denotes the contents
of the ZCT at cycle k. ZCTk contains primary candidates for reclamation in cycle k. That
is. if an object is collected during cycle k then cither it's in ZCT^ or it was reachable from
an object in ZCTk■

Each mutator thread Ti keeps a local ZCT of newly allocated objects, denoted Neu>i,
in which it stores references to objects it creates. The set is cleared by the collector at
the handshake of each cycle not before its contents are copied into the collector­maintained
ZCT.
Local marks. According to the algorithm all objects which are directly reachable should
be marked as local atomically with the construction of the snapshot. In our algorithm's
notation, we refer to the set of objects directly reachable from thread T, as Statei. During
the handshake, the union of all State,, sets is computed and stored in the set Localsk,
effectively marking all objects which are directly reachable at the time of the conceptual
snapshot.
Undetermined slots. The collector need record which slots it failed determining. so that
it may later look­up their value in the threads' buffers. This is done by saving a reference
to undetermined slots in the Undetermined^ set.

4.6 Mutator code

The mutators need execute garbage­collection related code on two occasions: when up­
dating a slot and when allocating a new object. This is accomplished by the Update
(figure 4.1)and New (ifgure 4.2) procedures, respectively. These operations are protected.

17

4.3 Overview of mutator?s cooperation
The mutators cooperate with the collector through executing the update protocol described
above for each modification of a pointer in the heap. We stress that there is no need for
executing this protocol for updates of pointers in the registers or stack (i.e., the local roots.)

During object creation, the address of the newly created object is recorded for use of
the collector.

4.4 Overview of the collection cycle

Let us present the steps of a garbage collection cycle.

The hardhandshake­obtaining values from the previous snapshot and taking
a new conceptual snapshot. During this handshake the collector gathers information
regarding all slots that have been changed since the previous handshake from the mutators.
The information gathered contains slots' values in previous snapshot Rk­1■ There exists
information on any slot that has been modiifed since the previous conceptual snapshot was
taken.

While the mutators are stopped their local states are scanned in order to mark as local
all objects that are directly reachable. Their local ZCTs are merges into the global ZCT
and are then cleared. Finally, all dirty flags are cleared in order to signal the mutators that
they should start taking records of the modifications they apply to heap slots that refer to
the current conceptual snapshot, i.e., toRk■

Adjusting re ifelds due to modiifed slots. After resuming mutators, the collector
adjusts re fields due to each modified slot by:

. trying to determine the value of it at the time of the current snapshot Rk, without
interfering with the program threads. To do that, the collector reads the value of
the slot from the heap, and veriifes that its dirty flag is clear. If the dirty lfag is
indeed clear, then the slot has not been modiifed since the handshake and the value
of it in the Rk snapshot has been obtained. The re value of the referenced object is
incremented. If the dirty lfag is set, then the slot is undetermined. Then the collector
has to obtain the value of such a slot by peeking at the mutators modiifcation records.

. decrementing the re field of the object the slot was referring to in the snapshot of
the previous cycle. The identity of this object is known to the collector from the
information recorded in­between the cycles by the mutators and communicated to the
collector during the handshake. If the decremented re ifeld drops to zero the referred
object is considered a candidate for reclamation and is accordingly added to the ZCT.

Incrementing re ifelds of objects referenced by undetermined slots. The collector
asynchronously, i.e., without suspending the threads, gathers information about those slots
that have been changed since the ifrst handshake of the same cycle. A subset of these slots
arc the undetermined slots. The collector infers from the recorded information undetermined
slots' values in the conceptual snapshot Rk■ It then increments the re ifeldsof the referenced
objects.
Reclaiming garbage. The collector proceeds to reclaim unreachablc objects, according
to the following criteria: collect objects which have zero re ifeld and which are not marked
local.

16

The latter problem is conveniently solved using a Zero Count Table [19] which records
any object whose reference count field drops to zero. In particular, objects are inserted into
a thread specific ZCT as they are created since upon their creation they have a zero heap
reference count. These local ZCTs are merged into a global ZCT. The global ZCT contains
survivals from the previous cycle as well. i.e.. objects that at the end of the previous cycle
had zero re field but were marked local.

We now turn our attention to the former problem. Taking a snapshot of the entire heap
when all mutators are stopped is not practical: it requires too much space and time. In our
algorithm, these snapshots are only conceptual: they are never computed in full. Instead,
we require the mutators themselves to record slots' values as they are about to modify them.
Using this recorded information the collector can tell what was a modified slot's value in
the last conceptual snapshot, i.e., in Rk­\■

It remains for the collector to find out what is such a slot value in R^■ Trivially, the
collector can read the slot while all mutators are stopped. This simple solution is not
scalable, however, since it implies that for each changed slot there will be a time slice in
which the entire system will be ticd­up attending to its update, jeopardizing the parallelism
promised by the presence of multiple processors. Thus, we require that the collector would
find the value of such a slot in R^ while the mutators are running. This is done using an
arbitration mechanism using which the collector tries to determine a slot. The mechanism
reliably reports success or failure. In case of success, the value is immediately revealed to
the collector and the collector is guaranteed that no thread has changed the slot since the
conceptual snapshot Rk was taken. Otherwise, when the collector fails determining a slot, it
is guaranteed that some thread has already kept a record of the slot along with its value in
R^■ The collector therefore looks up the threads' records and finds the desired information.

This mechanism is implemented in the following manner: every slot s has a unique
dirty lfag associated with it denotedDirty(s). This lfag signifies whether the slot has been
overwritten since the last conceptual snapshot. The dirty flags are then manipulated using
these patterns of operation:

. all dirty lfags are cleared on each cycle, when all mutators are stopped.

. in order to modify a slot s a thread takes these actions, that comprise its write barrie.r
1) it reads the contents of s. Let v stand for the value it has fetched 2) it readsDirty(s)
3) if Dirty(s) is off it saves a record of the pair (s, v) stating that v was the contents
of s in the most recent conceptual snapshot and then it raises the lfag 4) now the
store proper occurs.

. in order to determine a slot's value in R^ the collector takes the following steps, which
are a prefix of the steps of a write barrier: 1) it loads the value v from s. 2) it probes
Dirty(s). 3) if the lfag is off then v is the value ofsin R^. otherwise 5 is undetermined
and a record of it was taken by some mutator.

This protocol guarantees that only and exactly the values that were current at the time
the recent conceptual snapshot was taken are recorded by mutators. Additionally, this
protocol has the property of compression of the information recorded in the sense that only
initial modiifcations to a slot are recorded. Subsequent modifications are not relevant for
the algorithm's execution since it only need know what are the values of a changed slot in
the current and previous conceptual snapshots.

15

Chapter 4

The Snapshot Algorithm

In this chapter we introduce our first algorithm, which is based on computing differences
between heap snapshots. We first present a naive algorithm that demonstrates the idea
behind the snapshot algorithm, then we present the snapshot algorithm itself. Correctness
proof is given in appendix A.

4.1 A naive algorithm based on snapshot difference
The algorithm operates in cycles; we are describing collector actions during cycle k (through­
out the paper we let the subscript k denote the number of a garbage collection cycle.) To
start a cycle, the collector stops all threads. While the world is stopped. the collector makes
a replica of the heap, denotedRk ■ Additionally, it marks local any object which is directly
reachable. Then, it resumes the threads.

Note that since no mutator is running during the time the replica is constructed, Rk
is an atomic snapshot of the heap. The collector then adjusts re fields due to differences
between Rk and the replica of the previous cycle, Rk­1■ Specifically, the collector considers
any slot s whose value in Rk differs from that in Rk­1 and:

1. increments the re field of the object referred to by s in Rk

2. decrements the re field of the object referred to by s inRk­1 ■

It is easy to verify, by induction on the cycle number and assuming that each object is
allocated with zeroed­out re field, that for any object 0, at the time the collector completes
adjusting re fields, o.rc equals o's heap reference count at the time the snapshot was taken.
Thus, any object 0 which has o.rc = 0 after adjusting is done and which is not marked local
has no references to it whatsoever in the system and may be reclaimed.

4.2 Implementing the algorithm efifciently
Implementing the algorithm efficiently entails two major issues:

. efficiently finding differences between heap snapshots. Of course, it is not
practical to make a copy of the heap. We are only interested in those portions of the
heap that have changed since the last collection. We need a method to efficiently spot
these differences.

. efifciently finding garbage objects. We need an efficient method (other than
examining all heap objects) to find all those objects with a zero re field which are not
marked local.

I 14

extent. Specifically, the collector may suspend and subsequently resume user threads. When
a thread is suspended, the collector may inspect and change its local state with the effects
taking place after the thread is resumed.

Each thread's code is comprised of protected and unprotected code. When a thread is
executing unprotected code the collector may suspend it. Suspension of a thread means that
no instructions on its behalf are scheduled, up to the time it is resumed. In our algorithm,
the only pieces of code which are protected are procedures Update and New, which are
in charge of updating heap­slots and allocating new objects, respectively.

The following pseudo­code:
1. suspend thread T{

2. Do­Something
3. resume thread Ti

when executed by the collector, means that the collector waits until thread Ti is not
executing protected code, then it suspends it, executes the code in Do­Something and
then it resumes the thread. When referring to such a construct and stating that Ti was
suspended at time t it is meant that at time t the first instruction of Do­Something was
scheduled. Accordingly, we say that Ti was resumed at time t if the last instruction of
Do­Something was scheduled at time t ­ 1.

A Hard Handshake is a collector code construct of the form:
1. for each thread Ti do
2. suspend thread Tg

3. Do­Something
4. for each thread Ti do
5. resume thread Ti

Which means that all user threads are halted in unprotected code when Do­Something
is executed. A hard handshake is usually a costly operation whose execution ties up the
entire system for a time duration that depends on the number of threads and on the com­
plexity of theDo­Something operation.

A Soft Handshake is much more scalable. It is a collector code construct of the form:

1. for each thread Ti do
2. suspend thread Ti
3.Do­Something­Related­ To­Ti
4. resume thread Ti

In a soft handshake, at most one thread is halted in each moment and an operation
related to it is executed. This construct is useful for specifying transactions in which a
mutator and the collector exchange data. We note that the soft handshake mechanism is
equivalent to the handshake mechanism described in [22, 21], where mutators voluntarily
cooperate in order to complete transactions with the collector. We chose this style of coop­
eration construct in order to facilitate the exposition of the algorithm: using our approach
all actions are seemingly carried out by the collector.

13

mutators arid the collector) during a run are interleaved into a single linear order by the
shared­memory system.2 This assumption allows us to conveniently define global state and
time as follows:

Deifnition 3.1 (Time) For a given execution, we say that a shared­memory operation
occurs at time t if it is operation number t in the linear sequence of shared memory operations
corresponding to the execution.

Deifnition 3.2 (State) For any expression E which depends only on the values of shared­
memory locations and for any time point t in the execution, we denote by E@t the value
of entity E at time t. i.e., E@tis the value of E just prior to the execution of instruction
number t.

Finally, we define the address­space of a given execution E, denoted by Mem(E), to be
the set of all memory locations which are addressed by the instructions of E.
Reachability. A thread can access an object only if it has a local reference to it. A thread
can obtain a reference to an object only by one of two methods: (1) by reading the contents
of a slot of an object to which it already has a local reference. (2) by allocating a new
object. This pattern of access calls for the following standard definition of reachability:

Deifnition 3.3 (Reachability) We say that an object o is

. directly reachable from thread T; at time t i/Tj has a local­reference to o at t.

. reachable from thread T, at time t if it is directly reachable from thread T, at t
or there exists a reference to 0 in object y at time t and y is reachable from thread Ti
at time t.

. reachable at time t if there exists a thread Ti such that o is reachable from Ti at
time t.

. unreachable, or garbage, at time t if it is not reachable at time t.

Reference counters. Garbage collection by reference counting is based upon counting
the number of references referring to each object at a given time. We formally define the
reference count of an object as follows:

Deifnition 3.4 (Heap Reference Count) The Heap Reference Count of an object 0 at
time t, denoted by RC(o)@t, is the numberof heap slots referring to o at time t.

We usually abbreviate and refer to an object Heap Reference Count as its Reference
Count3. In any conceivable reference counting system there is a ifeld associated with each
object that is used to record the number of references to the object. For an object 0 this
field is denoted by o.rc. The field is invisible to the user program; it is only accessible to
the memory management subsystem.
Coordination of threads. We assume that the garbage collector thread, by virtue of
being a privileged system thread, can control scheduling of mutator threads to a certain

2Thus, we assume that the shared­memory is sequentially consistent. In section 7.4 we show how the
memory model constraints may be relieved in order to adapt the algorithms we present to systems with
weaker memory models.

3An object Reference Count is sometimes deifned as the number of references (including local references)
to an object. We do not include local roots in the count. This definition is the same as presented in the
context of Deferred Reference Counting, see [19].

12

Chapter 3

System Model, Definitions,
Symbols and Abbreviations

Memory management. User programs assume the existence of system level services
encapsulated in the Memory Manager and Garbage Collector subsystems. The role of the
memory manager is to provide the application program, upon request, with contiguous
regions of the memory, called objects. The memory­manager is also responsible for the
explicit deletion of objects. A chunk of memory which has been returned by the memory
manager to the application program but has not yet been deleted is an allocated object1.
The task of the garbage collector is to find objects which are unreachable (see definition
below) and pass them to the memory­manager for deletion .

In a multi threaded system it is convenient to perceive (and usually also to implement)
the garbage collector as a separate thread. Then the garbage collector dedicated thread is
termed the collector while the ordinary threads that carry out the user program arc called
mutators. We sometimes call the mutators user threads or just threads.
The Heap: Objects and Roots. Some of the memory locations inside an object are
designated as pointer­containers. i.e., they assume the value of addresses of objects, or
the special value null. We call such locations heap­slots or just slots. This name stresses
the fact that heap slots are residing inside the heap, as opposed to global roots and local
references (defined below), which are not part of the heap. It is a common requirement,
that we adopt as well, that allobject Js heap­slots would contain null upon allocation.

The system contains global roots which are a set of fixed memory locations, disjoint of
the heap, that may be accessed, for reading and writing, directly by any thread.

Each thread has a local state which can contain references to objects. These references
are termed local roots or local references. On a typical system, a thread local state is
comprised of thread specific registers and stack. Only the thread itself can access its local
state.
Simplifying assumptions regarding the heap. For convenience, we assume in the
exposition of the algorithms and their proofs that there are no global roots. In section 7.3
we show how global roots should be actually treated on a real system. For now, let us just
say that global roots may be simply treated as ordinary heap slots.

In the correctness proofs we adopt the assumption that objects contain only reference
fields, i.e., they never contain non­pointer fields. It can be readily seen that our algorithms
operate correctly when this is not the case.
Global state and time. All shared­memory operations requested by all threads (i.e., both

1We assume that memory manager allocation and deletion operations are atomic, i.e., an object cannot
be allocated if it has not been fully deleted, etc.

11

counting and transaction log for a multiprocessor system. However, the update operation is
done inside a critical section that uses a single central lock. This implies that only a single
update can occur simultaneously in the system, placing a hard bound on the scalability of
it.

Our algorithms are based on the sliding view notion, which is semantically close to a
snapshot. The sliding views arc used to compute reference counts, on which the collection
criteria is based. Additionally, we present a tracing collector that traces according to a
sliding view. Thus. our algorithms have points of similarity with other concurrent algoirthms
which are snapshot based. Furusou et al. [25] presents a collector based on copy­on­write
facilities of the operating system. This mechanism is used in order to obtain an atomic
snapshot of the heap. Tracing proceeds according to this atomic snapshot. Yuasa [56] uses
an implicit snapshot obtained by a software write­barrier that records the values of slots
before they are overwritten. These "old" values, a superset of the values that were in effect
when the conceptual snapshot was taken, are then traced and retained by the collector.

In the context of incremental tracing collectors Wilson [51] makes the distinction between
snapshot­at­beginning and incremental update algorithms. Trying to apply the terms to our
on­the­fly reference counting collector we note that our algorithm takes both approaches
simultaneously. The inter­cycle reference counting activity is based on spotting differences
between consecutive sliding views. Thus, the system strives to retain the information that
is contained in the most recent sliding view, which is similar to the pattern of operation in
a snapshot­at­beginning algorithm. On the other hand, intra­cycle activity is centered at
linking the sliding view to an eventual atomic state of the system, based on which collection
decisions are made. This linking is done using incremental update techniques.

In terms of synchronization requirements and characteristics our work is similar to that
of Doligez­Leroy­Gonthier [22. 21]: 1) we never require a full halt of the system; 2) mutators
are required to cooperate four times per cycle ([22, 21] requires three handshakes per cycle);
3) no locks are used. In our tracing algorithm we have used an object sweeping method
similar to that presented in [22. 21].

2.1 A complementary work
Independently of this work, Bacon et. al. [1] have also presented an on­the­fly reference
counting algorithm. Both works introduce on­the­fly collector with extremely low pause
times. But, whereas the focus in our work is in obtaining high efficiency through extremely
fine synchronization (in the write barrier) , the work in [1] focuses on a novel on­the­fly cycle
detection method. Collecting cycles on­the­lfy is a task that could not be done before. In
this work, we have not dealt with this problem. Instead, we employed a mark and sweep
collector (run seldom) to collect cycles. We believe that the methods in [1] can be combined
with ours to obtain an efficient reference counting collector with no need for an external
tracing collector.

10

Chapter 2

Related work

The traditional method of reference counting, applicable in the realm of uniprocessing, was
ifrst developed for Lisp by Collins [15]. In its simplest form, it allowed immediate recla­
mation of garbage in a localized manner, yet with a notable overhead for maintaining the
space and semantics of the reference counters. As such, it was used in applications requir­
ing responsiveness that could not tolerate delays yet could stand the incurred space and
computational overhead such as Smalltalk­80 [27] and the AWK [5] and Perl [48] programs.

Weizman showed in [49] how the delay introduced by recursive deletion (which is the only
non­constant delay caused by classic reference counting) can be ameliorated by distributing
deletion over object creation operations.

Deutsch and Bobrow [19] eliminated most of the computational overhead required to
adjust reference counters in their method of deferred reference counting. According to
the method, local references are not counted thus the need to track fetches, local pointer
duplication and cancellation are deemed unnecessary. Only stores into the heap need be
tracked. However, the immediacy of reference counting is lost to a certain extent, since
garbage may be reclaimed only after the mutator state is scanned. Nevertheless, the method
proved to be very efficient and was later adapted for Modula­24­ [17]. Several studies [39,
46, 6, 57] showed that the assumption about the relatively low frequency of store operations
is usually valid. Baker in [10] advocates for a less sweeping treatment of local variables:
deferring the manipulation of reference counters and reclamation of objects is controlled by
pointing to them using special anchored pointers. That is, special pointers that for a limited
duration in the program lfow prevent the reclamation of their referents. Baker claims that
the Deutsch and Bobrow technique is not feasible with modern compilers since it is diiffcult
to scan the stack for pointers. However, the stack scan can be done conservatively with no
diiffculty involved. Park and Goldbreg [41] show how one can detect scopes in which it is
known at compile time that an object is "anchored'' , i.e., is accessible from some live pointer
down the procedure call stack, and accordingly eliminate reference count manipulations due
to stack operations on nested calls.

Addressing the issue of storage overhead and noting that most objects are singly­
threaded, except for the duration of short transitions, Wise and Roth [42, 53] suggested
using a single bit for the reference count and an auxiliary cache for objects which momen­
tarily have a reference count of two. It is further claimed that this uniqueness bit should
reside in any pointer to the object rather than in the object itself, thus saving extrane­
ous memory accesses. This idea was introduced by Stoye [45]. Additional schemes that
use single­bit reference counters are those by Chikayama and Kimura [13] and by Goto et
al. [28].

DeTreville describes in [17] a concurrent multiprocessor reference counting collector for
Modula­2­h The algorithm used adapts Deutsch and Bobrow's ideas of deferred reference

9

mutator, and indirectly, by the collector. We thus expect the algorithm to demonstrate
scalability in both the size of the heap and the number of mutator threads.

1.5 Organization
We start we survey of related work in chapter 2. In chapter 3 we present definitions and
terminology to be used in the rest of the paper. In chapter 4 we present our Snapshot
algorithm. Chapter 5 describes the Sliding View algorithm. Chapter 6 introduces our
Tracing Sliding View algorithm. In chapter 7 we discuss several implementation issues of
the proposed algorithms. Chapter 8 describes our implementationof the algorithms for Java.
In chapter 9 we describe the performance results achieved with the Java implementation.
We provide proofs for the Snapshot Algorithm, Reference Counting Sliding View Algorithm
and Tracing Sliding View Algorithm in chapter A. B and C of the appendix, respectively.
Chapter D of the appendix contains the source code of the implementation. We conclude
in chapter 10.

8

1.3.2 The Sliding View Algorithm
Our proposed Sliding View Algorithm has low synchronization requirements just like the
Snapshot Algorithm. Namely, mutators never compete on locks or use strong memory
operations, such as Compare&Swap. But in the Sliding View Algorithm. the mutators are
never stopped simultaneously. Instead, in each collection cycle, they cooperate with the
collector through four handshakes. In these handshakes, each mutator is stopped for a
short while (for example, until its buffers are read by the collector) and then resumes. Since
in this algorithm there is no specific time in which all mutators are stopped, an an overall
different approach to using a snapshot is called for. To this end, the sliding view concept
was developed.

All previous reference­counting algorithms are based on the same strict invariant: there
is a time point t such that the reference­count field of each object is equal to (or not smaller
than, in some limited reference count ifeld variants) the actual number of references to the
object. This invariant requires some form of an atomic snapshot, referring to time t. In the
sliding view algorithm we maintain a weaker invariant that still allows for safe and efifcient
garbage collection. In the algorithm, we interchange the notion of an atomic snapshot with
that of a sliding view which is, as its name implies, a fuzzier picture of the heap state. In a
sliding view, each reference field in the heap can be checked at a different time. However,
between the time the ifrst reference ifeld is read and the time the last reference ifeld is
read, an extreme care is taken with any reference modiifcation. In particular, objects that
are referenced by pointers that are modiifed during this time will not be collected in this
collection cycle.

Like in the Snapshot Algorithm, The sliding view algorithm considers only the differences
between the sliding view of the current collection and the sliding view of the previous
collection. Thus, the sliding views are never computed explicitly but arc rather inferred
from the records mutators keep in local history buffers.

1.3.3 The Tracing Sliding View Algorithm
In the reference counting algorithms that we propose there still remains the inability to re­
claim cyclic structures and restore stuck reference counts. In our opinion the only realistic
way to tackle these problems is by combining frequent reference counting cycles with infre­
quent tracing cycles. Yet we are not willing to sacriifce scalability and impose additional
overhead on mutatorswrite­ barrier in order to support both paradigms. Therefore, we
present a scalable on­the­lfy tracing collector that uses the same write­barrier that is used
by the reference counting collector. The tracing and reference counting collectors are thus
interchangeable and any of which may be invoked on each cycle.

1.4 Efifciency of the Sliding View Algorithm
The complexity of the write­barrier on pointer modiifcation amounts to three additional
load operations in most cases and to a handful of additional memory accesses otherwise.
The cooperation through handshakes is proportional to the size of thread's state. In this
respect, our algorithm has synchronization characteristics similar to those of [22, 21].

However, opposed to tracing collectors, the amount of work the collector has to invest
in a cycle is not proportional to the volume of live data, nor to the size of the heap, but is
rather dominated by the number of slots that have been modiifed since the last cycle plus the
amount of garbage that is recovered. Thus, any mutator operation incurs a close to (small)
amortized constant overhead, bearing in mind both operations carried out directly. by the

7

)even not a compare­ and­swap type of operation). Furthermore, the algorithm is non­
disruptive: the program threads are never stopped simultaneously to cooperate with the
collector. Instead, each program thread cooperates with the collector at its own pace,
infrequently, and for very short periods.2

Our central goal is achieving the shortest possible response time for typical mutator
requests such as object allocation and pointer manipulation.

1.3.1 The Snapshot Algorithm

We start with a simple algorithm denoted The Snapshot Algorithm. In this algoirthm, there
is a point in time in the beginning of the collection in which all mutators arc halted. A
virtual snapshot of the heap is taken then and used for the collection. Of course, taking
a real snapshot is too expensive both in time and space. It turns out that what we really
need is to ifnd which reference ifelds have been modified since the last snapshot. For each
modiifed ifeld, we need to know the value in the previous snapshot and in the current
snapshot since we must decrement the reference count of the previously referenced objects
and increment the reference count of the newly referenced object. To help with this goal,
the mutators record the ifrst time a pointer ifeld is modiifed after the snapshot. This is the
information that is really recorded, and it is enough information to perform the collection.
The exact details arc given in chapter 4 below.

At ifrst glance, it seems that a race condition may foil the correctness of this process:
two mutators may write to the same location and record conlficting values. However, with
a careful design of the write barrier code performed by the mutators while updating, this
can be solved. The main idea is that even if two mutators think they are performing the
ifrst modiifcation after the snapshot, they will properly record the same value into their
records causing no inconsistencies . An additional important idea to make the algorithm
efficient and scalable is to use local buffering for the records. The details are in chapter 4
below. The time the mutators are simultaneously stopped is short: all that is needed is to
read all the local buffers, and mark that all reference ifelds are untouched for the current
new snapshot.

Note that as in DeTreville's work in [17], our algorithm is based on the mutators log­
ging information about the modiifcations they apply to heap references. However, in our
algorithm, a thread takes a record of a modiifcation at most once per slot per cycle (as
opposed to always keeping a record) and there is no synchronization incurred due to the
logging action.

The Snapshot Algorithm is a reasonable candidate for a scalable reference count con­
current garbage collector: it requires little cooperation of the mutators (there is no need for
synchronization operations such as compare­and­swap) plus one halt of the program for a
fast initialization of the collection. However, the fact that the mutators are stopped simul­
taneously and that they must wait till the collector handles all mutators is not satisfactory.
This may still hinder the scalability of the system. Thus, we propose a more advanced
on­the­lfy collector denoted The Sliding View Algorithm that achieves better efifciency and
scalability.

We remark that the simple version of reference counting seems non­disruptive at ifrst glance: there is
no collector thread that stops the mutators. However, the work of the collection is done by the mutators,
thus, delaying (disrupting) the program's actual work; furthermore, running this algorithm naively on a
multiprocessor requires heavy synchronization on each update of a pointer, thus, making the algorithm
non­scalable.

6

We remark that another alternative for an adequate garbage collection on a multipro­ 1
cessor is to perform the collection in parallel (see for example [29. 16, 38, 30, 23, 34]. This
approach does not involve wastage of processing power, yet it still imposes a possibly long
pause time on the user threads. We do not explore this avenue further in this work.

1.2 Reference counting
Reference counting is a most intuitive method for automatic storage management. As such,
systems using reference counting were implemented starting from the sixties (c.f. [15].)
The main idea is that we keep for each object a count of the number of references that
reference the object. When this number becomes zero for an object o, we know that o can
be reclaimed. At that point, o is added to the free list and the counter of all its predecessors
(i.e., the objects that are referenced directly by the object o) arc decremented, initiating
perhaps more reclamations.

The key advantage of reference counting for traditional uniprocessor environments is that
it operates in a decentralized manner, allowing the mutator to recycle an object as soon as
it becomes garbage. Since reference counting is local and decentralized in nature there is no
pause time incurred in order to compute global features, such as object­graph reachability.
Such computations are necessary in tracing collectors such as mark­and­sweep and copying
collectors. Its disadvantages are a per­object space overhead required to maintain the
reference count of an object, a computational overhead associated with pointer manipulation
in order to maintain the reference count invariant and the inability to reclaim cyclic data­
structures.

The space overhead issue is ameliorated by the fact that a two­bit heap reference count
field is more than enough in the striking majority of cases (c.f. [19, 42, 52, 13, 28]). While
the computational overhead is reduced by some 8090 using Dutsch and Bobrow's Deferred
Reference Counting [19]. Only the inability to reclaim cyclic structures does not have a
satisfactory solution intrinsic to reference counting [51, 33] and therefore reference counting
systems are usually combined with a tracing collector. Usually, a simple tracing collector
is used infrequently to reclaim cyclic unrcachablc structures.

The transformation of sequential reference counting into concurrent reference counting
must cope with maintaining the reference counting invariant. A straightforward adaptation
of the sequential algorithm to a concurrent environment imposes a non­tolerable synchro­
nization overhead on pointer update operations: both pointer update and reference coun­
ters updates must be atomic. DeTreville describes in [17] a concurrent reference counting
garbage collection algorithm used for a Modula­2+ system. This is the only concurrent
reference counting system that works on a stock SMP. The scheme used is an adaptation of
Deutsch and Bobrow's algorithm to an SMP environment. The system achieves a certain
amount of parallelism. Notably, threads are not required to stop simultaneously. Rather,
when needed, each thread is stopped at a time. Thus, the algorithm is an on­the­lfy algo­
rithm. as above. However, each update of a pointer is done in a critical section common
to all threads, no matter which pointer slot is modified. This solution is obviously not
scalable since at most a single update can occur in the system at any given moment. This
synchronization overhead is unacceptable on a multiprocessor.

1.3 This work
In this work we propose and implement a new scalable and efficient concurrent reference
counting algorithm. Our algorithm employs extremely ifne synchronization. In particular,
updates of pointers and creation of objects require no synchronization overhead whatsoever

5

Chapter 1

j Introduction

Automatic memory management is well acknowledged as an important tool for fast devel­
opment of large­scale reliable software. However, it turns out that the garbage collection
process has an important impact on the overall runtime performance. The amount of time
it takes to handle allocation and reclamation of memory spaces may reach as high as SO1??) of
the overall running time for realistic benchmarks; in particular garbage collection may take
a long time if the memory management is not well designed. Thus, a clever design of efficient
memory management and garbage collector is an important goal in today's technology.

1.1 Automatic memory management on a multiprocessor
In this work, we concentrate on garbage collection for multiprocessor machines. Multipro­
cessor platforms have become quite standard for server machines and are also beginning
to gain popularity as high performance desktop machines. Many well­studied garbage col­
lection algorithms are not suitable to work with a multiprocessor. In particular, many
collectors1 run on a single thread after all program threads have all been stopped. This
causes bad processor utilization, and hinders scalability.

In order to make better use of a multiprocessor, concurrent collectors have been pre­
sented and studied (see for example, [9, 20, 7, 17, 18, 12. 22, 40, 21]). A concurrent collector
is a collector that does most of its collection work concurrently with the program without
stopping the program threads. Most of the concurrent collectors need to stop all program
threads at some point during the collection, in order to initiate and/or finish the collection,
but the time the mutators must be in a halt is short. Usually the pause time is negligible
comparing to the time it takes to execute the full collection cycle.

Stopping all the threads for the collection is an expensive operation by itself. Usually,
the program threads cannot be stopped at any arbitrary point in the instruction stream.
Rather, they should be stopped at safe points at which the collector can safely determine
the reachability graph and properly reclaim unreachable objects. Thus, each thread must
wait until the last of all threads cooperate and come to a halt. This hinders the scalability of
the system, as the more threads there are the more delay the system suffers. Furthermore,
if the collection work is not done on parallel on all available processors (which is usually the
case), then during the time the program threads are stopped expensive processing power is
wasted.

Therefore, it is advantageous to use on­the­lfy collectors [20, 22, 21]. On­the­lfy collectors
never stop the program threads simultaneously. Instead, each thread cooperates with the
collector at its own pace through a mechanism called (soft) handshakes.

1Among them the collector supplied with Javasoft's Java Virtual Machine.

4

List of Symbols and Abbreviations

GC Garbage Collection

JVM The Java Virtual Machine

RC Reference Counting

SMP Symmetric Multi Processing or Symmetric Multi Processor

t a dimentionless, discrete, time instance

E@t the value of the expression E at time t

o the address of an object

s an object ifeld. Also called an object slot

RC(o) the heap reference count of object o

o.rc the value of the reference counter of object o

T; thread identifier

R^ an atomic snapshot of the heap

Vjt a sliding view of the heap

Hist^ a history

Histk{s) the value associated with s in the history Histk

3

concurrent version of reference counting is not at all scalable. Furthermore. a more ad­
vanced study by DeTreville yielded an algorithm that acquires a single lock per update of
a pointer. thus, executing all updates sequentially and hindering the scalability of the al­
gorithm. The new algorithm presented in this work, on the other hand, employs extremely
fine synchronization. Furthermore, the algorithm is non­disruptive: the program threads
are never stopped simultaneously to cooperate with the collector. Thus, the program can
run with (almost) no synchronization overhead imposed by the collection.

An nn­thf>­lf1r trarincr rnlWtnr that 11="= tV,o camo ™­Inr­iInd­on A ­^ =.­0­ <""­*" f+ 1 ™r­^A^

reclamation of cyclic data structures that cannot be reclaimed directly by the reference
counting collector.

We develop the concept of a sliding view that is an approximated atomic snapshot of the
heap. In the reference counting algorithm, collection is based on the differences between two
consecutive sliding views: the sliding view associated with the previous cycle and the sliding
view associated with the current cycle. In the tracing algorithm, we trace through an image
of the heap described by the sliding view associated with the current cycle. Thus, common
to both algorithms is the calculation of the sliding view. The validity of the algorithm
stems from the fact that both the collector and user threads strive to maintain just enough
information records in order to construct a sliding view.

We have implemented both algorithms for Java and measured their efficiency in both
server and client environments. We witnessed a dramatic improvement in response time
while retaining or exceeding the throughput of the original JVM.

2

Abstract

This work presents the first on­the­lfy reference counting based automatic memory manage­
ment algorithm that requires no synchronization overhead in the basic memory management
operations: pointer update and object allocation. The algorithm is based on a general con­
cept, termed Sliding View, which is related to the atomic snapshot concept. We use the
same theoretic foundation of the Sliding View to define a second garbage collection algo­
rithm based on tracing. Since the two algorithms rely on the same foundation. they coexist
and complement each other at runtime. We have implemented an integrated garbage eollec­
tor containing both algorithms for Javasoft's virtual machine and have witnessed substantial
performance gains.

The increasing popularity of garbage collected programming languages, especially due
to the introduction of the Java programming language, has triggered a renewed interest
in garbage collection. Specifically, the traditional methods of garbage collection are re­
evaluated and arc being adapted to contemporary computing models and programming
languages.

In particular, garbage collection algorithms are being adapted to one computing model
that has gained enormous acceptance in both the industry and the academic world as a
most viable computing model during the past decade­ the shared­memory multiprocessing
model. Due to this acceptance, shared memory multiprocessor machines abound as servers
and as powerful desktop stations.

While shared memory multiprocessing is not a new concept the fact that the price of
random access memory components had dropped recently calls for changes in the way the
shared memory platform is utilized. Whereas in the past an emphasis has been put on
maximizing the locality of programs in order to avoid page faults, page faults nowadays arc
less of a concern as the entire heap is backed by cheap random access memory and therefore
faults are scarce. Instead. an emphasis must now be placed on maximizing the throughput
of the processors in a shared memory platform by avoiding synchronization bottlenecks and
choosing scalable algorithms in terms of growing number of threads, growing heap sizes and
growing heap occupancy factors.

The reference counting algorithm presented in this work achieves all of the above goals.
First, it never halts the system or does it requires synchronization in the basic operations
of memory update and object allocation (not even acompare­and­swap type of operation).
User threads are only required to cooperate with the collector one at a time, for short
durations and infrequently (four times per collection cycle). This fine synchronization, in
addition to eliminating synchronization bottlenecks, also enables scalability in the number
of threads, as no action requires the cooperation of more than one thread simultaneously.
Second, the asymptotic behavior of the reference counting algorithm does not depend on
the heap occupancy or on the heap size. This is in sharp contract with the de facto standard
methods of mark­and­sweep and copying.

While tracing variants of garbage collection have been well studied with respect to con­
currency, the study of reference counting has been somewhat behind. The straightforward

1

List of Tables (Continued)
9.14 Maximal response time, in seconds, of the original JVM, reference counting

and tracing collectors in a series of ifxed number of threads runs with 600MB
heap 69

9.15 Maximal response time, in seconds, of the original JVM, reference counting
and tracing collectors in a series of ifxed number of threads runs with 900MB
heap 69

9.16 Maximal response time, in seconds, of the original JVM, reference counting
and tracing collectors in a series of fixed number of threads runs with 1200MB
heap 70

9.17 Memory consumption at the end of a series of ifxed number of threads runs
with 600MB heap 70

9.18 Time to completion , in seconds,of the MTRT benchmark, with varying num­
ber of threads 70

9.19 Minimal heap size required to complete successfully a four thread mtrt run
and the time to completion with that heap size 71

9.20 Elapsed time for the execution of the entire SPECjvm98 suite and interme­
diate execution time of a double­run for each of the suite's members 71

9.21 Objects created per second in the allocation benchmark on a four­way server. 72
9.22 Objects created per second in the allocation benchmark on a single processor

workstation 72

List of Tables

9.1 Number of allocated objects, average object size and the average number of
references in an object 65

9.2 Number of objects that have reached a stuck count (i.e., 3) and their per­
centage in the reference counted runs 65

9.3 Percentage of objects reclaimed by the tracing and reference counting collec­
tors and the associated estimate for reference counting inefficiency in collect­
ing the benchmark 65

9.4 Demographics of the write barrier: number of reference stores applied to new
and old objects; number of object logging actions; total number of references
that were logged and the ratio of the number of object logging actions to
the number of allocations. This ratio is an upper bound to the percentage of
objects which ever get logged in the write barrier 66

9.5 GC time for the tracing collector, in seconds and the time spent in clearing
dirty marking, tracing and sweeping 67

9.6 GC time for the reference counting collector, in seconds. "Clear" refers to
procedure Clear­Dirty­Marks ; "Update" refers toUpdate­Reference­
Counters; "Create buff" refers to the pass over the create buffers, checking
whether an object is garbage and adding it to the ZCT; "Reclaim" is the
final pass over the ZCT, when objects are deleted recursively 67

9.7 Reference counting performance in a standard SPECjbb run 68
9.8 Elapsed time of garbage collection in a standard SPECjbb run with the ref­

erence counting collector; the percentage of increase in elapsed time over
the original garbage collector and the types of garbage collection cycles that
were performed. "sync" is a synchronous GC cycle requested explicitly by
the benchmark 68

9.9 Tracing collector performance in the standard SPECjbb run 68
9.10 Elapsed time of garbage collection in a standard SPECjbb run with the trac­

ing collector; the percentage of increase in elapsed time over the original
garbage collector and the types of garbage collection cycles that were per­
formed. "sync" is a synchronous GC cycle requested explicitly by the bench­
mark 69

9.11 Scores of the original JVM on a series of fixed number of threads runs with
600MB heap; increase/decrease in score for the reference counting and tracing
collectors 69

9.12 Scores of the original JVM on a series of fixed number of threads runs with
900MB heap; increase/decrease in score for the reference counting and tracing
collectors 69

9.13 Scores of the original JVM on a series of fixed number of threads runs with
1200MB heap; increase/decrease in score for the reference counting and trac­
ing collectors 69

List of Figures

4.1 Mutator Code­ Update Operation 18
4.2 Mutator Code­ for Allocation 18
4.3 Collector Code 18
4.4 Collector Code­ Procedure Read­Current­State 19
4.5 Collector Code­ProcedureUpdate­Reference­Counters 19
4.6 Collector Code­ Procedure Read­Buffers 20
4.7 Collector Code­ Procedure Fix­Undetermined­Slots 20
4.8 Collector Code­ Procedure Reclaim­Garbage 20
4.9 Collector Code­ Procedure Collect 21

5.1 Timing diagram for the sliding view algorithm 26
5.2 Sliding View Algorithm: Update Operation 29
5.3 Sliding View Algorithm: Collector Code 29
5.4 Sliding View Algorithm: Procedure Initiate­Collection­Cycle 29
5.5 Sliding View Algorithm: Procedure Clear­D irty­Marks 30
5.6 Sliding View Algorithm: Procedure Reinforce­Clearing­Conlfict­Set . . 30
5.7 Sliding View Algorithm: Procedure Consolidate 31
5.8 Sliding View Algorithm: Procedure Merge­Fix­Sets 31
5.9 Sliding View Algorithm: Procedure Collect 33

6.1 Allocation code that supports tracing cycles 37
6.2 TracingAlg.­Collector Code 37
6.3 Tracing Alg.­ ProcedureConsolidate­For­Tracing 38
6.4 Tracing Alg.­ Collector Code­ Procedure Mark 39
6.5 Tracing Alg.­ Collector Code­ Procedure Trace 40
6.6 Tracing Alg.­ Collector Code­ Procedure Sweep 41

8.1 Object layout in the original arid modified JVMs. In the original JVM, data
is accessed indirectly through a handle in order to support the relocation of
object data. In the modiifed JVM, object data is almost always referenced
directly by the user yet the data pointer is retained for compatibility. The
logPos field is either null or a pointer to a log entry that contains the logged
object's reference data 51

Table of Contents (Continued)
B.5 Inductive safety a!­guments 87

C Tracing Sliding View Algorithm Safety Proof 96

D Source Code 99
D.I Organization of the code 100
D.2 mok_win32.c 100
D.3 rcblkmgr.c 102
D.4 rcchunkmgr.c 109
D.5 rcgc.c 118
D.6 rcgc.h 156
D.7 rcbmp.c and rcbmpJnline.h 1G7
D.8 rcgcJnternal.h 171
D.9 rchub.c 172
D.10ylrc_protocol.h 173
D.ll gc.c 173

Bibliography 177

Table of Contents (Continued)
6 A Supplemental Sliding View Tracing Algorithm 34

6.1 Tracing using a sliding view 34
6.2 The algorithm 36
6.3 Mutator code 37
6.4 Collector Code 37

7 Implementation Issues 42
7.1 Dirty Flags 42

7.1.1 Allotting a lfag per a chunk of memory 43
7.1.2 Initialization 44

7.2 Log buffers 44
7.3 Global roots 45
7.4 Memory consistency 46

8 An Implementation for Java 50
8.1 Java­ the target platform 50
8.2 Object structure and garbage collection in the original Java Virtual Machine 50
8.3 Object structure in the modified JVM 52

8.4 Simplifying the determination of object's contents using the logPos ifeld . . 53
8.5 Additional advantages of the logPos field 56
8.6 The Create Procedure 57
8.7 Implementation of the log buffers 58
8.8 Cooperation model 59
8.9 The memory manager 59

8.9.1 The block table 60
8.9.2 Partial lists 62
8.9.3 Chunked object lists 62

9 Performance Results 64
9.1 The benchmarks used­ instrumentation results 64
9.2 Server performance 67
9.3 Client performance 71
9.4 Allocator scalability 72
9.5 Discussion 72

10 Conclusions 75

A Snapshot Algorithm Correctness Proofs 76
A.I Safety 76

A. 1.1 Road map for the proof 76
A. 1.2 Update protocol properties 77
A. 1.3 Determined vs. undetermined slots 79
A. 1.4 Linking re field with reference count 80
A. 1.5 Conclusion of safety proof 81

A.2 Progress 82

B Sliding View Algorithm Safety Proof 84
B.I Definitions 84
B.2 The sliding view associated with a cycle 85
B.3 Some basic claims 86
B.4 Road map for the proof 86

''' t

Contents

Abstract 1

List of Symbols 3

1 Introduction 4
1.1 Automatic memory management on a multiprocessor 4
1.2 Reference counting 5
1.3 This work 5

1.3.1 The Snapshot Algorithm 6

1.3.2 The Sliding View Algorithm 7

1.3.3 The Tracing Sliding View Algorithm 7
1.4 Efifciency of the Sliding View Algorithm 7
1.5 Organization 8

2 Related work g
2.1 A complementary work 10

3 System Model, Definitions, Symbols and Abbreviations 11

4 The Snapshot Algorithm 14
4.1 A naive algorithm based on snapshot difference 14
4.2 Implementing the algorithm eiffciently 14
4.3 Overview of imitator's cooperation 16
4.4 Overview of the collection cycle 16
4.5 Data structures 17
4.6 Mutator code 17
4.7 Collector code 18
4.8 Intuition 21

5 The Sliding View Algorithm 22
5.1 Scans and sliding views 22
5.2 Using sliding views to reclaim objects 23
5.3 Algorithm's idea 24
5.4 Overview of mutator's cooperation 25
5.5 Overview of the collection cycle 25
5.6 Intuition: whore's the sliding view? 27
5.7 Mutator code 28
5.8 Collector code 28

The research thesis was done under the supervision of
Dr. Erez Petrank in the Department of Computer Science.

I thank Dr. Ercz Petrank for his excellent guidance, knowledge and experience that
were a source of inspiration for me throughout the stages of the work.

I thank Dr. Hillel Kolodner for his helpful review comments.
My sincere thanks to my wife Dorit for her support. I am grateful to my mother,
Dr. Amalia Levanoni, who made this work possible (that is, not merely by bringing
me into the world, but also by taking care of all the thesis submission paperwork) .

Thanks go to my father and sister for being there for me. Last but absolutely not
least thanks to Yoav my son who didn't help that much with the thesis (quite the

contrary) but has brought endless joy into his parents life.

I dedicate this work to the memory of Avigdor Levanoni. my grandfather.

The generous financial help of the Gutwirth Fund is gratefully acknowledged.

■I

ו

להשאלה לא i^J)

On­The­Fly Garbage Collection Via
Sliding Views

Research thesis
submitted in partial fulfillment of
the requirements for the degree of

Master of Science in Computer Science

Yosseff Levanoni

אלישר ע"ש המרכזית nnDt7;1
> מס'

,21!21!1__ מערכת

Submitted to the Senate of the Technion­ Israel Institute of Technology
Shevat 5761 Haifa January 2001

■ *

I On­The­Fly Garbage Collection Via■ Sliding Views

H ^M /^ U89Z9900000 ^^B

