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Abstract

This work presents the first on-the-fly reference counting based automatic memory management
algorithm with that requires no synchronization overhead in the basic memory management oper-
ations: pointer update and object allocation. The algorithm is based on a general concept, termed
Sliding View, which is related to the atomic snapshot concept. We use the same theoretic founda-
tion of the Sliding View to define a second garbage collection algorithm based on tracing. Since the
two algorithms rely on the same foundation, they coexist and complement each other at runtime.
We have implemented an integrated garbage collector containing both algorithms for Javasoft’s
virtual machine and have witnessed substantial performance gains.

The increasing popularity of garbage collected programming languages, especially due to the
introduction of the Java programming language, has triggered a renewed interest in garbage col-
lection. Specifically, the traditional methods of garbage collection are re-evaluated and are being
adapted to contemporary computing models and programming languages.

In particular, garbage collection algorithms are being adapted to one computing model that
has gained enormous acceptance in both the industry and the academic world as a most viable
computing model during the past decade—the shared memory multiprocessing model. Due to this
acceptance, shared memory multiprocessor machines abound as servers and as powerful desktop
stations.

While shared memory multiprocessing is not a new concept the fact that the price of random
access memory components had dropped recently calls for changes in the way the shared memory
platform is utilized. Whereas in the past an emphasis has been put on maximizing the locality of
programs in order to avoid page faults, page faults nowadays are less of a concern as the entire heap
is backed by cheap random access memory and therefore faults are scarce. Instead, an emphasis
must now be placed on maximizing the throughput of the processors in a shared memory platform by
avoiding synchronization bottlenecks and choosing scalable algorithms in terms of growing number
of threads, growing heap sizes and growing heap occupancy factors.

The reference counting algorithm presented in this work achieves all of the above goals. First,
it never halts the system nor does it requires synchronization in the basic operations of memory
update and object allocation (not even a compare-and-swap type of operation). User threads are
only required to cooperate with the collector one at a time, for short durations and infrequently
(four times per collection cycle). This fine synchronization, except for eliminating synchronization
bottlenecks, also enables scalability in the number of threads, as no action requires the cooperation
of more than one thread simultaneously. Second, the asymptotic behavior of the reference counting
algorithm does not depend on the heap occupancy nor on the heap size. This is in sharp contract
with the de facto standard methods of mark-and-sweep and copying.

While tracing variants of garbage collection have been well studied with respect to concurrency,
the study of reference counting has been somewhat behind. The straightforward concurrent version
of reference counting is not at all scalable. Furthermore, a more advanced study by DeTreville
yielded an algorithm which acquires a single lock per update of a pointer, thus, executing all updates
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sequentially and hindering the scalability of the algorithm. The new algorithm presented in this
work, on the other hand, employs extremely fine synchronization. Furthermore, the algorithm
is non-disruptive: the program threads are never stopped simultaneously to cooperate with the
collector. Thus, the program can run with (almost) no synchronization overhead imposed by the
collection.

The on-the-fly reference counting algorithm is complemented by an on-the-fly tracing collector
which uses the same principals and shares most of the code and data structures of the reference
counting collector. This enhances the integration of the two algorithms and allows the reclamation
of cyclic data structures which cannot be reclaimed directly by the reference counting collector.

We develop the concept of a sliding view which is an approximated atomic snapshot of the heap.
In the reference counting algorithm, collection is based on the differences between two consecutive
sliding views: the sliding view associated with the previous cycle and the sliding view associated
with the current cycle. In the tracing algorithm, we trace through an image of the heap described
by the sliding view associated with the current cycle. Thus, common to both algorithms is the
calculation of the sliding view. The validity of the algorithm stems from the fact that both the
collector and user threads strive to maintain just enough information records in order to construct
a sliding view.

We have implemented both algorithms for Java and measured their efficiency in both server
and client environments. We witnessed a dramatic improvement in response time while retaining
or exceeding the throughput of the original JVM.

2



List of Symbols and Abbreviations

GC Garbage Collection

JVM The Java Virtual Machine

RC Reference Counting

SMP Symmetric Multi Processing or Symmetric Multi Processor

t a dimentionless, discrete, time instance

E@t the value of the expression E at time t

o the address of an object

s an object field. Also called an object slot

RC(o) the heap reference count of object o

o.rc the value of the reference counter of object o

Ti thread identifier

Rk an atomic snapshot of the heap

Vk a sliding view of the heap

Histk a history

Histk(s) the value associated with s in the history Histk

3



Chapter 1

Introduction

Automatic memory management is well acknowledged as an important tool for fast development
of large-scale reliable software. However, it turns out that the garbage collection process has an
important impact on the overall runtime performance. The amount of time it takes to handle
allocation and reclamation of memory spaces may reach as high as 30% of the overall running
time for realistic benchmarks; in particular garbage collection may take a long time if the memory
management is not well designed. Thus, a clever design of efficient memory management and
garbage collector is an important goal in today’s technology.

1.1 Automatic memory management on a multiprocessor

In this work, we concentrate on garbage collection for multiprocessor machines. Multiprocessor
platforms have become quite standard for server machines and are also beginning to gain popularity
as high performance desktop machines. Many well studied garbage collection algorithms are not
suitable to work with a multiprocessor. In particular, many collectors1 run on a single thread
after all program threads have all been stopped. This causes bad processor utilization, and hinders
scalability.

In order to make better use of a multiprocessor, concurrent collectors have been presented and
studied (see for example, [9, 20, 7, 17, 18, 12, 22, 40, 21]). A concurrent collector is a collector
that does most of its collection work concurrently with the program without stopping the program
threads. Most of the concurrent collectors need to stop all program threads at some point during
the collection, in order to initiate and/or finish the collection, but the time the mutators must be
in a halt is short. Usually the pause time is negligible comparing to the time it takes to execute
the full collection cycle.

Stopping all the threads for the collection is an expensive operation by itself. Usually, the
program threads cannot be stopped at any arbitrary point in the instruction stream. Rather, they
should be stopped at safe points at which the collector can safely determine the reachability graph
and properly reclaim unreachable objects. Thus, each thread must wait until the last of all threads
cooperate and come to a halt. This hinders the scalability of the system, as the more threads there
are the more delay the system suffers. Furthermore, if the collection work is not done on parallel
on all available processors (which is usually the case), then during the time the program threads
are stopped expensive processing power is wasted.

Therefore, it is advantageous to use on-the-fly collectors [20, 22, 21]. On-the-fly collectors never
stop the program threads simultaneously. Instead, each thread cooperates with the collector at its

1Among them the collector supplied with Javasoft’s Java Virtual Machine.

4



own pace through a mechanism called (soft) handshakes.
We remark that another alternative for an adequate garbage collection on a multiprocessor is

to perform the collection in parallel (see for example [29, 16, 38, 30, 23, 34]. This approach does
not involve wastage of processing power, yet it still imposes a possibly long pause time on the user
threads. We do not explore this avenue further in this work.

1.2 Reference counting

Reference counting is a most intuitive method for automatic storage management. As such, systems
using reference counting were implemented starting from the sixties (c.f. [15].) The main idea is
that we keep for each object a count of the number of references that reference the object. When
this number becomes zero for an object o, we know that o can be reclaimed. At that point, o is
added to the free list and the counter of all its predecessors (i.e., the objects that are referenced
directly by the object o) are decremented, initiating perhaps more reclamations.

The key advantage of reference counting for traditional uniprocessor environments is that it
operates in a decentralized manner, allowing the mutator to recycle an object as soon as it becomes
garbage. Since reference counting is local and decentralized in nature there is no pause time incurred
in order to compute global features, such as object-graph reachability. Such computations are
necessary in tracing collectors such as mark-and-sweep and copying collectors. Its disadvantages are
a per-object space overhead required to maintain the reference count of an object, a computational
overhead associated with pointer manipulation in order to maintain the reference count invariant
and the inability to reclaim cyclic data-structures.

The space overhead issue is ameliorated by the fact that a two-bit heap reference count field is
more than enough in the striking majority of cases (c.f. [19, 42, 52, 13, 28]). While the computational
overhead is reduced by some 80% using Dutsch and Bobrow’s Deferred Reference Counting [19].
Only the inability to reclaim cyclic structures does not have a satisfactory solution intrinsic to refer-
ence counting [51, 33] and therefore reference counting systems are usually combined with a tracing
collector. Usually, a simple tracing collector is used infrequently to reclaim cyclic unreachable
structures.

The transformation of sequential reference counting into concurrent reference counting must
cope with maintaining the reference counting invariant. A straightforward adaptation of the se-
quential algorithm to a concurrent environment imposes a non-tolerable synchronization overhead
on pointer update operations: both pointer update and reference counters updates must be atomic.
DeTreville describes in [17] a concurrent reference counting garbage collection algorithm used for
a Modula-2+ system. This is the only concurrent reference counting system that works on a stock
SMP. The scheme used is an adaptation of Deutsch and Bobrow’s algorithm to an SMP environ-
ment. The system achieves a certain amount of parallelism, notably, threads are not required to
stop simultaneously. Rather, when needed, each thread is stopped at a time. Thus, the algorithm
is an on-the-fly algorithm, as above. However, each update of a pointer is done in a critical sec-
tion common to all threads, no matter which pointer slot is modified. This solution is obviously
not scalable since at most a single update can occur in the system at any given moment. This
synchronization overhead is unacceptable on a multiprocessor.

1.3 This work

In this work we propose and implement a new scalable and efficient concurrent reference count-
ing algorithm. Our algorithm employs extremely fine synchronization. In particular, updates
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of pointers and creation of objects require no synchronization overhead whatsoever (even not a
compare-and-swap type of operation). Furthermore, the algorithm is non-disruptive: the program
threads are never stopped simultaneously to cooperate with the collector. Instead, each program
thread cooperates with the collector at its own pace, infrequently, and for very short periods.2

Our central goal is achieving the shortest possible response time for typical mutator requests
such as object allocation and pointer manipulation.

1.3.1 The Snapshot Algorithm

We start with a simple algorithm denoted The Snapshot Algorithm. In this algorithm, there is a
point in time in the beginning of the collection in which all mutators are halted. A virtual snapshot
of the heap is taken then and used for the collection. Of course, taking a real snapshot is too
expensive both in time and space. It turns out that what we really need is to find which reference
fields have been modified since the last snapshot. For each modified field, we need to know the
value in the previous snapshot and in the current snapshot since we must decrement the reference
count of the previously referenced objects and increment the reference count of the newly referenced
object. To help with this goal, the mutators record the first time a pointer field is modified after the
snapshot. This is the information that is really recorded, and it is enough information to perform
the collection. The exact details are given in chapter4 below.

At first glance, it seems that a race condition may foil the correctness of this process: two
mutators may write to the same location and record conflicting values. However, with a careful
design of the write barrier code performed by the mutators while updating, this can be solved. The
main idea is that even if two mutators think they are performing the first modification after the
snapshot, they will properly record the same value into their records causing no inconsistencies. An
additional important idea to make the algorithm efficient and scalable is to use local buffering for
the records. The details are in chapter4 below. The time the mutators are simultaneously stopped
is short: all that is needed is to read all the local buffers, and mark that all reference fields are
untouched for the current new snapshot.

Note that as in DeTreville’s work in [17], our algorithm is based on the mutators logging
information about the modifications they apply to heap references. However, in our algorithm,
a thread takes a record of a modification at most once per slot per cycle (as opposed to always
keeping a record) and there is no synchronization incurred due to the logging action.

The Snapshot Algorithm is a reasonable candidate for a scalable reference count concurrent
garbage collector: it requires little cooperation of the mutators (there is no need for synchronization
operations such as compare-and-swap) plus one halt of the program for a fast initialization of the
collection. However, the fact that the mutators are stopped simultaneously and that they must
wait till the collector handles all mutators is not satisfactory. This may still hinder the scalability
of the system. Thus, we propose a more advanced on-the-fly collector denoted The Sliding View
Algorithm that achieves better efficiency and scalability.

1.3.2 The Sliding View Algorithm

Our proposed Sliding View Algorithm has low synchronization requirements just like the Snapshot
Algorithm. Namely, mutators never compete on locks or use strong memory operations, such as

2We remark that the simple version of reference counting seems non-disruptive at first glance: there is no collector
thread that stops the mutators. However, the work of the collection is done by the mutators, thus, delaying (dis-
rupting) the program’s actual work; furthermore, running this algorithm naively on a multiprocessor requires heavy
synchronization on each update of a pointer, thus, making the algorithm non-scalable.
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Compare&Swap. But in the Sliding View Algorithm, the mutators are never stopped simultaneously.
Instead, in each collection cycle, they cooperate with the collector through four handshakes. In
these handshakes, each mutator is stopped for a short while (for example, until its buffers are read
by the collector) and then resumes. Since in this algorithm there is no specific time in which all
mutators are stopped, an an overall different approach to using a snapshot is called for. To this
end, the sliding view concept was developed.

All previous reference-counting algorithms are based on the same strict invariant: there is a
time point t such that the reference-count field of each object is equal to (or not smaller than, in
some limited reference count field variants) the actual number of references to the object. This
invariant requires some form of an atomic snapshot, referring to time t. In the sliding view algorithm
we maintain a weaker invariant which still allows for safe and efficient garbage collection. In the
algorithm, we interchange the notion of an atomic snapshot with that of a sliding view which is,
as its name implies, a fuzzier picture of the heap state. In a sliding view, each reference field in
the heap can be checked at a different time. However, between the time the first reference field
is read and the time the last reference field is read, an extreme care is taken with any reference
modification. In particular, objects that are referenced by pointers that are modified during this
time will not be collected in this collection cycle.

Like in the Snapshot Algorithm, The sliding view algorithm considers only the differences
between the sliding view of the current collection and the sliding view of the previous collection.
Thus, the sliding views are never computed explicitly but are rather inferred from the records
mutators keep in local history buffers.

1.3.3 The Tracing Sliding View Algorithm

In the reference counting algorithms that we propose there still remains the inability to reclaim
cyclic structures and restore stuck reference counts. In our opinion the only realistic way to tackle
these problems is by combining frequent reference counting cycles with infrequent tracing cycles.
Yet we are not willing to sacrifice scalability and impose additional overhead on mutator’s write-
barrier in order to support both paradigms. Therefore, we present a scalable on-the-fly tracing
collector that uses the same write-barrier that is used by the reference counting collector. The
tracing and reference counting collectors are thus interchangeable and any of which may be invoked
on each cycle.

1.4 Efficiency of the Sliding View Algorithm

The complexity of the write-barrier on pointer modification amounts to three additional load op-
erations in most cases and to a handful of additional memory accesses otherwise. The cooperation
through handshakes is proportional to the size of thread’s state. In this respect, our algorithm has
synchronization characteristics similar to those of [22, 21].

However, opposed to tracing collectors, the amount of work the collector has to invest in a
cycle is not proportional to the volume of live data, nor to the size of the heap, but is rather
dominated by the number of slots that have been modified since the last cycle plus the amount of
garbage that is recovered. Thus, any mutator operation incurs a close to (small) amortized constant
overhead, bearing in mind both operations carried out directly, by the mutator, and indirectly, by
the collector. We thus expect the algorithm to demonstrate scalability in both the size of the heap
and the number of mutator threads.
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1.5 Organization

We start we survey of related work in chapter2. In chapter3 we present definitions and terminology
to be used in the rest of the paper. In chapter 4 we present our Snapshot algorithm. Chapter5
describes the Sliding View algorithm. Chapter6 introduces our Tracing Sliding View algorithm. In
chapter7 we discuss several implementation issues of the proposed algorithms. Chapter8 describes
our implementation of the algorithms for Java. In chapter9 we describe the performance results
achieved with the Java implementation. We provide proofs for the Snapshot Algorithm, Reference
Counting Sliding View Algorithm and Tracing Sliding View Algorithm in chapterA, B and C of the
appendix, respectively. ChapterD of the appendix contains the source code of the implementation.
We conclude in chapter10.
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Chapter 2

Related work

The traditional method of reference counting, applicable in the realm of uniprocessing, was first
developed for Lisp by Collins [15]. In its simplest form, it allowed immediate reclamation of garbage
in a localized manner, yet with a notable overhead for maintaining the space and semantics of the
reference counters. As such, it was used in applications requiring responsiveness that could not
tolerate delays yet could stand the incurred space and computational overhead such as Smalltalk-
80 [27] and the AWK [5] and Perl [48] programs.

Weizman showed in [49] how the delay introduced by recursive deletion (which is the only non-
constant delay caused by classic reference counting) can be ameliorated by distributing deletion
over object creation operations.

Deutsch and Bobrow [19] eliminated most of the computational overhead required to adjust
reference counters in their method of deferred reference counting. According to the method, local
references are not counted thus the need to track fetches, local pointer duplication and cancellation
are deemed unnecessary. Only stores into the heap need be tracked. However, the immediacy of
reference counting is lost to a certain extent, since garbage may be reclaimed only after the mutator
state is scanned. Nevertheless, the method proved to be very efficient and was later adapted for
Modula-2+ [17]. Several studies [39, 46, 6, 57] showed that the assumption about the relatively low
frequency of store operations is usually valid. Baker in [10] advocates for a less sweeping treatment
of local variables: deferring the manipulation of reference counters and reclamation of objects is
controlled by pointing to them using special anchored pointers. Baker claims that the Deutsch and
Bobrow technique is not feasible with modern compilers since it is difficult to scan the stack for
pointers. However, the stack scan can be done conservatively with no difficulty involved. Park and
Goldbreg [41] show how one can detect scopes in which it is known at compile time that an object
is “anchored” and accordingly eliminate reference count manipulations due to stack operations.

Addressing the issue of storage overhead and noting that most objects are singly-threaded,
except for the duration of short transitions, Wise and Roth [42, 53] suggested using a single bit for
the reference count and an auxiliary cache for objects which momentarily have a reference count of
two. It is further claimed that this uniqueness bit should reside in any pointer to the object rather
than in the object itself, thus saving extraneous memory accesses. This idea was introduced by
Stoye [45]. Additional schemes that use single-bit reference counters are those by Chikayama and
Kimura [13] and by Goto et al. [28].

DeTreville describes in [17] a concurrent multiprocessor reference counting collector for Modula-
2+. The algorithm used adapts Deutsch and Bobrow’s ideas of deferred reference counting and
transaction log for a multiprocessor system. However, the update operation is done inside a critical
section that uses a single central lock. This implies that only a single update can occur simultane-
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ously in the system, placing a hard bound on the scalability of it.
Our algorithms are based on the sliding view notion, which is semantically close to a snapshot.

The sliding views are used to compute reference counts, on which the collection criteria is based.
Additionally, we present a tracing collector that traces according to a sliding view. Thus, our
algorithms have points of similarity with other concurrent algorithms which are snapshot based.
Furusou et al. [25] presents a collector based on copy-on-write facilities of the operating system.
This mechanism is used in order to obtain an atomic snapshot of the heap. Tracing proceeds
according to this atomic snapshot. Yuasa [56] uses an implicit snapshot obtained by a software
write-barrier that records the values of slots before they are overwritten. These “old” values, a
superset of the values that were in effect when the conceptual snapshot was taken, are then traced
and retained by the collector.

In the context of incremental tracing collectors Wilson [51] makes the distinction between
snapshot-at-beginning and incremental update algorithms. Trying to apply the terms to our on-the-
fly reference counting collector we note that our algorithm takes both approaches simultaneously.
The inter-cycle reference counting activity is based on spotting differences between consecutive
sliding views. Thus, the system strives to retain the information that is contained in the most
recent sliding view, which is similar to the pattern of operation in a snapshot-at-beginning algo-
rithm. On the other hand, intra-cycle activity is centered at linking the sliding view to an eventual
atomic state of the system, based on which collection decisions are made. This linking is done using
incremental update techniques.

In terms of synchronization requirements and characteristics our work is similar to that of
Doligez-Leroy-Gonthier [22, 21]: 1) we never require a full halt of the system; 2) mutators are
required to cooperate four times per cycle ([22, 21] requires three handshakes per cycle); 3) no
locks are used. In our tracing algorithm we have used an object sweeping method similar to that
presented in [22, 21].

2.1 A complementary work

Independently of this work, Bacon et. al. [1] have also presented an on-the-fly reference counting
algorithm. Both works introduce on-the-fly collector with extremely low pause times. But, whereas
the focus in our work is in obtaining high efficiency through extremely fine synchronization (in the
write barrier), the work in [1] focuses on a novel on-the-fly cycle detection method. Collecting
cycles on-the-fly is a task that could not be done before. In this work, we have not dealt with
this problem. Instead, we employed a mark and sweep collector (run seldom) to collect cycles. We
believe that the methods in [1] can be combined with ours to obtain an efficient reference counting
collector with no need for an external tracing collector.
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Chapter 3

System Model, Definitions, Symbols
and Abbreviations

Memory management. User programs assume the existence of system level services encapsulated
in the Memory Manager and Garbage Collector subsystems. The role of the memory manager is
to provide the application program, upon request, with contiguous regions of the memory, called
objects. The memory-manager is also responsible for the explicit deletion of objects. A chunk of
memory which has been returned by the memory manager to the application program but has not
yet been deleted is an allocated object1. The task of the garbage collector is to find objects which
are unreachable (see definition below) and pass them to the memory-manager for deletion.

In a multi threaded system it is convenient to perceive (and usually also to implement) the
garbage collector as a separate thread. Then the garbage collector dedicated thread is termed
the collector while the ordinary threads that carry out the user program are called mutators. We
sometimes call the mutators user threads or just threads.
The Heap: Objects and Roots. Some of the memory locations inside an object are designated
as pointer-containers. i.e., they assume the value of addresses of objects, or the special value null.
We call such locations heap-slots or just slots. This name stresses the fact that heap slots are
residing inside the heap, as opposed to global roots and local references (defined below), which are
not part of the heap. It is a common requirement, that we adopt as well, that all object’s heap-slots
would contain null upon allocation.

The system contains global roots which are a set of fixed memory locations, disjoint of the heap,
that may be accessed, for reading and writing, directly by any thread.

Each thread has a local state which can contain references to objects. These references are
termed local roots or local references. On a typical system, a thread local state is comprised of
thread specific registers and stack. Only the thread itself can access its local state.
Simplifying assumptions regarding the heap. For convenience, we assume in the exposition
of the algorithms and their proofs that there are no global roots. In section7.3 we show how global
roots should be actually treated on a real system. For now, let us just say that global roots may
be simply treated as ordinary heap slots.

In the correctness proofs we adopt the assumption that objects contain only reference fields, i.e.,
they never contain non-pointer fields. It can be readily seen that our algorithms operate correctly
when this is not the case.

1We assume that memory manager allocation and deletion operations are atomic, i.e., an object cannot be allocated
if it has not been fully deleted, etc.
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Global state and time. All shared-memory operations requested by all threads (i.e., both muta-
tors and the collector) during a run are interleaved into a single linear order by the shared-memory
system.2 This assumption allows us to conveniently define global state and time as follows:

Definition 3.1 (Time) For a given execution, we say that a shared-memory operation occurs at
time t if it is operation number t in the linear sequence of shared memory operations corresponding
to the execution.

Definition 3.2 (State) For any expression E which depends only on the values of shared-memory
locations and for any time point t in the execution, we denote by E@t the value of entity E at time
t. i.e., E@t is the value of E just prior to the execution of instruction number t.

Finally, we define the address-space of a given execution E, denoted by Mem(E), to be the set
of all memory locations which are addressed by the instructions of E.
Reachability. A thread can access an object only if it has a local reference to it. A thread can
obtain a reference to an object only by one of two methods: (1) by reading the contents of a slot
of an object to which it already has a local reference. (2) by allocating a new object. This pattern
of access calls for the following standard definition of reachability:

Definition 3.3 (Reachability) We say that an object o is

• directly reachable from thread Ti at time t if Ti has a local-reference to o at t.

• reachable from thread Ti at time t if it is directly reachable from thread Ti at t or there
exists a reference to o in object y at time t and y is reachable from thread Ti at time t.

• reachable at time t if there exists a thread Ti such that o is reachable from Ti at time t.

• unreachable, or garbage, at time t if it is not reachable at time t.

Reference counters. Garbage collection by reference counting is based upon counting the number
of references referring to each object at a given time. We formally define the reference count of an
object as follows:

Definition 3.4 (Heap Reference Count) The Heap Reference Count of an object o at time t,
denoted by RC(o)@t, is the number of heap slots referring to o at time t.

We usually abbreviate and refer to an object Heap Reference Count as its Reference Count3. In
any conceivable reference counting system there is a field associated with each object that is used
to record the number of references to the object. For an object o this field is denoted by o.rc. The
field is invisible to the user program; it is only accessible to the memory management subsystem.
Coordination of threads. We assume that the garbage collector thread, by virtue of being a
privileged system thread, can control scheduling of mutator threads to a certain extent. Specifically,
the collector may suspend and subsequently resume user threads. When a thread is suspended, the

2Thus, we assume that the shared-memory is sequentially consistent. In section7.4 we show how the memory
model constraints may be relieved in order to adapt the algorithms we present to systems with weaker memory
models.

3An object Reference Count is sometimes defined as the number of references (including local references) to an
object. We do not include local roots in the count. This definition is the same as presented in the context of Deferred
Reference Counting, see [19].
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collector may inspect and change its local state with the effects taking place after the thread is
resumed.

Each thread’s code is comprised of protected and unprotected code. When a thread is executing
unprotected code the collector may suspend it. Suspension of a thread means that no instructions
on its behalf are scheduled, up to the time it is resumed. In our algorithm, the only pieces of code
which are protected are procedures Update and New, which are in charge of updating heap-slots
and allocating new objects, respectively.

The following pseudo-code:

1. suspend thread Ti
2. Do-Something
3. resume thread Ti

when executed by the collector, means that the collector waits until thread Ti is not executing
protected code, then it suspends it, executes the code in Do-Something and then it resumes the
thread. When referring to such a construct and stating that Ti was suspended at time t it is meant
that at time t the first instruction of Do-Something was scheduled. Accordingly, we say that Ti
was resumed at time t if the last instruction of Do-Something was scheduled at time t− 1.

A Hard Handshake is a collector code construct of the form:
1. for each thread Ti do
2. suspend thread Ti
3. Do-Something
4. for each thread Ti do
5. resume thread Ti

Which means that all user threads are halted in unprotected code when Do-Something is
executed. A hard handshake is usually a costly operation whose execution ties up the entire system
for a time duration that depends on the number of threads and on the complexity of the Do-
Something operation.

A Soft Handshake is much more scalable. It is a collector code construct of the form:

1. for each thread Ti do
2. suspend thread Ti
3. Do-Something-Related-To-Ti
4. resume thread Ti

In a soft handshake, at most one thread is halted in each moment and an operation related
to it is executed. This construct is useful for specifying transactions in which a mutator and the
collector exchange data. We note that the soft handshake mechanism is equivalent to the hand-
shake mechanism described in [22, 21], where mutators voluntarily cooperate in order to complete
transactions with the collector. We chose this style of cooperation construct in order to facilitate
the exposition of the algorithm: using our approach all actions are seemingly carried out by the
collector.
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Chapter 4

The Snapshot Algorithm

In this chapterwe introduce our first algorithm, which is based on computing differences between
heap snapshots. We first present a naive algorithm that demonstrates the idea behind the snapshot
algorithm, then we present the snapshot algorithm itself. Correctness proof is given in appendix A.

4.1 A naive algorithm based on snapshot difference

The algorithm operates in cycles; we are describing collector actions during cycle k (throughout the
paper we let the subscript k denote the number of a garbage collection cycle.) To start a cycle, the
collector stops all threads. While the world is stopped, the collector makes a replica of the heap,
denoted Rk. Additionally, it marks local any object which is directly reachable. Then, it resumes
the threads.

Note that since no mutator is running during the time the replica is constructed, Rk is an
atomic snapshot of the heap. The collector then adjusts rc fields due to differences between Rk and
the replica of the previous cycle, Rk−1. Specifically, the collector considers any slot s whose value
in Rk differs from that in Rk−1 and:

1. increments the rc field of the object referred to by s in Rk

2. decrements the rc field of the object referred to by s in Rk−1.

It is easy to verify, by induction on the cycle number and assuming that each object is allocated
with zeroed-out rc field, that for any object o, at the time the collector completes adjusting rc
fields, o.rc equals o’s heap reference count at the time the snapshot was taken. Thus, any object
o which has o.rc = 0 after adjusting is done and which is not marked local has no references to it
whatsoever in the system and may be reclaimed.

4.2 Implementing the algorithm efficiently

Implementing the algorithm efficiently entails two major issues:

• efficiently finding differences between heap snapshots. Of course, it is not practical
to make a copy of the heap. We are only interested in those portions of the heap that have
changed since the last collection. We need a method to efficiently spot these differences.

• efficiently finding garbage objects. We need an efficient method (other than examining
all heap objects) to find all those objects with a zero rc field which are not marked local.

14



The latter problem is conveniently solved using a Zero Count Table [19] which records any object
whose reference count field drops to zero. In particular, objects are inserted into a thread specific
ZCT as they are created since upon their creation they have a zero heap reference count. These
local ZCTs are merged into a global ZCT. The global ZCT contains survivals from the previous
cycle as well. i.e., objects that at the end of the previous cycle had zero rc field but were marked
local.

We now turn our attention to the former problem. Taking a snapshot of the entire heap when
all mutators are stopped is not practical: it requires too much space and time. In our algorithm,
these snapshots are only conceptual: they are never computed in full. Instead, we require the
mutators themselves to record slots’ values as they are about to modify them. Using this recorded
information the collector can tell what was a modified slot’s value in the last conceptual snapshot,
i.e., in Rk−1.

It remains for the collector to find out what is such a slot value in Rk. Trivially, the collector
can read the slot while all mutators are stopped. This simple solution is not scalable, however, since
it implies that for each changed slot there will be a time slice in which the entire system will be
tied-up attending to its update, jeopardizing the parallelism promised by the presence of multiple
processors. Thus, we require that the collector would find the value of such a slot in Rk while
the mutators are running. This is done using an arbitration mechanism using which the collector
tries to determine a slot. The mechanism reliably reports success or failure. In case of success, the
value is immediately revealed to the collector and the collector is guaranteed that no thread has
changed the slot since the conceptual snapshot Rk was taken. Otherwise, when the collector fails
determining a slot, it is guaranteed that some thread has already kept a record of the slot along
with its value in Rk. The collector therefore looks up the threads’ records and finds the desired
information.

This mechanism is implemented in the following manner: every slot s has a unique dirty flag
associated with it denoted Dirty(s). This flag signifies whether the slot has been overwritten
since the last conceptual snapshot. The dirty flags are then manipulated using these patterns of
operation:

• all dirty flags are cleared on each cycle, when all mutators are stopped.

• in order to modify a slot s a thread takes these actions, that comprise its write barrier: 1)
it reads the contents of s. Let v stand for the value it has fetched 2) it reads Dirty(s) 3) if
Dirty(s) is off it saves a record of the pair 〈s, v〉 stating that v was the contents of s in the
most recent conceptual snapshot and then it raises the flag 4) now the store proper occurs.

• in order to determine a slot’s value in Rk the collector takes the following steps, which are a
prefix of the steps of a write barrier: 1) it loads the value v from s. 2) it probes Dirty(s). 3)
if the flag is off then v is the value of s in Rk, otherwise s is undetermined and a record of it
was taken by some mutator.

This protocol guarantees that only and exactly the values that were current at the time the
recent conceptual snapshot was taken are recorded by mutators. Additionally, this protocol has the
property of compression of the information recorded in the sense that only initial modifications to
a slot are recorded. Subsequent modifications are not relevant for the algorithm’s execution since
it only need know what are the values of a changed slot in the current and previous conceptual
snapshots.

15



4.3 Overview of mutator’s cooperation

The mutators cooperate with the collector through executing the update protocol described above
for each modification of a pointer in the heap. We stress that there is no need for executing this
protocol for updates of pointers in the registers or stack (i.e., the local roots.)

During object creation, the address of the newly created object is recorded for use of the
collector.

4.4 Overview of the collection cycle

Let us present the steps of a garbage collection cycle.
The hard handshake–obtaining values from the previous snapshot and taking a new
conceptual snapshot. During this handshake the collector gathers information regarding all slots
that have been changed since the previous handshake from the mutators. The information gathered
contains slots’ values in previous snapshot Rk−1. There exists information on any slot that has
been modified since the previous conceptual snapshot was taken.

While the mutators are stopped their local states are scanned in order to mark as local all
objects that are directly reachable. Their local ZCTs are merges into the global ZCT and are then
cleared. Finally, all dirty flags are cleared in order to signal the mutators that they should start
taking records of the modifications they apply to heap slots that refer to the current conceptual
snapshot, i.e., to Rk.
Adjusting rc fields due to modified slots. After resuming mutators, the collector adjusts rc
fields due to each modified slot by:

• trying to determine the value of it at the time of the current snapshot Rk, without interfering
with the program threads. To do that, the collector reads the value of the slot from the heap,
and verifies that its dirty flag is clear. If the dirty flag is indeed clear, then the slot has not
been modified since the handshake and the value of it in the Rk snapshot has been obtained.
The rc value of the referenced object is incremented. If the dirty flag is set, then the slot is
undetermined. Then the collector has to obtain the value of such a slot by peeking at the
mutators modification records.

• decrementing the rc field of the object the slot was referring to in the snapshot of the previous
cycle. The identity of this object is known to the collector from the information recorded in-
between the cycles by the mutators and communicated to the collector during the handshake.
If the decremented rc field drops to zero the referred object is considered a candidate for
reclamation and is accordingly added to the ZCT.

Incrementing rc fields of objects referenced by undetermined slots. The collector asyn-
chronously, i.e., without suspending the threads, gathers information about those slots that have
been changed since the first handshake of the same cycle. A subset of these slots are the undeter-
mined slots. The collector infers from the recorded information undetermined slots’ values in the
conceptual snapshot Rk. It then increments the rc fields of the referenced objects.
Reclaiming garbage. The collector proceeds to reclaim unreachable objects, according to the
following criteria: collect objects which have zero rc field and which are not marked local.
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4.5 Data structures

In this sectionwe briefly present the data-structures which are used in the algorithm.
Thread’s history buffers. Each thread has a local buffer in which it records the value of a slot
that is modified for the first time after a snapshot is “announced”, i.e., after the handshake of a
cycle. This local buffer is denoted Buffi, and it contains pairs of the form 〈s, v〉 where v is the
contents of s as read by the thread before updating s.

The buffer is implemented as an array of pairs with an associated pointer to the next entry to be
used, denoted CurrPosi. We assume that both Bufferi and CurrPosi reside in shared memory
and thus are accessible to the collector at any moment.

If a thread logs the pair 〈s, v〉 in its buffer then we say that it associates v with s. It holds that
if Ti associated v with s then v is the object s was referring to in the last conceptual snapshot.

The collector gathers mutators’ histories and computes their union. This action is done twice
per cycle: the first time when the world is stopped, in order to learn exactly which slots have
been changed since then last cycle and what value they then assumed; the second time is done
asynchronously in order to find what are the values of undetermined slots. The resulting sets of
pairs are denoted Histk and Peekk respectively.
Slots’ dirty flags. A unique dirty flag is associated with every slot. The purpose of the slot’s flag
is to signify whether the slot is being modified during the current cycle. A mutator should be able
to atomically write and atomically read the flag. To outline a feasible implementation, the flag can
be implemented as a byte of memory, modifiable and accessible using ordinary memory accesses.
Global and local Zero Count Tables. The Zero Count Table or ZCT for short is a collector
maintained set which records any object that its reference count field drops to zero at some point
in the operation of the algorithm. The set ZCTk denotes the contents of the ZCT at cycle k. ZCTk
contains primary candidates for reclamation in cycle k. That is, if an object is collected during
cycle k then either it’s in ZCTk or it was reachable from an object in ZCTk.

Each mutator thread Ti keeps a local ZCT of newly allocated objects, denoted Newi, in which
it stores references to objects it creates. The set is cleared by the collector at the handshake of
each cycle not before its contents are copied into the collector-maintained ZCT.
Local marks. According to the algorithm all objects which are directly reachable should be
marked as local atomically with the construction of the snapshot. In our algorithm’s notation, we
refer to the set of objects directly reachable from thread Ti as Statei. During the handshake, the
union of all Statei sets is computed and stored in the set Localsk, effectively marking all objects
which are directly reachable at the time of the conceptual snapshot.
Undetermined slots. The collector need record which slots it failed determining, so that it may
later look-up their value in the threads’ buffers. This is done by saving a reference to undetermined
slots in the Undeterminedk set.

4.6 Mutator code

The mutators need execute garbage-collection related code on two occasions: when updating a
slot and when allocating a new object. This is accomplished by the Update (figure 4.1)and New
(figure 4.2) procedures, respectively. These operations are protected, i.e., a thread may not be
suspended after it has executed the first instruction and before executing the last instruction of
these operations.
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Procedure Update(s: Slot, new: Object)
begin
1. local old := read(s)

// was s written to since the last cycle ?
2. if ¬Dirty(s) then

// ... no; keep a record of the old value.
3. Bufferi[CurrPosi] := 〈s, old〉
4. CurrPosi := CurrPosi + 1
5. Dirty(s) := true
6. write(s, new)
end

Figure 4.1: Mutator Code—Update Operation

Procedure New(size: Integer) : Object
begin
1. Obtain an object o from the allocator, according to the specified size.

// add o to the thread local ZCT.
2. Newi := Newi ∪ {o}
3. return o
end

Figure 4.2: Mutator Code—for Allocation

4.7 Collector code

The code for cycle k is given in procedure Collection-Cycle, in figure 4.3. Each of the procedures
invoked during a cycle is now described.
Procedure Read-Current-State (figure 4.4). After all threads are stopped their local state,
new object sets and buffers are delivered to the collector. Before resuming the threads the collector
clears all dirty marks.
Procedure Update-Reference-Counters (figure 4.5). reference counters are updated by decre-
menting the “old” values and trying to determine current values and increment them. Undetermined
slots are recorded.
Procedure Read-Buffers (figure 4.6) asynchronously reads threads’ buffers. Each thread Ti is
considered at a time. The variable CurrPosi is probed. Then the range [1 . . . CurrPosi − 1] of
Bufferi (which is empty if CurrPosi = 1) is copied onto the set Peekk (the set is called Peekk
because it allows the collector to peek at the mutators buffers without stopping them.)

Procedure Collection-Cycle
begin
1. Read-Current-State
2. Update-Reference-Counters
3. Read-Buffers
4. Fix-Undetermined-Slots
5. Reclaim-Garbage
end

Figure 4.3: Collector Code
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Procedure Read-Current-State
begin
1. suspend all threads
2. Histk := �
3. Localsk := �
4. for each thread Ti do

// copy buffer (without duplicates.)
5. Histk := Histk ∪Bufferi[1 . . . CurrPosi − 1]
6. CurrPosi := 1

// “mark” local references.
7. Localsk := Localsk ∪ Statei

// copy and clear local ZCT.
8. ZCTk := ZCTk ∪Newi
9. Newi := �
10. Clear all dirty marks
11. resume threads
end

Figure 4.4: Collector Code—Procedure Read-Current-State

Procedure Update-Reference-Counters
begin
1. Undeterminedk := �
2. for each 〈s, v〉 pair in Histk do
3. curr := read(s)
4. if ¬Dirty(s) then
5. curr.rc := curr.rc +1
6. else
7. Undeterminedk := Undeterminedk ∪ {s}
8. v.rc := v.rc− 1
9. if v.rc = 0 ∧ v /∈ Localsk then
10. ZCTk := ZCTk ∪ {v}

Figure 4.5: Collector Code—ProcedureUpdate-Reference-Counters

Procedure Read-Buffers
begin
1. Peekk := �
2. for each thread Ti do
3. local ProbedPos := CurrPosi

// copy buffer onto Peekk.
4. Peekk := Peekk ∪Bufferi[1 . . . P robedPos− 1]
end

Figure 4.6: Collector Code—Procedure Read-Buffers
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Procedure Fix-Undetermined-Slots
begin
1. for each pair 〈s, v〉 pair in Peekk
2. if s ∈ Undeterminedk do
3. v.rc := v.rc + 1
end

Figure 4.7: Collector Code—Procedure Fix-Undetermined-Slots

Procedure Reclaim-Garbage
begin
1. ZCTk+1 := �
2. for each object o ∈ ZCTk do
3. if o.rc > 0 then
4. ZCTk := ZCTk − {o}
5. else if o.rc = 0 ∧ o ∈ Localsk then
6. ZCTk := ZCTk − {o}
7. ZCTk+1 := ZCTk+1 ∪ {o}
8. for each object o ∈ ZCTk do
9. Collect(o)
end

Figure 4.8: Collector Code—Procedure Reclaim-Garbage

Procedure Fix-Undetermined-Slots (figure 4.7) passes item by item on the set Peekk and finds
the missing values of all undetermined slots. The rc fields of these values are incremented.
Procedure Reclaim-Garbage(figure 4.8). As a first stage in the operation of Reclaim-Garbage
the collector considers all objects in ZCTk and checks their reference count and local status. If an
object has a positive reference count, then it is ignored. Otherwise, if the object is local, then it is
added to ZCTk+1. The last case is when an object has both zero reference count and is not local,
such an object is kept in ZCTk.

After applying this sieving pass on ZCTk, it contains only objects with zero rc field which are
not marked local. This is a sufficient condition for the objects to be garbage, hence the collector
proceeds by deleting these objects by means of the Collect procedure, which is next described.
Procedure Collect (figure 4.9) is responsible for deleting garbage objects. It stores null into
each of its operand’s slots not before the reference counts of the pointed objects are decremented
accordingly. The referred objects are recursively deleted based on the same criteria applied by the
Reclaim-Garbage procedure.

4.8 Intuition

A central point in the algorithm’s operation is that logging always records a slot’s value at the time
the last handshake occurred. Indeed, several competing threads may log the same slot, yet they
would all associate it with one agreed value—the one that prevailed at the last handshake. It is
easy to see that this is the case since no thread modifies the slot prior to raising its dirty flag. In
the write barrier, a thread first reads the slot and only then the flag. Thus, a fetched turned-off
flag implies that the previously read value is the original one from the time of the handshake. The
collector uses exactly the same mechanism in order to determine a slot.

Another important point to note is that a slot and its associated value are fully logged by a
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Procedure Collect(o: Object)
begin
1. foreach slot s in o do
2. val := read(s)
3. val.rc := val.rc− 1
4. write(s, null)
5. if val.rc = 0 then
6. if val /∈ Localsk then
7. Collect(val)
8. else
9. ZCTk+1 := ZCTk+1 ∪ {val}
10. return o to the general purpose allocator.
end

Figure 4.9: Collector Code—Procedure Collect

mutator before it raises the slot’s dirty flag. Thus, if the collector senses that a slot is raised, it
is guaranteed that it will find a record of the slot in some thread’s buffer, when it would look up
threads buffers’ asynchronously in order to resolve undetermined slots.

We further comment that the price that appears to be involved in copying the mutators buffers
and local ZCTs is non-existent in practice, since in a real implementation the mutator would deliver
its buffer to the collector and would start working using a new buffer, thus the true overhead
of delivering and clearing these sets amounts to a handful of pointer updates. Consequently,
the mutators are stopped for as long as it takes to clear the dirty flags. Using a bitmap and
some help from the virtual memory system this can be done rather quickly. We elaborate on the
implementation of dirty flags in section7.1.

The algorithm’s correctness proofs are in appendix A.
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Chapter 5

The Sliding View Algorithm

In the snapshot algorithm we have managed to execute a major part of the collection while the
mutators run concurrently with the collector. The main disadvantage of this algorithm is the hard
handshake in the beginning of the collection. During this handshake all threads are stopped while
the collector clears the dirty flags and receives the mutators’ buffers and local ZCTs. This hard
handshake hinders both efficiency, since only one processor executes the work and the rest are
idle, and scalability, since more threads will cause more delays. While efficiency can be enhanced
by parallelizing the flags’ clearing phase, scalability calls for eliminating hard handshakes from
the algorithm. This is indeed the case with our second algorithm, which avoids hard handshakes
completely.

In this chapter, we present an algorithm which uses four soft handshakes per cycle. Thus, the
system never comes to a grinding halt. Mutators are only stopped one at a time, and only for a
short interval, its duration depends on the size of mutators’ local states.

In the snapshot algorithm we had a fixed point of time, namely, when all mutators were stopped
in a hard handshake, to which all logging and successful determining of slots referred. By dispensing
with the hard handshake we no longer have this fixed point of time. Rather, we have a fuzzier picture
of the system, formalized by the notion of a sliding view which is essentially a non-atomic picture
of the heap.

We show how sliding views can be used instead of atomic snapshots in order to devise a collec-
tion algorithm. Then, we present an algorithm which implicitly computes a sliding view (bearing
similarity to the first algorithm which implicitly computes an atomic snapshot) and collects garbage
using it. In appendix B we prove the algorithm correct.

sectionScans and sliding views
Pictorially, a scan σ and the corresponding sliding view Vσ can be thought of as the process of

traversing the heap along with the advance of time. Each word of memory s in the heap is probed
at time σ(s); if at that particular moment s contains a reference, then we record that value as the
value of Vσ(s), otherwise, the word is not a slot at σ(s), which we signify by letting Vσ(s) be equal
null.

That is, a scan σ is a function that assigns a time stamp to each word in the heap. we define
Start(σ) to be the earliest time assigned to any slot by σ. Similarly we define End(σ).

Formally, the sliding view associated with a scan σ, which is denoted Vσ, is a function that
assigns a pointer value to each memory word s in the heap:

Vσ(s) def=

{
null if s is not an allocated slot at σ(s)
s@σ(s) otherwise

22



Note that a snapshot of the heap is just a special case of a sliding view in which all slots are
scanned at the same time.

For an object o and a sliding view Vσ we define the Asynchronous Reference Count of o with
respect to Vσ to be the number of slots in Vσ referring to o:

ARC(Vσ; o) def= |V −1
σ (o)|

The usual reference count of heap pointers to an arbitrary object o at time t is also just a special
case of the above formulation with σ set to: ∀s, σ(s) = t. Then we have:

∀ Object o,ARC(Vσ; o) = RC(o)@t

The feature of sliding views of being incrementally constructed is appealing since it implies that
one need not stop all mutator threads simultaneously in order to compute the view. But can we
find a safe collection criteria based on sliding views? Of course, using a sliding view is not as simple
as using a snapshot. Clearly, trying to use the snapshot algorithm when we are only guaranteed
that logging and determining reflects some sliding view is bound to fail. For example, the only
reference to object o may “move” from slot s1 to slot s2, but a sliding view might miss the value
of o in both s1 (reading it after modification) and s2 (reading it before modification). Thus object
o has a zero asynchronous reference count with respect to the aforementioned sliding view, yet it
never had a true zero reference count.

Now suppose that, as in the above example, ARC(Vσ; o) = 0, that is, every slot in the heap
was probed and none referred to o. This time, however, we assume additionally that for any slot
s, there has not been a store of o into s performed in the time interval σ(s) to End(σ). If we took
an atomic snapshot of the heap at time End(σ) we would have discovered that no slot is referring
to o for the simple reason that it did not refer to it at σ(s) and no pointer to o was stored into it
until End(σ). The same arguments are used to show the more general claim:

Lemma 5.1 (Sliding Views) Let Vσ be a sliding view and let o be an object. If for any slot s,
no reference to o is stored into s at, or after, σ(s) and before End(σ) then RC(o)@End(σ) ≤
ARC(Vσ; o). Furthermore, the set of slots that refer to o at End(σ) is a subset of those that point
to it in Vσ

sectionUsing sliding views to reclaim objects
Based on the above observations we present a generic garbage collection algorithm:

1. Each thread Ti has a flag, denoted Snoopi which signifies whether the collector is in the midst
of constructing a sliding view. This flag is modifiable by the collector and readable by the mutator
Ti.
2. Mutator Ti executes a write barrier in order to perform a heap slot update. The generic
algorithm requires that after the store proper to the slot is performed, i.e., object o is actually
written into slot s, the thread would probe its Snoopi flag and, if the flag is set, would mark o as
local. We call this probing of the Snoopi flag and the subsequent marking snooping. Any specific
implementation of the generic algorithm may require additional steps to be taken as part of the
write barrier.
3. As usual, threads may not be suspended in the midst of an update.
4. A collection cycle contains the following stages:

1. the collector raises the Snoopi flag of each thread. This indicates to the mutators that they
should start snooping.
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2. the collector computes, using an implementation-specific mechanism, a scan σ and a corre-
sponding sliding view, Vσ, concurrently with mutators’ computations. The actual manner
using which the collector computes Vσ is immaterial, it’s just important that it arrives at a
valid sliding view.

3. each thread is then suspended (one at a time) its Snoopi flag is turned off and every object
directly reachable from it is marked local. The thread is then resumed.

4. now, for each object o we let o.rc := ARC(Vσ; o).

5. at that point, we can deduce that any object o that has o.rc = 0 and that was not marked
local is garbage.

Since for each thread the Snoopi flag is set for the entire duration of the sliding view compu-
tation we conclude that any object which is not marked local satisfies, according to lemma 5.1,
ARC(Vσ; o) ≥ RC(o)@End(σ) thus 0 = o.rc = ARC(Vσ; o) implies RC(o)@End(σ) = 0. It may
be, however, that o is directly reachable from some thread at End(σ). Nevertheless, since no local
reference to o was observed by any thread when its state was scanned (in stage (3) of the collector)
and it was not “snooped” prior to it, any thread which possessed such a local reference must have
discarded it prior to responding the handshake of stage (3) without ever raising the heap reference
count of o above zero. We conclude that by the time the handshake of stage (3) ends, o is garbage.

The snooping mechanism may lead to some floating garbage as we conservatively not collect
objects which are marked local, although such objects may become garbage before the cycle ends.
However, such objects are bound to be collected in the next cycle.

We have termed this algorithm “generic” since the mechanism for computing the sliding view
is unspecified. In the fleshed out algorithm that we next present we rely on the methods of logging
and arbitration that were introduced in the context of the snapshot algorithm in order to implicitly
construct a sliding view. When the implicit construction is done, it holds for each object that
o.rc = ARC(V ; o), where V is the sliding view that was constructed implicitly. Since we are not
interested in the sliding view itself but rather on its manifestation through the rc fields, this implicit
computation suffices for collection purposes.

sectionAlgorithm’s idea We will present a concrete sliding view based reference counting algo-
rithm which implements the generic sliding view algorithm of the previous chapter.

The concrete algorithm uses ideas similar to those presented in the context of the snapshot
algorithm of chapter4. In particular, it uses mutators’ logging in order to obtain modified slots’
values in the last sliding view.

Whereas in the snapshot algorithm the mutators and collector cooperate synchronously, using
one hard handshake per cycle, in order to compute a reference count reflecting an atomic snapshot,
in the sliding view algorithm they cooperate asynchronously, using four soft handshakes per col-
lection, in order to compute a reference count reflecting a sliding view. This significantly improves
scalability at the cost of having to deal with fuzzier information. We provide augmented arbitration
and race-detection mechanisms in order to overcome the difficulties introduced by the enhanced
asynchronicity.

5.1 Overview of mutator’s cooperation

Mutators use the write barrier of the snapshot algorithm (figure 4.1) with the additional snoop-
ing and marking added after the store proper. Object creation is unchanged from the snapshot
algorithm.
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5.2 Overview of the collection cycle

Each collection cycle is comprised of the following steps, which are visually illustrated in figure 5.1:
Signaling snooping. The collector raises the Snoopi flag of each thread, signaling to the mutators
that it is about to start computing a sliding view.
Reading buffers (first handshake.) This step initiates a soft handshake during which thread’s
buffers1 are retrieved and then are cleared. The slots which are listed in the buffers are exactly
those slots that have been changed since the last cycle2.
Clearing. The dirty flags of the slots listed in the buffers are cleared. Note that the clearing occurs
while the mutators are running. Clearing the dirty flags tells the mutators that they should start
logging slots from fresh, i.e., that a new cycle and a sliding view associated with it have begun so
that the mutators should log slots’ values in this new sliding view.
Reinforcing dirty marks (second handshake.) The collector carries a second handshake
during which it reads the contents of the threads’ buffers. The collector then reinforces the flags of
the listed slots, i.e., it turns them on.

Note that the slots listed in the read buffers are slots that have been logged between the first and
second handshake. Thus, such a slot’s flag is raised by mutators and might be concurrently turned
off by the collector. Hence these slots are subjected to a race condition between two conflicting
processes and are accordingly termed clearing conflict slots.
Assuring reinforcement is visible to all mutators (third handshake.) The third handshake
is carried out. No action is taken during it.
Consolidation (fourth handshake.) This stage has two objectives: 1) solving conflicting logging
of conflict slots. 2) marking thread local states. In order to achieve these goals a fourth soft
handshake is performed. During the handshake thread local states are scanned and marked local.
Threads’ buffers are retrieved once more and are consolidated.

Consolidating threads’ buffers amounts to the following. For any slot that appears in the
threads’ buffers accumulated between the first and fourth handshakes, pick any occurrence of the
slot and copy it to a digested, inconsistencies free, history. All other occurrences of the slot are
discarded.

The digested history replaces the accumulated threads’ buffers. i.e., the history for the next cycle
is comprised of the digested history of threads’ logging between the first and fourth handshakes of
the current cycle, unified with threads’ buffers representing updates that will occur after the fourth
handshake of the current cycle but before the first handshake of the next cycle.
Updating. After clearing, reinforcing, making sure that the reinforcement is visible to all mutators
and consolidating the buffers the collector proceeds to adjust rc fields due to differences between the
sliding views of the previous and current cycle. This is done exactly as in the snapshot algorithm.
Recall that the collector may fail determining what is the ”current” value of a slot. Such a slot is
undetermined.
Gathering information on undetermined slots. The collector asynchronously reads mutators’
buffers. It then unifies the set of read pairs with the digested history computed in the consolidation
step. The set of undetermined slots is a subset of the slots appearing in the unified set so the
collector may now proceed to look up the values of these undetermined slots.

1These are the same thread buffers as in the first algorithm.
2The meaning of “changing” in this asynchronous setting is defined as follows. A slot is changed during cycle k if

some thread changed it after responding to the first handshake cycles k and before responding to the first handshake
of cycle k + 1.
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Meaning of other abbreviations: Clear: clearing dirty Marks. Reinforce: reinforcing conflict
slots. Consolidate: consolidating thread buffers. Update: updating reference counters. fix:

incrementing reference counters due to undetermined slots. Reclaim: reclaiming garbage objects.

Figure 5.1: Timing diagram for the sliding view algorithm
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Incrementing rc fields of objects referenced by undetermined slots. Any undetermined
slot is looked up in the unified set and the rc field of the associated object is incremented.
Reclamation. Reclamation generally proceeds as in the previous algorithm, i.e., recursively freeing
any object with zero rc field which is not marked local. Due to the extended meaning of locality,
that is, it encapsulates the “snooping” requirement of the generic algorithm, the condition for being
garbage is the same as in the snapshot algorithm. There is a problem, however, with reclaiming
objects whose slots appear in the digested history. i.e., objects which were modified since the cycle
commenced but became garbage before it ended. We elaborate on this problem in the sequel.

5.3 Intuition: where’s the sliding view?

Each cycle of the algorithm has a conceptual scan and a corresponding sliding view associated with
it which encapsulate the agreed knowledge of the mutators and collector regarding the “current”
value of each slot in the cycle. We denote the scan for cycle k as σk and the corresponding sliding
view is termed Vk. Consider a slot s. The value of σk(s) is defined as follows:

• Rule 1—slots which are not logged during cycle k−1. if no thread logs s prior to responding to
the first handshake of cycle k then we set σk(s) as the time at which the first thread responds
to the first handshake.

• Rule 2—slots which are logged during cycle k−1 that were not logged between the first and third
handshakes. Here we set σk(s) to be the time at which the second handshake terminates (i.e.,
when the last thread responds to it.)

• Rule 3—slots which are logged during cycle k − 1 that were logged between the first and third
handshakes of cycle k. Any such slot is consolidated. Let v be the chosen consolidated value
of s. We define σ(s) to be the time at which some particular thread which logged the pair
〈s, v〉, between responding to the first and fourth handshakes, fetched v from memory as the
first instruction of its write barrier (note that this thread might have already responded to
the third handshake when fetching v).

We now explain this particular choice of a cycle’s sliding view. What we require from the sliding
view, and from the algorithm with respect to this particular sliding view, is that:

1. in case the history for the next cycle contains the pair 〈s, v〉 then v must be Vk(s). The
history for the next cycle may not contain conflicting values for s.

2. in case the collector succeeds in determining a slot s, i.e., it succeeds determining the “current”
value of s, we require that the determined value be the same one as the slot’s value in
the cycle’s sliding view, i.e., Vk(s). Again, the history for the next cycle may not contain
conflicting values.

3. each slot which is modified between two consecutive scans (i.e., a store to the slot is scheduled
at, or after σk(s) and before σk+1(s)) should be logged, making the value it assumed during
the last sliding view available to the collector.

4. any update of s whose store proper operation is scheduled at, or after σk(s) and before
End(σk) should snoop its operand; i.e., mark it local.
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Procedure Update(s: Slot, new: Object)
begin
1. Object old := read(s)
2. if ¬Dirty(s) then
3. Bufferi[CurrPosi] := 〈s, old〉
4. CurrPosi := CurrPosi + 1
5. Dirty(s) := true
6. write( s, new)
7. if Snoopi then
8. Localsi := Localsi ∪ {new}
end

Figure 5.2: Sliding View Algorithm: Update Operation

It turns out that these requirement are all met by the algorithm with respect to the sliding view
we have just defined. We give intuition for this according to the rule by which σ(s) is defined.

If σ(s) is defined according to rule (1) then because no thread logged s up to the moment the
first handshake of cycle k started the dirty flag of s is clear at that particular moment. If some
thread would log s after responding to the first handshake it is bound to associate s with the value
it assumed when the handshake started. Similarly, if the collector will succeed determining the
slot, it will find the value it assumed at that moment as well.

Otherwise, if σ(s) is defined according to rule (2) then it is easy to see that at the time the
second handshake ends the dirty flag of s is clear (because the collector cleared it and no mutator
raised it) and no update is occurring. This implies that any subsequent updates and determining
will relate to this point of time, as required.

Finally, if σ(s) is defined by rule (3), i.e., by picking the time at which a thread which logged
the “winning pair” 〈s, v〉3 loaded v from s, we trivially have that the digested history agrees with
Vk(s). Also, since some thread logs s prior to responding to the third handshake no thread will
log s after responding to the fourth handshake. Therefore, the non-digested part of the history for
the next cycle will not contain any record of s. Similarly, the collector would fail determining s,
satisfying our requirement for determining slots.

Note that the scan of a cycle spans, at most, from the beginning of the first handshake up to
the end of the third handshake. Since the Snoop flags are turned on prior to the first handshake
and are turned off only at the fourth handshake we conclude that the snooping requirement is kept.

We now turn to specify the pseudo-code for the algorithm.

5.4 Mutator code

Mutator code in the second algorithm is almost identical to the one in the first algorithm. In
particular, the New procedure is unchanged.

The Update procedure (in figure 5.2) includes an additional test, that checks whether the
thread-specific flag Snoopi is set. If so, the object whose reference is stored into the slot is marked
local by adding it to the thread-specific set Localsi. This marking implements the “snooping”
requirement of the generic algorithm.

3“winning” in the sense that v is chosen to be the consolidated value of s.
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Procedure Collection-Cycle
begin
1. Initiate-Collection-Cycle
2. Clear-Dirty-Marks
3. Reinforce-Clearing-Conflict-Set
4. Consolidate
5. Update-Reference-Counters
6. Read-Buffers
7. Merge-Fix-Sets
8. Fix-Undetermined-Slots
9. Reclaim-Garbage
end

Figure 5.3: Sliding View Algorithm: Collector Code

Procedure Initiate-Collection-Cycle
begin
1. for each thread Ti do
2. Snoopi := true
3. for each thread Ti do
4. suspend thread Ti

// copy (without duplicates) and clear buffer.
5. Histk := Histk ∪Bufferi[1 . . . CurrPosi − 1]
6. CurrPosi := 1
7. resume Ti
end

Figure 5.4: Sliding View Algorithm: Procedure Initiate-Collection-Cycle

5.5 Collector code

Collector’s code for cycle k is depicted in figure 5.3. Let us describe briefly the role of each of the
collector’s procedures.
Procedure Initiate-Collection-Cycle (figure 5.4) is the counterpart of procedure Read-Current-
State of the snapshot algorithm of chapter4. However, since it stops each thread at a time (i.e.,
it carries out a soft handshake,) there is no atomic state being read. Also note these additional
actions:

1. before the handshake is started, the Snoopi flag is raised, signaling mutators that they should
start snoop stores into heap slots.

2. the set Histk is not cleared as the first step of each cycle. Rather, the set already contains
digested information about part of the logging relating to cycle k which has been accumulated
by the collector during cycle k − 1.

3. the Newi sets are not retrieved by the collector during the handshake. Rather, they will be
retrieved during the forthcoming fourth handshake.

Procedure Clear-Dirty-Marks (figure 5.5) clears all dirty marks that were set by mutators prior
to responding to the first handshake. Note that the clearing takes place while the mutators are
running.
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Procedure Clear-Dirty-Marks
begin
1. for each 〈s, o〉 ∈ Histk do
2. Dirty(s) := false
end

Figure 5.5: Sliding View Algorithm: Procedure Clear-Dirty-Marks

Procedure Reinforce-Clearing-Conflict-Set
begin
1. ClearingConflictSetk := �
2. for each thread Ti do
3. suspend thread Ti
4. ClearingConflictSetk := ClearingConflictSetk ∪Bufferi[1 . . . CurrPosi − 1]
5. resume thread Ti
6. for each s ∈ ClearingConflictSetk do
7. Dirty(s) := true
8. for each thread Ti do
9. suspend thread Ti
10. nop
11. resume Ti
end

Figure 5.6: Sliding View Algorithm: Procedure Reinforce-Clearing-Conflict-Set

Procedure Reinforce-Clearing-Conflict-Set (figure 5.6) implements the reinforcement step
and assures that it is visible to all mutators. A second handshake takes place, during which thread
buffers are read. The unified set of pairs is stored in the set ClearingConflictSetk. Then, flags of
slots that appear in ClearingConflictSetk are reinforced to be true. Finally, the third handshake
of the cycle takes place. There is no action taken during it. The reason for this additional handshake
is that a thread can fall behind a sibling thread by at most one handshake. Thus threads that have
responded to the fourth handshake will not be interfered by operations carried out by threads
during the clearing or reinforcement stages, i.e., threads that still haven’t responded to the third
handshake.
Procedure Consolidate (figure 5.7). The task of the procedure is to implement the fourth
handshake, during which mutators’ buffers are read again and then are cleared. The accumulated
set of pairs is stored in a temporary set, denoted Temp. The temporary set is then consolidated
into the set Histk+1.

Additionally, the Localsi sets, which record snooped objects are copied onto the set Localsk
and are cleared. Objects directly reachable from a thread’s local state (denoted in the algorithm
by Statei) are copied onto Localsk as well. The thread local ZCTs, which reside in the Newi sets,
are copied onto the set ZCTk and are then cleared.
Procedures Update-Reference-Counters, Read-Buffers and Fix-Undetermined-Slots
are the same ones used by the snapshot algorithm (see figures 4.5, 4.6, 4.7). Note, however that
there is an additional procedure, Merge-Fix-Sets (figure 5.8), invoked between Read-Buffers
and Fix-Undetermined-Slots. Since an undetermined slot may appear either in the set of buffers
read after the fourth handshake, or in the set of buffers read before the handshake, we need merge
the two sets into a single set in order to resolve undermined slots. This is done by procedure
Merge-Fix-Sets.
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Procedure Consolidate
begin
1. local Temp := �
2. Localsk := �
3. for each thread Ti do
4. suspend thread Ti
5. Snoopi := false

// copy and clear snooped objects set
6. Localsk := Localsk ∪ Localsi
7. Localsi := �

// copy thread local state and ZCT.
8. Localsk := Localsk ∪ Statei
9. ZCTk := ZCTk ∪Newi
10. Newi := �

// copy local buffer for consolidation.
11. Temp := Temp ∪Bufferi[1 . . . CurrPosi − 1]

// clear local buffer.
12. CurrPosi := 1
13. resume thread Ti

// consolidate Temp into Histk+1.
14. Histk+1 := �
15. local Handled := �
16. for each 〈s, v〉 ∈ Temp
17. if s /∈ Handled then
18. Handled := Handled ∪ {s}
19. Histk+1 := Histk+1 ∪ {〈s, v〉}
end

Figure 5.7: Sliding View Algorithm: Procedure Consolidate

Procedure Merge-Fix-Sets
begin
1. Peekk := Peekk ∪Histk+1

end

Figure 5.8: Sliding View Algorithm: Procedure Merge-Fix-Sets
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Procedure Reclaim-Garbage (figure 4.8) is the same procedure used in the first algorithm. Due
to the extended meaning of the Localsk set the conditions for reclaiming objects in Reclaim-
Garbage need not be changed.
Procedure Collect (figure 5.9) does require modifications, however. The dirty flag of each slot of
the candidate object is checked. If all flags are off, then there cannot be any record of a constituent
slot of it in the digested history for the next cycle and there will not be any further logging of such
a slot after the fourth handshake as well, as o is unreachable then. Hence, the collector may simply
clear o’s slots and return it to the memory manager without causing inconsistencies.

If, however, some slot has its dirty flag set, then some thread modified the slot prior to respond-
ing to the fourth handshake and logged the slot’s previous value before hand. Only afterwards did
the containing object become unreachable and the collector detected that fact. This is possible, for
example, due to the following scenario: object o is only directly reachable from thread Ti. After
responding to the first handshake, Ti stores a value, v1, into the slot s of o. Then it stores a second
value v2, into the slot. Then it discards its local reference to o, before responding to the fourth
handshake. Thus, s is both a part of Histk+1 and is supposed to be reclaimed during cycle k.
Note that when the collector consolidated s it considered v1 as its current value, rather than v2.
Consequently, the collector may not simply clear s and decrement v2.rc, as this will not undo the
previous action of incrementing v1.rc.

The solution we adopted to the problem is to defer the collection of o to the next cycle. Since it
is unreachable already in the current cycle, the problem described above cannot reoccur during the
next cycle. This is computationally efficient but has the drawback of retaining uncollected garbage
more than is really needed.

An alternative solution is to let the collector find what is the value of s in the sliding view of
the current cycle as it appears in the digested history Histk+1. Suppose v stands for this looked-up
value. The collector then decrements v.rc and discards the pair 〈s, v〉 from Histk, in order to avoid
another, spurious, decrement during cycle k+1. We have preferred the former solution to the latter
since the latter incurs the computational overhead of the search, introducing an O(n log n) term to
the step complexity of a cycle, which is otherwise of linear complexity.
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Procedure Collect(o: Object)
begin
1. local DeferCollection := false
2. foreach slot s in o do
3. if Dirty(s) then
4. DeferCollection := true
5. else
6. val := read(s)
7. val.rc := val.rc− 1
8. write(s, null)
9. if val.rc = 0 then
10. if val /∈ Localsk then
11. Collect(val)
12. else
13. ZCTk+1 := ZCTk+1 ∪ {val}
14. if ¬DeferCollection then
15. return o to the general purpose allocator.
16. else
17. ZCTk+1 := ZCTk+1 ∪ {o}
end

Figure 5.9: Sliding View Algorithm: Procedure Collect
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Chapter 6

A Supplemental Sliding View Tracing
Algorithm

We chose to tackle the problems of cyclic data structures and stuck reference count fields using
a supplemental concurrent mark&sweep algorithm that reclaims those cyclic garbage structures
and reinstates stuck reference count fields. The algorithm is designed to be inter-operable with
the sliding view algorithm meaning that it is possible to decide on a cycle by cycle basis which
algorithm should be invoked and that the code for updating a pointer is common to both algorithms.
However, we do have to change the New operation in order to support object coloring which is
needed for the tracing algorithm.

6.1 Tracing using a sliding view

This sectiondemonstrates how it is possible to use a sliding view in order to develop a tracing
procedure which assures that any reachable object at the end time of the sliding view is marked
and therefore not reclaimed later.

The basic mark&sweep algorithm operates by stopping all threads, marking any object which
is directly reachable (either from a local or a global reference) and then recursively marking any
object which is pointed by a marked object. Then, any object which is not marked is swept, i.e.,
reclaimed. Finally, mutator threads are resumed.

Concurrent mark&sweep collectors perform some, or all, of the above steps concurrently with
mutators. Snapshot at the beginning [51, 25] mark&sweep collectors exploit the fact that a garbage
object remains garbage until the collector recycles it. i.e., being garbage is a stable property. Thus,
snapshot at the beginning operates by:

1. stopping the mutators,

2. taking a snapshot of the heap and roots,

3. resuming the mutators,

4. tracing the replica,

5. sweeping all objects in the original heap whose replicated counterparts are unmarked. These
reclaimed objects must have been garbage at the time the snapshot was taken and hence they
are garbage also when the collector eventually frees them.
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We take the idea of “snapshot at the beginning” one logical step further and show how it is
possible to trace and sweep given a “sliding view at the beginning”.

Suppose we are given a scan σ and a corresponding sliding view Vσ. Using the scan, we want
to deduce which objects are garbage at End(σ). To that end, we ask ourselves what is the value of
a slot s at time End(σ). The trivial answer is of course either Vσ(s) or any other value which has
been stored into s between σ(s) and End(σ). If we want to trace any object which is reachable at
time End(σ) it suffices to start tracing from a root set which includes the true root set at End(σ)
and adopt the following tracing discipline: whenever a slot s is traced, trace through all of the
candidate values it assumed at End(σ), i.e., proceed tracing through Vσ(s) and through any value
that has been stored into it in the interval σ(s) to End(σ). These stored values are known to the
collector since they are snooped by mutators. i.e., the mutators keep a record of any such value
which might be stored in the specified interval.

It still remains to identify a set of pointers that includes the true root set at End(σ). This
can be done using the same mechanism that was employed in the reference counting sliding view
algorithm: “snooping” and the fourth handshake that marks thread states. Any local reference
that exists at End(σ) is either still existent at the time of the fourth handshake or is discarded
before the thread responds to the fourth handshake. If it is discarded without being stored into a
heap slot (and thus snooped) then it has no contribution to reachability after the fourth handshake
ends and we may simply ignore it (although it is a valid local reference at End(σ)).

We thus arrive at the following garbage collection algorithm:

• A mutator Ti executes the following write-barrier in order to perform a heap slot update,
which includes the snooping test:

1. s := new
2. if Snoopi then
3. mark new as local

• A collection cycle contains the following stages:

1. the collector raises the Snoopi flag of each thread. This indicates to the mutators that
they should start snooping.

2. the collector computes a scan σ and a corresponding sliding view, Vσ, concurrently with
mutators’ computations.

3. each thread is then suspended (one at a time) and its Snoopi flag is turned off. Each
object which is directly reachable from the thread is marked local. The thread is then
resumed.

4. The collector traces the heap according to the image of it contained in Vσ. The starting
point for the trace is all objects which are marked local.

5. After tracing is completed, any object which is not marked and which has been allocated
by thread Ti before Ti was stopped in order that its state be scanned (in stage (3) above),
is garbage.

Note that we can reason only regarding objects which were allocated prior to the handshake of
stage (3). Since sweeping occurs after the handshake we need devise a mechanism that prevents
the collector from collecting objects that were allocated after the handshake. We use a variant
of the color toggle trick, first introduced in [35]. It is assumed that every object has a color field
associated with it. The field can take on three different values, say 0, 1 and 2. The value of 2
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is interpreted as the color blue, which is assigned to unallocated objects. In the initial cycle, the
color white, which is the color of objects which still haven’t been traced, is represented by zero and
black is represented by one. Black is the color of objects which have been already traversed in the
trace. On each subsequent cycle the black and white colors are toggled, i.e., the meanings of zero
and one are reversed.

A mutator toggles during the handshake of stage (3) the color using which it colors newly
allocated objects and the collector reverses the meaning of black and white prior to starting a new
trace.

6.2 The algorithm

The tracing algorithm uses exactly the same mechanisms used in the reference counting sliding
view algorithm in order to implicitly compute a sliding view based on which collection decisions
are made. Specifically, it uses the same four handshakes. Only the operations carried out in the
fourth handshake are modified in order to support the subsequent tracing and sweeping, rather
than reference counting. Let us elaborate on the tracing and sweeping stages.
Tracing. After the consolidation stage the collector starts tracing according to the sliding view
associated with the cycle. When in need to trace through a slot the collector tries to determine
its value in the sliding view as was done in the previous algorithms, i.e., by first reading the slot
and then its flag. Determining the slot is successful if the flag is off. In that case the value read
from the slot is the slot’s value in the cycle’s sliding view. If determining is not successful, then
the collector retrieves the slot’s value from the threads’ buffers. This is done in phases: first, the
collector tries to determine and then trace through any slot that it can. Then, when all the slots
which need to be traced are all undetermined slots, it reads threads’ buffers, resolves the slots and
resumes tracing. Resolving a slot means looking-up the value mutators have associated with it in
their buffers. Resolution is always successful since it is guaranteed that any undetermined slot is
logged by some mutator prior to the time the collector inspects mutators’ buffers.

Since any undetermined slot is due to appear in some buffer when trying to resolve it each phase
contributes to the progress of tracing. Additionally, the graph induced by the sliding view is finite,
so tracing is bound to complete after a finite number of phases. We believe that in practice only
handful phases will be actually needed in order to complete tracing since if the collector traces fast
enough then it reveals quickly the picture of the heap contained in the sliding view. If, on the other
hand, it falls behind a mutator which rapidly changes the heap, then it learns about the contents
of the sliding view from the mutator’s buffer in few phases as well. Thus, sustained tracing can
occur only when the collector is running almost in unison with the mutator, falling just behind it,
as they compete for the same slots in memory, which is an improbable scenario.

As tracing proceeds, the collector incrementally computes the rc field for each object. Eventu-
ally, when tracing is done, the rc field has the same semantics which are expected by a reference
counting cycle. i.e., it equals the asynchronous reference count according to the sliding view asso-
ciated with the cycle (disregarding pointers from garbage objects).
Sweeping. Finally, the collector proceeds to reclaim garbage objects by sweeping the heap. As
said, the algorithm can infer whether an object is garbage or not only if it has been allocated
prior to the fourth handshake. Thus, we need a mechanism to prevent the collector from sweeping
objects which have been allocated after the handshake. We use a color toggle scheme in order to
prevent the reclamation of such objects.

Each thread has a variable, denoted AllocColori, that holds the color the thread has to color,
i.e, assign, to the color field of newly allocated objects. The variable is toggled between two
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Procedure New(size: Integer) : Object
begin
1. Obtain an object o from the allocator,

according to the specified size.
2. o.color := AllocColori
3. Newi := Newi ∪ {o}
4. return o
end

Figure 6.1: Allocation code that supports tracing cycles

dichotomic colors, black and white, which are interpreted by the collector as “marked” and “not
marked” respectively.

When a thread responds to the fourth handshake we assign the current black color to the
AllocaColori variable. Thus, during tracing and sweeping the mutator colors newly allocated
objects black. During sweeping, the collector considers each object in heap. If the object is black,
then it is retained. If it is colored blue, then it is ignored. Otherwise, the object is white. In that
case the collector reclaims the object by coloring it blue and passing it back to the allocator.

Thus, when sweeping is over, the heap contains only black or blue objects since any object
which had been white was turned blue and mutators color newly allocated objects black. Before
starting the tracing of the next cycle the collector toggles the values of black and white variables,
so all objects allocated prior to the next cycle’s fourth handshake are considered “unmarked”.

We now proceed to specify the algorithm’s pseudo-code.

6.3 Mutator code

As required, the algorithm uses the same write-barrier used in the reference counting sliding view
algorithm. The code for the Update procedure is given in figure 5.2.

The New procedure is modified to support both tracing and reference counting cycles. New
carries out the mutator’s part in the object coloring protocol. The modified procedure is given in
figure 6.1.

6.4 Collector Code

The code for a tracing collection cycle is given in figure 6.2. Procedures Initiate-Collection-
Cycle, Clear-Dirty-Marks and Reinforce-Clearing-Conflict-Set are the same ones used in
the cycles of the reference counting sliding view algorithm. They are given in figures 5.4, 5.5 and 5.6,
respectively. They serve for the same purpose here as well: after they are executed logging and
determining of slots is consistent.
Consolidate-For-Tracing. This procedure, given in figure 6.3, is the counterpart of procedure
Consolidate from the reference counting algorithm. As such, it carries out the fourth handshake
during which thread local states are marked and the buffers accumulated between the first and
fourth handshakes are retrieved for consolidation. However, note the differences from Consolidate,
which are highlighted with an asterisk in front of the relevant lines of code: the values of black
and white are toggled; the AllocColori variable of each thread is toggled, signaling to the mutator
that any creation of objects after the fourth handshake and until sweeping is over should color a
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Procedure Tracing-Collection-Cycle
begin
1. Initiate-Collection-Cycle
2. Clear-Dirty-Marks
3. Reinforce-Clearing-Conflict-Set
4. Consolidate-For-Tracing
5. Mark
6. Sweep
end

Figure 6.2: Tracing Alg.—Collector Code

newly created object black. Another thing to note is the omission of the addition of the Newi sets
to ZCTk. Actually, ZCTk has no use in a tracing cycle.
Procedure Mark (figure 6.4) implements the tracing stage of the algorithm. Tracing proceeds
according to the graph induced by the sliding view associated with the cycle and starting from
objects in Localsk. Recall from the reference counting sliding view algorithm that after taking
the fourth handshake the collector may coherently try to determine what is a slot’s value in the
sliding view of the cycle. It reliably can tell whether it has succeeded or failed in determining. In
case it succeeds, it simply need continue tracing from the object pointed by the determined slot.
Otherwise, it is guaranteed that some thread has recorded the undetermined slot’s value in its
buffer. The collector tries to determine and trace more and more slots, until all slots that have to
be traced through are all undetermined. Then, it resolves those undetermined slots by looking up
their associated values in the threads’ buffers.

The collector uses a hash table or a similar data structure in order to store and retrieve the
values which mutators have associated with slots. We assume that the hash table supports these
operations:

• Hash-Clear. Clear the hash table.

• Hash-Insert(s, v). Associate v with s.

• Hash-Lookup-And-Remove(s). Lookup the value associated with s. Remove the associ-
ation for s and return the value which has been read.

Initially, the collector clears the hash table and fills in the associations contained in Histk+1 (i.e.,
the digested history of threads’ modifications to heap slots between the first and fourth handshakes).
After each non-terminal tracing phase, when the collector can no longer proceed tracing through
determined slots but still there are undetermined slots to trace through, the collector reads the
portions of the thread buffers which have accumulated since the read of the last phase and populates
the hash table with the associations contained therein. Then, it looks up any undetermined slot in
the hash table and finds its associated value. The associated value is then traced through. Since a
slot is traced at most once, a slot which has been looked up will not be needed in the future hence
the collector deletes the association of s jointly with looking it up.

The collector knows which portions of the buffer have been accumulated since the last tracing
phase by using the thread specific marker ScannedPosi which equals the value of CurrPosi at the
time the thread buffer was most recently read, during the previous phase.
Procedure Trace (figure 6.5). Actual tracing is carried out by this procedure. The procedure
takes two arguments: a reference to an object to trace through and a reference count increment
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Procedure Consolidate-For-Tracing
begin

// initially black = 1 and white = 0
*1. black := 1− black
*2. white := 1− white
3. local Temp := �
4. Localsk := �
5. for each thread Ti do
6. suspend thread Ti
*7. AllocColori := black
8. Snoopi := false

// copy and clear snooped objects set
9. Localsk := Localsk ∪ Localsi
10. Localsi := �

// copy thread local state.
11. Localsk := Localsk ∪ Statei

// clear thread local ZCT.
12. Newi := �

// copy local buffer for consolidation.
13. Temp := Temp ∪Bufferi[1 . . . CurrPosi − 1]

// clear local buffer.
14. CurrPosi := 1
15. resume thread Ti

// consolidate Temp into Histk+1.
16. Histk+1 := �
17. local Handled := �
18. for each 〈s, v〉 ∈ Temp
19. if s /∈ Handled then
20. Handled := Handled ∪ {s}
21. Histk+1 := Histk+1 ∪ {〈s, v〉}
end

Figure 6.3: Tracing Alg.—Procedure Consolidate-For-Tracing
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Procedure Mark
begin
1. for each thread Ti do
2. ScannedPosi := 1
3. Hash-Clear
4. for each pair 〈s, v〉 ∈ Histk+1 do
5. Hash-Insert(s, v)
6. Undetermined := �
7. for each object o ∈ Localsk do
8. Trace( o, 0 )
9. while Undetermined 6= � do
10. for each thread Ti do
11. ProbedPos := CurrPosi
12. while ScannedPosi < ProbedPos do
13. 〈s, v〉 := Buffi[ScannedPosi]
14. Hash-Insert(s, v)
15. ScannedPosi := ScannedPosi + 1
16. PrevUndetermined := Undetermined
17. Undetermined := �
18. for each slot s ∈ PrevUndetermined do
19. v := Hash-Lookup-And-Remove(s)
20. Trace( v, 1 )
end

Figure 6.4: Tracing Alg.—Collector Code—Procedure Mark

value. An object is traced only if its color is white, i.e., it was not traced before. If this is indeed the
case then the reference count field of the object is reset and it is colored black. Then, the collector
tries to determined each slot contained in the object and trace through it. If a slot is determined
then the collector carries out line (7) which traces recursively through the determined value, which
is the value of the slot at the sliding view associated with the cycle. If a slot is undetermined then
line (9) adds it to the Undetermined set where it will wait until its resolution.

It is important to note that the trace cannot be interrupted by objects which are allocated black
by procedure New. Let us explain this point. The collector traces through the graph induced by
the sliding view and the corresponding scan of the cycle. The scan is complete before the fourth
handshake starts hence it cannot reference an object which is created black because a thread may
leave a newly allocated object blackened only after responding to the fourth handshake.

The reference count increment argument signifies whether Trace has been invoked for o by
virtue of being pointed from a heap slot or rather by a local reference. In the latter case, no
adjustment to o.rc is needed, while in the former o.rc should be incremented by one. Thus,
procedure Mark passes 0 for this argument when tracing local objects (in lines (7-8)), while all
other invocations pass 1 as they are due to heap slot references to the traced object.
Sweeping is carried out by procedure Sweep (figure 6.6). The first step it takes is to eliminate
from Histk+1 any records of slots that it is about to reclaim. This stage is needed in order that
the next cycle will not adjust rc fields incorrectly due to the slot, trying to determine its value etc.
Such a slot may exist since the algorithm is capable of reclaiming objects which are reachable (and
therefore modifiable) between the first and fourth handshakes.

Sweeping then proceeds in the following manner: any object which is colored black and has a
zero computed reference count field is added to the ZCT of the next cycle (anticipating a reference
counting cycle.) White objects are returned to the allocator not before being colored blue. Blue
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Procedure Trace(o: Object, rcInc: Integer
begin
1. if o.color = white then
2. o.color := black
3. o.rc := 0
4. for each slot s of o do
5. v := read(s)
6. if ¬Dirty(s) then
7. Trace(v,1)
8. else
9. Undetermined := Undetermined ∪ {s}
10. o.rc := o.rc+ rcInc
end

Figure 6.5: Tracing Alg.—Collector Code—Procedure Trace

Procedure Sweep
begin
1. for each pair 〈s, v〉 ∈ Histk+1 do
2. Let o be the object containing s
3. if o.color = white then
4. Histk+1 := Histk+1 − {〈s, v〉}
5. ZCTk+1 := �
6. Let swept point to the first

object in the heap
7. while swept does not point pass the heap do
8. if swept.color = white then
9. clear the slots and flags of swept
10. swept.color := blue
11. return swept to the allocator
12. else if swept.color = black ∧ swept.rc = 0 then
13. ZCTk+1 := ZCTk+1 ∪ {swept}
14. advance swept to the next object
end

Figure 6.6: Tracing Alg.—Collector Code—Procedure Sweep

objects are ignored.
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Chapter 7

Implementation Issues

In this chapterwe shift from the abstract treatment of the dirty flags and the log buffers and
suggest concrete implementations for these data structures. Then we show how to treat global
roots. Finally we address the issue of memory consistency.

After considering the implementation options described in this chapterwe describe in chapter8
and 9 the actual implementation we prepared and its performance results.

7.1 Dirty Flags

Both algorithms were presented in a rather high level and generic manner that leaves the imple-
mentation of several data structures unspecified. This method of exposition is useful for showing
the algorithms correct and it reveals the ideas behind the algorithms more clearly. In order to
implement the algorithms, we must select concrete data-structures for each abstract data-structure
that is used. The algorithms share most data structures and access them similarly. Yet the most
crucial data structure, the dirty flags, are accessed in a fundamentally differing manner by the two
algorithms.

The first algorithm calls for an implementation of the slots’ dirty marks that allows setting and
reading by the mutators and collector on one hand and that supports a fast “clear all” operation by
the collector, on the other hand. The “clear all” operation need be fast since mutators are halted
whilst it takes place. The second algorithm is less demanding in that respect. Dirty flags may be
cleared less hastily as the mutators are running during the operation. While the expeditiousness of
the clearing operation is still important, it may yield to other factors, such as space conservation
and increased locality. Thus, the snapshot algorithm calls for bitmapped solutions, since bitmaps
are easier to clear quickly, while the sliding view algorithm can work both with bitmapped and
non-bitmapped solutions.

Non-bitmapped solutions locate the flags interspersed with the data. This has two notable
benefits: (1) conservation of space, since we can allocate space per flags on a per type basis, rather
then conservatively for every word of memory, as is done in a bitmapped solution and (2) increased
locality of reference, as the flags are accessed by the mutators in conjunction with their respective
slots and there is no need for the collector to implement the “clear all” operation. The downside of
non-bitmapped solutions is the inability to clear the dirty flags quickly; they must be cleared one
at a time, or in small batches, depending on the specific solution.

In section7.1.1 we show how it is possible to associate a flag with a group of slots, rather then a
flag for a single slot, thus saving space. Section7.1.2 demonstrates how the overhead of initializing
assignments can be eliminated.
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7.1.1 Allotting a flag per a chunk of memory

In this sectionwe elaborate on the idea according to which a flag can serve an indicator to a change
in any of the slots within a fixed chunk of memory. The ideas contained in this sectionare similar
to those that arise in the context of tracking inter-generational pointers in a generational collector
that uses card marking. Details on the method of card marking can be found in [43].

If we let a single flag signify a change in a chunk of memory then the write barrier takes the
following form, assuming that we want to store into the slot s the value v:

• the flag for the chunk of memory containing s is optimistically probed, assuming that it is
turned on. If it is indeed turned on, then we proceed directly to the store operation.

• otherwise, a replica of the slots that reside inside the chunk is created and stored locally.

• the flag for the chunk is then probed again. If it is now turned on, we proceed to the store
operation.

• otherwise, we commit the replica just prepared to the log buffer, raise the flag and only then
execute the store.

The collector code for determining a slot is changed accordingly. The collector tries to determine
the value of an entire chunk instead of a single slot.

The scheme is characterized by a decreased memory consumption yet by spurious work imposed
on the mutator and collector that have to process slots which haven’t really changed.

We think of three feasible methods for associating a group of slots with a flag: (1) associating
each card, i.e., aligned chunk of 2l bytes (where l is a parameter) with a flag, the flags reside in a
bitmap. (2) associating a flag with an object, the flags reside in a bitmap, and (3) a flag per object,
where the flag is located inside the object.

Options (1) and (2) are suitable for both algorithms while (3) is appropriate only for the sliding
view algorithm.

We note that it is not needed to log the identity of individual slots within a chunk. It suffices
simply to log which non-null pointers the chunk contains. This property may ameliorate the cost
of spurious logging. There is a tradeoff between: (1) logging the entire chunk conservatively and
letting the collector figure out which part of the chunk’s replica are pointer slots and: (2) letting
the mutator store precisely only true references. This is related to the nature of a chunk: does it
correspond to an object or is it just an aligned piece of memory.

Working on an object basis lets the mutator efficiently record precisely object slots: we can
produce a per-type slot-storing code that stores any heap slots contained in the object into the
history buffer of the thread, or produce a per-type vector of slots’ indices and an efficient routine
that logs the slots specified by the vector, given a base pointer to the object.

Identifying a flag with an object is also quite natural in terms of locality, i.e., we might expect
that when a slot of an object is changed, then its sibling slots are likely to change as well, so the
amount of unneeded information recorded is minimized. This might not be the case for an arbitrary
chunk of memory that is prone to hosting unrelated objects.

The disadvantage of working with a flag-per-object scheme is dealing with objects which are
too big. Applying the scheme for them will result in a wasteful replication of probably unchanged
data. This can be avoided by treating big objects differently. Special care need be taken that the
methods for small and big objects coexist.

Using a flag per object and a flags bitmap can be quite wasteful in terms of space: we need to
allocate a flag in the bitmap per the granule of object alignment. Since objects are usually aligned
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on 16 bytes or smaller granules and since a typical object is some 50 bytes long, inlining the flag
inside the object results in a substantial saving of space (not to mention the cases in which some
unused bit in the object header is waiting to be exploited).

7.1.2 Initialization

This sectiondiscusses an optimization regarding the initialization of slots when the method of a
flag-per-object is used.

By an initializing update we mean an update to an object’s slot that is bound to occur within
a small fixed number of instructions from the object allocation site. For example, referring to
languages such as C++ or Java, we expect initializing updates to abound in inlined constructors.
As noted by [57, 31] initializing updates comprise the majority of updates in functional languages
and garbage collected object oriented languages.

By treating the entire code block that executes the object creation and the initializing updates
as a single transaction (i.e., we treat it as a protected piece of code), we can save a substantial
amount of our algorithms’ overhead: after the object is created it is logged in the thread buffer
with no contained pointers. The initializing updates then proceed without any write barrier.

Note that this protocol also deems the use of the local ZCT unnecessary as newly created objects
are tracked using the ordinary history buffer.

7.2 Log buffers

The primary design factor in the implementation of the log buffers is how to make writing into
them as fast as possible for a mutator executing an update. A secondary consideration is how
to allow the collector to read those records that have been fully logged (i.e., both slot and value
members of a logged pair) without interrupting the mutator.

In order to satisfy the primary goal we suggest the following design, which is similar to the one
described in [17]: a buffer will be implemented as a linked list of buffer-chunks. Each chunk is of
size 2k, aligned on a 2k boundary (k is a parameter.)

A mutator that is executing an update will always have enough room to log the current trans-
action. This is an invariant which is maintained in the following manner: after logging a pair to
the current chunk, the mutator checks whether the next update would cause the chunk to overflow
(this check is a simple arithmetic one due to the chunk size alignment.) If that is the case, it tries
extracting a new chunk from a list of free chunks. If it succeeds, it lets the new chunk point to
the old one and starts using the new one. Otherwise, a new garbage collection cycle is started.
The mutator then waits for the collector to notify it when there are free chunks. The collector
makes part of the chunks available to mutators after processing them in the procedure Update-
Reference-Counters and the rest after the execution of procedure Fix-Undetermined-Slots.
In case the collector falls behind freeing chunks, a mutator may initiate a synchronous reference
counting cycle or a synchronous tracing cycle.

Using a linked list of chunks allows the Update operation to be efficient in the common case
that there is no overflow, yet it allows a finer grained load-balancing by letting each thread consume
a different amount of chunks from its peers.

New sets can be implemented in much the same way, even sharing the same pool of chunks with
the log buffers.

Implementing the second requirement, i.e., that the collector can read asynchronously the set
of completely logged pairs can be achieved efficiently in the following manner.
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• before the mutator starts using a buffer-chunk it zeroes it out.

• in order to store a record in the buffer a mutator first writes the value read, then it writes
the slot address.

• the collector reads the records in the thread’s buffer sequentially. It knows that it has read a
record which has not been completely logged when it sees a slot field with the value of null
(note that the mutator never logs a slot whose address is null.)

Thus, the mutator can manipulate the buffer using only a single register that points to the next
address to be written.

7.3 Global roots

We have left the treatment of global roots outside the specification of the algorithms. This choice
has rendered the specification simpler while, as is next explained, it does not involve any loss of
generality.

To see that this is indeed the case, we postulate that global roots can be treated exactly as heap
slots. That is, each global root has a dirty flag corresponding to it and it is subject to the write
barrier. This treatment is valid for the following reason. We picture all global roots as being the
slots of a conceptual “globals” object. The “globals” object is directly reachable from any thread.
Thus, reads and writes of global roots are equivalent to reads and writes of the respective slots of
the directly reachable “globals” object. The “globals” object itself need not be marked or otherwise
be operated on explicitly since it does not really exist and therefore there is no risk that it would
be collected.

This argument directly suggests a concrete method for treating global references: associating
a dirty flag with any such reference and applying the write barrier to it. However, all is not well.
Implementing this policy can be quite involved because unlike for heap objects it is hard to find
a systematic manner to associate a dirty flag with each global reference. We therefore propose
alternative approaches to global variables.

In the snapshot algorithm, global references may be simply treated as their local counterparts.
i.e., when all threads are stopped during the hard handshake, all objects which are directly reachable
from a global reference are marked local. No write barrier is employed for global references.

In the sliding view algorithm we may treat global references in the following manner. 1) a
mutator Ti executes the following write-barrier in order to perform a global reference update,
which includes the familiar snooping test:

1. s := new
2. if Snoopi then
3. mark new as local

2) the collector, before carrying the fourth handshake, reads all global roots and marks the
pointed objects local.

To gain some intuition that safety is indeed provided by this protocol we consider a global root
r. r is read by the collector before the fourth handshake and the object referenced is marked; so
is any other object which is stored into r by a mutator which still hasn’t responded to the fourth
handshake, as the mutator has its Snoopi flag raised. We conclude that the only baleful scenario
in which a reachable object (when reclamation commences) is mistakenly collected starts in a store
into r by a thread which has already responded to the fourth handshake. But it is an invariant
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which is kept by the algorithm, and is not broken by this protocol for global roots, that any
object which is collected is unreachable from any thread (considering global roots as immediately
reachable to the thread as well) after the thread has responded to the fourth handshake. Hence
such a store is impossible in the first place, since it implies that the reachable object that has been
mistakenly collected was already directly reachable from the thread which executed the store after
it has responded to the fourth handshake. The detailed proof is in chapterB.

This protocol is effective when the number of global references is low relative to the number of
modified slots that the collector has to process so that the constant time spent marking global roots
does not dominate the overall running time of a cycle. Another advantage of it is the lighter write
barrier. To conclude, we would opt treating global references using this protocol rather than as
ordinary heap slots whenever the number of global references is relatively low or it is cumbersome
to associate a dirty flag with each global reference.

7.4 Memory consistency

Throughout the paper we have assumed that the system conforms to sequential consistency con-
straints. In a sequential consistent system all memory accesses, carried out by all processors, are
seemed to be serialized one after the other while preserving the order of instructions carried out by
individual processors. However, some modern SMP systems do not provide sequential consistency
but weaker consistency models in order to improve performance through processor level parallelism,
speculative execution and non-uniform memory access. In this sectionwe show how our algorithms
can be adapted to weaker memory models. In particular, we show how our algorithms can operate
on a platform which is processor ordered. Processor ordering is a memory model which is adhered
to by contemporary platforms such Intel’s P6 processors’ family.

In a processor ordered system, like in a sequential consistent system, there is a linear sequence
of all memory accesses carried out by all processes, however, it is not guaranteed that any two
instructions that were carried out by a particular processor would appear in the linear sequence in
the same order that they appeared in the processor’s program. Rather, only these orderings are
guaranteed:

1. any two store instructions that are performed by a processor are bound to appear in the linear
sequence in the same order as in the processor’s program.

2. if a processor contains in its program a load followed by a store then the store will follow the
load in the linear sequence as well.

3. any two instructions that are performed by a processor which access the same consistency
granule (see below) are bound to appear in the linear sequence in the same order as in the
processor’s program.

4. a processor that does not communicate with other processor’s through shared memory (i.e.,
it doesn’t access locations that other processors access) may not witness that the instructions
issued on its behalf are reordered.

The consistency granule of a system is an implementation dependent parameter that specifies
the size and alignment of memory chunks for which rule (3) applies. Usually the consistency granule
coincides with a cache line.

Implicit in the above definitions of sequential and processor ordering is the requirement that
the linear sequences are sensible in the sense that they maintain the semantics of load operations,
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i.e., the result of a load from location X should be the value which is most recently stored into X
in the linear sequence, or some prescribed initial value, if no such store exists.

Concisely, processor ordering amounts to sequential consistency with these two exceptions:

• “a load can pass a load” unless the two instructions address the same consistency granule
and unless a non-communicating program can tell that the two instructions were performed
out of order.

• “a load can pass a store” unless the two instructions address the same consistency granule.
Note that a non-communicating program can never tell whether such a reordering occurred
(unless it can tell that another reordering of the form “a load can pass a load” occurred).

The most crucial aspect of adapting our algorithm to processor ordering is how to preserve
the validity of the write barrier. Note that, aside from logging and snooping, the write barrier is
comprised of a read-only part followed by a write-only part:

• read-only part. Read from s, then read from Dirty(s).

• write-only part. Optionally Write to Dirty(s), then write to s.

We note that under processor ordering the only pair of instructions that may be performed
out of order are the load of s and the load of Dirty(s). It is easy to see that the algorithms
do not operate correctly when such a reordering occurs. In order to prevent it, we may issue a
synchronizing instruction between the loads. This is, however, a very expensive operation1.

If we have no knowledge on the specific mechanisms that allow this reordering to happen, that
is, we don’t know which opportunities are exploited by the system to reorder instructions, then we
don’t know as well how to eliminate these opportunities and we may rely only on the constraints
provided by processor ordering n order to prevent the reordering. For example, we can allocate
two adjacent bytes for the dirty flag where the two bytes reside on the same consistency granule.
Then, in order to read the slot and then its flag we execute this code snippet:

Update(WORD *s, ...) {
register WORD slot_val;
register BYTE *flag_addr,

*dummy_addr,
flag_val;

(1) slot_val = *s; // LOAD slot
flag_addr = calc_flag_addr( s );
dummy_addr = flag_addr + 1;

(2) *dummy_addr = MAGIC_NUM; // WRITE dummy
(3) flag_val = *flag_addr; // LOAD flag
...

The load of (3) cannot pass the store of (2) as they refer to the same granule. The store of (2)
cannot pass the load of (1) as a store may not pass a load. Thus we are guaranteed that the load
of the slot will precede the load of its flag is the linear sequence.

Although this protocol operates on any processor ordered system it is inefficient since it requires
doubling the space needed for the already space demanding dirty flags and it incurs an additional
write access on each invocation of the barrier.

1It may involve flushing the processor’s pipeline and/or cache.
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However, in practice, we can identify the origins of reordering and therefore we can take ad-
vantage of this knowledge and efficiently eliminate reordering when needed. We consider as an
example a PowerPC system with a MESI cache protocol. MESI is a cache protocol that requires
the processors to gain exclusive ownership over memory locations prior to modifying them. At the
time a location is owned it may not be cached neither for reading nor for writing by any processor
other than the owner. Thus, it is easy to see that the requests which are serviced by the cache
protocol adhere to sequential consistency. It follows that reordering can only emanate from the
processor itself, which issues its external cache requests in an out of order fashion. In order to
eliminate the out of order execution of the loads in the write barrier it suffices to guarantee that
the processor presents these load requests in their original order to the cache mechanism. This is
achieved by creating a faked dependency among the two loads, fooling the processor to believe that
it must carry out the first fetch prior to starting the second one. Such a dependency can be created
using this code fragment:

void Update(WORD *s,...) {
register WORD val;
register BYTE *flag_calc_addr;
register BYTE flag_val;

val = *s;
flag_calc_addr = (val & 3) + calc_flag_addr(s);
flag_value = *flag_calc_addr;

In the code fragment we assume that a pointer value is aligned on a four-byte boundary,
such that the expression (val & 3) is bound to equal zero and flag_calc_addr evaluates to
calc_flag_addr(s). However, the processor does not possess this knowledge a priori and it is
fooled to believe that in order to load the flag it must first know the value of the slot. The extra
price paid is two additional arithmetic operations (perhaps a single operation on some architec-
tures.)

We admit that an aggressively speculative processor could have executed the second load prior
to the first load if it is designed to predict the results of load operations and can accordingly execute
code speculatively based on the predications. We know not of a processor which behaves in this
manner.

We now turn to the lighter problems of snooping and logging under weak memory constraints.
Snooping requires that a mutator would first execute the store proper into the slot and only

then would load its Snoopi flag. Under processor ordering the load may pass the store. However,
we care that these two instructions would not be reordered only in order to snoop stores into slots
by mutators which still haven’t responded to the first handshake. Otherwise, i.e., between the first
and fourth handshakes, the flag is continuously raised and the test is bound to succeed even if the
instructions are reordered (of course, we assume that a soft handshake synchronizes the mutator’s
view of the memory with that of the collector.) Instead of combating this reordering we may
simply carry out an additional handshakes before the one that used to be the first handshake. In
the additional handshake we would raise the Snoop flags.

In the context of logging we have relied on the order of store operations by the mutator, i.e.,
first logging the value and then the slot, to allow the collector to read a mutator’s buffer reliably
without stopping it (see section7.2.)

We note that under processor ordering the collector may execute the loads (of the slot and
value parts of a record in a mutator’s buffer) in any order for if the slot field of the record does not
contain null, then the store into the slot field by the mutator must have preceded the collector’s
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load in the linear sequence. But that implies that the mutator’s store into the value field precedes
both collector’s load operations in the linear sequence, providing the collector with an accurate
account of both value and slot parts of the record.

Under weaker memory models than processor ordering we eschew the problem of collector’s
perceived partial logging by reading the buffers in an additional soft handshake.
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Chapter 8

An Implementation for Java

We have implemented a variant of the Asynchronous Reference Counting and Asynchronous Tracing
algorithms for Java. This chapterdescribes the implementation and its performance characteristics.

8.1 Java—the target platform

There is probably no need to introduce Java [3]. We chose to implement the Asynchronous Reference
Counting and Tracing algorithms atop Java because of the following reasons:

1. Java is an object-oriented garbage-collected language. Obviously it needs some garbage col-
lector.

2. Java is very popular and accepted as a true, rather than just academic, programming lan-
guage. This allows us to check our algorithm in a realistic setting.

3. Java supports shared-memory multi-threading in the language level. The need for a garbage
collector that can handle multiple threads running concurrently on multiple processors and
referring to the same address space is inherent to Java.

4. Java has been recently portrayed as the language of choice for implementing portable servers
(consult, for example, [4], for a coverage of contemporary server-side java based technologies).
An obstacle to overcome on the path to achieving scalability for such servers is the scalability
of the garbage collection process. This is exactly what we aim at in our work.

We started with Sun’s JDK1.2.2 for Win32 and replaced the default collector supplied with the
JDK with our on-the-fly collectors.

8.2 Object structure and garbage collection in the original Java
Virtual Machine

The original Java Virtual Machine (JVM) supports a so-called “handled” model in which each
object is referenced indirectly through a handle. The object itself contains the actual data members
declared by the object’s class while the handle contains two pointers: the first is a pointer to the
object data; the second points to a memory block containing the class’s runtime information (virtual
table, reflection information etc.)

The heap is divided into two disjoint pools: the object pool and the handles pool.
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Figure 8.1: Object layout in the original and modified JVMs. In the original JVM, data is accessed
indirectly through a handle in order to support the relocation of object data. In the modified JVM,
object data is almost always referenced directly by the user yet the data pointer is retained for
compatibility. The logPos field is either null or a pointer to a log entry that contains the logged
object’s reference data.
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In order to allocate an instance of a class, an object and a handle are allocated, the object is
zeroed out and the handle is initialized to point at the object and at the class’s runtime information.
See figure 8.1.

Handles are completely transparent to the user. They are used in order to facilitate memory
compaction [33] yet they introduce to the system the overhead of extra indirection, decreased
locality of reference and increased memory consumption (due to the handle to object pointer).

The garbage collection method which is employed in the original JVM is mark-sweep-compact.
Garbage collection occurs in a stop-the-world manner, when all threads are stopped.

8.3 Object structure in the modified JVM

Since our collector does not support the moving of objects in memory, we derive no advantage from
using the handles. However, eliminating the handles from the original JVM was too complicated
a task to undertake. As a compromise, we have unified the handle with the object (see figure 8.1).
The handle and object are allocated as a single chunk of memory and are treated as such by the
memory manager. This layout increases locality. Additionally, an object is located at a fixed offset
from its handle. Therefore we were able to change most of the code in the JVM to calculate the
object’s address, given the handle’s address, by a simple add instruction rather than de-referencing
the object pointer inside the handle.

We have based our implementation on the “flag per object” scheme discussed in section7.1.1.
The flag is termed logPos and is located between the (original) handle and the object (see fig-
ure 8.1). As the name of this field implies, it is not a mere flag but it has added functionality:
when the field is non-zero then indeed the object has been logged, as in the original scheme. More-
over, the value of the field in such a case is a pointer to the location in the thread’s buffer where
the object’s contents have been logged. Below we give the pseudo-code of the Update procedure
given this policy:

void updateHandle( Handle *h, int offset, Handle *value )
{

if (h->logPos==NULL) {
/* object has not been logged yet */

Replica r = copies of all references contained in ‘h’

/* check if object was modified in the meanwhile */
if (h->logPos==NULL) {

/* OK, replica is valid, commit it */
/* write into log, remember position */
LogEntry *le = logIntoUpdateBuffer( h, r)

/*
* write position into the object and
* thereby also turn on the flag
*/
h->logPos = le;

}
}

/* do the store proper */
h[offset] = value;
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/* snoop store operand */
if (currentThread->snoop) {
/* write ‘value’ into snoop buffer */
...

}
}

Note that we optimistically probe the logPos pointer before preparing the replica of the object’s
contents, hoping to minimize the number of replicas which are eventually discarded. Later in this
chapterwe show that the number of updates that actually execute the “if” body is very small and
therefore the use of the optimistic conditional is indeed beneficial.

8.4 Simplifying the determination of object’s contents using the
logPos field

By paying the extra price of allotting a whole word for the flag and transforming it into a pointer that
identifies the logged contents of an object, rather than using a boolean byte-sized flag, we obviate
all the cases in the original asynchronous algorithms in which the collector failed determining an
object and had to take extra and elaborate measures to deal with the failure. This includes:
Determining the contents of an object when updating reference counters. In the sliding
view reference counting algorithm, when updating the reference counters of modified slots (see
procedure Update-Reference-Counters in figure 4.5) the collector had to determine the contents
of a logged slot.

In our case, the collector has to determine the contents of a logged object.
In the original procedure, if the slot is undetermined the collector knows that some thread logged

it along with its value but it has no clue which thread did the logging and where to find the log
entry. It therefore postpones the dealing with such a slot to procedure Fix-Undetermined-Slots
(figure 4.7) in which it iteratively goes through the mutators’ log buffers and makes sure it accounts
for every undetermined slot.

In the modified procedure, if the object is undetermined then the value of logPos gives the
collector an immediate access to the log entry where a thread has logged the objects’ contents. The
collector therefore proceeds directly to the log entry and reads its contents. This scheme deems the
Undetermined set and the Fix-Undetermined-Slots procedure unnecessary.

The following code fragment illustrates the process of determining the contents of an object.

void determineObjectContents(Handle *h)
{

LogEntry le = h->logPos;

if (le) {
/* object has been logged */

objectIsLogged:
for each reference ‘child’ logged in ‘le’ do

incrementRC( child )
return

}
/* Prepare a replica of the references contained
* in the object
*/
Replica r = copies of all references contained in ‘h’
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/* check if object was modified in the meanwhile */
le = h->logPos;
if (le) goto objectIsLogged;

/* OK, replica is valid */
for each reference ‘child’ in the replica ‘r’ do
incrementRC( child )

}

Determining the contents of an object when deleting it. Recall that in procedure Collect
(figure 5.9) we had to postpone the collection of garbage objects which where modified by some
thread between HS1 and HS4. The reason for that was that we had no reasonable means to
eliminate the redundant log entry. Deleting the object without eliminating its corresponding log
entry (or entries) would have caused inconsistencies in the next cycle.

Using the logPos field, however, facilitates the elimination of log entries. If the object is indeed
logged then we have to:

1. decrement the reference counters of the objects appearing in the log entry (rather then the
counters of the objects appearing currently inside the object).

2. invalidate the log entry.

These changes are illustrated in the following pseudo-code for freeObject:

void freeObject(Handle *h)
{

if (h->logPos) {
/* object has been logged */
LogEntry le = h->logPos;
for each reference ‘child’ logged in ‘le’ do {

decrementRC( child) /* takes care for recursive deletion */
}
/* invalidate log entry, for next cycle */
markInvalid( le );

}
else {

/*
* Delete based on current contents
*/
for each reference ‘child’ contained in ‘h’ {

decrementRC( child) /* takes care for recursive deletion */
}

}
}

Note the difference between freeObject and determineObjectContents: freeObject does
not have to prepare a replica of the object’s contents and then recheck its validity since we are
guaranteed that the object is garbage at the time freeObject examines it, hence no contention
with mutators is possible.
Determining the contents of an object when tracing through it. In the tracing algo-
rithm we have to determine an object’s contents when tracing through it (see procedure Trace in
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figure 6.5). The inability to gain immediate access to the object’s log entry when the object is un-
determined dictated a multi-phased algorithm in which the threads’ log buffers are repeatedly read
asynchronously in order to read the values of modified slots (see procedure Mark in figure 6.4).

Using the logPos field in the same manner as for the case of updating reference counters
eliminates the need for multiple phases and the related data structures. Tracing then always
proceeds immediately after accessing the object’s logPos field, either as dictated by the current
objects’ contents or according to the previous state of the object, as recorded in the log entry.
Which of the two routes is taken is determined by the value of logPos in the same manner done
in the update of reference counters.

Procedure traceThroughObject demonstrates the principal described above:

void traceThroughObject(Handle *h)
{

/* trace only once through any reachable object */
if (getObjectRC(h) > 1) return;

/* trace through the object */
LogEntry le = h->logPos;
if (le) {

ObjectIsLogged:
/* object has been logged */
for each reference ‘child’ logged in ‘le’ do {

/*
* account for the pointer to ‘child’
* which is currently being traced
* through.
*/
incrementObjectRC( child );
traceThroughObject( child );

}
return

}

/*
* Prepare a replica of the references contained
* in the object.
*/
Replica r = copies of all references contained in ‘h’

/* check if object was modified in the meanwhile */
LogEntry le = h->logPos;
if (le) goto objectIsLogged;

/* OK, replica is valid */
for each reference ‘child’ in the replica ‘r’ do {
/*
* account for the pointer to ‘child’
* which is currently being traced
* through.
*/

incrementObjectRC( child );
traceThroughObject( child );

}
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}

8.5 Additional advantages of the logPos field

Beside the easier determination of objects’ contents we derive the following two advantages from
using the logPos field:
Using the logPos field in the resolution of the Create vs. Sweep conflict in the sliding
view tracing collector. The memory manager, in concert with the garbage collector, use the
logPos filed, along with other means, to resolve the race condition between the Create and Sweep
procedures. The net gain from this scheme is that we don’t have to use a per object color entry
any more. We will elaborate on this subject after describing the memory manager.
Eliminating duplicates in the update buffers. Recall that the original algorithm allowed two
mutators to log the same slot (in our case object). In such a case it was guaranteed that the two
log entries will be identical. The collector had to eliminate the duplicates and process exactly one
log entry per each object that was logged by any number of threads.

When using the logPos field we have a method for identifying duplicates without using auxiliary
data structures other then the log entries and the objects themselves.

We say that a log entry is “cycle closing” if the object it refers to has its logPos field pointing
back at the log entry.

During the clearing phase, i.e., between HS1 and HS2 the collector examines the mutators’
buffers that were passed to it during HS1. For each log entry, the collector checks whether the
entry is “cycle closing”. If it is, then it clears the logPos field of the referred object. Otherwise, it
invalidates the log entry so that the rest of the collection cycle ignores it completely.

Let us explain why this method eliminates all duplicates and only duplicates. Consider an
object at address h which is logged by at least one thread before responding to HS1. Assume
further that this object is not logged by any thread between HS1 and HS2. Obviously, h->logPos
is constant during the clearing phase and therefore the collector will identify exactly one log entry
as cycle closing. Any other log entry referring to h will be marked as invalid. So the method works
in this case.

What happens in the case that h is logged by at least one thread before HS1 but it is also
logged by some thread between HS1 and HS2? In such a case the collector may identify a single
log entry (the one that was created before responding to HS1—the latter is not looked-at at all by
the collector) as cycle closing. However, the log entry created between HS1 and HS2 might as well
“overtake” the prior assignment to logPos resulting in the collector identifying no cycle closing log
entries for h.

This is the sequence of events we are describing:

1. T1: r1 = create a replica of the handles in ‘h’.

2. T1: write ‘r1’ into the update log buffer.

3. T2: Respond to HS1.

4. T2: r2 = create a replica of the handles in ‘h’.

5. T2: write ‘r2’ into the update buffer.

6. T1: h->logPos = position in T1’s buffer.

7. T2: h->logPos = position in T2’s buffer.
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8. T1: h[ offset ] = val1.

9. T1: h[ offset ] = val2.

10. T1: Respond to HS1.

The log entry created by T1 is not cycle closing during the clearing phase and the log entry
created by T2, as it’s created after responding to HS1, is not considered at all during the clearing
phase of the current cycle.

While it looks as if we have a bug here it actually turns out that we may ignore the update of h
by T1 altogether because the object has been changed only after the current cycle has commenced.
i.e., only after some thread has already responded to HS1 (in our case, T2 responded to HS1
before the modification). According to the sliding view algorithm, we have to account for all
changes occurring between the beginning of the previous cycle and the beginning of the current
cycle. The update of h does not qualify.

The reinforcement phase (refer to section5.5) becomes simpler as well using this method. All
we have to do is go over the entries in the clearing conflict set and for each log entry le check the
object, h, it refers to. If h->logPos is null, then reinforce the log entry by re-closing the cycle. i.e.,
perform h->logPos := le.

The consolidation phase becomes unnecessary because no two log entries which are logged before
HS4 can be cycle closing by the time the next cycle will commence.

To conclude, the “cycle closing?” predicate is a powerful tool that arbitrates automatically
between log entries that refer to the same object. This mechanism solves all cases of multiple
occurrences of log entries by itself with no need for extra data-structures and/or procedures for
conflict resolution.

8.6 The Create Procedure

Recall that in the original algorithm an object is created “clean”, i.e., with it’s dirty flag turned
off, and it is logged in a special create buffer which is treated as a thread local ZCT.

If we were to take the same approach in our implementation then immediately after creating
the object, as “clean”, we would have to dirty it because of initialization code to its fields.

We had not the development resources to explore the initialization approach suggested in
section7.1.2 so we implemented a simpler yet efficient method. In our implementation, we cre-
ate objects as “dirty”. According to the principles of the sliding view algorithms we have to supply
the collector with a log entry containing the contents of the object when we dirtied it. But the
contents of the object at initialization are void.

Therefore, the mutator puts a reference to the object in a special “create buffer” and makes
logPos point to the log entry. The collector knows that entries in create buffers signify objects
which were logged when created, i.e., with empty contents and treats them accordingly:

1. the dirty flag is cleared

2. the current contents of the object are determined and the corresponding reference counters
are incremented

3. no reference counters are decremented

4. the object is considered a candidate for deletion (i.e., it’s in the ZCT).

Below we outline procedure createObject
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Handle* createObject(int size)
{

Handle* h = allocate(size);
LogEntry *le = logNewObject( h );
h->logPos = le;

}

8.7 Implementation of the log buffers

Principally, there are two kinds of log buffers in the sliding view algorithms:

1. sets of object references—these log buffers are “flat”; they contain one type of data:
pointers to objects. This variety includes the create buffers and the snoop buffers. We have
implemented the global ZCT (the one that lives between cycles) using this data structure as
well.

2. update buffers—the update buffers are a collection of records of the form< object, replica >
where replica is a set of object pointers that where observed to be contained in object.

The two types of buffers are implemented as a doubly linked list of memory blocks. The size of
a memory block is tunable but we have usually opted to use a block size of 64KB.

We assume objects are aligned on an 8-byte boundary thus we can utilize the lower 3 bits of a
logged reference for auxiliary information. The bits are used to mark log entries with the following
tags:

• BUFF NOMARK(=0)—flat object reference.

• BUFF LINK MARK(=2)—the rest of the word is a pointer to the next or previous log
block, depending on the direction of traversal.

• BUFF LOGGED HANDLE MARK(=1)—this kind of entry appears only in update
buffers. It signifies that the pointer is to an object which has been logged. The contents of the
object are logged just before it in the buffer (as flat references). The word preceding the replica
in the buffer can either be another entry marked with the BUFF LOGGED HANDLE MARK
tag or an entry with the BUFF LINK MARK tag.

• BUFF DUPLICATE HANDLE MARK(=3)—this kind of entry appears only in up-
date buffers. It is created by the collector by ORing a value of 2 into a slot marked with the
BUFF LOGGED HANDLE MARK tag. This action invalidates the entry (and the con-
tents of the object appearing just before it in the buffer). Recall that the collector invalidates
log entries on two occasions:

1. during deletion, so that the entry would be skipped in the next cycle.

2. during clearing, if the entry is not “cycle closing”, in order to eliminate duplicates in the
collection of mutators’ update buffers.

A log buffer is controlled by a log buffer header that contains the following information:

• start address—address of the first block in the log.
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• limit address—address of last slot in the current block, minus some elbow room. This
limit address is compared against in logging, to check if there is enough space for the logging
operation.

• current position—address of the next slot to be written into in the current block.

Recall that in the update protocol we have to prepare a replica of the object before com-
mitting it to the buffer. In our implementation, the replica is written directly into the buffer.
Committing the replica is done simply by writing the address of the updated object ORed with
BUFF LOGGED HANDLE MARK into the buffer (after the replica of the object’s contents)
and updating the current position pointer in the log buffer header.

8.8 Cooperation model

We implemented the approach appearing in the original algorithms for cooperation. i.e., threads
are suspended one at a time, the collector takes some action on their behalf and then the thread
is resumed. We use a per-thread flag called cantCooperate which is turned on in sections of code
during which the thread can not cooperate (i.e., during the write barrier, snooping of writes to
global pointers and the logging of newly created objects).

In order to carry out a handshake the collector suspends the threads one at a time. If a thread
is caught in non-cooperative code then the collector resumes it immediately and proceeds to handle
other threads. The collector repeats this process until all threads have cooperated.

We were careful to limit the size of the non-cooperative code sections to a fixed and small
number of instructions. This entailed reserving space in advance, in the snoop, create and update
buffers prior to entering a non-cooperative section.

8.9 The memory manager

In the design of the memory manager we tried to satisfy these requirements:

1. allocation should be as fast as possible and should avoid synchronization bottlenecks. i.e.,
the allocator should be scalable.

2. both the tracing and reference counting asynchronous algorithms do not accommodate the
relocation of objects in memory. The allocator should not suffer from fragmentation (except
maybe for some pathological cases) due to this property.

3. in the asynchronous reference counting algorithm, reclamation of objects occurs sporadically
rather than linearly as in the sweep phase of the tracing algorithm. The memory manager
should handle efficiently this sporadic reclamation of objects. Even though objects will not
be freed linearly it should still try to minimize fragmentation and increase the locality of
allocation requests. i.e., it is preferable that two objects which are created in a row will be
located closely in memory rather than chosen randomly from the entire heap space.

4. the vast majority of objects which are created are smaller than 60 bytes. The memory manager
should take advantage of this fact by optimizing the allocation of small object. Allocation of
medium sized and large objects may be less efficient than that of their smaller counterparts.

We found the original allocator inadequate to the requirements for the following reasons:
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1. it allocates memory by assigning big chunks of memory to threads which later cut them into
smaller pieces by incrementing a pointer. Naturally, the allocated memory spaces contain a
mixture of object sizes. Since the original collector supports compaction, there is no fragmen-
tation problem imposed by this allocation method. However, using this allocation method
with a non-compacting collector would very quickly lead to irrecoverable fragmentation.

2. the original allocator is synchronized on a single lock. This of course hinders scalability.

3. the original allocator maintains two disjoin pools for handles and for objects. Yet we want to
allocate a handle contiguously with its object.

4. the original allocator maintains information needed for compaction (e.g., object pinning in-
formation) which is useless for our algorithms.

Due to these reasons we decided to implement a custom allocator. Our allocator is divided into
two levels of management: the chunk manager and the block manager. We now outline the roles
of these managers.

The block manager manages big, equally sized, blocks of memory. The block size is tunable at
compile time and we elected to equate it with the hardware page size, which is 4KB. It supports
the following operations:

• allocate a range of blocks.

• free a range of blocks given the start address of the range.

• free a collection of ranges of blocks.

The block manager is totally serial and it is implemented using linked lists of equally sized
regions of blocks. The block manager is utilized either directly, by the allocation code, or indirectly,
using the chunk manager. When a user requests an allocation bigger than half a size of a block then
the number of necessary blocks is allocated directly from the block manager. Smaller allocations
are satisfied by the chunk manager which chunks single blocks into equally sized chunks that are
consumed by the user.

The chunk manager is highly concurrent and efficient since it uses very fine locking, thread local
allocation and it does not support coalescing or splitting: once a block is chunked into a specific
size, all allocations from within it will use the same chunk size until (and if) the block is completely
freed, in which case it will be returned to the block manager. Hence, allocation code need not
perform costly checks due to variable sized chunks located on the same block. There is a fixed
number of allocation sizes (approximately 20). The allocation sizes are chosen to balance between
internal fragmentation (which calls for many different allocation sizes) and external fragmentation
(which calls for a small number of allocation sizes so that blocks of one size can be used by objects
of differing sizes instead of allocating separate pages for each object size).

A typical object oriented application will issue many allocation calls that will be implemented
solely by the chunk manager and only relatively few calls will require allocating entire blocks from
the block manager.

Let us now review in greater detail the implementation of the block and chunk managers.
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8.9.1 The block table

The block table as an array of block table entries each describing a block in the heap.
Each entry is four words (16 bytes) wide and its format changes according to the current state

of the block. However, all formats share one field: the state field. This field assumes one of the
following states at each given moment:

• BLOCK—this state denotes blocks which are currently under the control of the block man-
ager and are the first or last blocks in a contiguous free region.

• BLOCKLIST—same as BLOCK but the block is also the head of a linked list of regions,
all of which are of the same size as this list-header region.

• BLOCKINTERNAL—denotes a block which is currently under the control of the block
manager but is not the first or last block of a region. i.e., an internal free block. This state
exists only for facilitating debugging. It does not exist in a non-debug build.

• CHUNKING—denotes a single block which has been allocated by the chunk manager, from
the block manager, and it is currently being chunked into small pieces. This state serves two
purposes. For the manager, it signifies that the block is no longer under its control. For the
sweep phase of the collector it signifies that no objects should be collected from this block.

• OWNED—means that the block is currently owned by a mutator thread allocating off this
block.

• VOID—signifies that the block is no longer owned by any mutator and that the collector
has not yet recycled any chunks from this block.

• PARTIAL—signifies that the collector has recycled some chunks from this block. The block
in that case is linked in a partial list and no mutator can allocate off it.

• ALLOCBIG—marks that the page is the first or last page in a big object (at least one block
wide) that was allocated by the mutator and has not yet been reclaimed.

• ALLOCINTERNAL—same as ALLOCBIG only that the block is not the first or last
block in the object. This state is used only for debugging purposes1.

The block manager applies to following state transitions2:

• BLOCK to ALLOCBIG. Happens when a user requests the allocation of a big object.

• BLOCK to CHUNKING. Occurs when the chunk manager requests the allocation of a
block for chunking it into small objects.

• VOID or PARTIAL or ALLOCBIG to BLOCK. Occurs whenever a chunked block is
fully freed or when a big object is reclaimed.

1Actually, this state might be required for systems that do not maintain the invariant that a base pointer to a live
object should always be present somewhere. i.e., systems that allow for pointers into the middle of objects with no
corresponding pointers to the base of the object. On such a system this state can be used to locate the base pointer
given a pointer to the middle of the object.

2in the following we treat BLOCK and BLOCKLIST interchangeably since they are equivalent logically from an
external point of view.
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The user allocation code applies the following transformation to block states:

• CHUNKING to OWNED—when the block is completely chunked it becomes owned by
the thread on behalf of which it was allocated.

• OWNED to VOID—occurs when allocation can no longer proceed from the page, since
there are no free chunks left on it.

• PARTIAL to OWNED—after some chunks have been recycled and the block is in the
partial state a thread can gain ownership over it and start allocating off it.

The last set of transitions is applied by the collector (when executing chunk manager code that
performs them):

• VOID to PARTIAL—occurs when some, but not all, objects on a VOID-marked block are
recycled. At the same time the block is linked into a partial list (see below).

• PARTIAL to BLOCK—occurs when all objects on a partial page are recycled. This
transition occurs atomically with the removal of the block from the partial list on which it
resides and handing it back to the block manager.

• OWNED to OWNED—happens when some objects on an owned page are recycled. Thread
ownership is not revoked but rather the newly recycled objects become available for the thread
to use.

8.9.2 Partial lists

Partial blocks are linked on partial lists. There is a partial list for each possible chunk size.
As mentioned, when a page is transitioned from the VOID state to the PARTIAL state it is

inserted into the partial list corresponding to the size of the chunks the block hosts.
Conversely, when a mutator needs to allocate a chunk of a certain size, and it does not own a

block hosting chunks of the required size, then it may take a block off the corresponding partial
list and become the owner of it.

Finally, when the collector finds that a partial block is fully vacant then it may evacuate the
block from the list and return it to the block manager.

8.9.3 Chunked object lists

Whenever a block is in one of the chunked states. i.e., OWNED, VOID and PARTIAL, there are
three lists of objects associated with it:

• Allocation list—this list contains objects which can be allocated directly by the owning
thread. The list contains elements only when the page is owned and its header is cached by
the owner thread. This list is accessed solely by the owner thread hence there is no contention
incurred for using it and allocation becomes as simple as popping an element off a linked list.

• Recycled list—this lists contains elements which have been recently recycled by the collector.
It is accessible only to the collector. The collector maintains a hash table of recycled lists
headers thus occasionally it needs to flush a recycled list associated with a block. When it
does so, the list is merged with the block’s free list (see below).
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• Free list—is the list used to transfer objects from the recycled list to the allocation list. As
said, the collector sporadically flushes the recycled list into the free list. The owner mutator,
when it sees that the allocation list is empty, tries to move all current elements from the free
list to the allocation list. If it fails doing so (i.e., the free list is empty) it transforms the block
state into VOID.

Synchronization is only needed for accessing the free list and is achieved by a lightweight lock
implemented at the block level. The lock is imbedded in the block table entry and is implemented
using low-level atomic operations (specifically, compare-and-swap).

Objects on the chunked object lists are linked through the logPos field. This helps maintain
the invariant that an object is eligible for reclamation by the mark-and-sweep algorithm only if it
has a null pointer in this field. Essentially, this trick solves the infamous race condition between
allocation and the sweep phase which otherwise requires object coloring schemes.
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Chapter 9

Performance Results

In this chapterwe assess our algorithms performance characteristics compared to the original algo-
rithm used in the JVM and comparing the tracing collector to the reference counting collector.

9.1 The benchmarks used—instrumentation results

We used two standard testing suites: SPECjbb2000 and JPECjvm98. These benchmarks are
described in detail in SPEC’s Web site[2].

Our primary instrumentation goal was to study the memory consumption behavior of these
benchmarks. To that end, we have compiled the JVM with the GC and allocator modules in
instrumented mode and the rest of the JVM in production mode. That way, the runs were realistic
ones, with the amount of objects allocated and running times not significantly different from an
all-production JVM yet still we gained the GC instrumentation information.

In order to appreciate the “sensitivity” of each benchmark to reference counting, i.e., the amount
of garbage cycles and stuck reference counters that the benchmark produces, we ran each benchmark
only with the tracing collector and also only with the reference counting collector, without the use
of the auxiliary tracing collector. Figure 9.1 shows the number of objects allocated, average object
size and the average number of references in an object. Overall, the number of allocated objects
when using the reference counting collector is comparable to the number of allocated objects using
the tracing collector, though almost always smaller by a maximal factor of 5%. This is consistent
with the performance figures we present later.

All tests were conducted with an equal setting for the two collectors: a four way Pentium III at
550Mhz with 2GB of physical memory and a 600MB java heap for the JBB server benchmark and
a single Pentium III at 500Mhz with 256MB of physical memory and 64MB for the jvm98 client
benchmarks. However, the reference counted runs of the compress and javac benchmarks were not
able to complete with 64MB heap and therefore the instrumentation results presented here refer to
runs of these two benchmarks with a java heap of 200MB.

As figure 9.1 shows, the small number of references per object (e.g., a reference or two in a
typical object) supports our premises that the number of references in most objects is relatively
small hence the use of a flag per object instead of a flag per slot does not involve a significant
amount of extra logging.

Figure 9.2 shows the number of objects that have reached a stuck count (i.e., o.RC = 3) in the
reference counted runs and the relative percentage of these objects in the entire object population.
These numbers support our assumption that a two-bit reference count is enough for the striking
majority of objects.
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Benchmark Tracing RC
No. allocated Object No. No. allocated Object No.

objects size References objects size References
jbb 26,753,615 49.9 1.6 25,113,179 52.4 1.7
compress 55,126 2,041.1 0.8 58,061 1,940.4 0.9
db 3,261,467 34.0 2.6 3,263,358 34.0 2.6
jack 6,919,637 40.3 1.7 6,917,102 40.3 1.6
javac 6,403,821 42.9 1.9 6,405,478 43.0 1.9
jess 7,994,215 46.4 3.6 7,993,946 46.4 3.6
mpegaudio 65,539 31.6 1.1 58,329 29.5 0.9

Table 9.1: Number of allocated objects, average object size and the average number of references
in an object.

Benchmark Stuck Relative
objects percentage

jbb 141,141 0.6%
compress 2,727 4.7%
db 30,637 0.9%
jack 51,607 0.7%
javac 235,605 3.7%
jess 12,566 0.2%
mpegaudio 2,728 4.7%

Table 9.2: Number of objects that have reached a stuck count (i.e., 3) and their percentage in the
reference counted runs.

Benchmark % Reclaimed % Reclaimed RC
by tracing by RC Inefficiency

jbb 97.5% 96.5% 1.2%
compress 73.5% 72.1% 2.1%
db 99.6% 90.5% 9.1%
jack 99.6% 96.8% 2.8%
javac 99.6% 66.1% 33.6%
jess 99.8% 99.5% 0.3%
mpegaudio 74.2% 69.6% 6.2%

Table 9.3: Percentage of objects reclaimed by the tracing and reference counting collectors and the
associated estimate for reference counting inefficiency in collecting the benchmark.
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Benchmark No. stores No. stores No. object No. Create
to new to old log references vs. log
objects objects actions logged ratio

jbb 61,070,693 9,940,664 52,410 264,115 0.00209
compress 63,892 1,013 13 51 0.00022
db 31,297,167 1,827,613 36 30,696 0.00001
jack 135,013,882 160,893 824 1,546 0.00012
javac 21,774,697 267,331 189,395 535,296 0.02946
jess 26,206,218 51,889 544 27,333 0.00007
mpegaudio 5,517,487 308 12 51 0.00021

Table 9.4: Demographics of the write barrier: number of reference stores applied to new and old
objects; number of object logging actions; total number of references that were logged and the ratio
of the number of object logging actions to the number of allocations. This ratio is an upper bound
to the percentage of objects which ever get logged in the write barrier.

In an attempt to measure the sensitivity of each benchmark to reference counting we compared
the ratio of collected to allocated objects between the tracing and reference counting collectors.
For example, if in a tracing run 90% of the objects were reclaimed and in the corresponding RC
run only 81% of the objects were reclaimed then the amount of sensitivity, or inherent inefficiency,
of reference counting for this benchmark is estimated to be 10%. The results are summarized
is figure 9.3. Except for javac, which uses many cyclic structures, and to a lesser degree the db
benchmark, the benchmarks have demonstrated a low degree of sensitivity to reference counting.
This supports the assumption that we may use reference counting for most garbage collection cycles
and only occasionally resort to tracing.

We now turn our attention to the use of the write barrier. Figure 9.4 shows the number of
reference stores that have been applied to “new” vs. “old” objects (i.e., objects that still haven’t
undergone a collection cycle versus those which have survived at least one collection cycle), the
number of object logging actions, and the ratio of logging actions to object creation actions (this
is an upper bound for the percentage of objects which ever get logged). (The figures are for the
reference counted runs; very similar results were obtained for the tracing runs.) We learn from
these figures the following:

• Most reference stores are applied to new objects, probably because there are more of them
compared to old objects and because new objects have to be initialized.

• From the reference stores which are applied to old objects only a fraction leads to logging.
This means that the same old objects are accessed repeatedly. Yet we have to log the object
only the first time it is accessed in a cycle.

To conclude, due to this essentially generational behavior it is indeed beneficial to mark new
objects as dirty. Also, the price paid for the write barrier almost always equals the price of a
memory load and register test. Due to the large amount of new objects versus old, logged, objects,
the complexity of a reference counted cycle is in reality proportional to the number of objects that
were allocated during the cycle. It does appear, though, that those old objects which are repeatedly
changed contain much more references compared to the average. See for example the ratio between
the number of logged references to the number of logged objects in the jbb, db and jess benchmarks
which far exceeds the average number of references per objects in these benchmarks. This suggests
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jbb compress db jack javac jess mpegaudio
No. cycles 7 4 4 7 10 10 2
GC time 18.2 0.3 1.6 3.3 5.0 4.8 0.1
Clear 31% 3% 26% 33% 21% 26% 20%
Trace 15% 3% 19% 3% 28% 6% 20%
Sweep 50% 7% 47% 55% 45% 54% 20%

Table 9.5: GC time for the tracing collector, in seconds and the time spent in clearing dirty marking,
tracing and sweeping.

jbb compress db jack javac jess mpegaudio
No. cycles 7 2 4 9 6 10 2
GC time 46.1 0.1 5.7 10.3 9.0 17.0 0.1
Clear 12% 7% 7% 10% 11% 7% 0%
Update 36% 19% 37% 31% 43% 37% 19%
Create buff 8% 7% 13% 13% 11% 8% 7%
Reclaim 42% 21% 41% 41% 33% 43% 21%

Table 9.6: GC time for the reference counting collector, in seconds. “Clear” refers to procedure
Clear Dirty Marks; “Update” refers to Update Reference Counters; “Create buff” refers to
the pass over the create buffers, checking whether an object is garbage and adding it to the ZCT;
“Reclaim” is the final pass over the ZCT, when objects are deleted recursively.

that we might need to explore ways to log large objects “by pieces” and not in their entirety, as is
currently done.

Finally, let us look at the execution times of each of the collectors. Figure 9.5 shows the number
of collection cycles, total elapsed time of the collection cycles and how this time distributes between
the major stages of a tracing garbage collection. Figure 9.6 presents these data for the reference
counting collector.

Looking at the time distribution for the tracing collector, we see that sweeping takes more time
than tracing. This is despite the fact that we sweep using the block table and reference counters
bitmap, without looking at the object unless it is actually freed. This implies that the sweeping
code has yet to be optimized.

For benchmarks that deal with smaller amounts of larger objects, such as compress, we see that
most GC time is spent in garbage collection overheads (handshakes, etc.)

We note that the reference counter used as many garbage collection cycles as the tracing collector
(except for the case of compress and javac where the reference counter was allotted a bigger heap).
Also the elapsed time for the reference counting garbage collector is longer. In an attempt to find
the culprits for this situation we observe that the duration of both the update of reference counters
and the reclamation of dead objects is in effect browsing almost all of the objects that were allocated
during the cycle, on a one-by-one basis. Since the heap occupancy in all of these benchmarks is
quite low for the given heap sizes, a lot of objects are created during the cycle, resulting in a better
performance for the tracing collector. We will elaborate on this point in section9.5.

We now turn to investigate the collectors’ performance results compared to the original JVM.
We start with server performance and then continue with client performance.
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Heap Score % Improv. Maximal % Imrov. in
size in score response response

(MB) (throughput) time (sec) time
600 642.7 -2.6% 0.12 98.5%
900 641.0 -2.3% 0.11 99.1%

1200 633.3 0.7% 0.11 99.2%

Table 9.7: Reference counting performance in a standard SPECjbb run.

Heap Elapsed % increase. No. No. No.
size GC in GC sync RC tracing

(MB) time time cycles cycles cycles
600 147 227% 2 11.7 1.0
900 144 269% 2 6.3 0.0

1200 143 225% 2 5.0 0.0

Table 9.8: Elapsed time of garbage collection in a standard SPECjbb run with the reference counting
collector; the percentage of increase in elapsed time over the original garbage collector and the types
of garbage collection cycles that were performed. “sync” is a synchronous GC cycle requested
explicitly by the benchmark.

9.2 Server performance

A standard execution of SPECjbb requires a multi-phased run with increasing number of threads.
Each phase lasts for two minutes with a ramp-up period of half a minute before each phase. Prior
to the beginning of each phase a synchronous GC cycle may or may not occur, at the discretion of
the tester. We decided not to perform this synchronous garbage collection as we believe it defeats
capturing real world scenarios in which the server is not given a change for this “offline” behavior
so often. The results presented here are averaged over three standard runs.

Figure 9.7 shows the two most important performance meters for the reference counting collector
compared to the original JVM: while we do pay a small price of up to 2.6% decreased throughput,
we improve the maximal response time by two orders of magnitude. To illustrate, the original JVM
may pause for as long as 16 seconds while we never cause a mutator to pause for more than 130
milliseconds. This problem of the original JVM becomes aggravated as the heap grows in size. As
can be seen from figure 9.8, the reason for the performance penalty is the prolonged elapsed time
of garbage collection, compared to the original JVM. This implies that by further optimizing the
collector code we may obtain better scores than the original JVM while maintaining the very short
response time.

This is exactly the case with the tracing collector, which outperforms the original JVM in both

Heap Score % improv. Maximal % Imrov. in
size in score response response

(MB) time (sec) time
600 1124.0 -0.6% 0.14 98.3%
900 1129.3 1.3% 0.12 99.0%

1200 1146.3 4.1% 0.13 99.2%

Table 9.9: Tracing collector performance in the standard SPECjbb run.
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Heap Elapsed % increase. No. No.
size GC in GC time sync tracing

(MB) time over original cycles cycles
600 51 13% 2 11.0
900 51 30% 2 7.3

1200 47 7% 2 5.0

Table 9.10: Elapsed time of garbage collection in a standard SPECjbb run with the tracing collector;
the percentage of increase in elapsed time over the original garbage collector and the types of garbage
collection cycles that were performed. “sync” is a synchronous GC cycle requested explicitly by
the benchmark.

Threads 1 2 4 6 8 10 15 20
Original 637 1125 1728 963 928 903 887 847
RC 0.4% 4.0% -5.4% -2.0% -1.0% -2.2% -0.3% 2.4%
Tracing 1.0% 4.6% 2.3% -1.3% 0.2% -0.9% 0.1% 2.8%

Table 9.11: Scores of the original JVM on a series of fixed number of threads runs with 600MB
heap; increase/decrease in score for the reference counting and tracing collectors.

throughput and maximal response time. See figure 9.9. Figure 9.10 shows that the elapsed time
of garbage collection for this algorithm is much closer to the elapsed running time of the original
collector, resulting in improved performance.

Next we seek to check how our collectors perform relative to the original collector as a function
of the number of threads and heap size. We have performed a series of stand-alone SPECjbb
runs with 1, 2, 4, 6, 10, 15 and 20 threads; 600MB, 900MB and 1200MB heaps; the original,
reference counting and tracing collector. The results are summarized in figures 9.11 through 9.16.
From throughput perspective, our collectors have compatible performance with that of the original
collector with the tracing collector performing better than the reference counting collector. We
do see a slip in performance in the range of 4 to 10 threads and this effect worsens as the heap
grows. This is probably related to two factors: inefficient reclamation, which worsens as the heap
grows, and tuning of spin locks for these numbers of threads. Examining the maximal response
time we again see a remarkable behavior of our collectors where the original collector consumes
longer and longer pause times as the heap grows. Figure 9.16 might seem an exception to this rule
at first glance but actually what happens is that since garbage collections with such a large heap
are scarce (one or two in a run) they actually might occur when the benchmark is not measuring
response time hence the original JVM manages “to get away” with its long pause times unnoticed
on most cases. However, examining the pause time for 4 and 20 threads we see that these pauses
nonetheless occur.

We now examine our memory consumption behavior. Given that we have added an extra pointer

Threads 1 2 4 6 8 10 15 20
Original 645 1137 1742 978 947 918 858 893
RC -1.3% 3.2% -3.8% -3.3% -3.3% -3.3% 3.2% -4.0%
Tracing -1.6% 2.6% 2.1% -2.6% -2.4% -2.1% 4.0% -2.2%

Table 9.12: Scores of the original JVM on a series of fixed number of threads runs with 900MB
heap; increase/decrease in score for the reference counting and tracing collectors.
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Threads 1 2 4 6 8 10 15 20
Original 629 1155 1683 935 908 884 882 870
RC -2.5% 1.7% -7.1% -8.0% -7.8% -6.8% 0.2% -0.8%
Tracing -6.3% 3.6% -2.7% -6.9% -6.5% -5.4% 1.1% -0.2%

Table 9.13: Scores of the original JVM on a series of fixed number of threads runs with 1200MB
heap; increase/decrease in score for the reference counting and tracing collectors.

Threads 1 2 4 6 8 10 15 20
Original 7.43 8.04 8.47 6.92 7.86 7.54 6.59 6.00
RC 0.02 0.02 0.05 0.08 0.11 0.15 0.25 0.33
Tracing 0.02 0.02 0.06 0.09 0.13 0.18 0.25 0.35

Table 9.14: Maximal response time, in seconds, of the original JVM, reference counting and tracing
collectors in a series of fixed number of threads runs with 600MB heap.

Threads 1 2 4 6 8 10 15 20
Original 0.02 11.17 12.07 10.70 10.53 10.30 9.82 9.23
RC 0.02 0.02 0.05 0.08 0.11 0.14 0.23 0.34
Tracing 0.02 0.02 0.05 0.08 0.12 0.15 0.25 0.33

Table 9.15: Maximal response time, in seconds, of the original JVM, reference counting and tracing
collectors in a series of fixed number of threads runs with 900MB heap.

Threads 1 2 4 6 8 10 15 20
Original 0.02 0.02 14.67 0.05 0.08 0.01 0.18 13.03
RC 0.02 0.02 0.05 0.07 0.11 0.15 0.22 0.32
Tracing 0.02 0.02 0.06 0.09 0.12 0.15 0.25 0.33

Table 9.16: Maximal response time, in seconds, of the original JVM, reference counting and tracing
collectors in a series of fixed number of threads runs with 1200MB heap.

Threads 1 2 4 6 8 10 15 20
Original 24 39 70 100 139 160 236 312
RC 27 44 77 108 170 171 251 329
Tracing 27 44 77 108 130 171 251 330

Table 9.17: Memory consumption at the end of a series of fixed number of threads runs with 600MB
heap.
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Threads 1 2 3 4 8 12 16
Original 93.0 71.9 56.3 57.2 58.2 58.0 59.0
RC 88.6 68.5 52.5 54.2 52.3 57.9 59.1
Tracing 89.1 68.9 52.3 55.8 50.8 53.4 53.5

Table 9.18: Time to completion, in seconds, of the MTRT benchmark, with varying number of
threads.

Heap Time
(MB) (sec)

Original 25 120
RC 20 85
Tracing 20 86

Table 9.19: Minimal heap size required to complete successfully a four thread mtrt run and the
time to completion with that heap size.

to each object (the log pointer) we would expect to see some increase in the memory consumption,
relative to the average object size in each benchmark. Furthermore, since we do not compact the
heap we are more vulnerable to internal fragmentation compared to the original JVM. When our
collector is asked to report the amount of free memory it sums up (non-atomically) the amount of
storage available in the block manager and in partial blocks. It ignores owned blocks so actually the
amount of free memory is larger than reported. Given this metric, the results of used memory as
reported by SPECjbb (for the 600MB test series) are summarized in figure 9.17. Note that except
for an unexplained (yet reproducible) bump in the memory consumption for 8 threads with the
reference counting collector1 we consume no more than 8% more memory compared to the original
JVM. This can be further improved once we eliminate completely the handle-to-object pointer in
each object, which is not required by our collectors.

The second benchmark that we have used is MTRT (multi-threaded ray tracer), a member of
SPECjvm98 which can be used with a varying number of threads. We have ran this benchmark
with the default heap size—64MB. This benchmark does not measure response time, only elapsed
running time, which corresponds to the JVM’s throughput. As can be seen from figure 9.18 both
on-the-fly collectors have outperformed the original JVM with an improvement of up to 12.6% in
the total running time.

The ordinary measure of heap consumption—probing the free space left at the run does not
capture transient effects and the ability to handle stressful situations. Figure 9.19 shows the
minimal heap size (in 1MB granularity) required to complete the mtrt benchmark successfully and
the corresponding time to completion. The concurrent collectors require about 20% less the memory
to complete successfully and arrive at completion at about 70% the time. This is clearly a defect
of the original JVM as it should actually require no more memory than our collectors and since
in this stressful situation we resort to synchronous GC there should be no gain from concurrent
collection as well.

1This bump cannot be explained by reference counting issues since the amount of consumed memory is calculated
only after the benchmark requests a synchronous garbage collection cycle, which is always implemented by our
collectors using a tracing cycle.
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Benchmark Original RC Tracing
Total 2582.2 2676.0 2610.9
compress 720.8 723.3 718.4
db 374.0 383.7 374.0
jack 264.6 299.7 285.0
javac 225.0 235.2 233.7
jess 181.7 209.7 182.1
mpegaudio 607.1 610.6 611.1

Table 9.20: Elapsed time for the execution of the entire SPECjvm98 suite and intermediate execu-
tion time of a double-run for each of the suite’s members.

9.3 Client performance

While we have targeted our collectors for multi-processor environments we still wanted to verify
that they are competent in a single-processor setting. To that end we have used the SPECjvm98
benchmark suite. We used the suite using the test harness, performing standard2 automated runs
of all the benchmarks in the suite. In a standard automated run, each benchmark is ran twice and
all benchmarks are ran on the same JVM one after the other. Figure 9.20 shows the elapsed time
of the entire automated run and the time for each double run of each benchmark. We see that the
tracing collector was only 1.1% percent slower than the original JVM and the reference counting
collector only 3.6% slower. Given that we pay the overheads of concurrent run while we’re not
benefiting from the availability of multiple processors these are remarkably good results.

9.4 Allocator scalability

We have designed the custom allocator with scalability in mind. In order to check whether the
collector indeed meets design goals we have written a small allocation benchmark that tries to
measure allocation overhead in isolation from garbage collection overheads. The program works in
phases. Each phase, N threads are started and each of them allocates 1,000,000 arrays of references,
each with a random number of slots, chosen uniformly from the range {1, ..., 5}. Each thread links
10% (chosen randomly) of the objects it allocates into a linked list.

On the end of each phase the elapsed time of the phase is determined; the linked list of objects
from the cycle prior to the one just ended is discarded (the list from the current cycle is held “alive”
for the next cycle) and finally synchronous garbage collection is invoked. It is verified externally
that the heap is big enough so that no garbage collector ever occurs during a phase run. The entire
test is comprised of four phases with the results being the average of the last three runs.

As described, during a measured phase, there is little happening in the system besides concurrent
allocation. Furthermore, since the heap is dotted with allocated objects from the previous phase,
allocation cannot be just a matter of bumping a pointer. This behavior mimics real world scenarios
were the heap contains differently aged objects. We do give a chance, however, to the collector, to
do compaction between phases.

The results for the four-way server with 1200MB heap are presented in figure 9.21 as the
throughput of the JVM (objects created per second) relatively to the number of working threads.
The custom allocator achieves excellent scalability where there is almost no loss in performance

2The standard run requires running the harness through a Web server while we performed the tests directly off
the disk. Aside from that, the executions were standard.
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# Threads 1 2 4 8 12 16
Original allocator 1143 1768 1747 1570 1537 1525
Custom allocator 917 1638 2349 2356 2371 2373

Table 9.21: Objects created per second in the allocation benchmark on a four-way server.

# Threads 1 2 4 8 12 16
Original allocator 1044 1054 823 873 911 796
Custom allocator 844 843 838 843 852 818

Table 9.22: Objects created per second in the allocation benchmark on a single processor worksta-
tion.

when going from 4 threads to 16 threads. The original allocator, however, performs less well,
loosing 12% of its throughput over the same range. With 16 worker threads, the custom allocator
achieves a throughput higher by 56% than the one achieved by the original allocator.

Refer to figure 9.22 for the comparison of the allocators on a client machine. For this test we used
300MB heaps. This necessitated changing the number of objects allocated by each thread, on each
phase, from 1,000,000 to 100,000 with 8 threads or more. On the single processor client machine the
situation is less decisive compared to the server environment. Here, the custom allocator performs
less well with 1 or 2 threads by a factor of 20%. With 4 threads and more, however, it is as
marginally better than the original allocator.

9.5 Discussion

As can be seen from the throughput results for our on-the-fly reference counting collector versus
the results of our on-the-fly tracing collector, the tracing collector exhibits better results in most
cases. In this section, we try to explain this result. We characterize the differences between the
two algorithms and thus we find the conditions under which each may perform better than the
other. In our discussion, we abstract away several factors which may still be important in some
environments, for example:

• we assume that it is harmless to use the entire heap space which is allocated for the program
since this heap is backed by fast RAM. This holds for servers, but not for memory constrained
systems.

• we assume that fragmentation is not an issue. Again, this is tied to the previous point. If we
have a big heap and the access of pattern to memory is uniform, as is the case with servers,
then this assumption holds as well.

• we assume that the price of initiating a garbage collection is negligible relative to the price
of the collection itself. This can be evidently seen from our instrumentation measurements
(refer to section9.1).

• we assume that our target programs have steady states. While this may not be the case in
reality, there is not much we can say about programs with irregular behavior.

Suppose we are given a heap of size H. Let us assume that the benchmark has a steady state
at which it consumes a fraction γ of H. That is, most of the time, γH heap space is alive. Also,
let RA be the allocation rate, which equals the garbage production rate in steady state, in units
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of memory volume per time, and let RM be the mutation rate which is defined to be the rate at
which the mutators mutate old data structures, i.e., data structures that have at least survived one
garbage collection cycle.

As we noted before, the overhead of a reference counting garbage collection cycle is proportional
to the amount of space allocated since the last cycle, the amount of space that became garbage
since the last cycle and the amount of space that was mutated since the last cycle. Therefore,
reference counting is less sensitive to the triggering used. i.e., two short reference counting cycles
cost roughly the same as one longer, combined reference counting cycle. Thus, each implementation
is characterized by two constants, c1 and c2 that characterize the overhead incurred by reference
counting per unit of time. That overhead is:

OverheadRC = c1RA + c2RM

Referring to the set of benchmarks we have used, we see that the actual old objects mutation
rate, RM , is very low thus in practice we may approximate the overhead with c1RA.

The price of a tracing cycle, on the other hand, is fixed no matter when was the last cycle
executed. The price of the cycle is proportional to the amount of live data (in the tracing phase)
and to the entire size of the heap (in the sweep phase). So the price is ctrγH + cswH where ctr and
csw are the proportion constants for the mark and sweep stages, respectively. In practice, tracing
dominates the price of a tracing cycle, so the price can be approximated by ctrγH.

Assuming that it is beneficial to use the entire heap space, we want to delay a tracing cycle as
much as possible. We can do that until we run out of heap space, which happen after (1−γ)H/RA
units of time (the amount of free space divided by the allocation rate). Thus, the overhead of
tracing garbage collection, per unit of time, is:

OverheadTracing = ctrRAγ/(1− γ)

Let us define the load factor, α, to be γ/(1−γ). We now see that the tracing overhead is bigger
than the reference counting overhead if, and only if:

α > c1/ctr

This has two implications:

1. The reference counting algorithm reacts better than the tracing algorithm to a growth in the
heap occupancy factor. Note that the load factor grows very quickly as the heap occupancy
grows. Apparently, the set of benchmarks that were available to us do allocate a lot of objects
but do not maintain a large volume of live data over time. It seems that this is not the case
with true servers, such as Web servers, that utilize the entire heap allotted to them for caching
web pages etc.

2. Unfortunately, the “implementation quality factor”, c1/ctr, is not favorable for the reference
counting algorithm. While ctr depends only on the implementation of the tracing phase,
c1 describes the complexity involved in clearing the dirty bits of newly allocated objects,
updating the reference counters for objects pointed by newly allocated objects, maintaining
the ZCT, and, finally, recursively deleting dead objects. Thus, improving the overhead of
the reference counting algorithm is a much harder task than improving the mark and sweep
algorithm.
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Chapter 10

Conclusions

We have presented a reference counting garbage collector with an explicit attempt to make it
suitable for a multiprocessor. The algorithm uses extremely low synchronization overhead: the
barriers for modifying a reference and the barrier for creating a new object are very short and
in particular, require no strong synchronized operations such as a compare-and-swap instruction.
Furthermore, there is no particular point in which all threads must be suspended simultaneously.
Instead, each thread cooperates with the collector by being shortly suspended four times during
each collection cycle. In three of these four handshakes, the time of suspension is just enough
to allow a short operation that does not depend on the heap structure or the local state of the
threads. One of the four handshakes requires reading the local roots of the thread. Thus, the
overall overhead is small.

The two main new ideas presented in this work are first, the clever mechanism for logging of
reference modifications, which requires no synchronization, yet introduces no inconsistencies due to
race conditions, and second, the fact that a fuzzy snapshot of the heap, which we denote the sliding
view, is enough to get an approximation of the reference count and perform the garbage collection.

Note that as in the previous work of DeTreville [17], our algorithm is based on the mutators log-
ging information about the modifications they apply to heap references. However, in our algorithm,
a thread takes a record of a modification at most once per slot per cycle (as opposed to always
keeping a record) and the heavy synchronization incurred due to the logging action is completely
eliminated.

In order to reclaim cyclic structures and to reinstate stuck reference count fields we have pre-
sented an on-the-fly, scalable, tracing collector. The tracing collector relies on the same notion of
a sliding view as its reference counting counterpart and thus it is inter operable with the reference
counting sliding view algorithm. In particular, the tracing collector as well never stops all mutators
simultaneously and it uses the same write barrier used by the reference counting algorithm.

We have implemented the proposed algorithms for Java, atop Sun’s JDK for Microsoft’s Win-
dows NT Operating System. Our algorithms attain a dramatic improvement in response time over
the original garbage collection algorithm. The reference counting algorithm achieves throughput
comparable with that of the original JVM while the on-the-fly tracing collector outperforms the
original JVM.

This work opens avenues for additional research on the following areas, among them: (1) study-
ing the behavior of tracing vs. reference counting collector in high heap occupancy environments,
as suggested in section9.5, (2) combining the ideas presented in [1] with the ideas presented in this
work and (3) applying generational principals to the reference counting algorithm.
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Appendix A

Snapshot Algorithm Correctness
Proofs

This appendix contains safety and progress proofs for the snapshot algorithm.
In the correctness proofs we abandon our assumption about the absence of global roots. Instead,

we take the burden of showing how to incorporate them into the algorithm: we assume that during
the handshake of a cycle, when all threads are stopped, the collector marks any object which is
directly reachable from a global root as reachable.

A.1 Safety

In this section, we will prove that the algorithm recycles an object only if it is garbage at the time
it is recycled. Actually, an object is recycled only if it garbage at the time the conceptual snapshot
is taken. Let us first define precisely this moment at which the conceptual snapshot Rk is taken:

Definition A.1 Let HSk be the earliest time at which all dirty marks have been cleared during the
execution of procedure Read-Current-State in collection cycle number k.

We assume that at system initialization, before any mutator has taken any step, there occurs
an initial garbage collection cycle. As can easily be seen, this cycle leaves all data structures that
are carried across cycles (e.g., reference counters, ZCT) untouched, so there is no loss of generality
in our assumption. We use this assumption in order to simplify the correctness proofs of the base
cases of inductive claims. So, HS0 happens at system initialization.

We further define HS−1
def= HS0. This definition as well simplifies the proof of claims that

depend on the two preceding cycles.
Ultimately, in terms of safety, we would like to prove the following:

Theorem A.1 (Safety) An object is recycled during cycle k only if it is unreachable at HSk.

A.1.1 Road map for the proof

Due to the cycle-by-cycle nature of the algorithm its properties are proved by induction on the
cycle number. For convenience, we will assume that there is a garbage collection cycle numbered
zero scheduled at system startup. This assumption facilitates the proof of the induction basis and
does not involve any loss of generality.
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Most lemmas are interdependent meaning, for example, that we prove lemma X correct at
cycle k provided lemma Y is correct at cycle k− 1. In order to make clear the relation between the
claims and to demonstrate that there is no circular logic in the proof we provide herein a complete
description of the interdependencies among the claims. We denote by Lik the assertion of lemma
i for cycle k.

Here is a short description for each of the claims involved:

• SafetyTheoremk: An object is collected during cycle k only if it is garbage at HSk.

• LA.2k: If a slot is modified between HSk−1 and HSk then only and exactly the value it
assumed at HSk−1 is recorded. No information is recorded for slots which are not modified.

• LA.3k: The collector can distinguish, during cycle k, whether it is reading a slot’s value which
was current at HSk, or, that the slot has been overwritten since.

• LA.4k: The collector finds out, eventually, in procedure Fix-Undetermined-Slots, what
are the values of undetermined slots.

• LA.5k: Just before the invocation of Reclaim-Garbage of cycle k, the rc field of each object
equals the heap reference count of the object at HSk.

These are the dependencies between the claims:

• the basis for each claim, i.e. its correctness for cycle zero is proven independently for each
claim.

• LA.2k ⇐=
∧
j<k SafetyTheoremj

• LA.5k ⇐=
∧
j<k(LA.5j ∧ SafetyTheoremj) ∧ LA.2k ∧ LA.4k

• SafetyTheoremk ⇐= LA.5j

A.1.2 Update protocol properties

Consider any slot s which is modified between HSk−1 and HSk. The snapshot algorithm requires
us to adjust rc fields due to s by decrementing the rc field of s@HSk−1 and incrementing the rc field
of s@HSk. The first part of the requirement, decrementing s@HSk−1, is implemented by letting
the mutators record the identity of s@HSk−1 into their buffers. Thus, we would like to prove for
any such modified slot s that only and exactly s@HSk−1 is associated with s by the mutators.

If s is not modified between the current and previous cycles, then we want to show that no
record of s is kept.

The lemmas in this sectionprove that the algorithm possesses these properties.

Lemma A.1 Let s be a slot and let t be a time point satisfying

1. HSk−1 ≤ t < HSk, and

2. Dirty(s)@t =false, and

3. No update of s is occurring at t.

Let UPD(s) be the set of all update operations applied to s which are scheduled between t and
HSk. Let ASSOC(s) be the set of values which are associated with s by the operations in UPD(s).

It holds that:
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1. UPD(s) = � =⇒ ASSOC(s) = �

2. UPS(s) 6= � =⇒ ASSOC(s) = {s@t}

Proof. The first claim is quite trivial since a value is associated with s only as part of an update.
Since no update is scheduled, no value is associated.

Suppose that s is indeed modified between t and HSk. Consider the set of threads, denoted P ,
that apply the subset of operations of UPD(s) which read the value of Dirty(s) as false in line (2)
of procedure Update, while updating s. P is not empty since some thread modifies s (UPD(s) is
non-empty) and the dirty flag is off at t.

Consider a thread Ti ∈ P . We want to show that when Ti executed line (1) of procedure
Update it read the value of s at t. Suppose that it did not. Let τ be the time at which thread Ti
executed line (1). Then some thread Tj must have executed a store to s after, or at, t and before τ .
Since there were no updates occurring at t and since the store is the last instruction of an update
operation we conclude that the entire update operation by Tj has started after, or at, t and ended
before τ . Just before Tj executed the store in line (6) the value of Dirty(s) must have been true
either by line (5) or by virtue of another thread (note that the collector resets the flag only during
the next cycle) so Ti should have read a value of true from Dirty(s), in line (2), which was not
the case. A contradiction. We conclude that Ti must have associated s@t with s. So we have

{s@t} ⊆ ASSOC(s)

According to the code, any thread Ti /∈ P would not associate any value with s thus

ASSOC(s) = {s@t}

2

For a given history buffer H (be it collector or mutator maintained set) and a slot s we define
the set of values that H associates with s, denoted by V AL(H; s), as:

V AL(H; s) def= {v|〈s, v〉 ∈ H}

For brevity we write s ∈ H meaning ∃v : 〈s, v〉 ∈ H
The next lemma summarizes and proves the desired properties of the write-barrier employed

by the algorithm. We need some definitions first:

• We say that an object o is allocated for cycle k. If some thread has allocated o between HSm
and HSm+1, where m < k. And there has not been a cycle l, where m ≤ l < k during which
o was reclaimed.

• o is allocated new for cycle k if m = k − 1 in the above definition.

• If m < k − 1, we say that o is allocated old for cycle k.

• We say that a slot is allocated (new/old) for cycle k if its containing object is allocated
(new/old) for cycle k.

• We abbreviate and say that a slot or an object are new (old) to a cycle meaning that the slot
or the object are allocated new (old) for that particular cycle.

Lemma A.2 Let s be an allocated slot for cycle k. Then:
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1. if s is new to cycle k and is modified between HSk−1 and HSk then

V AL(Histk; s) = {null}

2. if s is old to cycle k and is modified between HSk−1 and HSk then

V AL(Histk; s) = {s@HSk−1}

3. otherwise (s is not modified between HSk−1 and HSk),

V AL(Histk; s) = �

Proof. The lemma vacuously holds for k = 0 since there are no slots which are modified during
the interval HS−1 to HS0.

We now show that the lemma holds for cycle k > 0 provided that the safety theorem hold for
previous cycles.

Suppose s is new to cycle k. Let τ be the time at which the object o containing s was allocated.
Let j < k be the cycle during which the object x that most recently contained s was reclaimed,
or 0 if no such cycle exists. Applying the safety theorem to cycle j we know x was unreachable
at HSj . Thus, no thread could have accessed s from HSj until τ . In addition, if j > 0, when x
was recycled, null was assigned to s, in line (4) of procedure Collect. Finally, as all dirty flags
are cleated while the threads are halted, we have Dirty(s)@HSj = false. Since these values must
remain in effect until time τ we can apply lemma A.1 to s and τ yielding that either claim (1) or
(3) hold, depending on whether s has been modified prior to HSk.

If, on the other hand, s is old to cycle k then we have Dirty(s)@HSk−1 = false and no update
of s is occurring at HSk−1. Thus, we can apply lemma A.1 to s and time HSk−1 yielding that
either claim (2) or (3) hold, depending on whether s has been modified prior to HSk.

2

A.1.3 Determined vs. undetermined slots

We say that the collector determines the value of a slot s if during the Update-Reference-
Counters procedure it reads the value v from s (in line (3)) and then sees Dirty(s) =false (in
line (4)). Such a slot is determined, as opposed to undetermined slots which are taken care of by
the collector in procedures Read-Buffers and Fix-Undetermined-Slots. The following lemma
tells us that if the collector determines the contents of a slot then it has indeed read its contents
as they were at the time the recent conceptual snapshot was taken.

Lemma A.3 (Determined Slots) If the collector determines s to contain v during cycle k then
v = s@HSk.

Proof. Let s be a determined slot. As all dirty slots are cleared when the threads are stopped
we have Dirty(s)@HSk = false. Let τ be the time at which the collector executed line (4) of
Update-Reference-Counters . At time τ the flag was still off. Thus, no line (5) of procedure
Update was scheduled in the interval HSk to τ . Hence the later store from line (6) of Update
hasn’t been scheduled in this interval as well. This means that s remained unchanged from HSk
to τ . This interval includes the time at which the collector read the value of s, in line (3) of
Update-Reference-Counters. Hence the collector read s to contain s@HSk.
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2

What happens when the collector does not succeed determining a slot? A slot is undetermined
if the collector senses that its flag is raised during Update-Reference-Counters. The only reason
for the flag to be raised is that some thread, say Ti, has applied line (5) of procedure Update to
the flag (i.e., raised it.)

Since updates are non-interruptible, Ti has executed the preceding lines of (3) and (4) of the
same invocation after HSk. i.e., Ti has stored the pair 〈s, s@HSk〉 into its buffer and incremented
CurrPosi prior to raising the flag. Thus, when the collector would process Bufferi during Read-
Buffers it will see the logged pair 〈s, s@HSk〉 in Ti’s buffer (s@HSk is associated with s according
to lemma A.2.) and thus the pair will be added to the set Peekk.

We conclude the following:

Lemma A.4 (Undetermined Slots) If the collector does not determine a slot s in cycle k then

V AL(Peekk; s) = s@HSk

A.1.4 Linking rc field with reference count

In this sectionwe show that the rc fields that the algorithm computes equal, eventually, the heap
reference counts at the time the conceptual snapshot is taken. We need some definitions first.

Definition A.2 Let ENDk denote the time at which cycle k has ended. That is, ENDk is the
earliest time at which all instructions of cycle k have already been scheduled.

Definition A.3 Let COLLECTk be the time at which the invocation of Fix-Undetermined-
Slots, during cycle k, is complete. The collector starts executing Reclaim-Garbage after, or at,
COLLECTk.

The following lemma proves that the value of the rc field of each object, after the collector has
finished adjusting rc fields due to all logged modifications, i.e., when procedure Reclaim-Garbage
starts its operation, equals the object’s heap reference count at time HSk.

Lemma A.5 (Meaning of The rc Field) o.rc@COLLECTk = RC(o)@HSk for any object o
which is allocated at HSk.

Proof. The claim holds for k = 0 since there are no objects which are allocated at HS0.
For k > 0, we prove that the lemma holds for cycle k provided this lemma and the safety

theorem both hold for previous cycles.
It’s enough to show that the algorithm adjusts rc fields due to each slot s correctly. If s does

not change after HSk−1 and before HSk then, by lemma A.2, s will not be logged and there will
be no modifications to any rc fields due to s.

Let’s consider the cases in which s does change. We have to show that the rc field of the object
that s was referring to at HSk−1 is decremented. Likewise, we have to show that the value of the
object that s was referring to at HSk is incremented. s is in exactly one of these states at HSk:
allocated old, allocated new, non-allocated.

Decremening old slots: If s is old for cycle k then s is changed by mutators, and not by
the collector (by deleting it.) Due to lemma A.2 Histk will contain the pair 〈s, s@HSk−1〉. Histk
will not contain elements associating s with a value other than s@HSk−1. During the operation of
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Update-Reference-Counters, when the pair 〈s, s@HSk−1〉 is considered, the rc field of s@HSk−1

is decremented, as desired.
Decrementing new slots: Let s be a new slot for cycle k. According to lemma A.2 either

null, or no value at all, are associated with s. Thus, there are no decrements that occur due to s
during cycle k. Let us explain why this is the desired behavior.

If s is new for cycle k then either s becomes allocated for the first time, or it was part of an
object o which was recycled during cycle j, where j < k.

In the former case, we know that s was initialized to null and its dirty flag was off at system
startup. Also, no thread could have accessed s at HSk−1, since it was not a part of a reachable
object (or any object) at that time. Thus, s@HSk−1 = null and therefore no rc field should be
decremented due to s during cycle k.

In the latter case, according to the safety theorem applied to cycle j, o is not reachable at
HSj . Thus, the collector has exclusive access to s, during cycle j. It follows that the collector may
decrement the rc field of the object pointed by s and clear s without being interfered by mutators’
actions, all part of the operation of Collect during cycle j. If j < k − 1 then s@HSk−1 =null,
thus there is no “old” value to decrement.

Otherwise, j = k − 1. In this case, the collector decrements the rc field of s@HSk−1 during
cycle k − 1, when it reclaims o. An object is reclaimed only if its rc field drops to zero. Reclaim-
Garbage and Collect can only reduce the value of an rc field. Thus, there is a single point during
the operation of Reclaim-Garbage at which o.rc = 0. Therefore o is reclaimed exactly once and
likewise the rc field of s@HSk−1 is decremented exactly once.

Decrementing and incrementing non-allocated slots: If s is not allocated at HSk then
the same argument that was applied to new slots is used to show that the value of s@HSk−1 is
taken care of. Again, due to the safety theorem applied to the cycle at which the object containing
s was recycled we have s@HSk =null so there is no need to increment any field due to s. Indeed,
since s is not allocated at HSk and it is unreachable at HSk−1 no record of it would appear in
Histk and no rc field will be manipulated due to it in cycle k.

Incrementing old and new slots: it remains to show that the rc field of s@HSk is in-
cremented exactly once due to s, when s is allocated at HSk. We have two cases: either s is
determined, or it is undetermined. If s is determined, then due to lemma A.3 we have that the col-
lector increments the rc value of s@HSk. Otherwise, by lemma A.4, V AL(Peekk; s) = {s@HSk}.
Thus, during the Fix-Undetermined-Slots procedure the collector will find the value of s@HSk
associated with s. It will increment the rc field of that object exactly once, by the code.

All rc adjustments are finished by the time Fix-Undetermined-Slots terminates, so the claim
holds at COLLECTk.

2

A.1.5 Conclusion of safety proof

We are now ready to prove the safety theorem which claims that an object is collected at cycle k
only if it is unreachable at time HSk.

Proof of safety theorem. The claim trivially holds for cycle zero since ZCT0 is an empty set
and thus no object is recycled during the initial cycle.

Consider cycle k > 0. We prove that the theorem holds for cycle k if lemma A.5 holds for
cycle k.

Let {o1, . . . , on} be the sequence of objects for which Collect is invoked, where the sequence is
chronologically ordered. We show by induction on i, that oi is unreachable at HSk. For the basis,
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consider o1. As it is the first object to be collected, there is no clearing of slots (carried out in line
(4) of procedure Collect) taking place prior to its reclamation, thus o1.rc@COLLECTk = 0. This
implies, according to lemma A.5 applied to cycle k, that RC(o)@HSk = 0. Additionally, by the
code, o1 is collected only if o1.rc = 0 ∧ o1 /∈ Localsk so we conclude that in addition of not being
pointed by any heap slot at HSk, o1 is also not pointed by any global or local reference at that
particular moment, or it would have been marked local. Thus, o1 is unreachable at HSk.

For the inductive step, consider oi which has c def= oi.rc@COLLECTk = RC(o)@HSk (the last
equality is again by lemma A.5). If c = 0 then the same arguments that were employed for o1 are
repeated in order to demonstrate that oi is garbage at HSk.

Otherwise, we have c > 0. Since oi is recycled, it must satisfy at some point during Reclaim-
Garbage or Collect oi.rc = 0 ∧ oi /∈ Localsk. Thus, the value of oi.rc is decremented c times
during the operation of Reclaim-Garbage. Since decrements are only applied to objects which
are pointed from objects that are collected and since those objects are collected prior to oi we have
by the inductive hypothesis that all c references to oi were from objects that were unreachable at
HSk. Thus, at HSk, oi is pointed only by unreachable objects, and it is not pointed by any local
thread state or global reference. We conclude that oi is unreachable at HSk.

2

A.2 Progress

In this sectionwe show the capabilities of the algorithm in collecting garbage objects. The algorithm,
in that respect, has the same limitations as the traditional single-threaded reference counting
algorithms [37].

The best that we can hope to achieve with reference counting, without employing special tech-
niques for detecting cycles of garbage, such as those surveyed in [36], is to detect any object that
its reference count drops to zero, in order that it would be considered for reclamation based on the
existence of local pointers to it. The following lemma tells us that this feature is achieved by the
ZCT data-structure.

Lemma A.6 (ZCT Property) If o is allocated at HSk and RC(o)@HSk = 0 then o ∈ ZCTk.

Proof. The proof is by induction on k. There are three cases to consider:

1. o is new to cycle k. In this case, a mutator created o between HSk−1 and HSk. When it
created o it added it to its New set, which becomes part of ZCTk.

2. o is old to cycle k and it had a positive rc field at ENDk−1. Since we have 0 = RC(o)@HSk =
o.rc@COLLECTk (by lemma A.5), the value of o.rc must have reached zero due to the
decrements applied by procedure Update-Reference-Counters of cycle k. At that point o
was added to ZCTk (see lines (8-10) of that procedure.)

3. o is old at HSk−1 and it had zero rc field at ENDk−1. This case splits into two sub-cases:

(a) if o.rc@COLLECTk−1 = 0 then RC(o)@HSk−1 = 0 by lemma A.5. Using the inductive
assumption we know that o ∈ ZCTk−1. Since o was not recycled we must have o ∈
Localsk−1. By the code, when o is considered during Reclaim-Garbage it satisfies

o.rc = 0 ∧ o ∈ Localsk−1

by the code (lines (5-7)), o is added to ZCTk in this case.
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(b) Otherwise, o.rc@COLLECTk−1 > 0 ∧ o.rc@ENDk−1 = 0. This implies that o.rc had
reached zero by the decrements applied by one of the invocations of procedure Collect.
By the code (lines (5-9)), when an object reference count reaches zero but it is not
reclaimed, it is moved to the ZCT of the next cycle.

2

Ideally, we would like the algorithm to collect at cycle k any object which is garbage at HSk.
However, this algorithm has the ordinary weaknesses of reference counting, with respect to cyclic
structures, and thus only the following progress theorem can be guaranteed:

Theorem A.2 (Progress) If at HSk object o is unreachable and additionally o is not reachable
from any cycle of objects, then o is collected in cycle k.

The theorem is quite obvious due to lemma A.6 and the fact that we use ordinary recursive-
freeing.
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Appendix B

Sliding View Algorithm Safety Proof

In this appendix we prove that the sliding view algorithm is safe.
In the proof we abandon our assumption that there are no global references in the system.

Instead, we assume that the collector, between carrying the third and fourth handshakes of a cycle,
reads any global reference and marks the pointed object local. In addition, mutators carry the
following write-barrier for global references:

1. s := new
2. if Snoopi then

// mark new as local.
3. Localsi := Localsi ∪ {new}

B.1 Definitions

First we need to stretch our definitions a bit in order to accommodate the looser timing of the
second algorithm.

Let us define the time instances at which a thread Ti is suspended during the four handshakes
of each cycle: HSk(i), HS2k(i), HS3k(i) and HS4k(i) denote the time instances at which thread
Ti is suspended during the first, second, third and fourth handshakes of cycle k, respectively. Next,
we define the “global” time markers at which each handshake starts and ends:

HSk
def= minTi HSk(i)

HSENDk
def= maxTi HSk(i)

HS2k
def= minTi HS2k(i)

HS2ENDk
def= maxTi HS2k(i)

HS3k
def= minTi HS3k(i)

HS3ENDk
def= maxTi HS3k(i)

HS4k
def= minTi HS4k(i)

HS4ENDk
def= maxTi HS4k(i)

Additionally we define COLLECTk to be the time at which procedure Reclaim-Garbage
starts its operation.
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We need modify our notions of “being allocated” of the snapshot algorithm’s proof due to the
lack of the hard handshake. This is done in the following definitions:

• We say that an object o is allocated for cycle k if some thread Ti allocated o after HSm(i)
but before HSm+1(i), where m < k, and there had not been a cycle l, where m ≤ l < k, such
that o was reclaimed on cycle l.

• o is allocated new for cycle k if m = k − 1 in the above definition.

• If m < k − 1, o is allocated old for cycle k.

• We abbreviate and say that o is new (old) to cycle k if it is allocated new (old) for cycle k.

• Any of the above definitions apply to slots. The implied meaning is that the definition holds
for the object containing the slot.

B.2 The sliding view associated with a cycle

In this sectionwe define a per-cycle sliding view that we later show that is computed implicitly by
the collector and mutators (bearing similarity to the conceptual snapshot taken at HSk by the first
algorithm which is never explicitly computed.)

Let us define the scan σk that we associate with each cycle. We abbreviate Vσk to Vk. Consider
any memory word s.

• Rule 1: if s /∈ Histk then we set σk(s) = HSk.

• if s ∈ Histk then:

– Rule 2: if s is logged by some Ti between HSk(i) and HS3k(i) then let v be the con-
solidated value chosen for s. Let τ be the time a particular thread Tj loaded v before

logging the pair 〈s, v〉. Set σk(s)
def= τ .

– em Rule 3: otherwise, no thread Ti logs s prior to HS3k(i), but s is logged by some
thread Tj prior to HSk(i). On such an event set σk(s)

def= HS2ENDk.

Note that σk(s) is uniquely defined. We denote by R1k the set of all slots whose definition of
σk is derived by rule (1). Similarly we define the sets R2k and R3k.

The next lemma characterizes the span of σk.

Lemma B.1 Start(σk) ≥ HSk ∧ End(σk) ≤ HSU3ENDk

Proof. Let s be a memory word. Certainly if s ∈ R1k ∪ R3k then σk(s) lies within the specified
time limits. Otherwise, s is defined according to rule (2). we note that τ must be earlier than
HS3ENDk as some thread is logging s prior to responding the third handshake. If this logging is
done during clearing than the flag will be reinforced. Otherwise, the flag must remain on until the
clearing of the next cycle. In particular, it’s on at HS3ENDk. Thus no thread could load a value
from s after HS3ENDk and then log it since it is bound to sense that the dirty flag of s is on.
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B.3 Some basic claims

Recall that as asserted for the generic algorithm, we have to implement the snooping requirement
in order to deduce on the “real” reference count of an object, based on its asynchronous reference
count. The following lemma shows that the requirement is indeed enforced and that thus its
implications hold:

Lemma B.2 Any object o which is not marked local (i.e., o /∈ Localsk) at COLLECTk satisfies

ARC(Vk; o) ≥ RC(o)@HS4k

Moreover, the set of pointers that point to o at HS4k is a subset of those that point to it in Vk.

Proof. According to lemma 5.1 it suffices to show that if a reference to o is stored to a slot s at, or
after σk(s) and before End(σk), then o is marked local. By lemma B.1 we know that End(σk) <
HS4k, hence we can replace End(σk) with HS4k, hardening the requirements of lemma 5.1. i.e.,
we require that if a reference to o is stored to a slot s during the interval [σk(s),HS4k) then o is
marked local.

Since updates are not interruptible and since the Snoopi flag is reset only after HS4k(i), it
suffices to show that the test of Snoopi in the Update procedure returns true in the case that the
store proper into s is executed after σk(s) and before HS4k(i). Consider a store of o into s which
is scheduled at, or after σk(s) and before HS4k(i). Due to lemma B.1, the store is scheduled at or
after HSk. At that time, for any thread Ti, the Snoopi flag is set. Since the test of Snoopi, in line
(7) of procedure Update, is executed after the store proper, of line (6), it would return true and
the object will be marked accordingly local.

2

Lemma B.3 The following claims hold: (1) if thread Ti logs s between responding to the first and
third handshakes then Dirty(s)@HS3k(i) =true. (2) if thread Ti logs s between responding to the
first and fourth handshakes then Dirty(s)@HS4k(i) =true.

Proof. Claim (1): The only reason the flag might be off after Ti has raised it is that the collector
has reset it in procedure Clear-Dirty-Marks. If that is the case, then the collector has reset the
flag after the it has completed logging the slot. Hence, in procedure Reinforce-Dirty-Mark, the
collector will see the slot in Ti’s buffer and would reinforce it. This happens before HS2k. Claim
(2) is trivial due to the validity of claim (1).

2

B.4 Road map for the proof

In the proof of the algorithm we assume again that a garbage collection cycle number zero takes
place just before any mutator is started, i.e., at initialization time. As stated for the first algorithm,
there is no loss of generality involved, this is just a mere issue of convenience. Convenience is also
the cause for the following definition:

HS−1
def= HS0

Or, equivalently, we may assume that yet another garbage collection cycle is occurring before
cycle number zero. The reason we need this definition is that we can reason freely about what
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happened in the interval [HSk−2,HSk−1], while reasoning on cycle k > 0. The above definition
allows us to escape dealing with garbage collection cycle number one as a special case.

The proof is naturally by induction on the cycle number. We have several interdependent claims
that jointly prove that the algorithm is safe. In the next sectionwe present the claims and show
their inter-dependencies. Then, we prove the claims.

The goal of the proof is to show that any object is reclaimed only if it is garbage. This claim
is contained in the safety theorem—theorem B.1.

The validity of theorem B.1, for cycle k, stems from lemma B.6 which links the computed rc
field of each object to its ARC in Vk, the sliding view associated with cycle k.

This linking is proved correct for cycle k, provided:

• the linking argument holds for cycle k − 1

• theorem B.1 holds for previous cycles.

• all differences between Vk−1 and Vk are recorded consistently by mutators. This claim is
contained in lemma B.5.

• the collector reclaimed objects in a sensible manner during cycle k−1. “In a sensible manner”
means it took into account the values of reclaimed slots as they appeared in Vk−1. This claim
is contained in lemma B.7.

Lemma B.7 itself builds on the logging capabilities of mutators (lemma B.5) and on theorem B.1.
Lemma B.5 which summarizes the algorithm properties with respect to thread buffers and

logging is proved correct based on the validity of theorem B.1 and lemma B.4 for previous cycles.
Lemma B.4 itself asserts that any slot has a time point in the beginning of each cycle whence

the dirty flag of the slot is off. This rather lame-looking lemma is crucial for the operation of the
logging mechanism. Its proof relies on the correctness of the same claim for previous cycles.

Using the notation of the proof of the snapshot algorithm we summarize the interdependencies:

• each of the claims is proved correct for cycle zero independently.

• for a cycle k > 0

– LB.4k ⇐= LB.4k−1

– LB.5k ⇐= LB.4k−1 ∧
∧
j<k SafetyTheoremj

– LB.6k ⇐= LB.5k ∧ LB.6k−1 ∧ LB.7k−1 ∧
∧
j<k(SafetyTheoremj)

– SafetyTheoremk ⇐= LB.6k
– LB.7k ⇐= LB.5k ∧ SafetyTheoremk

B.5 Inductive safety arguments

Compensating for the lack of the hard handshake of the snapshot algorithm, during which all dirty
marks were turned off we have procedure Clear-Dirty-Marks in the sliding view algorithm. The
following lemma asserts that indeed each slot experiences a point in time, after the start of a cycle,
at which the dirty flag is off. This is essential for the logging mechanism to operate correctly since
it instructs mutators to start logging modifications from fresh, relating to the new cycle.

Lemma B.4 Let s be a memory word. There exists a time point, denoted tk(s) at which the dirty
slot for s is off. Specifically:
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• if s ∈ R1k than tk(s)
def= σk(s)

def= HSk.

• if s ∈ R2k then tk(s) exists and it satisfies HSENDk < tk(s) < HS2k.

• if s ∈ R3k then tk(s)
def= HS2ENDk. There are no ongoing updates of s at tk(s).

Proof. The proof is by induction on the cycle number, k. For k = 0 the claim holds since all slots
are cleared at HS0 and all slots are members of R10. For k > 0 we prove the claim correct provided
it holds for the previous cycle and theorem B.1 holds for all previous cycles. We divide to cases:

• if s ∈ R1k then either s ∈ R1k−1 or s ∈ R3k−1. R2k−1 is impossible because it implies that
s ∈ Histk.
If s ∈ R1k−1 then by the inductive hypothesis Dirty(s)@HSk−1 = false. Had some thread
Ti turned on the flag on after HSk−1 and before HSk(i) then s would have been recorded in
either Histk−1 or Histk, neither of which is the case, so the dirty flag must be continuously
off from HSk−1 to HSk.

Otherwise, s ∈ R3k−1. Thus, according to the inductive hypothesis Dirty(s)@HS2END =
false. By definition of R3k−1, no thread logged s before responding to the third handshake
of cycle k− 1. Thus no thread had turned the flag on prior to responding to that handshake.
Had some thread logged s after the third handshake of cycle k − 1 but before the first
handshake of cycle k then we would have s ∈ Histk, which is not the case. Again we have
Dirty(s)@HSk = false.

• if s ∈ R2k then the collector has turned off Dirty(s) during the clearing stage. We define
tk(s) to be the time instance just after the clearing of Dirty(s) was scheduled.

• if s ∈ R3k then the collector has turned off Dirty(s) during the clearing stage and no thread
has turned it on prior to responding to the third handshake. We conclude that the flag
must have been off at the time the second handshake ended. At HS2ENDk only updates
of threads that have already responded to the second handshake may be ongoing. But had
such an update occurred, it must have sensed that the flag is off and it would consequently
log s, contradicting the definition of R3k. We conclude that there are no ongoing updates at
HS2ENDk.

2

We proceed to consider the properties of the write-barrier. The next lemma, which is the
equivalent of lemma A.2 of the snapshot algorithm, states that any slot which is modified between
scans is recorded along with its value in the previous sliding view and that no other value is
associated with the slot.

Lemma B.5 Let s be a slot. The following claims hold:

1. if s is old for cycle k and modified during cycle k − 1 then V AL(Histk; s) = {Vk−1(s)}.

2. if s is new for cycle k and modified during cycle k − 1 then V AL(Histk; s) = {null}.

3. if s is old for cycle k and is not modified during cycle k−1 then V AL(Histk; s) ⊇ {Vk−1(s)}.

4. if s is new for cycle k and is not modified during cycle k − 1 then V AL(Histk; s) ⊇ {null}.
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Proof. For garbage collection number zero the claims trivially hold since Hist0 = � and indeed
no slot is modified prior to the cycle. We prove that the claim holds for cycle k > 0 provided it
itself hold for cycle k − 1 and that theorem B.1 and lemma B.4 hold for earlier cycles.

We divide into cases according to the state of s:

s is old for cycle k and s ∈ R1k−1. Suppose that s /∈ Histk. In that case we have σk(s)
def= HSk

and we have to show that s is not changed between HSk−1 and HSk.
Since s /∈ Histk−1 we conclude, by the inductive hypothesis, that no thread modified s between

σk−2(s) and HSk−1. Additionally we know that at HSk−1 the dirty mark of s is off. The dirty
mark must be off at HS4ENDk−2 as well and no update is ongoing at the moment as that update
would have rendered s part of Histk−1. Using the same arguments of lemma A.1 applied for s and
HS4ENDk−2 and since s is not cleared before HSENDk any update whose store proper operation
is scheduled between HS4ENDk−2 and HSk would result in the association of s@HS4ENDk−2

with s in either Histk−1, or Histk, neither of which is the case. We conclude that s is indeed not
modified during cycle k − 1.

Now suppose s ∈ Histk. In that case we want to show that V AL(Histk; s) = s@HSk−1.
Again, we’ve concluded that any thread Ti that would log s prior to HSk(i) would associate it
with s@HS4ENDk−2. Since a store to s could not have been scheduled between s@HS4ENDk−2

and HSk−1 without logging the slot we conclude that s@HSk−1 = s@HS4ENDk−2, which is the
desired result.
s is old for cycle k and s ∈ R2k−1. Since some thread modified and logged s between the
first and third handshakes of cycle k − 1 We have to show that claim (1) holds for s. Due to the
reinforcement step, the dirty flag of s must be on at HS4k−1, thus, there is no possibility that a
thread would log s after responding to the fourth handshake. As for the records kept regarding s
between the first and fourth handshakes, the collector chooses a single pair, say 〈s, v〉 and moves it
to Histk. By definition of σk we have Vk−1(s) = v.
s is old for cycle s and s ∈ R3k−1. We have noted in lemma B.4 that tk−1(s) = σk−1(s) =
HS2ENDk−1 and no update is occurring at that moment. Suppose s /∈ Histk. In that case
σk(s) = HSk and we have to show that no store is scheduled between HS2ENDk−1 and HSk.
But this is trivial since the probing of the dirty mark associated with such a store must start after
HS2ENDk−1, as no updates occur at that moment. Thus, had such an update been scheduled, it
must have sensed that the flag is off and s would have become a member of Histk a contradiction.

Suppose now that s ∈ Histk. We have to show that V AL(Histk; s) = s@HS2ENDk−1. Again,
since at HS2ENDk−1 the dirty bit is off and no update of it is occurring. And since the dirty
mark is reset only after all threads have responded to the first handshake of cycle k, by lemma A.1
they are bound to associate s@HS2ENDk−1 with s.

new slots allocated for the first time. If s is allocated for the first time, then σk−1
def= HSk−1

and at that time s contained null and its dirty flag was initialized to false. These values remain in
effect until s is allocated. Additionally, no update of s occurs at the moment it is allocated. Again,
the claim follows using the arguments of the previous cases.
new slots which are reallocated. We first show that Histk cannot contain “leftovers”: i.e.,
logging that refer to the “previous life” of s, before it was reallocated. Suppose that s was last
reclaimed during cycle m, m < k. If m < k − 1, then there will be no record of the “previous life”
of s in Histk due to the safety theorem applied to cycle m that assures us that s was unreachable
from its reclamation point up to the time it was re-allocated, during cycle k − 1. If, on the other
hand, s was reclaimed during cycle k − 1, then as the safety theorem tells us, no thread Ti had
access to s after HS4k−1(i). s could have not occurred in the digested part of Histk as that would
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have caused the deferral of the reclamation of its containing object to cycle k. So there are no
leftovers in this case as well.

Applying the safety theorem to cycle m, we know that the object that contained s was garbage
when it was reclaimed. Its dirty marks, the one of s included, were off. When the collector freed
the object it stored null into s. Since the object was unreachable, s remained inaccessible up to
the time it was re-allocated. Just when s was re-allocated, there was no update of it ongoing, it
contained null, and the dirty flag for it was false. We conclude that the lemma holds due to the
same arguments employed for the previous cases.

We have considered all possible cases for old and new allocated slots and have shown that they
always satisfy the claims.

2

It has just been demonstrated that the collector has full knowledge on which slots have changed
since the most recent scan and what were their contents. We now show that the collector can find
out what are these slots values in a current cycle as well. These two abilities combined amount for
the collector’s ability to calculate the asynchronous reference count of each object, relative to the
sliding view of the current cycle.

Lemma B.6 For any object o which is allocated at time COLLECTk it holds that o.rc@COLLECTk =
ARC(Vk, o).

Proof. The claim trivially holds for collection cycle zero, since there are no allocated objects at
COLLECT0. To prove that the claim holds for cycle k > 0 we assume that it holds for cycle k− 1
and that lemmas B.7 hold for cycle k − 1 and B.5 hold for cycle k.

We note that it suffices to show that:

1. for any slot s due to which rc fields are adjusted by the algorithm the rc field of Vk−1(s)
is decremented exactly once, during the interval [COLLECTk−1, COLLECTk), while the rc
field of Vk(s) is incremented exactly once during the same interval.

2. if Vk−1(s) 6= Vk(s) then the algorithm adjusts rc fields due to s.

Consider a memory word s, it is in exactly one of three states, with respect to cycle k: allocated
new, allocated, not allocated.
Adjusting rc fields due to allocated new slots. If s has been collected during cycle k − 1
then according to lemma B.7, the collector decremented the rc field of Vk−1(s) when the object
containing s was reclaimed. At that point, s assumed the value of null, which remained in effect
at least until s was reallocated, assuming that theorem B.1 holds for cycle k − 1.

Another possibility is that the object containing s was reclaimed during cycle m, where m <

k− 1. Since s is new to cycle k, it was not allocated for cycle k− 1 and we have σk−1(s) def= HSk−1

and by the definition of sliding views we have Vk−1(s) =null. Thus, we would expect that no rc
field will be decremented due to s. Indeed, since the object containing s was not reclaimed during
cycle k − 1, no decrement was applied due to s as the result of recursive deletion of cycle k − 1.
Again, due to theorem B.1, we know that when s was reallocated it assumed the value of null.

Finally, if s has not been ever allocated before then surely it was not subject to recursive deletion
during cycle k − 1 and it contained null at the time it was allocated.

We conclude that at any rate, by the time s is allocated, it contains null and all necessary
adjustments have been made to the rc field of Vk−1(s) in order to reflect that.
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Now we have to show that if Vk(s) 6=null then the rc field of Vk(s) is incremented and otherwise
no field is incremented, and, that no rc field is decremented due to s in updating of cycle k.

If no thread modifies s between its allocation point and before HSk(i), then, according to
lemma B.5, s /∈ Histk and σk(s)

def= HSk. At σk(s) s still assumes the value of null and thus
Vk(s) =null. Therefore, we would expect that no rc field will be incremented due to s in cycle k.
Since Histk does not contain any reference of s, this is actually the case. For the same reason no
rc field will be decremented as well.

If, on the other hand, some thread Ti modifies s between its allocation point and before HSk(i)
then according to lemma B.5, applied for cycle k, V AL(Histk; o) = {null}. Thus, the collector
would adjust rc field due to s during the execution of Update-Reference-Counters. No rc
field will be decremented due to s as null is associated with the slot in Histk. The collector will
then either determine s, or declare it undetermined. If s is determined, it will increment the rc
value of the determined value, which we have shown to be equal to V(s). Otherwise, when s is
undetermined, the collector adds it to the set Undeterminedk. It will subsequently consolidate s
during the operation of Fix-Undetermined-Slots. The rc field of the resolved value, which also
equals V (s), will be incremented exactly once, due to the Handled set. No matter whether s is
determined or not, we’ve shown that the rc field of Vk(s) is incremented exactly once.
Adjusting rc fields due to allocated old slots. Since s is not reclaimed during cycle k − 1
there is no rc adjustments due to it during the recursive deletion of cycle k−1. It is left to consider
the effects due to s in the course of updating during cycle k.

If s is an allocated old slot for cycle k then it may be either modified or non-modified during
cycle k.

If s is modified, then (due to lemma B.5) V AL(Histk; s) = {Vk−1(s)}. Consequently, Vk−1(s).rc
will be decremented during Update-Reference-Counters. Then, s will be either determined or
consolidated and the rc value of Vk(s) will be incremented accordingly as shown in the previous
paragraphs for new slots.

Otherwise, s is not modified. Then we have V AL(Histk; s) = � and no rc updating due to it
occur during cycle k, which is the desired result since Vk−1(s) = Vk(s).
Adjusting rc fields due to non-allocated slots. If s has not ever been allocated then the claim
trivially holds.

If s has been reclaimed during cycle k − 1 then we have shown, while dealing with new slots,
that at the time s is reclaimed null is assigned to it and the respective rc value of Vk−1(s) is
decremented accordingly.

Consider a slot s which is not allocated for cycle k that has been most recently been reclaimed
during cycle m < k − 1. According to the safety theorem, applied for cycle m, no thread Ti had
access to s after HS4ENDm. Thus, at HSk−1 no thread had access to s which leads to s /∈ Histk.
Additionally, s could not be the subject of recursive deletion during cycle k−1, because that would
have meant that the object containing s was deleted twice in a row, which is contradictory to the
safety theorem. We conclude that s is neither the subject of recursive deletion during cycle k − 1,
nor of rc field updating during cycle k, as desired.

Since we have covered all possible options for the state of s, the claim holds.

2

Building on the foundations provided by the link between the conceptual asynchronous reference
count and the concrete rc field and by the correct implementation of the snooping requirement,
proved by lemma B.2, we are now ready to prove our main claim.
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Theorem B.1 An object o is garbage when it is reclaimed. More specifically, o is not reachable
from any thread Ti after HS4k(i) and hence o is garbage at HS4ENDk.

Proof. We prove the claim by induction on the cycle number, k. For k = 0 we have an empty
ZCT0 therefore no object is reclaimed during this cycle and the claim vacuously holds. For k > 0
We prove that the claim is correct provided lemma B.6 holds for cycle k.

Let {T1, T2, . . . Tn} be the set of all mutator threads, ordered by the time they respond to the
fourth handshake. i.e., HS4k(1) < HS4k(2) < . . . < HS4k(n). Let {o1, . . . , om} be the set of
objects which Collect is invoked for during cycle k, ordered chronologically by the time of the
invocation (i.e., o1 was processed first and om—last.)

Consider any object oj that was processed by Collect. We prove that the following invariant
holds for oj :

Invariant B.1 (I1) For each thread Ti, oj was continuously unreachable from Ti in the time in-
terval [HS4k(i),HS4k(n)]. i.e., was not reachable through any of Ti’s local references and through
any global root at any time point in the interval.

The proof is by double induction: the outer induction variable is j, subscripting the objects
that were processed. The inner induction variable is i, denoting the index of threads in the order
they responded to the fourth handshake.

For the basis, we consider o1. In order to prove that I1 holds for o1 we prove that an additional
assertion holds:

Invariant B.2 (I2) RC(o1) = 0 continuously in the time interval [HS4k(1),HS4k(n)].

Define I3 as the logical conjunction of I1 and I2. First we show that I3 holds for o1 in the
(single-pointed) interval [HS4k(1),HS4k(1)]. Then we show that given that I3 holds in the interval
[HS4k(1),HS4k(i − 1)], then it holds in the interval [HS4k(i − 1),HS4k(i)] as well and hence in
the entire interval [HS4k(1),HS4k(i)].

Note that I3, restricted to the interval [HS4k(1),HS4k(1)] simply asserts that o1 was not
directly reachable from any of T1’s local references and from any global root at HS4k(1) and that
RC(o1)@HS4k(1) = 0. We prove that this is indeed the case.

Since o1 was processed the first, Collect must have been invoked directly from Reclaim-
Garbage for it. Thus, 0 = o1.rc@COLLECTk. This implies

0 = ARC(Vk, o) ≥ RC(o)@HS4k =⇒ RC(o)@HS4k = 0

by lemmas B.6 and B.2 and the fact that a reference count is non-negative. Additionally, o1 was
not directly reachable from T1 at HS4k(1), or it would have been marked local when T1’s state
was scanned when it responded to the fourth handshake. Finally, o1 was not directly reachable
from any global root at HS4k(1). To see that this is indeed the case consider any global root r.
The collector read r prior to starting the fourth handshake and marked the referenced object local.
Since the time the collector read r and up to HS4k(1) all threads would have marked an object
local had they stored a reference to the object into r. Thus, at any rate, the object which is pointed
by r at HSk is marked and thus it cannot be o1.

If n = 1 then we are done. Otherwise, we prove that I3 holds for the interval [HS4k(i −
1),HS4k(i)], where 1 < i ≤ n, provided it holds during the interval [HS4k(1),HS4k(i − 1)]. I3,
restricted to the interval in question, requires that:

1. RC(o1) = 0 continuously during the interval, and
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2. o1 was not directly reachable from any of the threads in the set P def= {T1, . . . , Ti−1} continu-
ously during the interval, and

3. o1 was not directly reachable from any global root continuously during the interval,and

4. o1 was inaccessible from Ti at HS4k(i).

The inductive hypothesis (on i) assures us that o1 was not directly reachable from all the threads
in P and from any global root at HS4k(i− 1) and that RC(o1)@HS4k(i− 1) = 0. Examining any
possible operation which is scheduled during the interval [HS4k(i− 1),HS4k(i)] we learn that I3
remained continuously in effect. We show that any instruction of time t ∈ [HS4k(i− 1),HS4k(i)]
cannot violate (1),(2) or (3) provided (1),(2) and (3) hold up to time t− 1 then we show that (4)
holds.

• a load cannot violate requirements (1) or (3) simply because it is a load, and not a store. It
cannot violate requirement (2) since no object or global root is referring to o1, due to the
validity of (1) and (3) in previous steps.

• a store operation cannot violate (2) since only a load can.

• a store by a thread Tl ∈ P cannot violate (1) or (3) since the operand of the store cannot be
o1, due to the validity of (2) in previous steps.

• a store by a thread Tl /∈ P cannot violate (1) or (3) because the operand of the store cannot
be o1 since the Snoopl flag is set during the interval and such a step would have marked o1

local.

• to prove that (4) is satisfied: at time HS4k(i) o1 is not indirectly reachable, from any thread
or global root, since (1) holds at HS4k(i). It is not directly reachable from Ti, because that
would have caused it being marked local. It is not directly reachable from a global root at
HS4k(i) since (3) holds at that moment.

That completes the proof that I3, and therefore I1 in particular, hold for o1.
Consider now the object oj , 1 < j ≤ m. If oj .rc@COLLECTk = 0 then the same arguments

that were employed for o1 are repeated. Otherwise, we have

c
def= oj .rc@COLLECTk > 0

Since oj is eventually processed by Collect there must have been c slots pointing at oj that
were cleared and oj .rc decremented accordingly, in lines (7-8) of Collect. Note that the collector
tested the dirty flags of these slots and found that they were off prior to their processing. Since
the dirty flag is off for these slots after HS4ENDk, no thread could have changed them after, or
at HSk and before responding to the fourth handshake (due to lemma B.3).

Moreover, since these c slots were contained in objects that were processed prior to oj the
inductive lemma (on objects) apply and we know that no thread had access to any of the c slots
after responding to the fourth handshake. We conclude that these c slots have not been changed
after HS4k and before the collector processed them.

In order to prove I1 we prove an additional invariant:

Invariant B.4 (I4) No reference to oj has been stored during the interval [HS4k(1),HS4k(n)] to
either a heap slot or a global reference.
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Define I5 as the logical conjunction of I1 and I4. We prove that I5 holds for oj .
We have already said that at HS4k(1) there existed exactly c references to oj . All these

references were contained in objects that, according to the inductive hypothesis on objects, were
unreachable from T1 at HS4k(1). Additionally, oj was not directly reachable from T1 at HS4k(1),
or it would have been marked local. oj has not been directly reachable from a global reference at
HS4k(1) since that would have caused it being marked local, for the same arguments that were
applied for o1. Finally, had oj been indirectly reachable from a global reference r at HS4k(1) then
the chain of references must have passed through some of the c slots which are contained in objects
which are assumed to be inaccessible from T1 at HS4k(1), contradicting the inductive hypothesis
on objects. Thus, I1, restricted to the interval [HS4k(1),HS4k(1)] holds for oj .

I4, restricted to the interval [HS4k(1),HS4k(1)], holds as well since HS4k(1) is the time at
which T1 responded to the handshake and naturally it did not execute a store at the same time.

We now show by similar arguments to those applied for o1 that I5 restricted to the in-
terval [HS4k(i − 1),HS4k(i)], where 1 < i ≤ n, holds provided it holds during the interval
[HS4k(1),HS4k(i− 1)]. We also use the inductive hypothesis on j that asserts that for any object
oa, a < j, I1 holds for the entire interval [HS4k(1),HS4k(n)].

Invariant I5 applied to oj and restricted to the interval [HS4k(i− 1),HS4k(i)] requires that:

1. oj is not reachable continuously during the interval from any local reference of a thread in P .

2. a reference to oj is not stored during the interval.

3. oj is not reachable continuously during the interval from any global reference.

4. oj is not reachable from Ti at HS4k(i).

We show that any instruction of time t ∈ [HS4k(i− 1),HS4k(i)] cannot violate (1), (2) or (3)
provided (1), (2) and (3) hold up to time t− 1 then we show that (4) holds.

• a load by a thread Tl could not have maid oj reachable from Tl unless it was reachable from it
prior to the load. It also has no effect on the reachability of oj from other threads. Therefore
such an action cannot violate neither (1) nor (3), assuming (1) and (3) hold for previous steps.
Naturally it cannot violate (2).

• a store by a thread Tl ∈ P cannot make oj reachable for any thread in P unless oj has been
already reachable from Tl just before the action took place, which is not the case. So a store
by Tl preserves (1), (2) and (3) provided (1) and (3) hold for previous steps.

• a store by a thread Tl /∈ P cannot make oj reachable from any thread in P for the following
reasons:

– Tl could not have stored a reference to oj itself since the Snoopl flag is set during the
interval and such a step would have marked oj local, preventing its processing by Collect.

– Tl could not have stored a pointer to x from which oj is reachable since all references to
oj at the time of the store, by the validity of (2) for previous steps, are a subset of the
the set of c references that pointed to oj at HS4k. Thus, the chain of references from
x to oj must pass through an object oa, with a < j. The store would have rendered oa
reachable from some thread in P , which is contradictory to the inductive assumption on
oa.

So (1), (2) and (3) are not violated by a store by Tl /∈ P .
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• it remains to show that (4) is not violated. Suppose that at HS4k(i) oj is reachable from Ti.
oj could not have been directly reachable at the time, or it would have been marked local.
By the validity of (2) for HS4k(i) we know that if oj is reachable from Ti then it is reachable
through some object oa, with a < j. This implies that oa is reachable from Ti at HS4k(i).
Again, a contradiction to the inductive assumption on oa.

That completes the proof that I5 and therefore I1 hold for oj .
Applying I1 for any object which is processed we learn that any such object is garbage at

HS4ENDk (which equals, by definition, HS4k(n).) Since the objects which are eventually re-
claimed are a subset of those processed (the rest have their reclamation deferred to the next cycle)
the algorithm is indeed safe.

2

Last but not least we have to prove lemma B.7, whose correctness was assumed by lemma B.6.
The lemma asserts that the collector sensibly de-allocates objects. That is, that it decrements the
rc field of slots in a manner which is not discordant with their linkage to the sliding view.

Lemma B.7 Let o be an object which is reclaimed during cycle k and let s be a slot of the object.
Then the collector decrements Vk(s) exactly once due to recursive deletion in cycle k.

Proof. The claim vacuously holds for cycle k = 0. We prove that it holds for cycle k > 0 provided
theorem B.1 and lemma B.5 hold for cycle k.

As the reference count of an object is monotonically non-increasing due to recursive deletion
and since an object is processed by Collect only when its rc field reaches zero, o is processed
exactly once before being reclaimed.

Since o is reclaimed, the collector resets all its slots, including s. When the collector considers
s it probes the value of Dirty(s) and finds it off. As noted in lemma B.5, s could not have been
modified by any thread between responding to the first handshake and fourth handshake. So s is
not in the digested history for the next cycle.

If s /∈ Histk then σk(s) = HSk. By lemma B.4 Dirty(s)@σk(s) = false thus no thread Ti could
have changed s between σk(s) and HSk(i). If s ∈ Histk then it must be that s ∈ R3k. So in that
case σk(s) = HS2ENDk. At any rate, no thread Ti changed s between σk(s) and HS4k(i).

Theorem B.1 asserts that s was inaccessible for any thread after responding to the fourth
handshake.

Assembling these facts we get that any rate s was not modified between σk(s) and the time
the collector read its value, prior to resetting it in procedure Collect. So the collector indeed
decremented the rc value of Vk(s).

2

This completes the safety proof of the algorithm.
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Appendix C

Tracing Sliding View Algorithm
Safety Proof

The tracing algorithm possess the same properties of the sliding view reference counting algorithm
with respect to logging, determining of slots and resolution of undetermined slots. Therefore, in
this proof, we take these properties for granted and we are concerned only with their application
to tracing and sweeping. Thus appendix B is a prerequisite for this proof.

In order to prove safety we consider two kinds of reachable objects: those that were allocated
prior to the fourth handshake, juxtaposed with those allocated after it. For the first kind, we show
that mistaken reclamation is impossible since there exist a chain in the graph induced by the sliding
view of the cycle that starts from a local object and leads to the reachable object in question and
that tracing proceeds uninterrupted along such a chain, so reclamation is impossible. The second
kind of objects are protected from reclamation by the object coloring protocol.

As in the proof of correctness of the sliding view algorithm, we abandon our assumption that
there are no global references in the system. Instead, we assume that the collector, between carrying
the third and fourth handshakes of a cycle, reads any global reference and marks the pointed objects
local. In addition, mutators perform the following write-barrier for global references:

1. s := new
2. if Snoopi then

// mark new as local.
3. Localsi := Localsi ∪ {new}

Let MARKk be the time at which procedure Mark is invoked in cycle k. The next lemma shows
that any object which is allocated by some thread prior to the response to the fourth handshake
is interpreted by the collector as “unmarked”. i.e., it assumes the color of white@MARKk when
tracing starts.

Lemma C.1 Let s be a slot such that Vk(s) = o 6= null. Then o.color@MARKk = white@MARKk.

Proof. if Vk(s) 6= null then s must be allocated prior to the fourth handshake, and so must be
o, the referred object. If o is allocated after the fourth handshake of the previous tracing cycle,
then by the code, it is colored using the previous black color, which is considered the white color
of cycle k.

Otherwise, o has been allocated prior to the fourth handshake of the previous tracing cycle. As
such, it has been examined by the sweeping process of that cycle and was found to be marked, or
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otherwise it would have been reclaimed. Again, due to the color toggle, it is considered white in
the tracing of cycle k.

2

From the above lemma we conclude that any object which is reachable by a chain of objects,
induced by Vk, where the first object is marked local, will be eventually blackened since, by the
arguments from the proof of the reference counting sliding view algorithm, tracing indeed proceeds
according to Vk and all objects referenced by the chain are colored white when tracing starts, so
there is no obstacle in tracing through a referenced object, i.e., the “if” in procedure Trace is
bound to succeed exactly once for any object in the chain. We take advantage of this observation
in the next lemma which proves that elderly reachable objects are not reclaimed by mistake.

Lemma C.2 Let o be an object which is allocated by thread Ti before HS4k(i) and which is re-
claimed during cycle k. For each thread Tl it holds that o is inaccessible from Tl from HS4k(l)
onward.

Proof. We assume that the threads are ordered by their response time to the fourth handshake,
i.e., HS4k(1) < HS4k(2) . . . < HS4k(n). We prove that the claim holds by induction on the
events in the algorithm’s execution. For the basis we have to show that when T1 responds to
the fourth handshake, o is reachable neither from any of T1’s local references nor from any global
root. Suppose the contrary. o could not have been directly reachable from T1 at the time of the
handshake or it would have been marked local and thus not reclaimed. o could not have been
directly reachable from a global reference at HS4k(1) as the collector reads any global root prior
to the fourth handshake and marks the read objects local. Any store into a global reference that
is scheduled between the time the collector read the reference and HS4k(1) is bound to snoop its
operand, as the Snoopi flags are all set at HS4k(1) and updates are non-interruptible.

So the only remaining option is that o is indirectly reachable from T1 or from a global reference
at HS4k(1). That is, there exists a local reference of T1 or a global reference r such that at HS4k(1):

r = x1 ∧ ∃s1 ∈ x1 : s1 = x2

∃s2 ∈ x2 : s2 = x3

...

∃m ≥ 1, sm ∈ xm : sm = xm+1 = o

If the chain existed in this exact form in Vk, i.e., ∀j ≤ m : sj@HS4k(1) = Vk(sj), then tracing
through r will eventually blacken o, according to the observation. If, on the other hand, there exists
a slot sl in the chain which has been modified since σk(sl) then let sl be the highest indexed slot
with a modified value, that is, ∀l < j ≤ m : sj@HS4k(1) = Vk(s). By lemma B.2 we know that
when the pointer to xl+1 was stored into the slot sl the storing thread marked xl+1 local, thus we
have the chain of objects from xl+1 to xm with xl+1 marked local and the entire chain contained
in Vk, we conclude that each element in the chain will be blackened, o included. We have proved
the claim, restricted to the interval [HS4k(1),HS4k(1)].

We now show that if the claim holds in the interval [HS4k(1),HS4k(i− 1)], where i > 0 then
it holds in the interval [HS4k(i− 1),HS4k(i)]. Specifically, we have to show that:

1. o remained inaccessible during the interval from any local reference of any thread in the set
P

def= {T1, . . . , Ti−1}.
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2. o remained inaccessible during the interval from any global reference.

3. o was inaccessible from Ti at HS4k(i).

In order to prove the claims (1) and (2) we note that any individual load or store operation by
a thread Tl ∈ P cannot render o reachable from Tl if it was unreachable before the operation was
scheduled. Similarly, a load by a thread Tj /∈ P cannot make o accessible to any thread in P . We
conclude that the only possibility that an object will become reachable again from a thread in P is
due to a store operation carried out by a thread which is not in P . We now show that such a store
is impossible.

Assume, by way of contradiction, that the claim holds in the interval [HS4ki− 1, t] where
HS4k(i− 1) ≤ t < HS4k(i) and that Tj /∈ P indeed executes a store of a reference to the object x
into a slot or a global reference which renders o reachable from some thread in P at time t. Thus,
the claim breaks for the first time at time t+ 1.

Note that when the reference to x is stored, it is marked local, since Tj has its Snoopj flag set
during the interval. Now there are three possibilities:

• if x and o are the same object then o is marked local and thus not reclaimed later.

• otherwise, if the chain of references that exists from x to o (note that x 6= o) at the time of the
store exists in Vk as well, then o will be eventually blackened, according to our observation.

• finally, if the chain that exists at time t+1 and Vk differ in some point, then we again consider
the longest suffix of the chain which hasn’t been modified relatively to σk. Denote the first
object in the suffix y. When the pointer to y was stored into the slot referring to it in the
chain, o was reachable from the storing thread. Since this operation took place prior to the
current operation, we can apply the inductive hypothesis for it and deduce that the storing
thread could have not responded to the fourth handshake before executing the update. Thus,
it must have marked y local. The claim then follows.

In order to prove the second claim we assume by way of contradiction that o is indeed reachable
from Ti at HS4k(i). Again we note that if o is directly reachable from either a local or a global
reference, or reachable through a non-empty chain which exists in Vk, then it will be blackened.
Thus, o must be reachable by a chain which differs in some point from its respective values in Vk.
By arguing that the reference to the first object in the longest suffix of the chain mutual to time
HS4k(i) andVk was stored to its referring slot in the chain by a thread which still hasn’t responded
to the fourth handshake we again conclude that o will be eventually blackened.

2

We conclude that:

Theorem C.1 The tracing sliding view algorithm is safe.
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Appendix D

Source Code

In this appendix we bring the source code listings of the garbage collector. We had to change
many files in the Javasoft JVM is order to implement the write barrier required by the on-the-fly
algorithms. This is the complete list of files that required a change due to the implementation of
the write barrier:

./src/share/javavm/include/alloc_cache.h

./src/share/javavm/include/gc.h

./src/share/javavm/include/interpreter.h

./src/share/javavm/include/oobj.h

./src/share/javavm/runtime/classinitialize.c

./src/share/javavm/runtime/classload.c

./src/share/javavm/runtime/classresolver.c

./src/share/javavm/runtime/classruntime.c

./src/share/javavm/runtime/executeJava.c

./src/share/javavm/runtime/executeJava_p5.inc

./src/share/javavm/runtime/executeJava_p5.m4

./src/share/javavm/runtime/interpreter.c

./src/share/javavm/runtime/javai.c

./src/share/javavm/runtime/jni.c

./src/share/javavm/runtime/jvm.c

./src/share/javavm/runtime/jvmpi.c

./src/share/javavm/runtime/threads.c

./src/share/javavm/runtime/util.c

./src/win32/hpi/src/threads_md.c

./src/win32/javavm/runtime/signals_md.c

./src/win32/native/sun/awt_common/awt_makecube.cpp

./src/win32/native/sun/windows/awt.h

./src/win32/native/sun/windows/awt_Component.cpp

./src/win32/native/sun/windows/awt_Cursor.cpp

./src/win32/native/sun/windows/awt_Dialog.cpp

./src/win32/native/sun/windows/awt_DnDDS.cpp

./src/win32/native/sun/windows/awt_Font.cpp

./src/win32/native/sun/windows/awt_Graphics.cpp

./src/win32/native/sun/windows/awt_MenuItem.cpp

./src/win32/native/sun/windows/awt_PrintJob.cpp

./src/win32/native/sun/windows/awt_Robot.cpp

./src/win32/native/sun/windows/awt_Toolkit.cpp

./src/win32/native/sun/windows/awt_Window.cpp
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The list of files that actually implement the garbage collector and allocator themselves is con-
siderably shorter and is given below. In the rest of this appendix we list the source of this files
along with a description of the role of each one of them.

./src/share/javavm/include/mok_win32.c

./src/share/javavm/include/rcblkmgr.c

./src/share/javavm/include/rcchunkmgr.c

./src/share/javavm/include/rcgc.c

./src/share/javavm/include/rcgc.h

./src/share/javavm/include/rcbmp.c

./src/share/javavm/include/rcbmp_inline.h

./src/share/javavm/include/rcgc_internal.h

./src/share/javavm/include/rchub.c

./src/share/javavm/include/ylrc_protocol.h

./src/share/javavm/runtime/gc.c

D.1 Organization of the code

The garbage collector code contains only one translation unit, which is the file gc.c. This file
is inherited from the original JVM. It contains, among other things, the entry point to user’s
allocation code. This is the only file that was inherited from the original JVM, all other files are
specific to the new collector.

The file gc.c includes the file rchub.c, which in turn includes the files rcblkmgr.c (the block
manager), rcchunkmgr.c (the chunk manager) and rcgc.c. Thus, all code is lumped into one
translation unit. This allows us to use static and inline functions extensively, which opens the
room for compiler optimizations.

D.2 mok win32.c

We tried to keep the garbage collector portable. For that end, we encapsulated the required Win32
into a single file: mok win32.c. The services include low level memory management and thread
support.

Source listing for file mok win32.c

/* File name: mok_win32.c

* Author: Yossi Levaoni

* Purpose: Win32 abstraction layer

*/

/*

* Memory

*

*/

/* Advanced */

#define WIN32PGGRANULE (64*1024)

void* mokMemReserve(void *starting_at_hint, unsigned sz )

{

void *p = VirtualAlloc( starting_at_hint, sz, MEM_RESERVE, PAGE_READWRITE );

sysAssert( sz );

sysAssert( p );

return p;

}

void mokMemUnreserve( void *start, unsigned sz )

{

BOOL res;

mokMemDecommit( start, sz );

res = VirtualFree( start, 0, MEM_RELEASE );

sysAssert( res );

}
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void* mokMemCommit( void *start, unsigned sz, bool zero_out )

{

void *p = VirtualAlloc( start, sz, MEM_COMMIT, PAGE_READWRITE );

sysAssert( start );

sysAssert( sz );

sysAssert( p );

return p;

}

void mokMemDecommit( void *start, unsigned sz )

{

BOOL res;

sysAssert( start );

sysAssert( sz );

res = VirtualFree( start, sz, MEM_DECOMMIT );

sysAssert( res );

}

/* C style */

void* mokMalloc( unsigned sz, bool zero_out )

{

void *p;

sysAssert( sz );

p = malloc( sz );

sysAssert( p );

if (zero_out)

memset( p, 0, sz );

return p;

}

void mokFree( void * p)

{

sysAssert( p );

free( p );

}

/* zero out */

void mokMemZero( void *start, unsigned sz )

{

mokMemDecommit( start, sz );

mokMemCommit( start, sz, TRUE );

}

/*

* YLRC --

*

* The functions:

*

* mokThreadSuspendForGC

* mokThreadResumeForGC

*

* are needed for on the fly garbage collection

*

*/

void mokThreadSuspendForGC(sys_thread_t *tid)

{

sysAssert( tid != sysThreadSelf() );

if (SuspendThread(tid->handle) == 0xffffffffUL) {

jio_printf( "sysThreadSuspendForGC: SuspendThread failed" );

__asm { int 3 }

}

{

CONTEXT context;

DWORD *esp = (DWORD *)tid->regs;

context.ContextFlags = CONTEXT_INTEGER | CONTEXT_CONTROL;

if (!GetThreadContext(tid->handle, &context)) {

jio_printf( "sysThreadSuspendForGC: GetThreadContext failed" );

__asm { int 3 }

}

*esp++ = context.Eax;

*esp++ = context.Ebx;

*esp++ = context.Ecx;

*esp++ = context.Edx;

*esp++ = context.Esi;

*esp++ = context.Edi;

*esp = context.Ebp;

}

}

void mokThreadResumeForGC(sys_thread_t *tid)

{

sysAssert( tid != sysThreadSelf() );

if (ResumeThread(tid->handle) == 0xffffffffUL) {

printf( "sysThreadResumeForGC: ResumeThread failed" );

__asm { int 3 }

}

}
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typedef struct xxpair {

int (*func)(sys_thread_t*, void*);

void *param;

} xxpair;

static int _mokThreadEnumerateOverHelper( sys_thread_t *thrd, xxpair* xx)

{

int res;

ExecEnv *ee;

if (thrd == gcvar.sys_thread) return SYS_OK;

ee = SysThread2EE( thrd );

if (!ee->gcblk.gcInited) return SYS_OK;

res = xx->func( thrd, xx->param );

return res;

}

int mokThreadEnumerateOver( int(*f)(sys_thread_t *, void*), void *param)

{

xxpair xx;

int ret;

xx.func = f;

xx.param = param;

#ifdef RCDEBUG

{

sys_thread_t* self = sysThreadSelf();

mokAssert( self == gcvar.sys_thread );

}

#endif

ret = sysThreadEnumerateOver( _mokThreadEnumerateOverHelper, &xx );

return ret;

}

End of file source listing

D.3 rcblkmgr.c

This file contains the code of the block manager (see section8.9 for more details).
Source listing for file rcblkmgr.c

/*

* File: rcblkmgr.c

* Author: Mr. Yossi Levanoni

* Purpose: implementation of the block manager

*/

/******************* Initialization ********************************/

GCFUNC void blkInit(unsigned nMB)

{

unsigned sz;

/* Zero out all vars */

memset( &blkvar, 0, sizeof(blkvar) );

/* Allocate the heap */

mokAssert( nMB < (1<<BLOCKBITS) && nMB>0);

blkvar.heapSz = nMB << 20;

blkvar.heapStart = (byte*)mokMemReserve( NULL, blkvar.heapSz );

blkvar.heapTop = blkvar.heapStart + blkvar.heapSz;

mokMemCommit( blkvar.heapStart, blkvar.heapSz, false );

#ifdef RCVERBOSE

jio_printf(

"heap[%x<-->%x]\n",

(unsigned)blkvar.heapStart,

blkvar.heapSz + (unsigned)blkvar.heapStart);

fflush( stdout );

#endif

/* Allocate block headers table */

blkvar.nWildernessBlocks = blkvar.nBlocks = blkvar.heapSz >> BLOCKBITS;

sz = sizeof( BlkAllocHdr ) * (blkvar.nBlocks + 3);

blkvar.allocatedBlockHeaders = (BlkAllocHdr*)mokMemReserve( NULL, sz );

mokMemCommit( blkvar.allocatedBlockHeaders, sz, true );

blkvar.allocatedBlockHeaders ++;

blkvar.pRegionLists =

(BlkListHdr*)blkvar.allocatedBlockHeaders + blkvar.nBlocks + 1;

bhSet_status( (blkvar.allocatedBlockHeaders-1) , DUMMYBLK );

bhSet_status( (blkvar.allocatedBlockHeaders+blkvar.nBlocks) , DUMMYBLK );

blkvar.blockHeaders =
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blkvar.allocatedBlockHeaders - ((unsigned)blkvar.heapStart>>BLOCKBITS);

blkvar.heapTopRegion = (BlkRegionHdr*)OBJBLOCKHDR( blkvar.heapTop );

blkvar.wildernessRegion = (BlkRegionHdr*)OBJBLOCKHDR( blkvar.heapStart );

/* Allocate mutex */

blkvar.blkMgrMon = sysMalloc(sysMonitorSizeof());

sysMonitorInit( blkvar.blkMgrMon );

#ifdef RCDEBUG

jio_printf("headers1[%x<-->%x]\n",

(unsigned)blkvar.allocatedBlockHeaders,

sz + (unsigned)blkvar.allocatedBlockHeaders);

jio_printf("headers2[%x<-->%x]\n",

OBJBLOCKHDR(blkvar.heapStart),

OBJBLOCKHDR( (((byte*)blkvar.heapStart)+(nMB<<20)) ) );

#endif

}

/*******************************************************

* LOCKING *

********************************************************/

static void _LockBlkMgr(sys_thread_t *thrd)

{

sysMonitorEnter( thrd, blkvar.blkMgrMon );

}

static void _UnlockBlkMgr(sys_thread_t* thrd )

{

sysMonitorExit( thrd, blkvar.blkMgrMon );

}

/*******************************************************

* Allocate nBlocks from the part of the heap that

* hasn’t been touched thus far.

********************************************************/

static BlkAllocHdr* _allocFromWilderness( int nBlocks )

{

BlkRegionHdr* base = blkvar.wildernessRegion;

BlkRegionHdr* target = base + nBlocks;

if (target > blkvar.heapTopRegion)

return NULL;

blkvar.wildernessRegion = target;

return (BlkAllocHdr*)base;

}

/*******************************************************

*

* Insert this block, with the specified size, into the

* respective quick list.

*

* No merging with neighboring regions is attempted nor

* should be applicable.

*

* The limitting blocks have their "regionSize" set.

*******************************************************/

static void _insertRegionIntoQuickLists( BlkRegionHdr *brh, int sz )

{

BlkRegionHdr *lastBlk = brh + (sz-1);

brh->StatusUnused = BLK << 24;

brh->regionSize = sz;

if (lastBlk != brh) {

lastBlk->StatusUnused = BLK << 24;

lastBlk->regionSize = -sz;

}

brh->nextRegion = blkvar.quickLists[sz];

if (brh->nextRegion)

brh->nextRegion->prevRegion = brh;

brh->prevRegion = (BlkRegionHdr *)&blkvar.quickLists[sz];

blkvar.quickLists[sz] = brh;

}

/*****************************************************************

* Insert a region into the list of lists of regions. If a list

* for the region size exists then it is added to it. Otherwise,

* a new list is inserted to the list of lists for holding regions

* of "sz" blocks.

*

* If the region becomes an element in a list of regions than its

* "regionSize" field is updated to "sz". The last block in the

* region has its size updated to "-sz" at any rate.

******************************************************************/

static void _insertRegionIntoRegionLists( BlkRegionHdr *brh, int sz )

{
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int regionSize = -1;

BlkListHdr *pPrevList, *pList;

BlkListHdr *blh = (BlkListHdr *)brh;

BlkRegionHdr *lastBlk = brh + (sz-1);

lastBlk->StatusUnused = BLK << 24;

lastBlk->regionSize = -sz;

mokAssert( sz > 1 );

pList = blkvar.pRegionLists->nextList;

pPrevList = blkvar.pRegionLists;

for (; pList; pPrevList = pList, pList = pList->nextList) {

regionSize = pList->listRegionSize;

if (sz <= regionSize)

break;

}

/**

* Perfect match

*/

if (regionSize == sz ) {

brh->StatusUnused = BLK<<24;

brh->regionSize = sz;

brh->nextRegion = pList->nextRegion;

brh->prevRegion = (BlkRegionHdr *)pList;

if (pList->nextRegion)

pList->nextRegion->prevRegion = brh;

pList->nextRegion = brh;

return;

}

/**

* Create new empty list.

*/

blh->nextRegion = NULL;

blh->StatusPrevListID = BLKLIST << 24;

blh->listRegionSize = sz;

/**

* we want to insert after pPrevList and before

* pList.

*/

bhSet_prev_region_list( blh, pPrevList );

blh->nextList = pList;

pPrevList->nextList = blh;

if (pList) {

bhSet_prev_region_list( pList, blh);

}

}

/*****************************************************

* Extract the argument region from the list it’s

* in. Assumes that the region is not a list header.

******************************************************/

static void _extractFromRegionList( BlkRegionHdr *ph )

{

ph->prevRegion->nextRegion = ph->nextRegion;

if (ph->nextRegion)

ph->nextRegion->prevRegion = ph->prevRegion;

}

/*****************************************************

* Extract the argument region, which is a list header,

* from the list of lists.

******************************************************/

static void _extractFromListOfLists( BlkListHdr *ph )

{

BlkListHdr *newHeader = (BlkListHdr *)ph->nextRegion;

BlkListHdr *prevList = bhGet_prev_region_list( ph );

/**

* Change list header to the next element in the

* list

*/

if (newHeader) {

int sz = ((BlkRegionHdr *)newHeader)->regionSize;

bhSet_prev_region_list( newHeader, prevList );

newHeader->nextList = ph->nextList;

prevList->nextList = newHeader;

if (newHeader->nextList) {

bhSet_prev_region_list( newHeader->nextList, newHeader );

}

bhSet_status( newHeader, BLKLIST );

newHeader->listRegionSize = sz;
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return;

}

/**

* Eliminate the list.

*/

prevList->nextList = ph->nextList;

if (ph->nextList) {

BlkListHdr *prevList = bhGet_prev_region_list( ph );

bhSet_prev_region_list( ph->nextList, prevList );

}

}

/*****************************************************

* See if the region adjacent to the argument region

* from the right (i.e., with higher address) is in

* the hands of the block manager.

*

* If so, extract it from wherever it is.

*******************************************************/

static void _tryExtractRightNbr( BlkRegionHdr **pph, int *pSz)

{

BlkRegionHdr *nbr = *pph + *pSz;

int status = bhGet_status( nbr );

int size = nbr->regionSize; // conicides with the size field of BLKLIST

#ifdef RCDEBUG

if (status==BLK || status==BLKLIST) {

BlkRegionHdr *lastBlock = nbr + size - 1;

mokAssert( size > 0 );

mokAssert( bhGet_status( lastBlock ) == BLK );

mokAssert( lastBlock==nbr || lastBlock->regionSize == -size );

}

#endif

if (status == BLK) {

_extractFromRegionList( nbr );

blkvar.nListsBlocks -= size;

*pSz += size;

}

else if (status == BLKLIST) {

BlkListHdr *blh = (BlkListHdr *)nbr;

_extractFromListOfLists( blh );

blkvar.nListsBlocks -= size;

*pSz += size;

}

}

/*****************************************************

* See if the region adjacent to the argument region

* from the left (i.e., with lower address) is in

* the hands of the block manager.

*

* If so, extract it from wherever it is.

*******************************************************/

static void _tryExtractLeftNbr( BlkRegionHdr **pph, int *pSz)

{

BlkRegionHdr *nbr = *pph - 1;

int status = bhGet_status( nbr );

int size = nbr->regionSize==1 ? 1 : -nbr->regionSize;

/**

* That’s because items in the list are

* bigger than a single block and their

* final block is marked with BLK.

*/

mokAssert( status != BLKLIST );

if (status == BLK) {

mokAssert( size > 0 );

nbr = nbr + 1 - size;

status = bhGet_status( nbr );

mokAssert( nbr->regionSize == size );

if (status == BLK) {

_extractFromRegionList( nbr );

}

else {

mokAssert( status == BLKLIST );

_extractFromListOfLists( (BlkListHdr *)nbr );

}

blkvar.nListsBlocks -= size;

*pSz += size;

*pph = nbr;

}

}

/***********************************************************

* Free the specified region:

*
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* 1. see if it can be added to the wilderness.

* 2. if not, try coalescing from the left and right.

* 3. finally, add the resulting block to either the

* quick lists or the list of lists, depending on its

* size.

*************************************************************/

static void _blkFreeRegion_locked( BlkRegionHdr *ph, int sz )

{

blkvar.nAllocatedBlocks -= sz;

_tryExtractLeftNbr( &ph, &sz );

if (ph + sz == blkvar.wildernessRegion) {

blkvar.wildernessRegion = ph;

blkvar.nWildernessBlocks += sz;

return;

}

_tryExtractRightNbr( &ph, &sz );

blkvar.nListsBlocks += sz;

if (sz<N_QUICK_BLK_MGR_LISTS )

_insertRegionIntoQuickLists( ph, sz );

else

_insertRegionIntoRegionLists( ph, sz );

}

/*******************************************************

* Find the first non-empty list with size at least

* "sz". Then take the first element out.

* If there is leftover, put it in the respective list.

*******************************************************/

static BlkAllocHdr* _allocFromQuickLists( unsigned sz )

{

BlkRegionHdr** pList = &blkvar.quickLists[sz];

BlkRegionHdr* brh, *nextB;

unsigned i;

for (i=sz; i<N_QUICK_BLK_MGR_LISTS; i++, pList++) {

brh = *pList;

if (brh)

goto __found_list;

}

return NULL;

__found_list:

nextB = brh->nextRegion;

if (nextB)

nextB->prevRegion = (BlkRegionHdr *)pList;

(BlkRegionHdr*)*pList = nextB;

if (sz != i) {

BlkRegionHdr *leftover = brh + sz;

int newSz = i - sz;

_insertRegionIntoQuickLists( leftover, newSz );

}

return (BlkAllocHdr*)brh;

}

/*************************************************

*

* Allocates "sz" blocks from the lists of regions.

* Try finding a list with elements at list of size

* "sz".

*

* If the found list contains additional elements

* besides the header, then the element after the

* header is extracted from the list.

*

* Otherwise, the list header itself is extracted

* from the list of lists.

*

* Finally, if the list is not an exact match, the

* leftover is returned to the system.

**************************************************/

static BlkAllocHdr* _allocFromRegionLists( int sz )

{

BlkRegionHdr *brh;

BlkListHdr *pList = blkvar.pRegionLists->nextList;

int regionSize, leftover;

for (; pList; pList = (BlkListHdr *)pList->nextList) {

regionSize = pList->listRegionSize;

if (sz <= regionSize)

goto __found_list;

}

return NULL;

__found_list:
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brh = pList->nextRegion;

if (brh) { // extract next element in the list

BlkRegionHdr *nextB = brh->nextRegion;

if (nextB)

nextB->prevRegion = (BlkRegionHdr*)pList;

pList->nextRegion = nextB;

}

else { // extract list header itself

BlkListHdr *prevList = bhGet_prev_region_list( pList );

if (pList->nextList) {

bhSet_prev_region_list( pList->nextList, prevList);

}

/**

* the next assignment may update *blkvar.pRegionLists

* itself since the first element in the list

* has its prevList pointer pointing at this

* variable.

*/

prevList->nextList = pList->nextList;

brh = (BlkRegionHdr*)pList;

}

// do we have leftover

leftover = regionSize - sz;

if (leftover >= N_QUICK_BLK_MGR_LISTS) {

_insertRegionIntoRegionLists( brh + sz, leftover );

}

else if (leftover >= 1) {

_insertRegionIntoQuickLists( brh + sz, leftover );

}

return (BlkAllocHdr*)brh;

}

static void _sweepBig(BlkAllocBigHdr *ph)

{

GCHandle *h;

uint *p;

if (ph->allocInProgress) return;

h = (GCHandle*)BLOCKHDROBJ( (BlkAllocHdr*)ph );

if (gcGetHandleRC(h)>0) return;

p = h->logPos;

if (p) {

mokAssert( ((*p)&~3) == (uint)h );

mokAssert( ((*p)&3) == 0 || ((*p)&3) == BUFF_HANDLE_MARK);

/* leave it for next cycle */

return;

}

#ifdef RCDEBUG

gcvar.dbg.nFreedInCycle++;

gcvar.dbg.nBytesFreedInCycle += ph->blobSize * BLOCKSIZE;

#endif

blkFreeRegion( ph );

}

/**********************************************************

* Allocate "nBlocks" of memory. Self explaining.

*

***********************************************************/

static BlkAllocHdr* _blkAllocRegion_locked( int nBlocks )

{

BlkAllocHdr *res;

if (nBlocks < N_QUICK_BLK_MGR_LISTS) {

res = _allocFromQuickLists( nBlocks );

if (res) {

blkvar.nAllocatedBlocks += nBlocks;

blkvar.nListsBlocks -= nBlocks;

goto __checkout;

}

}

res = _allocFromRegionLists( nBlocks );

if (res) {

blkvar.nAllocatedBlocks += nBlocks;

blkvar.nListsBlocks -= nBlocks;

goto __checkout;

}

res = _allocFromWilderness( nBlocks );

if (!res) return NULL;

blkvar.nAllocatedBlocks += nBlocks;

blkvar.nWildernessBlocks -= nBlocks;

__checkout:

return res;

}

111



static int _calcAllocSize(int nBytes)

{

int blocks = nBytes / BLOCKSIZE;

if (blocks==0 || nBytes%BLOCKSIZE)

blocks++;

return blocks;

}

/**** Exported Functions ***************/

GCFUNC BlkAllocHdr* blkAllocBlock( ExecEnv *ee )

{

BlkAllocHdr *ph;

sys_thread_t *self = EE2SysThread( ee );

_LockBlkMgr( self );

ph = (BlkAllocHdr *)_blkAllocRegion_locked( 1 );

if (ph) {

bhSet_status( ph, CHUNKING );

}

_UnlockBlkMgr( self );

gcCheckGC();

return ph;

}

GCEXPORT BlkAllocBigHdr* blkAllocRegion( unsigned nBytes, ExecEnv *ee )

{

sys_thread_t *self = EE2SysThread( ee );

#ifdef RCDEBUG

BlkAllocInternalHdr *inter;

unsigned i;

#endif

unsigned nBlocks;

BlkAllocBigHdr *ph;

BlkAllocBigHdr *lastBlk;

nBlocks = _calcAllocSize( nBytes );

_LockBlkMgr( self );

ph = (BlkAllocBigHdr *)_blkAllocRegion_locked( nBlocks );

if (!ph) {

_UnlockBlkMgr( self );

return NULL;

}

lastBlk = ph + (nBlocks-1);

lastBlk->StatusUnused = ALLOCBIG << 24;

lastBlk->blobSize = nBlocks;

ph->allocInProgress = 1;

ph->StatusUnused = ALLOCBIG << 24;

ph->blobSize = nBlocks;

_UnlockBlkMgr( self );

#ifdef RCDEBUG

inter = (BlkAllocInternalHdr *)(ph+1);

for (; inter < (BlkAllocInternalHdr *)lastBlk; inter++) {

inter->startBlock = ph;

bhSet_status( inter, INTERNALBIG );

}

#endif

gcCheckGC();

return ph;

}

GCFUNC void blkFreeSomeChunkedBlocks( BlkAllocHdr **pph, int n )

{

int i, status;

BlkAllocHdr *ph;

_LockBlkMgr( gcvar.sys_thread );

for (i=0; i<n; i++) {

ph = pph[i];

status = bhGet_status(ph);

mokAssert( status == DUMMYBLK );

_blkFreeRegion_locked( (BlkRegionHdr*)ph, 1 );

}

_UnlockBlkMgr( gcvar.sys_thread );

}
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GCFUNC void blkFreeChunkedBlock( BlkAllocHdr *ph )

{

#ifdef RCDEBUG

int status = bhGet_status( ph );

mokAssert ( status==VOIDBLK || status==PARTIAL );

#endif

_LockBlkMgr( gcvar.sys_thread );

_blkFreeRegion_locked( (BlkRegionHdr*)ph, 1 );

_UnlockBlkMgr( gcvar.sys_thread );

}

GCFUNC void blkFreeRegion( BlkAllocBigHdr *ph )

{

unsigned sz = ph->blobSize;

#ifdef RCDEBUG

{

BlkAllocBigHdr *lastBlk;

BlkAllocInternalHdr *inter;

unsigned i;

lastBlk = ph + (sz-1);

mokAssert( ph->StatusUnused = ALLOCBIG << 24 );

mokAssert( lastBlk->StatusUnused = ALLOCBIG << 24 );

mokAssert( lastBlk->blobSize == sz );

mokAssert( ! ph->allocInProgress );

inter = (BlkAllocInternalHdr *)(ph+1);

for (; inter < (BlkAllocInternalHdr *)lastBlk; inter++) {

uint status = bhGet_status( inter );

mokAssert( status == INTERNALBIG );

mokAssert( inter->startBlock == ph );

}

}

#endif

_LockBlkMgr( gcvar.sys_thread );

_blkFreeRegion_locked( (BlkRegionHdr *)ph, sz );

_UnlockBlkMgr( gcvar.sys_thread );

}

#ifdef RCDEBUG

GCFUNC void blkPrintStats(void)

{

jio_printf("_______________ BLK STATS _______________\n" );

jio_printf("wild=%d list=%d used=%d\n",

blkvar.nWildernessBlocks, blkvar.nListsBlocks, blkvar.nAllocatedBlocks );

}

#endif

#pragma optimize( "", off )

GCFUNC void blkSweep(void)

{

BlkRegionHdr *wildernessHdr = blkvar.wildernessRegion;

BlkRegionHdr *brh = (BlkRegionHdr*)blkvar.allocatedBlockHeaders;

volatile int *volatile p;

while (brh < wildernessHdr) {

volatile int size, status;

p = (volatile int *volatile)&brh->regionSize;

size = *p;

p++;

status = (*p) >> 24;

__next_round:

switch (status) {

case BLK:

case BLKLIST:

mokAssert( size >= 1 );

brh += size;

break;

case ALLOCBIG:

_sweepBig( (BlkAllocBigHdr*)brh );

mokAssert( size >= 1 );

brh += size;

break;

case OWNED:

case VOIDBLK:

case PARTIAL: {

int nextStatus;

BlkRegionHdr *nextBrh = brh + 1;

p = (volatile int *volatile)&nextBrh->regionSize;

size = *p;

p++;

nextStatus = (*p) >> 24;
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chkSweepChunkedBlock( (BlkAllocHdr*)brh, status );

brh = nextBrh;

status = nextStatus;

if (nextBrh >= wildernessHdr) return;

goto __next_round;

}

default:

mokAssert( status == CHUNKING );

brh++;

break;

}

}

}

#pragma optimize( "", on )

End of file source listing

D.4 rcchunkmgr.c

This file contains the code of the chunks manager (see section8.9 for more details).
Source listing for file rcchunkmgr.c

/*

* File: rcchunkmgr.c

* Author: Mr. Yossi Levanoni

* Purpose: implementation of the chunk manager

*/

/************************************************

*

* Lock a partial list. Implemented by a spin

* lock which is imbedded in the list header.

*/

#define _lockPartialList(pList, ee)\

do {\

mokAssert( ee );\

gcSpinLockEnter( &pList->lock, (unsigned)ee );\

} while(0)

/************************************************

*

* Unlock a partial list

*/

#define _unlockPartialList(pList, ee)\

do {\

mokAssert( ee );\

gcSpinLockExit( &pList->lock, (unsigned)(ee) );\

} while(0)

static void _getPartialListStats( int iList,

int *pFreeBlocks,

int *pFreeBytes )

{

ExecEnv *ee = EE();

PARTIALLIST *pList = &chunkvar.partialLists[ iList ];

int objSz = chkconv.binSize[ iList ];

int maxObj = chkconv.binToObjectsPerBlock[ iList ];

int status, count;

BlkAllocHdr *ph, *nextPh;

BLKOBJ *freeList;

*pFreeBlocks = 0;

*pFreeBytes = 0;

_lockPartialList( pList, ee);

ph = pList->firstBlock;

while (ph) {

(*pFreeBlocks)++;

status = bhGet_status( ph );

mokAssert( status == PARTIAL );

freeList = (BLKOBJ*)ph->freeList;

if (freeList) {

mokAssert( OBJBLOCKHDR(freeList) == ph );

count = (int)freeList->count;

mokAssert( count<=maxObj && count>0 );

*pFreeBytes += count;

}

ph = ph->nextPartial;

}

_unlockPartialList( pList, ee );

*pFreeBytes *= objSz;

}

GCEXPORT void chkGetPartialBlocksStats( int freeBlocks[], int freeBytes[])
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{

int i;

for (i=0; i<N_BINS; i++)

_getPartialListStats( i, &freeBlocks[i], &freeBytes[i] );

}

GCEXPORT int chkCountPartialBlocks(void)

{

int n=0, i;

for (i=0; i<N_BINS;i++)

n += chunkvar.nBlocksInPartialList[i];

return n;

}

/****************************************************************

************** Mutual Services **********************************

****************************************************************/

/********************************************

*

* Initialize conversion tables.

*

*/

static void _initChunkConv( void )

{

int target,i, j;

i=0;

chkconv.binSize[ i++ ] = 8;

chkconv.binSize[ i++ ] = 16;

chkconv.binSize[ i++ ] = 24;

chkconv.binSize[ i++ ] = 32;

chkconv.binSize[ i++ ] = 40;

chkconv.binSize[ i++ ] = 48;

chkconv.binSize[ i++ ] = 56;

chkconv.binSize[ i++ ] = 64;

chkconv.binSize[ i++ ] = 80;

chkconv.binSize[ i++ ] = 96;

chkconv.binSize[ i++ ] = 112;

chkconv.binSize[ i++ ] = 128;

chkconv.binSize[ i++ ] = 160;

chkconv.binSize[ i++ ] = 192;

chkconv.binSize[ i++ ] = 224;

chkconv.binSize[ i++ ] = 256;

chkconv.binSize[ i++ ] = 320;

chkconv.binSize[ i++ ] = 384;

chkconv.binSize[ i++ ] = 448;

chkconv.binSize[ i++ ] = 512;

chkconv.binSize[ i++ ] = 640;

chkconv.binSize[ i++ ] = 768;

chkconv.binSize[ i++ ] = 1024;

chkconv.binSize[ i++ ] = 1280;

chkconv.binSize[ i++ ] = 2048;

chkconv.binSize[ i++ ] = 4096;

chkconv.binSize[ i++ ] = 8192;

mokAssert( i == N_BINS );

j = 0;

for (i=0; i<=N_BINS; i++) {

target = chkconv.binSize[i];

for (; j<=target; j++) {

chkconv.szToBinIdx[ j ] = i;

chkconv.szToBinSize[ j ] = target;

}

}

for (i=0; i<N_BINS; i++) {

chkconv.binToObjectsPerBlock[i] = BLOCKSIZE / chkconv.binSize[i];

#ifdef RCDEBUG

chunkvar.nBlocksInPartialList[i] = 0;

#endif /* RCDEBUG */

}

}

/***************************************************************/

/******************* COLLECTION ********************************/

/***************************************************************/

/*************************************************

*

* Adds a block to a partial list.

*

* A block is added to the partial list by a

* collector when it finds that it’s in the

* VOIDBLK state.

*

* The state is changed and the block is added to
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* the appropriate list.

*

*

* Locks taken:

* the partial list lock

*

* Competing operations:

* mutators executing _getPartialBlock

*

* state changes:

* VOIDBLK ---> PARTIAL. No contention.

*/

static void _addPageToPartialList( BlkAllocHdr* ph )

{

BlkAllocHdr *head;

int idx = bhGet_bin_idx(ph);

PARTIALLIST *pList = &chunkvar.partialLists[ idx ];

mokAssert( bhGet_status(ph) == VOIDBLK );

bhSet_status(ph, PARTIAL );

_lockPartialList( pList, gcvar.ee );

head = pList->firstBlock;

ph->nextPartial = head;

ph->prevPartial = (BlkAllocHdr*)pList;

if (head)

head->prevPartial = ph;

pList->firstBlock = ph;

#ifdef RCDEBUG

chunkvar.nBlocksInPartialList[ idx ] ++;

#endif /* RCDEBUG */

_unlockPartialList( pList, gcvar.ee );

}

/*************************************************

*

* Flush the buffers that contains block headers

* which have observed to be full.

*

* Each partial list is locked and the buffer

* corresponding to it is examined.

*

* Each element has been already observed to be

* entirely free may have undergone many changes

* since:

*

* 1. It could have been reallocated and now

* it is either OWNED or VOIDBLK.

*

* 2. If it turned into VOPIDBLK then the collector

* could have already freed it.

*

* We protect against each of these possibilities

* by checking that the block is indeed full, and

* in the original partial list where it was observed.

*

* Additionally, we mark such a block as DUMMYBLK in

* order not to free it twice.

*

* When the candidates for freeing are verifired, the

* array of truly deletable blocks is passed to the

* block manager.

*

* Locks taken:

* 1. the partial list lock. Each at a time.

* 2. Afterwards, the block manager lock.

*

* Competing operations:

* mutators executing _getPartialBlock.

*

* State changes:

* PARTIAL ---> Block Mgr states. Contention resolved

* by block mgr lock.

*/

static void _flushObservedFull(void)

{

int listIdx, status, count, maxObj, currentListIdx;

int blockIdx;

PARTIALLIST *pList;

BlkAllocHdr *ph;

chunkvar.nTrulyFull = 0;

for (listIdx = 0; listIdx<N_BINS; listIdx++) {

pList = &chunkvar.partialLists[ listIdx ];

maxObj = chkconv.binToObjectsPerBlock[listIdx] ;

_lockPartialList( pList, gcvar.ee);

for (blockIdx=0; blockIdx<pList->nObservedFull; blockIdx++) {
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ph = pList->observedFull[ blockIdx ];

/* Did some mutator took it ? */

status = bhGet_status(ph);

if (status != PARTIAL) { /* yep */

continue;

}

/*

* Is it in the original partial list

* where it was observed to be full ?

*/

currentListIdx = bhGet_bin_idx(ph);

if (currentListIdx != listIdx ) /* nop */

continue;

/**

* Is it still fully free ?

*/

if (!ph->freeList) /* nop */

continue;

count = ph->freeList->count;

mokAssert( count>=0 && count<=maxObj );

if (count < maxObj) /* nop */

continue;

/*

* Protect against extracting a single block

* mutiple times.

*/

bhSet_status( ph, DUMMYBLK );

/* extract the page */

ph->prevPartial->nextPartial = ph->nextPartial;

if (ph->nextPartial)

ph->nextPartial->prevPartial = ph->prevPartial;

#ifdef RCDEBUG

chunkvar.nBlocksInPartialList[ listIdx ] --;

#endif /* RCDEBUG */

chunkvar.trulyFull[ chunkvar.nTrulyFull++ ] = ph;

}

_unlockPartialList( pList, gcvar.ee );

pList->nObservedFull = 0; /* reset the list specific counter */

}

/* reset global counter */

chunkvar.nObservedFull = 0;

/* return blocks to the block manager */

blkFreeSomeChunkedBlocks( chunkvar.trulyFull, chunkvar.nTrulyFull );

}

/*************************************************************************

*

* Take a note that a block has been observed to be fully free.

*

* For each partial list we keep a buffer and a counter of blocks that

* were observed as full. Additonally, we keep a global counter of

* all the blocks in all the partial lists that were observed to be full.

*

* If either the list specific counter or the global counter crosses a

* threshold, the lists are flushed using _flushObservedFull()

*

*

* Locks taken:

* the call to _flushObservedFull() may lock partial lists and/or

* the block manager (one at a time).

*/

static void _handleFullPartialBlock( PARTIALLIST *pList, BlkAllocHdr* ph )

{

pList->observedFull[ pList->nObservedFull++ ] = ph;

chunkvar.nObservedFull++;

if (pList->nObservedFull >= MAX_OBSERVED_FULL_PER_LIST ||

chunkvar.nObservedFull >= MAX_OBSERVED_FULL)

_flushObservedFull();

}

/*************************************************

*************** Allocation **********************

**************************************************/
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/**************************************************

*

* Moves all the items in a page’s free list into

* the allocation list passed as a parameter.

*

* This function is called by a mutator which is

* the owner of this block. It is invoked for

* a page which has just been extracted from a

* partial list so it’s clear that the free

* list is non-empty.

*

* Locks taken:

* The page’s lock

*

* Competing operations:

* _flushRecycledListEntry(). Contention is

* resolved by the page’s lock.

*/

static void _stealFreeList( ALLOCLIST *allocList )

{

BlkAllocHdr *ph = allocList->allocBlock;

BLKOBJ *prev, *head;

mokAssert( allocList->binIdx == bhGet_bin_idx( ph ) );

mokAssert( bhGet_status(ph) == OWNED );

bhLock( ph );

(volatile BLKOBJ*)prev = ph->freeList;

ph->freeList = NULL;

bhUnlock(ph);

mokAssert( prev );

head = prev->next;

prev->next = ALLOC_LIST_NULL;

allocList->head = head;

}

/***************************************************

*

* Tries extracting a block from a partial list.

*

* If the partial list corresponding to the allocation

* list is non-empty then the first element is extracted.

*

* While the partial list lock is held, the state of the

* block is changed to OWNED. This protects against

* freeing the block by the collector back to the block

* manager.

*

* The partial list lock is then released.

*

* Then the blocks free list is stolen (i.e., moved onto the

* allocation list) which entails locking the block.

*/

static BOOL _getPartialBlock( ALLOCLIST *allocList, ExecEnv *ee )

{

#ifdef RCDEBUG

static int deltaMax = -1;

int delta = GetTickCount();

#endif

BlkAllocHdr *ph;

PARTIALLIST *pList = &chunkvar.partialLists[ allocList->binIdx ];

_lockPartialList( pList, ee );

ph = pList->firstBlock;

if ( !ph ) {

_unlockPartialList( pList, ee );

#ifdef RCDEBUG

delta = GetTickCount() - delta;

if (delta > deltaMax) {

deltaMax = delta;

jio_printf(" ***1 ALLOC_PARTIAL delta=%d\n", delta );

fflush( stdout );

}

#endif

return FALSE;

}

else {

BlkAllocHdr *next = ph->nextPartial;

pList->firstBlock = next;

if (next)

next->prevPartial = (BlkAllocHdr*)pList;

}

bhSet_status( ph, OWNED );

#ifdef RCDEBUG

chunkvar.nBlocksInPartialList[ allocList->binIdx ] --;

#endif /* RCDEBUG */

_unlockPartialList( pList, ee );
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allocList->allocBlock = ph;

_stealFreeList(allocList);

mokAssert( allocList->head );

mokAssert( allocList->head->count );

#ifdef RCDEBUG

delta = GetTickCount() - delta;

if (delta > deltaMax) {

deltaMax = delta;

jio_printf(" ***2 ALLOC_PARTIAL delta=%d\n", delta );

fflush( stdout );

}

#endif

return TRUE;

}

/**********************************************************

*

* Tries allocating object from the allocation list or from

* the block which is currently owned by it.

*

* If the allocation list is non-empty, then the first element

* is extracted and returned (no locking required).

*

* Otherwise, if the allocation list has no allocation block

* associated with it, then the function fails.

*

* Othetwise, the page is locked and its free list is probed.

* If the free list is empty then the page is transformed into

* a VOIDBLK block, the block is disassociated with the

* allocation list and the fucntion fails.

*

* Otherwise, the free list is stolen and merged into the

* allocation list. The first element is extracted and

* returned.

*/

static BLKOBJ *_allocFromOwnedBlock( ALLOCLIST* allocList )

{

BLKOBJ *head = allocList->head;

if (head != ALLOC_LIST_NULL) {

#ifdef RCDEBUG

{

BLKOBJ *firstObj;

mokAssert( allocList->allocBlock );

mokAssert( bhGet_status( allocList->allocBlock) == OWNED );

firstObj = BLOCKHDROBJ(allocList->allocBlock);

if ((char*)firstObj < blkvar.heapStart ||

(char*)firstObj >= blkvar.heapTop ||

(char*)head < blkvar.heapStart ||

(char*)head >= blkvar.heapTop ) {

jio_printf(

"Blk=%x first=%x head=%x\n",

allocList->allocBlock,

firstObj,

head );

fflush( stdout );

mokAssert( 0 );

}

mokAssert( (((word)head) & ((word)firstObj)) == ((word)firstObj));

if (allocList->head)

mokAssert(

((((int)allocList->head) -

((int)head)) % chkconv.binSize[ allocList->binIdx ]) == 0 );

}

#endif

allocList->head = head->next;

return head;

}

{

#ifdef RCDEBUG

static int deltaMax = -1;

int delta = GetTickCount();

#endif

BlkAllocHdr *ph = allocList->allocBlock;

if (!ph) return NULL;

/* see if there is something on the free list */

bhLock( ph );

(volatile BLKOBJ*)head = ph->freeList;

if (head) {

/* copy and clear */

ph->freeList = NULL;

bhUnlock(ph);
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{

BLKOBJ *ret = head->next;

head->next = ALLOC_LIST_NULL;

allocList->head = ret->next;

return ret;

}

}

/* OK, we have to abandon the page, i.e.,

* transfrom it into a VOIDPG page

*/

bhSet_status(ph, VOIDBLK );

bhUnlock( ph );

allocList->allocBlock = NULL;

#ifdef RCDEBUG

delta = GetTickCount() - delta;

if (delta > deltaMax) {

deltaMax = delta;

jio_printf(" ***3 ALLOC_OWNED delta=%d\n", delta );

fflush( stdout );

}

#endif

}

return NULL;

}

/********************************************************

*

* Allocate a single block from the block manager and

* chunk it into the given allocation list.

*/

static bool _getBlkMgrBlock( ALLOCLIST* allocList, ExecEnv *ee )

{

#ifdef RCDEBUG

static int deltaMax = -1;

int delta = GetTickCount();

#endif

BlkAllocHdr *ph = blkAllocBlock( ee );

int sz;

int count;

BLKOBJ *start, *curr, *next;

if (!ph) {

#ifdef RCDEBUG

delta = GetTickCount() - delta;

if (delta > deltaMax) {

deltaMax = delta;

jio_printf(" ***4 ALLOC_BLK delta=%d\n", delta );

fflush( stdout );

}

#endif

return false;

}

sz = chkconv.binSize[ allocList->binIdx ];

count = chkconv.binToObjectsPerBlock[ allocList->binIdx ];

mokAssert( count >= 2 );

count--;

start = curr = BLOCKHDROBJ(ph);

for ( ;count>0; count--) {

next = (BLKOBJ*)(((word)curr) + sz );

curr->next = next;

curr = next;

}

curr->next = ALLOC_LIST_NULL;

allocList->head = start;

allocList->allocBlock = ph;

ph->nextPartial = ph->prevPartial = NULL;

ph->freeList = NULL;

ph->StatusLockBinidx = (OWNED << 24) | allocList->binIdx;

#ifdef RCDEBUG

delta = GetTickCount() - delta;

if (delta > deltaMax) {

deltaMax = delta;

jio_printf(" ***5 ALLOC_BLK delta=%d\n", delta );

fflush( stdout );

}

#endif

return true;

}
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/********************************************************************

*********************************************************************

******************* Exported Functions ****************************

*********************************************************************

********************************************************************/

/*********************** Collection ********************************/

#ifdef RCDEBUG

GCFUNC void chkPreCollect(BLKOBJ *o)

{

word blockid;

RLCENTRY *rlce;

BLKOBJ *head;

blockid = OBJBLOCKID(o);

rlce = &chunkvar.rlCache[blockid % chunkvar.nCacheEntries];

head = rlce->recycledList;

/**

* Is the cache entry currently owned by this block ?

*/

if ((((word)head) ^ ((word)o)) < BLOCKSIZE) {

mokAssert( OBJBLOCKID(head)==blockid );

{

int binIdx = bhGet_bin_idx( OBJBLOCKHDR(o) );

int objSize = chkconv.binSize[ binIdx ];

int maxObjs = chkconv.binToObjectsPerBlock[ binIdx ];

/**

* since some but not all BLKBOJs of the block are linked

* the following should hold.

*/

mokAssert( head->count>0 && head->count<maxObjs );

}

o->next = head->next;

head->next = o;

head->count ++;

return;

}

if (head)

chkFlushRecycledListEntry( rlce );

/* now the entry is vacant and we can use it */

o->count = 1;

o->next = o;

rlce->recycledList = o;

}

#endif /* RCDEBUG */

/***********************************************************************

*

* Flush an entry in the recycled lists cache.

*

*

* First of, the block is locked then its state is read, the free list

* is merged with the recycled list and then the lock is released.

*

* -- If the block is in the VOIDBLK state:

*

* a. The free list must be empty.

* b. If the free list now contains all elements in the block then the

* block is returned directly to the block manager (without going

* through the "observed full" set). Otherwise, the state is changed

* to PARTIAL (no lock is taken). Then the corresponding partial list

* is locked and the block is added to it.

*

* -- Additional action for PARTIAL

* a. If the block is now fully freed, then it is marked as "observed full"

* which may lead to the flushing of the "observed full" set.

*

* Note: free lists and recycled lists are circular.

*

*/

GCFUNC void chkFlushRecycledListEntry(RLCENTRY *rlce)

{

BlkAllocHdr *ph;

int nFree, nRecycled;

BLKOBJ *recycledList, *freeList;

unsigned status;

recycledList = rlce->recycledList;

ph = OBJBLOCKHDR( recycledList );

mokAssert( recycledList ); /* or else it woudn’t be in the cache */

mokAssert( recycledList->next ); /* it’s a circular list */

nRecycled = recycledList->count;

mokAssert( nRecycled ); /* or else it woudn’t be in the cache */
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bhLock( ph );

status = bhGet_status(ph);

mokAssert( status==PARTIAL || status==OWNED || status==VOIDBLK);

(volatile BLKOBJ*)freeList = ph->freeList;

if (freeList) {

BLKOBJ *t;

mokAssert( freeList->count );

nFree = freeList->count + recycledList->count;

t = recycledList->next;

recycledList->next = freeList->next;

freeList->next = t;

}

else {

nFree = recycledList->count;

freeList = recycledList;

}

freeList->count = nFree;

ph->freeList = freeList;

bhUnlock( ph );

if (status == PARTIAL) {

/*

* Have we freed all chunks on a

* partial page ?

*/

int binIdx = bhGet_bin_idx( ph );

PARTIALLIST *pList = &chunkvar.partialLists[ binIdx ];

int maxChunks = chkconv.binToObjectsPerBlock[ binIdx ];

if (maxChunks == nFree)

_handleFullPartialBlock( pList, ph );

}

else if (status == VOIDBLK) {

/**

* either put the VOIDBLK page into the partial list or

* return it to the block manager.

*/

int binIdx = bhGet_bin_idx( ph );

int maxChunks = chkconv.binToObjectsPerBlock[ binIdx ];

if (maxChunks==nFree) {

blkFreeChunkedBlock(ph);

}

else {

_addPageToPartialList(ph);

}

}

rlce->recycledList = NULL;

}

GCFUNC void chkFlushRecycledListsCache( void )

{

int i;

RLCENTRY *rlce = chunkvar.rlCache;

for (i=chunkvar.nCacheEntries; i>0; i--, rlce++)

if (rlce->recycledList)

chkFlushRecycledListEntry( rlce );

}

GCFUNC void chkSweepChunkedBlock( BlkAllocHdr *ph, int status)

{

int binidx = bhGet_bin_idx( ph );

int objsz = chkconv.binSize[ binidx ];

int nobj = chkconv.binToObjectsPerBlock[ binidx ];

GCHandle *h = (GCHandle*)BLOCKHDROBJ(ph);

RLCENTRY rlce;

int count = 0;

while (nobj>0) {

nobj--;

if (gcGetHandleRC(h)==0 && !h->logPos) {

BLKOBJ *o = (BLKOBJ*)h;

o->next = o;

rlce.recycledList = o;

count = 1;

goto __scan_with_list;

}

h = (GCHandle*)(objsz + (char*)h);

}

return; /* found nothing */

__scan_with_list:

/* here recycled list is non-empty */

h = (GCHandle*)(objsz + (char*)h);

while (nobj>0) {

nobj--;
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if (gcGetHandleRC(h)==0 && !h->logPos) {

BLKOBJ *o = (BLKOBJ*)h;

count++;

o->next = rlce.recycledList->next;

rlce.recycledList->next = o;

goto __scan_with_list;

}

h = (GCHandle*)(objsz + (char*)h);

}

#ifdef RCDEBUG

gcvar.dbg.nFreedInCycle += count;

gcvar.dbg.nBytesFreedInCycle += count*objsz;

#endif

rlce.recycledList->count = count;

chkFlushRecycledListEntry( &rlce );

}

/******************* Allocation ********************************/

GCEXPORT BLKOBJ *chkAllocSmall(ExecEnv* ee, unsigned binIdx )

{

int retries;

ALLOCLIST *allocList = & ee->gcblk.allocLists[ binIdx ];

BLKOBJ* ores;

ores = _allocFromOwnedBlock( allocList );

if (ores) {

return ores;

}

/* now is a good time to cooperate ! */

// if (ee->gcblk.stage != gcvar.stage)

// gcThreadCooperate(ee);

for (retries=0; retries<3; retries++) {

if (_getPartialBlock( allocList, ee )) {

ores = _allocFromOwnedBlock( allocList );

mokAssert( ores );

return ores;

}

if (_getBlkMgrBlock( allocList, ee )) {

ores = _allocFromOwnedBlock( allocList );

mokAssert( ores );

return ores;

}

/* Sync GC */

if (gcvar.initialized) {

gcvar.memStress = true;

gcRequestSyncGC();

}

else

break;

}

OutOfMemory();

return NULL;

}

/******************* Initialization ********************************/

GCFUNC void chkInit(unsigned nMB)

{

unsigned sz;

unsigned nPages;

/* init conversion tables */

_initChunkConv();

/* Allocate page headers cache, ZEROED OUT */

nPages = nMB << (20 - BLOCKBITS);

chunkvar.nCacheEntries = nPages / RLCACHE_RATIO;

if (chunkvar.nCacheEntries < 117)

chunkvar.nCacheEntries = 117;

sz = chunkvar.nCacheEntries * sizeof(RLCENTRY);

chunkvar.rlCache = (RLCENTRY*)mokMemReserve( NULL, sz );

mokMemCommit( chunkvar.rlCache, sz, true );

}

End of file source listing

D.5 rcgc.c

rcgc.c contains the code for the reference counting and tracing garbage collection algorithms.
Source listing for file rcgc.c

/*

* File: rcgc.c
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* Author: Mr. Yossi Levanoni

* Purpose: implementation of the garbage collector

*/

/* forward declarations */

static void _snoopThreadLocals( sys_thread_t* t );

static void _incrementHandleRC( void * h);

static void _traceSetup(void);

static void _freeHandle(GCHandle* h);

/************** Debug Prints ********************/

static FILE *fDbg;

#ifdef RCDEBUG

static void dbgprn(int level, char *fmt, ...)

{

char buff[1000];

if (level <= 2) {

va_list args;

va_start( args, fmt );

if (fDbg==NULL)

fDbg = fopen("test.txt", "wt" );

vfprintf( fDbg, fmt, args );

vsprintf( buff, fmt, args );

jio_printf( "%s", buff );

fflush( stdout );

va_end( args );

}

}

#endif

/**********************************************************/

/* atomic op */

// int ___compare_and_swap(unsigned *addr, unsigned oldv, unsigned newv);

#pragma optimize( "", off )

GCFUNC void gcSpinLockEnter(volatile unsigned *p, unsigned id)

{

int i;

for(i=0; i<N_SPINS; i++) {

if (*p) continue;

if (___compare_and_swap((unsigned*)p, 0, id))

// jio_printf("gcSpinLockEnter ended (1)\n");

return;

}

i = 1;

for (;;) {

mokSleep( i/1000 );

if (___compare_and_swap((unsigned*)p, 0, id)) {

return;

}

i *= 2;

}

}

GCFUNC void gcSpinLockExit(volatile unsigned *p, unsigned id)

{

#ifdef RCDEBUG

bool res;

#endif

mokAssert( *p == id );

#ifdef RCDEBUG

res = ___compare_and_swap((unsigned*)p, id, 0);

mokAssert( res );

#else

___compare_and_swap((unsigned*)p, id, 0);

#endif /* RCDEBUG */

}

#pragma optimize( "", on )

/**************** BUFFER MANAGEMENT ***********************/

static uint* buffList = NULL;

static uint pad_against_false_sharing1[256];

static uint buffListLock;

static uint pad_against_false_sharing2[256];

void _buffListLockEnter(uint ee)

{

gcSpinLockEnter( &buffListLock, (unsigned)ee );

}

void _buffListLockExit(uint ee)

{
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gcSpinLockExit( &buffListLock, (unsigned)ee );

}

static uint* _allocFreshBuff(void)

{

uint *bf;

bf = (uint*)mokMemReserve( NULL, BUFFSIZE );

mokMemCommit( bf, BUFFSIZE, false );

if (!bf) {

jio_printf("YLRC: out of log buffers space\n");

fflush( stdout );

exit(-1);

}

#ifdef RCDEBUG

bf[USED_IDX] = Im_used;

#endif

return bf;

}

static uint* _allocBuff(ExecEnv *ee)

{

uint *bf;

if (buffList==NULL) {

bf = _allocFreshBuff();

_buffListLockEnter( (unsigned)ee );

gcvar.nAllocatedChunks++;

gcvar.nUsedChunks++;

mokAssert( gcvar.nFreeChunks+gcvar.nUsedChunks == gcvar.nAllocatedChunks );

_buffListLockExit( (unsigned)ee );

goto checkout;

}

_buffListLockEnter( (unsigned)ee );

bf = buffList;

if (!bf) {

gcvar.nUsedChunks++;

gcvar.nAllocatedChunks++;

mokAssert( gcvar.nFreeChunks+gcvar.nUsedChunks == gcvar.nAllocatedChunks );

_buffListLockExit( (unsigned)ee );

bf = _allocFreshBuff();

}

else {

gcvar.nUsedChunks++;

gcvar.nFreeChunks--;

mokAssert( gcvar.nFreeChunks+gcvar.nUsedChunks == gcvar.nAllocatedChunks );

#ifdef RCDEBUG

mokAssert( bf[USED_IDX] == Im_free );

bf[USED_IDX] = Im_used;

#endif // RCDEBUG

buffList = (unsigned*)bf[LINKED_LIST_IDX];

_buffListLockExit( (unsigned)ee );

}

checkout:

if (ee != gcvar.ee) {

gcvar.nChunksAllocatedRecentlyByUser++; // allow inaccuracy due to race condition

if (gcvar.nChunksAllocatedRecentlyByUser >= gcvar.opt.userBuffTrig

&& gcvar.initialized

&& !gcvar.gcActive) {

#ifdef RCVERBOSE

jio_printf("ALLOC BUFF used=%d TRIGERRING ASYNC RC\n", gcvar.nUsedChunks );

fflush( stdout );

#endif

gcRequestAsyncGC( );

}

}

return bf;

}

static void _freeBuff( ExecEnv *ee, uint* buff)

{

mokAssert( ee == gcvar.ee );

#ifdef RCDEBUG

mokAssert( buff[USED_IDX] == Im_used );

#endif

_buffListLockEnter( (unsigned)ee );

buff[LINKED_LIST_IDX] = (uint)buffList;

buffList = buff;

gcvar.nFreeChunks++;

gcvar.nUsedChunks--;

mokAssert( gcvar.nFreeChunks+gcvar.nUsedChunks == gcvar.nAllocatedChunks );

#ifdef RCDEBUG

buff[USED_IDX] = Im_free;

#endif // RCDEBUG

_buffListLockExit( (unsigned)ee );

}

static void _initBuffReservedSlots( ExecEnv* ee, uint *newbuff )

{

newbuff[LINKED_LIST_IDX] = 0;

125



newbuff[REINFORCE_LINKED_LIST_IDX] = 0;

newbuff[NEXT_BUFF_IDX] = 0;

newbuff[LAST_POS_IDX] = 0;

#ifdef RCDEBUG

newbuff[ALLOCATING_EE] = (uint)ee;

newbuff[LOG_CHILDS_IDX] = 0;

newbuff[LOG_OBJECTS_IDX] = 0;

newbuff[USED_IDX] = Im_used;

#endif

}

GCEXPORT void gcBuffAllocAndLink(ExecEnv* ee, BUFFHDR *bh)

{

uint i;

uint *newBuff = _allocBuff( ee );

_initBuffReservedSlots( ee, newBuff );

/* backword link */

newBuff[N_RESERVED_SLOTS] = ((uint)bh->pos) | BUFF_LINK_MARK;

/* forward link */

/* from the current position to the new chunk */

*bh->pos = ((uint)&newBuff[N_RESERVED_SLOTS]) | BUFF_LINK_MARK;

/* from the beginning of the current buffer to the next buffer */

bh->currBuff[NEXT_BUFF_IDX] = (uint)newBuff;

/* update record */

bh->pos = &newBuff[N_RESERVED_SLOTS+1];

bh->limit = newBuff + BUFFSIZE/sizeof(uint);

bh->currBuff = newBuff;

/*

* Reserve place for"

* 1. the handle and forward pointer (2 words).

* 2. and a reserved place for a snooped object.

*/

bh->limit -= 3;

}

static void buffInit(ExecEnv *ee, BUFFHDR *bh)

{

int i;

bh->start = _allocBuff(ee);

_initBuffReservedSlots( ee, bh->start );

/* backword link */

bh->start[N_RESERVED_SLOTS] = ((unsigned)NULL) | BUFF_LINK_MARK;

bh->pos = &bh->start[N_RESERVED_SLOTS+1];

bh->limit = bh->start + BUFFSIZE/sizeof(uint);

bh->limit -= 3; /* for the handle, forward pointer and reserved snoop */

bh->currBuff = bh->start;

}

#define buffIsModified(bh) ((bh)->pos != &(bh)->start[N_RESERVED_SLOTS+1])

#pragma optimize( "", off )

GCEXPORT void gcBuffSlowConditionalLogHandle(ExecEnv* ee, GCHandle *h)

{

int avail;

GCHandle **objslots;

GCHandle **p;

ClassClass *cb;

BUFFHDR *bh;

#ifdef RCDEBUG

uint nLoggedChilds = 0;

#endif // RCDEBUG

bh = &ee->gcblk.updateBuffer;

if (obj_flags(h)==T_NORMAL_OBJECT) {

cb = obj_classblock(h);

mokAssert( cb != classJavaLangClass);

{ /* OK, it’s a non-class object */

unsigned short *offs = cbObjectOffsets(cb);

int nrefs = unhand(cb)->n_object_offsets;

objslots = (GCHandle**)(((char*)unhand(h))-1);

mokAssert( objslots && h && bh && ee && offs && nrefs>0);

p = (GCHandle**)bh->pos;

avail = bh->limit - (uint*)p;

if (nrefs > avail) {

ee->gcblk.cantCoop = false;

gcBuffAllocAndLink( ee, bh );

p = (GCHandle**)bh->pos;

#ifdef RCDEBUG

avail = bh->limit - bh->pos;
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mokAssert( nrefs <= avail );

#endif /* RCDEBUG */

ee->gcblk.cantCoop = true;

}

for (;;) {

unsigned short slot = *offs;

GCHandle *child;

if (slot==0) break;

child = *(GCHandle**)(slot + (char*)objslots);

if (child) {

*p = child;

p++;

#ifdef RCDEBUG

nLoggedChilds++; // increment counter of logged slots

mokAssert( nrefs > 0 );

nrefs--;

#endif // RCDEBUG

}

offs++;

}

}

}

else {

register long n = obj_length(h);

GCHandle **body = (GCHandle**)(((ArrayOfObject*)gcUnhand(h))->body);

mokAssert( obj_flags(h) == T_CLASS); /* an array of classes */

mokAssert( n > 0 );

p = (GCHandle**)bh->pos;

avail = bh->limit - (uint*)p;

if (n > avail) {

ee->gcblk.cantCoop = false;

gcBuffAllocAndLink( ee, bh );

p = (GCHandle**)bh->pos;

#ifdef RCDEBUG

avail = bh->limit - bh->pos;

mokAssert( n <= avail );

#endif /* RCDEBUG */

ee->gcblk.cantCoop = true;

}

while (--n >= 0) {

GCHandle *child = *body;

body++;

if (child) {

*p = child;

p++;

#ifdef RCDEBUG

nLoggedChilds++; // increment counter of logged slots

#endif // RCDEBUG

}

}

}

/* commit ? or discard ? */

if (!h->logPos) { /* commit */

*p = (GCHandle*)(BUFF_HANDLE_MARK | (unsigned)h);

/*

* actually the order of instructions here

* should be reversed in order to enable

* async reading of buffers.

*/

h->logPos = (uint*)p;

bh->pos = (unsigned*)(p+1);

#ifdef RCDEBUG

// increment counters of logged slots

bh->start[LOG_CHILDS_IDX] += nLoggedChilds;

bh->start[LOG_OBJECTS_IDX] ++;

#endif // RCDEBUG

}

}

#pragma optimize( "", on )

#ifdef RCNOINLINE

GCEXPORT void gcBuffConditionalLogHandle(ExecEnv* ee, GCHandle *h)

{

if (!h->logPos)

gcBuffSlowConditionalLogHandle( ee, h);

}

GCEXPORT void gcBuffLogWordUnchecked(ExecEnv *ee, BUFFHDR *bh, uint w)

{

*bh->pos = w;

bh->pos++;

#ifdef RCDEBUG

// increment counter of logged objects

bh->start[LOG_OBJECTS_IDX] ++;
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#endif // RCDEBUG

}

GCEXPORT void gcBuffReserveWord(ExecEnv *ee, BUFFHDR *bh)

{

mokAssert( bh && ee );

if ( bh->pos >= bh->limit) {

gcBuffAllocAndLink( ee, bh );

}

}

GCEXPORT void gcBuffLogWord(ExecEnv *ee, BUFFHDR *bh, uint w)

{

mokAssert( w && bh && ee );

gcBuffReserveWord( ee, bh );

gcBuffLogWordUnchecked( ee, bh, w );

}

GCEXPORT void gcBuffLogNewHandle(ExecEnv *ee, GCHandle *h)

{

BUFFHDR *bh;

mokAssert( ee );

bh = &ee->gcblk.createBuffer;

ee->gcblk.cantCoop = true;

*bh->pos = (uint)h;

h->logPos = bh->pos;

bh->pos++;

#ifdef RCDEBUG

// increment counter of logged objects

bh->start[LOG_OBJECTS_IDX] ++;

#endif // RCDEBUG

mokAssert( gcGetHandleRC(h)==0 );

ee->gcblk.cantCoop = false;

gcBuffReserveWord( ee, bh );

mokAssert( gcNonNullValidHandle(h) );

}

#endif /* RCNOINLINE */

/******************** VALIDATION *****************************/

GCFUNC bool _isHandle(void *h)

{

BlkAllocHdr *bah;

int status;

if ((byte*)(h) <blkvar.heapStart) return false;

if ((byte*)(h) >= blkvar.heapTop) return false;

if ((((unsigned)h) & OBJMASK) != (unsigned)h) return false;

if ((byte*)unhand((JHandle*)h) != (byte*)gcUnhand((JHandle*)h)) return false;

#ifdef RCDEBUG

if (((GCHandle*)h)->status != Im_used) return false;

#endif

bah = OBJBLOCKHDR(h);

status = bhGet_status( bah );

if (status==ALLOCBIG) {

if ( ((uint)h & BLOCKMASK) == 0)

return true;

return false;

}

if (status<OWNED || status>PARTIAL)

return false;

#ifdef RCDEBUG

{

int bin_idx = bhGet_bin_idx( bah );

mokAssert( (((uint)h & BLOCKMASK) % chkconv.binSize[bin_idx]) == 0);

}

#endif

/* check if on same page or ALLOC_LIST terminator */

if ((uint)((GCHandle*)h)->logPos == (uint)ALLOC_LIST_NULL) return false;

if ( ((uint)h ^ (uint)((GCHandle*)h)->logPos) < BLOCKSIZE )

return false;

#ifdef RCDEBUG

{

uint val;

uint *pos = ((GCHandle*)h)->logPos;

if (pos) {

val = *pos;

if ( (val & ~3) != (uint)h ) {
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/*

* This is a problem only if we’re the collctor,

* this means that someone has garbaled the log, the

* logPos pointer or both.

*

* If we’re a mutator then this is not an error since

* the log could have already been freed by the collector.

*/

if (gcvar.ee == EE()) {

mokAssert(0);

}

}

}

}

#endif

return true;

}

/*****************************************************************/

/***************** ZCT + RC **************************************/

#ifndef RCDEBUG

#define _putInNextZCT(h)\

do { \

gcBuffLogWord( gcvar.ee, (&gcvar.nextZctBuff), (uint)h );\

} while(0)

#else

static void _putInNextZCT(void *h)

{

gcBuffLogWord( gcvar.ee, (&gcvar.nextZctBuff), (uint)h );

gcvar.dbgpersist.nPendInCycle++;

}

#endif

#define _markInZCT(h) H1BIT_Set( gcvar.zctBmp.entry, (unsigned)h )

#define _markNotInZCT(h) H1BIT_Clear( gcvar.zctBmp.entry, (unsigned)h )

static bool _isInZCT(GCHandle *h)

{

bool res;

H1BIT_GetInlined( gcvar.zctBmp.entry, (unsigned)h, res );

return res;

}

GCFUNC uint gcGetHandleRC( GCHandle *h)

{

uint res;

H2BIT_GetInlined( gcvar.rcBmp.entry, (unsigned)h, res );

return res;

}

static void _incrementHandleRC( void * h)

{

H2BIT_Inc( gcvar.rcBmp.entry, (unsigned)h );

}

static uint _incrementHandleRCWithReturnValue( void * h)

{

uint res;

H2BIT_IncRVInlined( gcvar.rcBmp.entry, (unsigned)h, res );

return res;

}

static void _decrementHandleRCInUpdate( void * h)

{

uint prevRC;

H2BIT_DecInlined( gcvar.rcBmp.entry, (unsigned)h, prevRC );

if (prevRC==1 && !_isInZCT(h)) {

_markInZCT( h );

gcBuffLogWord( gcvar.ee, &gcvar.zctBuff, (uint)h );

#ifdef RCDEBUG

gcvar.dbg.nInZct++;

gcvar.dbg.nUpdate2ZCT++;

#endif // RCDEBUG

}

}

static void _enlargeZctStack(void)

{

GCHandle **p;

uint sz = ((char*)gcvar.zctStackTop)-((char*)gcvar.zctStack);

mokAssert( gcvar.zctStackSp == gcvar.zctStackTop );

p = (GCHandle**)mokMemReserve( gcvar.zctStack, sz );

if (p) {
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mokAssert( p == gcvar.zctStack );

mokMemCommit( p, sz, false );

gcvar.zctStackTop = (GCHandle**)(sz + (char*)gcvar.zctStackTop);

}

else {

uint newsz = sz*2;

GCHandle **oldstack = gcvar.zctStack;

gcvar.zctStack = (GCHandle**)mokMemReserve( NULL, newsz );

gcvar.zctStackTop = (GCHandle**)(newsz + (char*)gcvar.zctStack);

gcvar.zctStackSp = (GCHandle**)( sz + (char*)gcvar.zctStack );

mokMemCommit( (char*)gcvar.zctStack, newsz, false );

CopyMemory( gcvar.zctStack, oldstack, sz );

mokMemDecommit( (char*)oldstack, sz );

mokMemUnreserve( (char*)oldstack, sz );

}

}

static void _decrementHandleRCInDeletion(void *child)

{

uint prevRC;

H2BIT_DecInlined( gcvar.rcBmp.entry, (unsigned)child, prevRC );

mokAssert( !_isInZCT(child) );

mokAssert( prevRC > 0 );

if (prevRC==1) {

#ifdef RCDEBUG

gcvar.dbg.nRecursiveDel++;

_freeHandle( child );

#else

if (gcvar.zctStackSp == gcvar.zctStackTop) {

_enlargeZctStack();

}

*gcvar.zctStackSp++ = child;

#endif // RCDEBUG

}

}

static void _putInMarkStack(void *h)

{

if (gcvar.zctStackSp == gcvar.zctStackTop) {

_enlargeZctStack();

}

*gcvar.zctStackSp++ = (GCHandle*)h;

}

static void _decrementLocalHandleRC(void *h)

{

uint prevRC;

H2BIT_DecInlined( gcvar.rcBmp.entry, (unsigned)h, prevRC );

mokAssert( !_isInZCT(h) );

mokAssert( prevRC > 0 );

if (prevRC==1) {

_markInZCT(h);

_putInNextZCT( h );

}

}

/********************** Local Marks **************************/

static bool _isLocal(void *h)

{

uint res;

H1BIT_GetInlined( gcvar.localsBmp.entry, (unsigned)h, res );

return res;

}

static void _setLocal(void *h)

{

if (!_isLocal(h)) {

H1BIT_Set( gcvar.localsBmp.entry, (unsigned)h);

_incrementHandleRC(h);

gcBuffLogWord( gcvar.ee, (&gcvar.uniqueLocalsBuff), (uint)h );

#ifdef RCDEBUG

gcvar.dbg.nLocals++;

#endif

}

}

static void _unsetLocal(void *h)

{

/* This also resets the local mark of near by objects,

* but we don’t care since we’re turning everybody

* off.

*/

H1BIT_ClearByte( gcvar.localsBmp.entry, (unsigned)h);

}

/******************** COLLECTION !!!!! ***********************/
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/******************* HS1 ************************************/

static int _setSnoopFlagHelper(sys_thread_t * thrd, void *dummy)

{

ExecEnv *ee = SysThread2EE( thrd );

mokAssert( ee != gcvar.ee );

ee->gcblk.snoop = true;

return SYS_OK;

}

static int _HS1Helper(sys_thread_t *thrd, bool *allOK)

{

ExecEnv *ee;

ee = SysThread2EE( thrd );

mokAssert( ee != gcvar.ee );

if (ee->gcblk.stage == GCHS1) return SYS_OK;

if (ee->gcblk.cantCoop) {

*allOK = false;

return SYS_OK;

}

while( gcvar.nPreAllocatedBuffers < 2) {

buffInit( gcvar.ee, &gcvar.preAllocatedBuffers[gcvar.nPreAllocatedBuffers] );

gcvar.nPreAllocatedBuffers++;

}

mokThreadSuspendForGC( thrd );

mokAssert(ee->gcblk.stage==GCHS4);

if (ee->gcblk.cantCoop) {

mokThreadResumeForGC( thrd );

*allOK = false;

return SYS_OK;

}

#ifdef RCDEBUG

gcvar.dbg.nHS1Threads++;

gcvar.dbg.nUpdateObjects += ee->gcblk.updateBuffer.start[LOG_OBJECTS_IDX];

gcvar.dbg.nUpdateChilds += ee->gcblk.updateBuffer.start[LOG_CHILDS_IDX];

gcvar.dbg.nCreateObjects += ee->gcblk.createBuffer.start[LOG_OBJECTS_IDX];

#endif // RCDEBUG

/* now steal the buffers (if they were modified) */

if (buffIsModified(&ee->gcblk.createBuffer)) {

/* make sure that the last word in the buffer is NULL */

*ee->gcblk.createBuffer.pos = 0;

/* make sure the second entry in the buffer points to

* the last entry

*/

ee->gcblk.createBuffer.start[LAST_POS_IDX] = (uint)ee->gcblk.createBuffer.pos;

/* the first entry is the linked list pointer */

ee->gcblk.createBuffer.start[LINKED_LIST_IDX] = (uint)gcvar.createBuffList;

gcvar.createBuffList = ee->gcblk.createBuffer.start;

/* give the thread new buffers to play with */

gcvar.nPreAllocatedBuffers--;

ee->gcblk.createBuffer = gcvar.preAllocatedBuffers[gcvar.nPreAllocatedBuffers];

}

#ifdef RCDEBUG

else {

mokAssert( ee->gcblk.dbg.nBytesAllocatedInCycle==0 );

mokAssert( ee->gcblk.dbg.nRefsAllocatedInCycle==0 );

}

#endif

if (buffIsModified(&ee->gcblk.updateBuffer)) {

/* do the same for the update buffer */

*ee->gcblk.updateBuffer.pos = 0;

ee->gcblk.updateBuffer.start[LAST_POS_IDX] = (uint)ee->gcblk.updateBuffer.pos;

ee->gcblk.updateBuffer.start[LINKED_LIST_IDX] = (uint)gcvar.updateBuffList;

gcvar.updateBuffList = ee->gcblk.updateBuffer.start;

gcvar.nPreAllocatedBuffers--;

ee->gcblk.updateBuffer = gcvar.preAllocatedBuffers[gcvar.nPreAllocatedBuffers];

}

#ifdef RCDEBUG

gcvar.dbg.nBytesAllocatedInCycle += ee->gcblk.dbg.nBytesAllocatedInCycle;

gcvar.dbg.nRefsAllocatedInCycle += ee->gcblk.dbg.nRefsAllocatedInCycle;

gcvar.dbg.nNewObjectUpdatesInCycle += ee->gcblk.dbg.nNewObjectUpdatesInCycle;

gcvar.dbg.nOldObjectUpdatesInCycle += ee->gcblk.dbg.nOldObjectUpdatesInCycle;

ee->gcblk.dbg.nBytesAllocatedInCycle = 0;

ee->gcblk.dbg.nRefsAllocatedInCycle = 0;

ee->gcblk.dbg.nNewObjectUpdatesInCycle = 0;

ee->gcblk.dbg.nOldObjectUpdatesInCycle = 0;

#endif

/* restart the thread */
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ee->gcblk.stage = GCHS1;

mokThreadResumeForGC( thrd );

#if 0

ee->gcblk.gcSuspended = true;

#endif

return SYS_OK;

}

#pragma optimize( "", off )

static void _Initiate_Collection_Cycle(void)

{

bool allOK;

mokAssert( gcvar.stage == GCHS4);

// if (gcvar.

/* raise snoop flags */

QUEUE_LOCK( gcvar.sys_thread );

mokThreadEnumerateOver( _setSnoopFlagHelper, NULL );

QUEUE_UNLOCK( gcvar.sys_thread );

#ifdef RCDEBUG

memset( &gcvar.dbg, 0, sizeof(gcvar.dbg) );

gcvar.dbg.nInZct = gcvar.dbgpersist.nPendInCycle;

gcvar.dbgpersist.nPendInCycle =0;

#endif // RCDEBUG

/* do first handshake */

QUEUE_LOCK( gcvar.sys_thread );

gcvar.stage = GCHS1;

mokAssert( gcvar.createBuffList == NULL );

mokAssert( gcvar.updateBuffList == NULL );

gcvar.createBuffList = gcvar.deadThreadsCreateBuffList;

gcvar.deadThreadsCreateBuffList = NULL;

gcvar.updateBuffList = gcvar.deadThreadsUpdateBuffList;

gcvar.deadThreadsUpdateBuffList = NULL;

#ifdef RCDEBUG

gcvar.dbg.nUpdateObjects = gcvar.dbgpersist.nDeadUpdateObjects;

gcvar.dbgpersist.nDeadUpdateObjects = 0;

gcvar.dbg.nUpdateChilds = gcvar.dbgpersist.nDeadUpdateChilds;

gcvar.dbgpersist.nDeadUpdateChilds = 0;

gcvar.dbg.nCreateObjects = gcvar.dbgpersist.nDeadCreateObjects;

gcvar.dbgpersist.nDeadCreateObjects = 0;

#endif

for(;;) {

allOK = true;

mokThreadEnumerateOver( _HS1Helper, &allOK );

if (allOK) break;

mokSleep( 10 );

}

QUEUE_UNLOCK( gcvar.sys_thread );

}

#pragma optimize( "", on )

/********************* HS2 & HS3 **************************/

static void _clearFlagsInUpdateBuffer(uint *p)

{

uint *ptr;

uint type;

#ifdef RCDEBUG

uint *first_entry = p+N_RESERVED_SLOTS;

#endif

mokAssert( p );

p = (uint*)p[LAST_POS_IDX];

mokAssert( ! *p );

p--;

mokAssert( *p );

for (;;) {

type = *p & 3;

next_entry:

ptr = (uint*)(*p & ~3);

#ifdef RCDEBUG

/*

*the one and only entry which

* is supposed to be NULL is the

* last one.

*/

if (p==first_entry)

mokAssert( *p == BUFF_LINK_MARK );

if (*p == BUFF_LINK_MARK)
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mokAssert(p == first_entry );

#endif

switch (type) {

case BUFF_DUP_HANDLE_MARK: {

#ifdef RCDEBUG

gcvar.dbg.nActualCyclesBroken++;

gcvar.dbg.nActualUpdateObjects++;

/*

* can happen becuase of deletion

* cycle breaking.

*/

dbgprn( 3, "\t\tclear:up:broken %x\n", ptr );

#endif

for (;;) {

p--;

type = *p & 3;

if (type) goto next_entry;

#ifdef RCDEBUG

gcvar.dbg.nActualUpdateChilds++;

#endif

}

}

case 0: {/* Logged slot entry */

GCHandle *h = (GCHandle*)ptr;

mokAssert( gcNonNullValidHandle(h) );

p--;

#ifdef RCDEBUG

dbgprn( 4, "\t\tclear:up:slot %x\n", ptr );

gcvar.dbg.nActualUpdateChilds++;

#endif

break;

}

case BUFF_LINK_MARK: {

if (!ptr) {

#ifdef RCDEBUG

mokAssert(p==first_entry);

#endif

return;

}

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

p = ptr-1; // skip forward pointer

break;

}

case BUFF_HANDLE_MARK: { /* Containing object entry */

GCHandle *h = (GCHandle*)ptr;

mokAssert( h );

#ifdef RCDEBUG

dbgprn( 4, "\t\tclear:up:hand %x\n", ptr );

/* is this entry cycle closing ?

* we assume that the striking majority

* of entries are, so we modify

* only those which are duplicates.

*/

gcvar.dbg.nActualUpdateObjects++;

#endif

if (h->logPos == p) { /* yep */

mokAssert( gcNonNullValidHandle(h) );

h->logPos = NULL; /* clear dirty flag */

} else {

*p = BUFF_DUP_HANDLE_MARK | (uint)h;

#ifdef RCDEBUG

gcvar.dbg.nUpdateDuplicates++;

#endif

}

p--;

break;

}

}

}

}

static void _clearFlagsInUpdateBufferList(void)

{

uint *buffList = gcvar.updateBuffList;

while (buffList) {

_clearFlagsInUpdateBuffer( buffList );

buffList = (uint*)buffList[LINKED_LIST_IDX];

}

}

static void _clearFlagsInCreateBuffer(uint *p)

{

#ifdef RCDEBUG

uint *last_entry = (uint*)p[LAST_POS_IDX];

#endif

mokAssert( p );
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p += N_RESERVED_SLOTS;

p++; /* skip the first back pointer */

for (;;) {

uint *ptr = (uint*)(*p & ~3);

uint type = *p & 3;

mokAssert( type != BUFF_HANDLE_MARK);

mokAssert( type != BUFF_DUP_HANDLE_MARK);

#ifdef RCDEBUG

/*

* the one and only entry which

* is supposed to be NULL is the

* last one.

*/

if (p==last_entry)

mokAssert( *p == 0 );

if (!*p)

mokAssert(p == last_entry );

#endif

if (type==0) {

GCHandle *h = (GCHandle*)ptr;

#ifdef RCDEBUG

dbgprn( 4, "\t\tclear:cr: %x\n", ptr );

#endif

if (!h) return;

mokAssert( gcValidHandle(h) );

/* In the create buffer all entries

* are cycle closing since there is

* no contention for these objects.

*/

mokAssert( h->logPos == p );

h->logPos = NULL; /* clear dirty mark */

#ifdef RCDEBUG

gcvar.dbg.nActualCreateObjects++;

#endif

p++;

}

else { /*type==BUFF_LINK_MARK*/

mokAssert( ptr );

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

mokAssert( (LOWBUFFMASK & (uint)ptr) == N_RESERVED_SLOTS*sizeof(uint));

p = ptr+1;

}

}

}

static void _clearFlagsInCreateBufferList( void )

{

uint *buffList = gcvar.createBuffList;

while (buffList) {

_clearFlagsInCreateBuffer( buffList );

buffList = (uint*)buffList[LINKED_LIST_IDX];

}

}

static void _Clear_Dirty_Marks(void)

{

#ifdef RCDEBUG

DWORD start, end;

start = GetTickCount();

dbgprn( 0, "_Clear_Dirty_Marks(begin) time=%d\n", start);

#endif

_clearFlagsInCreateBufferList( );

_clearFlagsInUpdateBufferList( );

#ifdef RCDEBUG

end = GetTickCount();

dbgprn( 2, "\tnHS1Threads=%d\n", gcvar.dbg.nHS1Threads );

dbgprn( 2, "\tnUpdateObjects=%d\n", gcvar.dbg.nUpdateObjects );

dbgprn( 2, "\tnUpdatdChilds=%d\n", gcvar.dbg.nUpdateChilds );

dbgprn( 2, "\tnActualUpdateObjects=%d\n", gcvar.dbg.nActualUpdateObjects );

dbgprn( 2, "\tnActualUpdateChilds=%d\n", gcvar.dbg.nActualUpdateChilds );

dbgprn( 2, "\tnFreeCyclesBroken=%d\n", gcvar.dbgpersist.nFreeCyclesBroken );

dbgprn( 2, "\tnCreateObjects=%d\n", gcvar.dbg.nCreateObjects );

dbgprn( 2, "\tnActualCreateObjects=%d\n", gcvar.dbg.nActualCreateObjects );

if (gcvar.dbg.nUpdateDuplicates) {

dbgprn( 1, "\tnUpdateDuplicates=%d\n", gcvar.dbg.nUpdateDuplicates );

}

if (gcvar.dbgpersist.nFreeCyclesBroken) {

dbgprn( 1, "\tnFreeCyclesBroken=%d\n", gcvar.dbgpersist.nFreeCyclesBroken );

}

mokAssert( gcvar.dbg.nActualUpdateObjects == gcvar.dbg.nUpdateObjects );
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mokAssert( gcvar.dbg.nActualUpdateChilds == gcvar.dbg.nUpdateChilds );

mokAssert( gcvar.dbg.nActualCyclesBroken == gcvar.dbgpersist.nFreeCyclesBroken );

mokAssert( gcvar.dbg.nActualCreateObjects == gcvar.dbg.nCreateObjects );

gcvar.dbgpersist.nFreeCyclesBroken = 0;

dbgprn( 0, "_Clear_Dirty_Marks(end) time=%d delta=%d\n", end, end-start );

#endif // RCDEBUG

}

static int _HS2Helper(sys_thread_t *thrd, bool *allOK)

{

ExecEnv *ee;

ee = SysThread2EE( thrd );

mokAssert( gcvar.ee != ee );

if (ee->gcblk.stage == GCHS2) return SYS_OK;

if (ee->gcblk.cantCoop) {

*allOK = false;

return SYS_OK;

}

mokThreadSuspendForGC( thrd );

mokAssert( ee->gcblk.stage == GCHS1 );

if (ee->gcblk.cantCoop) {

mokThreadResumeForGC( thrd );

*allOK = false;

return SYS_OK;

}

/* mark current position in the buffer */

ee->gcblk.updateBuffer.start[LAST_POS_IDX] = (uint)ee->gcblk.updateBuffer.pos;

/*

* link the buffer into the reinforce buff

* list. Note that the buffer stays at the

* mutator.

*

* We link the buffers instead of going again

* through the thread ring in order not to

* lock it when we really do the reinforce

* stage.

*/

ee->gcblk.updateBuffer.start[REINFORCE_LINKED_LIST_IDX] =

(uint)gcvar.reinforceBuffList;

gcvar.reinforceBuffList = ee->gcblk.updateBuffer.start;

#ifdef RCDEBUG

{

uint *pos = ee->gcblk.updateBuffer.pos;

/*

* i.e., we never point to the reserved area:

*/

mokAssert( (((uint)pos)&LOWBUFFMASK) >= N_RESERVED_SLOTS );

/*

* If there is something in the current chunk, then

* the last entry is a containing handle entry.

* i.e., we don’t see partial entries.

*/

mokAssert( (((uint)pos)&LOWBUFFMASK) >= (N_RESERVED_SLOTS+1)*sizeof(int) );

if ( (((uint)pos)&LOWBUFFMASK) > (N_RESERVED_SLOTS+1)*sizeof(int)) {

mokAssert( (((uint)*(pos-1))&3) == BUFF_HANDLE_MARK );

}

/*

* Otherwise, this should be a back-pointer to the

* previous chunk.

*/

else {

mokAssert( (((uint)*(pos-1))) == BUFF_LINK_MARK );

}

gcvar.dbg.nHS2Threads++;

gcvar.dbg.nReinforceObjects += ee->gcblk.updateBuffer.start[LOG_OBJECTS_IDX];

gcvar.dbg.nReinforceChilds += ee->gcblk.updateBuffer.start[LOG_CHILDS_IDX];

}

#endif /* RCDEBUG */

/* restart the thread */

ee->gcblk.stage = GCHS2;

mokThreadResumeForGC( thrd );

return SYS_OK;

}

static void _reinforceUpdateBuffer( uint *p, uint *limit )

{

mokAssert( p );

p += N_RESERVED_SLOTS;

p++; /* skip the first back pointer */

for (;;) {

uint *ptr = (uint*)(*p & ~3);
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uint type = *p & 3;

#ifdef DEBUG

if (!ptr)

mokAssert( p == limit);

#endif DEBUG

if (p==limit)

return;

mokAssert( type != BUFF_DUP_HANDLE_MARK );

switch (type) {

case BUFF_LINK_MARK: {

mokAssert( ptr );

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

mokAssert( (LOWBUFFMASK & (uint)ptr) == N_RESERVED_SLOTS*sizeof(uint));

p = ptr+1; /* skip backward pointer */

break;

}

case BUFF_HANDLE_MARK: {

GCHandle *h = (GCHandle*)ptr;

mokAssert( h );

mokAssert( gcNonNullValidHandle(h) );

/* reinforce, if needed */

if (!h->logPos)

h->logPos = p;

p++;

#ifdef RCDEBUG

gcvar.dbg.nActualReinforceObjects ++;

#endif // RCDEBUG

break;

}

case 0: {

GCHandle *h = (GCHandle*)ptr;

mokAssert( h );

mokAssert( gcNonNullValidHandle(h) );

#ifdef RCDEBUG

gcvar.dbg.nActualReinforceChilds ++;

#endif // RCDEBUG

p++;

break;

}

}

}

}

static void _HS3Cooperate(ExecEnv *ee)

{

bool res = gcCompareAndSwap( &ee->gcblk.stageCooperated, GCHSNONE, GCHS3 );

mokAssert( res );

#ifdef RCDEBUG

gcvar.dbg.nHS3CoopThreads++;

#endif /* RCDEBUG */

}

static int _HS3Helper(sys_thread_t *thrd, bool *allOK)

{

ExecEnv *ee;

bool res;

ee = SysThread2EE( thrd );

mokAssert( gcvar.ee != ee );

/* already moved to the next state? */

if (ee->gcblk.stage == GCHS3) return SYS_OK;

/* only the collector advances the stage field */

mokAssert( ee->gcblk.stage == GCHS2 );

/* did the thread cooperate voluntarily? */

res = gcCompareAndSwap( &ee->gcblk.stageCooperated, GCHS3, GCHSNONE);

if (res) {

ee->gcblk.stage = GCHS3;

#ifdef RCDEBUG

gcvar.dbg.nHS3Threads += 100;

#endif /* RCDEBUG */

return SYS_OK;

}

/* OK, we will suspend the thread, but only

* if it’s in cooperative mode.

*

* Pesimistic check:

*/

if (ee->gcblk.cantCoop) {

*allOK = false; /* try later */

return SYS_OK;

}

/* Suspend the thread */

mokThreadSuspendForGC( thrd );
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/*

* Now we have to check cantCoop again.

*/

if (ee->gcblk.cantCoop) {

mokThreadResumeForGC( thrd );

*allOK = false; /* try later */

return SYS_OK;

}

mokAssert( ee->gcblk.stageCooperated == GCHS3 ||

ee->gcblk.stageCooperated == GCHSNONE );

ee->gcblk.stageCooperated = GCHSNONE;

ee->gcblk.stage = GCHS3;

mokThreadResumeForGC( thrd );

#ifdef RCDEBUG

gcvar.dbg.nHS3Threads++;

#endif /* RCDEBUG */

return SYS_OK;

}

static void _Reinforce_Clearing_Conflict_Set(void)

{

bool allOK;

#ifdef RCDEBUG

uint start, end;

start = GetTickCount();

dbgprn( 0, "_Reinforce_Clearing_Conflict_Set(begin) time=%d\n", start);

#endif

/* do second handshake */

mokAssert( gcvar.reinforceBuffList == NULL );

QUEUE_LOCK( gcvar.sys_thread );

gcvar.stage = GCHS2;

/*

* Link for reinforcemenr buffers of threads who

* died between HS1 and HS2

*/

gcvar.reinforceBuffList = gcvar.deadThreadsReinforceBuffList;

gcvar.deadThreadsReinforceBuffList = NULL;

#ifdef RCDEBUG

gcvar.dbg.nReinforceObjects = gcvar.dbgpersist.nDeadReinforceObjects;

gcvar.dbgpersist.nDeadReinforceObjects = 0;

gcvar.dbg.nReinforceChilds = gcvar.dbgpersist.nDeadReinforceChilds;

gcvar.dbgpersist.nDeadReinforceChilds = 0;

#endif

/*

* Link update buffers of live threads

*/

for(;;) {

allOK = true;

mokThreadEnumerateOver( _HS2Helper, &allOK );

if (allOK) break;

mokSleep( 10 );

}

QUEUE_UNLOCK( gcvar.sys_thread );

while ( gcvar.reinforceBuffList ) {

uint *p = gcvar.reinforceBuffList;

uint *limit = (uint*)gcvar.reinforceBuffList[LAST_POS_IDX];

_reinforceUpdateBuffer( p, limit );

gcvar.reinforceBuffList = (uint*)p[REINFORCE_LINKED_LIST_IDX];

}

/* do third handshake */

QUEUE_LOCK( gcvar.sys_thread );

gcvar.stage = GCHS3;

for(;;) {

allOK = true;

mokSleep( 10 );

mokThreadEnumerateOver( _HS3Helper, &allOK );

if (allOK) break;

}

QUEUE_UNLOCK( gcvar.sys_thread );

#ifdef RCDEBUG

end = GetTickCount();

dbgprn( 2, "\tnHS2Threads=%d\n", gcvar.dbg.nHS2Threads );

dbgprn( 2, "\tnHS3Threads=%d\n", gcvar.dbg.nHS3Threads );

dbgprn( 2, "\tnHS3CoopThreads=%d\n", gcvar.dbg.nHS3CoopThreads );

if (gcvar.dbg.nReinforceObjects || gcvar.dbg.nReinforceChilds) {

dbgprn( 1, "\tnReinforceChilds=%d\n", gcvar.dbg.nReinforceChilds );

137



dbgprn( 1, "\tnReinforceObjects=%d\n", gcvar.dbg.nReinforceObjects );

}

mokAssert( gcvar.dbg.nActualReinforceObjects == gcvar.dbg.nReinforceObjects );

mokAssert( gcvar.dbg.nActualReinforceChilds == gcvar.dbg.nReinforceChilds );

dbgprn(

0,

"_Reinforce_Clearing_Conflict_Set(end) time=%d delta=%d\n",

end,

end-start );

#endif // RCDEBUG

}

static void _markHandlesInSnoopBufferAsLocal(uint *buff)

{

uint *ptr, type, *p;

mokAssert( buff );

/* go backwards */

p = (uint*)buff[LAST_POS_IDX];

mokAssert( p );

mokAssert( *p==0 );

p--;

mokAssert( *p );

for (;;) {

ptr = (uint*)(*p & ~3);

type = *p & 3;

mokAssert( type != BUFF_HANDLE_MARK );

mokAssert( type != BUFF_DUP_HANDLE_MARK );

#ifdef DEBUG

if (!ptr)

mokAssert( buff+N_RESERVED_SLOTS == p);

if ( buff+N_RESERVED_SLOTS == p)

mokAssert( *p == BUFF_LINK_MARK);

#endif

if (type==0) {

GCHandle *h = (GCHandle*)ptr;

mokAssert( h );

mokAssert( gcNonNullValidHandle(h) );

_setLocal( h );

#ifdef RCDEBUG

gcvar.dbg.nActualSnooped++;

#endif // RCDEBUG

p--;

}

else { /*type==BUFF_LINK_MARK*/

mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof(uint));

/* free the more recent buffer */

_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);

if (!ptr)

return;

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

p = ptr-1; /* skip forward pointer */

}

}

}

static void _markSnoopedAsLocal(void)

{

uint *buff = gcvar.snoopBuffList;

while (buff) {

uint *nextBuff = (uint*)buff[0];

_markHandlesInSnoopBufferAsLocal(buff);

buff = nextBuff;

}

gcvar.snoopBuffList = NULL;

}

/**************************** HS4 *****************************************/

#define SAFETY_MARGINE 20

static void _snoopExactHandle(JHandle *h)

{

if (!h) return;

mokAssert( _isHandle(h) );

_setLocal( h );

}

static void _snoopHandleOrScalar(JHandle *h)

{

if (_isHandle(h))

_setLocal(h);

}
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static void _snoopHandleOrObjectOrScalar(JHandle *h)

{

if (_isHandle(h))

_setLocal(h);

else {

JHandle *obj = gcRehand(h);

if (_isHandle(obj)) {

_setLocal( obj );

}

}

}

static void _snoopJavaFrame(JavaFrame *frame, stack_item *top_top_stack)

{

stack_item *ssc, *limit;

JHandle *ptr;

JavaStack *javastack;

struct methodblock *mb = frame->current_method;

limit = top_top_stack;

javastack = frame->javastack;

/* Scan the operand stack. */

/*CONSTCOND*/

while (1) {

int is_first_chunk = IN_JAVASTACK((stack_item *)frame, javastack);

for (ssc = is_first_chunk ? frame->ostack : javastack->data;

ssc < limit; ssc++) {

ptr = ssc->h;

_snoopHandleOrScalar( (JHandle*)ptr ); /* Never an object pointer */

}

if (is_first_chunk)

break;

javastack = javastack->prev;

limit = javastack->end_data;

}

/* Nothing more to do for pseudo and JIT frames. */

if (mb == 0 || IS_JIT_FRAME(frame)) {

mokAssert( !IS_JIT_FRAME(frame) ); /* YLRC -- don’t support JIT ... */

return;

}

if (mb->fb.access & ACC_NATIVE) {

/* For native frames, we scan the arguments stored at the top

of the previous frame. */

JavaFrame *prev_frame = frame->prev;

if (prev_frame == 0)

return;

ssc = prev_frame->optop;

limit = ssc + mb->args_size;

} else {

/* Scan local variables in Java frame */

ssc = frame->vars;

if (ssc == 0)

return;

limit = (stack_item *)frame;

}

for (; ssc < limit; ssc++) {

ptr = ssc->h;

_snoopHandleOrScalar(ptr); /* Never an object pointer */

}

}

static void _snoopThreadLocals( sys_thread_t *t )

{

ExecEnv *ee = SysThread2EE(t);

JHandle *tobj = ee->thread;

unsigned char **ssc, **limit;

void *base;

mokAssert( EE2SysThread(ee) != sysThreadSelf());

if (ee->initial_stack == NULL) {

/* EE already destroyed. */

return;

}

/* Mark thread object */

if (tobj) {

mokAssert( gcNonNullValidHandle((GCHandle*)tobj) );

_snoopExactHandle( tobj );

}

{

long *regs;

int nregs;

/* Scan the saved registers */

regs = sysThreadRegs(t, &nregs);

for (nregs--; nregs >= 0; nregs--) {

_snoopHandleOrObjectOrScalar( (JHandle*)regs[nregs] );
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}

base = ee->stack_base;

ssc = sysThreadStackPointer(t);

}

if (ssc == 0 || base == 0 || (ssc == base)) {

/*

* If the stack does not have a top of stack pointer or a base

* pointer then it hasn’t run yet and we don’t need to scan

* its stack. When exactly each of these data becomes available

* may be system-dependent, but we need both to bother scanning.

*/

goto ScanJavaStack;

}

/* Align stack top, important on Windows 95. */

if ((long)ssc % sizeof(void *)) {

ssc = (unsigned char **)((long)(ssc) & ~(sizeof(void *) - 1));

}

limit = (unsigned char **) base;

mokAssert(ssc != limit);

/*

* The code that scans the C stack is assuming that the current

* stack pointer is at a lower address than the limit of the stack.

* Obvioulsy, this is only true for downward growing stacks. For

* upward growing stack, we exchange ssc and limit before we start

* to scan the stack.

*/

#if defined(STACK_GROWS_UP)

{

unsigned char **tmp;

tmp = limit;

limit = ssc;

ssc = tmp;

}

#endif /* STACK_GROWS_UP */

while (ssc < limit) {

register unsigned char *ptr = *ssc;

_snoopHandleOrObjectOrScalar( (JHandle*)ptr );

ssc++;

}

/*

* Whether or not we scan the thread stack, we decide independently

* whether to scan the Java stack. Doing so should be more robust

* in the face of partially-initialized or partially-zeroed threads

* during thread creation or exit, or changes to any of that code.

*/

ScanJavaStack:

{

JavaFrame *frame;

/*

* Because of the Invocation API, the EE may not be on the C

* stack anymore.

*/

_snoopExactHandle( ee->exception.exc );

_snoopExactHandle(ee->pending_async_exc);

if ((frame = ee->current_frame) != 0) {

struct methodblock *prev_current_method = 0;

while (frame) {

struct methodblock *current_method = frame->current_method;

/*

* If the previous frame was a transition frame from C back

* to Java (indicated by prev_current_method == NULL), then

* this new frame might not have set its optop. We must be

* conservative. Otherwise, we can use the optop value.

*

* Also permit two consecutive frames with NULL current

* methods, in support of JITs. See bug 4022856.

*/

stack_item *top_top_stack =

(prev_current_method == 0 && current_method != NULL &&

((current_method->fb.access & ACC_NATIVE) == 0))

? &frame->ostack[frame->current_method->maxstack]

: frame->optop;

_snoopJavaFrame(frame, top_top_stack);

frame = frame->prev;

prev_current_method = current_method;

}

}

}
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}

static int _HS4Helper( sys_thread_t *thrd, bool *allOK )

{

ExecEnv *ee;

ee = SysThread2EE( thrd );

mokAssert( gcvar.ee != ee );

if (ee->gcblk.stage == GCHS4) return SYS_OK;

if (ee->gcblk.cantCoop) {

*allOK = false;

return SYS_OK;

}

while(gcvar.nPreAllocatedBuffers < 1) {

buffInit( gcvar.ee, &gcvar.preAllocatedBuffers[gcvar.nPreAllocatedBuffers] );

gcvar.nPreAllocatedBuffers++;

}

mokThreadSuspendForGC( thrd );

mokAssert( ee->gcblk.stage == GCHS3 );

if (ee->gcblk.cantCoop) {

mokThreadResumeForGC( thrd );

*allOK = false;

return SYS_OK;

}

ee->gcblk.snoop = false;

/* put into the snooped object set

* all of the locally reachable objects

*/

_snoopThreadLocals( thrd );

/* now steal the snooped objects set */

if (buffIsModified(&ee->gcblk.snoopBuffer)) {

*ee->gcblk.snoopBuffer.pos = 0;

ee->gcblk.snoopBuffer.start[LAST_POS_IDX] = (uint)ee->gcblk.snoopBuffer.pos;

ee->gcblk.snoopBuffer.start[LINKED_LIST_IDX] = (uint)gcvar.snoopBuffList;

gcvar.snoopBuffList = ee->gcblk.snoopBuffer.start;

#ifdef RCDEBUG

gcvar.dbg.nSnooped += ee->gcblk.snoopBuffer.start[LOG_OBJECTS_IDX];

#endif // RCDEBUG

/* give the thread a new snoop buffer to play with */

gcvar.nPreAllocatedBuffers--;

ee->gcblk.snoopBuffer = gcvar.preAllocatedBuffers[gcvar.nPreAllocatedBuffers];

}

#ifdef RCDEBUG

gcvar.dbg.nHS4Threads++;

#endif // RCDEBUG

/* restart the thread */

ee->gcblk.stage = GCHS4;

mokThreadResumeForGC( thrd );

return SYS_OK;

}

static void _snoopClass(ClassClass *cb)

{

/* We must be extra careful in scanning the internals of a class

* structure, because this routine may be called when a class

* is only partially loaded (in createInternalClass).

*/

/*

* YLRC --

*

* No need to recursively trace super classes as we mark all

* classes anyway. This also holds for classes referred

* to from the constant pool.

*

*/

JHandle *h;

if (cbConstantPool(cb) &&

cbConstantPool(cb)[CONSTANT_POOL_TYPE_TABLE_INDEX].type) {

union cp_item_type *constant_pool = cbConstantPool(cb);

union cp_item_type *cpp =

constant_pool+ CONSTANT_POOL_UNUSED_INDEX;

union cp_item_type *end_cpp =

&constant_pool[cbConstantPoolCount(cb)];

unsigned char *type_tab =

constant_pool[CONSTANT_POOL_TYPE_TABLE_INDEX].type;

unsigned char *this_type =

&type_tab[CONSTANT_POOL_UNUSED_INDEX];
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for ( ; cpp < end_cpp; cpp++, this_type++) {

if (*this_type == (CONSTANT_String|CONSTANT_POOL_ENTRY_RESOLVED)) {

_snoopExactHandle( (JHandle*)(*cpp).p );

}

} /* loop over constant pool*/

}

/* Scan class definitions looking for statics */

if (cbFields(cb) &&

(cbFieldsCount(cb) > 0)) { /* defensive check */

int i;

struct fieldblock *fb;

for (i = cbFieldsCount(cb), fb = cbFields(cb); --i >= 0; fb++) {

if (fieldsig(fb) && /* Extra defensive */

(fieldIsArray(fb) || fieldIsClass(fb)) && (fb->access & ACC_STATIC)) {

JHandle *sub = *(JHandle **)normal_static_address(fb);

_snoopExactHandle( sub );

}

}

}

h = (JHandle *)cbClassname(cb);

_snoopExactHandle( h );

h = (JHandle *)cbLoader(cb);

_snoopExactHandle( h );

h = (JHandle *)cbSigners(cb);

_snoopExactHandle( h );

h = (JHandle *)cbProtectionDomain(cb);

_snoopExactHandle( h );

}

static void _snoopBinClasses(void)

{

ClassClass **pcb;

int i;

BINCLASS_LOCK( sysThreadSelf() /*gcvar.sys_thread*/ );

pcb = binclasses;

for (i = nbinclasses; --i >= 0; pcb++) {

ClassClass *cb = *pcb;

_snoopExactHandle( (JHandle*)cb );

_snoopClass( cb );

}

BINCLASS_UNLOCK( sysThreadSelf() /*gcvar.sys_thread*/ );

}

static void _snoopPrimitiveClasses(void)

{

static ClassClass **primitive_classes[] = {

&class_void, &class_boolean, &class_byte, &class_char, &class_short,

&class_int, &class_long, &class_float, &class_double, NULL

};

ClassClass ***cbpp = primitive_classes;

while (*cbpp) {

ClassClass *cb = **cbpp;

_snoopExactHandle( (JHandle*)cb );

_snoopClass( cb );

cbpp++;

}

}

static void _snoopMonitorCacheHelper(monitor_t *mid, void *cookie)

{

JHandle *h = (JHandle*) mid->key;

if (_isHandle(h) && sysMonitorInUse(sysmon(mid)) ) {

_snoopExactHandle( h );

}

}

static void _snoopMonitorCache(void)

{

CACHE_LOCK( sysThreadSelf() /*gcvar.sys_thread*/ );

monitorEnumerate( _snoopMonitorCacheHelper, 0);

CACHE_UNLOCK( sysThreadSelf() /*gcvar.sys_thread*/ );

}

static void _snoopJNIGlobalsRefs( void )

{

_snoopJavaFrame(globalRefFrame, globalRefFrame->optop);

}

static void _snoopInternedStrings(void);

static void _snoopGlobals(void)

{

_snoopBinClasses( );

_snoopPrimitiveClasses( );
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_snoopMonitorCache( );

_snoopInternedStrings( );

_snoopJNIGlobalsRefs( );

}

static void _Consolidate( void )

{

bool allOK;

#ifdef RCDEBUG

uint start, end;

start = GetTickCount();

dbgprn( 0, "_Consolidate(begin) time=%d\n", start);

#endif

if (gcvar.collectionType == GCT_TRACING)

_traceSetup();

/* init buffer of local objects */

buffInit( gcvar.ee, &gcvar.uniqueLocalsBuff );

/* snoop global objects */

_snoopGlobals( );

#ifdef RCDEBUG

gcvar.dbg.nGlobals = gcvar.dbg.nLocals;

gcvar.dbg.nLocals = 0;

#endif

/* do fourth handshake */

QUEUE_LOCK( gcvar.sys_thread );

gcvar.stage = GCHS4;

mokAssert( gcvar.snoopBuffList == NULL );

/* add snoop buffers of dead threads and

* clear the list

*/

gcvar.snoopBuffList = gcvar.deadThreadsSnoopBuffList;

gcvar.deadThreadsSnoopBuffList = NULL;

#ifdef RCDEBUG

gcvar.dbg.nSnooped = gcvar.dbgpersist.nDeadSnooped;

gcvar.dbgpersist.nDeadSnooped = 0;

#endif

/* now add the threads buffers */

for(;;) {

allOK = true;

mokThreadEnumerateOver( _HS4Helper, &allOK );

if (allOK) break;

mokSleep( 10 );

}

QUEUE_UNLOCK( gcvar.sys_thread );

/* process thread buffers */

_markSnoopedAsLocal();

#ifdef RCDEBUG

end = GetTickCount();

dbgprn( 2, "\tnHS4Threads=%d\n", gcvar.dbg.nHS4Threads );

dbgprn( 2, "\tnSnooped=%d\n", gcvar.dbg.nSnooped );

dbgprn( 4, "\tnActualSnooped=%d\n", gcvar.dbg.nActualSnooped );

dbgprn( 2, "\tnLocals=%d\n", gcvar.dbg.nLocals );

dbgprn( 2, "\tnGlobals=%d\n", gcvar.dbg.nGlobals );

mokAssert( gcvar.dbg.nActualSnooped == gcvar.dbg.nSnooped );

dbgprn( 0, "_Consolidate(end) time=%d delta=%d\n", end, end-start);

#endif // RCDEBUG

}

/*****************************************************************/

/************************ UPDATE PHASE *************************/

/*****************************************************************/

/************************ Updating Counters *********************/

static void _determineHandleContents(GCHandle *h)

{

uint *p;

start:

p = h->logPos;

if (p) {
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mokAssert( h == (GCHandle*)(*p^BUFF_HANDLE_MARK) );

#ifdef RCDEBUG

gcvar.dbg.nUndetermined++;

#endif // RCDEBUG

p--;

while (1) {

GCHandle *hSon = (GCHandle*)*p;

uint type = 3 & *p;

mokAssert( hSon );

if (type) return;

_incrementHandleRC( hSon );

p--;

}

}

{

GCHandle **tempbuff = gcvar.tempReplicaSpace;

register GCHandle *child;

register GCHandle **objslots;

switch (obj_flags(h)) {

case T_NORMAL_OBJECT:{

register ClassClass *cb = obj_classblock(h);

register unsigned short offset;

register unsigned short *object_offsets ;

if (cb == classJavaLangClass || unhand(cb)->n_object_offsets==0) {

#ifdef RCDEBUG

gcvar.dbg.nDetermined++;

#endif

return;

}

object_offsets = cbObjectOffsets(cb);

objslots = (GCHandle **)(((char *)unhand(h)) - 1);

while ((offset = *object_offsets++)) {

child = *(GCHandle **) ((char *) objslots + offset);

if (child) {

tempbuff++;

*tempbuff = child;

}

}

break;

}

case T_CLASS: { /* an array of classes */

register long n = obj_length(h);

GCHandle **body = (GCHandle**)(((ArrayOfObject*)gcUnhand(h))->body);

while (--n >= 0) {

child = body[n];

if (child) {

tempbuff++;

*tempbuff = child;

}

}

break;

}

}

if (h->logPos) {

goto start;

}

/* OK, the replica we have at this point is valid

* so use it as the reference to the objects’

* contents.

*/

#ifdef RCDEBUG

gcvar.dbg.nDetermined++;

#endif // RCDEBUG

while( tempbuff > gcvar.tempReplicaSpace) {

child = *tempbuff;

_incrementHandleRC( child );

tempbuff--;

}

}

}

static void _updateRCofSingleUpdateLog(uint *buff)

{

uint *ptr, type, *p;

mokAssert( buff );

/*

* go backwards since its better to

* first increment and only then decrement

* (it will cause less entries in the ZCT)

* so we want to first see the handle and

* only then its contents.

*/

p = (uint*)buff[LAST_POS_IDX];

mokAssert( p );
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mokAssert( *p==0 );

p--;

mokAssert( *p );

for (;;) {

type = *p & 3;

next_round:

ptr = (uint*)(*p & ~3);

mokAssert( type != 0 );

switch (type) {

case BUFF_LINK_MARK: {

mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof(uint));

/* free the more recent buffer */

_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);

if (!ptr) {

mokAssert( buff+N_RESERVED_SLOTS == p);

return;

}

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

p = ptr-1; /* skip forward pointer */

break;

}

case BUFF_HANDLE_MARK: {

GCHandle *h = (GCHandle*)ptr;

mokAssert( h );

mokAssert( gcNonNullValidHandle(h) );

_determineHandleContents( h );

#ifdef RCDEBUG

gcvar.dbg.nUpdateRCObjects++;

#endif // RCDEBUG

for(;;) {

GCHandle *h;

p--;

h = (GCHandle*)*p;

type = ((uint)h) &3;

if (type) goto next_round;

mokAssert( gcNonNullValidHandle(h) );

_decrementHandleRCInUpdate( h );

#ifdef RCDEBUG

gcvar.dbg.nUpdateRCChilds++;

#endif // RCDEBUG

}

}

case BUFF_DUP_HANDLE_MARK: {

GCHandle *h = (GCHandle*)ptr;

mokAssert( h );

#ifdef RCDEBUG

gcvar.dbg.nUpdateRCObjects++;

gcvar.dbg.nUpdateRCDuplicates++;

#endif // RCDEBUG

for(;;) {

p--;

type = *p & 3;

if (type) goto next_round;

#ifdef RCDEBUG

gcvar.dbg.nUpdateRCChilds++;

#endif // RCDEBUG

}

}

}

}

}

static void _updateRCofSingleCreateLog(uint *buff)

{

uint *ptr, type, *p;

mokAssert( buff );

p = (uint*)buff[LAST_POS_IDX];

mokAssert( p );

mokAssert( *p == 0 );

p--;

mokAssert( *p );

for (;;) {

ptr = (uint*)(*p & ~3);

type = *p & 3;

mokAssert( type != BUFF_HANDLE_MARK );

mokAssert( type != BUFF_DUP_HANDLE_MARK );

if (type==0) {

GCHandle *h = (GCHandle*)ptr;

mokAssert( h );

mokAssert( gcNonNullValidHandle(h) );

_determineHandleContents( h );

#ifdef RCDEBUG

gcvar.dbg.nCreateRCObjects++;
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#endif // RCDEBUG

p--;

}

else { /* type==BUFF_LINK_MARK*/

mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof(uint));

if (!ptr) {

mokAssert( buff+N_RESERVED_SLOTS == p);

return;

}

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

p = ptr-1; /* skip forward pointer */

}

}

}

static void _updateRCofUpdateLog( void )

{

uint *log = gcvar.updateBuffList;

while (log) {

uint *nextLog = (uint*)log[0];

_updateRCofSingleUpdateLog( log );

log = nextLog;

}

gcvar.updateBuffList = NULL;

}

static void _updateRCofCreateLog( void )

{

uint *log = gcvar.createBuffList;

while (log) {

_updateRCofSingleCreateLog( log );

log = (uint*)log[0];

}

}

static void _Update_Reference_Counters( void )

{

#ifdef RCDEBUG

uint start, end;

mokAssert( gcvar.zctBuff.start[LOG_OBJECTS_IDX] == gcvar.dbg.nInZct );

start = GetTickCount();

dbgprn( 0, "__Update_Reference_Counters(begin) time=%d\n", start);

#endif // RCDEBUG

_updateRCofUpdateLog();

_updateRCofCreateLog();

#ifdef RCDEBUG

end = GetTickCount();

dbgprn( 3, "\tnUpdateRCObjects=%d\n", gcvar.dbg.nUpdateRCObjects );

dbgprn( 3, "\tnUpdateRCChilds=%d\n", gcvar.dbg.nUpdateRCChilds );

dbgprn( 3, "\tnUpdateRCDuplicates=%d\n", gcvar.dbg.nUpdateRCDuplicates );

dbgprn( 3, "\tnCreateRCObjects=%d\n", gcvar.dbg.nCreateRCObjects );

dbgprn( 2, "\tnDetermined=%d\n", gcvar.dbg.nDetermined );

dbgprn( 2, "\tnUndetermined=%d\n", gcvar.dbg.nUndetermined );

dbgprn( 2, "\tnInZct=%d\n", gcvar.dbg.nInZct );

mokAssert( gcvar.dbg.nDetermined+gcvar.dbg.nUndetermined ==

gcvar.dbg.nUpdateObjects + gcvar.dbg.nCreateObjects -

(gcvar.dbg.nUpdateDuplicates + gcvar.dbg.nActualCyclesBroken) );

mokAssert( gcvar.dbg.nUpdateRCObjects == gcvar.dbg.nUpdateObjects);

mokAssert( gcvar.dbg.nUpdateRCChilds == gcvar.dbg.nUpdateChilds);

mokAssert( gcvar.dbg.nUpdateRCDuplicates ==

gcvar.dbg.nUpdateDuplicates +gcvar.dbg.nActualCyclesBroken);

mokAssert( gcvar.dbg.nCreateRCObjects == gcvar.dbg.nCreateObjects );

mokAssert( gcvar.zctBuff.start[LOG_OBJECTS_IDX] == gcvar.dbg.nInZct );

dbgprn( 0, "_Update_Reference_Counters(end) time=%d delta=%d\n", end, end-start );

#endif // RCDEBUG

}

/********************** Reclamation ************************************/

static void _throwNonZerosFromCurrentZCT( BUFFHDR *tmpZCT )

{

uint *ptr, type, *p, *buff;

#ifdef RCDEBUG

uint nOld = 0, nDel = 0, nThrown =0, nPend=0;

uint start, end;

start = GetTickCount();

dbgprn( 0, "_throwNonZerosFromCurrentZCT(start) time=%d\n", start );

#endif

buff = gcvar.zctBuff.start;
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mokAssert( (((uint)buff) & LOWBUFFMASK) == 0);

mokAssert( buff );

p = gcvar.zctBuff.pos-1;

mokAssert( p );

mokAssert( *p );

for (;;) {

ptr = (uint*)(*p & ~3);

type = *p & 3;

mokAssert( type != BUFF_HANDLE_MARK );

mokAssert( type != BUFF_DUP_HANDLE_MARK );

if (type==0) {

GCHandle *h = (GCHandle*)ptr;

#ifdef RCDEBUG

nOld++;

#endif

mokAssert( h );

mokAssert( gcNonNullValidHandle(h) );

mokAssert( _isInZCT(h) );

if (gcGetHandleRC(h) > 0) {

_markNotInZCT(h);

#ifdef RCDEBUG

nThrown++;

#endif // RCDEBUG

}

else {

#ifdef RCDEBUG

nDel++;

#endif

gcBuffLogWord( gcvar.ee, tmpZCT, (unsigned)h );

}

p--;

}

else { /*type==BUFF_LINK_MARK*/

mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof(uint));

/* free the more recent buffer */

_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);

if (!ptr) {

mokAssert( buff+N_RESERVED_SLOTS == p);

goto __end;

}

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

p = ptr-1; /* skip forward pointer */

}

}

__end:;

#ifdef RCDEBUG

end = GetTickCount();

mokAssert( gcvar.tmpZctBuff.start[LOG_OBJECTS_IDX] == nDel );

mokAssert( nThrown+nDel+nPend == nOld );

gcvar.dbg.nInZct = gcvar.tmpZctBuff.start[LOG_OBJECTS_IDX];

gcvar.dbgpersist.nPendInCycle= nPend;

dbgprn( 2, "\tnOld=%d\n", nOld );

dbgprn( 2, "\tnDel=%d\n", nDel );

dbgprn( 2, "\tnPend=%d\n", nPend );

dbgprn( 2, "\tnThrown=%d\n", nThrown );

dbgprn( 2, "\tnInZct=%d\n", gcvar.dbg.nInZct );

dbgprn( 2, "\tnInNextZct=%d\n", gcvar.dbgpersist.nPendInCycle );

dbgprn( 2, "_throwNonZerosFromCurrentZCT(end) time=%d delta=%d\n", end, end-start );

#endif

}

static void _processCreateBuffsIntoZCT( void )

{

#ifdef RCDEBUG

uint nCreate = 0, nDel = 0, nThrown=0, nPend=0;

uint nAlreadyInZct=0;

uint start, end;

#endif

uint *ptr, type, *p;

uint *buff = gcvar.createBuffList, *nextBuff;

BUFFHDR *tmpZCT = &gcvar.tmpZctBuff;

#ifdef RCDEBUG

start = GetTickCount();

dbgprn( 0, "_processCreateBuffIntoZCT(start) time=%d\n", start );

#endif

while (buff) {

nextBuff = (uint*)buff[0];

mokAssert( (((uint)buff) & LOWBUFFMASK) == 0);

mokAssert( buff );
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p = (uint*)buff[LAST_POS_IDX];

mokAssert( p );

mokAssert( *p == 0 );

p--;

mokAssert( *p );

for (;;) {

ptr = (uint*)(*p & ~3);

type = *p & 3;

mokAssert( type != BUFF_HANDLE_MARK );

mokAssert( type != BUFF_DUP_HANDLE_MARK );

if (type==0) {

GCHandle *h = (GCHandle*)ptr;

#ifdef RCDEBUG

nCreate++;

#endif

mokAssert( h );

mokAssert( gcNonNullValidHandle(h) );

if (gcGetHandleRC(h) == 0) {

if (!_isInZCT(h)) {

_markInZCT( h );

#ifdef RCDEBUG

nDel++;

#endif

gcBuffLogWord( gcvar.ee, tmpZCT, (unsigned)h );

}

#ifdef RCDEBUG

else {

nAlreadyInZct++;

}

#endif // RCDEBUG

}

#ifdef RCDEBUG

else {

nThrown++;

}

#endif // RCDEBUG

p--;

}

else { /* type==BUFF_LINK_MARK*/

mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof(uint));

/* free the more recent buffer */

_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);

if (!ptr) {

mokAssert( buff+N_RESERVED_SLOTS == p);

goto __end_chunk;

}

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

p = ptr-1; /* skip forward pointer */

}

}

__end_chunk:

buff = nextBuff;

}

gcvar.createBuffList = NULL;

#ifdef RCDEBUG

end = GetTickCount();

mokAssert( gcvar.tmpZctBuff.start[LOG_OBJECTS_IDX] == nDel + gcvar.dbg.nInZct );

gcvar.dbg.nInZct = gcvar.tmpZctBuff.start[LOG_OBJECTS_IDX] ;

gcvar.dbgpersist.nPendInCycle += nPend;

mokAssert( gcvar.dbg.nCreateObjects == nCreate );

mokAssert( nThrown+nDel+nPend+nAlreadyInZct == nCreate );

gcvar.dbg.nCreateDel = nDel;

dbgprn( 2, "\tnCreate=%d\n", nCreate );

dbgprn( 2, "\tnDel=%d\n", nDel );

dbgprn( 2, "\tnPend=%d\n", nPend );

dbgprn( 2, "\tnThrown=%d\n", nThrown );

dbgprn( 2, "\tnInZct=%d\n", gcvar.dbg.nInZct );

dbgprn( 2, "\tnInNextZct=%d\n", gcvar.dbgpersist.nPendInCycle );

dbgprn( 0, "_processCreateBuffIntoZCT(end) time=%d delta=%d\n", start, end-start );

#endif

}

#pragma optimize( "", off )

static void _freeHandle(GCHandle* h)

{

for (;;) {

unsigned *p;

BlkAllocBigHdr *bh;

int status;

mokAssert( h );

mokAssert( gcNonNullValidHandle(h) );

mokAssert( gcGetHandleRC(h)==0 );
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#ifdef RCDEBUG

{

unsigned obj_type = obj_flags(h);

if (obj_type == T_NORMAL_OBJECT) {

register ClassClass *cb = obj_classblock(h);

gcvar.dbg.nRefsFreedInCycle += unhand(cb)->n_object_offsets;

}

else if (obj_type == T_CLASS) { /* an array of references */

long n = obj_length(h);

gcvar.dbg.nRefsFreedInCycle += n;

}

}

#endif // RCDEBUG

p = h->logPos;

if (p) {

#ifdef RCDEBUG

dbgprn( 1, "\t\tfree:dirty: %x\n", h);

mokAssert( h == (GCHandle*)(*p^BUFF_HANDLE_MARK) );

h->logPos = NULL;

gcvar.dbgpersist.nFreeCyclesBroken++;

#endif

*p = *p | BUFF_DUP_HANDLE_MARK;

p--;

while (1) {

GCHandle *child = (GCHandle*)*p;

uint type = 3 & *p;

mokAssert( child );

if (type) break;

#ifdef RCDEBUG

dbgprn( 3, "\t\tfree:dirty:dec %x\n", child);

#endif

_decrementHandleRCInDeletion( child );

p--;

}

}

else {

register GCHandle *child;

register char *objslots;

unsigned obj_type = obj_flags(h);

if (obj_type == T_NORMAL_OBJECT) {

register ClassClass *cb = obj_classblock(h);

unsigned short *object_offsets;

int offset;

mokAssert( cb != classJavaLangClass);

object_offsets = cbObjectOffsets(cb);

if (object_offsets) {

objslots = ((char *)gcUnhand(h)) - 1;

while ((offset = *object_offsets++)) {

child = *((GCHandle **) (((char *)objslots) + offset));

if (child) {

mokAssert( gcNonNullValidHandle(child) );

_decrementHandleRCInDeletion( child );

}

}

}

}

else if (obj_type == T_CLASS) { /* an array of references */

register long n = obj_length(h);

GCHandle **body;

body = (GCHandle**)(((ArrayOfObject *)gcUnhand(h))->body);

while (--n >= 0) {

child = body[n];

if (child) {

_decrementHandleRCInDeletion( child );

}

}

}

}

#ifdef RCDEBUG

gcvar.dbg.nFreedInCycle++;

h->status = Im_free;

#endif

bh = (BlkAllocBigHdr *)OBJBLOCKHDR(h);

status = bhGet_status( bh );

mokAssert( status==ALLOCBIG ||

status==VOIDBLK ||

status==PARTIAL ||

status==OWNED );

mokAssert( ALLOCBIG < OWNED );

mokAssert( OWNED < VOIDBLK );

mokAssert( VOIDBLK < PARTIAL );

if (status == ALLOCBIG) {

#ifdef RCDEBUG

gcvar.dbg.nBytesFreedInCycle +=

((BlkAllocBigHdr *)OBJBLOCKHDR(h))->blobSize * BLOCKSIZE;
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#endif

blkFreeRegion( (BlkAllocBigHdr *)OBJBLOCKHDR(h) );

}

else {

#ifdef RCDEBUG

gcvar.dbg.nBytesFreedInCycle +=

chkconv.binSize[ bhGet_bin_idx( (BlkAllocHdr*)bh ) ];

#endif

chkPreCollect( (BLKOBJ*)h );

}

if (gcvar.zctStackSp == gcvar.zctStack)

return;

gcvar.zctStackSp--;

h = *gcvar.zctStackSp;

}

}

#pragma optimize( "", on )

static void _freeHandlesOnTempZCT(BUFFHDR *tmpZCT)

{

uint *buff = tmpZCT->start;

uint *ptr, type, *p;

#ifdef RCDEBUG

uint start, end;

uint nInZCT = 0;

start = GetTickCount();

dbgprn( 0, "_freeHandlesOnTempZCT(start) time=%d\n", start );

#endif // RCDEBUG

mokAssert( (((uint)buff) & LOWBUFFMASK) == 0);

mokAssert( buff );

p = tmpZCT->pos - 1;

mokAssert( p );

mokAssert( *p );

for (;;) {

ptr = (uint*)(*p & ~3);

type = *p & 3;

mokAssert( type != BUFF_DUP_HANDLE_MARK );

mokAssert( type != BUFF_HANDLE_MARK );

if (type==0) {

GCHandle *h = (GCHandle*)ptr;

mokAssert( h );

mokAssert( _isInZCT(h) );

mokAssert( gcNonNullValidHandle(h) );

mokAssert( gcGetHandleRC(h)==0 );

_freeHandle( h );

_markNotInZCT(h);

#ifdef RCDEBUG

nInZCT++;

#endif // RCDEBUG

p--;

}

else { /* type==BUFF_LINK_MARK*/

mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof(uint));

/* free the more recent buffer */

_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);

if (!ptr) {

mokAssert( buff+N_RESERVED_SLOTS == p);

#ifdef RCDEBUG

mokAssert( nInZCT == gcvar.tmpZctBuff.start[LOG_OBJECTS_IDX] );

#endif // RCDEBUG

goto __end;

}

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

p = ptr-1; /* skip forward pointer */

}

}

__end:;

#ifdef RCDEBUG

end = GetTickCount();

dbgprn( 2, "\tnFreedInCycle=%d\n", gcvar.dbg.nFreedInCycle );

dbgprn( 2, "\tnRecursiveDel=%d\n", gcvar.dbg.nRecursiveDel );

dbgprn( 2, "\tnRecursivePend=%d\n", gcvar.dbg.nRecursivePend );

dbgprn( 0, "_freeHandlesOnTempZCT(start) delta=%d\n", end-start );

#endif

}

static void _processLocalsIntoNextZCT( void)

{

uint *buff = gcvar.uniqueLocalsBuff.start;

uint *ptr, type, *p;

#ifdef RCDEBUG

uint start, end;

start = GetTickCount();

dbgprn( 0, "_processLocalsIntoNextZCT(start) time=%d\n", start );
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#endif // RCDEBUG

mokAssert( (((uint)buff) & LOWBUFFMASK) == 0);

mokAssert( buff );

/* allocate buffer for next ZCT */

buffInit( gcvar.ee, &gcvar.nextZctBuff );

p = gcvar.uniqueLocalsBuff.pos - 1;

mokAssert( p );

mokAssert( *p );

for (;;) {

ptr = (uint*)(*p & ~3);

type = *p & 3;

mokAssert( type != BUFF_DUP_HANDLE_MARK );

mokAssert( type != BUFF_HANDLE_MARK );

if (type==0) {

GCHandle *h = (GCHandle*)ptr;

mokAssert( h );

mokAssert( _isHandle( h ) );

mokAssert( !_isInZCT(h) );

_unsetLocal(h);

_decrementLocalHandleRC( h );

p--;

}

else { /* type==BUFF_LINK_MARK*/

mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof(uint));

/* free the more recent buffer */

_freeBuff( gcvar.ee, p - N_RESERVED_SLOTS);

if (!ptr) {

mokAssert( buff+N_RESERVED_SLOTS == p);

#ifdef RCDEBUG

gcvar.uniqueLocalsBuff.pos = NULL;

#endif

goto checkout;

}

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

p = ptr-1; /* skip forward pointer */

}

}

checkout:;

#ifdef RCDEBUG

end = GetTickCount();

dbgprn( 2, "\tnPendInCycle=%d\n", gcvar.dbgpersist.nPendInCycle );

dbgprn( 0, "_processLocalsIntoNextZCT(start) delta=%d\n", end-start );

#endif

}

static void _Reclaim_Garbage(void)

{

buffInit( gcvar.ee, &gcvar.tmpZctBuff );

_throwNonZerosFromCurrentZCT( &gcvar.tmpZctBuff );

_processCreateBuffsIntoZCT( );

_freeHandlesOnTempZCT( &gcvar.tmpZctBuff );

chkFlushRecycledListsCache( );

}

/************************************************************

************* Tracing Cycle Stuff ***************************

************************************************************/

static void _freeListOfBuffers( uint* buff )

{

while (buff) {

uint *next;

next = (uint*)buff[NEXT_BUFF_IDX];

_freeBuff( gcvar.ee, buff );

buff = next;

}

}

static void _freeListOfListsOfBuffers( uint *buff)

{

while (buff) {

uint *next;

next = (uint*)buff[LINKED_LIST_IDX];

_freeListOfBuffers( buff );

buff = next;

}

}
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static void _traceSetup( void )

{

_freeListOfListsOfBuffers( gcvar.createBuffList );

gcvar.createBuffList = NULL;

_freeListOfListsOfBuffers( gcvar.updateBuffList );

gcvar.updateBuffList = NULL;

*gcvar.zctBuff.pos = 0;

gcvar.zctBuff.start[ LAST_POS_IDX ] = (int)gcvar.zctBuff.pos;

_freeListOfBuffers( gcvar.zctBuff.start );

/* Decommit the "zct" bmp */

mokMemDecommit( gcvar.zctBmp.bmp, gcvar.zctBmp.bmp_size );

/* Clear the "rc" bmp */

mokMemDecommit( gcvar.rcBmp.bmp, gcvar.rcBmp.bmp_size );

mokMemCommit( gcvar.rcBmp.bmp, gcvar.rcBmp.bmp_size, true );

}

static void _scanHandle(GCHandle *h)

{

int prevRC = _incrementHandleRCWithReturnValue( h );

if (prevRC == 0)

_putInMarkStack( h );

}

static void _markHandleSons(GCHandle *h)

{

uint *p;

start:

p = h->logPos;

#ifdef RCDEBUG

gcvar.dbg.nTracedInCycle++;

#endif // RCDEBUG

if (p) {

#ifdef RCDEBUG

gcvar.dbg.nUndetermined++;

#endif // RCDEBUG

if ( ((*p) & 3) == 0) { /* newly created object */

/*

* must be called directly from _traceFromLocals

*/

mokAssert( _isLocal(h) );

return;

}

mokAssert( h == (GCHandle*)(*p^BUFF_HANDLE_MARK) );

p--;

while (1) {

GCHandle *hSon = (GCHandle*)*p;

uint type = 3 & *p;

mokAssert( hSon );

if (type) return;

_scanHandle( hSon );

p--;

}

}

{

GCHandle **tempbuff = gcvar.tempReplicaSpace;

register GCHandle *child;

register GCHandle **objslots;

switch (obj_flags(h)) {

case T_NORMAL_OBJECT:{

register ClassClass *cb = obj_classblock(h);

register unsigned short offset;

register unsigned short *object_offsets ;

if (cb == classJavaLangClass || unhand(cb)->n_object_offsets==0) {

#ifdef RCDEBUG

gcvar.dbg.nDetermined++;

#endif

return;

}

object_offsets = cbObjectOffsets(cb);

objslots = (GCHandle **)(((char *)unhand(h)) - 1);

while ((offset = *object_offsets++)) {

child = *(GCHandle **) ((char *) objslots + offset);

if (child) {

tempbuff++;

*tempbuff = child;

}

}

break;

}
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case T_CLASS: { /* an array of classes */

register long n = obj_length(h);

GCHandle **body = (GCHandle**)(((ArrayOfObject*)gcUnhand(h))->body);

while (--n >= 0) {

child = body[n];

if (child) {

tempbuff++;

*tempbuff = child;

}

}

break;

}

}

if (h->logPos) {

goto start;

}

/* OK, the replica we have at this point is valid

* so use it as the reference to the objects’

* contents.

*/

#ifdef RCDEBUG

gcvar.dbg.nDetermined++;

#endif // RCDEBUG

while( tempbuff > gcvar.tempReplicaSpace) {

child = *tempbuff;

_scanHandle( child );

tempbuff--;

}

}

}

static void _emptyMarkStack( void )

{

for (;;) {

GCHandle *h;

if (gcvar.zctStackSp == gcvar.zctStack)

return;

gcvar.zctStackSp--;

h = *gcvar.zctStackSp;

#ifdef RCDEBUG

mokAssert( _isHandle(h) );

mokAssert( gcGetHandleRC(h) > 0);

{

/*

* Check that if we see an object nested in

* another one then this object cannot be

* a one created since the beginning of the

* cycle.

*/

uint *p = h->logPos;

if (p) {

mokAssert( h == (GCHandle*)(*p^BUFF_HANDLE_MARK) );

}

}

#endif

_markHandleSons( h );

}

}

static void _traceFromLocals( void)

{

uint *buff = gcvar.uniqueLocalsBuff.start;

uint *ptr, type, *p;

mokAssert( (((uint)buff) & LOWBUFFMASK) == 0);

mokAssert( buff );

p = gcvar.uniqueLocalsBuff.pos - 1;

mokAssert( p );

mokAssert( *p );

for (;;) {

ptr = (uint*)(*p & ~3);

type = *p & 3;

mokAssert( type != BUFF_DUP_HANDLE_MARK );

mokAssert( type != BUFF_HANDLE_MARK );

if (type==0) {

GCHandle *h = (GCHandle*)ptr;

mokAssert( _isHandle(h) );

#ifdef RCDEBUG

{

int rc = gcGetHandleRC( h );

mokAssert( rc >= 1 );

}

#endif

_markHandleSons( h );

_emptyMarkStack();
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p--;

}

else { /* type==BUFF_LINK_MARK*/

mokAssert( (LOWBUFFMASK & (uint)p) == N_RESERVED_SLOTS*sizeof(uint));

if (!ptr) {

mokAssert( buff+N_RESERVED_SLOTS == p);

return;

}

mokAssert( *ptr == BUFF_LINK_MARK|(uint)p );

p = ptr-1; /* skip forward pointer */

}

}

}

static void _Trace( void )

{

#ifdef RCDEBUG

uint start, end;

start = GetTickCount();

dbgprn( 0, "_Trace(start) time=%d\n", start );

#endif

_traceFromLocals();

#ifdef RCDEBUG

end = GetTickCount();

dbgprn( 2, "\tnTracedInCycle=%d\n", gcvar.dbg.nTracedInCycle );

dbgprn( 0, "_Trace(end) delta=%d\n", end-start );

#endif

}

static void _Sweep( void )

{

#ifdef RCDEBUG

uint start, end;

start = GetTickCount();

dbgprn( 0, "_Sweep(start) time=%d\n", start );

#endif

blkSweep();

#ifdef RCDEBUG

end = GetTickCount();

dbgprn( 2, "\tnFreedInCycle=%d\n", gcvar.dbg.nFreedInCycle );

dbgprn( 0, "_Sweep(end) delta=%d\n", end-start );

#endif

}

/****************** GC Driver Func ***************/

#if 0

static int _ResumeHelper( sys_thread_t *thrd, bool *allOK )

{

ExecEnv *ee;

mokAssert( gcvar.sys_thread != thrd );

ee = SysThread2EE( thrd );

if (ee->gcblk.gcSuspended)

mokThreadResumeForGC( thrd );

return SYS_OK;

}

#endif /* 0 */

#ifdef RCDEBUG

static void _printStats(void)

{

float avg, avgs;

dbgprn( 1, " __________ THIS CYCLE STATS _______________:\n");

dbgprn( 1, "STORE: new=%d old=%d\n",

gcvar.dbg.nNewObjectUpdatesInCycle,

gcvar.dbg.nOldObjectUpdatesInCycle );

dbgprn( 1, "UPDATE: updated=%d logged-slots=%d\n",

gcvar.dbg.nUpdateObjects, gcvar.dbg.nUpdateChilds );

if (gcvar.dbg.nCreateObjects) {

avg = (float)gcvar.dbg.nBytesAllocatedInCycle/gcvar.dbg.nCreateObjects;

avgs = (float)gcvar.dbg.nRefsAllocatedInCycle/gcvar.dbg.nCreateObjects;

}

else {

avg =-1;

avgs = -1;

}

dbgprn( 1, "CREATE: objects=%d bytes=%d avg=%f refs=%d avg=%f\n",

gcvar.dbg.nCreateObjects, gcvar.dbg.nBytesAllocatedInCycle, avg,

gcvar.dbg.nRefsAllocatedInCycle, avgs);

dbgprn( 1,

"RECLAIM: objects=%d bytes=%d\n",

gcvar.dbg.nFreedInCycle,

gcvar.dbg.nBytesFreedInCycle );

dbgprn( 1, "STUCK: %d\n", gcvar.dbg.nStuckCountersInCycle );
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gcvar.dbgpersist.nLoggedUpdates += gcvar.dbg.nUpdateObjects;

gcvar.dbgpersist.nLoggedSlots += gcvar.dbg.nUpdateChilds;

gcvar.dbgpersist.nObjectsAllocated += gcvar.dbg.nCreateObjects;

gcvar.dbgpersist.nBytesAllocated += gcvar.dbg.nBytesAllocatedInCycle;

gcvar.dbgpersist.nRefsAllocated += gcvar.dbg.nRefsAllocatedInCycle;

gcvar.dbgpersist.nObjectsFreed += gcvar.dbg.nFreedInCycle;

gcvar.dbgpersist.nBytesFreed += gcvar.dbg.nBytesFreedInCycle;

gcvar.dbgpersist.nRefsFreed += gcvar.dbg.nRefsFreedInCycle;

gcvar.dbgpersist.nNewObjectUpdates += gcvar.dbg.nNewObjectUpdatesInCycle;

gcvar.dbgpersist.nOldObjectUpdates += gcvar.dbg.nOldObjectUpdatesInCycle;

gcvar.dbgpersist.nStuckCounters += gcvar.dbg.nStuckCountersInCycle;

dbgprn( 1, " __________ ACCUMULATING STATS _______________:\n");

dbgprn( 1, "STORE: new=%d old=%d\n",

gcvar.dbgpersist.nNewObjectUpdates,

gcvar.dbgpersist.nOldObjectUpdates );

dbgprn( 1, "UPDATE: updated=%d logged-slots=%d\n",

gcvar.dbgpersist.nLoggedUpdates, gcvar.dbgpersist.nLoggedSlots );

if (gcvar.dbgpersist.nObjectsAllocated) {

avg = (float)gcvar.dbgpersist.nBytesAllocated / gcvar.dbgpersist.nObjectsAllocated;

avgs = (float)gcvar.dbgpersist.nRefsAllocated / gcvar.dbgpersist.nObjectsAllocated;

}

else {

avg = -1;

avgs = -1;

}

dbgprn( 1, "CREATE: objects=%d bytes=%d avg=%f refs=%d avg=%f\n",

gcvar.dbgpersist.nObjectsAllocated,

gcvar.dbgpersist.nBytesAllocated,

avg,

gcvar.dbgpersist.nRefsAllocated,

avgs );

dbgprn(

1,

"RECLAIM: objects=%d bytes=%d\n",

gcvar.dbgpersist.nObjectsFreed,

gcvar.dbgpersist.nBytesFreed );

dbgprn( 1, "STUCK: %d\n", gcvar.dbgpersist.nStuckCounters );

{

int nAllocated = gcvar.dbgpersist.nBytesAllocated - gcvar.dbgpersist.nBytesFreed;

int nFree = blkvar.heapSz - nAllocated;

dbgprn( 1, "USAGE: free=%10d used= %10d\n", nFree, nAllocated );

}

blkPrintStats();

dbgprn( 1, "PARTIAL: %d\n", chkCountPartialBlocks() );

}

#endif /* RCDEBUG */

GCFUNC void gcCheckGC(void)

{

int nFreeBlocks = FREE_BLOCKS();

if (nFreeBlocks < gcvar.gcTrigHigh)

gcRequestAsyncGC();

}

static int _recommendCollectionMethod(void)

{

int nSamples, i, t, m;

float norm, avg[2], prob[2], r;

if (gcvar.opt.recommendOnlyRCGC)

return GCT_RCING;

for (t=0; t<2; t++) {

nSamples = 0;

avg[t] = 0;

for (i=0; i<N_SAMPLES; i++) {

if (gcvar.runHist[t][i]) {

avg[t] += gcvar.runHist[t][i];

nSamples++;

}

else break;

}

avg[t] = nSamples ? avg[t]/nSamples : 0;

}

printf( "*** _recommendCollectionMethod trace=%f rc=%f\n",

avg[GCT_TRACING], avg[GCT_RCING] );

if (avg[GCT_TRACING] < 0.001) return GCT_TRACING;

if (avg[GCT_RCING] < 0.001) return GCT_RCING;

/*

* Normalize so that prob ~ 1/avg

* and prob[0]+prob[1] == 1

*/

norm = (avg[0] * avg[1]) / ( avg[0] + avg[1] );
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prob[0] = norm / avg[0];

prob[1] = norm / avg[1];

printf( "p[0]=%f p[1]=%f sum=%f\n", prob[0], prob[1], prob[0]+prob[1] );

r = (float)rand() / (float)RAND_MAX;

if (r < prob[0]) m = 0;

else m = 1;

printf("r=%f --> m=%d\n", r , m );

return m;

}

static void _updateRunHist(int runTime)

{

int i;

int t = gcvar.collectionType;

for (i=N_SAMPLES-2; i>=0; i--)

gcvar.runHist[t][i+1] = gcvar.runHist[t][i];

gcvar.runHist[t][0] = runTime;

}

static void _gc(void)

{

uint delta, end, start;

int nWasFree;

start = GetTickCount();

gcvar.gcActive = true;

gcvar.collectionType = gcvar.nextCollectionType;

gcvar.nextCollectionType = GCT_RCING;

if (gcvar.usrSyncGC) {

gcvar.collectionType = GCT_TRACING;

gcvar.usrSyncGC = false;

}

if (gcvar.memStress) {

gcvar.memStress = false;

gcvar.collectionType = GCT_TRACING;

}

if (gcvar.opt.useOnlyTracingGC)

gcvar.collectionType = GCT_TRACING;

if (gcvar.opt.useOnlyRCGC)

gcvar.collectionType = GCT_RCING;

nWasFree = FREE_BLOCKS();

#ifdef RCVERBOSE

jio_printf("----------------- start gc(%d--%s) time=%d -----\n",

gcvar.iCollection,

gcvar.collectionType == GCT_TRACING ? "TRACING" : "RC",

start );

fflush( stdout );

#endif

_Initiate_Collection_Cycle();

_Clear_Dirty_Marks();

_Reinforce_Clearing_Conflict_Set();

_Consolidate();

if (gcvar.collectionType == GCT_RCING) {

_Update_Reference_Counters( );

_Reclaim_Garbage( );

}

else {

_Trace();

_Sweep();

/* re-commit the "zct" bmp */

mokMemCommit( gcvar.zctBmp.bmp, gcvar.zctBmp.bmp_size, true );

}

_processLocalsIntoNextZCT();

gcvar.zctBuff = gcvar.nextZctBuff;

gcvar.nextZctBuff.pos = NULL;

end = GetTickCount();

delta = end - start;

_updateRunHist( delta );

#ifdef RCDEBUG

if (gcvar.collectionType == GCT_RCING) {

gcvar.dbgpersist.nPendInCycle = gcvar.nextZctBuff.start[LOG_OBJECTS_IDX];

mokAssert( gcvar.dbg.nFreedInCycle == gcvar.dbg.nInZct + gcvar.dbg.nRecursiveDel );

}

#endif //RCDEBUG

/*

* OK, now see where we stand and set the strategy for the

* next cycle.

*/

{
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int nNowFree, nLowMark;

int prevTrig;

bool failed, gotIntoSync;

nNowFree = FREE_BLOCKS();

nLowMark = gcvar.gcTrigHigh + (gcvar.opt.lowTrigDelta * blkvar.nBlocks)/100;

failed = nNowFree < nLowMark;

gotIntoSync = gcvar.memStress;

jio_printf("**** high=%d low=%d free=%d was=%d failed=%d sync=%d\n",

gcvar.gcTrigHigh,

nLowMark,

nNowFree,

nWasFree,

failed,

gotIntoSync

);

fflush( stdout );

prevTrig = gcvar.gcTrigHigh;

if (gcvar.collectionType == GCT_TRACING) {

if (gotIntoSync && failed) {

gcvar.nextCollectionType = GCT_TRACING;

gcvar.gcTrigHigh -= (gcvar.opt.raiseTrigInc * blkvar.nBlocks)/100;

}

else if (gotIntoSync && !failed) {

gcvar.nextCollectionType = GCT_TRACING;

gcvar.gcTrigHigh += (gcvar.opt.lowerTrigDec * blkvar.nBlocks)/100;

}

else if (!gotIntoSync && failed) {

gcvar.nextCollectionType = GCT_TRACING;

gcvar.gcTrigHigh -= (gcvar.opt.raiseTrigInc * blkvar.nBlocks)/100;

}

else /* (!gotIntoSync && !failed) */ {

gcvar.nextCollectionType = _recommendCollectionMethod();

}

}

else /*(gcvar.collectionType == GCT_RCING)*/ {

if (gotIntoSync && failed) {

gcvar.nextCollectionType = GCT_TRACING;

}

else if (gotIntoSync && !failed) {

gcvar.nextCollectionType = GCT_TRACING;

}

else if (!gotIntoSync && failed) {

gcvar.nextCollectionType = GCT_TRACING;

}

else /* (!gotIntoSync && !failed) */ {

gcvar.nextCollectionType = _recommendCollectionMethod();

}

}

jio_printf("**** prevTrig=%d currTrig=%d curCycle=%s nextCycle=%s\n",

prevTrig,

gcvar.gcTrigHigh,

gcvar.collectionType == GCT_RCING ? "RC" : "TRACING",

gcvar.nextCollectionType == GCT_RCING ? "RC" : "TRACING"

);

fflush( stdout );

}

#ifdef RCDEBUG

_printStats();

#endif

gcvar.gcActive = false;

#ifdef RCVERBOSE

jio_printf(

"----------------- end gc(%d) delta=%d ---------\n",

gcvar.iCollection,

end-start );

fflush( stdout );

#endif

}

HANDLE hGCEvent, hMutEvent;

void gcThreadFunc(void *param)

{

gcvar.ee = EE();

gcvar.sys_thread = EE2SysThread ( gcvar.ee );

#ifdef RCDEBUG

dbgprn(

0,

"GC Thread starting ... ee=%x sys_thread=%x\n",

gcvar.ee,
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gcvar.sys_thread );

#endif

gcvar.initialized = true;

for(;;) {

PulseEvent( hMutEvent );

#ifdef RCDEBUG

dbgprn( 0, " *************** GC -- sleeping (%d)\n", gcvar.iCollection );

#endif

WaitForSingleObject( hGCEvent, INFINITE );

#ifdef RCDEBUG

jio_printf( " *************** GC -- wokeup (%d)\n", gcvar.iCollection );

fflush( stdout );

#endif

gcvar.nChunksAllocatedRecentlyByUser = 0;

_gc();

#ifdef RCDEBUG

dbgprn( 0, " *************** GC -- done (%d)\n", gcvar.iCollection );

#endif

gcvar.iCollection++;

}

}

/*************************************************/

/**************** USER REQUESTS ******************/

/*************************************************/

GCEXPORT void gcRequestSyncGC(void)

{

sys_thread_t *self = sysThreadSelf();

int wasPhase = gcvar.iCollection;

int waitT = 100;

#ifdef RCVERBOSE

jio_printf("SYNC GC thread=%x (iCollection=%d) stress=%d\n",

self,

wasPhase,

gcvar.memStress);

fflush( stdout );

#endif

gcvar.usrSyncGC = true;

SetEvent( hGCEvent );

while (wasPhase == gcvar.iCollection) {

WaitForSingleObject( hMutEvent, waitT );

waitT *= 2;

#ifdef RCDEBUG

dbgprn( 0,

"SYNC GC thread=%x GOT GC LOCK (iCollect=%d)\n",

self,

gcvar.iCollection );

#endif

}

#ifdef RCDEBUG

dbgprn( 0, "SYNC GC thread=%x DONE (iCollect=%d)\n", self, gcvar.iCollection );

#endif

}

GCEXPORT void gcRequestAsyncGC(void)

{

if (!gcvar.gcActive) {

SetEvent( hGCEvent );

}

}

/*------------------------ Init ----------------------------*/

static void gcInit(int __nMegs)

{

DWORD HEAP_SIZE = __nMegs << 20;

DWORD ZCT_SIZE = HEAP_SIZE/0x100;

FILE *f;

DWORD TimeAdjustment; // size of time adjustment

DWORD TimeIncrement; // time between adjustments

BOOL TimeAdjustmentDisabled; // disable option

hGCEvent = CreateEvent( NULL, FALSE, FALSE, NULL );

hMutEvent = CreateEvent( NULL, FALSE, FALSE, NULL );

GetSystemTimeAdjustment(

&TimeAdjustment, // size of time adjustment

&TimeIncrement, // time between adjustments

&TimeAdjustmentDisabled // disable option

);

#ifdef RCDEBUG

dbgprn( 0, "TimeAdjustment=%d, TimeIncrement=%d, TimeAdjustmentDisabled=%d\n",

TimeAdjustment, // size of time adjustment

TimeIncrement, // time between adjustments

TimeAdjustmentDisabled // disable option

);

#endif
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f = fopen( "gcopt.txt", "r" );

if (!f) {

jio_printf( "GCOPT.txt could not be opened\n");

exit(-1);

}

for (;;) {

char buff[200];

char opt[100];

int val;

if (! fgets( buff, sizeof(buff), f) ) break;

if (buff[0]==’#’) continue; /* remark line */

if (2 != sscanf( buff, "%s %d", opt, &val )) {

jio_printf("Error reading GCOPT.TXT\n");

exit(-1);

}

#define CHECKGCOPT(optname) if (strcmp(opt, #optname)==0) {\

gcvar.opt. optname = val;\

jio_printf("GCOPT set: %s = %d\n", #optname, val);\

continue;\

} else do {} while(0)

CHECKGCOPT(recommendOnlyRCGC);

CHECKGCOPT(useOnlyTracingGC);

CHECKGCOPT(useOnlyRCGC);

CHECKGCOPT(listBlkWorth);

CHECKGCOPT(userBuffTrig);

CHECKGCOPT(initialHighTrigMark);

CHECKGCOPT(lowTrigDelta);

CHECKGCOPT(raiseTrigInc);

CHECKGCOPT(lowerTrigDec);

CHECKGCOPT(uniPrio);

CHECKGCOPT(multiPrio);

jio_printf("GCOPT unknown option %s\n", opt );

exit(-1);

}

fclose( f );

/* Init blocks manager */

blkInit( HEAP_SIZE >> 20 );

/* Init chunks manager */

chkInit( HEAP_SIZE >> 20 );

gcvar.stage = GCHS4;

gcvar.createBuffList = NULL;

gcvar.updateBuffList = NULL;

gcvar.snoopBuffList = NULL;

gcvar.deadThreadsCreateBuffList = NULL;

gcvar.deadThreadsUpdateBuffList = NULL;

gcvar.deadThreadsSnoopBuffList = NULL;

gcvar.reinforceBuffList = NULL;

gcvar.tempReplicaSpace = (GCHandle**)mokMemReserve( NULL, BUFFSIZE );

mokMemCommit( (char*)gcvar.tempReplicaSpace, BUFFSIZE, false );

gcvar.zctStack = (GCHandle**)mokMemReserve( NULL, ZCT_SIZE );

mokMemCommit( (char*)gcvar.zctStack, ZCT_SIZE, false );

gcvar.zctStackTop = (GCHandle**)(ZCT_SIZE + (char*)gcvar.zctStack);

gcvar.zctStackSp = gcvar.zctStack;

H1BIT_Init( &gcvar.localsBmp, (uint*)blkvar.heapStart, HEAP_SIZE );

H2BIT_Init( &gcvar.rcBmp, (uint*)blkvar.heapStart, HEAP_SIZE );

H1BIT_Init( &gcvar.zctBmp, (uint*)blkvar.heapStart, HEAP_SIZE );

buffInit( gcvar.ee, &gcvar.zctBuff );

gcvar.gcMon = (sys_mon_t*)sysMalloc(sysMonitorSizeof());

gcvar.requesterMon = (sys_mon_t*)sysMalloc(sysMonitorSizeof());

sysMonitorInit( gcvar.gcMon );

sysMonitorInit( gcvar.requesterMon );

gcvar.collectionType = GCT_RCING;

gcvar.gcTrigHigh = (gcvar.opt.initialHighTrigMark * blkvar.nBlocks)/100;

}

GCEXPORT void gcStartGCThread(void)

{

int priority;

/*

* If we’re on an MP then the GC thread should be alloted a processor

* of its own when it needs it. So we select the priority to be

* 10 which is translated in threads_md.c into win32 time critical

* priority.

*

* Otherwise, we choose priority==9 which translates into win32

* "highest priority"

*/

if (sysGetSysInfo()->isMP)
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priority = gcvar.opt.multiPrio;

else

priority = gcvar.opt.uniPrio;

createSystemThread("YLRC Garbage Collector (YEH!)", 9, 10*1024, gcThreadFunc, NULL);

}

GCEXPORT void gcThreadCooperate(ExecEnv *ee)

{

int gcStage;

mokAssert( !ee->gcblk.cantCoop );

ee->gcblk.cantCoop = true;

gcStage = gcvar.stage;

if (ee->gcblk.stage == gcStage) goto __exit;

if (ee->gcblk.stageCooperated == gcStage) goto __exit;

mokAssert( ee->gcblk.stageCooperated == GCHSNONE );

switch (gcStage) {

case GCHS1:

mokAssert( ee->gcblk.stage == GCHS4 );

goto __exit;

case GCHS2:

mokAssert( ee->gcblk.stage == GCHS1 );

goto __exit;

case GCHS3:

mokAssert( ee->gcblk.stage == GCHS2 );

_HS3Cooperate( ee );

goto __exit;

case GCHS4:

mokAssert( ee->gcblk.stage == GCHS3 );

goto __exit;

}

__exit:

ee->gcblk.cantCoop = false;

}

GCEXPORT void gcThreadAttach(ExecEnv* ee)

{

int i, stage;

sys_thread_t *self = EE2SysThread( ee );

#ifdef RCDEBUG

dbgprn( 0, "gcThreadAttach starting for ee=%x thread=%x\n", ee, self);

#endif

ee->gcblk.cantCoop = false;

buffInit( ee, &ee->gcblk.updateBuffer );

buffInit( ee, &ee->gcblk.createBuffer );

buffInit( ee, &ee->gcblk.snoopBuffer );

#ifdef RCDEBUG

dbgprn( 2, "QUEUE_LOCK %x\n", self );

#endif

QUEUE_LOCK( self );

#ifdef RCDEBUG

dbgprn( 2, "QUEUE_LOCK %x took the lock\n", self );

#endif

{

SAVEDALLOCLISTS *sal = gcvar.pListOfSavedAllocLists;

if (sal) {

gcvar.pListOfSavedAllocLists = sal->pNext;

memcpy( ee->gcblk.allocLists, sal->allocLists, sizeof(sal->allocLists) );

sysFree( sal );

}

else {

for (i=0; i<N_BINS; i++) {

ee->gcblk.allocLists[i].binIdx = i;

ee->gcblk.allocLists[i].head = ALLOC_LIST_NULL;

}

}

}

stage = gcvar.stage;

ee->gcblk.stageCooperated = GCHSNONE;

ee->gcblk.stage = stage;

if (ee->gcblk.stage != GCHS4)

ee->gcblk.snoop = true;

else

ee->gcblk.snoop = false;

ee->gcblk.gcInited = true;

QUEUE_UNLOCK( self );

#ifdef RCDEBUG

dbgprn( 0, "gcThreadAttach ee=%x stage=%d\n", ee, stage);

dbgprn( 0, "gcThreadAttach ended for ee=%x self=%x\n", ee, self);
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#endif

}

GCEXPORT void gcThreadDetach(ExecEnv* ee)

{

sys_thread_t *self = EE2SysThread( ee );

SAVEDALLOCLISTS *sal;

sal = (SAVEDALLOCLISTS*)sysMalloc( sizeof(SAVEDALLOCLISTS) );

mokAssert( sizeof(sal->allocLists) == sizeof(ee->gcblk.allocLists) );

mokAssert( sizeof(sal->allocLists) == sizeof(ALLOCLIST)*N_BINS );

memcpy( sal->allocLists, ee->gcblk.allocLists, sizeof( ee->gcblk.allocLists) );

QUEUE_LOCK( self );

sal->pNext = gcvar.pListOfSavedAllocLists;

gcvar.pListOfSavedAllocLists = sal;

#ifdef RCDEBUG

gcvar.dbgpersist.nDeadUpdateObjects +=

ee->gcblk.updateBuffer.start[LOG_OBJECTS_IDX];

gcvar.dbgpersist.nDeadUpdateChilds +=

ee->gcblk.updateBuffer.start[LOG_CHILDS_IDX];

gcvar.dbgpersist.nDeadCreateObjects +=

ee->gcblk.createBuffer.start[LOG_OBJECTS_IDX];

gcvar.dbgpersist.nDeadSnooped +=

ee->gcblk.snoopBuffer.start[LOG_OBJECTS_IDX];

#endif

/* link the create buffer into a list for dead threads */

*ee->gcblk.createBuffer.pos = 0;

ee->gcblk.createBuffer.start[LAST_POS_IDX] = (uint)ee->gcblk.createBuffer.pos;

ee->gcblk.createBuffer.start[LINKED_LIST_IDX] =

(uint)gcvar.deadThreadsCreateBuffList;

gcvar.deadThreadsCreateBuffList = ee->gcblk.createBuffer.start;

/* do the same for the update buffer */

*ee->gcblk.updateBuffer.pos = 0;

ee->gcblk.updateBuffer.start[LAST_POS_IDX] = (uint)ee->gcblk.updateBuffer.pos;

ee->gcblk.updateBuffer.start[LINKED_LIST_IDX] =

(uint)gcvar.deadThreadsUpdateBuffList;

gcvar.deadThreadsUpdateBuffList = ee->gcblk.updateBuffer.start;

/* do the same for the snoop buffer */

*ee->gcblk.snoopBuffer.pos = 0;

ee->gcblk.snoopBuffer.start[LAST_POS_IDX] = (uint)ee->gcblk.snoopBuffer.pos;

ee->gcblk.snoopBuffer.start[LINKED_LIST_IDX] = (uint)gcvar.deadThreadsSnoopBuffList;

gcvar.deadThreadsSnoopBuffList = ee->gcblk.snoopBuffer.start;

/* If we’re between HS1 & HS2 then also link the update buffer

* into the dead threads reinforce list

*/

if (ee->gcblk.stage == GCHS1) {

#ifdef RCDEBUG

gcvar.dbgpersist.nDeadReinforceObjects +=

ee->gcblk.updateBuffer.start[LOG_OBJECTS_IDX];

gcvar.dbgpersist.nDeadReinforceChilds +=

ee->gcblk.updateBuffer.start[LOG_CHILDS_IDX];

#endif

ee->gcblk.updateBuffer.start[REINFORCE_LINKED_LIST_IDX] =

(uint)gcvar.deadThreadsReinforceBuffList;

gcvar.deadThreadsReinforceBuffList = ee->gcblk.updateBuffer.start;

}

ee->gcblk.gcInited = false;

QUEUE_UNLOCK( self );

}

void gcDo_gcupdate(ExecEnv *ee, void *_h, void *_slot, void *_newval )

{

#ifdef RCDEBUG

static int deltaMax = -1;

int delta = GetTickCount();

#endif

GCHandle *h = (GCHandle*)_h;

GCHandle **slot = (GCHandle**)_slot;

GCHandle *newval = (GCHandle*)_newval;

#ifdef RCDEBUG

sysAssert( h );

sysAssert( ValidHandle(h) );

sysAssert( !*slot || ValidHandle(*slot) );

sysAssert( !newval || ValidHandle(newval) );

{

uint *p = h->logPos;
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if (p) {

uint val = *p;

uint type = val&3;

sysAssert( (val&~3) == (uint)h );

if (type==0) { // create log

ee->gcblk.dbg.nNewObjectUpdatesInCycle++;

}

else {

ee->gcblk.dbg.nOldObjectUpdatesInCycle++;

}

}

}

#endif // RCDEBUG

ee->gcblk.cantCoop = true;

if (!h->logPos) {

gcBuffSlowConditionalLogHandle( ee, (GCHandle*)h );

}

*slot = newval;

if (newval && ee->gcblk.snoop) {

BUFFHDR *bh = &ee->gcblk.snoopBuffer;

gcBuffLogWordUnchecked( ee, bh, (uint)newval );

ee->gcblk.cantCoop = false;

gcBuffReserveWord( ee, bh );

}

else {

ee->gcblk.cantCoop = false;

}

#ifdef RCDEBUG

delta = GetTickCount() - delta;

if (delta > deltaMax) {

deltaMax = delta;

dbgprn( 0, " *** UPDATE(offset=%d) delta=%d\n", (char*)slot - (char*)h, delta );

}

#endif

}

void gcDo_gcupdate_array(ExecEnv *ee, void *_arrayh, void* _slot, void *_newval )

{

gcupdate( ee, _arrayh, _slot, _newval );

}

void gcDo_gcupdate_jvmglobal(ExecEnv* ee, void* _global, void *_newval )

{

#ifdef RCDEBUG

static int deltaMax = -1;

int delta = GetTickCount();

#endif

GCHandle **slot = (GCHandle**)_global;

GCHandle *newval = (GCHandle*)_newval;

sysAssert( !newval || ValidHandle(newval) );

ee->gcblk.cantCoop = true;

*slot = newval;

if (newval && ee->gcblk.snoop) {

BUFFHDR *bh = &ee->gcblk.snoopBuffer;

gcBuffLogWordUnchecked( ee, bh, (uint)newval );

ee->gcblk.cantCoop = false;

gcBuffReserveWord( ee, bh );

}

else {

ee->gcblk.cantCoop = false;

}

#ifdef RCDEBUG

delta = GetTickCount() - delta;

if (delta > deltaMax) {

deltaMax = delta;

dbgprn( 0, " *** UPD_GLOBAL delta=%d\n", delta );

}

#endif

}

void gcDo_gcupdate_class(ExecEnv* ee, ClassClass* cb, void *_slot, void *_newval )

{

GCHandle **slot = (GCHandle**)_slot;

sysAssert( ValidHandle(cb) );

sysAssert( !*slot || ValidHandle(*slot) );

gcupdate_jvmglobal( ee, slot, _newval );

}

void gcDo_gcupdate_static(

ExecEnv* ee,

struct fieldblock* fb,

void *_slot,

void* _newval

)

{
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GCHandle **slot = (GCHandle**)_slot;

char isig = fieldsig(fb)[0];

if (isig == SIGNATURE_CLASS || isig == SIGNATURE_ARRAY) {

sysAssert( !*slot || ValidHandle(*slot) );

gcupdate_jvmglobal( ee, slot, _newval );

}

else {

*slot = (GCHandle*)_newval;

}

}

GCEXPORT void gcPutstatic(ExecEnv *ee, struct fieldblock *fb, JHandle *val)

{

sysAssert( fb );

sysAssert( ValidHandle(fb->clazz) );

gcupdate_static( ee, fb, &fb->u.static_value, val );

}

GCEXPORT void gcPutfield(ExecEnv *ee, JHandle *h, int offset, JHandle *val)

{

Classjava_lang_Class *ucb;

JHandle **slot;

GCHandle *_h;

#ifdef RCDEBUG

{

Classjava_lang_Class *ucb;

mokAssert( h );

mokAssert( isHandle(h) );

ucb = unhand(obj_classblock(h));

mokAssert( ucb->is_reference[offset] );

mokAssert( !val || isHandle(val) );

}

#endif

slot = (JHandle**)(((uint*)unhand(h)) + offset);

gcupdate( ee, h, slot, val );

}

GCEXPORT void gcAastore(ExecEnv *ee, ClassArrayOfObject *arr, int offset, JHandle *val)

{

JHandle **slot;

JHandle *arrh;

#ifdef RCDEBUG

ClassClass *cb;

long n;

#endif

arrh = gcRehand( arr );

#ifdef RCDEBUG

mokAssert( arr );

mokAssert( arrh );

mokAssert( isHandle(arrh) );

#endif

slot = &arr->body[offset];

#ifdef RCDEBUG

mokAssert( !*slot || isHandle(*slot) );

mokAssert( !val || isHandle(val) );

mokAssert( obj_flags(arrh) == T_CLASS );

n = obj_length(arrh);

mokAssert( offset < n );

mokAssert( offset >=0 );

cb = (ClassClass*)arr->body[n];

mokAssert( cb );

mokAssert( isHandle(cb) );

#endif

gcupdate_array( ee, arrh, slot, val );

}

End of file source listing
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D.6 rcgc.h

rcgc.h contains declarations and macros which are needed by the rest of the JVM. In particular, it
defines the GC blocks which are associated with threads, layout of objects and page headers and
the definition of frequently used functions that were turned into macros.

Source listing for file rcgc.h

/*

* File: rcgc.h

* Author: Mr. Yossi Levanoni

* Purpose: Publicly visible interface to garbage collection and allocation.

*/

/******************* Initialization ********************************/

#ifndef __RCGC__

#define __RCGC__

#include <assert.h>

#include <stdio.h>

#include <windows.h>

#include "monitor.h"

//#ifdef DEBUG

#define RCDEBUG

//#endif

#define RCVERBOSE

#define RCNOINLINE

#define GCEXPORT

#define GCFUNC static

#ifdef RCDEBUG

#define RCDEBUGVAR 1

#else

#define RCDEBUGVAR 0

#endif

/***********************************************************************************

*

* Forward declarations for external structures

*/

#define DECSTRUCT(T) struct T; typedef struct T T;

DECSTRUCT(BUFFHDR);

struct execenv;

typedef struct execenv ExecEnv;

typedef bool_t bool;

typedef struct GCHandle {

unsigned *obj;

struct methodtable *methods;

unsigned *logPos;

#ifdef RCDEBUG

unsigned status;

#endif

} GCHandle ;

#define false FALSE

#define true TRUE

/***********************************************************************************

*

* Atomic operatrions

*

*

*/

#define N_SPINS 4000

/******************************************************************

*

* Some primitive data structures.

*/

typedef unsigned word;

typedef unsigned uint;

typedef unsigned char byte;

typedef unsigned short PAGEID;

typedef unsigned short PAGECNT;

/*******************************************************************

*

* An object (chunk of memory) as the chunk manager sees it.

*/

typedef struct BLKOBJtag BLKOBJ;

struct BLKOBJtag {
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int count;

int unused;

BLKOBJ *next;

};

/*******************************************************************

*

* Object and page sizes.

*

* We assume that objects are at least 8 bytes aligned. This leaves 3

* bits for playing.

*

* The minimal object size is 16 bytes because we have (at least) two

* words overhead per object: class pointer and log pointer. In the

* "handled" JVM we have a third extra poiner.

*/

#define OBJGRAIN 8

#define OBJBITS 3

#define MINOBJ 16

#define OBJMASK (~(OBJGRAIN-1))

/*

* Minimal size of a page for the design to work: 256 bytes.

* The reason for this is that we sometimes (in BLKLIST blocks) keep

* a block identifier as a 24 bit entity. Thus, a block has to be at

* least 8 bits wide in order to allow 4GB regions.

*

* Since in pracrice we use blocks which are at least 4KB big, this is

* not a problem.

*

* Additionally, we store the size of chunks in a block on a 16 bit

* entity. Thus, a block cannot be much bigger than 64KB or we’ll

* have to encode this field etc.

*/

#define MINBLOCKBITS 8

#define MAXNONBLOCKBITS (32-MINBLOCKBITDS)

#define MAXBLOCKBITS 16

#define MAXOBJPERBLOCK (BLOCKSIZE/MINOBJ)

/*

* Actual block size. This coincides with the PC page size.

*/

#define BLOCKBITS (14)

#define NONBLOCKBITS (32-BLOCKBITS)

#define BLOCKSIZE (1<<BLOCKBITS)

#define BLOCKMASK ((1<<BLOCKBITS)-1)

/*

* Size of maximal chunk. Allocations larger than this size

* are given full blocks.

*/

#define MAX_CHUNK_ALLOC (BLOCKSIZE/2)

/* address of first object on the block */

#define OBJPAGE(o) ((OBJECT*)(((unsigned)o) & (~BLOCKMASK)))

/* offset of object in the block */

#define OBJOFFSET(o) (((unsigned)(o)) & BLOCKMASK)

/* number of block relative to address 0 */

#define OBJBLOCKID(o) (((unsigned)(o))>>BLOCKBITS)

/* Object’s block header */

#define OBJBLOCKHDR(o) (&blkvar.blockHeaders[ OBJBLOCKID(o)])

/* convert from block header to the block’s address */

#define BLOCKHDROBJ(ph) ((BLKOBJ*)(((ph)-blkvar.blockHeaders)<<BLOCKBITS))

/************************************************************************/

/************************************************************************/

/****** *****/

/****** BLOCK MANAGER *****/

/****** *****/

/************************************************************************/

/************************************************************************/

/************************************************************************

*/

/*

* Page States

*/

#define BLK 1 /* In the block manager */

#define BLKLIST 2 /* --- " " -----------*/

#define CHUNKING 3 /* Just out of the block manager, going to be OWNED */

#define ALLOCBIG 4 /* Multiple-blocks object */

#define INTERNALBIG 5 /* In the middle of ALLOCBIG, only in DEBUG */

#define OWNED 6 /* Chunked block which is owned by some thread */

#define VOIDBLK 7 /* Chunked block, allocation exhausted. */
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#define PARTIAL 8 /* Chunked block, sitting in a partial blocks list */

#define DUMMYBLK 9 /* Temporary state */

#define LASTMGRSTATE BLKLIST

/*

Page header format for: OWNED, VOIDPG, PARTIAL.

Word 0: <-------------------- nextPartial(32) ------------------------->

Word 1: <-------------------- prevPartal(32) -------------------------->

Word 2: <-------------------- freeList(32) ---------------------------->

Word 3: <-- status(8) --><-- lock(8) --><-------- binidx(16) --------->

In this case, the second word in the object pointed by "freeList"

contains the number of objects in the list. recycledList is cached

(see below), the number of elements is held in the same manner at the

second word of the first element of the list.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Page header format for ALLOCBIG:

Word 0: <---------------------- AllocInProgress(32) ------------------->

Word 1: <---------------------- unused(32) ---------------------------->

Word 2: <---------------------- size(32) ------------------------------>

Word 3: <-- status(8) --><---------------- unused(24) ----------------->

"AllocInProgress" is true in the interval between the changing of the

state from BLKxxx to ALLOCBIG till the object is logged in the allocating

thread create log. This prevents sweep from reclaiming such an object

just after it has been allocated.

"size" is the size of this large object, in blocks.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Page header format for INTERNALBIG:

Word 0: <---------------------- startBlock(32) ------------------------>

Word 1: <---------------------- unused(32) ---------------------------->

Word 2: <---------------------- unused(32) ---------------------------->

Word 3: <-- status(8) --><--------------unused(24) -------------------->

Where "start page" is the address where this large object begins.

THIS FORMAT IS GUARANTEED ONLY IN DEBUG MODE.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Page header format for BLK:

Word 0: <---------------------- nextRegion(32) ------------------------>

Word 1: <---------------------- prevRegion(32) ------------------------>

Word 2: <---------------------- size(32) ------------------------------>

Word 3: <-- status(8) --><--------------unused(24) -------------------->

Next and prev are linked list pointers. size is the size in pages of the

regions.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Page header format for BLKLIST:

Word 0: <---------------------- firstRegion --------------------------->

Word 1: <---------------------- nextList (32) ------------------------->

Word 2: <---------------------- size (32) ----------------------------->

Word 3: <-- status(8) --><------------ prevListIDX (24) -------------->

"firstRegion" is a pointer to a BLK block, the first on a linked list

of regions with the same size.

"nextList" points to the next list header (of type BLKLIST). The pointer

to the previous list is encoded in the field "prevListIDX" as an index

into the allocatedPageHeaders array.

"size" is the size of the region. Each element in the list has this size.

*************************************************************************/

/*

* Field selectors

*/

#define STATUSMAK 0xff000000
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#define LOCKMASK 0x00ff0000

#define BINIDXMASK 0x0000ffff

#define PREVLISTMASK 0x00ffffff

typedef struct BlkAllocHdrTAG BlkAllocHdr;

typedef struct BlkAllocBigHdrTAG BlkAllocBigHdr;

typedef struct BlkAllocInternalHdrTAG BlkAllocInternalHdr;

typedef struct BlkRegionHdrTAG BlkRegionHdr;

typedef struct BlkListHdrTAG BlkListHdr;

typedef struct BlkAnyHdrTAG BlkAnyHdr;

struct BlkAllocHdrTAG {

BlkAllocHdr *nextPartial;

BlkAllocHdr *prevPartial;

volatile BLKOBJ *freeList;

volatile word StatusLockBinidx;

};

struct BlkAllocBigHdrTAG {

volatile word allocInProgress;

word unused2;

volatile int blobSize;

volatile word StatusUnused;

};

struct BlkAllocInternalHdrTAG {

BlkAllocBigHdr *startBlock;

word unused1;

word unused2;

volatile word StatusUnused;

};

struct BlkListHdrTAG {

BlkRegionHdr *nextRegion;

BlkListHdr *nextList;

volatile int listRegionSize;

volatile word StatusPrevListID;

};

struct BlkRegionHdrTAG {

BlkRegionHdr *nextRegion;

BlkRegionHdr *prevRegion;

volatile int regionSize;

volatile word StatusUnused;

};

struct BlkAnyHdrTAG {

volatile word w0;

volatile word w1;

volatile word w2;

volatile union {

volatile byte b[4];

volatile unsigned short s[2];

volatile word w;

} u;

};

/*

* Utility macros

*/

/*

* p is a pointer to AllocPgHdr. Set and get the chunk size

*/

#define bhGet_bin_idx(p) ((int)(((p)->StatusLockBinidx)&BINIDXMASK))

#define bhSet_bin_idx(p,idx) do {\

word v; \

mokAssert( (idx)< N_BINS ); \

v = p->StatusLockBinidx; \

v = v & ~BINIDXMASK; \

v = v | idx; \

p->StatusLockBinidx = v; \

} while(0)

/*

* p is a pointer to BlkRegionHdr. Set and get the previous list IS.

*/

#define bhGet_prev_region_list(p) \

((BlkListHdr*)&blkvar.allocatedBlockHeaders[(p)->StatusPrevListID & PREVLISTMASK])

#define bhSet_prev_region_list(p,pBlkListHeader) \

do {\

word idx; \

word v; \

idx = (pBlkListHeader) - (BlkListHdr*)blkvar.allocatedBlockHeaders; \

mokAssert (idx < (word)(blkvar.nBlocks+2)); \

v = p->StatusPrevListID; \
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v = v & ~PREVLISTMASK; \

v = v | idx; \

(p)->StatusPrevListID = v; \

} while(0)

/*

* Set and get the status of any page

*/

#define bhGet_status(p) (((BlkAnyHdr*)p)->u.b[3])

#define bhSet_status(p,s) do{ bhGet_status(p)=(s); }while(0)

/***************************************************************************

*

* Block manager structure

*

*/

#define N_QUICK_BLK_MGR_LISTS 5

struct BLKVAR {

BlkListHdr* pRegionLists;

BlkRegionHdr* quickLists[ N_QUICK_BLK_MGR_LISTS ];

byte* heapStart;

byte* heapTop;

BlkRegionHdr* heapTopRegion;

BlkRegionHdr* wildernessRegion;

word heapSz;

word nBlocks;

BlkAllocHdr *blockHeaders;

BlkAllocHdr* allocatedBlockHeaders;

sys_mon_t* blkMgrMon;

int nWildernessBlocks;

int nListsBlocks;

int nAllocatedBlocks;

};

#define FREE_BLOCKS() \

(((blkvar.nListsBlocks*gcvar.opt.listBlkWorth)/100)+blkvar.nWildernessBlocks)

/***************************************************************************

* Block manager exports

*/

GCEXPORT BlkAllocBigHdr* blkAllocRegion( unsigned nBytes, ExecEnv *ee );

/************************************************************************/

/************************************************************************/

/****** *****/

/****** CHUNK MANAGEMENT *****/

/****** *****/

/************************************************************************/

/************************************************************************/

/************************************************************************/

/************************************************************************

*

* Recycled lists cache.

*

* The cache is simply an array of pointers to blocks. The blocks are

* linked in a circular list with the first element holding the number

* of elements in the list.

*

* Collisions are treated by flushing an entry. Meaning: adding the

* list to the block’s free list.

*/

/*

* this ration defines the number of blocks per recycled lists cache

* entry.

*/

#define RLCACHE_RATIO 10

typedef struct RLCacheEnteryTAG RLCENTRY;

struct RLCacheEnteryTAG {

BLKOBJ *recycledList;

};

/*************************************************************************

*

* Partial Lists to Block Manager evacuation thresholds.

*

*/

#define MAX_OBSERVED_FULL_PER_LIST 2

#define MAX_OBSERVED_FULL 4

/**************************************************************************

*

* Allocation lists
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*

* These structures are embedded in the threads EE for fast allocation.

* Each thread has an allocation list per bin size.

*

*/

typedef struct AllocListTAG ALLOCLIST;

#define ALLOC_LIST_NULL ((BLKOBJ*)0x12baab21)

struct AllocListTAG {

BLKOBJ* head;

BlkAllocHdr* allocBlock;

int binIdx;

};

#define OutOfMemory() mokAssert(0)

#define ALLOC_RETRY (20)

/***************************************************************************

*

* Bins conversion tables.

*

*/

#define N_BINS (27)

struct CHKCONV {

int szToBinIdx[ BLOCKSIZE ];

int szToBinSize[ BLOCKSIZE ];

int binSize[ N_BINS ];

int binToObjectsPerBlock[ N_BINS ];

};

/*****************************************************************************

*

* Partial lists.

*

* A partial list is a list of blocks which have some free chunks on them. The

* pages are linked in a doubly linked list whose head is in this structure.

*

* There is a list per each bin size.

*

* The list also contains a remembered set of blocks which have been observed to

* be full.

*

* Finally the list contains a lock and therefore it is padded to a total size

* of 256 bytes (assuming this is bigger or equal to the contention granule)

* in order to prevent false sharing with other partial lists.

*/

struct PARTIALLISTtag {

BlkAllocHdr *firstBlock;

word lock;

int nObservedFull;

BlkAllocHdr *observedFull[ MAX_OBSERVED_FULL_PER_LIST ];

word pad[64 - (MAX_OBSERVED_FULL_PER_LIST +3) ];

};

typedef struct PARTIALLISTtag PARTIALLIST;

/******************************************************************************

*

* Chunk manager structure.

*

*/

struct CHUNKVAR {

PARTIALLIST partialLists[ N_BINS ];

int nBlocksInPartialList[ N_BINS ];

int nCacheEntries;

RLCENTRY *rlCache;

int nObservedFull;

int nTrulyFull;

BlkAllocHdr* trulyFull[ MAX_OBSERVED_FULL ];

};

/******************************************************************************

*

* Chunk Manager exports

*

*/

GCEXPORT int chkCountPartialBlocks(void);

GCEXPORT BLKOBJ* chkAllocSmall(ExecEnv* ee, unsigned binIdx);

GCEXPORT void chkReleaseAllocLists( ExecEnv *ee);

#ifndef RCDEBUG

#define chkPreCollect(__o) \
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do{\

word blockid;\

RLCENTRY *rlce;\

BLKOBJ *head;\

BLKOBJ *o = (BLKOBJ*)(__o);\

\

blockid = OBJBLOCKID(o);\

rlce = &chunkvar.rlCache[blockid % chunkvar.nCacheEntries];\

head = rlce->recycledList;\

\

if ((((word)head) ^ ((word)o)) < BLOCKSIZE) {\

o->next = head->next;\

head->next = o;\

head->count ++;\

goto __chkPreCollect_done_;\

}\

if (head) \

chkFlushRecycledListEntry( rlce );\

\

o->count = 1;\

o->next = o;\

rlce->recycledList = o;\

__chkPreCollect_done_:;\

} while(0)

#define _allocFromOwnedBlockInlined( allocList, __res )\

do {\

BLKOBJ *head = allocList->head;\

if (head != ALLOC_LIST_NULL) {\

allocList->head = head->next;\

(BLKOBJ*)__res = head;\

}\

else {\

__res = NULL;\

} \

} while (0)

#define chkAllocSmallInlined(ee, binIdx, __res)\

do {\

ALLOCLIST *allocList = & (ee)->gcblk.allocLists[ (binIdx) ];\

_allocFromOwnedBlockInlined( allocList, __res);\

if (!__res) {\

(BLKOBJ*)__res = chkAllocSmall( ee, binIdx);\

}\

} while (0)

#else /* RCDEBUG */

#define chkAllocSmallInlined( ee, binIdx, __res)\

do {\

(BLKOBJ*)__res = chkAllocSmall( ee, binIdx );\

} while(0)

#endif /* ! RCDEBUG */

/************************************************************************/

/************************************************************************/

/****** *****/

/****** BITMAPS *****/

/****** *****/

/************************************************************************/

/************************************************************************/

/************************************************************************/

/************************************************************************

*

* 1 Bit per handle BMP

*/

typedef struct H1BIT_BMP H1BIT_BMP;

struct H1BIT_BMP {

byte *entry;

byte *bmp;

byte *rep_addr;

unsigned bmp_size;

};

/************************************************************************

*

* 2 Bits per handle BMP

*/

typedef struct H2BIT_BMP H2BIT_BMP;

struct H2BIT_BMP {

byte *entry;

byte *bmp;

byte *rep_addr;

unsigned bmp_size;

};

/*
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*

* Include inline vertions of bmp functions:

void H1BIT_Set(byte* entry, unsigned h);

void H1BIT_Clear(byte* entry, unsigned h);

void H1BIT_Put(byte* entry, unsigned h, unsigned val);

byte H1BIT_Get(byte* entry, unsigned h);

void H1BIT_Init(H1BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size );

void H2BIT_Put(byte* entry, unsigned h, unsigned val);

void H2BIT_Clear(byte* entry, unsigned h);

void H2BIT_Stuck(byte* entry, unsigned h);

byte H2BIT_Get(byte* entry, unsigned h);

void H2BIT_Inc(byte* entry, unsigned h);

byte H2BIT_IncRV(byte* entry, unsigned h);

byte H2BIT_Dec(byte* entry, unsigned h);

void H2BIT_Init(H2BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size );

Functions that have a return value have "Inlined" appended to their name

e.g H1BIT_GetInlined( entry, h, __res_var) where __res_var is the *name*

of the variable onto which the result should be stored.

*/

#ifdef RCNOINLINE

#define H1BIT_GetInlined( entry, h, __res_var)\

do {\

__res_var = H1BIT_Get(entry, h );\

} while (0)

#define H2BIT_GetInlined( entry, h, __res_var)\

do {\

__res_var = H2BIT_Get(entry, h );\

} while (0)

#define H2BIT_IncRVInlined( entry, h, __res_var)\

do {\

__res_var = H2BIT_IncRV(entry, h );\

} while (0)

#define H2BIT_DecInlined( entry, h, __res_var)\

do {\

__res_var = H2BIT_Dec(entry, h );\

} while (0)

#else /* ! RCNOINLINE */

#include "rcbmp_inline.h"

#endif /* RCNOINLINE */

/************************************************************************/

/************************************************************************/

/****** *****/

/****** GC Data Structures *****/

/****** *****/

/************************************************************************/

/************************************************************************/

/************************************************************************/

/************************************************************************

*

* Buffer mgmnt.

*

*/

#define BUFFBITS 18

#define BUFFSIZE (1<<BUFFBITS)

#define BUFFMASK (BUFFSIZE-1)

#define LOWBUFFMASK ((1<<16)-1)

#define BUFF_LINK_MARK 1U

#define BUFF_HANDLE_MARK 2U

#define BUFF_DUP_HANDLE_MARK 3U

#ifdef RCDEBUG

#define N_RESERVED_SLOTS 8

#else

#define N_RESERVED_SLOTS 4

#endif //RCDEBUG

#define LINKED_LIST_IDX 0

#define REINFORCE_LINKED_LIST_IDX 1

#define NEXT_BUFF_IDX 2

#define LAST_POS_IDX 3

#ifdef RCDEBUG

#define ALLOCATING_EE 4

#define LOG_CHILDS_IDX 5

#define LOG_OBJECTS_IDX 6

#define USED_IDX 7
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#endif

typedef struct BUFFHDR BUFFHDR;

struct BUFFHDR {

uint *pos;

uint *limit;

uint *start;

uint *currBuff;

};

GCEXPORT void gcBuffConditionalLogHandle(ExecEnv *ee, GCHandle *h);

GCEXPORT void gcBuffLogWord(ExecEnv *ee, BUFFHDR *bh, uint w);

GCEXPORT void gcBuffLogNewHandle(ExecEnv *ee, GCHandle *h);

/*******************************************************************************

*

* Thread specific GC block

*

* It conatains the create, uodate and snoop buffers.

*

* Also it contains the thread GC state and allocation lists.

*/

struct GCTHREADBLK {

bool gcInited;

bool gcSuspended;

bool cantCoop;

bool snoop;

int stage;

int stageCooperated;

BUFFHDR updateBuffer;

BUFFHDR createBuffer;

BUFFHDR snoopBuffer;

ALLOCLIST allocLists[ N_BINS ];

#ifdef RCDEBUG

struct {

int nBytesAllocatedInCycle;

int nRefsAllocatedInCycle;

int nNewObjectUpdatesInCycle;

int nOldObjectUpdatesInCycle;

} dbg;

#endif // RCDEBUG

};

typedef struct SAVEDALLOCLISTS {

struct SAVEDALLOCLISTS *pNext;

ALLOCLIST allocLists[ N_BINS ];

} SAVEDALLOCLISTS;

/***********************************************************************************

*

* Global GC block

*

* GCHS4 is defined as zero so that the GC is in this state when the system

* is initialized.

*/

enum GCSTAGE { GCHS1=1, GCHS2=2, GCHS3=3, GCHS4=0, GCHSNONE=0x12345678};

#define N_GC_STAGES 4

enum GCTYPE { GCT_TRACING=0, GCT_RCING=1 };

#define N_SAMPLES 4

struct GCVAR {

bool initialized;

bool gcActive;

int iCollection;

int requestPhase;

int collectionType;

int nextCollectionType;

// triggering

bool memStress;

bool usrSyncGC;

int gcTrigHigh;

int runHist[2][N_SAMPLES];

ExecEnv* ee;

sys_thread_t* sys_thread;

int stage;

uint* createBuffList;

uint* updateBuffList;

uint* snoopBuffList;

uint* deadThreadsCreateBuffList;

uint* deadThreadsUpdateBuffList;

uint* deadThreadsSnoopBuffList;

uint* deadThreadsReinforceBuffList;

uint* reinforceBuffList;

GCHandle** tempReplicaSpace;

H1BIT_BMP localsBmp;
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H2BIT_BMP rcBmp;

H1BIT_BMP zctBmp;

BUFFHDR zctBuff;

BUFFHDR nextZctBuff;

BUFFHDR tmpZctBuff;

BUFFHDR uniqueLocalsBuff;

BUFFHDR preAllocatedBuffers[2];

int nPreAllocatedBuffers;

GCHandle** zctStack;

GCHandle** zctStackSp;

GCHandle** zctStackTop;

sys_mon_t* gcMon;

sys_mon_t* requesterMon;

SAVEDALLOCLISTS *pListOfSavedAllocLists;

// chunk mgmt

uint nAllocatedChunks;

uint nChunksAllocatedRecentlyByUser;

uint nUsedChunks;

uint nFreeChunks;

// settable options

struct {

int recommendOnlyRCGC;

int useOnlyRCGC;

int useOnlyTracingGC;

int listBlkWorth;

int userBuffTrig;

int initialHighTrigMark;

int lowTrigDelta;

int raiseTrigInc;

int lowerTrigDec;

int uniPrio;

int multiPrio;

} opt;

#ifdef RCDEBUG

struct {

// running totals

uint nObjectsAllocated;

uint nObjectsFreed;

uint nBytesAllocated;

uint nBytesFreed;

uint nRefsAllocated;

uint nRefsFreed;

uint nOldObjectUpdates;

uint nNewObjectUpdates;

uint nLoggedUpdates;

uint nLoggedSlots;

uint nStuckCounters;

// from prev to curr cycle

uint nPendInCycle;

uint nFreeCyclesBroken;

uint nDeadUpdateObjects;

uint nDeadUpdateChilds;

uint nDeadCreateObjects;

uint nDeadReinforceObjects;

uint nDeadReinforceChilds;

uint nDeadSnooped;

} dbgpersist;

struct {

uint nHS1Threads;

uint nHS2Threads;

uint nHS3Threads;

uint nHS4Threads;

uint nHS1CoopThreads;

uint nHS2CoopThreads;

uint nHS3CoopThreads;

uint nHS4CoopThreads;

// update logs

uint nUpdateObjects;

uint nUpdateChilds;

uint nActualUpdateObjects;

uint nActualUpdateChilds;

uint nUpdateDuplicates;

uint nUpdate2ZCT;

uint nActualCyclesBroken;

// update logs, for reinforcement

uint nReinforceObjects;

uint nReinforceChilds;

uint nActualReinforceObjects;

uint nActualReinforceChilds;
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// create logs

uint nCreateObjects;

uint nActualCreateObjects;

uint nCreateDel;

// same checks, during RC updating

uint nUpdateRCObjects;

uint nUpdateRCChilds;

uint nUpdateRCDuplicates;

uint nCreateRCObjects;

// more RC updating...

uint nDetermined;

uint nUndetermined;

// roots

uint nLocals;

uint nGlobals;

uint nSnooped;

uint nActualSnooped;

// freeing

uint nInZct;

uint nRecursiveDel;

uint nFreedInCycle;

uint nRecursivePend;

uint nBytesAllocatedInCycle;

uint nBytesFreedInCycle;

uint nRefsAllocatedInCycle;

uint nRefsFreedInCycle;

// tracing stuff

uint nTracedInCycle;

// counters

uint nStuckCountersInCycle;

// updates

int nNewObjectUpdatesInCycle;

int nOldObjectUpdatesInCycle;

} dbg;

#endif // RCDEBUG

};

/***********************************************************************************

*

* GC Exports

*/

GCEXPORT void gcGetInfo( uint *pUc, uint *pFc, uint *pAc, int *iGc );

GCEXPORT void gcBuffSlowConditionalLogHandle( ExecEnv *ee, GCHandle *h);

GCEXPORT void gcBuffAllocAndLink( ExecEnv *ee, BUFFHDR *bh);

GCEXPORT void gcRequestSyncGC(void);

GCEXPORT void gcRequestAsyncGC();

GCEXPORT void gcInit(int nMegs);

GCEXPORT void gcInstallBlk(ExecEnv* ee);

GCEXPORT void gcUninstallBlk(ExecEnv* ee);

GCEXPORT bool gcNonNullValidHandle( GCHandle *h);

GCEXPORT bool gcValidHandle( GCHandle *h);

GCEXPORT void gcThreadAttach(ExecEnv *ee);

GCEXPORT void gcThreadDetach(ExecEnv *ee);

GCEXPORT void gcThreadCooperate(ExecEnv *ee);

extern struct BLKVAR blkvar;

extern struct CHKCONV chkconv;

#endif /* __RCGC__ */

End of file source listing

D.7 rcbmp.c and rcbmp inline.h

These two files contain the declaration and implementation of a 1-bit-per-word and 2-bit-per-word
data structures which are used extensively by the (e.g., for the ZCT and reference counters). Since
the declarations are repeated in the definition, we bring here only the listing of rcbmp.c.

Source listing for file rcbmp.c

/*

* File: rcbmp.c

* Aurhor: Yossi Levanoni

* Purpose: 1 bit per word and 2 bit per word bitmap implementation.

*/

#ifdef RCNOINLINE
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#include <stdio.h>

#include "rcgc.h"

#define PAGE_SIZE 4096

#define ROUND_PAGE(u) (((u)&~(PAGE_SIZE-1))+PAGE_SIZE)

/*

* BIT FIELD MANIPULATION

*/

#define MAKE_MASK(shift,length) (((1<<(length))-1)<<(shift))

#define GET_BIT_FIELD(w,shift,length) (((w)&MAKE_MASK(shift,length))>>shift)

#define OR_BIT_FIELD(w,v,shift) do{ (w) = (w) | ((v)<<(shift)); \

}while(0)

#define CLEAR_BIT_FIELD(w,shift,length) do{ (w) = (w) & (~MAKE_MASK(shift,length)); \

}while(0)

#define SET_BIT_FIELD(w,v,shift,length) do{CLEAR_BIT_FIELD(w,shift,length);\

OR_BIT_FIELD(w,v,shift);\

}while(0)

/*

* Specify (log) allignment of handles.

*/

#define H_GRAIN_BITS 3

/*

* Field selector bits. The next 3 bits select

* the bit inside the bmp word. there

* are 8 options.

*/

#define H1B_FS_BITS 3

/*

* The rest of the bits handle selects

* the bmp byte inside the bitmap.

*/

#define H1B_BS_BITS (32-(H_GRAIN_BITS+H1B_FS_BITS))

#define H1B_NON_BS_BITS (H_GRAIN_BITS+H1B_FS_BITS)

#define H1BIT_BYTE(entry,h) (byte*)(((uint)h>>H1B_NON_BS_BITS) + (byte*)entry)

void H1BIT_Set(byte* entry, unsigned h)

{

/* entry address into the bitmap.*/

byte *bbmp = H1BIT_BYTE(entry, h);

byte v = *bbmp;

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS, H1B_FS_BITS );

OR_BIT_FIELD(v, 1, field_selector );

*bbmp = v;

}

void H1BIT_Clear(byte* entry, unsigned h)

{

/* entry address into the bitmap.*/

byte *bbmp = H1BIT_BYTE(entry, h);

byte v = *bbmp;

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS, H1B_FS_BITS );

CLEAR_BIT_FIELD(v, field_selector, 1 );

*bbmp = v;

}

void H1BIT_ClearByte(byte* entry, unsigned h)

{

byte *bbmp = H1BIT_BYTE(entry, h);

*bbmp = 0;

}

void H1BIT_Put(byte* entry, unsigned h, unsigned val)

{

mokAssert( val <= 1);

if (val==0)

H1BIT_Clear(entry, h);

else

H1BIT_Set(entry, h);

}

byte H1BIT_Get(byte* entry, unsigned h)

{

/* entry address into the bitmap.*/

byte *bbmp = H1BIT_BYTE(entry, h);

byte v = *bbmp;

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS, H1B_FS_BITS );

uint res = GET_BIT_FIELD(v, field_selector, 1 );

return res;

}

/*
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* Create a new 1-bit per handle BMP with the handles starting

* at address ‘rep_addr’ and the handles area being ‘rep_size’

* bytes long.

*/

void H1BIT_Init(H1BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size )

{

/* each bit in the bimtap represents a handle, which

* takes 2^H_GRAIN_BITS bytes. So a byte in the

* bitmap repreesnts 2^(H_GRAIN_BITS+3) bytes in the

* handle space.

*/

bmp->bmp_size = rep_size >> (H_GRAIN_BITS+3);

bmp->bmp_size = ROUND_PAGE( bmp->bmp_size );

bmp->bmp = (byte*)mokMemReserve( NULL, bmp->bmp_size );

mokMemCommit( bmp->bmp, bmp->bmp_size, true );

bmp->rep_addr = (byte*)rep_addr;

bmp->entry = bmp->bmp - (((unsigned)rep_addr)>>H1B_NON_BS_BITS);

}

/********************************************************************

Implementation of a 2 bit per handle BMP.

Layout of a handle:

| 31 --------- 5 | 4 -- 3 | 2 - 0 |

| BS | FS | Z |

Where:

-- Z: these bits are always zero (because handles are 8-byte aligned).

-- FS: Field Select. Selects a 2-bit field in a byte of the

bitmap. The selector is 4 bits wide cause there are 4

possibilies.

-- BS: Word selector, relatively to the beginning of the heap, this is

the bitmap word selector.

**********************************************************************/

/*

* Field selector bits. There are 16 options. If the

* selector value is s (with 0<=s<=15), then the field

* begins at bit s*2.

*/

#define H2B_FS_BITS 2

/*

* The rest of the handle selects

* the bmp word inside the bitmap.

*/

#define H2B_BS_BITS (32-(H_GRAIN_BITS+H2B_FS_BITS))

#define H2B_NON_BS_BITS (32-H2B_BS_BITS)

#define H2BIT_BYTE(entry,h) ((((uint)h)>>H2B_NON_BS_BITS) + entry)

void H2BIT_Put(byte* entry, unsigned h, unsigned val)

{

/* entry address into the bitmap.*/

byte *bbmp = H2BIT_BYTE(entry, h);

byte v = *bbmp;

/* we include the third least bit in the selector (it is always zero). */

/* to get selection of 0,2,4,...,30, and not 0,1,...15. */

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector%2 == 0);

mokAssert( field_selector <= 30 );

mokAssert( val <= 3);

SET_BIT_FIELD(v, val, field_selector, 2);

*bbmp = v;

}

void H2BIT_Clear(byte* entry, unsigned h)

{

/* entry address into the bitmap.*/

byte *bbmp = H2BIT_BYTE(entry, h);

byte v = *bbmp;

/* we indlude the upper zero in the selector */

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector%2 == 0);

mokAssert( field_selector <= 30 );

CLEAR_BIT_FIELD(v, field_selector, 2);

*bbmp = v;

}

void H2BIT_Stuck(byte* entry, unsigned h)

{
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/* entry address into the bitmap.*/

byte *bbmp = H2BIT_BYTE(entry, h);

byte v = *bbmp;

/* we indlude the upper zero in the selector */

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector%2 == 0);

mokAssert( field_selector <= 30 );

OR_BIT_FIELD(v, 3, field_selector );

*bbmp = v;

}

byte H2BIT_Get(byte* entry, unsigned h)

{

/* entry address into the bitmap.*/

byte *bbmp = H2BIT_BYTE(entry, h);

byte v = *bbmp;

byte res;

/* we indlude the upper zero in the selector */

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector%2 == 0);

mokAssert( field_selector <= 30 );

res = GET_BIT_FIELD(v, field_selector, 2 );

return res;

}

#ifdef RCDEBUG

#pragma optimize( "", off )

void _forceIncSanityCheck(byte *entry, unsigned h, int f)

{

int nextF = (f==3) ? 3 : f+1;

mokAssert( H2BIT_Get(entry,h) == nextF );

if (f==2) {

gcvar.dbg.nStuckCountersInCycle++;

}

}

#pragma optimize( "", on )

#endif

void H2BIT_Inc(byte* entry, unsigned h)

{

/* entry address into the bitmap.*/

byte *bbmp = H2BIT_BYTE(entry, h);

byte val = *bbmp;

uint f;

/* we indlude the upper zero in the selector */

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector%2 == 0);

mokAssert( field_selector <= 30 );

f = GET_BIT_FIELD(val, field_selector, 2);

mokAssert( f<= 3 );

if (f<3) { /* STUCK remains STUCK */

SET_BIT_FIELD( val, f+1, field_selector, 2);

*bbmp = val;

}

#ifdef RCDEBUG

_forceIncSanityCheck( entry, h, f);

#endif

}

byte H2BIT_IncRV(byte* entry, unsigned h)

{

/* entry address into the bitmap.*/

byte *bbmp = H2BIT_BYTE(entry, h);

byte val = *bbmp;

uint f;

/* we indlude the upper zero in the selector */

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector%2 == 0);

mokAssert( field_selector <= 30 );

f = GET_BIT_FIELD(val, field_selector, 2);

mokAssert( f<= 3 );

if (f<3) { /* STUCK remains STUCK */

SET_BIT_FIELD( val, f+1, field_selector, 2);

*bbmp = val;

}

#ifdef RCDEBUG

_forceIncSanityCheck( entry, h, f);

#endif

return f;

}

byte H2BIT_Dec(byte* entry, unsigned h)
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{

/* entry address into the bitmap.*/

byte *bbmp = H2BIT_BYTE(entry, h);

byte val = *bbmp;

uint f;

/* we include the upper zero in the selector */

uint field_selector = GET_BIT_FIELD( h, H_GRAIN_BITS-1, H2B_FS_BITS+1 );

mokAssert( field_selector%2 == 0);

mokAssert( field_selector <= 30 );

f = GET_BIT_FIELD(val, field_selector, 2);

mokAssert( f<= 3 );

mokAssert( f>= 1 ); /* we should never go below zero */

if (f<3) { /* STUCK remains STUCK */

SET_BIT_FIELD( val, f-1, field_selector, 2);

*bbmp = val;

mokAssert( H2BIT_Get(entry,h)== f-1 );

}

return f;

}

/*

* Create a new 2-bit per handle BMP with the handles starting

* at address ‘rep_addr’ and the handles area being ‘rep_size’

* bytes long.

*/

void H2BIT_Init(H2BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size )

{

/* each 2 bits in the bimtap represents a handle, which

* takes 2^H_GRAIN_BITS bytes. So a byte in the

* bitmap repreesnts 2^(H_GRAIN_BITS+2) bytes in the

* handle space.

*/

bmp->bmp_size = rep_size >> (H_GRAIN_BITS+2);

bmp->bmp_size = ROUND_PAGE( bmp->bmp_size );

bmp->bmp = (byte*)mokMemReserve( NULL, bmp->bmp_size );

mokMemCommit( bmp->bmp, bmp->bmp_size, true );

bmp->rep_addr = (byte*)rep_addr;

bmp->entry = bmp->bmp - (((unsigned)rep_addr)>>H2B_NON_BS_BITS);

}

char * write_bits(unsigned x)

{

char *s = (char *)mokMalloc(33, false);

unsigned i = 1<<31;

int j=0;

for (;j<32;j++) {

s[j] = x&i ? ’1’ : ’0’;

i >>= 1;

}

s[j] = ’\0’;

return s;

}

void testBitFields(void)

{

int shift, length;

unsigned m=0, val;

while (1) {

jio_printf("Enter shift length val, please: ");

scanf("%d %d %x", &shift, &length, &val );

SET_BIT_FIELD(m, val, shift, length);

jio_printf("m=(%x)%s field=(%x)%s\n", m, write_bits(m),

GET_BIT_FIELD(m, shift, length), write_bits(GET_BIT_FIELD(m, shift, length)) );

}

}

typedef struct HandleTAG { unsigned h1, h2; } Handle;

H2BIT_BMP Bmp;

#define N_HANDLES 10000

void test2BitBmp(void)

{

int i,j;

Handle* handleSpace = (Handle*)mokMalloc( N_HANDLES*sizeof(Handle), false );

H2BIT_BMP *bmp = &Bmp;

H2BIT_Init( bmp, (unsigned*)handleSpace, N_HANDLES*sizeof(Handle) );

for (i=0; i<2 ;i++) {

for (j=0; j<N_HANDLES; j++) {

uint v = H2BIT_Get( bmp->entry, (unsigned)&handleSpace[j] );

if (v != (uint)i)

jio_printf("Bad RC for j=%d, val=%x\n", j, v );

else

jio_printf("Good RC for j=%d, val=%x\n", j, v );

H2BIT_Inc( bmp->entry, (unsigned)&handleSpace[j] );

}
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}

for (i=2; i>=0 ;i--) {

for (j=0; j<N_HANDLES; j++) {

uint v = H2BIT_Get( bmp->entry, (unsigned)&handleSpace[j] );

if (v != (uint)i )

jio_printf("Bad RC for j=%d, val=%x exoect=%i\n", j, v, i );

else

jio_printf("Good RC for j=%d, val=%x\n", j, v );

H2BIT_Dec( bmp->entry, (unsigned)&handleSpace[j] );

}

}

}

#endif /* RCNOINLINE */

/**/

End of file source listing

D.8 rcgc internal.h

rcgc internal.h contains declarations which are needed internally by the collector and allocator
(forward declarations etc.)

Source listing for file rcgc internal.h

/*

* File: rcblkmgr.h

* Author: Mr. Yossi Levanoni

* Purpose: Header for internal use of the collector/allocator.

*/

#ifndef __RCGC_INTERNAL__

#define __RCGC_INTERNAL__

GCFUNC bool gcCompareAndSwap( unsigned *addr, unsigned oldv, unsigned newv);

GCFUNC void gcSpinLockEnter(volatile unsigned *p, unsigned id);

GCFUNC void gcSpinLockExit(volatile unsigned *p, unsigned id);

GCFUNC void gcCheckGC(void);

GCFUNC void blkInit( unsigned nMB );

GCFUNC BlkAllocHdr* blkAllocBlock( ExecEnv *ee );

GCFUNC void blkFreeChunkedBlock( BlkAllocHdr *ph );

GCFUNC void blkFreeSomeChunkedBlocks( BlkAllocHdr **pph, int nBlocks );

GCFUNC void blkFreeRegion( BlkAllocBigHdr *ph );

GCFUNC void blkSweep(void);

GCFUNC void chkFlushRecycledListEntry( RLCENTRY *rlce );

GCFUNC void chkFlushRecycledListsCache( void );

GCFUNC void chkSweepChunkedBlock( BlkAllocHdr *ph, int status);

GCFUNC void chkInit(unsigned nMB);

#ifdef RCDEBUG

GCFUNC void chkPreCollect(BLKOBJ* o);

#endif /* RCDEBUG */

#ifdef RCNOINLINE

GCFUNC void H1BIT_Set(byte* entry, unsigned h);

GCFUNC void H1BIT_Clear(byte* entry, unsigned h);

GCFUNC void H1BIT_ClearByte(byte* entry, unsigned h);

GCFUNC void H1BIT_Put(byte* entry, unsigned h, unsigned val);

GCFUNC byte H1BIT_Get(byte* entry, unsigned h);

GCFUNC void H1BIT_Init(H1BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size );

GCFUNC void H2BIT_Put(byte* entry, unsigned h, unsigned val);

GCFUNC void H2BIT_Clear(byte* entry, unsigned h);

GCFUNC void H2BIT_Stuck(byte* entry, unsigned h);

GCFUNC byte H2BIT_Get(byte* entry, unsigned h);

GCFUNC void H2BIT_Inc(byte* entry, unsigned h);

GCFUNC byte H2BIT_IncRV(byte* entry, unsigned h);

GCFUNC byte H2BIT_Dec(byte* entry, unsigned h);

GCFUNC void H2BIT_Init(H2BIT_BMP* bmp, unsigned* rep_addr, unsigned rep_size );

#endif /* RCNOINLINE */

GCFUNC uint gcGetHandleRC(GCHandle* h);

/***********************************************************

* System utilities layer (MOK)

*

*/

#define mokSleep Sleep

/*

* Memory

179



*/

/* Advanced */

GCFUNC void* mokMemReserve(void *starting_at_hint, unsigned sz );

GCFUNC void mokMemUnreserve( void *start, unsigned sz );

GCFUNC void* mokMemCommit( void *start, unsigned sz, bool zero_out );

GCFUNC void mokMemDecommit( void *start, unsigned sz );

/* C style */

GCFUNC void* mokMalloc( unsigned sz, bool zero_out );

GCFUNC void mokFree( void *);

/* zero out */

GCFUNC void mokMemZero( void *start, unsigned sz );

#define mokAssert sysAssert

#define gcAssert sysAssert

#ifdef RCDEBUG

#define Im_used 0x1badbad1

#define Im_free 0x12344321

#endif

int x86CompareAndSwap(unsigned *addr, unsigned oldv, unsigned newv);

#define ___compare_and_swap x86CompareAndSwap

#define gcCompareAndSwap x86CompareAndSwap

/*

* p is a pointer to BlkAllocHdr. Lock and unlock the page

*/

#pragma optimize( "", off )

static void bhLock(BlkAllocHdr *p)

{

volatile word *ptr = (volatile word*)&p->StatusLockBinidx;

for (;;) {

volatile word oldv, newv;

oldv = *ptr;

oldv = oldv & ~LOCKMASK;

newv = oldv | LOCKMASK;

if (gcCompareAndSwap( (word*)ptr, oldv, newv))

goto ___do_bh_lock_end;

}

___do_bh_lock_end:;

}

static bhUnlock(BlkAllocHdr* p)

{

for (;;) {

volatile word *ptr = (volatile word*)&p->StatusLockBinidx;

word oldv, newv;

oldv = *ptr;

if (!(oldv & LOCKMASK )) {

__asm { int 3 }

}

newv = oldv & ~LOCKMASK;

if (gcCompareAndSwap( (word*)ptr, oldv, newv))

goto ___do_bh_unlock_end;

}

___do_bh_unlock_end:;

}

#pragma optimize( "", on )

#define gcNonNullValidHandle _isHandle

#define gcValidHandle(h) ((h)==NULL || _isHandle((h)))

#endif /* __RCGC_INTERNAL__ */

End of file source listing

D.9 rchub.c

This file simply includes the block manager, chunk manager and collector into a single translation
unit.

Source listing for file rchub.c

/*

* File: rcbmp.c

* Aurhor: Yossi Levanoni

* Purpose: Includes all of the allocator and collector into a single

* translation unit.

*/

#define GCINTERNAL
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#define gcUnhand(h) ((JHandle**)(((char*)h)+sizeof(GCHandle)))

#define gcRehand(obj) ((JHandle*)(((char*)obj)-sizeof(GCHandle)))

#include "rcgc.h"

#include "rcgc_internal.h"

#include "../../../win32/hpi/include/threads_md.h"

struct BLKVAR blkvar;

struct CHKCONV chkconv;

static struct CHUNKVAR chunkvar;

static struct GCVAR gcvar;

#include "mok_win32.c"

#include "rcbmp.c"

#include "rcblkmgr.c"

#include "rcchunkmgr.c"

#include "rcgc.c"

End of file source listing

D.10 ylrc protocol.h

This file (the name of which stands for “The Yossi Levanoni’s Reference Counting Protocol”) defines
the write barrier that must be adhered to when changing references. i.e., this is the declaration of
the write barrier.

Source listing for file ylrc protocol.h

/*

* File: ylrc_protocol.h

* Author: Mr. Yossi Levanoni

* Purpose: Definition of the write barrier

*/

#ifndef YLRC

#define YLRC

struct execenv;

typedef struct execenv ExecEnv;

void gcDo_gcupdate(ExecEnv *ee, void *_h, void *_slot, void *_newval );

void gcDo_gcupdate_array(ExecEnv *ee, void *_arrayh, void* _slot, void *newval);

void gcDo_gcupdate_class(ExecEnv* ee, ClassClass* cb, void *_slot, void *_newval );

void gcDo_gcupdate_jvmglobal(ExecEnv* ee, void* _global, void *_newval );

void gcDo_gcupdate_static( ExecEnv* ee, struct fieldblock* fb, void* slot, void* _newval );

#define gcupdate(ee,_h,_slot,_newval ) \

gcDo_gcupdate(ee,_h, _slot,_newval )

#define gcupdate_array(ee,_arrayh,_slot,newval) \

gcDo_gcupdate_array(ee,_arrayh, _slot,newval)

#define gcupdate_class(ee,cb,_slot,_newval ) \

gcDo_gcupdate_class(ee,cb,_slot,_newval )

#define gcupdate_jvmglobal(ee,_global,_newval ) \

gcDo_gcupdate_jvmglobal(ee, _global,_newval )

#define gcupdate_static(ee,fb,slot,_newval ) \

gcDo_gcupdate_static(ee,fb,slot,_newval )

#endif /* ! YLRC */

End of file source listing

D.11 gc.c

This file contains code mostly from the original JVM. Most importantly, this file includes rchub.c
and defines the entry point for allocation code.

Due to the author’s non-disclosure agreement with Javasoft, only those parts of the file which
are new to the collector are listed below.

Source listing for file gc.c

.

.

.
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#include "rchub.c"

.

.

.

/*****************************************************************

************* ******************

************* Allocation Cache (degenerated) ******************

************* ******************

****************************************************************/

HObject * cacheAlloc(ExecEnv *ee, struct methodtable *mptr, long size)

{

#ifdef RCDEBUG

static int deltaMax = -1;

int delta = GetTickCount();

#endif

GCHandle *h;

JHandle *_h;

uint *obj;

int bin;

uint nbytes = sizeof(GCHandle) + size;

if (nbytes <= MAX_CHUNK_ALLOC) {

bin = chkconv.szToBinIdx[ nbytes ];

chkAllocSmallInlined( ee, bin, _h );

if (!_h) return NULL;

#ifdef RCDEBUG

ee->gcblk.dbg.nBytesAllocatedInCycle += chkconv.binSize[ bin ];

#endif

h = (GCHandle*)_h;

obj = (uint *)(h + 1);

if (size > 0)

memset( obj, 0, size );

#ifdef RCDEBUG

h->status = Im_used;

#endif

h->methods = mptr;

h->obj = obj;

gcBuffLogNewHandle(ee, h);

#ifdef RCDEBUG

delta = GetTickCount() - delta;

if (delta > deltaMax) {

deltaMax = delta;

printf( " *** CACHE(small, nbytes=%d) delta=%d\n", nbytes, delta );

}

#endif

}

else {

BlkAllocBigHdr *ph;

int i;

for(i=0; i<3; i++) {

ph = blkAllocRegion( nbytes, ee );

if (ph) goto __good;

gcvar.memStress = true;

gcRequestSyncGC();

}

return NULL;

__good:

h = (GCHandle*)BLOCKHDROBJ((BlkAllocHdr*)ph);

#ifdef RCDEBUG

ee->gcblk.dbg.nBytesAllocatedInCycle += ph->blobSize * BLOCKSIZE;

#endif

obj = (uint *)(h+1);

ZeroMemory( obj, size );

#ifdef RCDEBUG

h->status = Im_used;

#endif

h->methods = mptr;

h->obj = obj;

gcBuffLogNewHandle(ee, h);

ph->allocInProgress = 0;

#ifdef RCDEBUG

delta = GetTickCount() - delta;

if (delta > deltaMax) {

deltaMax = delta;
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printf( " *** CACHE(big, nbytes=%d) delta=%d\n", nbytes, delta );

}

#endif

}

sysAssert( h );

return (HObject*)h;

}

/*****************************************************************

************* ******************

************* Heap Meters ******************

************* ******************

****************************************************************/

.

.

.

int64_t

TotalObjectMemory(void)

{

return blkvar.heapSz;

}

int64_t

FreeObjectMemory(void)

{

int freePartialBytes[N_BINS], freePartialBlocks[N_BINS];

int nBlockBlocks = blkvar.nWildernessBlocks + blkvar.nListsBlocks;

int nBlockBytes, nPartialBytes, nPartialBlocks, nBytes, i;

float avgRes;

printf("****************** FreeObjectMemory statistics(begin)\n");

nBlockBytes = nBlockBlocks*BLOCKSIZE;

printf("BlkMgr blocks=%d MB=%d\n", nBlockBlocks, nBlockBytes>>20 );

chkGetPartialBlocksStats( freePartialBlocks, freePartialBytes );

printf("Partial:\n");

printf("binsz\tblocks\tMB\n");

nPartialBytes = 0;

nPartialBlocks = 0;

for (i=0; i<N_BINS; i++) {

printf("%d\t%d\t%d\n",

chkconv.binSize[i],

freePartialBlocks[i],

freePartialBytes[i]>>20 );

nPartialBlocks += freePartialBlocks[i];

nPartialBytes += freePartialBytes[i];

}

if (nPartialBlocks)

avgRes = (float)nPartialBytes /((float)BLOCKSIZE*(float)nPartialBlocks);

else

avgRes = -1;

printf("Total partial: blocks=%d MB=%d avg-res=%f\n",

nPartialBlocks,

nPartialBytes>>20,

avgRes

);

nBytes = nBlockBytes + nPartialBytes;

printf("Total free MB=%d\n", nBytes>>20 );

printf("****************** FreeObjectMemory statistics(end)\n");

return nBytes;

}

int64_t

TotalHandleMemory(void)

{

return 0;

}

int64_t

FreeHandleMemory(void)

{

return 0;

}

.

.

.

/*

* User interface to synchronous garbage collection. This is called

* by an explicit call to GC.

*/

void

gc(unsigned int free_space_goal)
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{

gcRequestSyncGC();

}

.

.

.

bool_t isHandle(void *p)

{

return _isHandle(p);

}

bool_t isObject(void *p)

{

GCHandle *h = (GCHandle* )(((char*)p)-sizeof(GCHandle));

return _isHandle(h);

}

.

.

.

bool_t isValidHandle(JHandle *h)

{

return _isHandle(h);

}

.

.

.

End of file source listing
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