
ספריות הטכניון
The Technion Libraries

בית הספר ללימודי מוסמכים ע"ש ארווין וג'ואן ג'ייקובס
Irwin and Joan Jacobs Graduate School

©
All rights reserved to the author

 This work, in whole or in part, may not be copied (in any media), printed,
 translated, stored in a retrieval system, transmitted via the internet or

 other electronic means, except for "fair use" of brief quotations for
 academic instruction, criticism, or research purposes only.

 Commercial use of this material is completely prohibited.

©
כל הזכויות שמורות למחבר/ת

אין להעתיק (במדיה כלשהי), להדפיס, לתרגם, לאחסן במאגר מידע, להפיץ באינטרנט, חיבור זה או
כל חלק ממנו, למעט "שימוש הוגן" בקטעים קצרים מן החיבור למטרות לימוד, הוראה, ביקורת או

מחקר. שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט.

Efficient Lock-Free Durable Sets

Yoav Zuriel

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Efficient Lock-Free Durable Sets

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Yoav Zuriel

Submitted to the Senate
of the Technion — Israel Institute of Technology
Cheshvan 5780 Haifa November 2019

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

This research was carried out under the supervision of Prof. Erez Petrank and Dr.
Nachshon Cohen, in the Faculty of Computer Science.

The generous financial help of the Technion and the Israel Science Foundation is grate-
fully acknowledged.

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Contents

List of Figures

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Preliminaries 9

3 Overview of The Proposed Data Structures 11
3.1 Recovery . 12
3.2 Link-Free Sets . 12
3.3 SOFT: Sets with an Optimal Flushing Technique 13

4 The Details of the Link-Free Algorithm 17
4.1 Link Free Linked List . 18

4.1.1 Auxiliary Functions . 18
4.1.2 The contains Operation . 18
4.1.3 The insert Operation . 19
4.1.4 The remove Operation . 20

4.2 Link Free Hash Table . 22
4.3 Link-Free Skip List . 23

4.3.1 The contains Operation . 23
4.3.2 The insert Operation . 23
4.3.3 The remove Operation . 24

4.4 Recovery . 26

5 The Details of SOFT 27
5.1 SOFT Linked List . 28

5.1.1 PNode . 28
5.1.2 Volatile Node . 29
5.1.3 The contains Operation . 30
5.1.4 The insert Operation . 30

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

5.1.5 The remove Operation . 33
5.2 SOFT Hash Table . 34
5.3 SOFT Skip List . 35

5.3.1 SOFT Skip List Node . 35
5.3.2 The contains Operation . 37
5.3.3 The insert Operation . 37
5.3.4 The remove Operation . 38

5.4 Recovery . 38

6 Memory Management 41

7 Measurements 43
7.1 Throughput Measurements . 43

8 Related Work 51

9 Conclusion 53

A Link Free Correctness 55
A.1 Durable Linearizability . 61

A.1.1 Insert . 62
A.1.2 Remove . 64
A.1.3 Contains . 65

A.2 Lock-Freedom . 67
A.2.1 A Preliminary Discussion . 67

B SOFT Correctness 69
B.1 Linearizability . 72

B.1.1 Find . 72
B.1.2 Insert . 73
B.1.3 Remove . 74
B.1.4 Contains . 74

B.2 Durable Linearizability . 75
B.2.1 Insert . 77
B.2.2 Remove . 78
B.2.3 Contains . 80

B.3 Lock-Freedom . 81
B.4 Theoretical Bound . 82

Hebrew Abstract i

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

List of Figures

4.1 Link-Free Node Structure . 17
4.2 Link-Free Node’s Functions . 18
4.3 List Auxiliary Functions . 19
4.4 Link-Free List contains . 19
4.5 Link-Free List insert . 21
4.6 Link-Free List remove . 21
4.7 Link-Free Hash Table Operations . 22
4.8 Link-Free Skip List contains . 24
4.9 Link-Free Skip List insert . 25
4.10 Link-Free Skip List remove . 26

5.1 PNode . 28
5.2 PNode Member Functions . 29
5.3 Volatile Node . 29
5.4 find and trim . 30
5.5 SOFT List contains . 31
5.6 SOFT List insert . 32
5.7 SOFT List remove . 34
5.8 SOFT Hash Table Operations . 34
5.9 SOFT Skip List Node Structure . 35
5.10 SOFT Node Auxiliary Functions . 36
5.11 SOFT Skip List contains . 37
5.12 SOFT Skip List insert . 39
5.13 SOFT Skip List remove . 40

7.1 Throughput as a Function of the #Threads 45
7.2 Throughput as a Function of Key Range 46
7.3 Throughput as a Function of the Percentage of Reads 48

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Abstract

Recently Intel released a new hardware component, Non-volatile memory, promising
comparable access latencies to the traditional DRAM while making the data written on
it persistent, resilient to power outages. As a result, non-volatile memory is expected
to co-exist or even replace DRAM in upcoming architectures. Durable concurrent
data structures for non-volatile memories are essential building blocks for constructing
adequate software for use with these architectures.

In this paper, we propose a new approach for durable concurrent sets. Using this
approach we design two novel techniques to create durable linearizable data structures.
We use these techniques to build three different kinds of sets from existing lock-free
sets: linked list, hash map, and skip list. Our techniques yield the most efficient durable
hash tables available today.

We ran three different tests on a 64-core AMD platform to obtain a better under-
standing of the different sets: scalability test, key range test, and workload test. The
evaluation shows a performance improvement factor of 3.3x over the existing state-
of-the-art hash map with 32 concurrent threads. To go with the new durable data
structures, we extend an existing memory manager to work with persistent memory.
The correctness of concurrent data structures is not trivial and thus a full correctness
proof is provided for both lists proving durable linearizability and lock-freedom.

1©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

2©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Abbreviations and Notations

BST : Binary Search Tree
CAS : Compare-and-Swap
EBR : Epoch-Based Reclamation
NVRAM : Non-Volatile RAM
RAM : Random Access Memory
SOFT : Sets with an Optimal Flushing Technique

3©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

4©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1

Introduction

An up-and-coming innovative technological advancement is non-volatile RAM (NV-
RAM). This new memory architecture combines the advantages of DRAM and SSD.
The latencies of NVRAM are expected to come close to DRAM, and it can be accessed
at the byte level using standard store and load operations, in contrast to SSD, which
is much slower and can be accessed only at a block level. Unlike DRAM, the storage of
NVRAM is persistent, meaning that after a power failure and a reset, all data written
to the NVRAM is saved [ZS15]. That data, in turn, can be used to reconstruct a state
similar to the one before the crash, allowing continued computation.

Nevertheless, it is expected that caches and registers will remain volatile [IMS16].
Therefore, the state of data structures underlying standard algorithms might not be
complete in the NVRAM view, and after a crash this view might not be consistent
because of missed writes that were in the caches but did not reach the memory. More-
over, for better performance, the processor may change the order in which writes reach
the NVRAM, making it difficult for the NVRAM to even reflect a consistent prefix
of the computation. In simpler words, the order in which values are written to the
memory may be different from the program order. Thus, the implementations and the
correctness conditions for programs become more involved.

Harnessing durable storage requires the development of new algorithms that can
ensure a consistent state of the program in memory when a crash occurs and the
development of corresponding recovery mechanisms. These algorithms need to write
back cache lines explicitly to the NVRAM, to ensure that important stores persist in
an adequate order. The latter can be obtained using a FLUSH instruction that explicitly
writes back cache lines to the DRAM. Flushes typically need to be accompanied by a
memory fence in order to guarantee that the write back is executed before continuing the
execution. This combination of instructions is denoted psync. The cost of flushes and
memory fences is high, hence their use should be minimized to improve performance.

When dealing with concurrent data structures, linearizability is often used as the
correctness definition [HW90]. An execution is linearizable if every operation seems
to take effect instantaneously at a point between its invocation and response. Various

5©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

definitions of correctness for durable algorithms have been proposed. These definitions
extend linearizability to the setting that includes crashes, recoveries, and flush events.
In this work, we adopt the definition of [IMS16] denoted durable linearizability. Execu-
tions in this case also include crashes alongside invocations and responses of operations.
Intuitively, an execution is durable linearizable if all operations that survive the crashes
are linearizable.

This work is about implementing efficient set data structures for non-volatile mem-
ory. Sets (most notably hash maps) are widely used, one example is for key-value stor-
age [NFG+13, RKCA17, DSL10]. It is, therefore, expected that durable sets would be
of high importance when NVRAMs reach mass production. The durable sets proposed
in this paper are the most efficient available today and can yield better throughput for
systems that require fault-tolerance. Our proposed data structures are all lock-free,
which make them particularly adequate for the setting. First, lock-free data structures
are naturally efficient and scalable [HS08]. Second, the use of locks in the face of crashes
requires costly logging to undo instructions executed in a critical section that did not
complete before the crash. Nesting of locks may complicate this task substantially
[CBB14].

State-of-the-art constructions of durable lock-free sets, denoted Log-Free Data Struc-
tures, were recently presented by [DDGZ18]. They proposed two clever techniques to
optimize durable structures and built four implementations of sets. Their techniques
were aimed at reducing the number of required explicit write backs (psync operations)
to the non-volatile memory.

In this paper, we present a new idea with two algorithms for durable lock-free sets,
which reduce the required flushes substantially. Whereas previous work attempted to
reduce flushes that were not absolutely necessary for recovery, we propose to completely
avoid persisting any pointer in the data structure. In a crash-free execution, we can use
the pointers to access data quickly, but when a crash occurs, we do not need to access
a specific key fast. We only need a way to find all nodes to be able to decide which
belong to the set and which do not. This idea is applicable to a set because for a set
we only care if a node (which represents a key) belongs to the data structure or not.
Thus, we only persist the nodes that represent set members by flushing their content
to the NVRAM, but we do not worry about persisting pointers that link these nodes --
hence the name link-free. The persistent information on the nodes allows determining
(after a crash) whether a node belongs to the set or not. We also allow access to all
potential data structure nodes after a crash so that during recovery we can find all the
members of the set and reconstruct the set data structure. We do that by keeping all
potential set nodes in special designated areas, which are accessible after a crash.

In volatile memory, we still use the original pointers of the data structure to allow
fast access to the set nodes, e.g., by keeping a hash map (in the volatile memory)
that allows fast access to members of the set. Not persisting pointers significantly
reduces the number of flushes (and associated fences), thereby, drastically improving

6©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

the performance of the obtained durable data structure. To recover from a crash, the
recovery algorithm traverses all potential set nodes to determine which belong to the
set. The recovery procedure reconstructs the full set data structure in the volatile
space, enabling further efficient computation.

The first algorithm that we propose, called link-free, implements the idea outlined in
the above discussion in a straightforward manner. The second algorithm, called soft,
attempts to further reduce the number of fences to the minimum theoretical bound.
This achievement comes at the expense of algorithmic complication. Without flushes,
the first (link-free) algorithm would probably be more performant, as it executes fewer
instructions. Nevertheless, in the presence of flushes and fences, the second (soft)
algorithm often outperforms link-free. Interestingly, soft executes at most one fence
per thread per update operation. It has been shown in [CGZ18] that there are no
durable data structures that can execute fewer fences in the worst case. Thus, soft
matches the theoretical lower bound, and is also efficient in practice.

On top of the innovative proposal to avoid persisting pointers (and its involved
implementation), we also adopt many clever techniques from previous work. Among
them, we employ the link-and-persist technique from [DDGZ18] that uses a flag to
signify that an address has already been flushed so that further redundant psync oper-
ations can be avoided. Another innovative technique follows an observation in [CFL17]
that flushes can be elided when writing several times to the same cache line. In such
case, it is sufficient to use fences (or, on a TSO platform, only compiler fences) to
ensure the order of writes to cache and the same order is guaranteed also when writing
to the NVRAM. Each write back of this cache line to the memory always reflects a
prefix of the writes as executed on the cache line.

Both schemes are applicable to linked lists, hash tables, skip lists and binary search
trees and both guarantee lock-freedom and maintain a consistent state upon a failure.
We implemented a basic durable lock-free linked list and a durable lock-free hash table
based on these two schemes and evaluated them against the durable lock-free linked list
and hash map of [DDGZ18]. The code for these implementations is publicly available
in GitHub at https://github.com/yoavz1997/Efficient-Lock-Free-Durable-Sets. Our al-
gorithms outperform previous state-of-the-art durable hash maps by a factor of up to
3.3x.

The basic assumption in this work (as well as previous work mentioned) is that
crashes are infrequent, as is the case for servers, desktops, laptops, smartphones, etc.
Therefore, efficiency is due to low overhead on data structures operation. The algo-
rithms proposed here do not fit a scenario where crashes are frequent. Substantial work
on dealing with scenarios in which crashes are frequent has been done. The research
focuses on energy harvesting devices in which power failures are an integral part of the
execution, e.g., [WH16, MCL17, CL16, LBC+17, RL19, ML18, JRLR15, YMP+18].
Some of these devices also have a non-volatile memory (FRAM) and volatile regis-
ters. To deal with the frequent crashes, programs are executed by using checkpoints

7©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

https://github.com/yoavz1997/Efficient-Lock-Free-Durable-Sets

(enforced by the programmer, by the compiler, by run time, or by special hardware),
and thus achieve persistent execution. Currently, those approaches do not deal with
concurrency or with durable linearizability.

8©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2

Preliminaries

A set is an abstract data structure that maintains a collection of unique keys. It
supports three basic operations: insert, remove, and contains. All three operation
return a Boolean result to indicate if the operation succeeded. The insert operation
adds a key to the set if the key is not already in the set and returns true iff the key
was not previously in the set. The remove operation deletes the given key from the set
(if the key belongs to the set), and returns true iff the key was in the set. And the
contains operation checks whether a given key is in the set.

A key in a set is usually associated with some data. In our implementation we
assume this data consists of one word (8 bytes). Our scheme can be easily extended to
support other forms of data or no data at all.

A typical implementation of a lock-free set relies on a lock-free linked graph, such
as a linked list, a skip list, a hash table, or a binary search tree (e.g., [Har01, Mic02,
Fra04, SS06, HS08, NM14]). Each node typically represents a single key and consists of
a key, a value, and a next pointer(s) to one (or more) additional nodes in the set. The
structure of the linking pointers determines the set complexity, from a simple linked
list (i.e., a single next pointer) to skip lists or binary search trees.

9©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

10©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3

Overview of The Proposed Data
Structures

One way to transform a lock-free set into a durable one1 is to ensure that the entire
structure is kept consistent in the NVRAM [IMS16]. Using this method, each modifi-
cation to the set has to be written immediately to the NVRAM. When reading from
the set, readers are also required to flush the read content, to avoid acting according to
values that would not survive a crash. Upon recovery, the content of the data structure
in the non-volatile memory matches a consistent prefix of the execution. The problem
with this approach is that the large number of flushes imposes a high performance
overhead.

In this paper, we take a different approach that fits data structures that represent
sets. Instead of keeping the entire structure in NVRAM, we only ensure that the key
and the value of each node are stored durably. In addition, we maintain a persistent
state in each node, which lets the recovery procedure determine whether the insertion
of a specific node has been completed and whether this node has not been removed. By
providing such per-node information, we avoid needing to keep the linking structure
(i.e., next pointers) of the set.

Both of our set algorithms maintain a basic unit called the persistent node, consisting
of a key, a value and a Boolean method for determining whether the key in the node
is a valid member of the set. The persistent nodes are allocated in special durable
areas, which only contain persistent nodes. During execution, the system manages
a collection of durable areas from which persistent nodes are allocated. Following a
crash, the recovery procedure iterates over the durable areas and reconstructs the data
structure with all its volatile links from all valid nodes.

A major challenge we face in the design of our algorithms is to ensure that the order
in which operations take effect in the non-volatile view matches some linearization order

1When saying an algorithm is durable we mean the algorithm is durable linearizable [IMS16].

11©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

of the operations executed in the volatile memory. This match is required to guarantee
the durable linearizability of the algorithms.

One standard techniques employed in the proposed algorithms is the marking of
nodes as removed by setting the least significant bit of one of the node’s pointers. This
method was presented by [Har01] and was used in many subsequent algorithms. The
algorithms we propose extend lock-free algorithms that employ this method. In the
description, we say “mark a node” to mean that a node is marked for removal in this
manner.

3.1 Recovery

The recovery procedure traverses all areas that contain persistent nodes. It determines
the nodes that currently belong to the set and reconstructs the linked data structure
in the volatile memory to allow subsequent fast access to the nodes. Note that this
construction does not need to use psync operations. Moreover, the reconstructed set
may have a different structure from the one prior to the crash (for example, as a
randomized skip list). The sole purpose of the structure is to make normal operations
efficient.

The proposed algorithms require the recovery execution to complete before further
operations can be applied. Before completing recovery of the data structure on the
volatile memory, the data structure is not coherent and cannot be used. This is unlike
some previous algorithms, such as [FHMP18, DDGZ18], which allow the recovery and
subsequent operations to run concurrently. This requirement works well in a natural
setting where crashes are infrequent.

3.2 Link-Free Sets

The first algorithm we propose for implementing a durable lock-free set is called link-
free, as it does not persist links. This algorithm keeps two validity bits in each node,
allowing making a node as invalid while it is in a transient state before being inserted
into the list. A node is considered valid only if the value of both bits match. Deciding
if a node is in the set depends on whether it is valid and not logically deleted. We
follow [Har01] and mark a node to make it logically deleted. The complementary case
is when the validity bits do not match, making the node invalid. An invalid node is not
in the set.

To determine whether a node is in the set, the contains operation checks that it is
in the volatile set structure, i.e., that it is not marked as deleted. If this is the case,
the contains operation makes sure this node is valid and flushed so that this node will
be resurrected if a crash and a recovery occur. This ensures that the returned value of
the contains matches the NVRAM view of the data structure’s state.

12©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

To insert a node, the node first needs to be initialized. To this end, one validity
bit is flipped, making the node invalid, and then the key and value are written into
it. Intermediate states do not affect a future recovery because an invalid node is not
recovered. Afterwards, the node is inserted into the linked structure and is made valid
by flipping the second validity bit. The insertion completes by executing a psync on
the new node, making the node durably in the set. If a node with the same key already
exists, the previous insert is first helped by making the previously inserted node valid,
and its content is flushed. At this point, the insert can return and report failure due
to the key already existing in the set.

To remove a node, the removal first helps complete the insertion of the target node.
The node is made valid and then its next pointer can be marked, so that it becomes
logically deleted. The removal is completed by executing a psync on the marked node.
If the node is already logically deleted, it is flushed using a psync and the thread
returns reporting failure (as it was already deleted). During recovery, a marked node
is considered not in the set.

Note that psync may be called multiple times on the same node. To further reduce
the number of psync operations, we employ an optimization. Since the proposed al-
gorithm persists a newly inserted node and a newly marked one, we use two flags to
indicate whether a psync was executed after inserting the node or after deleting it. The
first flag indicates that a new node was written to the NVRAM, and the second flag
indicates that a deleted node was written back. Before actually calling psync on the
node, the insert (or remove, correspondingly) flag is checked to minimize the number
of redundant psync operations. After calling psync on a node, the insert (or remove,
correspondingly) flag is set. This way threads coming in a later point see that the flags
are set, and they do not execute an unnecessary psync. This is an extension of the
link-and-persist technique of [DDGZ18].

3.3 SOFT: Sets with an Optimal Flushing Technique

The second algorithm we introduce is soft (Sets with an Optimal Flushing Technique).
Soft is also a durable lock-free algorithm for a set. It requires the minimal theoretical
number of fences per operation. Specifically, each thread performs at most one fence
per update and zero fences per read operation [CGZ18].

We developed two flavors of soft. In the first one (presented in Section 5.1), each
key in the set has two separate representations in memory: the persistent node and the
volatile node. Similarly to our link-free algorithm, persistent nodes (PNodes) are stored
in the durable areas. They contain a key and its associated value and three validity
bits used for a similar but extended validity scheme. Each time we wish to write to the
NVRAM, we do so via a PNode method. The PNode methods are described in further
detail in Section 5.1.1.

13©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

The volatile node takes part in the volatile-linked graph of the set. In addition to
holding the key and value, it has a pointer to a PNode with the same key and value,
and pointers to its descendants in the linked structure. The pointer, which is usually
used for marking, is used to keep a state that indicates the condition the node is in. A
node can be in one of the following four states:

1. Inserted: The node is in the set, is linked to the structure in the volatile memory
and its PNode has been written to the NVRAM.

2. Deleted: The node is not in the set. In this case, the node can be unlinked from
the volatile structure and later freed.

3. Intention to Insert: The node is in the middle of being inserted, and its PNode
is not yet guaranteed to be written to the NVRAM.

4. Inserted with Intention to Delete: The node is in the middle of being removed,
and its removed condition is not yet guaranteed to be written to the NVRAM.

The second flavor combines the these two nodes into one, making the algorithms
simpler and more space efficient, with the cost of worse performance due to increased
contention. All the operations executed on the PNode below are similarly executed on
the node in the combined flavor. This variant is described in Section 5.3.

The read operation (contains) executes on the volatile structure and does not require
any psync operations, which is in line with the bound. A contains operation only reads
the state of the relevant node and acts accordingly. A node that is either “inserted” or
“inserted with intention to delete” is considered a part of the set, so contains returns
true. Nodes with one of the remaining states (“intention to insert” or “deleted”) cause
the contains operation to return false.

To add a node to the set, soft allocates a volatile node and a PNode, links them
together, and fixes its state to be “intention to insert”. Next, the insert operation adds
the node to the volatile structure. Read operations seeing the node in this state do
not consider it as a part of the set. Thereafter, the associated PNode is written to the
NVRAM and the state of the volatile node is changed to “inserted”. When the state is
“inserted”, other operations view the key of this node as a part of the set.

When trying to insert a node into the volatile structure, if there is a node with the
same key in the set, the node’s state is checked. If the state of this node is “inserted” or
“inserted with intention to delete”, the node might be in the set in the event of a crash,
so the thread fails right away. If the state is “intention to insert”, then the old node
is not yet in the set, so the current thread helps complete the insertion before failing.
Just as many other algorithms, in soft, deleted nodes are trimmed when traversing
the linked-structure of the set, so there is no need to consider the scenario of seeing a
node with the “deleted” state. Either way, only a single psync is executed, following
the theoretical bound.

14©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

When a remove operation wishes to remove a node, it must ensure the relevant node
is in the set. A remove operation changes the node’s state from “inserted” to “inserted
with intention to delete”. In this case, read operations do acknowledge the node because
the removal has not finished yet. Then the removal is written to the NVRAM and,
finally, the state changes to “deleted”. A node with the state “intention to insert”
cannot be removed because it is not yet in the set. In this case, the remove operation
can return a failure: there is no node in the set with the given key. Alternatively, the
state of the node the thread wishes to remove may already be “inserted with intention
to delete”. In this case, before failing, the thread helps completing the removal and
persisting it. Just as before, this operation is done using only a single psync.

The goal of the states is to make threads help each other complete operations and
reduce the number of psync operations to the minimum. States 3 and 4, described
above, are used as flags to indicate the beginning of an operation so other threads are
able to help.

Both insert and remove use the same logic. They first update the non-volatile
memory, and only then execute the operation (reaching a linearization point) on the
volatile structure. In other words, the state a thread sees in soft already resides in
the NVRAM, unlike link-free in which a node has to be written back to the NVRAM.
This logic follows the upper bound of [CGZ18].

15©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

16©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4

The Details of the Link-Free
Algorithm

In this chapter we described how to apply the link-free technique to a linked list (Sec-
tion 4.1), a hash table (Section 4.2), and a skip list (Section 4.3).

All three sets use the same form of a node to store a single key-value pair in the
set (Figure 4.1). Each node has two validity bits, two flags to reduce the number of
flushes, a key, a value. The list has an additional field of next to point to the successor
node and in skip list there is an array of next pointers for each level.

1 class Node{
2 atomic<byte> validityBits;
3 atomic<bool> insertFlushFlag;
4 atomic<bool> deleteFlushFlag;
5 long key;
6 long value;
7 //One or more next pointers
8 } aligned(cache-line size);

Figure 4.1: Link-Free Node Structure

Moreover, all three sets share the same auxiliary functions to handle the validity bits
and introduced flushes. We use FLUSH_DELETE and FLUSH_INSERT to execute a psync
operation to write the content of a node to the NVRAM when removing or inserting it
to the list. Before executing the psync, the appropriate (insert or delete) flag is used to
check whether the latest modification to this node has already been flushed and avoid
repeated flushing. flipV1 and makeValid are two function to modify the validity of
a node: flipV1 flips the value of the first validity bit, making the node invalid, and
makeValid makes the node valid by equating the value of the second bit to the value
of the first bit. makeValid can be seen in Figure 4.2

17©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 bool isValid(uchar validityBits){
2 uchar v1 = (validityBits & 0x80) >> 7;
3 uchar v2 = validityBits & 1;
4 return v1 == v2;
5 }
6

7 void makeValid(Node* n){
8 uchar oldValidity = n->validityBits.load();
9 if (isValid(oldValidity))

10 return;
11 uchar v1 = (oldValidity & 0x80) >> 7;
12 uchar newValidity = v1 + (oldValidity & 0xFE);
13 n->newValidity.store(newValidity, memory_order_release);
14 }

Figure 4.2: Link-Free Node’s Functions

4.1 Link Free Linked List

In this section we demonstrate how to apply the principles of the link-free technique
to the linked list presented by [Har01]. Building on that implementation, the list is
initialized with a head with key −∞, and a tail with key ∞. All the other nodes are
inserted between these two, in an ascending order. Moreover, the next pointer in the
node contains a marking bit to indicate a logical deletion.

4.1.1 Auxiliary Functions

Before explaining each operation, we first discuss the auxiliary functions. We use the
functions isMarked, getRef, and mark without providing their implementations since
these are only bit operations, to clean, mark, or test the least significant bit of a pointer.

The auxiliary function trim (Figure 4.3) unlinks curr from the list. Just prior
to the unlinking CAS (line 4), node curr is flushed to make the delete mark on it
persistent (line 2). The return value signifies whether the unlinking succeeded or not.

The find function (Figure 4.3) traverses the list in order to locate nodes curr and
pred. The key of curr is greater or equal to the given key, and pred is the predecessor
of curr in the list. During its search of the list, find invokes trim on any marked
(logically deleted) node (line 16).

4.1.2 The contains Operation

The contains operation, based on the optimization of [HHL+06], is wait-free unlike the
lock-free insert and remove operations. Given a key, it returns true if a node with that
key is in the list and false otherwise.

In lines 3 – 4 (Figure 4.4), the list is traversed in order to find the requested key. If
a node with the given key is not found, then the operation returns false (line 5). If the
node exists but has been marked, it is flushed and the thread returns false (line 7).

18©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 bool trim(Node *pred, Node *curr){
2 FLUSH_DELETE(curr);
3 Node *succ = getRef(curr->next.load());
4 return pred->next.compare_exchange_strong(curr, succ);
5 }
6

7 Node*, Node* find(long key){//method returns two pointers, pred and curr.
8 Node* pred = head, *curr = head->next.load();
9 while(true){

10 if(!isMarked(curr->next.load())){
11 if(curr->key >= key)
12 break;
13 pred = curr;
14 }
15 else
16 trim(pred, curr);
17 curr = getRef(curr->next.load());
18 }
19 return pred, curr;
20 }

Figure 4.3: List Auxiliary Functions

The last possible case is that the node exists and has not been marked as removed. In
this case, the node is made valid, is flushed to make its insertion visible after a crash,
and true is returned (line 11).

1 bool contains(long key){
2 Node* curr = head->next.load();
3 while(curr->key < key)
4 curr = getRef(curr->next.load());
5 if(curr->key != key)
6 return false;
7 if(isMarked(curr->next.load())){
8 FLUSH_DELETE(curr);
9 return false;

10 }
11 makeValid(curr);
12 FLUSH_INSERT(curr);
13 return true;
14 }

Figure 4.4: Link-Free List contains

4.1.3 The insert Operation

The insert operation adds a key-value pair to the list. It returns true if the insertion
succeeds (i.e., the key was not in the list) and false otherwise.

The insert initiates a call to find, in order to know where to link the newly created
node (line 4). If the key does not exist, the operation allocates a new node out of a

19©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

durable area using allocFromArea(). The allocation procedure (Chapter 6) returns a
node that is available for use and whose validity state is valid, i.e., both validity bits
have the same value. The insert operation then makes the node invalid by changing the
first validity bit (line 12 Listing 4.5). This ensures that an incomplete node initialization
will not confuse the recovery. Next, the operation initializes the node’s fields, including
the next pointer of the node (line 16), and then the operation tries to link the new
node using a CAS (line 17). Note that the node is still invalid when linking it to the
list. If the CAS fails, the entire operation is restarted and, if successful, the new node
is made valid by flipping the second validity bit (line 18). It is then flushed to persist
the insertion and true is returned.

If the key exists in the list, the existing node is made valid, then flushed and the
operation returns false (lines 6 – 8). When finding a node with the same key, the
existing node might not be valid yet because the node is linked to the list in an invalid
state. It has to be made valid and persistent before false can be returned. Otherwise,
a subsequent crash may reflect this failed insert but not reflect the preceding insert
that caused this failure. This ensures durable linearizability.

The order between making the node valid and linking it is important. Making a
node valid first and then linking it may cause inconsistencies. Consider a scenario
with two threads trying to insert a node with a key k but with different values. Both
threads may finish initializing their nodes and make them valid, but then the system
crashes. During recovery, both nodes are found in a valid state (they may appear in the
NVRAM even if an explicit flush was not executed), and there is no way to determine
which should be in the set and which should not.

4.1.4 The remove Operation

Given a key, the remove operation deletes the node with that key from the set. The
return value is true when the removal was successful, i.e., there was such a node in the
list, and now there is not, and false otherwise.

First, the requested node and its predecessor are found (line 5 Figure 4.6). If the
node found does not contain the given key, the thread returns false. Otherwise, the
node is made valid and then its next pointer is marked using a CAS (line 11). All along
the code (and also here) we maintain the invariant that a marked node is valid. If the
CAS succeeds, the operation finishes by calling trim to physically remove the node,
and otherwise the removal is restarted.

There is no need for a psync operation between making curr valid (line 10) and
the logical removal (line 11). Both modify the same cache line and the writes to the
cache are ordered by the CAS (with default memory_order_seq_cst), implying the
same order to the NVRAM. Therefore, the view of the node can be invalid (prior to
line 10), valid and not removed (between lines 10 and 11), or valid and marked (after
line 11). The node can never be in an inconsistent state (marked and invalid).

20©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 bool insert(long key, long value){
2 while(true){
3 Node *pred, *curr;
4 pred, curr = find(key);
5 if(curr->key == key){
6 makeValid(curr);
7 FLUSH_INSERT(curr);
8 return false;
9 }

10

11 Node* newNode = allocFromArea();
12 flipV1(newNode);
13 atomic_thread_fence(memory_order_release);
14 newNode->key = key;
15 newNode->value = value;
16 newNode->next.store(curr, memory_order_relaxed);
17 if(pred->next.compare_exchange_strong(curr, newNode)){
18 makeValid(newNode);
19 FLUSH_INSERT(newNode);
20 return true;
21 }
22 }
23 }

Figure 4.5: Link-Free List insert

1 bool remove(long key){
2 bool result = false;
3 while(!result){
4 Node *pred, *curr;
5 pred, curr = find(key);
6 if(curr->key != key)
7 return false;
8 Node* succ = getRef(curr->next.load());
9 Node* markedSucc = mark(succ);

10 makeValid(curr);
11 result = curr->next.compare_exchange_strong(succ, markedSucc);
12 }
13 trim(pred, curr);
14 return true;
15 }

Figure 4.6: Link-Free List remove

21©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

4.2 Link Free Hash Table

The hash table implementation relies heavily on the list (the same applies to soft hash
table). It has a fixed sized array where each entry is simply a link-free list. Each hash
table operation is delegated to the corresponding link-free list, using a standard hash
function. The code of all three operations can be seen in Figure 4.7.

1 bool insert(long key, long value){
2 LinkFreeList bucket = table[hash(key)];
3 return bucket.insert(key, value);
4 }
5

6 bool remove(long key){
7 LinkFreeList bucket = table[hash(key)];
8 return bucket.remove(key);
9 }

10

11 bool contains(long key){
12 LinkFreeList bucket = table[hash(key)];
13 return bucket.contains(key);
14 }

Figure 4.7: Link-Free Hash Table Operations

22©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

4.3 Link-Free Skip List

We extend the lock-free skip list presented by Fraser [Fra04] to use the link-free tech-
niques. To the link-free node we added an integer to store the number of levels the
node is in. Also, we included more next pointers for each of the levels, and as per the
original algorithm, all of the pointers in all of the levels can be marked.

Since only the next pointer in the lowest level indicates the belonging of a key to
the set, only after marking this pointer, the node is flushed. Note that, we need to
flush a single cache line regardless of the skip list node actual size, since the missing
links will be reconstructed during a recovery.

The original skip list uses a few auxiliary that we use without providing an imple-
mentation. First, in the skip list we use the same bit operations as in the list, mark,
getRef and isMarked, and the do the same in the context of the skip list as well.

Second, the skip list has its own version of find, where the skip list is traversed
and a node can be found in logarithmic time and a list of the node’s predecessors and
successors is filled along the function’s execution (one pair per level). find returns
whether the key of the successor on the lowest level equals to the requested key. There
are three variant of the find function, cleanupFind which flushes and tries to phys-
ically remove nodes which are marked at level 0. The second and third variant are
noCleanupFind and noCleanupFindSuccs which only traverse the list without phys-
ically unlinking, and as a result of that, without flushing any nodes. The difference
between the two is that noCleanupFindSuccs does not return a list of predecessors,
only a list of successors.

Another useful function is markNode which is called to mark all of the node’s point-
ers. The marking is done in a descending order, and it returns whether the current
thread marked the pointer on the lowest level (Section 4.3.3).

4.3.1 The contains Operation

The algorithm (Figure 4.8) is similar to the one presented in [Fra04] and it is wait-free
as well. We added the condition in lines 8 - 11 to check if the node we are looking for
is deleted, and if we are looking at the lowest level. If so, the node is seen as out of
the set, so we flush its removal and return false. The second addition was lines 16,
17 where a key is found and since it is out of the loop is cannot be marked. Before
returning true, we make it valid and flushed, so the existence persists.

4.3.2 The insert Operation

The insert operation (Figure 4.9) starts by looking for the given key (line 5). If the key
is found, before returning false, the key’s node is made valid and persisted. Otherwise,
a new node is allocated, it is made invalid by flipping its first validity bit, the node’s
fields are initialized and all of the next pointers are written using the successors list.

23©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 bool contains(long key){
2 Node *pred = this->head;
3 for (int i = MAX_LEVEL - 1; i >= 0; i--){
4 Node *curr = getRef(pred->next[i].load());
5 while (curr->key < key || isMarked(curr->next[i].load())){
6 if (!isMarked(curr->next[i].load()))
7 pred = curr;
8 else if (i == 0 && curr->key == key){
9 FLUSH_DELETE(curr);

10 return false;
11 }
12 curr = getRef(curr->next[i].load()));
13 }
14

15 if (curr->key == key){
16 makeValid(curr);
17 FLUSH_INSERT(curr);
18 return true;
19 }
20 }
21 return false;
22 }

Figure 4.8: Link-Free Skip List contains

In line 22 the thread tries to link the new node to the skip list at level 0. If it fails,
the whole operation is restarted. A successful CAS makes the node in the set, so other
concurrent operations now acknowledge it.

The node is made valid and persisted and finally the operations ends by CASing
all of the other next pointers to the new node. Note that CASing the other pointers is
not mandatory since the node is connected on level 0, hence it is in the set. The other
pointers are used for improved performance. Because of that reason, if one of the new
node’s pointer is marked (line 34), i.e., it is in the middle of deletion, the thread may
return true safely.

4.3.3 The remove Operation

In order to remove a node (Figure 4.10), noCleanupFindSuccs is invoked (line 3). If
the key is not found, the thread return false and exits. Otherwise, it tries to mark
the node’s next pointers by calling markNode (line 8). The function returns true to
only one thread which logically removed the node, and false to all the others. All the
concurrent removes flush the removed node before returning, but only the thread which
actually removed the node physically unlinks in by calling cleanupFind (line 11).

24©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 bool insert(long key, long value){
2 Node *preds[MAX_LEVEL], *succs[MAX_LEVEL];
3

4 while(true){
5 if (noCleanupFind(key, preds, succs)){
6 makeValid(succs[0]);
7 FLUSH_INSERT(succs[0]);
8 return false;
9 }

10

11 Node *newNode = allocNodeFromArea();
12 flipV1(newNode);
13 std::atomic_thread_fence(std::memory_order_release);
14 newNode->key = key;
15 newNode->value = value;
16 newNode->topLevel = getRandomLevel();
17

18 for (int i = 0; i < newNode->topLevel; i++)
19 newNode->next[i].store(succs[i], memory_order_relaxed);
20

21 if (preds[0]->next[0].compare_exhange_strong(getRef(succs[0]),
22 newNode))
23 break;
24 }
25

26 makeValid(newNode);
27 FLUSH_INSERT(newNode);
28

29 for (int i = 1; i < newNode->topLevel; i++){
30 while (true){
31 Node *pred = preds[i];
32 Node *succ = succs[i];
33 next = newNode->next[i].load();
34 if (isMarked(next))
35 return true;
36 if (pred->next[i].compare_exchange_strong(succ, newNode))
37 break;
38 cleanupFind(key, preds, succs);
39 }
40 }
41 return true;
42 }

Figure 4.9: Link-Free Skip List insert

25©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 bool remove(long k){
2 Node *succs[MAX_LEVEL];
3 if (!noCleanupFindSuccs(key, succs))
4 return false;
5

6 Node *node = succs[0];
7 makeValid(node);
8 bool result = markNode(node);
9 FLUSH_DELETE(node);

10 if (result)
11 cleanupFind(key, NULL, NULL);
12 return result;
13 }

Figure 4.10: Link-Free Skip List remove

4.4 Recovery

The validity scheme we use helps us determine whether a node was linked to the data
structure before a crash occurred. This is possible because before initializing a node,
it is made invalid so no partial writes are observed. If a remove operation manages to
mark a node, we can know for sure it is removed.

The recovery takes place after a crash and the data it sees is data that was flushed
to the NVRAM prior to the crash. The procedure starts by initializing an empty
data structure with a head and a tail. Afterwards, it scans the durable areas of the
threads for nodes. All nodes that are valid and unmarked are inserted, one by one, to
an initially empty link-free set. All other nodes (invalid nodes and valid and marked
nodes) are sent to the memory manager for reclamation. The linking of the valid nodes
is done without any psync operations since all data in the nodes is already stored in
the NVRAM. Note that this scanning can be done in a parallel manner, if each thread
scans its own areas and the insertion is done in a parallel manner.

26©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5

The Details of SOFT

As discussed in Section 3.3, soft achieves the lower bound on the number of fence
instructions used. We adapted this technique to a linked list (Section 5.1), a hash table
(Section 5.2), and a skip list (Section 5.3).

The transformation from a simple lock-free data structure to a soft one, is not
as easy as it was with the link-free algorithm. Since the number of psync operations
should be minimal, a different approach is taken, where the linearization point occurs
only after persisting data on the NVRAM. Because of that we can guarantee that some
linearization survives a crash without too many psync operations without considering
many dependency scenarios. This guarantee comes with the cost of using more CAS
primitives along the different operations, more while loops and algorithmic complica-
tion.

27©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

5.1 SOFT Linked List

The second algorithm we present is soft, which achieves the lower bound on the
number of psync operations. It does so by dividing each update operation into two
stages: intention and completion. By doing so, a thread triggers helping mechanisms
by other threads, while not changing the logical state of the data structure. In this
section, we start by describing the nodes of the soft list (Sections 5.1.1 and 5.1.2),
then we discuss the implementation details of each set operation (Sections 5.1.3, 5.1.4
and 5.1.5).

5.1.1 PNode

At the core of soft there is a persistent node (PNode) that captures the state of a
given key in the NVRAM. It has a key, a value and three flags, which are described
next. The structure is provided in Figure 5.1.

1 class PNode{
2 atomic<bool> validStart, validEnd, deleted;
3 atomic<long> key;
4 atomic<long> value;
5 } aligned(cache line size);

Figure 5.1: PNode

The PNode’s three flags indicate the state of the node in the NVRAM. The first
two flags have a similar meaning to the ones used by the link-free algorithm. When
both flags are equal, the node is in a consistent state, and if the flags are different, then
the node is in the middle of being inserted. It also has an additional flag indicating
whether the node was removed.

Specifically, the PNode starts off with all three flags having the same value, pIni-
tialValidity. In this case, the PNode is considered valid and removed. The negation of
pInitialValidity is returned to the user of the node after calling alloc, and is denoted
pValidity. From this point on, the state of the persistent node progresses by flipping
the flags from pInitialValidity to pValidity.

When a key-value pair is inserted into the data structure, the corresponding PNode
is made valid, by setting validStart to pValidity, assigning the key and the value of
the node, and finally setting validEnd to pValidity. Only then, the persistent node is
written to the NVRAM. When validStart differs from validEnd, the node is considered
invalid. When validStart equals to validEnd (but is still different from deleted), the
node is properly inserted and will be considered during recovery.

When the PNode is removed from the data structure, the deleted flag is set and
the node is flushed. Then, the node is valid and removed, so it is not considered
during recovery. Note that this represents exactly the same state as when the node was
allocated, making the persistent node ready for future allocations. The only difference

28©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

is the value of all flags, which was swapped from pInitialValidity to pValidity. Code for
allocating, creating and destroying a PNode appears in Figure 5.2.

1 bool PNode::alloc(){
2 return !validStart.load();
3 }
4

5 void PNode::create(long key, long value, bool pValidity){
6 validStart.store(pValidity, memory_order_relaxed);
7 atomic_thread_fence(memory_order_release);
8 this->key.store(key, memory_order_relaxed);
9 this->value.store(value, memory_order_relaxed);

10 validEnd.store(pValidity, memory_order_release);
11 psync(this);
12 }
13

14 void PNode::destroy(bool pValidity){
15 deleted.store(pValidity, memory_order_release);
16 psync(this);
17 }

Figure 5.2: PNode Member Functions

5.1.2 Volatile Node

Volatile nodes have a key, a value, and a next pointer (to the next volatile node).
In addition, they contain a pointer to a persistent node (i.e., a PNode, explained in
Section 5.1.1) and pValidity, a Boolean flag indicating the pValidity of the persistent
node. The structure of the volatile node appears in Figure 5.3.

1 class Node{
2 long key;
3 long value;
4 PNode* pptr;
5 bool pValidity;
6 atomic<Node*> next;
7 };

Figure 5.3: Volatile Node

Similar to the lock-free linked list algorithm by [Har01], the last bits of the next
pointers store whether the node is deleted. Unlike Harris’ algorithm, a volatile node
must be in one of four states: “intention to insert”, “inserted”, “inserted with inten-
tion to delete”, and “deleted”, as discussed in the overview (Section 3.3). We assume
standard methods for handling pointers with embedded state (lines 2 – 7 Figure 5.5).
In addition, we use trim and find to physically unlink removed nodes and find the
relevant window, respectively (Figure 5.4). Unlike its link-free counterpart, find also

29©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

returns the state of both nodes. One is in the second address returned and the other is
returned explicitly. Moreover, trim does not execute a psync before unlinking a node.

1 bool trim(Node *pred, Node *curr) {
2 state predState = getState(curr);
3 Node *currRef = getRef(curr), *succ = getRef(currRef->next.load());
4 succ = createRef(succ, predState);
5 return pred->next.compare_exchange_strong(curr, succ);
6 }
7

8 Node*, Node* find(long key, state *currStatePtr){
9 Node *pred = head, *curr = pred->next.load();

10 Node *currRef = getRef(curr);
11 state predState = getState(curr), cState;
12 while (true){
13 Node *succ = currRef->next.load();
14 Node *succRef = getRef(succ);
15 cState = getState(succ);
16 if (cState != DELETED){
17 if (currRef->key >= key)
18 break;
19 pred = currRef;
20 predState = cState;
21 }
22 else
23 trim(pred, curr);
24 curr = createRef(succRef, predState);
25 currRef = succRef;
26 }
27 *currStatePtr = cState;
28 return pred, curr;
29 }

Figure 5.4: find and trim

5.1.3 The contains Operation

The contains operation checks whether a key resides in the set. Unlike the insert and
remove operations, contains is wait-free and does not use any psync operations.

A node is in the set only if its state is either “inserted” or “inserted with intention
to delete”. A node with the state “inserted with intention to delete” is still in the set
because there is a thread trying to remove it, but it has not finished yet. Only in these
two cases the return value is true; in all the other cases, it is false.

5.1.4 The insert Operation

Insertion in soft follows the standard set API, which is getting a key and a value and
inserting them into the set. The operation returns whether the insertion was successful.
Code is provided in Figure 5.6 and is discussed below.

30©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 //Pseudo-code for managing state pointers
2 #def createRef(address, state) {.ptr=address, .state=state}
3 #def getRef(sPointer) {sPointer.ptr}
4 #def getState(sPointer) {sPointer.state}
5 #def stateCAS(sPointer, oldState, newState) {old=sPointer.load();
6 return sPointer.compare_exchange_strong(createRef(old.ptr, oldState),
7 createRef(old.ptr, newState));}
8

9 bool contains(long key){
10 Node *curr = head->next.load();
11 while (curr->key < key)
12 curr = getRef(curr->next.load());
13 state currState = getState(curr->next.load());
14 if(curr->key != key)
15 return false;
16 if(currState == DELETED || currState == INTEND_TO_INSERT)
17 return false;
18 return true;
19

20 }

Figure 5.5: SOFT List contains

Similar to link-free, persistent nodes are allocated from a durable area using the
method allocFromArea. When allocating a new PNode, all its validity bits have the
same value, so its state is deleted. Volatile nodes can be allocated from the main heap.

The first step of insert is a call to find, which returns the relevant window (line 6).
As mentioned above, while traversing the list, if a logically removed node, is found along
the way the thread tries to complete its physical removal. Unlike link-free, however,
there is no need to execute a psync a removed node before unlinking it. The volatile
node becomes removed only after the corresponding PNode becomes removed and is
written to the NVRAM. Therefore, if a volatile node is marked as removed, it is always
safe to unlink it from the data structure and it does not require further operations.

Discovering a node with the same key already in the list fails the insertion. Nonethe-
less, the thread needs to help complete the insertion operation before returning, if the
found node’s state is “intention to insert”. In the complementary case, when there is
no node with the same key, the thread allocates a new PNode and a new volatile node,
and attempts to link the latter node to the list (line 24) using a CAS. The new volatile
node is initialized with the state “intention to insert”, because we want other threads
to help with finishing the insertion. If the CAS failed, the entire operation starts over.
Otherwise, the thread moves to the helping part, where the node is fully inserted.

The helping part starts by initializing the PNode of the appropriate node (line 31).
Afterwards, all the threads try to complete the insertion and make it visible by changing
the state of the new node to “inserted” (line 34). Finally, the thread returns true or
false depending on the path taken.

31©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 bool insert(long key, long value){
2 Node *pred, *curr, *currRef, *resultNode;
3 state predState, currState;
4

5 while(true){
6 pred, curr = find(key, &currState);
7 currRef = getRef(curr);
8 predState = getState(curr);
9 bool result = false;

10 if(currRef->key == key){
11 if(currState != INTEND_TO_INSERT)
12 return false;
13 resultNode = currRef;
14 break;
15 }
16 else{
17 PNode* newPNode = allocFromArea();
18 bool pValidity = newPNode->alloc();
19 Node* newNode = new Node(key, value, newPNode, pValidity);
20 newNode->next.store(createRef(currRef, INTEND_TO_INSERT),
21 memory_order_relaxed);
22

23 if(!pred->next.compare_exchange_strong(curr,
24 createRef(newNode, predState)))
25 continue;
26 resultNode = newNode;
27 result = true;
28 break;
29 }
30 }
31 resultNode->pptr->create(resultNode->key, resultNode->value,
32 resultNode->pValidity);
33 while(getState(resultNode->next.load()) == INTEND_TO_INSERT)
34 stateCAS(&resultNode->next, INTEND_TO_INSERT, INSERTED);
35

36 return result;
37 }

Figure 5.6: SOFT List insert

32©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

5.1.5 The remove Operation

The remove operation unlinks a node from the set with the same key as the given key.
It returns true when the removal succeeds and false otherwise.

Similar to the previous operation, remove starts by finding the required window.
If the key is not found in the set, the operation returns false. Recall that a volatile
node is removed from the set only after its PNode becomes deleted in the NVRAM,
so returning false is safe. Also, if the found node has a state of “intention to insert”,
the remove operation returns false. This is because such a node is not guaranteed to
have a valid PNode in the NVRAM.

In the case when a node with the correct key is found, the thread attempts to mark
the node as “inserted with intention to delete”. At this point, all threads attempting to
remove the node compete; the successful thread will return true while other threads
will return false (line 14). This does not, however, change the logical status of the node
(the key is still considered as inserted) or modify the NVRAM. Once the node is made
“inserted with intention to delete”, the thread calls destroy on the relevant PNode, so
that the deletion is written to the NVRAM. Finally, the state is changed to be “deleted”
to indicate the completion and the result is returned. Note that calling destroy and
marking the node as “deleted” happens even if the thread fails in the “inserted with
intention to delete” competition, in which case it helps the winning thread. The final
step, executed only by the thread that won the “inserted with intention to delete”
competition, physically disconnects the node from the list by calling trim. This latter
step does not change the logical representation of the set and is executed only by a
single thread to reduce contention.

33©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 bool remove(long key){
2 bool result = false;
3 Node *pred, *curr;
4 state predState, currState;
5 pred, curr = find(key, &currState);
6 Node* currRef = getRef(curr);
7 predState = getState(curr);
8 if(currRef->key != key)
9 return false;

10 if(currState == INTEND_TO_INSERT)
11 return false;
12

13 while(!result && getState(currRef->next.load()) == INSERTED)
14 result = stateCAS(&currRef->next, INSERTED, INTEND_TO_DELETE);
15 currRef->pptr->destroy(currRef->pValidity);
16 while(getState(currRef->next.load()) == INTEND_TO_DELETE)
17 stateCAS(&currRef->next, INTEND_TO_DELETE, DELETED);
18

19 if(result)
20 trim(pred, curr);
21 return result;
22 }

Figure 5.7: SOFT List remove

5.2 SOFT Hash Table

The soft hash table implementation relies heavily on the list as well. It has a fixed sized
array where each entry is simply a soft list. Each hash table operation is delegated
to the corresponding soft list, using a standard hash function. The code of all three
operations can be seen in Figure 5.8.

1 bool insert(long key, long value){
2 SOFTList bucket = table[hash(key)];
3 return bucket.insert(key, value);
4 }
5

6 bool remove(long key){
7 SOFTList bucket = table[hash(key)];
8 return bucket.remove(key);
9 }

10

11 bool contains(long key){
12 SOFTList bucket = table[hash(key)];
13 return bucket.contains(key);
14 }

Figure 5.8: SOFT Hash Table Operations

34©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

5.3 SOFT Skip List

Similar to link-free, we can use soft and create a durable lock-free skip list, with
minimal use of fences per operations (following the lower bound [CGZ18]). The node
used is different from the one presented in the list section. The new description of this
node appears in Section 5.3.1.

We continue using the states on the next pointers in the skip list as well. However,
since the pointers at higher levels are used for performance only, they do not have to
go through the different states. Only the pointer at the lowest level has to transition
from “intention to insert” through “inserted” and “inserted with intention to delete” to
become eventually “deleted”. Similar to before, a single cache-line consists all the vital
data (key, value, etc.) and the pointer of level 0, thus we use a single psync operation
to “flush” a node. The other pointers are reconstructed during recovery, on demand.

5.3.1 SOFT Skip List Node

In this section we describe a new variant to the node used in soft. The main difference
is the fact this node encapsulate both the volatile and persistent node presented in
Section 5.1. This node like the list’s volatile node has a key, a value, a validity flag and
several next pointers, and like the persistent node, it has a three-flag validity scheme.

1 class Node{
2 bool pValidity;
3 atomic<bool> validStart, validEnd, deleted;
4

5 long key;
6 long value;
7 int topLevel;
8 atomic<Node*>[] nexts;
9 } aligned(cache-line size);

Figure 5.9: SOFT Skip List Node Structure

The insertion of a new key resembles the insertion of link-free. The node is made
invalid (by flipping validStart), and only then it is initialized with the “intention
to insert” state on the pointer in level 0. Afterwards, the node is linked to the lower
level (in an invalid state), becomes valid (by equating validEnd to validStart, and
persisted. Unlike link-free, the node is still not considered as a part of the list as the
state on its pointer is “intention to insert”. To complete the insertion, the state becomes
“inserted” (using a CAS).

The auxiliary functions of the list’s persistent node also change slightly (presented
in Figure 5.10). In addition, we added a new function to initialize a skip list node given
a key and value, createNode. This function works by making the new node invalid
and initializing its values. The node’s topLevel field is random, and the validity is
acquired using the alloc auxiliary function.

35©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 //Pseudo-code for managing state pointers.
2 #def getRef(sPointer) {sPointer.ptr}
3 #def createRef(address, state) {.ptr=address, .state=state}
4 #def getState(sPointer) {sPointer.state}
5 #def stateCAS(*sPointer, oldState, newState)
6 {CAS(sPointer.state, oldState, newState);}
7

8 bool alloc() {
9 return !validStart.load();

10 }
11

12 void help() {
13 validEnd.store(pValidity, memory_order_release);
14 psync(this);
15 }
16

17 void destroy() {
18 deleted.store(pValidity, memory_order_release);
19 psync(this);
20 }
21

22 void createNode(long key, long value){
23 bool validity = this->alloc();
24 this->validStart.store(validity, memory_order_relaxed);
25 atomic_thread_fence(memory_order_release);
26 this->key = key;
27 this->value = value;
28 this->topLevel = get_random_level();
29 this->pValidity = validity;
30 }

Figure 5.10: SOFT Node Auxiliary Functions

36©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

The soft skip list uses auxiliary functions such as noCleanupFind and cleanupFind,
similar to the ones of the link-free skip list (Section 4.3). Just like in the soft list find
function, the skip list ones also return the states of the different pointers, the states
of the previous pointers are stores with the successor pointers, and the states of the
successor pointers are stored in an array.

5.3.2 The contains Operation

Since soft matches the lower bound, there is no need to execute a single psync during
the contains operation, making the code almost identical to the original. The only
difference is the condition to check and make sure a node is indeed in the skip list.
This condition is encapsulated in isOut, which checks the state of the pointer in the
current level, if it is “intention to insert” of “deleted” is it considered out of the skip
list.

1 bool contains(long key){
2 Node *pred = this->head, *curr;
3 for (int i = MAX_LEVEL - 1; i >= 0; i--){
4 curr = getRef(pred->next[i].load());
5 while (curr->key < key || isOut(curr->next[i].load())){
6 if (!isOut(curr->next[i].load()))
7 pred = curr;
8 curr = getRef(curr->next[i].load());
9 }

10 if (curr->key == key)
11 return true;
12 }
13 return false;
14 }

Figure 5.11: SOFT Skip List contains

5.3.3 The insert Operation

To insert a new node to the soft skip list, the thread first searches the skip list. If a
node with the same key is found, denoted n with “intention to insert” state (we remind
the reader that a node returned from a find method cannot be in a “deleted” state),
the operation can fail and return false. In case the state of n is “intention to insert”,
the current thread cannot insert its node, however, n is not in the list yet. Thus, the
current thread help to complete n’s insertion. It makes the node valid and executes a
psync, by calling help (line 12 Figure 5.12) and then it changes the state of n to be
“inserted”.

Otherwise, there is no node with the given key in the data structure. The thread
then allocates a new node, makes it invalid and initializes the node’s fields, including the
next pointers. Note that the pointer on the lowest level is infused with the “intention

37©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

to insert” state. Afterwards, the thread tries to link its node to the skip list, if it fails,
the whole operation is restarted. Following a successful linking, the node is made valid
and it is written to the NVRAM using help (line 33), and the state of the node changes
to “inserted” to complete its insertion. Finally, the rest of the pointers in the other
levels are set. The values of the next pointers on the higher levels (all levels except the
lowest one), are only used for performance and not for correctness, so they can be set
in a non-atomic way.

5.3.4 The remove Operation

To remove a node, the thread finds it first. If there is no node with the given key, or
its state is “intention to insert” then the operation can fail immediately. If such a node
n exists, the thread changes n’s state to “intention to delete”, calls destroy to make n

deleted (all three validity flags match), and finally n’s state changes to “deleted”.

5.4 Recovery

In soft list only PNodes are allocated from the durable areas. All the volatile nodes are
lost due to the crash. This means that the intentions are not available to the recovery
procedure, so it decides whether a key is a part of the list based on the validity bits kept
in the PNode. A PNode is valid and a part of the set, if the first two flags (validStart
and validEnd) have the same value, and the last flag (deleted) has a different value.

Similarly, in the soft skip list, the next pointers are not written back the the
NVRAM, so the intentions may not be available during recovery. Just like soft list,
however, the procedure distinguishes valid nodes from invalid ones using the validity
scheme.

In order to reconstruct the soft list, a new and empty list is allocated. Then the
recovery iterates over the durable areas to find valid and not deleted PNodes. If such a
PNode pn is found, a new volatile node n is allocated and its fields are initialized using
the pn’s data. The value of n’s pValidity is set to the be pn’s validStart, and pptr
points to pn. Finally, n is linked to the list in a sorted manner and its state is set to
“inserted”.

In order to recover a soft skip list, a similar technique is used. We create an
empty skip list to which all the surviving nodes will be insert to. The durable areas are
scanned, and valid and not deleted nodes are linked back to the skip list. Note that,
we can choose a new level for surviving nodes if we wish (to better balance the new
skip list). It is not necessary, however, since this field must be coherent for the node to
be valid.

Similar to link-free, no psync operations are used to link the nodes since the data
already persisted in the NVRAM. Invalid or deleted nodes are sent to the memory
manager for reclamation.

38©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 bool insert(long key, long value){
2 Node *newNode, *pred, *succ, *next;
3 Node *preds[MAX_LEVEL], *succs[MAX_LEVEL];
4 state succStates[MAX_LEVEL];
5 bool result;
6

7 while(true){
8 if (noCleanupFind(key, preds, succs, succStates)){
9 if (succStates[0] != INTEND_TO_INSERT)

10 return false;
11 newNode = getRef(succs[0]);
12 newNode->help();
13 while(getState(newNode->next[0].load()) == INTEND_TO_INSERT)
14 stateCAS(newNode->next, INTEND_TO_INSERT, INSERTED);
15 return false;
16 }
17 newNode = allocFromArea();
18 newNode->createNode(key, value);
19

20 Node *succRef = getRef(succs[0]);
21 newNode->next[0].store(createRef(succRef, INTEND_TO_INSERT),
22 memory_order_release);
23 for (int i = 1; i < newNode->topLevel; i++){
24 Node *currRef = getRef(succs[i]);
25 newNode->next[i].store(createRef(currRef, INSERTED),
26 memory_order_relax);
27 }
28

29 Node *after = createRef(newNode, getState(succs[0]));
30 if (preds[0]->next[0].compare_exchange_strong(succs[0], after))
31 break;
32 }
33 newNode->help();
34 while(getState(newNode->next[0].load()) == INTEND_TO_INSERT)
35 stateCAS(newNode->next, INTEND_TO_INSERT, INSERTED);
36

37 for (int i = 1; i < newNode->topLevel; i++){
38 while (true){
39 pred = preds[i];
40 succ = succs[i];
41 next = newNode->next[i].load();
42 if (isOut(next))
43 return true;
44 if (pred->next[i].compare_exchange_strong(succ, newNode))
45 break;
46 cleanupFind(key, preds, succs, succStates);
47 }
48 }
49 return true;
50 }

Figure 5.12: SOFT Skip List insert

39©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1 bool remove(long k){
2 Node *succs[MAX_LEVEL];
3 state succStates[MAX_LEVEL];
4 if (!noCleanupFindSuccs(key, succs, succStates))
5 return false;
6

7 Node *node = getRef(succs[0]);
8 if (isOut(succStates[0]))
9 return false;

10 bool result = markNodes(node);
11 node->destroy();
12 while(getState(currRef->next[0].load()) == INTEND_TO_DELETE)
13 stateCAS(node->next, INTEND_TO_DELETE, DELETED);
14

15 if (result){
16 cleanupFind(key, nullptr, nullptr, nullptr);
17 return true;
18 }
19 return false;
20 }

Figure 5.13: SOFT Skip List remove

40©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 6

Memory Management

Both of our algorithms use durable areas in which we keep the nodes with persistent
data, which are used by the recovery procedure. A memory manager allocates new
nodes and new areas, keeps record of old ones, and has free-lists for each thread.
Moreover, since this is a lock-free environment, our algorithms are susceptible to the
ABA problem [Mic02] and to use-after-free.

To maintain the lock-freedom of our algorithms, lock-free memory reclamation
schemes can be used (e.g., [Coh18, Mic04, ALMS17, BGHZ16, DHK16, CP15, Bro15]).
Some, however, are complicated to incorporate; some require the data structure to be
in a normalized form; and others have significant overhead that commonly deteriorates
performance. We, therefore, chose to employ the very simple Epoch Based Reclama-
tion scheme (EBR) [Fra04] that is not lock-free but it performs very well and provides
progress for the memory management when the threads are not stuck.

In EBR we have a global counter to indicate the current epoch, and each thread
is either in an epoch (when executing a data structure operation) or idle. A thread
joins the current epoch at the beginning of each operation, and becomes idle at its end.
When an object is freed, it is added to a free-list for the current epoch. Whenever a
thread runs out of memory, it starts the reclamation of the current epoch, denoted e.
When all the threads reach either epoch e or an idle state, all the objects in the free-list
related to epoch e − 2 can safely be reclaimed and reused. We used a variant of EBR
that uses clock vectors. In particular, we used ssmem, an EBR that accompanies the
ASCYLIB algorithms [DGT15].

The ssmem allocator normally serves volatile memory, allocating objects of fixed
predetermined size. We adapted it to our setting. In ssmem, each thread has its own
personal allocator so the communication between different threads is minimal. The
allocator provides an interface that allows allocating and freeing of objects of a fixed
size in specially allocated designated areas. It initially allocates a big chuck of memory
from which it returns objects to the program using a bump pointer. When the area fills
up, nodes get reclaimed, and holes emerge; a free-list is then used to allocate objects.
Each thread has it own free-list so freeing nodes or using free ones does not require

41©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

any form of synchronization. The free-lists are volatile and are reconstructed during a
recovery. Invalid or deleted nodes a thread encounters during recovery while traversing
the durable areas are inserted into the private free-list of the thread.

The memory manager keeps a list of all the areas it allocated so it can free them
at the end of the execution. Throughout its life, the original ssmem manager does not
free areas back to the operating system. In our implementation, empty areas can be
returned to the operating system during the recovery if all the nodes of an area are
free.

Both link-free and soft use durable areas as a part of their memory allocation
scheme. These are address spaces in the heap memory that are used solely for node
allocation and, therefore, ssmem can be used with small modifications. When a thread
performs an insertion, it allocates a node from these areas, and when a node is removed,
it is returned to the proper free-list. To reduce false sharing and contention, each thread
has its own areas.

Using ssmem, each thread keeps a private list with one node per allocated area
pointing to all the areas it allocated throughout the execution, denoted area list. This
list has to be persistent so after a crash the areas will not be lost. We call nodes is this
list area nodes. When allocating an additional area, we write its address in a new area
node and write the new area node to the NVRAM. Then, we link it to the beginning of
the area list (there is no need for any synchronization since the area list is thread-local),
and flush the link to it, making the new area node persistent. The area list is persistent
and its head is kept in a persistent thread-local space, which a recovery procedure can
access. Thus, all the addresses of the different areas can be traced after a crash and all
persistent nodes can be traversed.

There is an inherent problem when using durable algorithms without proper mem-
ory management. When inserting a new node, the node is allocated and only afterwards
linked to the set. In the case of deletion, the node is unlinked from the set, and subse-
quently can be freed. Since a crash may occur at any time, we might have a persistent
memory leak if a new node was not linked or if a deleted node was not freed.

Typically, this problem is solved by using a logging mechanism that records the
intention (inserting or removing) along with the relevant addresses. This way, in case of
a crash, the memory leaks may be fixed by reading the records. This logging mechanism
requires more writes to the NVRAM, which take time, resulting in increased operation
latency and worse throughput.

The durable areas solve this problem in a simpler manner since all the memory
is allocated only from them. Therefore, when recovering and traversing the different
areas, leaks will be identified using the validity scheme. Removed or invalid nodes can
be freed and reused.

42©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 7

Measurements

We ran the measurements of the link-free and soft algorithms and compared them to
the state-of-the-art set algorithm proposed by [DDGZ18]. We ran the experiments on
a machine with 64 cores, with 4 AMD Opteron(TM) 6376 2.3GHz processors (16 cores
each). The machine has 128GB RAM, 16KB L1 per one core, 2MB L2 for every pair
of cores and 6MB LLC per 8 cores (half a processor). The machine’s operating system
is Ubuntu 16.04.6 LTS (kernel version 5.0.0). All the code was written in C++ 11 and
compiled using g++ version 8.3.0 with a -O3 optimization flag.

NVRAM is yet to be commercially available, so following previous work [VTS11,
WJ14, CBB14, APD15, SDUP15, KPS+16, CFL17, DDGZ18, FHMP18, CAAL19,
BDBFW19], we measured the performance using a DRAM. NVRAM is expected to
be somewhat slower than DRAM [APD15, VTS11, WJ14]. Nevertheless, we assume
that data is durable once it reaches the memory controller1. Therefore, we do not
introduce additional latencies to NVRAM accesses.

Link-free and soft use the clflush instruction to ensure that data is written back
to the NVRAM (or to the memory controller). This instruction is ordered with respect
to store operations [Int19], so an additional store fence is not required (unlike the
clflushopt instruction, which does require a fence). [DDGZ18] used a simulation of
clwb (an instruction that forces a write back without invalidating the cache line, which
is not supported by all systems). To compare apples to apples, we changed the code to
execute a clflush instead (as other measured algorithms).

7.1 Throughput Measurements

We compared the algorithms to each other on three different fronts. Each test consisted
of ten iterations, five seconds each and the results shown in the graphs, are the average
of these iterations. In each test, the set was filled with half of the key range, aiming
at a 50-50 chance of success for the insert and remove operations. Error bars represent
99% confidence intervals.

1https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction

43©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

https://software.intel.com/en-us/blogs/2016/09/12/deprecate-pcommit-instruction

First, we measured the scalability of each algorithm, i.e., the outcome of adding
more threads to increase the parallelism. The workload was fixed to 90% read opera-
tions (a common practice when evaluating sets [HS08]), and the key range was fixed as
well. When running the lists, the key ranges were 256 and 1024. We chose to run two
tests with the lists so we could have a closer look at the effect of a longer list on the
scalability and performance. We also evaluated the hash set. For the hash set, we used
a larger key range of 1M keys with a load factor of one.

The results for the throughput test are displayed in Figure 7.1. On the left, the
graphs show the throughput as a function of the number of threads (in millions of
operations per second). On the right, the relative improvement over the log-free set is
shown (the y axis is the factor of improvement).

In Figures 7.1a and 7.1b, we can see the results for the shorter and longer lists.
When the key range is 256 keys, all algorithms experience a peak with 16 threads and
a slow decrease towards 64 threads. For a single thread, soft and link-free outperform
log-free by 40% and 35%, respectively, for 16 threads by 30% and 20%, respectively,
and for 64 threads, both by 94%. The 16-thread peak can be explained by the nature of
a list. Running many threads on a short list implies contention that hurts performance.
Also, 16 threads can use a single processor but 17 cannot.

Soft achieves the best performance on the short list by a noticeable margin. In this
case, the amount of psync operations dominates performance as the traversal times are
short. Unlike link-free or log-free, soft uses the optimal number of fences per update.
For instance, both link-free and log-free executed a psync before trimming a logically
deleted node (soft does not). Both of our algorithms perform much better than log-
free and we can relate this result to the elimination of pointer flushing, which is the
main idea behind both algorithms.

For a longer list (Figure 7.1b), all the compared lists scale with the additional
threads. When the number of available keys is bigger, most of the time is spent on
traversing the list; hence, more threads imply more concurrent traversals and more
operations.

As can be seen in the graph, link-free outperforms both soft and log-free by a
considerable difference. In contrast to Figure 7.1a, here the additional overhead of
soft (using intermediate states and more CAS-es instead of direct marking) degrades
its performance. When the range grows, the additional psync operations are masked
by the traversal times. Since soft uses two additional CAS-es in each update, link-free
wins.

Moreover, with higher contention, a node might be flushed more than once in link-
free. As mentioned, link-free prevents redundant psync operations using a flag after
the first necessary psync. In a case where multiple threads operate on the same key, it
might be flushed more than needed. So, when contention is high, link-free may perform
more psync operations. For cases of lower contention, the optimization is more effective.
In effect, link-free does a single psync per update and zero per read (due to the low

44©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

0 10 20 30 40 50 60 700

5

10

15

20

25

#Threads

M
O

PS

1 2 4 8 16 32 64
1

1.5

2

#Threads

R
el

at
iv

e
Im

pr
ov

em
en

t

(a) List’s Throughput with Range of 256

0 10 20 30 40 50 60 700
2
4
6
8

10
12
14

#Threads

M
O

PS

1 2 4 8 16 32 64
1

1.2

1.4

1.6

#Threads

R
el

at
iv

e
Im

pr
ov

em
en

t

(b) List’s Throughput with Range of 1024

0 10 20 30 40 50 60 700
30
60
90

120
150
180
210

#Threads

M
O

PS

Log-Free Link-Free SOFT

1 2 4 8 16 32 64
0
3
6
9

12
15
18
21
24

#Threads

R
el

at
iv

e
Im

pr
ov

em
en

t

Log-Free Link-Free SOFT

(c) Hash Table’s Throughput with Range of 1M

Figure 7.1: Throughput as a Function of the #Threads

45©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

101 102 103 104
0

5

10

15

20

Key Range

M
O

PS

16 64 256 1K 4K 16K
0.5

1

1.5

2

2.5

Key Range

R
el

at
iv

e
Im

pr
ov

em
en

t

(a) List’s Throughput

103 104 105 106 107
0

50

100

150

200

Key Range

M
O

PS

Log-Free Link-Free SOFT

1K 16K 256K 4M
1

2

3

4

5

Key Range

R
el

at
iv

e
Im

pr
ov

em
en

t

Log-Free Link-Free SOFT

(b) Hash Tables’ Throughput

Figure 7.2: Throughput as a Function of Key Range

contention, all flags are set before other threads help). In this case, link-free and soft
execute the same amount of psync operations, but soft is more complicated and uses
more CAS-es. Because of this, for boarder ranges, link-free performs better.

The hash set is evaluated in Figure 7.1c. Link-free and soft are highly scalable
(reaching 25.2x and 27x with 32 threads, respectively, and 45.6x and 49.6x with 64
threads, respectively). Log-free is a lot less scalable (18.4x with 32 threads and 4.6x
with 64 threads). For 32 threads, soft and link-free perform better by factors of 3.4x
and 3.26x, respectively. Thus, we obtain a dramatic improvement of the state-of-the-
art.

As can be seen, the result of the log-free hash table in the test with 64 threads
is oddly low. We used the authors’ implementation and we do not know why this
happened. To make further comparisons fair enough to previous work, we fixed the
number of threads at 32 in subsequent hash table evaluations. The number of threads
in the lists’ evaluation remained 64.

46©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

In the second experiment, we examined the effect of different key ranges on the
performance of the data structure. We again fixed the workload to be 90% read oper-
ations, and the number of threads at 64 for the lists and at 32 for the hash maps. The
sizes when running the lists vary from 16 to 16K in multiples of 4. For hash tables, the
size varies between 1K and 4M in multiples of 16.

Figure 7.2a shows that soft and link-free are superior to log-free in each key range.
As expected, for shorter ranges, soft performs better and for bigger ranges link-free
wins. The reason is that as the key range grows, more time is spent on traversals of
the lists and the number of psync operations used is masked. We can see this effect in
the graph: as the range grows, the difference in performance shrinks, starting with a
factor of 2.46x difference between soft and log-free and ending with link-free having
a 20% improvement for 16K keys.

As expected, the trend of the graph consists of a single peak point. We note that
the performance improves because contention drops when the range grows but only up
to a point. Beyond this point, most of the time is spent on traversing the list rather
than executing actual operations.

Figure 7.2b depicts the performance and the relative improvement of the three
hash tables. As explained above, this test was run with 32 threads. As predicted, the
performance of all hash tables worsens as the range grows. This may be attributed to
reduced locality. For 1K distinct keys, soft outperforms log-free by a factor of 3.53x
and link-free outperforms log-free by a factor of 3.2x. For the longest range (4M keys),
soft is better by a factor of 3.28x and link-free is better by a factor of 3.12x.

The last variable evaluated is the workload. We measured different distributions of
reads (50% – 100% with increments of 10%, and also the specific values of 95%). Note
that this covers the standard “Yahoo! Cloud Serving Benchmark” (YCSB) [CST+10]
workloads A (50% reads), B (95% reads), and C (100% reads). In this experiment, the
number of threads was fixed at 64 for lists and 32 threads for hash tables, and the key
ranges were fixed at 256 or 1024 in the case of the lists and at 1M in the case of the
hash tables.

The lists (Figures 7.3a and 7.3b) all behaved similarly to one another. For both
ranges, link-free performed slightly better than soft. Link-free is superior to soft
since the high amount of threads increases the contention, which increases the cost
of the additional CAS-es used in soft. Also, a higher percentage of updates also
contributed to more CAS-es in soft.

For the shorter range, link-free surpassed log-free by a factor of 2.6x with 50%
reads, and for 100% reads, it had a 33% improvement. With 1k keys, the throughput
of link-free was higher by a factor of 2.1x with 50% reads and higher by 23% with 100%
reads.

The trend of both graphs can be justified by a few reasons. First, all algorithms
use the least amount of psync operations in the read operations. Soft does not use
any, link-free uses at most one, and log-free uses at most two. Moreover, reads are

47©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

50 60 70 80 90 1000
10
20
30
40
50
60
70
80
90

%Reads

M
O

PS

50 60 70 80 90 95 100
1

1.5

2

2.5

%Reads

R
el

at
iv

e
Im

pr
ov

em
en

t
(a) List’s Throughput with Range of 256

50 60 70 80 90 1000

5

10

15

20

25

%Reads

M
O

PS

50 60 70 80 90 95 100
1

1.5

2

%Reads

R
el

at
iv

e
Im

pr
ov

em
en

t

(b) List’s Throughput with Range of 1024

50 60 70 80 90 1000

50

100

150

%Reads

M
O

PS

Log-Free Link-Free SOFT

50 60 70 80 90 95 1000

2

4

%Reads

R
el

at
iv

e
Im

pr
ov

em
en

t

Log-Free Link-Free SOFT

(c) Hash Table’s Throughput with Range of 1M

Figure 7.3: Throughput as a Function of the Percentage of Reads

48©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

faster since there is no need to invalidate any cache lines of other processors. Finally,
unlike insert and remove, which may restart and theoretically run forever, the contains
operation is wait-free and optimized to run as fast as possible. Accordingly, the gap
between the different algorithms shrinks as the percentage of reads grows.

Running with 100% reads is a special situation where the performance improves
tremendously. Each thread runs in isolation from the others since there are no conflicts
between contains operations. Also, in this case, none of the algorithms execute any
psync operations. Link-free and log-free both use optimizations to reduce the number
of psync operations and since the nodes in the list were inserted and flushed previous
to the beginning of the test, there is no need to flush them again.

We would expect soft to be the best in this scenario but due to its implementation,
it falls short. Unlike link-free, each volatile node in soft has an additional pointer that
makes it larger. As a result, about one and a half volatile nodes fit in a single cache
line, so when traversing the list, we have more cache misses. Soft is still better than
log-free because its contains operation is simpler. Log-free has a few branches to check
whether a node should be flushed or not, which lengthens the function and may cause
branch mis-predictions.

The hash tables, depicted in Figure 7.3c, exhibit a trend similar to what we saw
in previous tests. The throughput rises as the number of updates declines. Moreover,
the difference in performance between the three algorithms shrinks as the number of
updates decreases.

In according with our expectations, soft surpasses link-free and log-free. The
traversal times in the hash tables are minimal so soft does not suffer from cache
misses and the simplistic contains operation works in soft’s favor.

49©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

50©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 8

Related Work

There has been a lot of research focused on adapting specific concurrent data structures
to durable ones [SDUP15, NIK+17, FHMP18, DDGZ18]. Some researchers developed
techniques to modify general objects so that they are durable linearizable [CCA+12,
VTS11, IMS16, KPS+16, AB16, CGZ18]

[VTS11, CCA+12, KPS+16] used transactions to create a new interface to the
NVRAM and, by proxy, make regular objects durable linearizable. The main disad-
vantage of their schemes is the need to log operations and other kinds of metadata in the
NVRAM, which causes more explicit writes to the memory and uses of synchronization
primitives. Another major disadvantage is the use of locks that limits the scalability
of the different implementations and might cause an unbounded rollback effect upon a
crash.

[IMS16] presented a general algorithm to maintain durable linearizability. This
generality, however, comes at the expense of efficiency; their construction inserts a
fence before every shared write and a flush after, a fence and a psync for each CAS,
and a psync after every shared read. In contrast, our algorithms are optimized in the
sense they execute fewer psync operations, especially soft

[CFL17] presented a sequential durable hash table that uses only one psync per
update and none for reads, achieving the lower bound proven by [CGZ18]. This paper
introduced the validity schemes we used in both algorithms. Both algorithms rely on
the observation made in the paper that the order of writes to the same cache line in
the program is the same as the order of those writes in the memory. No extension to
concurrency was discussed in their paper.

[NIK+17] developed an efficient hash table that supports multiple threads and trans-
actions. They used fine-grained synchronization, and thus their algorithm is not lock-
free. Their algorithm does not support durable linearizability but only buffered durable
linearizability which is a weaker guarantee. Thus this work is not comparable to ours.

[FHMP18] presented three variations of a durable lock-free queue. The first guaran-
tees durable linearizability [IMS16], the second queue guarantees detectable execution
[FHMP18], which is a stronger guarantee than durable linearizability, and the third

51©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

queue guarantees buffered durable linearizability [IMS16]. The queue is inherently
different from a set since it maintains an order between individual keys.

[CGZ18] introduced a theoretical universal construct to obtain durable lock-free
objects with one psync per update (per conflicting thread) and none for reads. Their
implementation uses a lock-free queue to order all pending operations, then a batch of
operations is persisted together and, finally, a flag is set to indicate that the operations
were flushed. This algorithm is theoretical and is not targeted at high performance.
Using a queue to order operations creates contention and hurts scalability. In addition,
the state of the object is a persistent log of all the previous operations, which means
that in order to return a result, the whole log has to be traversed, making this algorithm
highly inefficient and impractical.

[DDGZ18] introduced four kinds of sets (Log-Free Data Structures), building up
from lock-free data structures and adding to them two main optimizations. Link-and-
persist is the first optimization and it reduces the number of psync operations but at the
cost of using CAS, which is considered more expensive than a simple store operation
[DGT13]. The second is link-cache, which writes next pointers to the NVRAM only
when another operation depends on the persistency of the pointer. This work represents
state-of-the-art durable sets and we compared our constructions to it, showing dramatic
improvements.

52©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 9

Conclusion

In this work we presented two techniques for durable lock-free sets, link-free and soft,
and implemented three different sets, linked list, hash map and skip list. These two
techniques were shown to outperform existing state-of-the-art by significant factors of
up to 3.3x. In addition to high efficiency, they also demonstrated excellent scalability.
The main idea underlying these algorithms was to avoid persisting the data structure’s
pointers, at the expense of reconstructing the data structures during (infrequent) re-
coveries from crashes.

soft reduces psync operations to the minimum theoretical value, at the expense
of algorithmic complication and higher (volatile) synchronization, and thus introduces
a new trade-off to consider when designing durable data structures. The evaluation
demonstrated that soft outperforms the link-free implementation when psync opera-
tions are often required: For example, for long lists it was better to use the link-free
version because traversals were long and psync operations were infrequent. For short
lists (which also underlay a hash table), however, operations are short and psync op-
erations occur frequently. In this case, soft was the best performing method.

We believe these techniques can be further used to create more durable data struc-
tures from non-durable ones. Note that our techniques cannot be applied in an auto-
matic manner, but rather with careful inspection to remove redundant psync opera-
tions.

53©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

54©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Appendix A

Link Free Correctness

We start by proving some basic list invariants. In Section A.1 we prove the linearizabil-
ity of our implementation when there are no crash events, and that it is also durable
linearizable. Finally, we show that our implementation is lock-free in Section A.2.

The content of a node in the volatile memory, can be different from its content in
the NVRAM, due to modifications that have not been persisted yet (either by implicit
or explicit flushes). We distinguish between the two representations of a single link-free
node: the volatile node, and the persistent copy which contains only the modifications
written back to the NVRAM (implicitly or explicitly).

We start by stating some basic definitions we are going to use throughout our
proof. Notice that, unless stated otherwise, the definitions relate to the volatile nodes
(regardless of being written to the non-volatile memory).

Definition A.1 (Reachability). We say that a node n is reachable from a node n′ if
there exists nodes n0, n1, . . . , nk such that n0 = n′, nk = n and for every 0 ≤ i < k, ni

is the predecessor of ni+1 (via its next pointer). We say that a node n is reachable if it
is reachable from the head sentinel node.

Definition A.2 (Infant Nodes). We say that a node n is an infant if n is neither head
nor tail, and there does not exist an earlier successful execution of the CAS operation
in line 17 of Listing 4.5, satisfying newNode = n.

Definition A.3 (A Node’s State). Let n be a node (which is neither head nor tail),
and let b be the initial value of its two validity bits.

1. We say that n is at its initial state if the value of both of its validity bits is b.

2. We say that n is invalid if the value of its first validity bit is ¬b and the value of
its second validity bit is b.

3. We say that n is valid if the value of both of its validity bits is ¬b.

4. We say the n is marked if its next pointer is marked. Otherwise, we say that n is
unmarked.

55©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

The head and tail sentinel nodes are always considered as valid and unmarked nodes.

We now prove some basic claims regarding the link-free list implementation.

Claim A.4 (State Transitions). Let n be a volatile node. Then its state can only go
through the following transitions:

1. From being unmarked and in its initial stage, to being unmarked and invalid.

2. From being unmarked and invalid, to being unmarked and valid.

3. From being unmarked and valid, to being marked and valid.

Proof. A node n is always created with an initialized and unmarked state, and its
state can only change in line 11 of Listing 4.4, line 6, 12 or 18 of Listing 4.5, or in
line 10 or 11 of listing 4.6. As explained is Section 4.1.1, executing the flipV1 or
makeValid auxiliary functions on the same node more than once, would not effect its
state. Moreover, when makeValid is executed before flipV1, the node’s state remains
initialized and is also not effected. Therefore, flipV1 only changes the node’s state
from being initialized to being invalid, makeValid only changes the node’s state from
being invalid to being valid, and it remains to show that the marking of a node does not
foil the above transition types. Since a node can only be marked (line 11 of listing 4.6),
and is never unmarked throughout the execution, we only need to show that it is valid
when marked. If it is either invalid or valid before executing line 10, then from the
above, it is valid when marked in line 11. Notice that it also cannot be at its initialized
state, since a node becomes invalid right after its creation, in line 12 of Listing 4.5. ■

Claim A.5 (Marked Nodes). Once a node is marked, its next pointer does not change
anymore.

Proof. Let n be a marked node. From Claim A.4, it cannot be unmarked. Besides when
marked in line 11 of listing 4.6, n’s next pointer can only change during a successful
CAS execution in line 4 of Listing 4.3 or line 17 of Listing 4.5. In both cases, it is
assumed that n is unmarked and therefore, the CAS execution is unsuccessful if it is
marked, leaving n’s next pointer unchanged. ■

Claim A.6 (The States of the Sentinel Nodes). The head and tail sentinel nodes are
always unmarked and valid.

Proof. As mentioned in the proof of Claim A.4, a node’s state can only change when its
key is sent as an input parameter to one of the list’s operations. Assuming the neither
−∞ nor ∞ are sent as input parameters to the list’s operations, the states of the head
and tail sentinel nodes always remain unmarked and valid. ■

Claim A.7 (Nodes Invariants). Let n1 and n2 be two different nodes. Then:

56©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1. If n2 is the successor of n1 in the list then n2 is not an infant.

2. Right before executing line 17 in Listing 4.5, having newNode = n2, it holds that:
(1) n2 is an infant, and (2) n2 is invalid.

3. If n2 is not an infant and not marked, or marked but not yet flushed since being
marked, then n2 is reachable.

4. If n2 is marked, but has not been flushed since being marked, then n2 is reachable.

5. If n1’s key is smaller than or equal to n2’s key, then n1 is not reachable from n2.

6. If n2 is reachable from n1 at a certain point, then as long as n2 is not marked,
n2 is still reachable from n1.

7. If n1 is not an infant then the tail sentinel node is reachable from n1.

Proof. We are going to prove the claim by induction on the length of the execution. At
the initial stage, head and tail are the only nodes in the list, having −∞ and ∞ keys
(respectively), both are reachable by Definition A.1, and head is tail’s predecessor.
Therefore, all of the invariants obviously hold. Now, assume that all of the invariants
hold at a certain point during the execution, at let s be the next execution step, executed
by a thread t.

1. If n2 is not an infant before executing s, then by Definition A.2, it is not an
infant after executing s, and the invariant holds. Otherwise, by the induction
hypothesis, n2 does not have a predecessor before executing s, and it cannot be
the head sentinel node. n1’s successor can only change in line 4 of Listing 4.3,
or in line 16 or 17 of Listing 4.5. If s is the execution of line 4 in Listing 4.3 or
line 16 in Listing 4.5, then n2 has already been traversed during a former find
execution, as a node with a predecessor, and by the induction hypothesis, is not
an infant. If s is the execution of line 17 in Listing 4.5, then n2 is not an infant
by Definition A.2.

2. Since n2 can only be that node during the execution of the insert operation in
which it is created, and which returns in line 20, after a successful CAS execution
in line 17, by Definition A.2, n2 must be an infant at this point, and (1) holds.
Now, assume by contradiction that n2 is not invalid. Since it becomes invalid in
line 12 and by Claim A.4, its state must be valid. n2’s state can become valid only
in line 11 of Listing 4.4, in line 6 or 18 of Listing 4.5, or in line 10 of Listing 4.6. In
all cases, it must have a predecessor prior to that change, and by invariant 1, it is
not an infant – a contradiction. Therefore, n2’s state is invalid, and the invariant
holds.

57©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

3. If n2 was an infant before executing s, then s is the execution of line 17 in List-
ing 4.5, making n2 the successor of some node which is reachable by assumption.
n2 is reachable in this case. Otherwise, by assumption and Claim A.4, it was
reachable right before executing s. Assume by contradiction that it is no longer
reachable after executing s. Then n2 is reachable from a node n1 that was reach-
able right before s, and is no longer reachable (may be n2 itself). Assume w.l.o.g
that n1 is such a node for which the path of nodes from Definition A.1 is the
longest. The node n1 can only become unreachable if the current step is the
execution of line 4 in Listing 4.3, and if n1 is marked and then flushed in line 2
of Listing 4.3. This means that n1 ̸= n2. Since n1’s successor stays reachable in
this case, we get a contradiction. Therefore, n2 is reachable in this case as well.

4. By assumption, n1 is not reachable from n2 right before executing s. Since all
changes of nodes’ successors (line 4 of Listing 4.3, and line 16 and 17 of Listing 4.5)
preserve keys order (notice the halting condition in line 11 of Listing 4.3), the
Invariant still holds.

5. If n2 is not reachable from n1 before executing s then the invariant holds vacu-
ously. Otherwise, assume by contradiction that n2 was reachable from n1 right
before executing s, and is no longer reachable from n1 after executing it. Let
n3 be the first node reachable from n1 after the previous step, that is not reach-
able from it after executing the current step (n3 must exist). The node n3 can
only become unreachable from n1 if the current step is the execution of line 4 in
Listing 4.3, and if n3 is marked. This means that n3 ̸= n2. Since n3’s successor
stays reachable from n1 in this case, we get a contradiction. Therefore, n2 is still
reachable from n1.

6. If n1 was an infant right before executing s then s is executing a successful CAS
in line 17 of Listing 4.5. In this case, s makes n1 the predecessor of a node whose
tail is reachable from, by assumption. Therefore, tail is reachable from n1 in
this case. Otherwise, assume by contradiction that tail was reachable from n1

right before executing s (must hold by assumption), but is no longer reachable
from it after executing it. Let n2 be the last node reachable from n1, for whom
tail is not reachable from after executing the current step (n2 must exist). Then
the current step must change n2’s next pointer. Since n2 cannot be an infant (by
Invariant 1), this step is a successful CAS, either in line 4 of Listing 4.3 or in
line 17 of Listing 4.5. In both cases, n2’s successor is set to be a node that tail
is reachable from, by assumption. Since we get a contradiction to Definition A.1,
tail is reachable from n1 in this case as well. ■

Claim A.8 (The Volatile List Invariant). The list is always sorted by the nodes’ keys,
no key ever appears twice, and the head and tail sentinel nodes are always the first
and last members of the list, respectively.

58©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Proof. From Invariant 5 of Claim A.7, the volatile list is always sorted by the nodes’
keys and no key ever appears twice. By Claim A.6 and Invariant 3 of Claim A.7, the
head and tail sentinel nodes are always members of the list, and by Invariant 5 of
Claim A.7, they are the first and last members, respectively. ■

We now move to dealing with the persistent list. The persistent list contains the
persistent copies of the volatile list’s nodes, as long as their state is valid and not
marked, as stated in Definition A.9 below.

Definition A.9 (Persistently in the List). Let n be a node. We say that n is persis-
tently in the list if the state of n’s persistent copy is valid and not marked.

Claim A.10 below asserts that being valid and not marked is sufficient for staying
persistently in the list. In particular, the head and tail sentinel nodes always remain
persistently in the list.

Claim A.10 (Being Persistently in the List). Let n be a node which is persistently in
the list. As long as n’s state is valid and unmarked, n is still persistently in the list.

Proof. Assume that n is persistently in the list at some point, and let assume by
contradiction that there exists a later point, in which n’s state is valid and unmarked,
and is not persistently in the list. We are going to consider the earliest such point. By
Claim A.4, n does not change between the mentioned two points. Therefore, each flush
of n, flushes it with a valid and unmarked – a contradiction. Thus, n is still persistently
in the list. ■

Claim A.11 (Persistently in the List Nodes are Reachable). Let n be a node which is
persistently in the list. Then n is reachable.

Proof. Assume that n is persistently in the list. By Definition A.9, during the last flush
of n to the non-volatile memory, n’s state was valid and unmarked. If n is unmarked,
then by Invariants 2 and 3 of Claim A.7, n is reachable. Otherwise, since n is marked
but still persistently in the list, n has not been flushed in line 2 of Listing 4.3, line 8 of
Listing 4.4, or implicitly flushed yet, and in particular, it has not become unreachable
in line 4 of Listing 4.3 yet (according to the proof of Claim A.7, it cannot become
unreachable in other scenarios). Therefore, n is still reachable in this case as well. ■

Notice that Claim A.11 does not hold temporarily during recovery, until the list is
reconstructed. However, this fact does not effect the use of this claim throughout our
proof.

Claim A.12 (The Persistent List is a Set). The persistent list never contains two dif-
ferent persistent nodes with the same key.

Proof. The claim derives directly from Claim A.8 and A.11. ■

59©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Claim A.13. Let n1 and n2 be the two volatile nodes returned as output from the
find method. Then during the method execution, there exist a point in which (1) n1 is
reachable, (2) n2 is n1’s successor, and (3) n2 is unmarked.

Proof. When n1’s marked bit is read for the first time during the execution, it is
unmarked (otherwise, it would have been trimmed and not returned). In addition,
since it must have had a predecessor at an earlier point (otherwise, it would not have
been traversed), from Invariant 1 of Claim A.7, it is not an infant, and from Invariant 3
of Claim A.7, it is reachable at this point. If n2 is n1 successor at this point, then
the claim holds for this point. Notice that n2 cannot be marked at this point, since
otherwise, it would have been trimmed at a later point and not returned as output. If
n2 is not n1’s successor at this point, then there exists a point between the first read
of n1 and the first read of n2 in which n2 becomes n1’s successor. From Claim A.5, n1

is unmarked at this point and thus, from Invariant 3 of Claim A.7, it is reachable at
this point. In addition, n2 is unmarked at this point as well, and the claim holds in
this case. ■

Claim A.14. Let there be an insert execution that returns false in line 8 (Listing 4.5),
and let m be the node returned as the second output parameter from the last find call
in line 4. Then at least one of the following holds during the insert execution:

1. m is persistently in the list.

2. m is marked and then flushed.

Proof. Claim A.13 guarantees that there exists a point during the last find execution in
which m is reachable and unmarked. Since m is made valid no later than the execution
of line 6, and is flushed, while being still valid (by Claim A.4), no later than the
execution of line 7, it is either persistently in the list (by Definition A.9), or becomes
marked before its flush. In both cases, the claim holds. ■

Claim A.15. Let n2 be a node which is assigned into the curr variable in line 4 of
Listing 4.4, and let n1 be the last node assigned into the curr variable before n2. Then
there exists a point during the traversal in which both nodes are reachable and n2 is
n1’s successor.

Proof. Assume by contradiction that the claim does not hold. W.l.o.g., Let n1 and
n2 be the first two nodes for which (1) n1 and n2 are assigned into the curr variable
sequentially, and (2) the guaranteed point does not exist for them. Since this point
does exist for n1 and the former node assigned into curr, n1 is reachable at some point
during the execution (if n1 is the head sentinel node then it is obviously reachable).
From Invariant 6 of Claim A.7, n1 is reachable as long as it is not marked. Since n2 is its
successor when assigned into the curr variable, from Claim A.5 it was its successor at

60©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

the last step in which n1 was reachable before this assignment (might be the assignment
itself). Therefore, there exists such a point for n1 and n2 – a contradiction, and the
claim holds. ■

A.1 Durable Linearizability

We use the notion of durable linearizability [IMS16] for correctness. The recovery
procedure, executed after a crash (and described in Section 4.4), is assumed to terminate
before new threads start executing their code. Given an operation for which a crash
event occurs after its invocation and before its response, we consider its response point
as the end of the respective recovery procedure. Notice that in the following definitions,
we do not consider recoveries that are interrupted by crash events. We do so for clarity
and brevity. The definitions can be easily extended to include such cases.

We are going to prove that, given an execution, removing all crash events would
leave us with a linearizable history, including all the operations that were fully executed
between two crashes, and some of the operations that were halted due to crashes (and
then recovered during recovery). We are going to define, per operation execution,
whether it is a surviving operation. A surviving operation is an operation that is
linearized in the final crash-free history of the execution (by removing all crash events).
Obviously, operations that were fully executed between two crash events are always
considered as surviving operations. Additionally, we are going to define the linearization
points of all surviving operations in the crash-free history.

For each linearized operation, we define its linearization point as a point during
its execution in which it takes effect. For a more accurate definition, we first define,
in Definition A.16 below, which nodes are considered as set members. Given this
definition, a successful insertion takes effect when a respective new node becomes a set
member, a successful removal takes effect when an existing respective set member is
removed from the set, a contains execution returns an answer which respects the set
membership definition, and unsuccessful operations fail according to this definition as
well.

Definition A.16 (Being a Set Member). Given a node n, it is considered as a set
member as long as at least one of the following holds:

1. n is persistently in the list according to Definition A.9.

2. If n is marked and then flushed, for the first time since it becomes valid, then n

is considered as a set member during the period in which it is valid and not yet
flushed.

Notice that being persistently in the list is not effected by crash events (since it
depends on the state saved in the non-volatile memory). Moreover, a node which is
considered as a set member of the second type, stops being a set member before the

61©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

next crash event. Therefore, being a set member is well-defined, even in the presence
of crash events. For using the term of set membership in our durable linearizability
proof, we still need to prove that the collection of all set members is indeed a set. We
do so in Claim A.17.

Claim A.17. Let n1 and n2 be two different set members. Then n1’s key is different
from n2’s key.

Proof. Assume by contradiction that n1 and n2 are two different set members with the
same key. By Claim A.12, the persistent list never contains two different persistent
nodes with the same key, and therefore, at least one of them is not persistently in the
list. Assume, w.l.o.g., that n1 is not persistently in the list.

Since n1 is a set member, by Definition A.16, it is valid, and either not marked,
or marked and not flushed yet. By Invariant 3 of Claim A.7, n1 is reachable. By
Claim A.8, there cannot be two reachable nodes with the same key, and therefore, n2

is not reachable, and by Invariant 3 of Claim A.7, it is either not valid, or marked
and flushed. In both cases, it is not a set member according to Definition A.16 – a
contradiction. Therefore, there cannot exist two different set members with the same
key, and the claim follows. ■

We are now going to define, per operation, the terms for being considered as a
surviving operation (in the presence of a crash event), its respective linearization point.
In addition, we are going to prove that each survivng operation indeed takes effect at
its linearization point, and that non-surviving operations do not take effect at all.

A.1.1 Insert

Before defining the conditions for the survival of an insert operation, we need to re-
define the success of an insertion in the presence of crash events.

Definition A.18 (A Successful Insert Operation). Given an execution of an insert op-
eration, we say that this operation is successful if one of the following holds before any
crash event, following its invocation:

1. The operation returns true.

2. A node n is allocated in line 11, becomes valid, and is flushed afterwards (not
necessarily in the scope of the operation in which it is allocated).

The operation is unsuccessful if it returns false.

Definition A.19 (A Surviving Insert Operation). An insert operation is considered as
a surviving operation if, before the first crash event that follows its invocation, one of
the following holds:

62©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1. The operation is unsuccessful according to Definition A.18. Let m be the node
returned as the second output parameter from the last find call in line 4. The
operation’s linearization point is set to be a point, during the execution, in which
m is a set member according to Definition A.16 (chosen arbitrarily).

2. The operation is successful according to Definition A.18, and the node allocated
in line 11 becomes persistently in the list (see Definition A.9) before the crash
event. In this case, the linearization point is set to be the flush which inserts it
to the persistent list.

3. The operation is successful according to Definition A.18, and the node allocated
in line 11 does not become persistently in the list before the first crash event. In
this case, the linearization point is set to be the step which changes its state to
valid.

Claim A.20. A surviving insert operation takes effect instantaneously at its lineariza-
tion point.

Proof. We are going to prove the claim for each of the three surviving insertion types.

1. Suppose that the operation is unsuccessful according to Definition A.18, and let
m be the node returned as the second output parameter from the last find call in
line 4. Notice that m’s key is equal to the key received as input. We are going to
show that m is a set member at the linearization point defined in Definition A.19,
and therefore, the (unsuccessful) insert operation indeed takes effect at this point.
According to Claim A.14, there must exist a point during the execution in which
m is either persistently in the list, or that it is marked and then flushed. In the
first scenario, by Definition A.16, m is indeed a set member, and we are done. In
the second scenario, it is guaranteed by Claim A.13 that m is marked during the
execution (since it is valid and unmarked at some point during the find method
execution). Therefore, a point at which it is a set member, exists according to
Definition A.16, and the claim holds.

2. Suppose that the operation is successful according to Definition A.18, and the
node allocated in line 11 becomes persistently in the list (see Definition A.9)
before the crash event. By Definition A.16, the allocated node indeed becomes a
set member at the linearization point defined above and thus, the operation takes
effect instantaneously at this point.

3. Suppose that the operation is successful according to Definition A.18, and the
node allocated in line 11 does not become persistently in the list before the first
crash event. By Definition A.18, it becomes valid, then marked, and then flushed,
during the execution, and before any crash event. By Definition A.16, it becomes
a set member when its state becomes valid and thus, the operation indeed takes
effect at its defined linearization point. ■

63©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Claim A.21. A non-surviving insert operation takes no effect.

Proof. By Definition A.19, during a none-surviving insert operation, if a volatile node
is allocated, and even if it is inserted into the volatile list, and becomes valid, it is not
flushed. By Definition A.16, it is not considered as a set member. In particular, it is
not persistently in the list and thus, will also not be considered as a set member after
a crash event. ■

A.1.2 Remove

We also re-define the success of a removal in the presence of crash events.

Definition A.22 (A Successful Remove Operation). Given an execution of a remove
operation, we say that this operation is successful if one of the following holds before
any crash event, following its invocation:

1. The operation returns true.

2. A node n is marked in line 11 and is flushed afterwards (not necessarily in the
scope of the operation in which it is marked).

The operation is unsuccessful if it returns false.

Definition A.23 (A Surviving Remove Operation). A remove operation is considered
as a surviving operation if, before the first crash event that follows its invocation, one
of the following holds:

1. The operation is unsuccessful according to Definition A.22. The operation’s lin-
earization point is set to be the point guaranteed by Claim A.13.

2. The operation is successful according to Definition A.22. The operation’s lin-
earization point is set to be the first flush of the victim node, after its marking
in line 11.

Claim A.24. A surviving remove operation takes effect instantaneously at its lin-
earization point.

Proof. We are going to prove the claim for each of the two surviving removal types.

1. Suppose that the operation is unsuccessful according to Definition A.22, and let
m be the node returned as the second output parameter from the last find call
in line 5. Notice that m’s key is different from the key received as input. By
Claim A.13, m is reachable at the linearization point. Moreover, its key is bigger
than the key received as input, its predecessor’s key is smaller than this key (by
the find specification) and by Claim A.8, there does not exist a reachable node
with the input key. Since being a set member implies being reachable, there does
not exist a set member with the given key at its linearization point and thus, it
indeed takes effect this point.

64©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

2. Suppose that the operation is successful according to Definition A.22, and the
node marked in line 11 is flushed afterwards, and before the following crash event.
If the non-volatile memory already contains a valid and unmarked copy of this
node, then the operation’s linearization point (according to Definition A.23) in-
deed removes this node from the set, according to Definition A.16. Otherwise,
the mentioned flush is the first flush of the victim node, and according to Defini-
tion A.16, it removes it from the set in this case as well. ■

Claim A.25. A non-surviving remove operation takes no effect.

Proof. By Definition A.23, during a none-surviving remove operation, if a victim node
is found, and even if it is made valid and marked, it is not flushed. By Definition A.16,
whether it is originally a set member or not, it is not removed from the set. ■

A.1.3 Contains

We do not use the term of success for describing a contains execution, and, therefore,
the terms for its survival are straight forward.

Definition A.26 (A Surviving Contains Operation). A contains operation is consid-
ered as a surviving operation if it terminates before the first crash event that follows
its invocation. For defining linearization points per contains execution, let n1 and n2

be the last nodes assigned into the curr variable.

1. When the operation returns true, its linearization point is set to be a point during
the execution in which n2 is a set member (chosen arbitrarily).

2. When the operation returns false in line 6, its linearization point is set to be
the point guaranteed by Claim A.15 for n1 and n2.

3. When the operation returns false in line 9, its linearization point is set to be a
point during the execution in which n2 is reachable but not a set member (chosen
arbitrarily).

Claim A.27. A surviving contains operation takes effect instantaneously at its lin-
earization point.

Proof. Let n1 and n2 be the last nodes assigned into the curr variable. We are going
to prove the claim for each of the three surviving contains types.

1. Suppose that the operation returns true. We are going to show that there indeed
exists a point during the execution in which n2 is a set member. Since the
operation does not return in line 9, from Claim A.4, n2 is not marked during the
traversal. In addition, since n2 is made valid at the latest when executing line 11,
from Claim A.4, it is also valid when executing line 12. There are several possible
scenarios:

65©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

(a) n2 is not marked during the execution. In this case, n2 becomes a set member
at the latest when executing line 12. In this case, there obviously exists a
point during the execution at which n2 is a set member.

(b) n2 is marked during the execution, and is flushed at some point after be-
coming valid and before becoming marked (by Claim A.4, n2 becomes valid
before it is marked). There exists a suitable point in this case as well.

(c) The remaining case is when n2 is not flushed after becoming valid and before
being marked. In this case, it is flushed at the latest in line 12, and therefore,
by Definition A.16, it is a set member at some point, before being marked.

There exists a suitable linearization point in every case.

2. Suppose that the operation returns false in line 6. Claim A.15 guarantees that
both n1 and n2 are reachable at this point. Since n1’s key must be smaller then
the key received as input, and n2 must be bigger, by Claim A.8, there does not
exist a reachable node with the given key at this point. By Claim A.11, there
does not exist a set member with the given key at this point.

3. Suppose that the operation returns false in line 9. If it still reachable when
executing line 8, then a marked copy of n2 resides in the non-volatile memory
(i.e., it is not a set member by Definition A.16), while n2 is still reachable, and
the guaranteed point exists. Otherwise, before it becomes unreachable (which
happens during the contains execution, according to Claim A.15), at the latest,
it is flushed as a marked node in line 2 of Listing 4.3. Therefore, the guaranteed
point exists in this case as well. By Claim A.8 and A.11, there does not exist a
set member with the given key at this point. ■

Since a contains operation does not effect the list (it executes flushes, that can also
be executed implicitly), there is no need to prove that non-surviving contains executions
do not take effect.

Theorem A.1. The link-free list is durable linearizable.

Proof. By Definition A.19, A.23 and A.26, all the operations that are fully executed
between two crashes (and some of the operations that are halted due to crash events),
have a linearization point. By Claim A.20, A.24 and A.27, each operation takes effect
instantaneously at its linearization point. By Claim A.21 and A.25, operations for which
we did not define linearization points (non-surviving operations), do not take effect at
all. In summary, the link-free list is durable linearizable by definition [IMS16]. ■

66©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

A.2 Lock-Freedom

A.2.1 A Preliminary Discussion

Lock-freedom is impossible to show in the presence of crashes. To see that this is the
case, imagine an adversarial schedule of crashes that repeatedly creates a crash one step
before the completion of an operation. Such crashes can also occur during the recovery
process itself. As far as we know, lock-freedom has not been previously discussed in
the presence of crashes.

One way to deal with this problem is to admit that in the presence of crashes
lock-freedom cannot be guaranteed, but as crashes are expected to occur infrequently,
this still leaves the question of lock-freedom during crash-free executions. Such lock-
freedom is of high value in practice, when crashes are indeed rare. A more theoretical
approach is to consider crashes as progress, as if a crash itself is one of the operations
on the data structure. Interestingly, this yields the same challenge. While executions
with crashes always make progress, crash-free executions need a proof of progress. So
in what follows we prove that the link-free list is lock-free in the absence of crashes.

We are going to prove that in crash-free executions, at least one of the operations
terminates. To derive a contradiction, assume there is some execution for which no
executing operation terminates after a certain point. Notice that we can assume that
no operation is invoked after this point, and that the set of running operations is finite
(since there is a finite number of system threads). The rest of the proof relates to the
suffix α of the execution, starting from this point.

Claim A.28. There is a finite number of state changes of reachable nodes during α.

Proof. A contains execution must terminate after executing line 11, an insert execution
must terminate after executing line 6 or 18, and a remove execution must terminate
after a successful CAS execution in line 11. In addition, the state change in line 12,
during an insert execution, is of an unreachable node. Consequently, we can assume
that after a certain point, state changes are made only in line 10, of Listing 4.6. Since a
finite number of new nodes is created and made reachable during α (at most one node
per pending insert operation), and since every such node eventually becomes valid in
line 18 of Listing 4.5, we can assume that the number of state changes in line 10 of
Listing 4.6 is finite as well. ■

Claim A.29. There is a finite number of pointer changes of reachable nodes during α.

Proof. The pointers of reachable nodes change either in line 4 of Listing 4.3 or line 17
of Listing 4.5. A state change in line 17 of Listing 4.5 would cause the termination of
an insert execution and thus, the only pointer changes are physical removals of marked
nodes, executed in line 4 of Listing 4.3. Since there is a finite number of state changes
of reachable nodes during α (by Claim A.28), the number of marked nodes is bounded
and thus, there is a finite number of pointer changes of reachable nodes during α. ■

67©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Theorem A.2. The link-free list is lock-free.

Proof. From Claims A.28 and A.29, after a certain point, there are no state or pointer
changes in the list. Therefore, we consider the suffix α′ of the execution that contains
no state or pointer changes of reachable nodes. Obviously, starting from this point, the
list becomes stable, and does not change anymore.

Since the list is finite, from Claim A.8, every find and contains execution eventually
ends. In addition, every insert and remove operation must be unsuccessful, and also
terminate (since calls to the find method always terminate). We get a contradiction
and therefore, the implementation is lock-free. ■

68©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Appendix B

SOFT Correctness

In this chapter we prove the correctness (i.e., durable linearizability) and progress guar-
antee (lock-freedom) of the soft list. We start by proving some volatile list invariants.
In Section B.1 we prove the linearizability of our implementation when there are no
crash events, followed by a durable linearizability proof in Section B.2. Finally, we
show our implementation is lock-free in Section B.3.

Claim B.1 (State Transitions). The state of a volatile node can only go through the
following transitions:

1. From “intend to insert” to “inserted”

2. From “inserted” to “inserted with intention to delete”

3. From “inserted with intention to delete” to “deleted”

Proof. A node’s state can change either in line 34 of Listing 5.6, or in line 14 or 17
of Listing 5.7. In all three cases, the state changes according to one of the options
mentioned above, and the claim follows immediately. Notice that in the rest of the
assignments into a node’s next pointer (line 5 of Listing 5.4 and line 24 of Listing 5.6),
the state stays unchanged. ■

Claim B.2 (Deleted States). Once the state of a node becomes “deleted”, its next
pointer does not change anymore.

Proof. A node’s next pointer changes either in line 5 of Listing 5.4 or in line 24 of
Listing 5.6. In both cases, the state of the node whose next pointer is to be updated, is
checked before the update (guaranteeing that its state is not “deleted”), and the CAS
execution ensures that it does not change until the pointer changes (from Claim B.1,
its state cannot become “deleted” and change again afterwards). Notice that we deal
with state changes in Claim B.1. In this claim we refer only to reference changes. ■

Claim B.3 (The States of the Sentinel Nodes). The states of the head and tail sen-
tinel nodes are always “inserted”.

69©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Proof. As mentioned in the proof of Claim B.1, a node’s state can change either in
line 34 of Listing 5.6, or in line 14 or 17 of Listing 5.7. In all three cases, the node’s key
is sent as an input parameter to the insert or remove operation, respectively. Assuming
the neither −∞ nor ∞ are sent as input parameters to the insert and remove operations,
the states of the head and tail sentinel nodes always remain “inserted”. ■

Definition B.4 (Reachability). We say that a volatile node n is reachable from a
volatile node n′ if there exists nodes n0, n1, . . . , nk such that n0 = n′, nk = n and
for every 0 ≤ i < k, ni is the predecessor of ni+1 in the list. We say that a node n is
reachable if it is reachable from the head sentinel node.

Definition B.5 (Logically in the List). We say that a volatile node n is logically in
the list if n is reachable and its state is either “inserted” or “inserted with intention to
delete”.

Definition B.6 (Infant Nodes). We say that a volatile node n is an infant if n is
neither head nor tail, and there does not exist an earlier successful execution of the
CAS operation in line 24 in Listing 5.6, satisfying newNode = n.

Claim B.7 (Volatile Nodes Invariants). Let n1 and n2 be two different volatile nodes.
Then:

1. If n2 is the successor of n1 then n2 is not an infant.

2. Right before executing line 24 in Listing 5.6, having newNode = n2, it holds that:
(1) n2 is an infant, and (2) n2’s state is “intend to insert”.

3. If n2 is not an infant and its state is not “deleted”, then n2 is reachable.

4. If n1’s key is smaller than or equal to n2’s key, then n1 is not reachable from n2.

5. If n2 is reachable from n1 at a certain point, then as long as n2’s state is not
“deleted”, n2 is still reachable from n1.

6. If n1 is not an infant then the tail sentinel node is reachable from n1.

Proof. In the initial stage, the head and tail sentinels are the only volatile nodes in
the list, both with an “inserted” state, and tail is head’s successor. Invariant 1 holds
since tail is not an infant, Invariant 2 holds vacuously, Invariants 3, 5 and 6 hold since
both head and tail are reachable, and Invariant 4 holds since head is not reachable
from tail.

Now, assume all invariants hold until a certain point during the execution. We are
going to prove that they also hold after executing the next step by one of the system
threads.

70©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1. If n2 was also n1’s successor before the current step, then by assumption, it is
not an infant. Otherwise, n1’s next pointer was updated to point to n2 in the
current step, either in line 5 of Listing 5.4, in line 21 of Listing 5.6, or in line 24
of Listing 5.6. In the first two cases, there exists an earlier point during the
execution, in which n2 is the successor of a certain node (during the execution of
the find method). By assumption, n2 is not an infant in these cases. In the third
case, after executing the current step, n2 is not an infant by Definition B.6.

2. Assume that the next step will execute line 24 of Listing 5.6, having newNode =
n2. Assume by contradiction that n2 is not an infant. Since the CAS in line 24
can only be executed on nodes created in line 19, by the creating thread, n2 is
an infant and (1) holds. Now, assume by contradiction that n2’s state is not
“intend to insert”. Then it had been changed in line 34 of Listing 5.6, during
another insert execution, implying that, by Invariant 1 and the choice of the
resultNode variable, n2 is the successor of some node and thus, is not an infant
– a contradiction. Therefore, n2’s state is “intend to insert” and (2) holds as well.

3. If n1 was an infant before the current step, then the current step is the execution
of line 24 in Listing 5.6, making n1 the successor of some node which is reachable
by assumption. n1 is reachable in this case. Otherwise, by assumption and
Claim B.1, it was reachable during the former step. Assume by contradiction that
it is no longer reachable after executing the current step. Then n2 is reachable
from a node n1 that was reachable after the previous step, and is no longer
reachable (may be n2 itself). Assume w.l.o.g that n1 is such a node for which the
path of nodes from Definition B.4 is the longest. The node n1 can only become
unreachable if the current step is the execution of line 5 in Listing 5.4, and if n1’s
state is “deleted”. This means that n1 ̸= n2. Since n1’s successor stays reachable
in this case, we get a contradiction. Therefore, n2 is reachable in this case as well.

4. By assumption, n1 is not reachable from n2 after the previous step. Since all
changes of nodes’ successors (line 5 in Listing 5.4 and lines 21 and 24 in Listing 5.6)
preserve keys order (notice the halting condition in line 17 of Listing 5.4), the
Invariant still holds.

5. If n2 is not reachable from n1 after the previous step then the invariant holds
vacuously. Otherwise, assume by contradiction that n2 was reachable from n1

after the previous step, and is no longer reachable from n1 after the current step.
Let n3 be the first node reachable from n1 after the previous step, that is not
reachable from it after executing the current step (n3 must exist). The node n3

can only become unreachable from n1 if the current step is the execution of line 5
in Listing 5.4, and if n3’s state is “deleted”. This means that n3 ̸= n2. Since n3’s
successor stays reachable from n1 in this case, we get a contradiction. Therefore,
n2 is still reachable from n1.

71©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

6. If n1 was an infant after the previous step then the current step (executing a
successful CAS in line 24 of Listing 5.6) makes n1 the predecessor of a node
whose tail is reachable from, by assumption. Therefore, tail is reachable from
n1 in this case. Otherwise, assume by contradiction that tail was reachable from
n1 after the previous step (must hold by assumption), but is no longer reachable
from it after the current step. Let n2 be the last node reachable from n1, for whom
tail is not reachable from after executing the current step (n2 must exist). Then
the current step must change n2’s next pointer. Since n2 cannot be an infant (by
Invariant 1), this step is a successful CAS, either in line 5 of Listing 5.4 or in
line 24 of Listing 5.6. In both cases, n2’s successor is set to be a node that tail
is reachable from, by assumption. Since we get a contradiction to Definition B.4,
tail is reachable from n1 in this case as well. ■

Claim B.8 (The Volatile List Invariant). The volatile list is always sorted by the nodes’
keys, no key ever appears twice, and the head and tail sentinel nodes are always the
first and last members of the list, respectively.

Proof. From Invariant 4 of Claim B.7, the volatile list is always sorted by the nodes’
keys and no key ever appears twice. By Claim B.3 and Invariant 3 of Claim B.7, the
head and tail sentinel nodes are always members of the list, and by Invariant 4 of
Claim B.7, they are the first and last members, respectively. ■

Claim B.9 (Being Logically in the Volatile List). A volatile node n is logically in the
list if and only if its state is either “inserted” or “inserted with intention to delete”.

Proof. By Definition B.5, if n is logically in the list then its state is either “inserted”
or “inserted with intention to delete”. It remains to show that if its state is either
“inserted” or “inserted with intention to delete” then it is reachable and, thus, logically
in the list by Definition B.5. When n’s state was changed from “intend to insert” to
“inserted” in line 34 of Listing 5.6, it must have had a predecessor. From Invariant 1
of Claim B.7, it is not an infant. From Invariant 3 of Claim B.7, it is reachable. ■

B.1 Linearizability

We define linearization points for the insert, remove and contains operations, as well
as for the find auxiliary method. We explicitly specify the linearization points of the
linked-list when no crashes occur.

B.1.1 Find

We define the linearization point of the find method to be the point guaranteed from
Claim B.10 below.

72©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Claim B.10. Let n1 and n2 be the two volatile nodes returned as output from the find
method. Then during the method execution, there exist a point in which (1) n1 is
reachable, (2) n2 is n1’s successor, and (3) n2’s state is not “deleted”.

Proof. When n1’s state is read for the first time during the execution, it is not “deleted”
(otherwise, it would have been trimmed and not returned). In addition, since it must
have had a predecessor at an earlier point (otherwise, it would not have been traversed),
from Invariant 1 of Claim B.7, it is not an infant, and from Invariant 3 of Claim B.7,
it is reachable at this point. If n2 is n1 successor at this point, then the claim holds for
this point. Notice that n2’s state cannot be “deleted” at this point, since otherwise, it
would have been trimmed at a later point and not returned as output. If n2 is not n1’s
successor at this point, then there exists a point between the first read of n1 and the
first read of n2 in which n2 becomes n1’s successor. From Claim B.2, n1’s state is not
“deleted” at this point and thus, from Invariant 3 of Claim B.7, it is reachable at this
point. In addition, n2’s state is not “deleted” at this point as well, and the claim holds
in this case. ■

B.1.2 Insert

Let n be the volatile node created during a successful execution of the insert operation
(line 19 in Listing 5.6). Since the operation returns true, it is guaranteed that n’s state
changes from “intend to insert” to “inserted” in line 34. We define the linearization
point of a successful insert operation at this point. From Claim B.1 and B.9, this is
indeed the first point during the execution in which n is logically in the list.

Now, let there be an unsuccessful execution of the insert operation, and let m be
the volatile node returned as the second output parameter from the find call in line 6.
Since the condition checked in line 10 must hold, its key is equal to the key received as
input. Claim B.11 below guarantees that during the execution there exists a point in
which m is logically in the list. We set this point as the operation’s linearization point
in this case.

Claim B.11. There exists a point between the linearization point of the mentioned
find execution and the return of the operation in which m’s state is either “inserted”
or “inserted with intention to delete”.

Proof. If m’s state, read in line 11, is not “intend to insert”, then From Claim B.10
it is guaranteed that at the linearization point of the find execution, m’s state is not
“deleted”. If it is either “inserted” or “inserted with intention to delete”, then from
Definition B.5, we are done. Otherwise, it is “intend to insert”. However, when checking
its state in line 11, it is not “intend to insert” (since the operation is unsuccessful,
and the condition checked in line 11 must hold). From Claim B.1, it is guaranteed
that before checking this condition, there exists a point in which m’s state became
“inserted”, and the claim holds.

73©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

The remaining case is when the state read in line 11 is “intend to insert”. In this
case, the executing thread does not return before m’s state changes (the condition
checked in line 33 holds). From Claim B.1, it is guaranteed that there exists a point in
which m’s state is “inserted”, and the claim holds in the case as well. ■

B.1.3 Remove

Let n be the volatile node returned from the find method call in line 5 of Listing 5.7.
If the operation returned in line 9 then its linearization point is defined at the

linearization point of the find call from line 5. The find call returned two nodes that,
from Claim B.10, are guaranteed to be reachable and successive at its linearization
point. From Claim B.8 it is guaranteed that there does not exist a reachable node with
the given key, and in particular, there does not exist a node with the given key which
is logically in the list at this point.

If the operation returned in line 11, then the linearization point is the read of
currState during the find execution. Since it was returned from the find call, from
Invariant 1 of Claim B.7, it is not an infant. In addition, since its state is “intend
to insert”, from Invariant 3 of Claim B.7, it is reachable. By Definition B.5, it is not
logically in the list, and by Claim B.8, there does not exist another node with the given
key, which is reachable and in particular, logically in the list at this point.

Otherwise, the operation returned in line 21. It is guaranteed from Claim B.10 that
at the linearization point of the find call, n’s state was not “deleted”. Since the loops in
lines 13–14 and 16–17 terminated before the return from the operation in line 21, from
Claim B.1, n’s state was changed from “inserted with intention to delete” to “deleted”
at some point between the linearization point of the find method and the return from
the operation. This is the operation’s linearization point in this case. From Claim B.9,
it is guaranteed that the node stopped being logically in the list exactly at this step.

B.1.4 Contains

Let n be the last volatile node assigned into the curr variable in line 12 of Listing 5.5.

Claim B.12. Let m be the last node assigned into the curr variable before n. Then
there exists a point during the traversal in which both nodes are reachable and n is m’s
successor.

Proof. Assume by contradiction that the claim does not hold. Let n1 and n2 be the
first two nodes for which (1) n1 and n2 are assigned into the curr variable sequentially,
and (2) the guaranteed point does not exist for them. Since this point does exist for
n1 and the former node assigned into curr, n1 is reachable at some point during the
execution. From Invariant 5 of Claim B.7, n1 is reachable as long as its state is not
“deleted”. Since n2 is its successor when assigned into the curr variable, from Claim B.2
it was its successor at the last step in which n1 was reachable before this assignment

74©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

(might be the assignment itself). Therefore, there exists such a point for n1 and n2 –
a contradiction, and the claim holds. ■

If n’s key is not equal to the key received as input, then the linearization point is
set to be the point guaranteed from Claim B.12. From Claim B.8, it is guaranteed that
there does not exist a reachable node with the given key at this point.

Otherwise, n’s key is equal to the key received as input. If its state, when executing
line 13, is either “inserted” or “inserted with intention to delete”, then the operation’s
linearization point is the read of its state in line 13. From Claim B.9, n is logically in
the list at this point.

If its state is “intend to insert” when executing line 13, then the linearization point is
set to be the one guaranteed from Claim B.12, in which n is reachable. From Claim B.1,
n’s state at this point is “intend to insert” as well and, thus, it is not logically in the
list. From Claim B.8, since n is reachable, there does not exist another reachable (and
in particular, which is logically in the list) node with the given key at this point.

If n’s state is “deleted” when executing line 13 and its state at the point guaranteed
from Claim B.12 is also “deleted”, then this point is the operation’s linearization point.
From the above reasons, there does not exist a node with the given key which is logically
in the list at this point.

The remaining case is when n’s state is not “deleted” at the point guaranteed from
Claim B.12, but it is “deleted” when executing line 13. Since its state is eventually
“deleted”, there exists a point between the guaranteed point and the execution of line 13
in which n state was changed to “deleted” and this is the operation’s linearization point
in this case. From Invariant 5 of Claim B.7, n is reachable at this point and therefore,
from the above reasons, there does not exist a node with the given key which is logically
in the list at this point in this case as well.

B.2 Durable Linearizability

As in Section A.1, we use the notion of durable linearizability [IMS16] for correctness.
The recovery procedure, executed after a crash (and described in Section 5.4), is as-
sumed to terminate before new threads start executing their code. Given an operation
for which a crash event occurs after its invocation and before its response, we consider
its response point as the end of the respective recovery procedure. Notice that in the
following definitions, we do not consider recoveries that are interrupted by crash events.
We do so for clarity and brevity. The definitions can be easily extended to include such
cases.

Before diving into the durable linearizability proof, we prove some basic claims
regarding the persistent nodes, used during recovery.

Claim B.13 (State Transitions of Persistent Nodes). The state of a persistent node
can only go through the following transitions:

75©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

1. From valid and removed to invalid

2. From invalid to valid and not removed

3. From valid and not removed to valid and removed

Proof. Let p be a persistent node, allocated in line 19 of Listing 5.6, and let v be the
negation of its validStart bit, when allocated (i.e., v is assigned into the pValidity
field of the respective volatile node). When p is allocated, its state is valid and removed.
The state of p can only change when creating or destroying it (Listing 5.2). The create
method can only be called from line 31 of Listing 5.6, and the destroy method can only
be called from line 15 of Listing 5.7, both with v as their pValidity input parameter.
Notice that the first create execution terminates before the first destroy invocation,
since the state of the respective volatile node is set to “inserted” in line 34 of Listing 5.6,
only after the termination of the first create call, and is set to “inserted with intention
to delete” in line 14 of Listing 5.7, before the first invocation of the destroy method
(and by Claim B.1, a volatile node’s state can be “inserted” only before it becomes
“inserted with intention to delete”).

The first create execution changes p’s state to invalid and then valid and not
removed. Any further create calls do not change its state at all (since the value of
the validStart and validEnd bits is already v). Therefore, any destroy call can only
change it from valid and not removed to valid and removed (since it only changes the
deleted bit), and the claim follows. ■

Claim B.14 (Non-Removed Persistent Nodes). Let n be a volatile node, and assume
its representing persistent node has already been created in line 31 of Listing 5.6. If
n’s state is either “intention to insert” or “inserted”, then the state of its representing
persistent node is valid and not removed.

Proof. As shown in the proof of Claim B.13, the state of n’s representing persistent
node becomes valid and not removed when it is created in line 31 of Listing 5.6. In ad-
dition, from Claim B.13, it can only become valid and removed, after n’s state becomes
“inserted with intention to delete”. Since n’s state is either “intention to insert” or “in-
serted”, the state of its representing persistent node remains valid and not removed. ■

Claim B.15 (Removed Persistent Nodes). Let n be a volatile node, and assume its
representing persistent node has already been marked as removed in line 15 of Listing 5.7.
Then the state of its representing persistent node does not become valid and not removed
anymore.

Proof. As shown in Claim B.13, any further create or destroy calls would not effect
the persistent node’s state. ■

76©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

We are going to prove that, given an execution, removing all crash events would
leave us with a linearizable history, including all the operations that were fully executed
between two crashes, and some of the operations that were halted due to crashes (and
then recovered during recovery). We are going to define, per operation execution,
whether it is a surviving operation. A surviving operation is an operation that is
linearized in the final crash-free history of the execution (by removing all crash events).
Obviously, operations that were fully executed between two crash events are always
considered as surviving operations. Additionally, we are going to define the linearization
points of all surviving operations in the crash-free history.

B.2.1 Insert

Before defining the conditions for the survival of an insert operation, we need to re-
define the success of an insertion in the presence of crash events.

Definition B.16 (A Successful Insert Operation). Given an execution of an insert op-
eration, we say that this operation is successful if one of the following holds:

1. The operation returns true.

2. A volatile node n is allocated in line 19, the result variable is assigned with true
in line 27, and the respective persistent node of n is created in line 31 by some
thread before any crash event.

The operation is unsuccessful if it returns false.

Definition B.17 (A Surviving Insert Operation). An insert operation is considered as
a surviving operation if, before the first crash event that follows its invocation, one of
the following holds:

1. The operation is unsuccessful according to Definition B.16. In this case, its lin-
earization point is set to be its original linearization point, presented in Sec-
tion B.1.2.

2. The operation is successful according to Definition B.16, and some thread (not
necessarily the one that executes the successful insertion) changes the state of the
node allocated in line 19, in line 34. In this case, the linearization point is set to
be its original linearization point as well.

3. The operation is successful according to Definition B.16, and no thread changes
the state of the node allocated in line 19, in line 34. In this case, the linearization
point is set to be the insertion of a new respective volatile node to the list during
recovery.

Claim B.18. A surviving insert operation takes effect instantaneously at its lineariza-
tion point.

77©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Proof. First, let n be the last volatile node allocated during a successful insert operation
(according to Definition B.16). We are going to show that n is logically inserted into
the volatile list at the operation’s linearization point (presented in Definition B.17).

If some thread (not necessarily the one that executes the successful insertion)
changes the state of n in line 34, then by Definition B.17, the operation’s lineariza-
tion point is this change. As proved in Section B.1.2, n is indeed logically inserted
into the list at this point. Notice that in this case, we do not consider the insertion of
a new representing node during recovery, as a logical insertion of n into the list. By
Invariant 5 of Claim B.7, n is still reachable when the crash occurs. In addition, notice
that as long as this node is not removed from the list, its state remains “inserted” and
by Claim B.14, the state of its representing persistent node is indeed valid and not
removed during recovery.

Otherwise, no thread changes n’s state from “intention to insert” to “inserted”
before the crash event. By Definition B.16, a respective persistent node of n is created
in line 31. From Claim B.1, n’s state does not change at all before the first crash and
therefore, by Definition B.5, it is not logically in the list. As described in Section 5.4,
during recovery, a new volatile node, representing n, is logically inserted into the list,
and by Definition B.17, this is the linearization point of the operation in this case.
Notice that by Claim B.14, the state of its representing persistent node is indeed valid
and not removed during recovery, in this case as well.

When an insert operation is unsuccessful by Definition B.16, it is also unsuccessful
by the original definition. From Section B.1.2, there exists a point during its execution
for which a node with the given key is already logically in the list and thus, the un-
successful operation indeed returns a correct answer. Additionally, notice that even if
a representing persistent node is allocated, its state remains valid and removed, since
the create method is only called after the volatile node is successfully inserted into
the list, and the destroy method is only called when the state of the volatile node is
either “inserted with intention to delete” or “deleted” (by Claim B.14). ■

Claim B.19. A non-surviving insert operation takes no effect.

Proof. By Definition B.17, during a none-surviving insert operation, if a volatile node
is allocated, and even if it is inserted into the list, its state remains “intention to insert”
and, thus, it is not logically in the list by Definition B.5. In addition, by Definition B.17,
during a non-surviving insert operation, a persistent node may be allocated, but not
created (or partially created, and thus, in an invalid state). Therefore, during recovery,
even if the persistent node is allocated, its state is either valid and removed, or invalid,
and therefore, the represented volatile node is not inserted into the new list. ■

B.2.2 Remove

We also re-define the success of a removal in the presence of crash events.

78©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Definition B.20 (A Successful Remove Operation). Given an execution of an remove
operation, we say that this operation is successful if one of the following holds:

1. The operation returns true.

2. The result variable is assigned with true in line 14, and the respective persistent
node is marked as deleted in line 15 by some thread before any crash event.

The operation is unsuccessful if it returns false.

Definition B.21 (A Surviving Remove Operation). A remove operation is considered
as a surviving operation if, before the first crash event that follows its invocation, one
of the following holds:

1. The operation is unsuccessful according to Definition B.20. In this case, its lin-
earization point is set to be its original linearization point, presented in Sec-
tion B.1.3.

2. The operation is successful according to Definition B.20, and some thread (not
necessarily the one that executes the successful removal) changes the state of the
victim node in line 17. In this case, the linearization point is set to be its original
linearization point as well.

3. The operation is successful according to Definition B.20, and no thread changes
the state of the victim node in line 17. In this case, the linearization point is set
to be immediately after the crash event (if there is more than one such removal,
they are linearized in an arbitrary order).

Claim B.22. A surviving remove operation takes effect instantaneously at its lineariza-
tion point.

Proof. First, assume a successful remove operation (according to Definition B.20), and
let n be the node whose state is updated from “inserted” to “inserted with intention to
delete” in line 14. We are going to show that n is logically removed from the volatile
list at the operation’s linearization point (presented in Definition B.21).

If some thread (not necessarily the one that executes the successful removal) changes
the state of n from “inserted with intention to delete” to “deleted” in line 17, then
by Definition B.21, the operation’s linearization point is this change. As proved in
Section B.1.3, n is indeed logically removed from the list at this point. Notice that
in this case, it is guaranteed that n will not be re-added into the volatile list during
recovery, since by Claim B.15, it has a persistent representative, marked as deleted.

Otherwise, no thread changes n’s state from “inserted with intention to delete” to
“deleted” before the crash event. By Definition B.20, the respective persistent node of
n is marked as removed in line 15. From Claim B.1, n’s state remains “inserted with
intention to delete” until the first crash event. By Claim B.9, it is logically in the list

79©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

until this crash event. As described in Section 5.4, during recovery, a node representing
n will not be inserted into the list (since its representative is marked as deleted, by
Claim B.15), and in particular, will not be reachable. By Definition B.5, it will no
longer be logically in the list. Therefore, it is indeed logically removed from the list at
the crash event, right before its linearization point, as presented in Definition B.21.

When a remove operation is unsuccessful by Definition B.20, it is also unsuccessful
by the original definition. From Section B.1.3, there exists a point during its execution
for which there is no node with the given key which is logically in the list (and from
Claim B.15, any persistent representative would have a valid and removed state) and
thus, the unsuccessful operation indeed returns a correct answer. ■

Claim B.23. A non-surviving remove operation takes no effect.

Proof. By Definition B.21, during a none-surviving remove operation, even if the state
of the victim node becomes “inserted with intention to delete”, by Definition B.21, it
does not become “deleted”, and no thread executes the destruction of its respective
persistent node (i.e., by Claim B.14, it is still valid and not removed).

Therefore, by Definition B.5, it is still logically in the list until the crash event
occurs, and during recovery, it is re-added to the new list. ■

B.2.3 Contains

As opposed to the insert and remove operations, a contains operation is considered as
a surviving operation only when it terminates:

Definition B.24 (A Surviving Contains Operation). A contains operation is consid-
ered as a surviving operation if and only if it terminates before the first crash event
occurring after its invocation. If it survives, its linearization point is set to be its
original linearization point, presented in Section B.1.4.

Claim B.25. A surviving contains operation takes effect instantaneously at its lin-
earization point.

Proof. Since we only consider contains operations that terminate without being inter-
rupted by crash events, the claim follows directly from Section B.1.4 ■

Claim B.26. A non-surviving contains operation takes no effect.

Proof. The claim follows directly from the fact that a contains operation (and in par-
ticular, an operation with no response), does not change the list. ■

Theorem B.1. The soft list is durable linearizable.

80©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Proof. By Definition B.17, B.21 and B.24, all the operations that are fully executed
between two crashes (and some of the operations that are halted due to crash events),
have a linearization point. By Claim B.18, B.22 and B.25, each operation takes effect
instantaneously at its linearization point. By Claim B.19, B.23 and B.26, operations
for which we did not define linearization points (non-surviving operations), do not take
effect at all. In summary, the soft list is durable linearizable by definition [IMS16].■

B.3 Lock-Freedom

Similarly to (and following the discussion in) Section A.2, in this section we prove that
in crash-free executions, at least one of the operations terminates. To derive a contra-
diction, assume there is some execution for which no executing operation terminates
after a certain point. Notice that we can assume that no operation is invoked after this
point, and that the set of running operations is finite (since there is a finite number of
system threads). The rest of the proof relates to the suffix α of the execution, starting
from this point.

Claim B.27. There is a finite number of state changes during α.

Proof. An insert operation must terminate after executing line 34 in Listing 5.6. Like-
wise, a remove operation must terminate after executing line 17 in Listing 5.7). In ad-
dition, any remove operation includes at most two successful state changes (in lines 14
and 17 of Listing 5.7). Since the number of running operations is finite by assumption,
the number of state changes is finite as well. ■

Claim B.28. There is a finite number of pointer changes during α.

Proof. The loop in lines 5–30 of Listing 5.6 must eventually terminate after a successful
CAS execution in line 24 and therefore, there are no pointer updates in lines 21 and 24
of Listing 5.6. Thus, pointer updates can only occur in line 5 of Listing 5.4. When
executing this update, the pred node is reachable from Claim B.2 and Invariants 1
and 3 of Claim B.7. Since curr is pred’s successor and succ is curr’s successor right
before this change, succ is also reachable before this step. Therefore, no node becomes
reachable when executing this CAS. Since this is the only possible pointer change, the
list can only shrink, and the number of such pointer changes is finite. ■

Theorem B.2. The soft list is lock-free.

Proof. From Claims B.27 and B.28, after a certain point, there are no state or pointer
changes. Therefore, we consider the suffix α′ of the execution that contains no state or
pointer changes. Obviously, starting from this point, the list becomes stable, and does
not change anymore.

81©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Since the list is finite, from Claim B.8, every find and contains execution eventually
ends. In addition, every insert and remove operation must be unsuccessful, and also
terminate (since calls to the find method always terminate). We get a contradiction
and therefore, the implementation is lock-free. ■

B.4 Theoretical Bound

In this section we show that soft matches the lower bound presented in [CGZ18]. We
need to show that both insert and remove execute at most one psync, and that contains
executes none.

In the entire code there are two functions which explicitly execute a psync instruc-
tion and they are Node::help and Node::destroy.

The code for insert appears in Figure 5.6, in which we call Node::help outside of
the main loop in line 31. So insert itself execute only one psync.

In remove (Figure 5.7), we call Node::destroy once in line 15. Again, this call is
outside of any loops, so remove calls a single psync.

Both insert and remove use find and trim (Figure 5.4). These two functions do not
use a psync operations at all, and thus we can conclude that insert and remove execute
at most a single psync.

In the case of contains, the code in Figure 5.5 clearly shows that there is no psync,
satisfying the lower bound.

82©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Bibliography

[AB16] Hillel Avni and Trevor Brown. Persistent hybrid transactional memory
for databases. Proc. VLDB Endow., 10(4):409–420, November 2016.

[ALMS17] Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit.
Forkscan: Conservative memory reclamation for modern operating sys-
tems. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, pages 483–498, New York, NY, USA, 2017. ACM.

[APD15] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. Let’s talk about
storage & recovery methods for non-volatile memory database sys-
tems. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’15, pages 707–722, New York, NY,
USA, 2015. ACM.

[BDBFW19] Naama Ben-David, Guy E. Blelloch, Michal Friedman, and Yuanhao Wei.
Delay-free concurrency on faulty persistent memory. In The 31st ACM
on Symposium on Parallelism in Algorithms and Architectures, SPAA ’19,
pages 253–264, New York, NY, USA, 2019. ACM.

[BGHZ16] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi.
Fast and robust memory reclamation for concurrent data structures. In
Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’16, pages 349–359, New York, NY, USA, 2016.
ACM.

[Bro15] Trevor Alexander Brown. Reclaiming memory for lock-free data struc-
tures: There has to be a better way. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, PODC ’15, pages
261–270, New York, NY, USA, 2015. ACM.

[CAAL19] Nachshon Cohen, David T. Aksun, Hillel Avni, and James R. Larus.
Fine-grain checkpointing with in-cache-line logging. In Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’19, pages
441–454, New York, NY, USA, 2019. ACM.

83©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

[CBB14] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:
Leveraging locks for non-volatile memory consistency. SIGPLAN Not.,
49(10):433–452, October 2014.

[CCA+12] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K
Gupta, Ranjit Jhala, and Steven Swanson. Nv-heaps: making persistent
objects fast and safe with next-generation, non-volatile memories. ACM
Sigplan Notices, 47(4):105–118, 2012.

[CFL17] Nachshon Cohen, Michal Friedman, and James R. Larus. Efficient logging
in non-volatile memory by exploiting coherency protocols. Proc. ACM
Program. Lang., 1(OOPSLA):67:1–67:24, October 2017.

[CGZ18] Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. The inherent
cost of remembering consistently. In Proceedings of the 30th on Symposium
on Parallelism in Algorithms and Architectures, SPAA ’18, pages 259–269,
New York, NY, USA, 2018. ACM.

[CL16] Alexei Colin and Brandon Lucia. Chain: Tasks and channels for reliable
intermittent programs. In Proceedings of the 2016 ACM SIGPLAN In-
ternational Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2016, pages 514–530, New York, NY,
USA, 2016. ACM.

[Coh18] Nachshon Cohen. Every data structure deserves lock-free memory recla-
mation. Proceedings of the ACM on Programming Languages, 2(OOP-
SLA):143, 2018.

[CP15] Nachshon Cohen and Erez Petrank. Efficient memory management for
lock-free data structures with optimistic access. In Proceedings of the 27th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
’15, pages 254–263, New York, NY, USA, 2015. ACM.

[CST+10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking cloud serving systems with ycsb. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,
pages 143–154, New York, NY, USA, 2010. ACM.

[DDGZ18] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor
Zablotchi. Log-free concurrent data structures. In 2018 USENIX An-
nual Technical Conference (USENIX ATC 18), pages 373–386, Boston,
MA, 2018. USENIX Association.

[DGT13] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything
you always wanted to know about synchronization but were afraid to

84©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

ask. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, pages 33–48, New York, NY, USA, 2013.
ACM.

[DGT15] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized
concurrency: The secret to scaling concurrent search data structures. In
Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’15, pages 631–644, New York, NY, USA, 2015. ACM.

[DHK16] Dave Dice, Maurice Herlihy, and Alex Kogan. Fast non-intrusive memory
reclamation for highly-concurrent data structures. In Proceedings of the
2016 ACM SIGPLAN International Symposium on Memory Management,
ISMM 2016, pages 36–45, New York, NY, USA, 2016. ACM.

[DSL10] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flashstore: High through-
put persistent key-value store. Proc. VLDB Endow., 3(1-2):1414–1425,
September 2010.

[FHMP18] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank.
A persistent lock-free queue for non-volatile memory. In Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’18, pages 28–40, New York, NY, USA, 2018. ACM.

[Fra04] Keir Fraser. Practical lock-freedom. Technical report, University of Cam-
bridge, Computer Laboratory, 2004.

[Har01] Timothy L. Harris. A pragmatic implementation of non-blocking linked-
lists. In Jennifer Welch, editor, Distributed Computing, pages 300–314,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[HHL+06] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N.
Scherer, and Nir Shavit. A lazy concurrent list-based set algorithm. In
Proceedings of the 9th International Conference on Principles of Dis-
tributed Systems, OPODIS’05, pages 3–16, Berlin, Heidelberg, 2006.
Springer-Verlag.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, July 1990.

[IMS16] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. Lineariz-
ability of persistent memory objects under a full-system-crash failure

85©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

model. In Cyril Gavoille and David Ilcinkas, editors, Distributed Comput-
ing, pages 313–327, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[Int19] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual, 1
2019.

[JRLR15] Hrishikesh Jayakumar, Arnab Raha, Woo Suk Lee, and Vijay Raghu-
nathan. Quickrecall: A hw/sw approach for computing across power
cycles in transiently powered computers. J. Emerg. Technol. Comput.
Syst., 12(1):8:1–8:19, August 2015.

[KPS+16] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F
Wenisch. High-performance transactions for persistent memories. ACM
SIGPLAN Notices, 51(4):399–411, 2016.

[LBC+17] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily
Ruppel. Intermittent Computing: Challenges and Opportunities. In
Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi, ed-
itors, 2nd Summit on Advances in Programming Languages (SNAPL
2017), volume 71 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 8:1–8:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[MCL17] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: Inter-
mittent execution without checkpoints. Proc. ACM Program. Lang.,
1(OOPSLA):96:1–96:30, October 2017.

[Mic02] Maged M. Michael. High performance dynamic lock-free hash tables and
list-based sets. In Proceedings of the Fourteenth Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’02, pages 73–82, New
York, NY, USA, 2002. ACM.

[Mic04] Maged M Michael. Hazard pointers: Safe memory reclamation for lock-
free objects. IEEE Transactions on Parallel and Distributed Systems,
15(6):491–504, 2004.

[ML18] Kiwan Maeng and Brandon Lucia. Adaptive dynamic checkpointing for
safe efficient intermittent computing. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pages 129–
144, Carlsbad, CA, 2018. USENIX Association.

[NFG+13] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman
Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab,
David Stafford, Tony Tung, and Venkateshwaran Venkataramani. Scaling

86©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

memcache at facebook. In Presented as part of the 10th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 13),
pages 385–398, Lombard, IL, 2013. USENIX.

[NIK+17] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B. Morrey III,
Dhruva R. Chakrabarti, and Michael L. Scott. Dalí: A Periodically Per-
sistent Hash Map. In Andréa W. Richa, editor, 31st International Sympo-
sium on Distributed Computing (DISC 2017), volume 91 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 37:1–37:16, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[NM14] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary
search trees. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’14, pages 317–
328, New York, NY, USA, 2014. ACM.

[RKCA17] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abra-
ham. Pebblesdb: Building key-value stores using fragmented log-
structured merge trees. In Proceedings of the 26th Symposium on Op-
erating Systems Principles, SOSP ’17, pages 497–514, New York, NY,
USA, 2017. ACM.

[RL19] Emily Ruppel and Brandon Lucia. Transactional concurrency control
for intermittent, energy-harvesting computing systems. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, pages 1085–1100, New York, NY, USA,
2019. ACM.

[SDUP15] David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner.
Nvc-hashmap: A persistent and concurrent hashmap for non-volatile
memories. In Proceedings of the 3rd VLDB Workshop on In-Memory
Data Mangement and Analytics, IMDM ’15, pages 4:1–4:8, New York,
NY, USA, 2015. ACM.

[SS06] Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free extensible hash
tables. Journal of the ACM (JACM), 53(3):379–405, 2006.

[VTS11] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the Sixteenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 91–104, New York, NY,
USA, 2011. ACM.

[WH16] Joel Van Der Woude and Matthew Hicks. Intermittent computation with-
out hardware support or programmer intervention. In 12th USENIX Sym-

87©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

posium on Operating Systems Design and Implementation (OSDI 16),
pages 17–32, Savannah, GA, 2016. USENIX Association.

[WJ14] Tianzheng Wang and Ryan Johnson. Scalable logging through emerging
non-volatile memory. Proc. VLDB Endow., 7(10):865–876, June 2014.

[YMP+18] Kasım Sinan Yıldırım, Amjad Yousef Majid, Dimitris Patoukas, Koen
Schaper, Przemyslaw Pawelczak, and Josiah Hester. Ink: Reactive kernel
for tiny batteryless sensors. In Proceedings of the 16th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’18, pages 41–53, New
York, NY, USA, 2018. ACM.

[ZS15] Y. Zhang and S. Swanson. A study of application performance with non-
volatile main memory. In 2015 31st Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10. IEEE, May 2015.

88©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

בה שרידה" "לינאריזביליות בשם הנכונות בתנאי להשתמש בחרנו הזו בעבודה והתאוששויות. מתח

היא חישוב היסטורית הזה, התנאי תחת קריסה. של הפעולה גם נוספה שיש, הרגילות לפעולות בנוסף

לינאריזבילית. היא הקריסות כל הסרת אחרי שנוצרת הפעולות היסטורית אם שרידה לינאריזבילית

מספר מימשנו שיטות לאותן ובהתאם לשרידים נתונים מבני להפיכת שיטות שתי פיתחנו זו בעבודה

הידוע כשהמימוש במילונים, השימוש נדיף. הבלתי הזיכרון בעבור ויעילים שרידים מילון אלגוריתמי

על הנתונים. מסדי בקהילית וערכים מפתחות של באחסון למשל נרחב הוא ערבול, טבלת הוא שלהם

הרחב. לשוק יגיע נדיף הבלתי הזיכרון כאשר גבוהה חשיבות בעלי יהיו שרידים שמילונים נראה כן

התזה כתיבת לזמן נכון ביותר היעילים הנתונים מבני את יוצרות כאן שנציג השונות השיטות שתי

בנוסף, נפילות. לשרוד שמסוגלות מערכות על יותר טובים ביצועים מניבים אלה נתונים ומבני הזו,

נפילות. להיות עשויות בה למערכת המתאימה תכונה מעצורים, חסרי הם שמימשנו הנתונים מבני

רב מספר על גבוהה לנצילות מגיעים כלומר מדרגיים, הם מעצורים חסרי נתונים שמבני משום זאת

על יקר מעקב מצריך נפילות, להיות עשויות בה במערכת במנעולים השימוש מכך, יתרה מעבדים. של

המערכת. קריסת בעקבות קריטיים בחלקים שבוצעו חלקיות פעולות לבטל נוכל קריסה שאחרי מנת

יותר. עוד למסובך המעקב את הופך מנעולים של קינון בנוסף,

בין מצביעים ישירה בצורה לכתוב מהצורך ההמנעות הוא הזו העבודה בבסיס שעומד המרכזי הרעיון

למידע גישה לאפשר נועד קריסות ללא במערכת במצביעים השימוש הנתונים. במבני שונים צמתים

את להבטיח כדי מהירה. בצורה למפתחות לגשת צורך אין קריסה, אחרי אולם מהירה. בצורה

בצורה אם גם השונים, והערכים המפתחות כל אל גישה להיות חייבת קריסה אחרי המילון, נכונות

ובצורה צמתים, שבין למצביעים ולא הצמתים שבתוך המידע לשרידות רק לדאוג נוכל כן, על איטית.

"חסר שלנו הראשונה לשיטה קראנו הזו, המסקנה בעקבות שנבצע. ההדחות כמות את להפחית כזו

הנתונים ממבנה חלק היה הצומת האם לקבוע נוכל צומת שנשמור נוסף מידע באמצעות קישורים".

את נקצה הנתונים, במבנה להיות שעשויים הצמתים כל את למצוא מנת על לאו. או הנפילה לפני

שרידים". "אזורים להם שנקרא ייעודים אזורים בתוך כולם

השראתה את שואבת ומושלמת), יעילה הדחה דרך עם (מילונים "מדהים" ששמו השניה השיטה

על לבצע שיש והגדר ההדחה פעולות מספר על התחתון ומהחסם קישורים" "חסר הראשונה, מהשיטה

ההדחה לדרך להגיע מנת על נוסף סיבוך יש זו בשיטה מעצורים. וחסר שריד יהיה נתונים שמבנה מנת

פעולה על מקביליים חוטים שמיידעים ביניים מצבי יש מיותרות הדחות למנוע כדי והמושלמת. היעילה

"מדהים" אחת. פעולה להשלים מנת על לשני אחד עוזרים חוטים מספר ובכך במקביל שמתרחשת

בעבודה קישורים". "חסר של לאלה הדומים טובים ביצועים על שמירה תוך התחתון החסם את משיג

טבלת מקושרת, רשימה מילונים: של שונים סוגים שלושה לממש מנת על השיטות בשתי השתמשנו זו,

הפעלת ידי על שנוצרו הערבול וטבלאות רשימות של הביצועים כך, על נוסף דילוגים. ורשימת ערבול

קיימים שהיו ביותר הטובים השרידים הערבול וטבלת הרשימה של לביצועים הושוו שלנו השיטות שתי

שלושה, פי של בביצועים הפרש הניבו שלנו השיטות מעקבים". "חסר ושמם הזו, העבודה פרסום טרם

יותר. ואף

ii©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

תקציר

בלתי דינמי "זיכרון הוא אקראית גישה בעל דינמי זיכרון של בנושא העתידיות ההתפתחויות אחת

בעל דינמי זיכרון של היתרונות את משלב הזה הזיכרון של המבנה נדיף). בלתי זיכרון (בקיצור נדיף"

עתידות נדיף הבלתי לזיכרון הגישה פעולות שבבי. כונן ושל דינמי) זיכרון (בקיצור אקראית גישה

לעומת בנוסף, זהה. גודל בסדר יהיה שלהן הפעולה משך ואף הדינמי הזיכרון של לאלו זהות להיות

למידע לגשת אפשר נדיף הבלתי בזיכרון גדולים, בלוקים של ברמה למידע לגשת ניתן בו השבבי הכונן

נפילת של במקרה כלומר נדיפה, בלתי תהיה החדשה החומרה הדינמי, לזיכרון בניגוד הבית. ברמת

לבניה ישמש הנשמר התוכן תוכנו. על ישמור נדיף הבלתי הזיכרון שלה, ואתחול המערכת של מתח

הפעילות. המשך את לאפשר כדי הנפילה לפני שהיה לזה הדומה מצב של מחודשת

ישרדו לא (כלומר נדיפים יוותרו המטמון וזיכרון האוגרים כי נראה נדיף, הבלתי הזיכרון תוכן לעומת

עשוי סטנדרטים אלגוריתמים באמצעות הממומשים נתונים מבני של המצב כן, על מתח). נפילת

ועליה נפילה אחרי כלומר, נדיף. הבלתי בזיכרון הקיים המידע על רק בהסתמך עקבי להיות לא

לאו המטמון בזיכרון שהיו שכתיבות משום עקבי יהיה לא נתונים מבני אותם של המצב מחודשת,

הביצועים, את לשפר כדי מזאת, יתרה שרדו. לא ולכן נדיף, הבלתי הדינמי לזיכרון הגיעו דווקא

על שמקשה מה נדיף, הבלתי לזיכרון מהמטמון מגיעות כתיבות שבו הסדר את לשנות עשוי המעבד

הסדר אחרות, במילים הנתונים. מבנה על הפעולות של עקבית תחילית להכיל נדיף הבלתי הזיכרון

הערכים את כתבה התוכנית בו מהסדר שונה להיות יכול נדיף, הבלתי לזיכרון נכתבים ערכים בו

נתונים מבני אותם של הנכונות ותנאיי המימוש כך, משום למטמון). הגיעו הכתיבות בו (הסדר הללו

בהתאם. להשתנות צריכים

הנקראים חדשים, אלגוריתמים של בפיתוח צורך יש נדיף, הבלתי הזיכרון של היכולת את למצות כדי

ובפיתוח מתח, נפילת אחרי נדיף הבלתי בזיכרון עקבי מצב להבטיח שיכולים שרידים, אלגוריתמים

שורות לכתוב צריכים הללו האלגוריתמים הנפילה. אחרי שירוצו תואמים התאוששות מנגנוני של

הרצוי. בסדר לשרידות הופכות חשובות שכתיבות לוודא כדי נדיף הבלתי לזיכרון יזומה בצורה מטמון

בצורה שכותבת "הדחה" שנקראת קיימת מכונה פקודת באמצעות לעשות אפשר כזו יזומה כתיבה

כלל בדרך תקפה. ללא שורה אותה את והופכת נדיף) בלתי או (דינמי לזיכרון מטמון שורת ישירה

של העלות התוכנית. פעולת המשך לפני ההדחה סיום את להבטיח כדי גדר בפעולת מלווה הדחה

הביצועים. את לשפר כדי בהן השימוש את למזער נרצה ולכן גבוהות והגדר ההדחה פעולות

נקרא לינאריזביליות. הוא משתמשים בו הנכונות תנאי מקביליים, נתונים במבני כשדנים כלל בדרך

בנקודה מידית בצורה קרה כאילו נראה פעולה כל של התוצא אם לינאריזבילית חישוב להיסטורית

אלגוריתמים עבור הוצעו שונים נכונות תנאיי מספר הוצעו לסופה. הפעולה תחילת בין כלשהי

נפילות של האפשרות הוספת ידי על לינאריזביליות של המקורית ההגדרה את שהרחיבו שרידים

i©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

המחשב. למדעי בפקולטה כהן, נחשון וד"ר פטרנק ארז פרופסור של בהנחייתו בוצע המחקר

בהשתלמותי. הנדיבה הכספית התמיכה על למדע הלאומית ולקרן לטכניון מודה אני

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

מעצורים וחסר לא-נדיף יעיל מילון

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

צוריאל יואב

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2019 נובמבר חיפה התש"פ חשוון

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

מעצורים וחסר לא-נדיף יעיל מילון

צוריאל יואב

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Preliminaries
	3 Overview of The Proposed Data Structures
	3.1 Recovery
	3.2 Link-Free Sets
	3.3 SOFT: Sets with an Optimal Flushing Technique

	4 The Details of the Link-Free Algorithm
	4.1 Link Free Linked List
	4.1.1 Auxiliary Functions
	4.1.2 The contains Operation
	4.1.3 The insert Operation
	4.1.4 The remove Operation

	4.2 Link Free Hash Table
	4.3 Link-Free Skip List
	4.3.1 The contains Operation
	4.3.2 The insert Operation
	4.3.3 The remove Operation

	4.4 Recovery

	5 The Details of SOFT
	5.1 SOFT Linked List
	5.1.1 PNode
	5.1.2 Volatile Node
	5.1.3 The contains Operation
	5.1.4 The insert Operation
	5.1.5 The remove Operation

	5.2 SOFT Hash Table
	5.3 SOFT Skip List
	5.3.1 SOFT Skip List Node
	5.3.2 The contains Operation
	5.3.3 The insert Operation
	5.3.4 The remove Operation

	5.4 Recovery

	6 Memory Management
	7 Measurements
	7.1 Throughput Measurements

	8 Related Work
	9 Conclusion
	A Link Free Correctness
	A.1 Durable Linearizability
	A.1.1 Insert
	A.1.2 Remove
	A.1.3 Contains

	A.2 Lock-Freedom
	A.2.1 A Preliminary Discussion

	B SOFT Correctness
	B.1 Linearizability
	B.1.1 Find
	B.1.2 Insert
	B.1.3 Remove
	B.1.4 Contains

	B.2 Durable Linearizability
	B.2.1 Insert
	B.2.2 Remove
	B.2.3 Contains

	B.3 Lock-Freedom
	B.4 Theoretical Bound

	Bibliography
	Hebrew Abstract

