Wait-Free Linked-Lists*

Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Er¢iaRle

Dept. of Computer Science, Technion, Israel.
Email: {stimnat,anastas,sakogan,gi@zs.technion.ac.il

Abstract. Wait-freedonis the strongest and most desirable progress guarantee,
under which any thread must make progress when given eno®ih steps.
Wait-freedom is required for hard real-time, and desirablenany other sce-
narios. However, because wait-freedom is hard to achieeejsually settle for

the weakeilock-free progress guarantee, under which one of the active threads
is guaranteed to make progress. With lock-freedom (ankeinliait-freedom),
starvation of all threads but one is possible.

The linked-list data structure is fundamental and ubigwstd_ock-free versions

of the linked-list are well known. However, whether it is pitde to design a prac-
tical wait-free linked-list has remained an open questinithis work we present

a practical wait-free linked-list based on the CAS pringtiffo improve perfor-
mance further, we also extend this design using the fasiglatv-path methodol-
ogy. The proposed design has been implemented and measisaeenonstrate
performance competitive with that of Harris’s lock-frest]iwhile still providing

the desirable wait-free guarantee, required for real-sgsems.

1 Introduction

A linked-list is one of the most commonly used data structufidne linked-list seems
a good candidate for parallelization, as modifications ffedint parts of the list may
be executed independently and concurrently. Indeed, |phliaked-lists with various
progress properties are abundant in the literature. Ambaget are lock-free linked-
lists. A lock-free data structure ensures that when setleraads access the data struc-
ture concurrently, at least one makes progress within adeadinumber of steps. While
this property ensures general system progress, it doesewant starvation of a particu-
lar thread, or of several threads. Wait-free data strustensure that each thread makes
progress within a bounded number of steps, regardless ef titteads’ concurrent ex-
ecution. Wait-free data structures are crucial for raaktisystems, where a deadline
may not be missed even in a worst-case scenario. To allowinealsystems and other
systems with critical worst-case demands make use of cogrdglata structures, we
must provide the strong wait-free guarantee. Furthernveaé;freedom is a desirable
progress property for many systems, and in particular dipgraystems, interactive
systems, and systems with service-level guarantees. Ftrosk, the elimination of
starvation is highly desirable.

Despite the great practical need for data structures tisatrerwait-freedom, almost
no practical wait-free data structure is known, becausa statictures that ensure wait-
freedom are notoriously hard to design. Recently, wai-ttesigns for the simple stack

* This work was supported by the Israeli Science Foundatiantg¥o. 283/10.

and queue data structures appeared in the literature [Wal}-free stack and queue
structures are not easy to design, but they are conside®diallenging as they present
limited parallelism, i.e., a limited number of contentionimts (the head of the stack,
and the head and the tail of the queue). We are not aware of rayiqal wait-free
design for any other data structure that allows multipleccorent operations to occur
simultaneously. In particular, to the best of our knowledere is no wait-free linked-
list algorithm available in the literature except for algloms of universal constructions,
which do not provide practical efficiency.

The main contribution of this work is a practical, lineabis, fast and wait-free
linked-list. Our construction builds on the lock-free latklist of Harris [4], and extends
it using a helping mechanism to become wait-free. The maihriieal difficulty is
making sure that helping threads perform each operatioecity, apply each operation
exactly once, and return a consistent result (of successlord) according to whether
each of the threads completed the operation successftilly.task is non-trivial and it
is what makes wait-free algorithms notoriously hard to glesOur design deals with
several races that come up, and a proof of correctness maieethat no further races
exist. Some of our techniques may be useful in future woneeiglly thesuccess bit
introduced to determine the owner of a successful operatiext, we extend our design
using the fast-path-slow-path methodology of Kogan andaiR&t[8], in order to make
it even more efficient, and achieve performance that is alesivalent to that of the
lock-free linked-list of Harris. Here, the idea is to comblvoth lock-free and wait-free
algorithms so that the (lock-free) fast path runs with (adthao overhead, but is able
to switch to the (wait-free) slow path when contention ifasgs with its progress. It is
also important that both paths are able to run concurrenthycarrectly. Combining the
newly obtained wait-free linked-list with the existing leéree linked-list of Harris is
an additional design challenge that is, again, far fromativ

We have implemented the new wait-free linked-list and camegés efficiency with
that of Harris’s lock-free linked-list. Our first desigriggitly optimized) performs worse
by a factor of 1.5 when compared to Harris’s lock-free altponi. This provides a prac-
tical, yet not optimal, solution. However, the fast-paltmspath extension reduces the
overhead significantly, bringing it to just 2-15 percentsisiseems a reasonable price to
pay for obtaining a data structure with the strongest wai¢-fjuarantee, providing non-
starvation even in worst-case scenarios, and making itadolaifor use with real-time
systems.

We begin in Section 2 with an overview of the algorithm andtoare in Section 3
with a detailed description of its most complex operatiod arucial parts. Highlights
of the correctness proof appear in Section 4. The linedwizatoints of the algorithm
are specified in Section 5. We give an overview of the fadtHséiw-path extension of
the algorithm in Section 6, and Section 7 presents the pegfoce measurements. In
a full version of this work [11] we also provide details abdhe fast-path-slow-path
implementation, the entire pseudo-code, and a full canessst proof for the algorithm.

1.1 Background and Related Work

The first lock-free linked-list was presented by Valois [1&]simpler and more effi-
cient lock-free algorithm was designed by Harris [4], anctiMiel [9] added a hazard-

pointers mechanism to allow lock-free memory managemetihi®algorithm. Fomitchev
and Rupert achieved better theoretical complexity in [3rllHy and Shavit imple-
mented a variation of Harris’s algorithm [6], and we used thiplementation both for
comparison and as the basis for the Java code we developed.

Wait-free queues were presented in [7, 2]. A different apphdfor building concur-
rent lock-free or wait-free data structures is the use ofensial constructions [5, 6, 1].
However, universal constructions (at least for the linksg-are not efficient enough to
be applied in practice, and are often non-scalable.

Recently, Kogan and Petrank [8] presented the fast-path-phth technique men-
tioned above. We use the fast-path-slow-path methodolodlyis work to achieve an
efficient and wait-free linked-list.

Our wait-free linked-list design follows the traditionaggtice, in which concurrent
linked-list data structures realize a sorted list, whehda@y may only appear once in
the list [3, 4, 6, 12]. A brief announcement of this work apjeekin [10].

2 An Overview of the Algorithm

Before getting into the technical details (in Section 3) wevide an overview of the
design. The wait-free linked-list supports three opersticNSERT, DELETE, andCON-
TAINS. All of them run in a wait-free manner. The underlying sturetof the linked-list
is depicted in Figure 2. Similarly to Harris’s linked-ligtyr list contains sentindlead
andt ai | nodes, and theext pointer in each node can be marked using a speaidd
bi t, to signify that the entry in the node is logically deleted.

To achieve wait-freedom, our list employs a helping mecsraniBefore starting
to execute an operation, a thread starts by publishin@peration Descriptorin a
specialst at e array, allowing all the threads to view the details of theragien it is
executing. Once an operation is published, all threads nyap help execute it. When
an operation is completed, the result is reported to the staiy, using a CAS which
replaces the existing operation descriptor with one thatains the result.

A top-level overview of the insert and delete operationsrisvigled in Figure 1.
When a thread wishes 10ISERT a keyk to the list, it first allocates a new node with

boolean insert(key)
. Allocate a new node (without help)
. Publish the operation (without help)
: Search for a place to insert the node

1: : boolean delete(key)
2

3

4

5. If key already exists, return with failure

6

7

8

Publish the operation (without help)
Search for the victim node to delete

If key doesn’t exist, return with failure
Announce the victim node in the state array
Mark the victim’s pointer to logically delete it
Physically remove the victim node
Report that the victim node has been removed
Compete for success (without help)

. Direct the new node’s next pointer
:Insert the node(by modifying its predecessor)
: Return with Success

R B SR > s

Fig. 1. Insert and delete overview

key k, and then publishes an operation descriptor with a poioténe new node. The

rest of the operation can be executed by any of the threadig isytstem, and may also
be run by many threads concurrently. Any thread that exedhis operation starts by
searching for a place to insert the new node. This is donegubi@ search method,
which, given a ke, returns a pair of pointergrevandcurr. The prev pointer points
to the node with the highest key smaller tHarand the curr pointer points to the node
with the smallest key larger than or equalktolf the returned curr node holds a key
equal to the key on the node to be inserted, then failure rteg. Otherwise the node
should be inserted between prev and curr. This is done byficating the new node’s
next pointer to point to curr, and then updating prevét field to point to it. Both of
these updates are done using a CAS to prevent race congddiwhthe failure of any of
these CASes will cause the operation to restart from theekagaethod. Finally, after
that node has been inserted, success is reported.

While the above description outlines the general procesaseiiting a node, the
actual algorithm is a lot more complex, and requires carevtadaproblematic races
that can make things go wrong. In addition, there is also ariatl ABA problem that
requires the use of a version mark on tiegt pointer field. We discuss these and other
potential races in Section 3.4.

When a thread wishes ELETE a keyk from the list, it starts by publishing the
details of its operation in thet at e array. The next steps can be then executed by any
of the threads in the system until the last step, which is@esconly by the thread that
initiated the operation, denoted tbaner thread The DELETE operation is executed
(or helped) in two stages. First, thvictim node to be deleted is chosen. To do this,
the search method is invoked. If no node with the kdag found, failure is reported.
Otherwise, the victim node mnnouncedn thest at e array. This is done by replacing
the state descriptor that describes this operation to@désscriptor that has a pointer to
the victim node. This announcement helps to ascertain thatwrent helping threads
will not delete two different nodes, as the victim node fdasthperation is determined
to be the single node that is announced in the operationigéscin the second stage,
deletion is executed similarly to Harris’s linked-list:ettvictim node’snext field is
marked, and then it is physically removed from the list. Thetim node’s removal is
then reported back to trst at e array.

However, since multiple threads execute multiple openati@nd as it is possible
that several operations attemptdaLETE the same node, it is crucial that exactly one
operation be declared as successfully deleting the nodg’aikd that the others return
failure. An additional (third) stage is required in orderctnsistently determine which
operation can be considered successful. This step is edanty by the owner threads,
and is given no help. The threads that initiated the conotidelete operations compete
among themselves for the ownership of the deletion. To tinds & extrauccess- bi t
designated for this purpose is added to each node in th&listthread that successfully
CASes this bit from false to true is the only one that repantscess for this deletion.
We believe that using an extra bit to determine an ownershimamperation is a use-
ful mechanism for future wait-free constructions as wehisTmechanism is further
explained in Section 3.5.

1 The versioning method provides a simple solution to the ABAbfem. A more involved
solution that does not require a versioned pointer appeateifull version of this paper [11].

ThecoNTAINS operation is much simpler than the other two. It starts byliphimg
the operation. Any helping thread will then search for ithe list, reporting success
(on the operation record) if the key was found, or failure ifias not.

3 TheAlgorithm

In this section we present the details of the algorithm. Wiy flescribe the list struc-
ture, the helping mechanism, and theArRCH and INSERT operations. TheNSERT
operation is the most complicated part of the algorithm. failed description of the
DELETE and CONTAINS operations appears in the full version of this paper [11]. We
also include in this section a detailed description of¢hecess-bit technique used

in the DELETE operation, as we believe this mechanism can be useful forduwtork.

3.1 TheUnderlying Data Structures

List: Node: OpDesc:
— head key type
tail next pointer phase
A statm success bit node
I
currentMaxPhase searchResult

[

OpDesc of thread 0

OpDesc of thread 1 OpDesc of thread 2 OpDesc of thread 3

Fig. 2. General structure

The structure of the linked-list is depicted in Figure 2. Adecof the linked list
consists of three fields: a key,saiccess bit to be used when deleting this node,
and a special pointer field. The special pointer field haseiéstl significant bit used
by the algorithm for signaling between threads. In additibis pointer is versioned,
in the sense that there is a counter associated with it (indgacent word) and each
modification of it (or of its special bit) increments the ctem The modification and
counter increment are assumed to be atomic. This can bermepked by squeezing all
these fields into a single word, and limiting the size of tharter and pointer, or by
using a double-word compare-and-swap when the platforowall Alternatively, one
can allocate a “pointer object” containing all these fieldd &its, and then atomically
replace the existing pointer object with a new one. Thedaforoach is commonly
used with Java lock-free implementations, and we use it is we

In addition to the nodes of the list, we also maintain an awé an operation-
descriptor for each thread in the system. The OpDesc entrgéoh thread describes

its current state. It consists of a phase fighdse, the OpType field signifying which
operation is currently being executed by this thread, atpoto a node, denotewde,
which serves the insert and delete operations, and a paiinfgus (prev,curr), for
recording the result of a search operation. Recall thataheltr of asEARCHoperation
of a key,k, is a pair of pointers denotgmevandcurr, as explained in Section 2 above.

The possible values for the operation type (OpType) in treratpon descriptor state are:
insert asking for help in inserting a node into the list.
search_delete asking for help in finding a node with the key we wish to delete.
execute_delete asking for help in marking a node as deleted (by tagging its

next pointer) and unlinking it from the list.

contains asking for help in finding out if a node with the given key esist
success operation was completed successfully.
failure operation failed (deletion of a non-existing key

or insertion of an existing key).
determine_delete decide if a delete operation completed successfully.

The first four states in the above list are used to requestfhaip other threads.
The last three states indicate steps in the executions ichwhe thread does not require
any help. The linked-list also contains an additional lomggdficur r ent MaxPhase, to
support the helping mechanism, as described in Subsecfion 3

3.2 TheHelping Mechanism

Before a thread starts executing an operation, it first seephase number larger than
all previously chosen phase numbers. The goal of assignihgse number to each op-
eration is to let new operations make sure that old operatieceive help and complete
before new operations are executed. This ensures noratarvThe phase selection
mechanism ensures that if operatioparrives strictly later than operatiddy, i.e.,O1
receives a phase number bef@gstarts selecting its own phase number, tRerwill
receive a higher phase number. The phase selection precisdexecuted in theiAX -
PHASE method depicted in Figure 3. Note that although a CAS is usélis method,
the success of this CAS is not checked, thus preservingfresittom. If the CAS fails,

it means that another thread increased the counter contlyrnehich is sufficient for
the phase numbering. After selecting a phase number, thadimublishes the operation
by updating its entry in thet at e array. It then goes through the array, helping all oper-
ations with a phase number lower than or equal to its own. &hssires wait-freedom:
a delayed operation eventually receives help from all tisend soon completes. See
Figure 3 for the pseudo-code.

3.3 The Search Methods

The cONTAINS method, which is part of the data structure interface, isldsecheck
whether a certain key is a part of the list. TheARCH method is used (internally) by
theINSERT, DELETE, andCONTAINS methods to find the location of a key and perform

1: private long maxPhase() { 28: private Window search(int key, int tid, long
2: long result = currentMaxPhase.get(); phase) {

3: currentMaxPhase.compareAndSet 29: Node pred = null, curr = null, succ = null;

4 (result, result+1); 30: boolean[] marked = {false}; boolean snip;

5 return result; } 31: retry : while (true) {

6: 32: pred = head;

7: private void help(long phase) { 33: curr = pred.next.getReference();

8: for (inti=0;1i < state.length(); i++) { 34: while (true) {

9: OpDesc desc = state.get(i); 35: > Reading both the ref and the mark:
10: if (desc.phase <= phase) { > help older op 36: succ = curr.next.get(marked);

11: if (desc.type == OpType.insert) { 37: while (marked[0]) { > logically deleted
12: helplInsert(i, desc.phase); 38: > Attempt to physically remove curr:
13: }else if 39: snip = pred.next.compareAndSet

14: (desc.type == OpType.search_delete 40: (curr, succ, false, false);

15: || desc.type == OpType.execute_delete) { 41: if (lisSearchStillPending(tid,phase))

16: helpDelete(i, desc.phase); 42: return null; > to ensure wait-freedom.
17: } else if (desc.type == OpType.contains) { 43: if (!snip) continue retry; > list changed
18: helpContains(i, desc.phase); 44: CUIT = SUCC; > advance curr
190 }+}}} 45: succ = curr.next.get(marked); > and succ
20: 46: }
21: private boolean isSearchStillPending(int tid, 47: if (curr.key >= key) > window found

long ph) { 48: return new Window(pred, curr);

22: OpDesc curr = state.get(tid); 49: pred = curr; curr = succ; > advance both
23: return (curr.type == OpType.insert || 50: }
24: curr.type == OpType.search_delete || 510}
25: curr.type == OpType.execute_delete || 52: }
26: curr.type==OpType.contains) && 53:
27 curr.phase == ph; } 54:

Fig. 3. The help and search methods

some maintenance during the search. It is actually neaglytichal to the original lock-
free SEARCHmethod. ThesEARCH method takes a key and returns a pair of pointers
denotedwindow pr ed, which points to the node containing the highest key less tha
the input key, andur r, which points to the node containing the lowest key highanth
or equal to the requested key. When traversing through shetlie SEARCH method
attempts to physically remove any node that is logicallytesl. If the remove attempt
fails, the search is restarted from the head of the list. €hidless attempt to fix the
list seems to contradict wait-freedom, but the helping raetdm ensures that these
attempts eventually succeed. When an operation delayssiooggh, all threads reach
the point at which they are helping it. When that happenspfferation is guaranteed
to succeed. TheEARCH operation will not re-iterate if the operation that exesute
has completed, which is checked using tBBEARCHSTILL PENDING method. If the
associated operation is complete, thengaarRcHmethod returns a null. The pseudo-
code for the search method is depicted in Figure 3.

3.4 Thelnsert Operation

Designing operations for a wait-free algorithm requirealiuhg with multiple threads
executing each operation, which is substantially moreatiffithan designing a lock-

free operation. In this section, we present the insert djperand discuss some of the
races that occur and how we handle them. The basic idea i®tdioate the execution
of all threads using the operation descriptor. But morevastare required, as explained
below. Of-course, a proof is required to ensure that allgdwe/e been handled. The
pseudo-code of theuSERT operation is provided in Figure 4. The thread that initiates
the operation is denotatie operation ownerThe operation ownerstarts theNSERT
method by selecting a phase number, allocating a new nodkethat input key, and
installing a link to it in thest at e array.

Next, the thread (or any helping thread) continues by s@agche list for a location
where the node with the new key can be inserted (Line 17 in ¢t ouHELPINSERT).
In the original lock-free linked-list, finding a node withettsame key is interpreted as
failure. However, in the presence of the helping mechanism,possible that some
other thread that is helping the same operation has alreadyted the node but has not
yet reported success. It is also possible that the node weyarg to insert was already
inserted and then deleted, and then a different node, witlséime key, was inserted
into the list. To identify these cases, we check the nodewatfound in the search.
If it is the same node that we are trying to insert, then we ktiaat success should be
reported. We also check if thedxt field of the) node that we are trying to insert is
markedfor deletion. This happens if the node was already insentedthe list and then
removed. In this case, we also report success. Otherwisaitempt to report failure.
If there is no node found with the same key, then we can trygerirthe node between
pred andcurr. But first we check to see if the node was already inserted atedetl
(line 35), in which case we can simply report success.

The existence of other threads that help execute the samatimpecreates various
races that should be properly handled. One of them, deskthibhe next paragraph,
requires thaNsSeERT method to proceed with executing something that may seem re-
dundant at first glance. TheSERT method creates a state descriptor identical to the
existing one and atomically replaces the old one with the oeev(Lines 42—-45). The
replacement foils all pending CAS operations by other tthsezn this state descriptor,
and avoids confusion as to whether the operation succee@diorNext, the method
executes the actual insertion of the node into the list (£i#&-48) and it attempts to
report success (Lines 49-52). If any of the atomic operatfail, the insertion starts
from scratch. The actual insertion into the list (Lines 484 different from the inser-
tion in the original lock-free linked-list. First, theext pointer in the new node is not
privately set, as it is now accessible by all threads that tet insert operation. It is
set by a CAS which verifies that the pointer has not changext diefore the search.
Namely, the old value is read in Line 16 and used as the exgppeeatae in the CAS of
Line 46. This verification avoids another race, which is presd below. Moreover, the
atomic modification of theext pointer in the previous node to point to the inserted
node (Lines 47-48) uses the version of thett pointer to avoid the ABA problem.
This is also justified below.

Let us first present the race that justifies the (seemingliejuteplacement of the
state descriptor in Lines 42—45. Suppose Thréai$ executing anNSERT operation
of a keyk. T; finds an existing node with the kdyand is about to report failurdy
then gets stalled for a while, during which the other nodé whie keyk is deleted and

1:
2
3:
4.
5
6
7
8

)
9:

public boolean insert(int tid, int key)

long phase = maxPhase(); > getting the phase for the op
Node newNode = new Node(key); > allocating the node

OpDesc op = new OpDesc(phase, OpType.insert, newNdte,nu

state.set(tid, op); > publishing the operation

help(phase); > when finished - no more pending operation with lower or eqbalsp
return state.get(tid).type == OpType.success;

10: private void helpinsert(int tid, long phasg)

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41.
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54.
55:
56: }

while (true){
OpDesc op = state.get(tid);
if (!(op.type == OpType.insert && op.phase == phase))
return; > the op is no longer relevant, return
Node node = op.node; > getting the node to be inserted
Node nodenext = node.next.getReference();
Window window = search(node.key,tid,phase);

if (window == null) > operation is no longer pending
return;

if (window.curr.key == node.keyf) > chance of a failure
if ((window.curr==node)(node.next.isMarked()}) > success

OpDesc success =
new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, op, success))

return;
}
else{ > the node was not yet inserted - failure
OpDesc fail=new OpDesc(phase,OpType.failure,nadig,n
> the following CAS may fail if search results are obsolete:
if (state.compareAndSet(tid, op, fail))
return;
}
}
else{
if (node.next.isMarked(}) > already inserted and deleted
OpDesc success =
new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, op, success))
return;
}
int version = window.pred.next.getVersion(); > read version.

OpDesc newOp=new OpDesc(phase,OpType.insert,ndbje,n
> preventing another thread from reporting a failure:
if (Istate.compareAndSet(tid, op, newOp))
continue; > operation might have already reported as failure
node.next.compareAndSet(nodext,window.curr,false,false);
if (window.pred.next.compareAndSet
(version, node.next.getReference(), node, falsse g
OpDesc success =
new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, newOp, success))
return;

Fig.4. The insert operation

a different threadT,, helping the samaNSERT operation thaf; is executing, does find
a proper place to insert the kkyand does insert it, but at that poifitregains control
and changes the descriptor state to erroneously repartdail his sequence of events
is bad, because a key has been inserted but failure has heaedt To avoid such
a scenario, upon finding a location to inskrfl, modifies the operation descriptor to
ensure that no stalled thread can wake up and succeed ingwitstale value into the
operation descriptor.

Next, we present a race that justifies the setting ofriésd pointer in the new
node (Line 46). ThaNSERT method verifies that this pointer has not been modified
since it started the search. This is essential to avoid thewimg scenario. Suppose
ThreadT; is executing anNSERT of key k and finds a place to insert the new nddie
between a node that contaiks- 1 and a node that contaiks- 2. Now T; gets stalled
for a while andT,, helping the sameNSERT operation, inserts the nodéwith the key
k , after which it also inserts another new node with key 1, while Ty is stalled. At
this point, Thread; resumes without knowing about the insertion of these twaesold
modifies the next pointer & to point to the node that contaiks- 2. This modification
immediately foils the linked-list because it removes thdeathat containk + 1 from
the list. By makingT; replace thenext field in N atomically only if this field has not
changed since before the search, we know that there could bede betweeN and
the node that followed it at the time of the search.

Finally, we justify the use of a version for tmext pointer in Line 47, by show-
ing an ABA problem that could arise when several threads briruting the same
insert operation. Suppose Thre&dis executing anNSERT of the keyk into the list.

It searches for a location for the insert, finds one, and dgelied just before executing
Line 47. WhileT; is stalled, T, inserts a differenk into the list. After succeeding in
that insert;T, tries to help the same insertbthatT; is attempting to perforni finds
thatk already exists and reports failure to the state descriphis. should terminate the
insertion thafT; is executing with a failure report. But suppose further thatotherk
is then removed from the list, bringing the list back to ekattie same view a$; saw
before it got stalled. Now; resumes and the CAS of Line 47 actually succeeds. This
course of events is bad, because a key is inserted into thvehike a failure is reported
about this insertion. This is a classical ABA problem, andsetkve it using versioning
of the next pointer. The version is incremented each timaéhe pointer is modified.
Therefore, the insertion and deletion of a differkidey while T; is stalled cannot go
unnoticed.

3.5 The Success Bit Technique

Helping DELETE is different from helpingNSERT in the sense that the help method
in this case does not execute the entil ETE operation to its completion. Instead, it
stops before determining the success of the operation gasithle operation owner de-
cide whether its operation was successful. Note that thes dot foil wait-freedom, as
the operation owner will never get stuck on deciding whetheioperation was success-
ful. When the help method returns, there are two possislitthe simpler possibility
is that the requested key was not found in the list. Here itdéarcthat the operation
failed and in that case the state is changed by the helperaituaef and the operation

1: public boolean delete(int tid, int key)

2: long phase = maxPhase(); > getting the phase for the op
3: state.set(tid, new OpDesc

4: (phase, OpType.searcielete, new Node(key),null)); > publishing

5: help (phase); > when finished - no more pending operation with lower or eqhakp

6: OpDesc op = state.get(tid);

7 if (op.type == OpType.determingdelete)

8 > Need to compete on the ownership of deleting this node:

9: return op.searchResult.curr.success.compareAridiSei(true);
10: return false;
11: }

Fig.5. The delete method

can terminate. The other possibility is that the requessdvkas found and deleted.
In this case, it is possible that sever#LETE operations for the same key were run
concurrently by several operation owners and by severpirgethreads. As the delete
succeeded, it has to be determined which operation owneesded. In such a case
there are several operation owners for the deletion of thikled only one operation
owner can return success, because a singleeTE has been executed. The others op-
eration owners must report failure. This decision is madthbyoperation owners (and
not by the helping threads) in Line 9 of tiELETE method itself, depicted in Figure
5. It employs a designateliccess bit in each node. Whoever sets this bit becomes
the owner of the deletion for that node in the list and can repaccess. We believe
that this technique for determining the success of a threakécuting an operation
in the presence of helping threads can be useful in futurstoactions of wait-free
algorithms.

3.6 Memory management

The algorithm in this work relies on a garbage collector (BX€)nemory management.
A wait-free GC does not currently exist. This is a common dify for wait-free al-
gorithms. A frequently used solution, which suits this aition as well, is Michael’s
Hazard Pointers technique [9]. Hazard pointers can be usetié reclamation of the
operation descriptors as well, and not only for the reclé&mnadf the list nodes them-
selves.

4 Highlights of the Correctness Proof

We now briefly explain how this algorithm is proven correctfiuld proof appears in the
full version of this paper [11]. A full proof is crucial for agpallel algorithm as without
it, one can never be sure that additional races are not lgiikithe algorithm.

Basic Concepts and Definition§hemark bit is the bit on the next field of each node,
and it is used to mark the node as logically deleted. A nodéeanarked or unmarked

according to the value of this bit. We define the nodes thalogieally in the listto be
the unmarked nodes that are reachable from the list's heags, Blogical changeto
the list, is a change to the set of unmarked nodes reachaltetfre head. We say that
a node is aninfant nodef it has never been reachable from the head. These are nodes
that have been prepared for insertions but have not beertedseet.
In the proof we show that at the linearization point of a sssd insert, the inserted
value becomes logically in the list and that at a linear@afioint of a successful delete,
a node with the given value is logically deleted from the [ig show this, we look at
the actuaphysicalmodifications that may occur to the list.

Proof Structure.One useful invariant is thatghysical changéo the list can only mod-
ify the node’s next field, as a node’s key is final and never ghamfter the initialization
of a node. A second useful invariant is that a marked nodevsmenmarked, and that
it's next field never changes (meaning, it will keep pointioghe same node). This is
ascertained by examining all the code lines that change e'sadxt field, and noting
that all of them do it using a CAS which prevents a change fraking effect if the
node is marked. We next look at all possible physical chatg@snode’s next field,
and show that each of them falls in one of the following fouegaries:

* Marking: changing the mark bit of a node thatdgically in the listto true.

* Snipping: physically removing anarkednode out of the list.

* Redirection: a modification of an infant node’s next pointer (in prepanmafor its
insertion).

* Insertion: a modification of a non-infant node to point to an infant ndafaking
the latter non-infant after the modification).

Proving that everphysical changéo a node’s next field falls into one of the four
categories listed above, is the most complicated part ofdtreal proof, and is done
by induction, with several intermediate invariants. Hat is shown that any opera-
tion in themarkingcategory matches a successful delete operation and angtioper
in theinsertioncategory matches a successful insert operation. Thusg gtrttper lin-
earization points the linked list changes according topecgication. Furthermore, it
is shown that physical operations in tRedirectionand Snippingcategories cause no
logical changes to the list, which completes the linearizabilityghr

To show wait-freedom, we claim that the helping mechanissuess that a limited
number of concurrent operations can be executed while a gisert or delete execu-
tion is pending. At the point when this number is exhaustédheeads will help the
pending operation, and then it will terminates within a tisei number of steps.

5 Linearization Points

In this section we specify the linearization point for thdfetient operations of the
linked-list. ThesearRCH method for a keyk returns a pair of pointers, denoteded
andcurr. The prev pointer points to the node with the highest key Enthank, and
the curr pointer points to the node with the smallest keydathan or equal t&. The
linearization point of theSEARCH method is when the pointer that connepted to

curr is read. This can be either at Line 36 or 45 of #nrRCcHmMethod. Note thaturr’'s
next field will be subsequently read, to make sure it ismatrked Since it is an invari-
ant of the algorithm that a marked node is never unmarkes guaranteed that at the
linearization point botipredandcurr nodes were unmarked.

The linearization point for @ONTAINS method is the linearization point of the ap-
propriateSEARCH method. The appropriatteARCH method is the one called by the
thread that subsequently successfully reports the rebtliecsameCcONTAINS opera-
tion. The linearization point of auccessful inseis in Lines 47-48 (together they are a
single instruction) of théelpinsertmethod. This is the CAS operation that physically
links the node into the list. Forfailing insertion the linearization point is the lineariza-
tion point of theseARCHmMethod executed by the thread that reported the failure.

The linearization point of auccessful deletis at the point where the nodelxy-
ically deleted, which means successfully marked. Note that it $sipte that this is
executed by a helping thread and not necessarily by the tigemvner. Furthermore,
the helping thread might be trying to help a different thrtsh the one that will even-
tually own the deletion. The linearization point of ansuccessful delete more com-
plex. A delete operation may fail when the key is properhetid, but a different thread
is selected as the owner of the delete. In this case, thertuhmead returns failure, be-
cause of the failure of the CAS of thleeLETE method (at Line 9). In this case, the
linearization point is set to the point when the said nodegscdally deleted (marked).
The linearization point of annsuccessful deleteriginating from simply not finding
the key, is the linearization point of treEEARCH method executed by the thread that
reported the failure.

6 The Fast-Path-Slow-Path Variation

The idea behind the fast-path-slow-path [8] approach isotoline a (fast) lock-free

algorithm with a (slower) wait-free one. The lock free algfun provides a basis for a
fast path and we use Harris’s lock-free linked-list for thispose. The execution in the
fast path begins by a check whether a help is required for pagation in the slow path.

Next, the execution proceeds with running the fast lock-frersion of the algorithm

while counting the number of contentions that end with aufail(i.e., failed CASes).

Typically, few failures occur and help is not required, andtse execution terminates
after running the faster lock-free algorithm. If this fastlp fails to make progress, the
execution moves to the slow path, which runs the slower fweé-algorithm described

in Section 3, requesting help (using an operation desgripiits slot in the state array)

and making sure the operation eventually terminates.

The number of CAS failures allowed in the fast path is limibgda parameter called
MAX _FAILURES. The help is provided by threads running both the fast ana phath,
which ensures wait-freedom: if a thread fails to completejperation, its request for
help is noticed both in the fast and in the slow path. Thuspealy all other threads
help it and its operation completes. However, help is novigled as intensively as
described in Section 3. We use tihelayed helpmechanism, by which each thread only
offers help to other threads once every several operati@isrmined by a parameter
calledHELPING_DELAY.

Combining the fast-path and the slow-path is not triviaca® is needed to guaran-
tee that both paths properly run concurrently. On top ofiathanges, it is useful to note
that theDELETE operation must compete on theccess- bit even in the fast-path, to
avoid a situation where two threads running on the two difiépaths both think they
were successful in deleting a node. The full implementadithe fast-path-slow-path
variation of the linked-list is described in [11].

7 Performance

Implementation and platform. We compared four Java implementations of the linked-
list. The first is the lock-free linked-list of Harris, deeotLF, as implemented by Her-
lihy and Shavit in [6]. (This implementation was slightly dified to allow nodes with
user-selected keys rather than the object’s hash-codédsd/did not use th#emfield.)

The basic algorithm described in Section is dens#d Origin the graphs below. A
slightly optimized version of it, denotafF-Opt was changed to employ a delayed help
mechanism, similar to the one used in the fast-path- slav-pgtension. This means
that a thread helps another thread only once ekenyerations, wherk is a parameter
of the algorithm set to 3. The idea is to avoid contention liyrig help arrive only after
the original thread has a reasonable chance of finishingo#sation on its own. This
optimization is highly effective, as seen in the resultsteNthat delaying help is not
equivalent to a fast-path-slow-path approach, becaudaratds always ask for help
(there is no fast path). All the operations are still doneéhmhtelpinsertandhelpDelete
methods.

The fast-path-slow-path algorithm, denofeeISE, was run with thediELPING_DELAY
parameter set to 3, amtaX _FAILURES set to 5. This algorithm combines the new wait-
free algorithm described in this paper with Harris’s locke algorithm, to achieve both
good performance and the stronger wait-freedom progremsgtee.

We ran the tests in two environments. The first was a SUN’'s &&vd&untime,
version 1.6.0 on an IBM x3400 system featuring 2 Intel(R) @) E5310 1.60GHz
quad core processors (overall 8 cores). The second was a SRENrRachine with an
UltraSPARC T1 8 cores each running four hyper-threads.

Workload and methodology. In the micro-benchmarks tested, we ran each experiment
for 2 seconds, and measured the overall number of opergtierisrmed by all the
threads during that time. Each thread performed @@ TAINS, and 20%NSERT and
DELETE operations, with keys chosen randomly and uniformly in gaege[1,1024.

The number of threads ranges from 1-16 (in the Intel(R) XByn¢r from 1-32 (In the
UltraSPARC). We present the results in Figure 6. The grapbw she total number of
operations done by all threads in thousands for all four @mp@ntations, as a function

of the number of threads. In all the tests, we executed eaahaion 8 times, and the
averages are reported in the figures.

Results. It can be seen that the fast-path-slow-path algorithm ioatras fast as the
lock-free algorithm. On the Intel machine, the two algarithare barely distinguish-
able; the difference in performance is 2-3%. On the UltraS@Ahe fast-path-slow-
path suffers a noticeable (yet, reasonable) overhead d#8-The (slightly optimized)
basic wait-free algorithm is slower by a factor of 1.3-1 &pending on the number of

threads. Also, these three algorithms provide an excedipeéd up of about 7 when
working with 8 threads (on both machines), and about 24 whenkiwg with 32 multi-
threads on the UltraSPARC. The basic non-optimized veditine wait-free algorithm

do

esn’t scale as well. There, threads often work togethét@eame operation, causing

a deterioration in performance and scalability. The singdtayed-help optimization

en

ables concurrency without foiling the worst-case waefiom guarantee.

® 3 0 — e+ 0 = 0® T O

Intel(R) Xeon(R) UltraSPARCT1

2500

2000 -

1500

1000 e

o
Q
3

(03 ®wecose)

o

13 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Number Of Threads Number Of Threads
—+LF -®FPSP WF-Opt —<—WF-Orig —LF -B-FPSP WF-Opt ——WF-Orig

L e e e e e B e M s s m m e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 6. The number of operations done in two seconds as a functidreafumber of threads

References

1.

2.

10.

11.

12.

Phong Chuong, Faith Ellen, and Vijaya Ramachandran. »eusal construction for wait-

free transaction friendly data structures.SRAA pages 335-344, 2010.

Panagiota Fatourou and Nikolaos D. Kallimanis. A higéfffeient wait-free universal con-

struction. InNSPAA pages 325-334, 2011.

. Mikhail Fomitchev and Eric Ruppert. Lock-free linkedtsisind skip lists. IiPODC, pages
50-59, New York, NY, USA, 2004. ACM.

. Timothy L. Harris. A pragmatic implementation of non-tking linked-lists. InDISC,
London, UK, UK, 2001. Springer-Verlag.

. Maurice Herlihy. A methodology for implementing highlgricurrent objectsACM Trans.
Program. Lang. Syst15(5):745-770, 1993.

. Maurice Herlihy and Nir ShavitThe Art of Multiprocessor ProgrammingViorgan Kauf-
mann, 2008.

. Alex Kogan and Erez Petrank. Wait-free queues with migligmqueuers and dequeuers. In
PPOPR pages 223-234, 2011.

. Alex Kogan and Erez Petrank. A methodology for creatirs feait-free data structures. In
PPOPR, pages 141-150, 2012.

. Maged M. Michael. Hazard pointers: Safe memory reclasndtr lock-free objectsIEEE

Trans. Parallel Distrib. Syst15(6):491-504, 2004.

Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Petrank. Wait-free linked-lists.

In PPOPR pages 309-310, 2012.

Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Petrank. Wait-free linked-lists.

http://www.cs.technion.ac.il/%7eerez/%50apers/will4df. 2012.

John D. Valois. Lock-free linked lists using comparel-awap. InPODC, pages 214—-222,

New York, NY, USA, 1995. ACM.

