
Wait-Free Linked-Lists⋆

Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank

Dept. of Computer Science, Technion, Israel.
Email:{stimnat,anastas,sakogan,erez}@cs.technion.ac.il

Abstract. Wait-freedomis the strongest and most desirable progress guarantee,
under which any thread must make progress when given enough CPU steps.
Wait-freedom is required for hard real-time, and desirablein many other sce-
narios. However, because wait-freedom is hard to achieve, we usually settle for
the weakerlock-freeprogress guarantee, under which one of the active threads
is guaranteed to make progress. With lock-freedom (and unlike wait-freedom),
starvation of all threads but one is possible.
The linked-list data structure is fundamental and ubiquitous. Lock-free versions
of the linked-list are well known. However, whether it is possible to design a prac-
tical wait-free linked-list has remained an open question.In this work we present
a practical wait-free linked-list based on the CAS primitive. To improve perfor-
mance further, we also extend this design using the fast-path-slow-path methodol-
ogy. The proposed design has been implemented and measurements demonstrate
performance competitive with that of Harris’s lock-free list, while still providing
the desirable wait-free guarantee, required for real-timesystems.

1 Introduction

A linked-list is one of the most commonly used data structures. The linked-list seems
a good candidate for parallelization, as modifications to different parts of the list may
be executed independently and concurrently. Indeed, parallel linked-lists with various
progress properties are abundant in the literature. Among these are lock-free linked-
lists. A lock-free data structure ensures that when severalthreads access the data struc-
ture concurrently, at least one makes progress within a bounded number of steps. While
this property ensures general system progress, it does not prevent starvation of a particu-
lar thread, or of several threads. Wait-free data structures ensure that each thread makes
progress within a bounded number of steps, regardless of other threads’ concurrent ex-
ecution. Wait-free data structures are crucial for real-time systems, where a deadline
may not be missed even in a worst-case scenario. To allow real-time systems and other
systems with critical worst-case demands make use of concurrent data structures, we
must provide the strong wait-free guarantee. Furthermore,wait-freedom is a desirable
progress property for many systems, and in particular operating systems, interactive
systems, and systems with service-level guarantees. For all those, the elimination of
starvation is highly desirable.

Despite the great practical need for data structures that ensure wait-freedom, almost
no practical wait-free data structure is known, because data structures that ensure wait-
freedom are notoriously hard to design. Recently, wait-free designs for the simple stack

⋆ This work was supported by the Israeli Science Foundation grant No. 283/10.

and queue data structures appeared in the literature [7, 2].Wait-free stack and queue
structures are not easy to design, but they are considered less challenging as they present
limited parallelism, i.e., a limited number of contention points (the head of the stack,
and the head and the tail of the queue). We are not aware of any practical wait-free
design for any other data structure that allows multiple concurrent operations to occur
simultaneously. In particular, to the best of our knowledge, there is no wait-free linked-
list algorithm available in the literature except for algorithms of universal constructions,
which do not provide practical efficiency.

The main contribution of this work is a practical, linearizable, fast and wait-free
linked-list. Our construction builds on the lock-free linked-list of Harris [4], and extends
it using a helping mechanism to become wait-free. The main technical difficulty is
making sure that helping threads perform each operation correctly, apply each operation
exactly once, and return a consistent result (of success or failure) according to whether
each of the threads completed the operation successfully. This task is non-trivial and it
is what makes wait-free algorithms notoriously hard to design. Our design deals with
several races that come up, and a proof of correctness makes sure that no further races
exist. Some of our techniques may be useful in future work, especially thesuccess bit
introduced to determine the owner of a successful operation. Next, we extend our design
using the fast-path-slow-path methodology of Kogan and Petrank [8], in order to make
it even more efficient, and achieve performance that is almost equivalent to that of the
lock-free linked-list of Harris. Here, the idea is to combine both lock-free and wait-free
algorithms so that the (lock-free) fast path runs with (almost) no overhead, but is able
to switch to the (wait-free) slow path when contention interferes with its progress. It is
also important that both paths are able to run concurrently and correctly. Combining the
newly obtained wait-free linked-list with the existing lock-free linked-list of Harris is
an additional design challenge that is, again, far from trivial.

We have implemented the new wait-free linked-list and compared its efficiency with
that of Harris’s lock-free linked-list. Our first design(slightly optimized) performs worse
by a factor of 1.5 when compared to Harris’s lock-free algorithm. This provides a prac-
tical, yet not optimal, solution. However, the fast-path-slow-path extension reduces the
overhead significantly, bringing it to just 2-15 percents. This seems a reasonable price to
pay for obtaining a data structure with the strongest wait-free guarantee, providing non-
starvation even in worst-case scenarios, and making it available for use with real-time
systems.

We begin in Section 2 with an overview of the algorithm and continue in Section 3
with a detailed description of its most complex operation and crucial parts. Highlights
of the correctness proof appear in Section 4. The linearization points of the algorithm
are specified in Section 5. We give an overview of the fast-path-slow-path extension of
the algorithm in Section 6, and Section 7 presents the performance measurements. In
a full version of this work [11] we also provide details aboutthe fast-path-slow-path
implementation, the entire pseudo-code, and a full correctness proof for the algorithm.

1.1 Background and Related Work

The first lock-free linked-list was presented by Valois [12]. A simpler and more effi-
cient lock-free algorithm was designed by Harris [4], and Michael [9] added a hazard-

pointers mechanism to allow lock-free memory management for this algorithm. Fomitchev
and Rupert achieved better theoretical complexity in [3]. Herlihy and Shavit imple-
mented a variation of Harris’s algorithm [6], and we used this implementation both for
comparison and as the basis for the Java code we developed.

Wait-free queues were presented in [7, 2]. A different approach for building concur-
rent lock-free or wait-free data structures is the use of universal constructions [5, 6, 1].
However, universal constructions (at least for the linked-list) are not efficient enough to
be applied in practice, and are often non-scalable.

Recently, Kogan and Petrank [8] presented the fast-path-slow-path technique men-
tioned above. We use the fast-path-slow-path methodology in this work to achieve an
efficient and wait-free linked-list.

Our wait-free linked-list design follows the traditional practice, in which concurrent
linked-list data structures realize a sorted list, where each key may only appear once in
the list [3, 4, 6, 12]. A brief announcement of this work appeared in [10].

2 An Overview of the Algorithm

Before getting into the technical details (in Section 3) we provide an overview of the
design. The wait-free linked-list supports three operations:INSERT, DELETE, andCON-
TAINS. All of them run in a wait-free manner. The underlying structure of the linked-list
is depicted in Figure 2. Similarly to Harris’s linked-list,our list contains sentinelhead
andtail nodes, and thenext pointer in each node can be marked using a specialmark
bit, to signify that the entry in the node is logically deleted.

To achieve wait-freedom, our list employs a helping mechanism. Before starting
to execute an operation, a thread starts by publishing anOperation Descriptor, in a
specialstate array, allowing all the threads to view the details of the operation it is
executing. Once an operation is published, all threads may try to help execute it. When
an operation is completed, the result is reported to the state array, using a CAS which
replaces the existing operation descriptor with one that contains the result.

A top-level overview of the insert and delete operations is provided in Figure 1.
When a thread wishes toINSERT a keyk to the list, it first allocates a new node with

1: boolean insert(key)

2: Allocate a new node (without help)

3: Publish the operation (without help)

4: Search for a place to insert the node

5: If key already exists, return with failure

6: Direct the new node’s next pointer

7: Insert the node(by modifying its predecessor)

8: Return with Success

1: boolean delete(key)

2: Publish the operation (without help)

3: Search for the victim node to delete

4: If key doesn’t exist, return with failure

5: Announce the victim node in the state array

6: Mark the victim’s pointer to logically delete it

7: Physically remove the victim node

8: Report that the victim node has been removed

9: Compete for success (without help)

10:

Fig. 1. Insert and delete overview

key k, and then publishes an operation descriptor with a pointer to the new node. The

rest of the operation can be executed by any of the threads in the system, and may also
be run by many threads concurrently. Any thread that executes this operation starts by
searching for a place to insert the new node. This is done using the search method,
which, given a keyk, returns a pair of pointers,prevandcurr. The prev pointer points
to the node with the highest key smaller thank, and the curr pointer points to the node
with the smallest key larger than or equal tok. If the returned curr node holds a key
equal to the key on the node to be inserted, then failure is reported. Otherwise the node
should be inserted between prev and curr. This is done by firstupdating the new node’s
next pointer to point to curr, and then updating prev’snext field to point to it. Both of
these updates are done using a CAS to prevent race conditions, and the failure of any of
these CASes will cause the operation to restart from the search method. Finally, after
that node has been inserted, success is reported.

While the above description outlines the general process ofinserting a node, the
actual algorithm is a lot more complex, and requires care to avoid problematic races
that can make things go wrong. In addition, there is also a potential ABA problem that
requires the use of a version mark on thenext pointer field1. We discuss these and other
potential races in Section 3.4.

When a thread wishes toDELETE a keyk from the list, it starts by publishing the
details of its operation in thestate array. The next steps can be then executed by any
of the threads in the system until the last step, which is executed only by the thread that
initiated the operation, denoted theowner thread. The DELETE operation is executed
(or helped) in two stages. First, thevictim node to be deleted is chosen. To do this,
the search method is invoked. If no node with the keyk is found, failure is reported.
Otherwise, the victim node isannouncedin thestate array. This is done by replacing
the state descriptor that describes this operation to a state descriptor that has a pointer to
the victim node. This announcement helps to ascertain that concurrent helping threads
will not delete two different nodes, as the victim node for this operation is determined
to be the single node that is announced in the operation descriptor. In the second stage,
deletion is executed similarly to Harris’s linked-list: the victim node’snext field is
marked, and then it is physically removed from the list. The victim node’s removal is
then reported back to thestate array.

However, since multiple threads execute multiple operations, and as it is possible
that several operations attempt toDELETE the same node, it is crucial that exactly one
operation be declared as successfully deleting the node’s key and that the others return
failure. An additional (third) stage is required in order toconsistently determine which
operation can be considered successful. This step is executed only by the owner threads,
and is given no help. The threads that initiated the concurrent delete operations compete
among themselves for the ownership of the deletion. To this end, an extrasuccess-bit
designated for this purpose is added to each node in the list.The thread that successfully
CASes this bit from false to true is the only one that reports success for this deletion.
We believe that using an extra bit to determine an ownership of an operation is a use-
ful mechanism for future wait-free constructions as well. This mechanism is further
explained in Section 3.5.

1 The versioning method provides a simple solution to the ABA problem. A more involved
solution that does not require a versioned pointer appears in the full version of this paper [11].

TheCONTAINS operation is much simpler than the other two. It starts by publishing
the operation. Any helping thread will then search for it in the list, reporting success
(on the operation record) if the key was found, or failure if it was not.

3 The Algorithm

In this section we present the details of the algorithm. We fully describe the list struc-
ture, the helping mechanism, and theSEARCH and INSERT operations. TheINSERT

operation is the most complicated part of the algorithm. A detailed description of the
DELETE and CONTAINS operations appears in the full version of this paper [11]. We
also include in this section a detailed description of thesuccess-bit technique used
in theDELETE operation, as we believe this mechanism can be useful for future work.

3.1 The Underlying Data Structures

List:

 head

 tail

 state array

 currentMaxPhase

Node:

 key

 next pointer

 success bit

OpDesc:

 type

 phase

 node

 searchResult

OpDesc of thread 0 OpDesc of thread 1 OpDesc of thread 2 OpDesc of thread 3

Fig. 2. General structure

The structure of the linked-list is depicted in Figure 2. A node of the linked list
consists of three fields: a key, asuccess bit to be used when deleting this node,
and a special pointer field. The special pointer field has its least significant bit used
by the algorithm for signaling between threads. In addition, this pointer is versioned,
in the sense that there is a counter associated with it (in an adjacent word) and each
modification of it (or of its special bit) increments the counter. The modification and
counter increment are assumed to be atomic. This can be implemented by squeezing all
these fields into a single word, and limiting the size of the counter and pointer, or by
using a double-word compare-and-swap when the platform allows. Alternatively, one
can allocate a “pointer object” containing all these fields and bits, and then atomically
replace the existing pointer object with a new one. The latter approach is commonly
used with Java lock-free implementations, and we use it as well.

In addition to the nodes of the list, we also maintain an arraywith an operation-
descriptor for each thread in the system. The OpDesc entry for each thread describes

its current state. It consists of a phase fieldphase, theOpType field signifying which
operation is currently being executed by this thread, a pointer to a node, denotednode,
which serves the insert and delete operations, and a pair of pointers(prev,curr), for
recording the result of a search operation. Recall that the result of aSEARCHoperation
of a key,k, is a pair of pointers denotedprevandcurr, as explained in Section 2 above.

The possible values for the operation type (OpType) in the operation descriptor state are:
insert asking for help in inserting a node into the list.
search delete asking for help in finding a node with the key we wish to delete.
execute delete asking for help in marking a node as deleted (by tagging its

next pointer) and unlinking it from the list.
contains asking for help in finding out if a node with the given key exists.
success operation was completed successfully.
failure operation failed (deletion of a non-existing key

or insertion of an existing key).
determine delete decide if a delete operation completed successfully.

The first four states in the above list are used to request helpfrom other threads.
The last three states indicate steps in the executions in which the thread does not require
any help. The linked-list also contains an additional long field,currentMaxPhase, to
support the helping mechanism, as described in Subsection 3.2.

3.2 The Helping Mechanism

Before a thread starts executing an operation, it first selects a phase number larger than
all previously chosen phase numbers. The goal of assigning aphase number to each op-
eration is to let new operations make sure that old operations receive help and complete
before new operations are executed. This ensures non-starvation. The phase selection
mechanism ensures that if operationO2 arrives strictly later than operationO1, i.e.,O1

receives a phase number beforeO2 starts selecting its own phase number, thenO2 will
receive a higher phase number. The phase selection procedure is executed in theMAX -
PHASE method depicted in Figure 3. Note that although a CAS is used in this method,
the success of this CAS is not checked, thus preserving wait-freedom. If the CAS fails,
it means that another thread increased the counter concurrently, which is sufficient for
the phase numbering. After selecting a phase number, the thread publishes the operation
by updating its entry in thestate array. It then goes through the array, helping all oper-
ations with a phase number lower than or equal to its own. Thisensures wait-freedom:
a delayed operation eventually receives help from all threads and soon completes. See
Figure 3 for the pseudo-code.

3.3 The Search Methods

The CONTAINS method, which is part of the data structure interface, is used to check
whether a certain key is a part of the list. TheSEARCH method is used (internally) by
the INSERT, DELETE, andCONTAINS methods to find the location of a key and perform

1: private long maxPhase() {
2: long result = currentMaxPhase.get();

3: currentMaxPhase.compareAndSet

4: (result, result+1);

5: return result; }
6:

7: private void help(long phase) {
8: for (int i = 0; i < state.length(); i++) {
9: OpDesc desc = state.get(i);

10: if (desc.phase <= phase) { ⊲ help older op

11: if (desc.type == OpType.insert) {
12: helpInsert(i, desc.phase);

13: } else if

14: (desc.type == OpType.search delete

15: || desc.type == OpType.execute delete) {
16: helpDelete(i, desc.phase);

17: } else if (desc.type == OpType.contains) {
18: helpContains(i, desc.phase);

19: } } } }
20:

21: private boolean isSearchStillPending(int tid,

long ph) {
22: OpDesc curr = state.get(tid);

23: return (curr.type == OpType.insert ||
24: curr.type == OpType.search delete ||
25: curr.type == OpType.execute delete ||
26: curr.type==OpType.contains) &&

27: curr.phase == ph; }

28: private Window search(int key, int tid, long

phase) {
29: Node pred = null, curr = null, succ = null;

30: boolean[] marked = {false}; boolean snip;

31: retry : while (true) {
32: pred = head;

33: curr = pred.next.getReference();

34: while (true) {
35: ⊲ Reading both the ref and the mark:

36: succ = curr.next.get(marked);

37: while (marked[0]) { ⊲ logically deleted

38: ⊲ Attempt to physically remove curr:

39: snip = pred.next.compareAndSet

40: (curr, succ, false, false);

41: if (!isSearchStillPending(tid,phase))

42: return null; ⊲ to ensure wait-freedom.

43: if (!snip) continue retry; ⊲ list changed

44: curr = succ; ⊲ advance curr

45: succ = curr.next.get(marked); ⊲ and succ

46: }
47: if (curr.key >= key) ⊲ window found

48: return new Window(pred, curr);

49: pred = curr; curr = succ; ⊲ advance both

50: }
51: }
52: }
53:

54:

Fig. 3. The help and search methods

some maintenance during the search. It is actually nearly identical to the original lock-
free SEARCH method. TheSEARCH method takes a key and returns a pair of pointers
denotedwindow: pred, which points to the node containing the highest key less than
the input key, andcurr, which points to the node containing the lowest key higher than
or equal to the requested key. When traversing through the list, theSEARCH method
attempts to physically remove any node that is logically deleted. If the remove attempt
fails, the search is restarted from the head of the list. Thisendless attempt to fix the
list seems to contradict wait-freedom, but the helping mechanism ensures that these
attempts eventually succeed. When an operation delays longenough, all threads reach
the point at which they are helping it. When that happens, theoperation is guaranteed
to succeed. TheSEARCH operation will not re-iterate if the operation that executes it
has completed, which is checked using theISSEARCHSTILL PENDING method. If the
associated operation is complete, then theSEARCHmethod returns a null. The pseudo-
code for the search method is depicted in Figure 3.

3.4 The Insert Operation

Designing operations for a wait-free algorithm requires dealing with multiple threads
executing each operation, which is substantially more difficult than designing a lock-

free operation. In this section, we present the insert operation and discuss some of the
races that occur and how we handle them. The basic idea is to coordinate the execution
of all threads using the operation descriptor. But more actions are required, as explained
below. Of-course, a proof is required to ensure that all races have been handled. The
pseudo-code of theINSERT operation is provided in Figure 4. The thread that initiates
the operation is denotedthe operation owner. Theoperation ownerstarts theINSERT

method by selecting a phase number, allocating a new node with the input key, and
installing a link to it in thestate array.

Next, the thread (or any helping thread) continues by searching the list for a location
where the node with the new key can be inserted (Line 17 in the methodHELPINSERT).
In the original lock-free linked-list, finding a node with the same key is interpreted as
failure. However, in the presence of the helping mechanism,it is possible that some
other thread that is helping the same operation has already inserted the node but has not
yet reported success. It is also possible that the node we aretrying to insert was already
inserted and then deleted, and then a different node, with the same key, was inserted
into the list. To identify these cases, we check the node thatwas found in the search.
If it is the same node that we are trying to insert, then we knowthat success should be
reported. We also check if the (next field of the) node that we are trying to insert is
markedfor deletion. This happens if the node was already inserted into the list and then
removed. In this case, we also report success. Otherwise, weattempt to report failure.
If there is no node found with the same key, then we can try to insert the node between
pred andcurr. But first we check to see if the node was already inserted and deleted
(line 35), in which case we can simply report success.

The existence of other threads that help execute the same operation creates various
races that should be properly handled. One of them, described in the next paragraph,
requires theINSERT method to proceed with executing something that may seem re-
dundant at first glance. TheINSERT method creates a state descriptor identical to the
existing one and atomically replaces the old one with the newone (Lines 42–45). The
replacement foils all pending CAS operations by other threads on this state descriptor,
and avoids confusion as to whether the operation succeeds orfails. Next, the method
executes the actual insertion of the node into the list (Lines 46–48) and it attempts to
report success (Lines 49–52). If any of the atomic operations fail, the insertion starts
from scratch. The actual insertion into the list (Lines 46–48) is different from the inser-
tion in the original lock-free linked-list. First, thenext pointer in the new node is not
privately set, as it is now accessible by all threads that help the insert operation. It is
set by a CAS which verifies that the pointer has not changed since before the search.
Namely, the old value is read in Line 16 and used as the expected value in the CAS of
Line 46. This verification avoids another race, which is presented below. Moreover, the
atomic modification of thenext pointer in the previous node to point to the inserted
node (Lines 47–48) uses the version of thatnext pointer to avoid the ABA problem.
This is also justified below.

Let us first present the race that justifies the (seemingly futile) replacement of the
state descriptor in Lines 42–45. Suppose ThreadT1 is executing anINSERT operation
of a keyk. T1 finds an existing node with the keyk and is about to report failure.T1

then gets stalled for a while, during which the other node with the keyk is deleted and

1: public boolean insert(int tid, int key){
2: long phase = maxPhase(); ⊲ getting the phase for the op
3: Node newNode = new Node(key); ⊲ allocating the node
4: OpDesc op = new OpDesc(phase, OpType.insert, newNode,null);
5: state.set(tid, op); ⊲ publishing the operation
6: help(phase); ⊲ when finished - no more pending operation with lower or equal phase
7: return state.get(tid).type == OpType.success;
8: }
9:

10: private void helpInsert(int tid, long phase){
11: while (true){
12: OpDesc op = state.get(tid);
13: if (!(op.type == OpType.insert && op.phase == phase))
14: return; ⊲ the op is no longer relevant, return
15: Node node = op.node; ⊲ getting the node to be inserted
16: Node nodenext = node.next.getReference();
17: Window window = search(node.key,tid,phase);
18: if (window == null) ⊲ operation is no longer pending
19: return;
20: if (window.curr.key == node.key){ ⊲ chance of a failure
21: if ((window.curr==node)||(node.next.isMarked())){ ⊲ success
22: OpDesc success =
23: new OpDesc(phase, OpType.success, node, null);
24: if (state.compareAndSet(tid, op, success))
25: return;
26: }
27: else{ ⊲ the node was not yet inserted - failure
28: OpDesc fail=new OpDesc(phase,OpType.failure,node,null);
29: ⊲ the following CAS may fail if search results are obsolete:
30: if (state.compareAndSet(tid, op, fail))
31: return;
32: }
33: }
34: else{
35: if (node.next.isMarked()){ ⊲ already inserted and deleted
36: OpDesc success =
37: new OpDesc(phase, OpType.success, node, null);
38: if (state.compareAndSet(tid, op, success))
39: return;
40: }
41: int version = window.pred.next.getVersion(); ⊲ read version.
42: OpDesc newOp=new OpDesc(phase,OpType.insert,node,null);
43: ⊲ preventing another thread from reporting a failure:
44: if (!state.compareAndSet(tid, op, newOp))
45: continue; ⊲ operation might have already reported as failure
46: node.next.compareAndSet(nodenext,window.curr,false,false);
47: if (window.pred.next.compareAndSet
48: (version, node.next.getReference(), node, false, false)){
49: OpDesc success =
50: new OpDesc(phase, OpType.success, node, null);
51: if (state.compareAndSet(tid, newOp, success))
52: return;
53: }
54: }
55: }
56: }

Fig. 4. The insert operation

a different thread,T2, helping the sameINSERToperation thatT1 is executing, does find
a proper place to insert the keyk, and does insert it, but at that pointT1 regains control
and changes the descriptor state to erroneously report failure. This sequence of events
is bad, because a key has been inserted but failure has been reported. To avoid such
a scenario, upon finding a location to insertk, T2 modifies the operation descriptor to
ensure that no stalled thread can wake up and succeed in writing a stale value into the
operation descriptor.

Next, we present a race that justifies the setting of thenext pointer in the new
node (Line 46). TheINSERT method verifies that this pointer has not been modified
since it started the search. This is essential to avoid the following scenario. Suppose
ThreadT1 is executing anINSERT of keyk and finds a place to insert the new nodeN in
between a node that containsk−1 and a node that containsk+2. NowT1 gets stalled
for a while andT2, helping the sameINSERT operation, inserts the nodeN with the key
k , after which it also inserts another new node with keyk+ 1, while T1 is stalled. At
this point, ThreadT1 resumes without knowing about the insertion of these two nodes. It
modifies the next pointer ofN to point to the node that containsk+2. This modification
immediately foils the linked-list because it removes the node that containsk+ 1 from
the list. By makingT1 replace thenext field in N atomically only if this field has not
changed since before the search, we know that there could be no node betweenN and
the node that followed it at the time of the search.

Finally, we justify the use of a version for thenext pointer in Line 47, by show-
ing an ABA problem that could arise when several threads helpexecuting the same
insert operation. Suppose ThreadT1 is executing anINSERT of the keyk into the list.
It searches for a location for the insert, finds one, and gets stalled just before executing
Line 47. WhileT1 is stalled,T2 inserts a differentk into the list. After succeeding in
that insert,T2 tries to help the same insert ofk thatT1 is attempting to perform.T2 finds
thatk already exists and reports failure to the state descriptor.This should terminate the
insertion thatT1 is executing with a failure report. But suppose further thatthe otherk
is then removed from the list, bringing the list back to exactly the same view asT1 saw
before it got stalled. NowT1 resumes and the CAS of Line 47 actually succeeds. This
course of events is bad, because a key is inserted into the list while a failure is reported
about this insertion. This is a classical ABA problem, and wesolve it using versioning
of the next pointer. The version is incremented each time thenext pointer is modified.
Therefore, the insertion and deletion of a differentk key whileT1 is stalled cannot go
unnoticed.

3.5 The Success Bit Technique

Helping DELETE is different from helpingINSERT in the sense that the help method
in this case does not execute the entireDELETE operation to its completion. Instead, it
stops before determining the success of the operation, and lets the operation owner de-
cide whether its operation was successful. Note that this does not foil wait-freedom, as
the operation owner will never get stuck on deciding whetherthe operation was success-
ful. When the help method returns, there are two possibilities. The simpler possibility
is that the requested key was not found in the list. Here it is clear that the operation
failed and in that case the state is changed by the helper to a failure and the operation

1: public boolean delete(int tid, int key){
2: long phase = maxPhase(); ⊲ getting the phase for the op
3: state.set(tid, new OpDesc
4: (phase, OpType.searchdelete, new Node(key),null)); ⊲ publishing
5: help (phase); ⊲ when finished - no more pending operation with lower or equal phase
6: OpDesc op = state.get(tid);
7: if (op.type == OpType.determinedelete)
8: ⊲ Need to compete on the ownership of deleting this node:
9: return op.searchResult.curr.success.compareAndSet(false, true);

10: return false;
11: }

Fig. 5. The delete method

can terminate. The other possibility is that the requested key was found and deleted.
In this case, it is possible that severalDELETE operations for the same key were run
concurrently by several operation owners and by several helping threads. As the delete
succeeded, it has to be determined which operation owner succeeded. In such a case
there are several operation owners for the deletion of the key k and only one operation
owner can return success, because a singleDELETE has been executed. The others op-
eration owners must report failure. This decision is made bythe operation owners (and
not by the helping threads) in Line 9 of theDELETE method itself, depicted in Figure
5. It employs a designatedsuccess bit in each node. Whoever sets this bit becomes
the owner of the deletion for that node in the list and can report success. We believe
that this technique for determining the success of a thread in executing an operation
in the presence of helping threads can be useful in future constructions of wait-free
algorithms.

3.6 Memory management

The algorithm in this work relies on a garbage collector (GC)for memory management.
A wait-free GC does not currently exist. This is a common difficulty for wait-free al-
gorithms. A frequently used solution, which suits this algorithm as well, is Michael’s
Hazard Pointers technique [9]. Hazard pointers can be used for the reclamation of the
operation descriptors as well, and not only for the reclamation of the list nodes them-
selves.

4 Highlights of the Correctness Proof

We now briefly explain how this algorithm is proven correct. Afull proof appears in the
full version of this paper [11]. A full proof is crucial for a parallel algorithm as without
it, one can never be sure that additional races are not lurking in the algorithm.

Basic Concepts and Definitions.Themark bit, is the bit on the next field of each node,
and it is used to mark the node as logically deleted. A node canbe marked or unmarked

according to the value of this bit. We define the nodes that arelogically in the listto be
the unmarked nodes that are reachable from the list’s head. Thus, alogical changeto
the list, is a change to the set of unmarked nodes reachable from the head. We say that
a node is aninfant nodeif it has never been reachable from the head. These are nodes
that have been prepared for insertions but have not been inserted yet.

In the proof we show that at the linearization point of a successful insert, the inserted
value becomes logically in the list and that at a linearization point of a successful delete,
a node with the given value is logically deleted from the list. To show this, we look at
the actualphysicalmodifications that may occur to the list.

Proof Structure.One useful invariant is that aphysical changeto the list can only mod-
ify the node’s next field, as a node’s key is final and never changes after the initialization
of a node. A second useful invariant is that a marked node is never unmarked, and that
it’s next field never changes (meaning, it will keep pointingto the same node). This is
ascertained by examining all the code lines that change a node’s next field, and noting
that all of them do it using a CAS which prevents a change from taking effect if the
node is marked. We next look at all possible physical changesto a node’s next field,
and show that each of them falls in one of the following four categories:

* Marking: changing the mark bit of a node that islogically in the listto true.
* Snipping: physically removing amarkednode out of the list.
* Redirection: a modification of an infant node’s next pointer (in preparation for its

insertion).
* Insertion: a modification of a non-infant node to point to an infant node(making

the latter non-infant after the modification).

Proving that everyphysical changeto a node’s next field falls into one of the four
categories listed above, is the most complicated part of theformal proof, and is done
by induction, with several intermediate invariants. Finally, it is shown that any opera-
tion in themarkingcategory matches a successful delete operation and any operation
in the insertioncategory matches a successful insert operation. Thus, at the proper lin-
earization points the linked list changes according to its specification. Furthermore, it
is shown that physical operations in theRedirectionandSnippingcategories cause no
logical changes to the list, which completes the linearizability proof.

To show wait-freedom, we claim that the helping mechanism ensures that a limited
number of concurrent operations can be executed while a given insert or delete execu-
tion is pending. At the point when this number is exhausted, all threads will help the
pending operation, and then it will terminates within a limited number of steps.

5 Linearization Points

In this section we specify the linearization point for the different operations of the
linked-list. TheSEARCH method for a keyk returns a pair of pointers, denotedpred
andcurr. The prev pointer points to the node with the highest key smaller thank, and
the curr pointer points to the node with the smallest key larger than or equal tok. The
linearization point of theSEARCH method is when the pointer that connectspred to

curr is read. This can be either at Line 36 or 45 of theSEARCHmethod. Note thatcurr’s
next field will be subsequently read, to make sure it is notmarked. Since it is an invari-
ant of the algorithm that a marked node is never unmarked, it is guaranteed that at the
linearization point bothpredandcurr nodes were unmarked.

The linearization point for aCONTAINS method is the linearization point of the ap-
propriateSEARCH method. The appropriateSEARCH method is the one called by the
thread that subsequently successfully reports the result of the sameCONTAINS opera-
tion. The linearization point of asuccessful insertis in Lines 47-48 (together they are a
single instruction) of thehelpInsertmethod. This is the CAS operation that physically
links the node into the list. For afailing insertion, the linearization point is the lineariza-
tion point of theSEARCHmethod executed by the thread that reported the failure.

The linearization point of asuccessful deleteis at the point where the node islog-
ically deleted, which means successfully marked. Note that it is possible that this is
executed by a helping thread and not necessarily by the operation owner. Furthermore,
the helping thread might be trying to help a different threadthan the one that will even-
tually own the deletion. The linearization point of anunsuccessful deleteis more com-
plex. A delete operation may fail when the key is properly deleted, but a different thread
is selected as the owner of the delete. In this case, the current thread returns failure, be-
cause of the failure of the CAS of theDELETE method (at Line 9). In this case, the
linearization point is set to the point when the said node is logically deleted (marked).
The linearization point of anunsuccessful delete, originating from simply not finding
the key, is the linearization point of theSEARCH method executed by the thread that
reported the failure.

6 The Fast-Path-Slow-Path Variation

The idea behind the fast-path-slow-path [8] approach is to combine a (fast) lock-free
algorithm with a (slower) wait-free one. The lock free algorithm provides a basis for a
fast path and we use Harris’s lock-free linked-list for thispurpose. The execution in the
fast path begins by a check whether a help is required for any operation in the slow path.
Next, the execution proceeds with running the fast lock-free version of the algorithm
while counting the number of contentions that end with a failure (i.e., failed CASes).
Typically, few failures occur and help is not required, and so the execution terminates
after running the faster lock-free algorithm. If this fast path fails to make progress, the
execution moves to the slow path, which runs the slower wait-free algorithm described
in Section 3, requesting help (using an operation descriptor in its slot in the state array)
and making sure the operation eventually terminates.

The number of CAS failures allowed in the fast path is limitedby a parameter called
MAX FAILURES. The help is provided by threads running both the fast and slow path,
which ensures wait-freedom: if a thread fails to complete its operation, its request for
help is noticed both in the fast and in the slow path. Thus, eventually all other threads
help it and its operation completes. However, help is not provided as intensively as
described in Section 3. We use thedelayed helpmechanism, by which each thread only
offers help to other threads once every several operations,determined by a parameter
calledHELPING DELAY .

Combining the fast-path and the slow-path is not trivial, ascare is needed to guaran-
tee that both paths properly run concurrently. On top of other changes, it is useful to note
that theDELETE operation must compete on thesuccess-bit even in the fast-path, to
avoid a situation where two threads running on the two different paths both think they
were successful in deleting a node. The full implementationof the fast-path-slow-path
variation of the linked-list is described in [11].

7 Performance

Implementation and platform. We compared four Java implementations of the linked-
list. The first is the lock-free linked-list of Harris, denotedLF, as implemented by Her-
lihy and Shavit in [6]. (This implementation was slightly modified to allow nodes with
user-selected keys rather than the object’s hash-code. We also did not use theitemfield.)

The basic algorithm described in Section is denotedWF-Orig in the graphs below. A
slightly optimized version of it, denotedWF-Opt, was changed to employ a delayed help
mechanism, similar to the one used in the fast-path- slow-path extension. This means
that a thread helps another thread only once everyk operations, wherek is a parameter
of the algorithm set to 3. The idea is to avoid contention by letting help arrive only after
the original thread has a reasonable chance of finishing its operation on its own. This
optimization is highly effective, as seen in the results. Note that delaying help is not
equivalent to a fast-path-slow-path approach, because allthreads always ask for help
(there is no fast path). All the operations are still done in thehelpInsertandhelpDelete
methods.

The fast-path-slow-path algorithm, denotedFPSP, was run with theHELPING DELAY

parameter set to 3, andMAX FAILURES set to 5. This algorithm combines the new wait-
free algorithm described in this paper with Harris’s lock-free algorithm, to achieve both
good performance and the stronger wait-freedom progress guarantee.

We ran the tests in two environments. The first was a SUN’s JavaSE Runtime,
version 1.6.0 on an IBM x3400 system featuring 2 Intel(R) Xeon(R) E5310 1.60GHz
quad core processors (overall 8 cores). The second was a SUN FIRE machine with an
UltraSPARC T1 8 cores each running four hyper-threads.

Workload and methodology. In the micro-benchmarks tested, we ran each experiment
for 2 seconds, and measured the overall number of operationsperformed by all the
threads during that time. Each thread performed 60%CONTAINS, and 20%INSERTand
DELETE operations, with keys chosen randomly and uniformly in the range[1,1024].
The number of threads ranges from 1-16 (in the Intel(R) Xeon(R)) or from 1-32 (In the
UltraSPARC). We present the results in Figure 6. The graphs show the total number of
operations done by all threads in thousands for all four implementations, as a function
of the number of threads. In all the tests, we executed each evaluation 8 times, and the
averages are reported in the figures.

Results. It can be seen that the fast-path-slow-path algorithm is almost as fast as the
lock-free algorithm. On the Intel machine, the two algorithms are barely distinguish-
able; the difference in performance is 2-3%. On the UltraSPARC the fast-path-slow-
path suffers a noticeable (yet, reasonable) overhead of 9-14%. The (slightly optimized)
basic wait-free algorithm is slower by a factor of 1.3–1.6, depending on the number of

threads. Also, these three algorithms provide an excellentspeed up of about 7 when
working with 8 threads (on both machines), and about 24 when working with 32 multi-
threads on the UltraSPARC. The basic non-optimized versionof the wait-free algorithm
doesn’t scale as well. There, threads often work together onthe same operation, causing
a deterioration in performance and scalability. The simpledelayed-help optimization
enables concurrency without foiling the worst-case wait-freedom guarantee.

Fig. 6. The number of operations done in two seconds as a function of the number of threads

References

1. Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A universal construction for wait-
free transaction friendly data structures. InSPAA, pages 335–344, 2010.

2. Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-efficient wait-free universal con-
struction. InSPAA, pages 325–334, 2011.

3. Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. InPODC, pages
50–59, New York, NY, USA, 2004. ACM.

4. Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. InDISC,
London, UK, UK, 2001. Springer-Verlag.

5. Maurice Herlihy. A methodology for implementing highly concurrent objects.ACM Trans.
Program. Lang. Syst., 15(5):745–770, 1993.

6. Maurice Herlihy and Nir Shavit.The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2008.

7. Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and dequeuers. In
PPOPP, pages 223–234, 2011.

8. Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures. In
PPOPP, pages 141–150, 2012.

9. Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects.IEEE
Trans. Parallel Distrib. Syst., 15(6):491–504, 2004.

10. Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free linked-lists.
In PPOPP, pages 309–310, 2012.

11. Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free linked-lists.
http://www.cs.technion.ac.il/%7eerez/%50apers/wfll-full.pdf. 2012.

12. John D. Valois. Lock-free linked lists using compare-and-swap. InPODC, pages 214–222,
New York, NY, USA, 1995. ACM.

