
A Practical Wait-Free Simulation for Lock-Free Data Structures

Erez Petrank
Dept. of Computer Science, Technion, Israel.

erez@cs.technion.ac.il

Shahar Timnat
Dept. of Computer Science, Technion, Israel.

stimnat@cs.technion.ac.il

March 7, 2017

Abstract

Lock-free data structures guarantee overall system progress, whereas wait-free data structures guar-
antee the progress of each and every thread, providing the desirable non-starvation guarantee for con-
current data structures. While practical lock-free implementations are known for various data structures,
wait-free data structure designs are rare. In spite of the need for wait-free algorithms in practice, wait-
free implementations have been notoriously hard to design and often inefficient. Recently, a couple of
efficient wait-free data structures appeared in the literature, but designing each new such algorithm is
difficult and error-prone.

In this work we present a mechanical transformation of lock-free data structures to wait-free ones
allowing even a non-expert to transform a lock-free data-structure into a practical wait-free one. The
transformation requires that the lock-free data structure is given in a normalized form defined in this
work. Using the new method, we have designed and implemented wait-free linked-list, skiplist, and
tree and we measured their performance. It turns out that for all these data structures the wait-free
implementations are only a few percent slower than their lock-free counterparts.

Keywords: concurrent data structures, wait-freedom, lock-freedom.

1 Introduction

In today’s world, where nearly every desktop and laptop contains several cores, parallel computing has
become the standard. Concurrent data structures are designed to utilize all available cores to achieve faster
performance. One of the important properties of concurrent data structures is the progress guarantee they
provide. Typically, the stronger the progress guarantee is, the harder it is to design the algorithm, and often,
stronger progress guarantees come with a higher performance cost.

Standard progress guarantees include obstruction-freedom, lock-freedom (a.k.a. non-blocking), and
wait-freedom. The strongest among these is wait-freedom. A wait-free algorithm guarantees that every
thread makes progress (typically completing a method) in a bounded number of steps, regardless of other
threads’ behavior. This worst-case guarantee has its theoretical appeal and elegance, but is also critical in
practice for making concurrent data structures useable with real-time systems. Even when run on a real-time
platform and operating system, a concurrent application must ensure that each thread makes its deadlines,
i.e., has a bounded worst-case response time in worst-case scenarios. However, very few wait-free algo-
rithms are known, as they are considered notoriously hard to design, and largely inefficient. The weaker
lock-freedom guarantee is more common. A lock-free algorithm guarantees that at least one thread makes
progress in a bounded number of steps. The downside of the lock-free guarantee is that all threads but one
can starve in an execution, meaning that lock-freedom cannot suffice for a real-time scenario. As lock-
free data structures are easier to design, constructions for many lock-free data structures are available in
the literature, including the stack [16], the linked-list [13], the skiplist [16], and the binary search tree [7].
Furthermore, practical implementations for many lock-free algorithms are readily available in standard Java
libraries and on the Web.

The existence of wait-free data structures has been shown by Herlihy [14] using universal simulations.
Universal simulation techniques have evolved dramatically since then (e.g., [15, 4, 1, 12, 8, 5, 6]), but
even the state of the art universal construction [5] is too slow compared to the lock-free or lock-based
implementations and cannot be used in practice1. Universal constructions achieve a difficult task, as they go
all the way from a sequential data structure to a concurrent wait-free implementation of it. It may therefore
be hard to expect that the resulting wait-free algorithm will be efficient enough to become practicable.

The idea of mechanically transforming an algorithm to provide a practical algorithm with a different
progress guarantee is not new, and not limited to universal constructions. Taubenfeld introduced contention-
sensitive data structures (CSDS) and proposed various mechanical transformation that enhance their perfor-
mance of progress guarantees [23]. Ellen et al suggested a transformation of obstruction-free algorithms
into wait-freedom algorithms under a different computation model known as semisynchronous [10]. This
construction does not extend to the standard asynchronous model.

Recently, we have seen some progress with respect to practical wait-free data structures. A practical
design of a wait-free queue relying on compare and swap (CAS) operations was presented in [17]. Next,
an independent construction of a wait-free stack and queue appeared in [9]. A wait-free algorithm for the
linked-list has been shown in [24]. Finally, a wait-free implementation of a red-black tree appeared in [22].

One of the techniques employed in this work is the fast-path-slow-path method, which attempts to sep-
arate slow handling of difficult cases from the fast handling of the more typical cases. This method is
ubiquitous in systems in general and in parallel computing particularly [19, 21, 2, 3], and has been adopted
recently [18] for creating fast wait-free data structures.

According to the fast-path-slow-path methodology of [18], an operation starts executing using a fast
lock-free algorithm, and only moves to the slower wait-free path upon failing to make progress in the lock-
free execution. It is often the case that an operation execution completes in the fast lock-free path, achieving

1The claim for inefficiency of universal constructions has been known as a folklore only. In Section 11.3 we provide the first
measurements substantiating this claim.

1

good performance. But some operations fail to make progress in the fast path due to contention, and in this
case, the execution moves to the slower wait-free path in which it is guaranteed to make progress. As many
operations execute on the fast (lock-free) path, the performance of the combined execution is almost as fast
as that of the lock-free data structure. It is crucial to note that even the unlucky threads, that do not manage
to make progress in the fast path, are guaranteed to make progress in the slow path, and thus the strong wait-
free guarantee can be obtained. Thus, we obtain the best of both worlds: the performance and scalability of
the lock-free algorithm combined with the wait-free guarantee; this enables concurrent algorithms to serve
demanding environments without sacrificing performance. The fast-path-slow-path methodology has been
shown to make the wait-free queue of [17] and the wait-free linked-list of [24] almost as efficient as their
lock-free counterpart.

The process of designing a fast wait-free data structure for an abstract data type is complex, difficult,
and error-prone. One approach to designing new wait-free data structures, which is also the one used in
[17, 18, 24], is to start with a lock-free data structure, work (possibly hard) to construct a correct wait-
free data structure by adding a helping mechanism to the original data structure, and then work (possibly
hard) again to design a correct and efficient fast-path-slow-path combination of the lock-free and wait-free
versions of the original algorithm. Designing a slow-path-fast-path data structure is non-trivial. One must
design the lock- and wait-free algorithms to work in sync to obtain the overall combined data structure with
the required properties.

In this work we ask whether this entire design can be done mechanically, and so also by non-experts.
More accurately, given a lock-free data structure of our choice, can we apply a generic method to create an
adequate helping mechanism to obtain a wait-free version for it, and then automatically combine the original
lock-free version with the obtained wait-free version to obtain a fast, practical wait-free data structure?

We answer this question in the affirmative and present an automatic transformation that takes a lin-
earizable lock-free data structure in a normalized representation (that we define) and produces a practical
wait-free data structure from it. The resulting data structure is almost as efficient as the original lock-free
one.

We next claim that the normalized representation we propose is meaningful in the sense that important
known lock-free data structures can be easily specified in this form. In fact, all linearizable lock-free data
structures that we are aware of in the literature can be stated in a normalized form. We demonstrate the
generality of the proposed normalized form by stating several important lock-free data structures in their
normalized form and then obtaining wait-free versions of them using the mechanical transformation. In
particular, we transform the linked-list [13, 11], the skiplist [16], and the binary search tree [7], and obtain
practical wait-free designs for them all.

Next, in order to verify that the resulting data structures are indeed practical, we implemented all of the
above wait-free algorithms and measured the performance of each. It turns out that the performance of all
these implementations is only a few percent slower than the original lock-free data structure from which
they were derived.
The contributions of this work are the following:

1. A mechanical transformation from any normalized lock-free data structure to a wait-free data structure
that (almost) preserves the original algorithm efficiency. This allows a simple creation of various new
practical wait-free data structures.

2. A demonstration of the generality of the normalized representation, by showing the normalized rep-
resentation for lock-free linked-list, skiplist and tree.

3. A formal argument for the correctness of the transformation, and thus also the obtained wait-free data
structures.

4. An implementation and reported measurements validating the efficiency of the proposed scheme.

2

We limit our discussion to the field of lock-free linearizable data structures. We believe our ideas can be
applied to other algorithms as well, such as lock-free implementations of STM, but this is beyond the scope
of this work.

The paper is organized as follows. In Section 2 we provide an overview of the proposed transforma-
tion. In Section 3 we briefly discuss the specifics of the shared memory model assumed in this work. In
Section 4 we examine typical lock-free data structures, and characterize their properties in preparation to
defining a normalized representation. The normalized representation is defined in Section 5, and the wait-
free simulating for a normalized lock-free data structure appears in Section 6. We prove the correctness of
the transformation in 7. We discuss the generality of the normalized form in Section 8. Next, in Section
9, we show how to easily convert four known lock-free data structures into the normalized form, and thus
obtain a wait-free version for them all. Some important optimizations are explained in Section 10 , and our
measurements are reported in Section 11.

2 Transformation overview

The move from the lock-free implementation to the wait-free one is executed by simulating the lock-free
algorithm in a wait-free manner. The simulation starts by simply running the original lock-free operation
(with minor modifications that will be soon discussed). A normalized lock-free implementation has some
mechanism for detecting failure to make progress (due to contention). When an operation fails to make
progress it asks for help from the rest of the threads. A thread asks for help by enqueuing a succinct
description of its current computation state on a wait-free queue (we use the queue of [17]). One modification
to the fast lock-free execution is that each thread checks once in a while whether a help request is enqueued
on the help queue. Threads that notice an enqueued request for help move to helping a single operation on
the top of the queue. Help includes reading the computation state of the operation to be helped and then
continuing the computation from that point, until the operation completes and its result is reported.

The major challenges are in obtaining a succinct description of the computation state, in the proper
synchronization between the (potentially multiple) concurrent helping threads, and in the synchronization
between helping threads and threads executing other operations on the fast lock-free path. The normalized
representation is enforced in order to allow a succinct computation representation, to ensure that the algo-
rithm can detect that it is not making progress, and to minimize the synchronization between the helping
threads to a level that enables fast simulation.

The helping threads synchronize during the execution of an operation at critical points, which occur
just before and just after a modification of the data structure. Assume that modifications of the shared data
structure occur using a CAS primitive. A helping thread runs the operation it attempts to help independently
until reaching a CAS instruction that modifies the shared structure. At that point, it coordinates with all
helping threads which CAS should be executed. Before executing the CAS, the helping threads jointly agree
on what the CAS parameters should be (address, expected value, and new value). After deciding on the
parameters, the helping threads attempt to execute the CAS and then they synchronize to ensure they all
learn whether the CAS was successful. The simulation ensures that the CAS is executed exactly once. Then
each thread continues independently until reaching the next CAS operation and so forth, until the operation
completes. Upon completing the operation, the operation’s result is written into the computation state, the
computation state is removed from the queue, and the owner thread (the thread that initiated the operation
in the first place) can return.

There are naturally many missing details in the above simplistic description, but for now we will men-
tion two major problems. First, synchronizing the helping threads before each CAS, and even more so
synchronizing them again at the end of a CAS execution to enable all of them to learn whether the CAS was
successful, is not simple. It requires adding version numbering to some of the fields in the data structure,

3

and also an extra modified bit. We address this difficulty in Section 6.
The second problem is how to succinctly represent the computation state of an operation. An intuitive

observation (which is formalized later) is that for a lock-free algorithm, there is a relatively light-weight
representation of its computation state. This is because by definition, if at any point during the run a thread
stops responding, the remaining threads must be able to continue to run as usual. This implies that if a
thread modifies the data structure, leaving it in an “intermediate state” during the computation, then other
threads must be able to restore it to a “normal state”. Since this often happens in an execution of a lock-free
algorithm, the information required to do so must be found on the shared data structure, and not (solely) in
the thread’s inner state. Using this observation, and distilling a typical behavior of lock-free algorithms, we
introduce a normalized representation for a lock-free data structure, as defined in Section 5. The normalized
representation is built in a way that enables us to represent the computation state in a compact manner,
without introducing substantial restrictions on the algorithm itself.

There is one additional key observation required. In the above description, we mentioned that the helping
threads must synchronize in critical points, immediately before and immediately after each CAS that modifies
the data structure. However, it turns out that with many of the CASes, which we informally refer to as
auxiliary CASes, we do not need to use synchronization at all. As explained in Section 4, the nature of lock-
free algorithms makes the use of auxiliary CASes common. Most of Section 4.2 is dedicated to formally
define parallelizable methods; these are methods that only execute auxiliary CASes, and can therefore be run
by helping threads without any synchronization. These methods will play a key role in defining normalized
lock-free representation in Section 5.

3 Model and General Definitions

We consider a standard shared memory setting. In each computation step, a single thread executes on a
target address in the shared memory one of three atomic primitives: READ, WRITE, or CAS. A computation
step may also include a local computation, which may use local memory.

A CAS primitive is defined according to a triplet: target address, expected-value and new-value.
A CAS primitive atomically compares the value of the target address to the expected-value, and WRITES

the new value to the target address if the expected-value and old value in the target address are
found identical. A CAS in which the expected-value and old value are indeed identical returns true,
and is said to be successful. Otherwise the CAS returns false, and is unsuccessful. A CAS in which the
expected-value and new-value are identical is a futile CAS.

An abstract data type, ADT, is defined by a state machine, and is accessed via operations. An operation
receives zero or more input parameters, and returns one result, which may be null. The state machine of a
type is a function that maps a state and an operation (including input parameters) to a new state and a result
of the operation.

A method is a sequence of code-instructions that specify computation steps, including local computa-
tion. The next computation step to be executed may depend on the results of previous computation steps.
Similarly to an operation, a method receives zero or more input parameters, and returns one result, which
may be null. A code instruction inside a method may invoke an additional method.

A special method, ALLOCATE, which receives as an input the amount of memory needed and returns a
pointer to the newly allocated memory is assumed to be available. We assume automatic garbage collection
is available. This means that threads need not actively invoke a DEALLOCATE method, and an automatic
garbage collector reclaims memory once it is no longer reachable by the threads. For further discussion
about memory management, see Section 11.1.

A data structure implementation is an implementation of an ADT. (e.g., Harris’s linked-list is a data
structure implementation). Such an implementation is a set of methods that includes a method for each

4

operation, and may include other supporting methods.
A program is a set of one or more methods, and an indication which method is the entry point of the

program. In an execution, each thread is assigned a single program. The thread executes the program by
following the program’s code-instructions, and execute computation steps accordingly.

An execution is a (finite or infinite) sequence of computation steps, cleaned out of the local computation.
A scheduling is a (finite or infinite) sequence of threads. Each execution defines a unique scheduling, which
is the order of the threads that execute the computation steps. Given a set of threads, each of which coupled
with a program, and a scheduling, a unique corresponding execution exists.

An execution must satisfy MEMORY CONSISTENCY. That is, each READ primitive in the execution must
return the value last WRITTEN, or successfully CASed, to the same target address. Also. Each CAS must
return true and be successful if and only if the expected-value is equal to the last value written (or
successfully CASes) into the same target address. Most works do not particularly define MEMORY CONSIS-
TENCY and take it for granted, but the way we manipulate executions in our correctness proof (Section 7)
makes this definition essential.

4 Typical Lock-Free Algorithms

In this section we provide the intuition on how known lock-free algorithms behave and set up some notation
and definitions that are then used in Section 5 to formally specify the normalized form of lock-free data
structures.

4.1 Motivating Discussion

Let us examine the techniques frequently used within lock-free algorithms. We target linearizable lock-
free data structures that employ CASes as the synchronization mechanism. A major difficulty that lock-free
algorithms often need to deal with is that a CAS instruction executes on a single word (or double word)
only, whereas the straightforward implementation approach requires simultaneous atomic modification of
multiple (non-consecutive) words2. Applying a modification to a single-field sometimes leaves the data
structure inconsistent, and thus susceptible to races. A commonly employed solution is to use one CAS

that (implicitly) blocks any further changes to certain fields, and let any thread remove the blocking after
restoring the data structure to a desirable consistent form and completing the operation at hand.

An elegant example is the delete operation in Harris’s linked-list [13]. In order to delete a node, a thread
first sets a special mark bit at the node’s next pointer, effectively blocking this pointer from ever changing
again. Any thread that identifies this “block” may complete the deletion by physically removing the node
(i.e., execute a CAS that makes its predecessor point to its successor). The first CAS, which is executed only
by the thread that initiates the operation, can be intuitively thought of as an owner CAS.

In lock-free algorithms’ implementations, the execution of the owner CAS is often separated from the
rest of the operation (restoring the data structure to a “normal” form, and “releasing” any blocking set by the
owner CAS) into different methods. Furthermore, the methods that do not execute the owner CAS but only
restore the data structure can usually be safely run by many threads concurrently. This allows other threads to
unblock the data structure and continue executing themselves. We call such methods parallelizable methods.

4.2 Notations and Definitions Specific to the Normalized Form.

In this section we formally define concepts that can be helpful to describe lock-free data structures, and are
used in this work to define the normalized form.

2This is one of the reasons why transactional memories are so attractive.

5

Definition 4.1 (Equivalent Executions.) Two executions E and E′ of operations on a data structure D
are considered equivalent if the following holds.

• (Results:) In both executions all threads execute the same data structure operations and receive iden-
tical results.

• (Relative Operation Order:) The order of invocation points and return points of all data structure
operations is the same in both executions.

• (Comparable length:) either both executions are finite, or both executions are infinite.

Note that the second requirement does not imply the same timing for the two executions. It only implies the
same relative order of operation invocations and exits. For example, if the ith operation of thread T1 was
invoked before the jth operation of T2 returned in E, then the same must also hold in E′. Clearly, if E and
E′ are equivalent executions, then E is linearizable if and only if E′ is linearizable.

In what follows we consider the invocation of methods. A method is invoked with zero of more input
parameters. We would like to discuss situations in which two or more invocations of a method receive the
exact same input parameters. If the method parameters do not include pointers to the shared memory, then
comparing the input is straight-forward. However, if a method is invoked with the same input I at two
different points in the execution t1 and t2, but I includes a pointer to a memory location that was allocated
or deallocated between t1 and t2, then even though I holds the same bits, in effect, it is different. The
reason for this this that in t1 and t2 I holds a pointer to a different “logical memory”, which happens to be
physically allocated in the same place. To circumvent this difficulty, we use the following definition.

Definition 4.2 (Memory Identity.) For a method input I and an execution E, we say that I satisfies memory
identity for two points in the execution t1 and t2, if no memory in I , or reachable from I , is allocated or
deallocated between t1 and t2 in E.

Next, we identify methods that can be easily run with help, i.e., can be executed in parallel by several
threads without harming correctness and while yielding adequate output. For those familiar with Harris’s
linked-list, a good example for such a method is the search method that runs at the beginning of the DELETE

or the INSERT operations. The search method finds the location in the list for the insert or the delete and
during its list traversal it snips out of the list nodes that were previously marked for deletion (i.e., logically
deleted entries). The search method can be run concurrently by several threads without harming the data
structure coherence and the outcome of any of these runs (i.e., the location returned by the search method
for use of insert or delete) can be used for deleting or inserting the node. Therefore, the search method can
be easily helped by parallel threads. In contrast, the actual insertion, or the act of marking a node as deleted,
which should happen exactly once, is a crucial and sensitive (owner) CAS, and running it several times in
parallel might harm correctness by making an insert (or a delete) occur more than once.

To formalize parallelizable methods we first define a harmless, or avoidable parallel run of a method.
Intuitively, an avoidable method execution is an execution in which each CAS executed during the method
can potentially be avoided in an alternative scheduling. That is, in an avoidable method execution, there is
an equivalent execution in which the method does not modify the shared memory at all.

Definition 4.3 (Avoidable method execution) A run of a method M by a thread T on input I in an
execution E of a program P is avoidable if there exists an equivalent execution E′ for E such that in both E
and E′ each thread follows the same program, both E and E′ are identical until right before the invocation
of M by T on input I , and in E′ each CAS that T executes during M either fails or is futile.

Definition 4.4 (Parallelizable method.) A method M is a parallelizable method of a given lock-free algo-
rithm, if for any execution in which M is called by a thread T with an input I the following two conditions
holds. First, the execution of a parallelizable method depends only on its input, the shared memory, and the

6

results of the methods CAS operations. In particular, the execution does not depend on the executing threads
local state prior to the invocation of the parallelizable method.

Second, At any point in E that satisfies memory identity to I with the point in E in which M is invoked,
If we create and run a finite number of parallel threads, and the program of each of these threads would
be to run method M on input I , then in any possible resulting execution E′, all executions of M by the
additional threads are avoidable.

Loosely speaking, for every invocation of a parallelizable method M by one of the newly created threads,
there is an equivalent execution in which this method’s invocation does not change the data structure at all.
In concrete known lock-free algorithms, this is usually because every CAS attempted by the newly created
thread might be executed by one of the other (original) threads, thus making it fail (unless it is futile).
For example, Harris’s linked-list search method is parallelizable. The only CASes that the search method
executes are those that physically remove nodes that are already logically deleted. Assume T runs the search
method, and that we create an additional thread Ta and run it with the same input.

Consider a CAS in which Ta attempts to physically remove a logically deleted node from the list. As-
sume Ta successfully executes this CAS and removes the node from the list. Because the node was already
logically deleted, this CAS does not affect the results of other operations. Thus, there exists an equivalent
execution, in which this CAS is not successful (or not attempted at all.) To see that such an equivalent
execution exists, consider the thread T1 that marked this node as logically deleted in the first place. This
thread must currently be attempting to physically remove the node so that it can exit the delete operation. An
alternative execution in which T1 is given the time, right before Ta executes the CAS, to physically remove
the node, and only then does Ta attempt the considered CAS and fails, is equivalent.

It is important to realize that many methods, for example, the method that logically deletes a node from
the list, are not parallelzable. If an additional thread executes CAS that logically deletes a node from the list,
then this can affect the results of other operations. Thus, there exist some executions, that have no equivalent
executions in which the additional thread does not successfully execute this CAS.

Parallelizable methods play an important role in our construction, since helping threads can run them
unchecked. If a thread cannot complete a parallelizable method, helping threads may simply execute the
same method as well.

We now focus on a different issue. In order to run the fast-path-slow-path methodology, there must be
some means to identify the case that the fast path is not making progress on time, and then move to the
slow path. To this end, we define the Contention failure counter. Intuitively, a contention failure counter is
a counter associated with an invocation of a method (i.e. many invocations of the method imply separate
counters), measuring how often the method is delayed due to contention.

Definition 4.5 (Contention failure counter.) A contention failure counter for a method M is an integer
field C associated with an invocation of M (i.e. many invocations of M imply many separate contention
failure counters). Denote by C(t) the value of the counter at time t. The counter is initialized to zero upon
method invocation, and is updated by the method during its run such that the following holds.

• (Monotonically increasing:) Each update to the contention failure counter increments its value by
one.

• (Bounded by contention:) Assume M is invoked by Thread T and let d(t) denote the number of data
structure modifications by threads other than T between the invocation time and time t. Then it always
hold that C(t) ≤ d(t). 3

3In particular, this implies that if no modifications were made to the data structure outside the method M since its invocation
until time t, then C(t) = 0.

7

• (Incremented periodically:) The method M does not run infinitely many steps without incrementing
the contention failure counter.

Remark 4.6 The contention failure counter can be kept in the local memory of the thread that is running
the method.

A lock-free method must complete within a bounded number of steps if no modifications are made to
the data structure outside this method. Otherwise, allowing this method to run solo results in an infinite
execution, contradicting its lock-freedom. Thus, the requirements that the counter remains zero if no con-
current modifications occur, and the requirement that it does not remain zero indefinitely, do not contradict
each other. The contention failure counter will be used by the thread running the method to determine that
a method in the fast-path is not making progress and so the thread should switch to the slow path.

For most methods, counting the number of failed CASes can serve as a good contention failure counter.
However, more complex cases exist. We further discuss such cases in Appendix B.

In order to help other threads, and in particular, execute CAS operations for them, we will need to have
CASes published. For this publication act, we formalize the notion of a CAS description.

Definition 4.7 (CAS description.) A CAS description is a structure that holds the triplet (addr, expected, new)
which contains an address (on which a CAS should be executed), the value we expect to find in this address,
and the new value that we would like to atomically write to this address if the expected value is currently
there. Given a pointer to a CAS description, it is possible to execute it and the execution can be either
successful (if the CAS succeeds) or unsuccessful (if the CAS fails).

5 Normalized Lock-Free Data Structures

In this section, we specify what a normalized lock-free data structure is. We later show how to simulate a
normalized lock-free algorithm in a wait-free manner automatically.

5.1 The Normalized Representation

A normalized lock-free data structure is one for which each operation can be presented in three stages, such
that the middle stage executes the owner CASes, the first is a preparatory stage and the last is a post-execution
step.

Using Harris’s linked-list example, the DELETE operation runs a first stage that finds the location to
mark a node as deleted, while sniping out of the list all nodes that were previously marked as deleted. By
the end of the search (the first stage) we can determine the main CAS operation: the one that marks the node
as deleted. Now comes the middle stage where this CAS is executed, which logically deletes the node from
the list. Finally, in a post-processing stage, we attempt to snip out the marked node from the list and make
it unreachable from the list head.

In a normalized lock-free data structure, we require that: any access to the data structure is executed
using a read or a CAS; the first and last stages be parallelizable, i.e., can be executed with parallelizable
methods; and each of the CAS primitives of the second stage be protected by versioning. This means that
there is a counter associated with the field that is incremented with each modification of the field. This
avoids potential ABA problems, and is further discussed in Section 6.

Definition 5.1 A lock-free data structure is provided in a normalized representation if:

• Any modification of the shared memory is executed using a CAS operation.

8

• Every operation of the data structure consists of executing three methods one after the other and which
have the following formats.
1) CAS-generator, whose input is the operation’s input, and its output is a list of CAS-descriptors. The
CAS-generator method may optionally output additional data to be used in the WRAP-UP method.
2) CAS-executor, which is a fixed method common to all data structures implementations. Its input is
the list of CAS-descriptors output by the CAS-generator method. The CAS-executor method attempts
to execute the CASes in its input one by one until the first one fails, or until all CASes complete. Its
output is the index of the CAS that failed (which is -1 if none failed).
3) Wrap-Up, whose input is the output of the CAS-executor method plus the list of CAS-descriptors
output by the CAS-generator, plus (optionally) any additional data output by the CAS-generator
method to be used by the WRAP-UP method. Its output is either the operation’s result, which is
returned to the owner thread, or an indication that the operation should be restarted from scratch
(from the GENERATOR method).
• The GENERATOR and the WRAP-UP methods are parallelizable and they have an associated con-

tention failure counter.
• Finally, we require that the CASes that the GENERATOR method outputs be for fields that employ

versioning (i.e., a counter is associated with the field to avoid an ABA problem). The version number
in the expected-value field of a CAS that the GENERATOR method outputs cannot be greater
than the version number currently stored in the target address. This requirement guarantees
that if the target address is modified after the GENERATOR method is complete, then the CAS

will fail.

All lock-free data structures that we are aware of today can be easily converted into this form. Several
such normalized representations are presented in Section 9. This is probably the best indication that this
normalized representation covers natural lock-free data structures. In Section 8 we show that all abstract
data types can be implemented in a normalized lock-free data structure, but this universal construction is
likely to be inefficient.

Intuitively, one can think of this normalized representation as separating owner CASes (those are the
CASes that must be executed by the owner thread) from the other (denoted auxiliary) CASes. The auxiliary
CASes can be executed by many helping threads and therefore create parallelizable methods. Intuitively, the
first (generator) method can be thought of as running the algorithm without performing the owner CASes. It
just makes a list of those to be performed by the executor method, and it may execute some auxiliary CASes
to help previous operations complete.

As an example, consider the DELETE operation of Harris’s linked-list. When transforming it to the nor-
malized form, the GENERATOR method should call the search method of the linked-list. The search method
might snip out marked (logically deleted) nodes; those are auxiliary CASes, helping previous deletions to
complete. Finally, the search method returns the node to be deleted (if a node with the needed key exists
in the list). The CAS that marks this node as logically deleted is the owner CAS, and it must be executed
exactly once. Thus, the GENERATOR method does not execute this owner CAS but outputs it to be executed
by the CAS-EXECUTER method. If no node with the needed key is found in the list, then there are no owner
CASes to be executed, and the GENERATOR method simply returns an empty list of CASes.

Next, the CAS-EXECUTOR method attempts to execute all these owner CASes. In Harris’s linked list,
like in most known algorithms, there is only one owner CAS. The CAS-EXECUTER method attempts the
owner CAS (or the multiple owner CASes one by one), until completing them all, or until one of them fails.
After the CAS-EXECUTER method is done, the operation might already be over, or it might need to start from
scratch (typically if a CAS failed), or some other auxiliary CASes should be executed before exiting. The
decision on whether to complete or start again (and possibly further execution of auxiliary CASes) is done in
the WRAP-UP method. In Harris’ linked-list example, if the GENERATOR method outputted no CASes, then

9

it means that no node with the required key exists in the list, and the wrap-up method should return with
failure. If a single CAS was outputted by the GENERATOR but its execution failed in the EXECUTER, then the
operation should be restarted from scratch. Finally, if a single CAS was outputted by the GENERATOR and it
was successfully executed by the EXECUTER, then the wrap-up method still needs to physically remove the
node from the list (an auxiliary CAS), and then return with success. Removing the node from the list can be
done similarly to the original algorithm, by calling the SEARCH method again.

We note that the normalized representation requires all data structure modifications to be executed with
a CAS, and allows no simple WRITE primitives. This is in fact the way most lock-free data structures work.
But this requirement is not restrictive, since any WRITE primitive can be replaced by a loop of repeatedly
reading the old value and then trying to CAS it to the new value until the CAS is successful.

To see that this does not foil the lock-free property, replace the WRITES with such loop CASes one by
one. Now, for a single such replacement note that either the CASes always succeed eventually and then the
algorithm is still lock-free, or there exists an execution of this loop that never terminates. In the later case,
other threads must be executing infinitely many steps that foil the CASes, while the current thread never
modifies the data structure. This is similar to a case where this thread is not executing at all, and then the
other threads must make progress, since the algorithm (without the looping thread) is lock-free.

6 Transformation Details

In this section, we provide the efficient wait-free simulation of any normalized lock-free data structure.
To execute an operation, a thread starts by executing the normalized lock-free algorithm with a contention
failure counter checked occasionally to see if contention has exceeded a predetermined limit. To obtain
non-starvation, we make the thread check its contention failure counter periodically, e.g., on each function
call and each backward jump. If the operation completes, then we are done. Otherwise, the contention
failure counter eventually exceeds its threshold and the slow path must be taken.

There is also a possibility that the contention failure counter never reaches the predetermined limit for
any execution of a single method, but that the WRAP-UP method constantly indicates that the operation
should be restarted from fresh. (This must also be the result of contention, because if an operation is
executed alone in the lock-free algorithm it must complete.) Thus, the thread also keeps track of the number
of times the operation is restarted, and if this number reaches the predetermined limit, the slow path is taken
as well. The key point is that an operation cannot execute infinitely many steps in the fast-path. Eventually,
it will move to the slow-path.

The slow path begins by the thread creating an operation record object that describes the opera-
tion it is executing. A pointer to this operation record is then enqueued in a wait-free queue called the help
queue. Next, the thread helps operations on the help queue one by one according to their order in the
queue, until its own operation is completed. Threads in the fast path that notice a non-empty help queue
provide help as well, before starting their own fast-path execution.

6.1 The Help Queue and the Operation Record

The description of operations that require help is kept in a wait-free queue, similar to the one proposed by
Kogan and Petrank in [17]. The queue in [17] supports the standard ENQUEUE and DEQUEUE operations.
We slightly modify it to support three operations: ENQUEUE, PEEK, and CONDITIONALLY-REMOVE-HEAD.
ENQUEUE operations enqueue a value to the tail of the queue as usual. The new PEEK operation returns
the current head of the queue, without removing it. Finally, the conditionally-remove-head oper-
ation receives a value it expects to find at the head of the queue, and removes it (dequeues it) only if this
value is found at the head. In this case it returns true. Otherwise, it does nothing and returns false. This

10

 OperationRecordBox:

 val // points to a record

CAS Descriptor:

 target // target address

 expected-value

 new-value

 state // pending / failure / success

OperationRecord:

 ownerTid // the owner thread of this operation

 operation // Optype, i.e., insert, delete, contains…

 input // input parameters for the operation

 state // one of: preCASes / executeCASes / postCASes / completed

 result // operation result (when completed)

 CAS-list // a list of CAS descriptors

Figure 1: Operation Record

queue is in fact simpler to design than the original queue, because DEQUEUE is not needed, because PEEK

requires a single read, and the conditionally-remove-head can be executed using a single CAS.
(Therfore, conditionally-remove-head can be easily written in a wait-free manner.) Some care is
needed because of the interaction between ENQUEUE and CONDITIONALLY-REMOVE-HEAD, but a similar
mechanism already appears in [17], and we simply used it in our case as well. The Java implementation for
our variation of the queue is given in Appendix A.

We use this queue as the help queue. If a thread fails to complete an operation due to contention, it
asks for help by enqueuing a request on the help queue. This request is in fact a pointer to a small object
(the operation record box) that is unique to the operation and identifies it. It is only reclaimed when the
operation is complete. In this operation record box object there is a pointer to the operation record
itself, and this pointer is modified by a CAS when the operation’s status needs to be updated. We specify
the content of this object and record in Figure 1.

6.2 Giving Help

When a thread T starts executing a new operation, it first PEEKs at the head of the help queue. If it sees
a non-null value, then T helps the enqueued operation before executing its own operation. After helping
to complete one operation, T proceeds to execute its own operation (even if there are more help requests
pending on the queue).

To participate in helping an operation, a thread calls the HELP method, telling it whether it is on the fast
path, and so willing to help a single operation, or on the slow path, in which case it also provides a pointer
to its own operation record box. In the latter case, the thread is willing to help all operations up to its own
operation. The HELP method will PEEK at the head of the help queue, and if it sees a non-null operation
record box, it will invoke the HELPOP method. A null value means the help queue is empty, and so no
further help is needed.

The HELPOP, invoked by the HELP method, helps a specific operation O, until it is completed. Its
input is O’s operation record box. This box may either be the current head in the help queue or it is
an operation that has been completed and is no longer in the help queue. As long as the operation is
not complete, HELPOP calls one of the three methods, PRECASES, EXECUTECASES, or POSTCASES, as
determined by the operation record. If the operation is completed, HELPOP attempts to remove it from the
queue using CONDITIONALLY-REMOVE-HEAD. When the HELPOP method returns, it is guaranteed that the
operation record box in its input represents a completed operation and is no longer in the help queue.

The PRECASES method invokes the CAS-GENERATOR method of the normalized lock-free algorithm,

11

1: void help (boolean beingHelped, OperationRecordBox myHelpBox) {
2: while (true) {
3: OperationRecordBox head = helpQueue.peekHead();
4: if (head != null)
5: helpOp(head);
6: if (!beingHelped || myHelpBox.get().state == OpState.completed)
7: return;
8: }
9: }

Figure 2: The help method

1: void helpOp(OperationRecordBox box) {
2: OperationRecord record = null;
3: do {
4: record = box.val;
5: OpState state = record.state;
6: if (state == OpState.preCASes) {
7: preCASes(box, record); . Executes the CAS generator supplied by the normalized algorithm plus attempt to make

the result visible.
8: }
9: if (state == OpState.executeCASes) {

10: int failedIndex = executeCASes(record.list); . carefully execute the CAS list outputted by the CAS generator.
11: record.failedCasIndex = failedIndex;
12: record.state = OpState.postCASes;
13: }
14: if (state == OpState.postCASes) {
15: postCASes(box, record); . execute the wrap-up method, plus some administrative work
16: }
17: } while (state != OpState.completed);
18: helpQueue.conditionallyRemoveHead(box);
19: }

Figure 3: The helpOp method

12

1: void preCASes(OperationRecordBox box, OperationRecord record) {
2: cas-list = MonitoredRun(Of GeneratorMethod on record);
3: if (cas-list != null) {
4: newRecord =

new OperationRecord(record.ownerTid, record.operation, record.input, OpState.executeCASes, null, cas-list);
5: CAS(box.val, record, newRecord);
6: }
7: }

Figure 4: The preCASes method

which generates the list of CAS-descriptions for the CAS-EXECUTOR. As the CAS-GENERATOR method is
parallelizable, it can be run by several threads concurrently at no risk4. It runs a monitored version of the
generator, which occasionally checks the contention failure counter in order to guarantee this method will
not run forever. If the contention failure counter reaches the predetermined threshold, the thread simply
quits this method with null and reads the operation record box to see if another thread has made progress
with this operation (if not, the HELPOP method will call the PRECASES method again).

The PRECASES method allocates a new operation record that holds the result of the run of the CAS-
GENERATOR method. The outcome of the PRECASES can either be a null pointer if the method was stopped
by the contention failure counter, or a list of CAS-descriptors if the method completed successfully. If the
result of the CAS-GENERATOR execution is not a null, the PRECASES method creates a new operation record
and attempts to make it the official global operation record for this operation by attempting to atomically
change the operation record box to reference it. There is no need to check whether this attempt succeeded as
the CAS-GENERATOR method is a parallelizable method and any result by any of its concurrent executions
is a proper result that can be used to continue the operation.

If the OperationRecord is not replaced by a new one, then soon enough all threads will only run
this method, all helping the same operation. In that case, it is guaranteed to be completed because the
simulation is equivalent to running this operation solo5. After the OperationRecord is successfully replaced
by a CAS, some threads might still be executing the GENERATOR method. Since we monitor the execution
with a contention failure counter, and since the counter is required to be incremented repeatedly (cannot
maintain any value forever), then we know that these threads do will not execute infinitely many steps in
these methods.

The CAS-EXECUTOR method is not parallelizable and therefore helping threads cannot simply run it
concurrently. Only one execution of each CAS is allowed, and it should be clear to everyone whether each
CAS execution succeeded or failed. So we replace it with a carefully designed concurrent method, named
EXECUTECASES (Figure 5) .

The EXECUTECASES method receives as its input a list of CAS-descriptors to be executed. Each CAS

description is also associated with a state field, which describes the execution state of this CAS: suc-
ceeded, failed, or still pending. The controlled execution of these critical CASes requires care to ensure that:
each CAS is executed exactly once, the success of the CAS gets published even if one of the threads stops
responding, and an ABA problem is not created by letting several threads execute this sensitive CAS instead
of the single thread that was supposed to execute it in the original lock-free algorithm. The ABA problem is
introduced because a thread may be inactive for a while and then successfully execute a CAS that had been
executed before, if after its execution the target address was restored back to its old value.

Ideally, we would have liked to execute three instructions atomically: (1) read the state, (2) attempt the
CAS (if the state is pending), and (3) update the CAS state. Unfortunately, since these three instructions
work on two different locations (the CAS’s target address and the descriptor’s state field) we cannot

4This is formally proved at Section 7.
5A formal argument for the wait-freedom is given in Section 7.2.

13

run this atomically without using a heavy mutual exclusion machinery that foils wait-freedom (and is also
costly).

To solve this atomicity problem, we introduce both a versioning mechanism to the fields being CASed,
and an additional bit, named modification-bit, to each CASed field. (In a practical implementation,
the modified-bit is on the same memory word as the version number.)

The modified-bit will signify that a successful CAS has been executed by a helping thread, but
(possibly) not yet reported. So when a CAS is executed in the slow path, a successful execution will put the
new value together with the modified-bit set. As a result, further attempts to modify this field must
fail, since the expected-value of any CAS never has this bit set. When a field has the modified-bit
set, it can only be modified by a special CAS primitive designated to clear the modified-bit. This CAS,
which we refer to as a CLEARBIT CAS, is the only CAS that is executed without incrementing the version
number. It only clears the modified-bit, and nothing more. However, before any thread attempts the
CLEARBIT CAS, it must first update the state of the CAS to reflect success.

Our transformation keeps the invariant that in the entire data structure, only a single modified-bit
might be set at any given moment. This is exactly the bit of the CAS that is currently being helped by all
helping threads. Before clearing this modified-bit, no other CAS execution can be helped.

Let us examine an execution of the EXECUTECASES method. The executing thread goes over the CASes
in the list one by one, and helps execute them as follows. First, it reads the CAS state. If it is successful,
it attempts the CLEARBIT CAS to clear the modified-bit, in case it hasn’t been done before. The
expected-value of the CLEARBIT CAS exactly matches the new-value of the CAS-descriptor except
that the modified-bit is set. Thus, due to the version number, the CLEARBIT CAS can only clear a
modified-bit that was switched on by the same CAS-descriptor. (This is formally proved in Section
7.1.)

Otherwise, if the CAS state is currently set to failure, then the EXECUTECASES method immediately
returns with the index of the failing CAS. Otherwise, the state is pending, and EXECUTECASES attempts
to execute the listed CAS and set the modified-bit atomically with it. Next, it checks whether the
modified bit is set, and if it is, it sets the (separate) CAS state field to success and only then attempts
to clear the modified-bit.

Setting the state field to success is done with an atomic CAS, which only succeeds if the previous
state is pending. This is required to solve a race condition in which the execution of the CAS-descriptor
has failed, yet the modified-bit is set to true is the result of a successful execution of a later CAS.
Afterwards, and only if the state is now indeed success, the CLEARBIT is attempted. Next, if at that point
the CAS state field is still not set to success, then it means the CAS has failed, and thus EXECUTECASES

sets this state to failure and returns. Otherwise, success is achieved and EXECUTECASES proceeds to the
next CAS in the list.

The existence of the modified-bit requires minor modifications to the fast-path. First, READ prim-
itives should ignore the modified-bit (always treat it as if the bit were off.) This should be easy: the
modified-bit is adjacent to the version number, which does not normally influence the execution (only
when calculating the next version number for the new-value of a CAS.)

Second, when a thread attempts a CAS and the CAS fails in the fast-path, it should check to see whether
the CAS failed because the modified-bit in the required field is set, and if so, whether the CAS would
have succeeded were the bit turned off.

Thus, after a CAS in the fast-path fails, instead of continuing as usually, the thread that attempted the CAS

READS the value from the CAS’s target address. If this value differs from the CAS’s expected-value
in other bits than the modified-bit, then the thread continues the execution as usual, since the CAS has
“legitimate” reasons for failure. However, if the value in the CAS’s target address is identical to the
CAS’s expected-value in all the bits but the modified-bit, then the thread pauses its current exe-
cution and calls the help method to participate in helping the current operation to complete (clearing this bit

14

1: private void executeCASes(CAS-list cl) {
2: for (int i = 0; i < cl.size(); i++) {
3: ICasDesc cas = cl.get(i);
4: if (cas.GetState() == CasState.success) {
5: cas.ClearBit();
6: continue;
7: }
8: if (cas.GetState() == CasState.failure)
9: return i;

10: cas.ExecuteCas();
11: if (cas.ModifiedBitSet()) { . Checks whether the modified bit in the target address is set.
12: cas.CASStateField(CasState.pending, CasState.success); . Attempt with a CAS to change the descriptor’s state

from pending to success.
13: if (cas.GetState == CasState.success) { cas.ClearBit(); }
14: }
15: if (cas.GetState() != CasState.success) {
16: cas.WriteStateField(CasState.failure); . CAS MUST HAVE FAILED, SET THE DESCRIPTOR’S STATE TO FAILURE.
17: RETURN I;
18: }
19: }
20: RETURN -1; . THE ENTIRE CAS-LIST WAS EXECUTED SUCCESSFULLY

21: }

Figure 5: The executeCASes Method

1: void postCASes(OperationRecordBox box, OperationRecord record) {
2: shouldRestart, operationResult = MonitoredRun(of Wrapup Method on record);
3: if (operationResult == Null) Return
4: if (shouldRestart)
5: newRecord = new OperationRecord(record.ownerTid, record.operation, record.input, OpState.preCASes, null, null);
6: else
7: newRecord = new OperationRecord(record.ownerTid, record.operation, record.input, OpState.completed, operationRe-

sult, null);
8: box.val.compareAndSet(record, newRecord);
9: }

Figure 6: The postCASes Method

in the process.)
After the help method returns the modified-bit is guaranteed to have been cleared. Thus, the CAS is

attempted again, and the execution continues as usual from that point. Even if the re-execution fails, there is
no need to READ the target address again. It is guaranteed that the value in the target address
is now different from the CAS’s expected-value: if the modified-bit is turned back on after being
cleared, it can only be done together with incrementing the version number.

After the CASes are executed, the HELPOP method calls the POSTCASES method (Figure 6), which
invokes the WRAP-UP method of the original lock-free algorithm. If the WRAP-UP method fails to complete
due to contention, the monitored run will return null and we will read again the operation record
box. If the WRAP-UP method was completed without interruption, the POSTCASES method attempts
to make its private operation record visible to all by atomically attempting to link it to the operation
record box. Note that its private operation record may indicate a need to start the operation
from scratch, or may indicate that the operation is completed. When the control is returned to the HELPOP

method, the record is read and the execution continues according to it.

15

7 Correctness

Our goal is to prove that given a normalized linearizable lock-free data structure implementation for a par-
ticular abstract data type, our transformation generates a wait-free linearizable implementation for the same
abstract data type. As a preliminary step, we first prove that the implementation of the EXECUTECASES

method, as given in Figure 5 is correct. The exact definition of a correct behavior of the EXECUTECASES

method is given in the following subsection (Definition 7.1). Subsection 7.1 proves that our implementation
is indeed correct. Given this result, Subsection 7.2 proves that the generated algorithm of our transformation
is linearizable and wait-free.

7.1 Correctness of the EXECUTECASES Implementation

In the EXECUTECASES method, potentially many threads are working together on the same input (same
CAS list). A CAS-list is a structure that holds zero or more CAS-descriptors, and a field indicating the
length of the list. Each CAS-descriptor consists of four fields: target address, expected-value,
new-value, and status. The three first fields are final (never altered) after a CAS-descriptor has been
initialized.

Loosely speaking, to an “outside observer” that inspects the shared memory, many threads executing
the EXECUTECASES method on a certain CAS-list should appear similar to a single thread executing the
CAS-EXECUTER method (the second method in the normalized form) on a private (but identical) CAS-list
input. Recall that in the CAS-EXECUTER method, the CASes are executed according to their order until they
are completed or the first one among them fails. The output of the method is the index of the first CAS that
failed, or minus one if no CAS failed.

The main difference between an execution of the CAS-EXECUTER method by a single thread, and con-
current executions of the EXECUTECASES method by many threads, is that in the latter each CAS is exe-
cuted in two steps. We refer to the first (main) step simply as executing the CAS-descriptor, and to the second
step as executing the CLEARBIT of the CAS-descriptor. An execution of a CAS-descriptor (which occurs
in line 10 of the EXECUTECASES method) is an execution of a CAS for which the target address,
expected-value and new-value are the same as the CAS-descriptor’s, except that the new-value
is altered such that the modified-bit is set. An execution of a CLEARBIT of a CAS-descriptor (which
occurs in lines 5 and 13) is an execution of a CAS for which the target address and the new-value
are the same as the CAS-descriptor’s, and the expected-value is identical to the new-value except
that the modified-bit is set. (Thus, the expected-value of the second step is the new-value of
the first step.)

In what follows, we formally define what is a correct concurrent behavior for the EXECUTECASES

method and prove that the implementation of it given in Figure 5 is indeed correct. The correctness of
the transformation, as detailed in subsection 7.2, relies on the correctness of the EXECUTECASES method
stated here. However, the two proofs are independent of each other, and the reader may skip the proof in
this subsection if he chooses to, without loss of clarity.

Definition 7.1 (Correct Behavior of the EXECUTECASES method.) When one or more threads execute
concurrently the EXECUTECASES method using the same CAS-list input, the following should hold.

• All computation steps inside the EXECUTECASES method are either: a) an execution of a CAS-
descriptor, b) a CLEARBIT of a CAS-descriptor, or c) applied on the memory of the CAS-list (e.g.,
altering the state field of a CAS-descriptor).

• For every CAS-descriptor c: a) any attempt to execute c except the first attempt (by some thread) must
fail, and b) any attempt to execute the CLEARBIT of c except the first attempt (by some thread) must
fail.

16

• Before a CAS-descriptor c in a CAS-list cl is executed for the first time: a) all the previous CAS-
descriptors in cl have been successfully executed, and b) CLEARBIT has already been executed for
all the previous CAS-descriptors in cl.

• Once some thread has completed executing the EXECUTECASES method on an input CAS-list cl the
following holds.
1) Either all the CAS-descriptors have been successfully executed, or all the CAS-descriptors have
been executed until the first one that fails. Further CAS-descriptors (after the first one that fails) have
not been executed, and will not be executed in the rest of the computation.
2) A CLEARBIT was successfully executed for each CAS-descriptor that was successfully executed.

• The return value of the EXECUTECASES for every thread that completes it is:
1) The index of the first (and only) CAS-descriptor whose execution failed the first time it was attempt,
if such exists.
2) -1 otherwise.

Our goal is to prove that the EXECUTECASES method as implemented in Figure 5 is correct by Def-
inition 7.1, assuming that its input is legal. More precisely, we consider an execution E in which the
EXECUTECASES method is invoked (possibly many times). We use several assumptions on E, (all fulfilled
by an execution of an algorithm that results from applying our transformation on a normalized form algo-
rithm) about how the EXECUTECASES method is used, and prove that E fulfills definition 7.1. We assume
the following.

Assumption 7.2 Only a single CAS-list for which the execution (by some thread) is not yet completed is
active at any given moment. More precisely: whenever the EXECUTECASES method is invoked in E with
an input CAS-list cl, then for all prior invocations of the EXECUTECASES method with an input CAS-list
cl′, by any thread, one of the following holds.
1) cl and cl′ are equal.
2) An execution of the EXECUTECASES method for which the input was cl′ is already completed.

Remark 7.3 Note that we do not assume that all executions of the EXECUTECASES method with input cl′

are already completed.

Assumption 7.4 Any address that is used as a target address of any CAS-descriptor is only ever
modified in E with a CAS (no writes). Outside the EXECUTECASES method, all the CASes that modify this
address has the modified-bit off both in the expected-value and in the new-value.

Assumption 7.5 A version number is associated with every address that is used as a target address of
a CAS-descriptor. For every CAS in E that attempts to modify such an address outside the EXECUTECASES

method, the version number of the new-value is greater by one than the version number of the EXPECTED

VALUE. (That is, each successful CAS increments the version number by one.)

Assumption 7.6 CAS-descriptors are initialized with a pending state, and the state field is never mod-
ified outside the EXECUTECASES method.

Assumption 7.7 When a CAS-descriptor is initialized, the version number in the expected-value field
is no greater than the current version number stored in the target address of the CAS. (That is,
CAS-descriptors are not created speculatively with “future” version numbers.)

Remark 7.8 Usually in a CAS, the expected-value is a value that was previously read from the
target address. If that is the case, this assumption will always hold.

17

To simplify the proof, we first define a few terms used in the proof. First, we define a total order between
all the CAS-lists that are used as an input to the EXECUTECASES method in E, and to all the CAS-descriptors
used in these CAS-lists.

Definition 7.9 (Total order of CAS-lists.) Given two different CAS-lists cl1 and cl2 used as an input to
the EXECUTECASES method in E, we say that cl1 is before cl2 (or prior to cl2) if the first time that an
EXECUTECASES method with input cl1 is invoked in E is prior to the first time that an EXECUTECASES

method with input cl2 is invoked in E.

Remark 7.10 Note that by Assumption 7.2, if cl1 is prior to cl2, then some thread completes executing the
EXECUTECASES method on input cl1 before the first time that the EXECUTECASES method is invoked with
cl2.

Definition 7.11 (Total order of CAS-descriptors.) Given a CAS-descriptor c1 that belongs to a CAS-list
cl1, and a CAS-descriptor c2 that belongs to a CAS-list cl2, we say that c1 is before c2 (or prior to c2) if
either: 1) cl1 is before cl2, or 2) cl1 and cl2 are equal, and c1 appears before c2 in the CAS-list.

Next, we define the most recent CAS-list, most recent EXECUTECASES iteration, and most recently
active CAS-descriptor for a given point in time t. For an execution E, time t is the point in the execution
after exactly t computation steps.

Definition 7.12 (Most recent CAS-list, most recent EXECUTECASES iteration, most recently active
CAS-descriptor) At time t, the most recent CAS-list cl is the latest CAS-list (Definition 7.9) such that an
EXECUTECASES method is invoked with cl as an input before time t. The most recent EXECUTECASES

iteration at time t is the latest iteration (with the largest i variable) of the loop in lines 2–17 of the EX-
ECUTECASES method that any thread was executing at or before t on the most recent cl of time t. The
most recently active CAS-descriptor is the CAS-descriptor that is read at the beginning of the most recent
EXECUTECASES iteration.

Remark 7.13 Note that if the first time the EXECUTECASES method is invoked in E is after time t, then
the most recent CAS-list, most recent EXECUTECASES iteration, and most recently active CAS-descriptor
are undefined for time t.

Definition 7.14 (modified-bit belongs to a CAS-descriptor.) We say that a modified-bit that
is true at time t belongs to the CAS-descriptor whose execution switched this bit to true most recently prior
to t. (Note that a modified-bit can only be set to true in line 10 of the EXECUTECASES method.
(Assumption 7.4.))

Claim 7.15 At any point in the computation, if a modified-bit is on, it belongs to some CAS-descriptor.

Proof: By Assumption 7.4, a modified-bit cannot be switched on outside of the EXECUTECASES

method. Inside the EXECUTECASES method, it can only be switched on by executing a CAS-descriptor
in line 10. It follows from Definition 7.14 that when a modified-bit is on, it belongs to some CAS-
descriptor.

In what follows we state several invariants that are true throughout execution E. After stating them all,
we will prove them using induction on the computation steps of the execution. The induction hypothesis
is that all the following invariants are correct after i computation steps, and we shall prove they all hold
after i + 1 computation steps. When proving that an invariant holds for i + 1 steps, we will freely use

18

the induction hypothesis for any one of the invariants, and may also rely on the fact that previously proved
invariants hold for i+ 1 steps. All the invariants trivially hold for i = 0 steps: the first invariant holds since
by Assumption 7.6 all CAS-descriptors are initialized as pending, and the rest of the invariants hold for i = 0
steps vacuously, since they refer to a condition that is always false before a single execution step is taken.

Invariant 7.16 The state of a CAS-descriptor that has not yet been executed is pending.

Invariant 7.17 If the state of a CAS-descriptor is failure, then the first attempt to execute the CAS-
descriptor has already occurred, and it has failed.

Invariant 7.18 If the state of a CAS-descriptor is success, then the first attempt to execute the CAS-
descriptor has already occurred, and it has succeeded.

Invariant 7.19 If a CAS-descriptor’s state is not pending (i.e., either success or failure), then it is final
(never changes again).

Invariant 7.20 An attempt to execute a particular CAS-descriptor in a given CAS-list, except the first at-
tempt by the first thread that attempts it, must fail.

Invariant 7.21 If some thread t is currently executing the nth iteration of the loop in some instance of the
EXECUTECASES method (formally: if the last computation step taken by t is inside the nth iteration of the
loop), then the states of the CAS-descriptors read in iterations 0 to n − 1 of the same EXECUTECASES

instance are success.

Invariant 7.22 If a CAS-descriptor c in a CAS-list cl has been executed, then the states of all the previous
CAS-descriptors in cl are success.

Invariant 7.23 If the state of a CAS-descriptor c in a CAS-list cl is not pending, then the states of all
the previous CAS-descriptors in cl are success.

Invariant 7.24 If some thread t has already completed the execution of an EXECUTECASES method with
input CAS-list cl, then either 1) the states of all the CAS-descriptors in cl are success, or 2) the state
field of exactly one CAS-descriptor c in cl is failure, the states of all the CAS-descriptors before c in cl (if
any) are success, and the states of all the CAS-descriptors after c in cl (if any) are pending.

Invariant 7.25 If a CAS-descriptor has already been successfully executed, then one of the following holds.
1) The CAS-descriptor’s state field indicates success, or
2) The CAS-descriptor’s state field indicates a pending state, and the target address of the CAS

still holds the CAS’s new-value, and in particular, the modified-bit is set to true.

Invariant 7.26 If some thread t is currently executing the loop in lines 2–19 (formally: if the last execution
step taken by t is inside the loop), in which the CAS-descriptor c is read, but the iteration t is executing is
not the most recent EXECUTECASES iteration, (which means that c is not the most recently active CAS-
descriptor), then c’s state is not pending.

Invariant 7.27 If some thread t has already completed executing the loop in lines 2–19 (either by breaking
out of the loop in line 9 or 17, or by continuing to the next loop from line 6, or simply by reaching the end
of the iteration), in which the CAS-descriptor c is read, then there is no modified-bit that is set to true
and that belongs to c.

19

Invariant 7.28 If a certain modified-bit is true, then this modified-bit belongs to the most re-
cently active CAS-descriptor.

Proof: (Invariant 7.16.) Each CAS-descriptor is initialized as pending, and its state can potentially be
changed only in lines 12 and 16 of the EXECUTECASES method. Before a thread t executes one of these
lines for a certain CAS-descriptor, it first attempts to execute the same CAS-descriptor in line 10. Thus, if a
CAS-descriptor has never been executed, its state must be pending.

Proof: (Invariant 7.17.) Assume by way of contradiction that in step i+ 1 a thread t sets a CAS-descriptor
c’s state to failure, and that the first attempt to execute c has not yet occurred or has been successful. Step
i+1 must be an execution of line 16, since this is the only line that sets a state field to failure (Assumption
7.6). Consider the execution right after t executed line 10 of the same iteration of the loop in lines 2–19. t
has just executed c, so it is impossible that c has not yet been executed. Thus, the first attempt to execute c
must have been successful.

By the induction hypothesis (Invariant 7.25), in each computation step after c was first executed (and in
particular, after thread t executed it in line 10), and until step i, c’s state is either success, or it is pending
and the modified-bit is set to true. Thus, when t executes line 11, there are two cases.

The first case is that c’s state is success. Since there is no code line that changes a state back to
pending, and since until step i+1 the state cannot be failure by the induction hypothesis (Invariant 7.25),
then the state must also be success when t executes line 15. Thus, the condition in this line is false, line
16 is not reached, and t cannot set c’s state to failure at step i+1, yielding contradiction for the first case.

The second case is that c’s state field is pending and that the modified-bit is set. In that case, t
will attempt by a CAS to switch the state from pending to success in line 12. After executing this line, c’s
statemust be success (since it cannot be failure by the induction hypothesis (Invariant 7.25), and if it were
pending the CAS would have changed it to success). Similarly to the previous case, the state must also be
success when t executes line 15, and thus line 16 is not reached, yielding contradiction for the second case.

Proof: (Invariant 7.18.) Assume by way of contradiction that in step i+ 1 a thread t sets a CAS-descriptor
c’s state to success, and that the first attempt to execute c has not yet occurred or has been unsuccessful.
Step i + 1 must be an execution of line 12, since this is the only line that sets a state field to success
(Assumption 7.6). t has already executed line 10 of the same iteration of the loop, thus the first attempt to
execute the CAS-descriptor has already occurred, and thus it must have failed.

Consider the execution when t executes line 11 of the same iteration of the loop. The modified-bit
must have been on, otherwise line 12 would not have been reached. By Claim 7.15, this modified-bit
must belong to a CAS-descriptor. We consider three cases. The first case is that the modified-bit
belongs to c. In this case c’s first execution attempt must have been successful, yielding contradiction.

The second case is that the modified-bit belongs to a CAS-descriptor prior to c. However, when t
executes line 11, then by the induction hypothesis (Invariant 7.28), the modified-bit must belong to the
most recently active CAS-descriptor. Since c is active at that point, then any CAS-descriptor prior to c cannot
be the most recently active one by definition, and thus the modified-bit cannot belong to it, yielding
contradiction for the second case.

The third case is that the modified-bit belongs to a CAS-descriptor that comes after c. Thus, by
the induction hypothesis (Invariant 7.26), after i computation steps c’s state cannot be pending. (t is
executing the loop in lines 2–19 after i steps, but c cannot be the most recently active CAS-descriptor since
a later CAS-descriptor has already been active to set the modified-bit to true.) If c’s state is not
pending after i steps, then t cannot set it to success in step i + 1 via an execution of line 12, yielding
contradiction for the third case.

20

Proof: (Invariant 7.19.) This follows directly from Invariants 7.17 and 7.18, which are already proven for
i + 1 steps. That is, if c’s state is failure after i steps, then by Invariant 7.17, the first attempt to execute
c must have failed. Thus, by Invariant 7.18, the state cannot be success after i+ 1 steps. Similarly, if c’s
state is success after i steps, then by Invariant 7.18, the first attempt to execute c must have succeeded.
Thus, by Invariant 7.17, the state cannot be failure after i+ 1 steps. Finally, a state cannot be changed
from success or failure to pending, because no line in the EXECUTECASES method changes a state to
pending, and by Assumption 7.6, no line in the code outside the EXECUTECASES does that either.

Proof: (Invariant 7.20.) Assume that in step i + 1 a CAS-descriptor c is attempted, and this is not the
first attempt to execute this CAS. We shall prove this attempt must fail. By Assumption 7.5, each CAS-
descriptor is to a target address that is associated with a version number. Furthermore, by combining
Assumption 7.5 with Assumption 7.7, the version number of the expected-value is never greater than
the current value stored in the target address. Thus, we consider two cases. The first case is that the
first attempt to execute a c had succeeded. In this case, after this execution, the version number is greater
than the expected-value’s version number, and thus the attempt to execute it again in step i+ 1 must fail.

The second case is that the first attempt to execute a c had failed. If it failed because at the time of
the attempt the version number stored in the target address had already been greater than the version
number of the expected-value, then this must still be true, and the attempt to execute c in step i + 1
must also fail. If the first attempt to execute c failed because even though the version numbers matched, the
value stored in the target address differed from that of the expected-value, and the difference
was not limited to the modified-bit, then in order for the execution attempt in step i+ 1 to succeed the
value stored in the target address must then be changed, but in such a case the version number must
be incremented, and thus again c’s execution in step i+ 1 is doomed to failure.

The last possibility is that the first attempt to execute c had failed only because the modified-bit
was set to true at the time. Since the modified-bit can be switched off by executing a CLEARBIT

without incrementing the version number, this could theoretically allow c to be successfully executed later.
However, this is impossible. Consider c’s first execution. Since this happens before step i + 1, then by the
induction hypothesis (Invariant 7.28), if the modified-bit was set, the modified-bit must belonged
to the most recently active CAS-descriptor. This cannot be c, since c was not successfully executed at the
time. Thus, by the induction hypothesis (Invariant 7.26) c’s state at the time was not pending. And thus, by
Invariants 7.17 and 7.18, c must have been executed before, and this cannot be c’s first execution.

Proof: (Invariant 7.21.) To reach the nth iteration, t must have first completed iterations 0 to n−1. Consider
t’s execution of line 15 for each of these iterations. In this line, the state of the CAS-descriptor that is read
in the same iteration is checked. If the state is set to success, then by Invariant 7.19 (which is already
proved for i + 1 steps), the state is also success after i + 1 steps, and we are done. If the state is not
success, then t will break out of the loop in line 15, and the nth iteration would not be reached.

Proof: (Invariant 7.22.) By the induction hypothesis for the same invariant (Invariant 7.22), the invariant
holds after i steps. Assume by way of contradiction that the invariant does not hold after i+ 1 steps. Thus,
the i+ 1-st step must be one of the following.
1) A thread t executes a CAS-descriptor c in a CAS-list cl while the state of a previous CAS-descriptor in
cl is not success.
2) The state of a CAS-descriptor c2 in a CAS-list cl changes from success to a different value, while a later
CAS-descriptor in cl has already been executed.

The first case yields contradiction because if t is executing a CAS-descriptor c, then the states of all
the previous CAS-descriptors in the same list must be success by Invariant 7.21, which is already proved for
i + 1 steps. The second case yields a contradiction because a non-pending state is final by Invariant 7.19,
which is also already proved for i+ 1 steps.

21

Proof: (Invariant 7.23.) If the state of a CAS-descriptor c is not pending, then c has already been executed
by Invariant 7.16 (which is already proved for i+1 steps). If c has already been executed, then the states
of all the previous CAS-descriptors in the same cl are success by Invariant 7.23 (which is also already proved
for i+ 1 steps).

Proof: (Invariant 7.24.) By the induction hypothesis for the same invariant (Invariant 7.24), the invariant
holds after i steps. Assume by way of contradiction that the invariant does not hold after i+ 1 steps. Thus,
the i+ 1-st step must be one of the following.
1) A thread t completes the execution of the EXECUTECASES method on input CAS-list cl, yet cl does not
meet the requirements.
2) A thread t changes the state field of a CAS-descriptor in a CAS-list cl that met the requirements after i
steps. (And this cl was used as an input to an EXECUTECASES invocation that is already completed.)

Consider the first possibility, and in particular, consider which computation step could be the last com-
putation step that t executes when completing the execution of the EXECUTECASES method on input cl.
For each of them, we will demonstrate that after it, cl must meet the requirements of Invariant7.24, thus
reaching contradiction for the first possibility. The last computation step in an execution of the EXECUTE-
CASES method can be one of the following. a) Reading a failure value out of a CAS-descriptor’s state
field and breaking out of the loop (lines 8-9)6. Thus, by Invariant 7.23, which is already proved for i + 1
steps, the fact that the CAS-descriptor’s state field is failure (not pending), proves that the states of all
the previous CAS-descriptors in the list are success, and the fact that the CAS-descriptor’s state field is
failure (not success), proves that the states of all the later CAS-descriptor in the list are pending.

b) Writing a failure value to a CAS-descriptor’s state field and breaking out of the loop (lines 16-
17). Again, by Invariant 7.23, the fact that the CAS-descriptor’s state is failing implies that earlier CAS-
descriptors’s states are success and later CAS-descriptor’s states are pending.

c) attempting to clear the modified-bit and “continuing” after the last iteration of the loop in lines
5-6. In this case, the fact that the condition in line 4 was true implies that the state of the last CAS-
descriptor in the list was success, and by Invariant 7.19, which is already proved to i+ 1 steps, the state
of the last CAS-descriptor must still be success after i + 1 steps. Thus, using Invariant 7.23, which is also
proved for i+ 1 steps, the states of all the previous CAS-descriptors must be success as well.

d) Reading a success value out of the last CAS-descriptor in a CAS-list and finishing the last loop iteration
(line 15). In this case, again, the state of the last CAS-descriptor is success, and thus, using Invariant 7.23,
the states of all the previous CAS-descriptors are also success. In all of the cases (a)-(d), the CAS-list
meets the requirements of Invariant 7.24, and thus the invariant is not violated, yielding contradiction for
the first possibility.

Now consider the second possibility. By Invariant 7.19, which is already proved for i + 1 steps, if the
state of a CAS-descriptor is not pending then it never changes again. Thus, in step i + 1 thread t must
be changing the state of c from pending to a different value. However, since cl met the requirements of
Invariant 7.24 for a CAS-list used as input for a completed EXECUTECASES method after i steps, and yet c,
which belongs to cl, has it state set to pending, it means that after i steps there must be a CAS-descriptor
in cl before c, whose state is failure. By Invariant 7.23, which is already proved for i + 1 steps, after
i + 1 steps, if a CAS-descriptor’s state is not pending, then the states of all previous CAS-descriptors
in the same CAS-list are success. Thus, changing c’s state to anything other than pending in step i+1 yields
contradiction.

Proof: (Invariant 7.25.) Assume by way of contradiction that in step i + 1 thread t executes a step that
violates Invariant 7.25 for a CAS-descriptor c. By using the induction hypothesis for the same Invariant

6note that breaking out of the loop is not a computation step by itself, since it is neither a READ, WRITE or CAS to the shared
memory, but just an internal computation.

22

7.25, such a step must be one of the following.
1) A successful execution of c (after which neither of the post conditions holds).
2) Changing c’s state field either from pending to failure, of from success to a different value.
3) Changing the value stored in c’s target address from the new-value with a set modified-bit
to a different value (while the state is pending).

We will go over each of these possibilities. In the first case, step i+1 must be the first execution of c (by
Invariant 7.20, which is already proved for i + 1 steps). Thus, by the induction hypothesis (Invariant 7.16)
c’s state must be pending after i steps. Thus, after i+ 1 steps, c’s state is still pending (since executing c
does not change its state field), and since the execution in step i + 1 is successful, then after i + 1 steps
the value stored in c’s target address is c’s new-value, with the modified-bit set. It follows
that after step i+ 1 Invariant 7.25 still holds, yielding contradiction for the first case.

Consider the second case. Recall we assumed that step i+1 violates Invariant 7.25. For the second case
(i.e., a change of c’s state field) to violate the invariant, c must have been successfully executed at some step
before step i+1. By Invariant 7.20, any attempt but the first attempt to execute c cannot be successful. Thus,
the first attempt to execute c must have been successful. It follows that step i+ 1 cannot change the state
of c to failure, by using Invariant 7.17, which is already proved for i+ 1 steps. Furthermore, step i+ 1 also
cannot change c’s state to pending, simply because no line in the code does that, yielding contradiction for
the second case.

Finally, consider the third case. By Assumption 7.4, changing the value stored in a target address
of any CAS-descriptor, while the modified-bit is set, cannot be done outside the EXECUTECASES

method. The only places in the code where the contents of an address with a set modified-bit can
be switched are the CLEARBIT instructions in lines 5 and 13. However, note that in order to reach a
contradiction, we need to refer both to the possibility that step i+1 changes the value stored in c’s target
address because it is an execution of the CLEARBIT of c, and that step i + 1 changes the value stored
in c’s target address because it is an execution of a CLEARBIT of a different CAS-descriptor c′, that
shares the same target address.

If step i + 1 is a CLEARBIT of c, then in order to execute it either in line 5 or 13, c’s state must be
previously checked and found to be success. By using the induction hypothesis (Invariant 7.19) the state of
c must still be success after i steps, and since changing the value stored in the target address does not change
the state, then also after i+ 1 steps. Thus, the invariant holds after step i+ 1, yielding contradiction for
this particular sub-case of the third case.

Now consider the possibility that step i + 1 is a CLEARBIT of a CAS-descriptor c′ different than c that
shares the same target address. By the assumption of the third case, the value stored in the target
address after i computation steps is the new-value of c with the modified-bit set. Thus, in or-
der for the CLEARBIT of c′ to successfully change this value, c and c′ must both have the exact same
new-value, including the version number. Thus, it is impossible for both c and c′ to be executed success-
fully, since the first one of them that is executed successfully increments the version number. We assumed
(contradictively) that c was executed successfully, and thus c′ cannot be successful. Thus, by the induction
hypothesis (Invariant 7.18) the state of c′ cannot be success in the first i computation steps, and thus a
CLEARBIT instruction of c′ cannot be reached for the i+ 1-st step, completing the contradiction.

Proof: (Invariant 7.26.) Assume by way of contradiction that after i+ 1 steps 1) thread t1 is executing the
loop in lines 2–17 in which the CAS-descriptor c is read, 2) c’s state is pending, and 3) c is not the most
recently active CAS-descriptor. By the induction hypothesis for the same invariant (Invariant 7.26), one of
these three is not true after i steps. Thus, one of the following holds.
1) In step i + 1 t1 starts executing a new iteration of the loop in lines 2–17. (This could also be the first
iteration in a new EXECUTECASES invocation.) c is the CAS-descriptor for this new iteration, c’s state is
pending, and c is not the most recently active CAS-descriptor.

23

2) In step i+ 1 c’s state is changed back to pending.
3) In step i+1 a thread t2 starts executing a new iteration of the loop in lines 2–17 (possibly the first iteration
in a new EXECUTECASES invocation), thus making c no longer the most recently active CAS-descriptor.

We consider each of these cases. In the first case, let t2 be the thread that executed (or is executing)
an iteration that is after the iteration t1 is currently executing. (If no such thread exists, then c is the most
recently active CAS-descriptor and we are done. Also, note that we do not assume t1 6= t2.) If t2 is executing
(or was executing) a later iteration than t1 is currently executing, then we consider two possibilities. The
first possibility is that t2 is executing (or was executing) a later iteration on the same CAS-list that t1 is
iterating on. This case leads to a contradiction because c’s state cannot be pending by Invariant 7.21,
which is already proved for i + 1 iterations. The second possibility is that t2 is iterating (or was iterating)
on a different cl than t1 is currently iterating on. Thus, by Assumption 7.2, some thread already completed
the execution of an EXECUTECASES method with cl as the input. This leads to a contradiction because
by Invariant 7.24, which is already proved for i + 1 steps, either the states of all the CAS-descriptor are
success (and then c’s state cannot be pending), or that there is a CAS-descriptor with a state failure
before c (and then, by using Invariant 7.21, t1 cannot be executing the iteration in which c is read).

We now turn to consider the second case. This case yields a contradiction immediately, because no line
of code inside the EXECUTECASES changes a state back to pending, and by Assumption 7.6, no line of
code outside the EXECUTECASES method does that either.

Finally, we consider the third case. The proof here is very similar to the first case. We consider two
possibilities. The first possibility is that t2 is executing a later iteration on the same CAS-list that t1 is
iterating on. This case leads to a contradiction because c’s state cannot be pending by Invariant 7.21,
which is already proved for i + 1 iterations. The second possibility is that t2 is iterating on a different
cl than t1 is iterating on. Thus, by Assumption 7.2, some thread already completed the execution of an
EXECUTECASES method with cl as the input. This leads to a contradiction because by Invariant 7.24,
which is already proved for i + 1 steps, either the states of all the CAS-descriptor are success (and then
c’s state cannot be pending), or that there is a CAS-descriptor with a state failure before c (and then,
by using Invariant 7.21, t1 cannot be executing the iteration in which c is read).

Proof: (Invariant 7.27.) By the induction hypothesis for the same invariant (Invariant 7.27), the invariant
holds after i steps. Assume by way of contradiction that the invariant does not hold after i+ 1 steps. Thus,
the i+ 1-st step must be one of the following.
1) A thread t2 successfully executes a CAS-descriptor c (line 10), while a different thread t has already
completed a loop iteration in which c was read.
2) A thread t completes the execution of an iteration in which c is read, while there is still a modified-bit
that is set to true and that belongs to c.

If the first case is true, then by Invariant 7.20, which is already proved for i+1 steps, step i+1 must be
the first step in which c is executed. Consider t’s execution of the iteration in which c is read. If t reached
line 6, then c’s state much have been success, which by the induction hypothesis (Invariant 7.18) means c
had been executed before. If t reached line 9, then c’s statemust have been failure, which by the induction
hypothesis (Invariant 7.17) also means c had been executed before. If t did not complete the loop in either
line 6 or 9, then t must have reached and executed line 10, which again means that c was executed before
step i+ 1. Whichever way t completed the iteration, CAS-descriptor c must have been executed before step
i+ 1, thus it cannot be executed successfully in step i+ 1, yielding contradiction for the first case.

If the second case is true, then consider the different possibilities for t to complete the loop. If t breaks
out of the loop in line 9 or in line 17, then c’s state is failure. By Invariant 7.17, which is already proved
for i+1 steps, this means the first attempt to execute c was not successful. By Invariant 7.20, it follows that
no execution of c is successful until step i + 1. It follows that there is no modified-bit that belongs to
c, yielding contradiction for this sub-case of the second case.

24

If t completes the loop via the continue in line 6 then in t’s last execution step inside the loop (which
is assumed to be step i + 1 of the execution) t attempts by a CAS to clear the modified-bit. If the
modified-bit is previously set to true and belongs to c, then the value stored in c’s target address
is the same as the expected-value for the CLEARBIT CAS, and the modified-bit will be success-
fully cleared, yielding contradiction for this sub-case of the second case.

If t completes the loop by reading a success value out of c’s state field and then reaching the end in
line 15, then consider the execution when t executes line 11 of the same iteration. If the modified-bit is
off at that time, then a modified-bit cannot belong to c at step i+1, since c has already been executed at
least once, and thus further attempts of it until step i+ 1 must fail (Invariant 7.20). If the modified-bit
is on, then t will reach line 12. When t executes the CAS in this line, then either the state is changed
from pending to success, either the state is already success (the state cannot be failure, otherwise t
would not have read a success value from it in line 15, because a non-pending state is final (by the induction
hypothesis (Invariant 7.19). It follows that when t reached line 13, it attempted a CLEARBIT CAS to clear
the modified-bit. If the modified-bit is previously set to true and belongs to c, then the value
stored in c’s target address is the same as the expected-value for the CLEARBIT CAS, and the
modified-bit will be successfully cleared, yielding contradiction.

Proof: (Invariant 7.28.) By the induction hypothesis for the same invariant (Invariant 7.28), the invariant
holds after i steps. Assume by way of contradiction that the invariant does not hold after i+ 1 steps. Thus,
the i+ 1-st step must be one of the following.
1) A thread t successfully executes a CAS-descriptor c (line 10), while c is not the most recently active
CAS-descriptor.
2) A thread t starts a new iteration of the loop in lines 2–17, thus making c no longer the most recently active
CAS-descriptor, while a modified-bit that belongs to c is on.

Consider the first case. Since c is successfully executed at step i + 1, then by Invariant 7.20, which
is already proved for i + 1 steps, this must be the first attempt to execute c. Thus, by using the induction
hypothesis (Invariant 7.16), c’s state must be pending. Thus, by the fact that t is currently executing
the loop iteration in which c is read, and by using the induction hypothesis (Invariant 7.26), c is the most
recently active CAS-descriptor, yielding contradiction for the first case.

Now consider the second case. We claim that since t starts an iteration that is after the iteration in which
c is read, then some thread t′ (which may be t) has previously completed an iteration of the EXECUTECASES

method in which c is read. To see this, consider the iteration that t starts. If it is a later iteration on the same
CAS-list to which c belong, then t itself must have completed the iteration in which c is read (thus, t′ = t).
If it is a later iteration on a different CAS-list, then by Assumption 7.2, some thread (which is t′) has already
completed an execution of the EXECUTECASES method on the CAS-list to which c belong. To complete the
EXECUTECASES method, t′ must either complete the iteration in which c is read, or break out of the loop
earlier. However, t′ cannot break out of the loop earlier, because that requires a CAS-descriptor with a failure
state to be in the CAS-list before c, and if that were the case, then by the induction hypothesis (Invariant
7.22) c could not have been executed, and thus there could not have been a modified-bit belonging to
c. To conclude, some thread t′ has completed an iteration of the EXECUTECASES method in which c is
read. It follows by Invariant 7.27, which is already proved for i+ 1 steps, that there is no modified-bit
belonging to c, yielding contradiction.

At this point, Invariants 7.16–7.28 are all proved to be correct throughout the execution. Relying on
these invariants, we now complete the proof for the correctness of the EXECUTECASES method.

Observation 7.29 All execution steps inside the EXECUTECASES method are either: a) an execution of a
CAS-descriptor, b) a CLEARBIT of a CAS-descriptor, or c) applied on the memory of the CAS-list.

25

Proof: True by observing the code. Line 10 (execution of a CAS-descriptor) and lines 5,13 (CLEARBIT of a
CAS-descriptors) are the only lines that execute on shared memory that is not inside the CAS-list. The other
computation steps either read a state field of a CAS-descriptor, write to a state field, execute a CAS on
a state field, or read the number of CASes in the CAS-list.

Claim 7.30 Before a CLEARBIT of a CAS-descriptor c is executed for the first time, c has been successfully
executed.

Proof: A CLEARBIT for a CAS-descriptor c can only be attempted (either in line 5,13) if the state of the c
was previously read and turned out to be success. By Invariant 7.18, this means that c had been successfully
executed before.

Claim 7.31 For every CAS-descriptor c:
1) Any attempt to execute c except the first attempt (by some thread) must fail.
2) Any attempt to execute the CLEARBIT of c except the first attempt (by some thread) must fail.

Proof: (1) is simply restating the already proved Invariant 7.20. It remains to prove (2). Recall that an
execution of a CLEARBIT is an execution of a CAS in which the target address is c’s target
address, the expected-value is c’s new-value (including the version number) except that the
modified-bit is on, and the new-value is the exact new-value of c. By Claim 7.30, when c’s
CLEARBIT is executed, c has already been successfully executed, and it follows that the version number
stored in the target address is already at least equals to the version number of the expected-value
of the CLEARBIT CAS. By Assumption 7.5, the version number is incremented in every successful CAS

outside the EXECUTECASES method. It follows that the version is incremented in any successful CAS ex-
cluding the CLEARBIT CAS, in which it remains the same. Thus, If the first execution of the CLEARBIT

CAS fails, every further execution of it must fail as well, since the value stored in the target address
can never hold the expected-value of the CAS. Similarly, if the first execution c’s CLEARBIT is suc-
cessful, then after it the modified-bit is off, and cannot be set on again without the version number
being incremented. And thus, additional executions of c’s CLEARBIT CAS must fail.

Claim 7.32 A modified-bit that belongs to a CAS-descriptor c can only be turned off by executing the
CLEARBIT of c.

By Assumption 7.4, a modified-bit cannot be turned off outside the EXECUTECASES method since
CASes outside the EXECUTECASES method always expect the modified-bit to be off. Inside the EXE-
CUTECASES method, a modified-bit can only potentially be turned off when executing a CLEARBIT

CAS. It remains to show that a modified-bit that belongs to a CAS-descriptor c cannot be turned off by
executing a CLEARBIT of a different CAS-descriptor c′.

If any modified-bit belongs to c, it follows that c has been successfully executed. By Claim 7.30,
to execute the CLEARBIT of c′, c′ must first also be successfully executed. In order for the CLEARBIT of c′

to turn off a modified-bit that belongs to c, both c and c′ must have the same target address, and,
moreover, the same new-value, otherwise executing the CLEARBIT of c′ would fail. However, if both c
and c′ have the same new-value, both must share the same version number in the expected-value,
which implies that only one of them can possibly succeed. Thus, c′ couldn’t have been successfully executed,
and thus it cannot clear the modified-bit of c.

Claim 7.33 Before a CAS-descriptor c in a CAS-list cl is executed for the first time:
1) All the previous CAS-descriptors in cl have been successfully executed.
2) CLEARBIT has already been executed for all the previous CAS-descriptors in cl.
(Note: the claim vacuously holds for CAS-descriptors that are never executed.)

26

Proof: By Invariant 7.21, when c is executed, all the previous CAS-descriptors in cl has their state set to
success, which by Invariant 7.18 means they have all been successfully executed, proving (1). By Invariant
7.27, all modified-bits of all the previous CAS-descriptors have already been switched off, which by
Claim 7.32 implies that the CLEARBIT of all the previous CAS-descriptors in cl has already been executed,
proving (2).

Claim 7.34 For any CAS-descriptor c, the first attempt to execute the CLEARBIT of c (by some thread) is
successful. (Note: the claim vacuously holds for CAS-descriptors for which a CLEARBIT is never executed.)

Proof: Immediately after executing c, the value stored in the target address is exactly the expected-value
of the CLEARBIT CAS. This value cannot be changed before a CLEARBIT CAS is executed, since no CAS

except the CLEARBIT expects to find the modified-bit on, and there are no writes (without a CAS) to
the target address (Assumption 7.4). Thus, until a CLEARBIT is executed on this address, the value
remains unchanged. By Claim 7.32, a CLEARBIT of a CAS-descriptor other than c cannot be successful.
Thus, the value in the target address remains the expected value of the CLEARBIT CAS until the
CLEARBIT is executed, and thus, the first attempt to execute the CLEARBIT of c is successful.

Claim 7.35 Once some thread has completed executing the EXECUTECASES method on an input CAS-list
cl the following holds.
1) Either all the CAS-descriptors have been successfully executed, or all the CAS-descriptors have been
executed until one that fails. Further CAS-descriptors (after the first one that fails) have not been executed,
and will also not be executed in the rest of the computation.
2) A CLEARBIT was successfully executed for each CAS-descriptor that was successfully executed.

Proof: By Claim 7.24, once some thread has completed the EXECUTECASES method on the input cl, either
the state field of all the CAS-descriptors cl is set to success, or that one of them is set to failure, the ones
previous to it to success, and the ones after it to pending. By Invariants 7.17 and 7.18, the CAS-descriptors
whose state is success were executed successfully, and the CAS descriptor whose state is failure failed.
By Invariant 7.22, CAS-descriptors after the CAS-descriptor that failed are not executed. Thus, (1) holds.

The thread that completed executing the EXECUTECASES method on cl, has completed executing an
iteration for each successful CAS-descriptor in cl, and thus by Invariant 7.27, all the modified-bits have
already been switched off. By Claim 7.32, a modified-bit can only be turned off by a CLEARBIT of
the CAS-descriptor that previously set the bit on, and thus, it follows that a CLEARBIT was successfully
executed for each successful CAS-descriptor, and (2) holds.

Claim 7.36 The return value of the EXECUTECASES for every thread that completes it is:
1) The index of the first (and only) CAS-descriptor whose execution failed the first time it was attempted, if
such exists.
2) -1 otherwise.

Proof: Each thread that executes the EXECUTECASES method may exit it via one of three possible code-
lines: 9, 17 or 20. If the thread exited via line 9, or via line 17, and returned i (the loop variable), then the
state of the ith CAS-descriptor is failure, and thus its execution has failed by Invariant 7.17. By Claim
7.35 (1), this must be the only CAS that failed. Thus, in the case that a thread exits via line 9 or via line
17, the returned value is that of the first and only CAS-descriptor whose execution failed the first time it was
attempted.

If a thread reaches line 20 and returns -1, then immediately before that it must be executing the last iter-
ation of the loop in lines 2–19. Thus, by Invariant 7.21, the states of all the previous CAS-descriptors are
success, and thus, by Invariant 7.18, all the CAS-descriptors before the last one were executed successfully.

27

As to the last one, its state must be success as well (and thus, it must also have succeeded), otherwise
when the thread reads the CAS-descriptors state and compares it to success in line 15, it would enter the
if clause and leave through line 17. Thus, in the case that a thread exits reaches 20, all the CAS-descriptors
were executed successfully, and -1 is returned.

Lemma 7.37 The implementation of the EXECUTECASES method as given in Figure 5, is correct, meaning
that it satisfies Definition 7.1.

Proof: Follows from Observation 7.29, and Claims 7.31, 7.33, 7.35, and 7.36.

7.2 Linearizability and WaitFreedom

Assume that LF is a linearizable lock-free algorithm given in the normalized form for a certain abstract data
type, ADT. Let WF be the output algorithm of our transformation as described in Section 6 with LF being
the simulated lock-free algorithm. Our goal is to prove that WF is a linearizable wait-free algorithm for the
same abstract data type, ADT.

We claim that for every execution of WF, there is an equivalent execution (Definition 4.1) of LF. Since
we know that LF is correct and linearizable, it immediately follows that WF is correct and linearizable as
well. We start from a given execution of WF, denoted E0, and we reach an equivalent execution of LF in
several steps.

For each intermediate step, we are required to prove two key points. First, that the newly created
execution preserves memory consistency. That is, each READ returns the last value written (or put via CAS)
to the memory, and each CAS succeeds if and only if the value previously stored in the target address
equals the expected-value. Proving memory consistency is required in order to prove that the newly
created execution is indeed an execution.

Second, for each intermediate step, we are required to prove equivalency. That is, that each thread
executes the same data structure operations in both executions, that the results are the same, and that the
relative order of invocation and return points is unchanged. For the last execution in the series of equivalent
executions, we will also prove that it is an execution of LF.

7.2.1 Step I: Removing Steps that Belong to the Additional Memory used by WF

WF uses additional memory than what is required by LF. Specifically, WF uses a help queue, in which
it stores operation record boxes, which point to operation records. Operation records hold CAS-lists, which
are in fact also used by LF, only that the CAS lists used by WF holds an extra state field for each CAS,
not used in the original LF algorithm. In this step we erase all the computation steps (READS, WRITES, and
CASES) on the additional memory used by WF.

Let E1 be the execution resulting from removing from E0 all the execution steps on the additional
memory (the memory of the help queue, the operation record boxes, and the operation records excluding
the CAS-lists - yet including the state field of each CAS in the CAS-lists).

Claim 7.38 E0 and E1 are equivalent, and E1 preserves memory consistency.

Proof: E1 has the same invocations and results of operations as E0, and their relative order remain un-
changed, thus E0 and E1 are equivalent by definition. E1 preserves memory consistency since E0 is mem-
ory consistent, and each memory register used in E1 is used in E1 in exactly the same way (same primitives
with same operands, results, and order) as in E0.

28

7.2.2 Step II: Tweaking CASes of the EXECUTECASES Method

Most of the steps of E0 that belong to neither the GENERATOR, WRAPUP or CAS-EXECUTER method were
dropped in E1. However, in E1 there are still two sources for steps that should be dropped. The main source
is the EXECUTECASES method (the other source will be reminded shortly). Recall that E0 is an execution of
WF, which employs both the CAS EXECUTER method (in the fast path) and the concurrent EXECUTECASES

method (in the slow path), while the original algorithm LF only employs the CAS EXECUTER method.
By Lemma 7.37, all the computation steps of the EXECUTECASES method are either executing a CAS-
descriptor, executing a CLEARBIT of a CAS-descriptor, or steps on the state field of a CAS-descriptor in
the CAS list.

Steps on the state field were already dropped in the move from E0 to E1. Next, according to Lemma
7.37, each execution of a CAS-descriptor that is not the first attempt to execute a given CAS-descriptor, and
each execution of a CLEARBIT that is not the first attempt to execute the CLEARBIT for the same CAS-
descriptor, must fail. It follows that these CASes do not modify the memory and can be dropped without vi-
olating memory consistency. Afterwards, according to Lemma 7.37, what remains of the EXECUTECASES

are pairs of successful CASes: each successful execution of a CAS-descriptor is followed by a successful
execution of a CLEARBIT CAS of the same descriptor. Possibly, at the end of these successful pairs remains
a single unsuccessful execution of a CAS-descriptor.

We now tweak these pairs CASes to be identical to an execution of the (fast path) CAS-EXECUTER

method. To do that, each pair is merged into a single CAS. More precisely, the new-value of each
execution of a CAS-descriptor is changed such that the modified-bit is off (this alternative new-value
is the same as the original new-value of the following CLEARBIT CAS), and each CLEARBIT CAS is
dropped. After this change what remains of the EXECUTECASES method is identical to the CAS-EXECUTER

method (except that the CASes are executed by several thread instead of by a single thread, but this will be
handled when moving from E2 to E3). However, the last change can potentially violate memory consistency.

Memory consistency is potentially violated for READ primitives that were originally (that is, in E0 and
E1) executed between an execution of a CAS-descriptor to the following CLEARBIT CAS. Memory con-
sistency is violated because the value stored in the target address now has the modified-bit
switched off immediately after the first execution of the CAS, instead of being switched off only after the
CLEARBIT CAS. More importantly than READ primitives, the memory consistency of CAS primitives ex-
ecuted (in E0 and E1) between a CAS-descriptor and the following CLEARBIT CAS is also potentially
violated.

To regain memory consistency, READ primitives in between a pair are changed such that their re-
turned value indicates that the modified-bit is unset. Recall that when we described the changes
induced to the fast-path in our transformation, we mentioned that all READ operations always disregard
the modified-bit (the fast-path acts as if the bit were off). Thus, changing the execution such that now
the bit is really off only takes us “closer” into an execution of LF.

CAS primitives that occurred in between a pair of CASes are handled as follows. Recall that in order to
be compatible with the modified-bit, the fast path in WF is slightly altered. This is the second source
of computation steps (the first being the CLEARBIT CASes) that belong to WF and that do not originate
from the three methods of the normalized structure. Whenever a CAS is attempted and failed in the fast-path
of WF, the same memory address is subsequently read. If the value is such that implies that the CAS could
have succeeded were the modified-bit switched off, then HELP is called, and then the CAS is retried.
In what follows we simultaneously remove the extra READs and CASes originating from this modification
of the fast-path and restore memory consistency.

For each CAS that failed in the fast-path, examine the corresponding READ following it. If the result
of this READ indicates that the CAS should fail regardless of the modified-bit, then move the CAS

forward in the execution to be at the place where the READ is, and drop the READ. If the results of the READ

29

indicates that the CAS should succeed (or can succeed if the modified-bit would be switched off), then
drop both the CAS and the READ. (The re-attempt of the CAS is guaranteed to be after the modified-bit
is switched off.) We are now ready to formally define E2.

Let E2 be the execution resulted from applying the following changes to E1.

• Each execution of a CAS-descriptor in the EXECUTECASES method, excluding the first attempt for
each CAS-descriptor, is dropped.

• Each execution of a CLEARBIT CAS is dropped.

• The remaining execution of CAS-descriptors in the EXECUTECASES method are changed such that
their new-value has the modified-bit off.

• For each unsuccessful CAS executed in the fast path:

– If the CAS was re-attempted as a result of the subsequent corresponding READ, drop both the
CAS and the READ, and keep only the re-attempt of the CAS (regardless whether this re-attempt
succeeds or fails.)

– Otherwise, move the CAS later in the execution to the place where the subsequent READ is, and
drop the READ.

• (Remaining) READ primitives that were originally between a pair of a CAS-descriptor execution and
the corresponding CLEARBIT execution, and that target the same memory address such as these
CASes, are modified such that their returned value has the modified-bit switched off.

Claim 7.39 E2 and E1 are equivalent, and E2 preserves memory consistency.

Proof: E2 has the same invocations and results of operations as E1, and their relative order remain un-
changed, thus E1 and E2 are equivalent by definition. Dropping executions of CAS-descriptors that are
not the first attempt of a given CAS-descriptor cannot violate memory consistency, because these CASes
are unsuccessful by Lemma 7.37, and thus do not change the memory. Dropping the CLEARBIT CASes
together with modifying the execution of the CAS-descriptors such that they set the modified-bit to
off changes the state of the memory only for the time between each such pair of CASes, and thus can only
violate memory consistency at these times. Consider the primitives that occur at these time frames.

By the definition of the normalized form, WRITE primitives are not used on these addresses. Further-
more, there could be no successful CASes between such a pair of CASes, because the modified-bit
is on at these times, and the CLEARBIT CAS is the only CAS that ever has the modified-bit set in
its expected-value. An Unsuccessful CAS receives special treatment. It is followed by a designated
READ. If this READ determines the CAS can fail regardless of the modified-bit, then at the time of the
READ, the CAS can fail without violating memory consistency in E2 as well. Since in E2 this CAS is moved
in place of the READ (and the READ is dropped), then memory consistency is preserved for these CASes as
well.

If the designated READ determines that the CAS may succeed, then the CAS is re-attempted. In such a
case the CAS (together with the READ is dropped, and thus it does not violate memory consistency anymore.
As for the re-attempt CAS, because it is only attempted after HELP is called, it is guaranteed to be executed
after the CLEARBIT CAS. There are thus two options. Either the re-attempt CAS succeeds (both in E1 and in
E2), and thus it is certainly not between a a pair of CASes, or the re-attempt CAS can fail. If it fails, then this
cannot violate memory consistency. This is true even if the re-attempt CAS occurs between a (different) pair
of CASes, because the fact that the CAS is re-attempted implies that its version number suits the previous
pair of CASes, and cannot suit the new pair that is surrounding the re-attempt CAS.

30

As for other READ primitives between a pair of CASes(other than the designated READ that are specially
inserted after a failure in a CAS), they are modified to return the value with the modified-bit off. Thus,
memory consistency is restored for these READ primitives as well.

7.2.3 Step III: Changing the Threads that Executed the Steps

In E2 all the execution steps belong, or could legitimately belong, to one of the GENERATOR, WRAPUP, and
cas executer methods. However, the threads that executes the steps are still mixed up differently than in LF.
In this step the execution steps or their order are not altered, but the threads that execute them are switched.
In E3, the original threads of E2 (which are the same as the threads of E1 and of E0) act accordingly to LF,
and other additional threads (not present in E2) are created to execute redundant runs of the GENERATOR

and WRAPUP methods.
While a thread executes an operation in the fast path, without helping other operations, he follows the

original LF algorithm. However, this changes when a thread moves to the slow path. First, a thread can
move to the slow path because the contention failure counter of either the GENERATOR or WRAPUP methods
causes it to stop. In such a case, the method has not been completed and will be executed again in the slow
path. The execution steps originating from this uncompleted method are thus moved to an additional thread
created for this purpose.

In the slow path, we examine all the executions of the GENERATOR and WRAPUP methods. For each
execution of such a method, we go back and examine what happens afterwards in E0. If the thread that exe-
cutes this method in E0 later successfully CAS the operation record with the method’s result to the operation
record box (either in line 5 in the PRECASES method (Figure 4) or in lines 6 or 8 in the POSTCASES method
(Figure 6)), then the computation steps of this method are moved to the owner of the operation being helped
(the thread that asked for help). Note that it is also possible that these steps belong to this owner thread in
the first place, and are not moved at all.

If the thread that executes the method (either GENERATOR or WRAPUP) does not successfully CAS the
result of the method into the operation record box, then the results of the method are simply discarded and
never used. In this case, the computation steps of this method are moved to an additional thread created for
this method only.

It remains to switch the owner of the CASes originating from the EXECUTECASES method of the slow
path. Some of them were dropped in the move from E1 to E2, and the rest were modified. We set the owner
of the operation being helped (the thread that asked for help) to be the thread that executes these remaining
CASes.

Let E3 be the execution resulted from applying the following changes to E2.

• For each GENERATOR method or WRAPUP method that is not completed due to contention (either in
the fast path or in the slow path), create an additional thread, and let it execute the computation steps
originating from this method.

• For each GENERATOR method or WRAPUP method executed in the slow path, whose results are not
later successfully CASed into the operation record box, create an additional thread, and let it execute
the computation steps originating from this method.

• For each GENERATOR method or WRAPUP method executed in the slow path, whose results are later
successfully CASed into the operation record box, let the owner thread of the operation being helped
execute the computation steps originating from this method.

• For each execution of the EXECUTECASES method, let the owner of the operation being helped
execute the CASes that originated from this method (if any remained in E2).

31

Since E3 includes additional threads that are not a part of E2, we can only claim that E3 and E2 are
equivalent when considering only the threads that participate in E2. We formalize this limited equivalency
as follows.
Definition 7.40 (Limited Equivalency of Executions.) For two executions E and E′ we say that E limited
to the threads of E′ and E′ are equivalent if the following holds.
• (Results:) The threads of E′ execute the same data structure operations and receive identical results

in both E′ and E.

• (Relative Operation Order:) The order of invocation points and return points of all data structure
operations is the same in both executions. In particular, this means that threads of E that do not
participate in E′ execute no data structure operations.

• (Comparable length:) either both executions are finite, or both executions are infinite.

Claim 7.41 E3 limited to the threads of E2 and E2 are equivalent, and E3 preserves memory consistency.

Proof: All the threads of E2 have the same invocations and results of operations in E3 that they have in E2,
and their relative order remains unchanged, thus E3 and E2 are equivalent by definition. By Claim 7.39, E2

preserves memory consistency. E3 only differs from E2 in the threads that execute the primitive steps, but
the steps themselves and their order remain unchanged, thus E3 preserves memory consistency as well.

Claim 7.42 E3 is an execution of LF, possibly with additional threads executing the GENERATOR and
WRAPUP methods.

Proof: By Claim 7.41, E3 preserves memory consistency. It remains to show that each thread in E3 either
1) follows the LF program structure of GENERATOR, CAS EXECUTER and WRAPUP methods, or 2) executes
a single parallelizable method (either the GENERATOR or WRAPUP). To do this, we need to simultaneously
consider executions E3 and E0. Note that each computation step in E3 originates from a single computation
step in E0. (Some computation steps from E0 were dropped and have no corresponding computation steps
in E3. Some computation steps in E0 were slightly altered by changing the value of the modified-bit,
and some were transferred to a different thread. Still, each computation step in E3 originates from a single
specific computation step in E0.)

Fix an operation executed in E3 and follow the thread that executes it. Originally, in E0, the thread
starts by offering help. However, all the computation steps that involve reading the help queue and operation
records were already dropped in the move from E0 to E1; the remaining computation steps that involve
helping the operation of a different thread are transferred either to the thread being helped or to an additional
thread in the move from E2 to E3. Thus, in E3 the thread starts executing the GENERATOR directly.

Originally, in E0, while the execution is in the fast-path it is similar to LF with three small modifications.
The first modification is that after executing a CAS that fails, the thread executes a READ on the target
address, and then possibly re-executes the CAS. These extra steps were dropped in the transition from E1

to E2. The second modification is that the execution of the GENERATOR and WRAPUP methods is monitored,
in the sense that a contention failure counter is updated and read periodically. However, there is no need for
the contention failure counter to be in the shared memory. It is in a thread’s local memory, and thus such
monitoring occurs in the local steps and is not reflected in the execution. It only affects the execution if the
contention threshold is reached and help is asked. The third modification is that the number of times that
the WRAPUP method indicates that the operation should be restarted from scratch is also monitored, in order
to move to the slow-path if this number reaches a predetermined limit. Similarly to the contention failures
counter, this monitoring is done within a threads’s local computation.

Thus, as long as the execution of an operation in E0 is in the fast-path (which could very well be until
its completion), the corresponding execution in E3 of the operation’s owner thread is according to LF. Next,

32

we examine what happens in E0 when the thread asks for help and move to the slow-path. The method that
was interrupted by the contention failure counter (if any) is transferred to an additional thread.

Once an operation in E0 is in the slow path, the owner thread, and possibly helping threads, start exe-
cuting one of three methods: the GENERATOR, EXECUTECASES, or WRAPUP, depending on the state of
the operation record pointed by the operation record box. We examine how this execution is reflected in E3.

For the GENERATOR and WRAPUP methods, the owner thread (the thread that asked for the help) exe-
cutes in E3 the steps of the thread that in E0 successfully replaced the operation record with a CAS. These
steps were transferred to the owner thread in the transition from E2 to E3. Other executions of the GEN-
ERATOR and WRAPUP methods, by threads that did not successfully replaced the operation record, are
transferred to additional threads. Since only one thread may successfully CAS the operation record box from
pointing to a given operation record to point to a new one, then in E3 the owner thread executes the required
parallelizable method (either GENERATOR or WRAPUP) once, as is done in an execution of LF. Afterwards,
in E0, helping threads will start executing the next required method (if any) according to the new state of
the operation record.

The case is different for the EXECUTECASES method. Executions of the EXECUTECASES method
are not transferred to additional threads, and the steps that are transferred to the owner in the transition
from E2 to E3 were possibly executed by several different threads in E0. To see that the steps that are
executed in E3 by the owner are indeed an execution of the CAS-EXECUTER method, we rely on Lemma
7.37. By this lemma, the first attempts of all the CAS-descriptors in the CAS-list are done according to their
order, and once the first CAS-descriptor fails, the following CAS-descriptors in the list will not be attempted.
In the transition from E1 to E2, only these first attempts of each CAS-descriptor in the list are kept, and
further attempts are dropped. Also, the attempted CASes are changed and have the modified-bit of the
new-value switched off. These modified CASes are transferred to the owner thread in the transition from
E2 to E3.

Thus, in E3, the owner thread executes the CASes of the list one by one according to their order, until
one of them fails. This is simply an execution of the CAS-EXECUTER method. By Lemma 7.37, before the
first thread exits the EXECUTECASES method, all these CASes (all first attempts of CAS-descriptors) have
already occurred. Thus, when in E0 the operation’s state is changed to post-CASes, and helping threads
might start executing the WRAPUP method, all the computation steps of the EXECUTECASES (possibly
apart from steps that are dropped in the transition from E0 to E1 or from E1 to E2) are already completed.

Regarding the output of the EXECUTECASES method, according to Lemma 7.37, the returned value
of the EXECUTECASES method is the index of the first CAS that fails, or -1 if all CASes are executed
successfully. In E0, this value is stored inside the operation record and is used as the for the threads that
read the operation record and execute the WRAPUP method. Thus, in E0, and also in E3, the WRAPUP

method execution have the correct input.
We conclude that the execution of each operation in E3 is according to LF. If in E0 the operation is

completed in the fast-path, then the operation owner executes the operation similarly in E3, minus extra
steps that were dropped, and steps that give help that are transferred either to additional threads or to the
owner of the helped operation.

If an operation in E0 starts in the fast-path and then moves to the slow-path, then the parallelizable
methods (GENERATOR and WRAPUP) are transferred to the operation owner if their output was used, or
to additional threads if the output was discarded. The execution of the EXECUTECASES is modified to
an execution of CAS-EXECUTER and is transferred to the owner thread. Thus, E3 is an execution of LF,
possibly with extra threads, each of them executes once either the GENERATOR method, or the WRAPUP

method.

33

7.2.4 Step IV: Dropping Additional Threads

The purpose of this step is to drop all of the additional threads along with the parallelizable methods they are
executing. Each additional thread executes a single parallelizable method. Each additional thread executes
only a finite number of steps (because the method it executes is monitored in E0 by a contention failure
counter), and thus only a finite number of successful CASes. Thus, to drop an additional thread along with
the parallelizable method it executes, we use the characteristic property of parallelizble methods, as given
in Definition 4.4.

For each additional t executing a parallelizable method, we replace the execution with an equivalent
execution in which all the threads follow the same program, but t’s execution is avoidable. That is, t
executes only futile and non-successful CASes. Such an execution, which is also an execution of LF plus
additional threads executing parallelizable methods, exists by Definition 4.4. Then, t is simply dropped from
the execution entirely. This does not violate memory consistency, because t’s execution steps do not alter
the data structure at all. This process is repeated for every additional thread.

Let E4 be the execution resulted from the process describe above. Specifically, for each additional thread
t, we replace the execution with an equivalent execution in which t’s executed method is avoidable, as is
guaranteed by Definition 4.4, and then each additional thread is dropped.

Claim 7.43 E3 limited to the threads of E4 and E3 are equivalent, and E4 preserves memory consistency.

Proof: For each additional thread, the transition to an equivalent execution as guaranteed by Definition
4.4 preserves equivalence and memory consistency. An additional thread that only executes READs, failed
CASes, and futile CASes can be dropped without harming memory consistency (as it does not alter the shared
memory).

Claim 7.44 E2 and E4 are equivalent.

Proof: E2 and E4 has the same set of threads: threads that are added in the transition from E2 to E3 are
dropped in the transition from E3 to E4. Both E2 and E4 are equivalent to E3 limited to their threads
(Claims 7.41 and 7.43). It follows that E2 and E4 are equivalent.

Claim 7.45 E4 is an execution of LF.

Proof: By Claim 7.42, E3 is an execution of LF with possibly additional threads executing parallelizable
methods. The equivalent execution guaranteed in Definition 4.4 is such in which each thread follows the
same program. Thus, each (non-additional) thread follows the same program in E3 and in E4, which means
that each thread in E4 follows an execution of LF. All the additional threads of E3 are dropped, and thus E4

is an execution of LF.

7.2.5 Linearizability of WF

Corollary 7.46 For each execution of WF, there exists an equivalent execution of LF.

Proof: Follows directly from Claims 7.38, 7.39, 7.44, and 7.45.

Theorem 7.47 WF is a linearizable.

Proof: It is given that LF is linearizable. For each execution of WF there exists an equivalent execution of
LF (Corollary 7.46). Thus, each execution of WF is linearizable, and WF itself is linearizable.

34

7.2.6 Wait Freedom of WF

To show that WF is wait-free, we first claim that it is lock-free. Then, we show that due to the helping
mechanism, WF cannot be lock-free without being wait-free as well.

Claim 7.48 WF is lock-free.

Proof: Assume by way of contradiction that WF is not lock-free. Thus, there exists an infinite execution
of WF in which only a finite number of operations are completed. By Corollary 7.46, for each execution of
WF exists an equivalent execution of LF. By definition of equivalent executions, the equivalent execution of
LF must also be infinite, and only a finite number of operations may be completed in it. This contradicts the
fact that LF is lock-free.

Theorem 7.49 WF is wait-free.

Proof: Assume by way of contradiction that WF is not wait-free. Thus, there exists an infinite execution of
WF, in which some thread executes infinitely many steps yet completes only a finite number of operations.
Let E be such an execution, and T the thread that completes only a finite number of operations. Consider
the last operation that T starts (which it never completes).

T cannot execute infinitely many steps in the fast-path: executions of the GENERATOR and WRAPUP

methods are monitored by a contention failures counter, and at some point in an infinite execution of them
the threshold must be reach, and help will be asked. Thus, it is impossible to execute infinitely many steps
in a single method of the fast-path. However, it is also impossible to execute infinitely many loops of the
GENERATOR, CAS-EXECUTER and WRAPUP methods, since when a certain threshold is reached, help is
asked. Thus, at some point, T must ask for help.

When asking for help, T enqueues a help request into the wait-free help queue. Since this queue is
wait-free, then after a finite number of steps the help request must be successfully enqueued into the queue,
with only a finite number of help requests enqueued before it.

While the help queue is not empty, each thread, when starting a new operation, will first help the
operation at the head of the help queue until it is completed and removed from the help queue. Only
then, the thread will go and execute its own operation. It follows that once a help request for an operation op
is enqueued to the help queue, each thread can only complete a finite number of operations before op is
completed. To be accurate, if at a given moment op is the n’th operation in the queue, then each thread can
complete a maximum of n operations before op is completed.

Thus, once T successfully enqueues the help request into the help queue, only a finite number of
operations can be completed before T completes its operation. Since T never completes its operation, then
only a finite number of operations can be completed at all. Thus, in the infinite execution E, only a finite
number of operations is completed. This contradicts the fact that WF is lock-free (Claim 7.48).

8 On the Generality of the Normalized Form

Our simulation can automatically transform any lock-free linearizable data structure given in a normalized
form into a wait-free one. A natural question that arises is how general the normalized form is. Do all
abstract data types (ADT) have a normalized lock-free implementation? We answer this question in the
affirmative. However, the value of this general result is theoretical only as we do not obtain efficient nor-
malized lock-free implementations. The main interest in the transformation described in this paper is that
it attempts to preserve the efficiency of the given lock-free data structure. Thus, it is not very interesting to
invoke it on an inefficient lock-free implementation.

35

We claim that any ADT can be implemented by a normalized lock-free algorithm (given that it can be
implemented sequentially). This claim is shown by using (a simplified version of) the universal construction
of Herlihy [14], which transforms any sequential data structure to a linearizable lock-free one. Recall that in
this universal construction, there is a global pointer to the shared data structure. To execute an operation, a
thread reads this pointer, creates a local copy of the data structure, executes the operation on the local copy,
and attempts by a CAS to make the global pointer point to its local copy. If the CAS succeeds the operation
is completed, and if it fails, the operation is restarted from scratch. We observe that this construction is in
effect already in the normalized form, it just needs to be partitioned correctly into the three methods.

Specifically, the CAS-GENERATOR method creates the local copy of the data structure, executes the
operation on it, and outputs a list with a single CAS descriptor. The CAS defined in the CAS-descriptor is
the attempt to make the global pointer point to the local copy that was prepared in the CAS-generator. The
CAS-executer method is the fixed method of the normalized representation, which simply attempts this CAS

and (since it is the only one) reports the result. The WRAP-UP method then indicates a restart from scratch
if the CAS failed, or returns with the appropriate results if it succeeded.

Of course, this construction is not practical. A lock-free data structure built in this manner is likely to
be (very) inefficient. But this construction shows that each ADT can be implemented using the normalized
form.

9 Examples: the Transformation of Four Known Algorithms

In this section we will present how we converted four known lock-free data structures into wait-free ones,
using the described technique. The four data structures are: Harris’s linked-list, Fomitchev & Ruppert’s
linked-list, a skiplist, and a binary-search-tree. During this section we will also explain how to wisely
construct the parallelizable GENERATOR and WRAP-UP methods, in a manner which is easy to implement,
efficient, and strait-forward.

9.1 Harris’s linked-list

Harris designed a practical lock-free linked-list. His list is a sorted list of nodes in which each node holds
an integer key, and only one node with a given key may be in the list at any given moment. He employed
a special mark bit in the next pointer of every node, used to mark the node as logically deleted. Thus,
a node is deleted by first marking its next pointer using a CAS (in effect, locking this pointer from ever
changing again) and then physically removing it from the list by a CAS of its predecessor’s next field.
Inserting a new node can be done using a single CAS, making the new node’s designated predecessor point
to the new node. In this section we assume familiarity with Harris’s linked-list. A reader not familiar with it
may skip this section and read on.

We start by noting that Harris’s SEARCH method, which is used by both the INSERT and DELETE op-
erations, is a parallelizable method. The SEARCH method’s input is an integer key, and its output is a pair
of adjacent nodes in the list, the first with a key smaller than the input value, and the second with a key
greater than or equal to the input value. The SEARCH method might make changes to the list: it might
physically remove marked nodes, those nodes that are logically deleted. The search method is restarted in
practice anytime an attempted CAS fails. (Such an attempted CAS is always an auxiliary CAS, attempting
to physically remove a logically deleted node.) A simple enough contention failure counter for this method
can be implemented by counting number of failed CASes.

We now specify a normalized version of Harris’s linked-list:

• A contention failure counter for all of the methods in Harris’s linked-list can be implemented by
counting the number of failed CASes.

36

• The (parallelizable) GENERATOR method is implemented as follows: For an insert(key) operation:

– Call the original SEARCH(KEY) method.

– If a node is found with the wanted key, return an empty list of CAS-descriptors. (The insert fails.)

– If a pair (pred, succ) is returned by the search method, create a new node n with the key, set
n.next = succ, and return a list with a single CAS descriptor, describing a change of pred.next to
point to n.

The GENERATOR method for a delete(key) operation is:

– Call the original SEARCH(KEY) method.

– If no node is found with the given key, return an empty list of CAS-descriptors.

– If a node n was found appropriate for deletion, return a list with a single CAS-descriptor, de-
scribing a change of n.next to set its mark-bit.

The GENERATOR method for a contains(key) operation is:

– return an empty list of of CAS-descriptors.

• The (parallelizable) WRAP-UP method is implemented as follows: For an insert(key) or a delete(key)
operation:

– If the list of CAS-descriptors is empty, exit with result false (operation failed).

– If the CAS-descriptor was executed successfully, exit with result true (operation succeeded).

– If the CAS-descriptor was not successful, indicate that a restart of the operation is required.

For a contains(key) operation:

– Call the original contains(key) method (which is already a parallelizable method) and exit with
the same result.

We would like to make a remark concerning the contention failure counter. Implementing a counter that
simply counts the number of CAS failures is good enough for a linked-list of integers (like the one Harris and
others have implemented), but is insufficient for a linked-list of strings, and other data types as well. This is
because infinitely many insertions before the key searched for by a CONTAINS method or a SEARCH method,
can delay a thread forever without it ever failing a CAS operation. In such cases a more evolved contention
failure counter is needed. Its implementation requires holding an approximation counter on the number of
keys in the list. Holding the exact count is possible, but inefficient, whereas maintaining an approximation
with a bounded error can be achieved with a negligible time overhead and is enough. The more evolved
contention failure counter reads the approximation at the beginning of each method and its value is #failed
CASes + Max(0, traversed keys - (approximation + max error)). The full details for implementing this
contention failure counter along with the needed approximation appear in Appendix B.

9.2 Binary Search Tree

The first practical lock-free binary search tree was presented in [7]. The algorithm implements a leaf-
oriented tree, meaning that all the keys are stored in the leaves of the tree, and each internal node points
to exactly two children. When a thread attempts to insert or delete a node, it begins its operation by a CAS

on an internal node’s state field. It stores a pointer to an Info object, describing the desired change. This
(owner) CAS effectively locks this node, but it can be unblocked by any other thread making the desired

37

(auxiliary) CASes. In [7], storing the initial pointer to the Info object is also referred to as Flagging, and we
shall use this notation as well. In a DELETE operation, they also use Marking, that permanently locks the
internal node that is about to be removed from the tree. Familiarity with [7] is required to fully understand
this part. In a nutshell, an INSERT is separated into three CASes:

• I-1. Flagging the internal node that its child sub-tree is needed to be replaced.

• I-2. Replacing the child pointer to point to the new sub-tree

• I-3. Unflagging the parent.

A DELETE operation is separated into four CASes:

• D-1. Flagging the grandfather of the leaf node we wish to delete.

• D-2. Marking the parent of the node we wish to delete(this parent will be removed from the tree as
well, but the child is the only leaf node that is to be removed).

• D-3. Changing the grandfather’s child pointer to point to a new sub-tree.

• D-4. Unflagging the grandparent.

The neat design of this algorithm makes it very easy to convert it into the normalized structure and thus
into a wait-free algorithm, since the methods in it are separated by their functionality. It contains a SEARCH

method, designed to find a key or its designated location. This method does not change the data structure,
and is thus trivially a parallelizable method.
It contains additional parallelizable methods designed to help intended operations already indicated by Info
fields: The HELP, HELP-DELETE, HELP-MARKED and HELP-INSERT methods.

In this algorithm, the linearization points of the operations happens after the blocking (owner) CASes,
inside the parallelizable methods, thus the normalized version would have to do some work after the CAS-
EXECUTOR method is completed. This is naturally done in the WRAP-UP method.

• A contention failure counter implementation consists of the following.

– Count the number of times CASes failed.

– Count the number of times parallelizable methods were called (except the first time for each
method).

• The GENERATOR, For an insert(key) operation:

– Call the original SEARCH(KEY) method.

– If a node with the requested key is found, return an empty list of CASes.

– If the parent is Flagged: call the (original) HELP method, and afterwards restart the Generator.

– Return a list with a single CAS-descriptor containing a CAS to change the state of the designated
parent to point to an Info object describing the insertion (CAS-I-1).

• The WRAP-UP method for an insert(key) operation:

– If the list of CASes is empty, exit with result false (operation failed).

– If CAS-I-1 failed, return restart operation from scratch.

38

– Else, call (the original parallelizable method) HELPINSERT (which will perform CAS-I-2 and
CAS-I-3) and exit with true (operation succeeded).

• The GENERATOR method, for a delete(key) operation:

– Call the original SEARCH(KEY) method.

– If a node with the requested key was not found, return an empty list of CASes.

– If the grandparent is Flagged: call the (original) HELP method, and afterwards restart the GEN-
ERATOR method.

– If the parent is Flagged: call the (original) HELP method, and afterwards restart the GENERATOR

method.

– Return a list with a single CAS-descriptor, containing a CAS to change the state of the grandparent
to point to an Info object describing the deletion (CAS-D-1).

• The WRAP-UP method, for a delete(key) operation:

– If the list of CASes is empty, exit with result false (operation failed).

– If CAS-D-1 failed, return restart operation from scratch.

– Else, call the (original) HELPDELETE method (which potentially executes CAS-D-2, CAS-D-3,
and CAS-D-4, but may fail).

∗ if HELPDELETE returned true, return operation succeeded.
∗ else, return restart operation from scratch.

• The GENERATOR method, for a contains(key) operation:

– Return an empty list of CASes.

• The WRAP-UP method, for a contains(key) operation:

– call the original SEARCH(KEY) method.

– If a node with the requested key was found, exit with result true.

– Else, exit with result false.

Note that the binary-search-tree algorithm is designed in a way that during a single operation, each
parallelizable method can only be called more than once as a result of contention (since other thread had
to make a change to the tree that affects the same node). Additionally, the remark about Harris’s linked-list
(the additional effort needed in some cases in order to implement a contention failure counter) applies here
as well.

9.3 Skiplist

Let us refer to the lock-free skiplist that appears on [16]. It is composed of several layers of the lock-free
linked-list of Harris. Each node has an array of next fields, each point to the next node of a different level in
the skiplist. Each next field can be marked, signifying the node is logically deleted from the corresponding
level of the skiplist. The keys logically in the list are defined to be those found on unmarked nodes of
the lowest list’s level. To delete a key, first the FIND(KEY) method is called. If a corresponding node is
found, its next fields are marked by a CAS from its top level down to level zero. To insert a key, again, the
FIND(KEY) method is called first, returning the designated predecessor and successor for each level. The

39

node is inserted to the lowest (zero) level first, and then to the rest of the levels from bottom up. Familiarity
with chapter 14.4 of [16] is required to fully understand the process.

When designing this algorithm, a subtle design decision was made that carries interesting implications
for our purposes. As the algorithm appears in [16], the only auxiliary CASes are snipping out marked nodes
in the FIND method, similar to Harris’s linked-list. Fully linking a node up after it has been inserted to
the lowest level is done only by the thread that inserted the node. Thus, in order to achieve lock-freedom,
operations by other threads must be allowed to complete while some nodes are incomplete (not fully linked).
These operations might include inserting a node immediately after an incomplete node, or even deleting an
incomplete node. Allowing such operations to complete causes some difficulties. One result is that when
two nodes are being inserted concurrently, and they are intended to be adjacent nodes at some level of the
skiplist, it is possible that the node that should come first will bypass the link to its designated successor,
skipping over it, and even past other nodes entered concurrently to the same level. This cannot happen at
the bottom level, and so it does not hamper the algorithm’s correctness, but it can cause higher levels to hold
less nodes than they were supposed to, arguably foiling the log(n) complexity of the skiplist.

It is a small and relatively simple change to make the linking up of an inserted node to be done by
auxiliary CASes, which are attempted by each thread that traverse that node in the FIND method, instead of
doing it by owner CASes only attempted by the thread that inserts the node. If we would make this change,
these CASes could be done by other threads in their GENERATOR method. As it is, however, they can only
be done in the WRAP-UP method, and only by the owner thread. Since our purpose here is to show how
our technique should be used to convert a given lock-free algorithm into a wait-free one, and not to suggest
variants to the lock-free algorithm, we shall focus on showing how to normalize the algorithm of [16] this
way.

• A contention failure counter for each method can be implemented by counting the number of failed
CASes.

• The GENERATOR for an insert(key) operation:

– Call the original FIND(KEY) method.

– If a node is found with the desired key, return an empty list of CASes.

– Else, create a new node n with the key, set its next field in each level to point to the designated
successor, and return a list with a single CAS-desciptor, to change the prev.next at the bottom
level to point to n.

• The WRAP-UP method for an insert(key) operation:

– If the CAS-list is empty, return false (operation failed).

– If the CAS in the CAS-list failed, return restart operation from scratch.

– Else, follow the original algorithm’s linking up scheme. That is, until the new node is fully
linked:

∗ Call FIND(KEY).
∗ Try by a CAS to set the predecessor’s next field to point to the newly inserted node for each

unlinked level. Use the successor returned from the FIND method as the expected value for
the CAS. Restart the loop if the CAS fails.

• The GENERATOR method for a delete(key) operation:

– Call the original FIND(KEY) method.

40

– If no node is found with the given key, return an empty CAS-list.

– If a node n was found appropriate for deletion, return a list with a CAS-descriptor for each level
in which the node is linked, from the highest down to level zero, to mark its next field.

• The WRAP-UP method for a delete(key) operation is as follows.

– If the CAS-list is empty, return false (operation failed).

– Else, if all CASes were successful, return true (operation succeeded).

– Else, return restart operation from scratch.

• The GENERATOR method for a contains(key) operation:

– Return an empty list of CASes.

• The WRAP-UP method for a contains(key) operation is as follows.

– Call the original FIND(KEY) method.

– If a node with the requested key was found, exit with result true.

– Else, exit with result false.

The remark about Harris’s linked-list (the additional effort needed in some cases in order to implement
a contention failure counter) applies here as well.

9.4 The Linked-List of Fomitchev and Ruppert

In the list of Fomitchev and Ruppert, before deleting a node, a backlink is written into it, pointing to its (last)
predecessor. This backlink is later used to avoid searching the entire list from the beginning the way Harris
did when a node he used was deleted. Fomitchev and Ruppert employ two special bits in each node’s next
field. The mark bit, similarly to Harris’s algorithm, to mark a node as logically deleted, and the flag bit,
that is used to signal that a thread wants to delete the node pointed by the flagged pointer. Deletion is done
in four phases:

• Flagging the predecessor

• Writing the backlink on the victim node to point to the predecessor

• Marking the victim node

• physically disconnecting the node and unflagging the predecessor (both done in a single CAS).

The main (owner) CAS in this case, which must be done in the CAS-EXECUTER method, is the first (flagging
the predecessor). This flagging blocks any further changes to the predecessor until the flag is removed.
Removing the flag can be done by any thread in the parallelizable HELPFLAGGED method. The second
phase, of writing the backlink, is actually not done by a CAS, but by a direct WRITE. This is safe, since the
algorithm is designed in a way that guarantees that for a specific node, there is only a single value that will be
written to it (even if many threads will write it). Keeping this non-CAS modification of the data structure will
not harm our transformation and it will still provide a correct wait-free algorithm, yet it does not technically
match our definition of the normalized representation. To solve this, we can replace this WRITE action with
a CAS that uses NULL as the expected-value. This change have no algorithmic applications. The insert
operation is done similarly to the insert operation in Harris’s linked-list, except that it uses the backlinks
to avoid searching the list from the beginning, and that it calls the HELPFLAGGED method to remove the
“lock” on a flagged node, if needed.

41

• A contention failure counter implementation consists of the following.

– Count the number of times CASes failed.

– Count the number of times the HELPFLAGGED method is called (except the first time).

• The GENERATOR, for an insert(key) operation:

– Call the original search(key) method.

– If a node is found with the wanted key, return an empty list of CAS-descriptors.

– Else, if a window(pred, succ) is returned, and pred is flagged, call the (original) HELPFLAGGED

method.

– If a window (pred, succ) that is fit for inserting the key is found, create a new node n with the
key, set n.next = succ, and return a list with a single CAS-descriptor, describing a change of
pred.next to point to n.

• The WRAP-UP method for an insert(key) operation:

– If the list of CAS-descriptors is empty, exit with result false (operation failed).

– If the CAS-descriptor was executed successfully, exit with result true (operation succeeded).

– If the CAS-descriptor was not successful, indicate restart operation from scratch.

• The GENERATOR, for a delete(key) operation:

– Call the original search(key) method.

– If no node is found with the given key, return an empty list of CAS-descriptors.

– If a victim node and its predecessor were found, return a list with a single CAS-descriptor,
describing a change of the predecessor.next so that its flag-bit will be set.

• The WRAP-UP method for a delete(key) operation:

– If the list of CAS-descriptors is empty, exit with result false (operation failed).

– If the CAS-descriptor was executed successfully, call the (original) HELPFLAGGED method, and
afterwards exit with result true (operation succeeded).

– If the CAS-descriptor was not successful, indicate restart operation from scratch.

• The GENERATOR method for a contains(key) operation:

– Return an empty list of CASes.

• The WRAP-UP method for a contains(key) operation:

– Call the original SEARCH(KEY) method.

– If a node with the requested key was found, exit with result true.

– Else, exit with result false.

As with all the examples, the remark appearing after Harris’s linked list applies here as well. In the
following section, we describe an important optimization that is especially important in the case of the
transformation of the list of Fomitchev & Ruppert; the normalized representation of the algorithm does not
fully utilize the strength of the backlinks, which is a key feature of this algorithm when comparing it to
Harris’s. Using the optimization in 10.1 guarantees that most operations will still fully utilize the backlinks,
while the few operations that will complete in the slow path may extract only part of its benefits.

42

10 Optimizations

10.1 Using the Original Algorithm for the Fast Path

In order to use our simulation technique and obtain a wait-free practical algorithm, the first thing we need
to do is to express the lock-free data structure in the normalized form. As mentioned above, in our work
we expressed four data structures this way. Our intuition is that the data structure in the normalized form is
in some way “the same” as the original algorithm, only expressed differently. In what follows, we provide
some formalization for this intuition and then use it for an optimization.

Definition 10.1 (Interoperable Data Structures.) We say that two lock-free data structure algorithms
are interoperable if they can be run on the same memory concurrently and maintain linearizability and
correctness.

The above definition means that for each data-structure operation that we would like to perform, we can
arbitrarily choose which of the two algorithms to use for running it, and the entire execution remains lin-
earizable for the same ADT. All of the four normalized algorithms we created are interoperable with their
original versions7. We would like to exploit this fact in order to use the original lock-free algorithm, and not
the normalized version of it, as the fast-path for the simulation. The slow path, in which help is given, still
works in the normalized manner. This optimization is possible, but requires some care. To safely allow the
original algorithm to work with the help mechanism of the normalized algorithm, we require that a slightly
stronger parallelism property will be kept by the parallelizable methods. Recall that a parallelizable method
is a one whose executions are avoidable. In what follows we strengthen the definition of avoidable method
execution.

Definition 10.2 Strongly avoidable method execution: A run of a method M by a thread T on input I in
an execution E of a program P is strongly avoidable if there exists an equivalent execution E′ for E such
that in both E and E′ each thread follows the same program, both E and E′ are identical until right before
the invocation of M by T on input I , in E′ each CAS that T executes in M either fails or is futile, and (the
new requirement): In E and E′ the shared memory reaches the same states in the same order.

A state of the shared memory is simply the contents of all memory. Failed CASes, futile CASes, and READ

primitives, do not alter the state of the shared memory. The new requirement does not mean that after n
computation steps the state of the shared memory is the same in E and in E′, since each one of them can
have a different set of computation steps that do not alter the memory. The meaning of the extra requirement
is that the alternative execution E′ is not only equivalent to E, but is also indistinguishable from it, in the
sense that an observer who examines the shared memory cannot tell whether E or E′ has taken place.

This stronger definition is not needed for our technique to work, only to ensure a safe use of this specific
optimization. All of the four algorithms we expressed in the normalized form naturally fulfill this stronger
requirement. Thus, since the original algorithm can work interoparably with the normalized one, it can also
work interoparably with the normalized one in the presence of “extra” avoidable executions of parallelizable
methods, and we can safely use it as the fast-path, given that we adjust it to have contention failure counters
for its methods.

10.2 Avoiding versions

As explained in Section 6.2, while executing the CASes, a helping thread may create an ABA problem
if it is delayed and then returns to execute when the CAS it is attempting to simulate has already been

7Excluding the fact that version numbers must be added to the original algorithms as well.

43

completed and the algorithm has moved on. To ensure that this helping thread does not foil the execution,
we introduced versioning to make sure its CAS fails and it can continue executing properly. For some data
structures, ABA problems of this type cannot occur because the original data structure is designed to avoid
them. For example, the tree algorithm of Ellen et al. [7] allows helping threads to operate within the original
lock-free algorithm and it supports such help with a special mechanism that eliminates such ABA problems.
Therefore, for the tree there is no need to add the versioning mechanism to each CAS, and indeed we did not
use versioning when making the tree wait-free. This does not eliminate the need to use the modified-bit
for a structured execution of the public CASes.

11 Performance

11.1 Memory Management

In this work we do not specifically address the standard problem of memory management for lock-free (and
wait-free) algorithms. In the Java implementation we just use Java’s garbage collector, which is probably
not wait-free. If the original lock-free algorithm has a solution for memory management, then the obtained
simulation works well with it, except that we need to reclaim objects used by the generated algorithm:
the operation records and the operation record boxes. This can be done using hazard pointers [20]. The
implementation is tedious, but does not introduce a significant difficulty and we do not deal with it in the
current submission.

11.2 Our Wait-Free Versions vs. the Original Lock-Free Structures

We chose four well-known lock-free algorithms, and used the transformation described in this paper to
derive a wait-free algorithm for each. We implemented these algorithms and, when possible, used the
optimizations described in Section 10. The performance of each wait-free algorithm was compared against
the original lock-free algorithm. We stress that we compared against the original lock-free version of the
algorithm without adding versioning to the CAS operations and without modifying it to fit a normalized
representation.

The four lock-free algorithms we chose were Harris’s linked-list [13], the binary-search-tree of Ellen
et al. [7], the skiplist of Herlihy and Shavit [16], and the linked-list of Fomitchev and Ruppert [11]. All
implementations were coded in Java. The Java implementations for the lock-free algorithms of Harris’s
linked-list and the skiplist were taken from [16]. We implemented the binary search tree and the list of
Fomitchev and Ruppert ourselves, in the most straightforward manner, following the papers.

All the tests were run on SUN’s Java SE Runtime, version 1.6.0. We ran the measurements on 2 sys-
tems. The first is an IBM x3400 system featuring 2 Intel(R) Xeon(R) E5310 1.60GHz quad core processors
(overall 8 cores) with a memory of 16GB and an L2 cache of 4MB per processor. The second system fea-
tures 4 AMD Opteron(TM) 6272 2.1GHz processors, each with 8 cores (overall 32 cores), each running
2 hyper-threads (overall 64 concurrent threads), with a memory of 128GB and an L2 cache of 2MB per
processor.

We used a micro-benchmark in which 50% of the operations are contains, 25% are insert, and 25% are
delete. Each test was run with the number of threads ranging from 1 to 16 in the IBM, and 1 to 32 in the
AMD. In one set of tests the keys were randomly and uniformly chosen in the range [1, 1024], and in a
different set of tests the keys were chosen in the range [1, 64]. In each test, each thread executed 100,000
operations overall. We repeated each test 15 times, and performance averages are reported in the figures.
The maximum standard deviation is less than 5%. The contention threshold was set to k = 2. In practice,
this means that if one of the three simulation stages encounters k failed CASes, it gives up the fast path and
moves to the slow path.

44

Figure 7: Lock-Free versus Wait-Free algorithms, 1024 keys. Left: AMD. Right: IBM

Figure 7 compares the four algorithms when running on the AMD (the left graph of each couple) and on
the IBM (right) for 1024 possible keys. The figure show the execution times (seconds) as a function of the
number of threads.

For 1024 keys, the performance of the wait-free algorithms is comparable to the lock-free algorithms,
the difference being 2% on average. The close similarity of the performance between the original lock-free
algorithms and the wait-free versions produced using our simulation suggests that the slow-path is rarely
invoked.

Figure 8 indicates how many times the slow path was actually invoked in each of the wait-free data
structures as a function of the number of threads. Keep in mind that the overall number of operations in
each run is 100,000 multiplied by the number of threads. The results reported are again the averages of
the 15 runs (rounded to whole numbers). As expected, the fraction of operations that require the slow path
is very small (maximum fraction of about 1/3,000 of the operations). The vast majority of the operations
complete in the fast-path, allowing the algorithm to retain performance similar to the lock-free algorithm.
Yet, a minority of the operations require the help mechanism to guarantee completion in a bounded number
of steps, thus achieving wait-freedom.

The results for 64 keys are depicted in figures 9 and 10. The behavior for 64 keys is different than for
1024 keys. The smaller range causes a lot more contention, which in turn causes a lot more operations to
ask for help and move to the slow-path. Asking for help in the slow path too frequently can dramatically
harm the performance. This is most vividly displayed in the tree data structure on the AMD. When running
32 parallel threads, about 1 in 64 operations asks for help and completes in the slow-path. This means
that roughly during half of the execution time there is an operation running in the slow-path. As a result, all
threads help this operation, sacrificing scalability for this time. Thus, it is not surprising that the performance
are down by about 50%.

In such circumstances, it is advisable to set the contention threshold to a higher level. Setting it to 3
(instead of 2) causes a significant improvement in the performance. This comes with the cost of allowing
some operations to take longer, as some operations will first fail 3 times, and only then ask for help.

11.3 Our Wait-Free Transformation vs. a Universal Construction

Universal constructions achieve a difficult task, as they go all the way from a sequential data structure to a
concurrent wait-free implementation of it. It may therefore be difficult to also make the resulting wait-free
algorithm efficient enough to become practicable. Our technique builds on a tailored made lock-free data
structure and achieve the smaller step from lock-freedom to wait-freedom. This may be the reason why we

45

Figure 8: Number of Operation Completed in the Slow Path., 1024 keys. Left: AMD. Right: IBM

Figure 9: Lock-Free versus Wait-Free algorithms, 64 keys. Left: AMD. Right: IBM

Figure 10: Number of Operation Completed in the Slow Path, 64 keys. Left: AMD. Right: IBM

46

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29

O
p

e
ra

ti
o

n
s

d
o

n
e

 i
n

 2

se
co

n
d

s
(M

il
li

o
n

s)

M
il

li
o

n
s

Threads
WF Simulation Universal Construction

Figure 11: Our Wait-Free List against a Universal Construction List

are able to retain practicable performance.
To demonstrate the performance difference, we implemented the state of the art universal construction

of Chuong, Ellen, and Ramachandran [5] for a standard sequential algorithm of a linked-list. The obtained
wait-free linked-list was compared against the wait-free linked-list generated by applying our technique to
Harris’s lock-free linked-list. 8

We ran the two implementations on our AMD Opetron system featureing 4 AMD Opteron(TM) 6272
2.1GHz processors, each with 8 cores (overall 32 cores), each running 2 hyper-threads (overall 64 concurrent
threads), with a memory of 128GB and an L2 cache of 2MB per processor. In the micro-benchmark tested,
each thread executed 50% contains, 25% insert, and 25% delete operations. The keys were randomly and
uniformly chosen from the range [1, 1024]. The number of threads was ranging from 1 to 32. In each
measurement, all the participating threads were run concurrently for 2 seconds, and we measured the overall
number of operations executed. Each test was run 10 times, and the average scores are reported in the
figures.

In Figure 11 the total number of operations (in millions) done by all the threads is reported as a function
of the number of the threads. It can be seen that the wait-free list obtained in this paper (and so also the
lock-free linked-list) drastically outperforms the universal construction for any number of threads. Also,
while our list scales well all the way up to 32 threads, the list of the universal construction does not scale at
all. Figure 12 is based on the same data, but demonstrates the ratio between our construction of the wait-free
linked-list and the universal construction of wait-free linked list. For a single thread, our list is 6.8 times
faster and this ratio grows with any additional thread, up to a factor of 198 times faster than the universal
construction for 32 threads.

References

[1] Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast (extended abstract). In Proceedings
of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995, Las
Vegas, Nevada, USA, pages 538–547, 1995.

8Note that implementing the universal construction of [5] on Harris’s lock-free linked-list, instead of using the universal con-
struction on a standard sequential list, is possible, but ill-advised. Although both implementations would result in a wait-free list,
the one based on a lock-free algorithm would undoubtedly be slower. The universal construction already handles the inter-thread
race conditions, and implementing it on Harris’s linked-list would force it to also use the (unneeded) synchronization mechanisms
of Harris.

47

0

50

100

150

200

250

1 5 9 13 17 21 25 29

R
a

t
io

Threads

Figure 12: Ratio between Our List and a Universal Construction List

[2] James H. Anderson and Yong-Jik Kim. Fast and scalable mutual exclusion. In Distributed Computing,
13th International Symposium, Bratislava, Slavak Republic, September 27-29, 1999, Proceedings,
pages 180–194, 1999.

[3] James H. Anderson and Yong-Jik Kim. Adaptive mutual exclusion with local spinning. In Distributed
Computing, 14th International Conference, DISC 2000, Toledo, Spain, October 4-6, 2000, Proceed-
ings, pages 29–43, 2000.

[4] James H. Anderson and Mark Moir. Universal constructions for large objects. IEEE Trans. Parallel
Distrib. Syst., 10(12):1317–1332, 1999.

[5] Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A universal construction for wait-free trans-
action friendly data structures. In SPAA 2010: Proceedings of the 22nd Annual ACM Symposium
on Parallelism in Algorithms and Architectures, Thira, Santorini, Greece, June 13-15, 2010, pages
335–344, 2010.

[6] Tyler Crain, Damien Imbs, and Michel Raynal. Towards a universal construction for transaction-based
multiprocess programs. In Distributed Computing and Networking - 13th International Conference,
ICDCN 2012, Hong Kong, China, January 3-6, 2012. Proceedings, pages 61–75, 2012.

[7] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking binary search
trees. In Proceedings of the 29th Annual ACM Symposium on Principles of Distributed Computing,
PODC 2010, Zurich, Switzerland, July 25-28, 2010, pages 131–140, 2010.

[8] Panagiota Fatourou and Nikolaos D. Kallimanis. The redblue adaptive universal constructions. In
Distributed Computing, 23rd International Symposium, DISC 2009, Elche, Spain, September 23-25,
2009. Proceedings, pages 127–141, 2009.

[9] Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-efficient wait-free universal construction.
In SPAA 2011: Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and
Architectures, San Jose, CA, USA, June 4-6, 2011 (Co-located with FCRC 2011), pages 325–334,
2011.

[10] Faith Ellen Fich, Victor Luchangco, Mark Moir, and Nir Shavit. Obstruction-free algorithms can be
practically wait-free. In Distributed Computing, 19th International Conference, DISC 2005, Cracow,
Poland, September 26-29, 2005, Proceedings, pages 78–92, 2005.

48

[11] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Proceedings of the twenty-
third annual ACM symposium on Principles of distributed computing, PODC ’04, pages 50–59, New
York, NY, USA, 2004. ACM.

[12] Michael Greenwald. Two-handed emulation: how to build non-blocking implementation of complex
data-structures using DCAS. In Proceedings of the Twenty-First Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2002, Monterey, California, USA, July 21-24, 2002, pages
260–269, 2002.

[13] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceedings of
the 15th International Conference on Distributed Computing, DISC ’01, London, UK, UK, 2001.
Springer-Verlag.

[14] Maurice Herlihy. A methodology for implementing highly concurrent data structures. In Proceedings
of the Second ACM SIGPLAN Symposium on Princiles & Practice of Parallel Programming (PPOPP),
Seattle, Washington, USA, March 14-16, 1990, pages 197–206, 1990.

[15] Maurice Herlihy. A methodology for implementing highly concurrent objects. ACM Trans. Program.
Lang. Syst., 15(5):745–770, 1993.

[16] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann, 2008.

[17] Alex Kogan and Erez Petrank. Wait-free queues with multiple enqueuers and dequeuers. In Pro-
ceedings of the 16th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPOPP 2011, San Antonio, TX, USA, February 12-16, 2011, pages 223–234, 2011.

[18] Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures. In PPOPP,
pages 141–150, 2012.

[19] Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst., 5(1):1–11, 1987.

[20] Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE Trans.
Parallel Distrib. Syst., 15(6):491–504, 2004.

[21] Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci. Comput.
Program., 25(1):1–39, 1995.

[22] Aravind Natarajan, Lee Savoie, and Neeraj Mittal. Concurrent wait-free red black trees. In Stabiliza-
tion, Safety, and Security of Distributed Systems - 15th International Symposium, SSS 2013, Osaka,
Japan, November 13-16, 2013. Proceedings, pages 45–60, 2013.

[23] Gadi Taubenfeld. Contention-sensitive data structures and algorithms. In Distributed Computing,
23rd International Symposium, DISC 2009, Elche, Spain, September 23-25, 2009. Proceedings, pages
157–171, 2009.

[24] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free linked-lists. In Prin-
ciples of Distributed Systems, 16th International Conference, OPODIS 2012, Rome, Italy, December
18-20, 2012. Proceedings, pages 330–344, 2012.

49

A The Wait-Free Queue

In our algorithm, we rely on a wait-free queue supporting the operations enqueue, peek and conditionally-
remove-head, rather then enqueue and dequeue as given in [17]. Adjusting the queue from [17] to our needs
was a very easy task. The java implementation of the adjusted queue that we used is provided here.

i m p o r t j a v a . u t i l . c o n c u r r e n t . a t o mic . A t o m i c I n t e g e r ;
i m p o r t j a v a . u t i l . c o n c u r r e n t . a t o mic . AtomicRefe rence ;
i m p o r t j a v a . u t i l . c o n c u r r e n t . a t o mic . A tomicRe fe r enceAr ray ;

p u b l i c c l a s s WFQueueAd<V> {

c l a s s Node {
p u b l i c V v a l u e ;
p u b l i c AtomicRefe rence<Node> n e x t ;
p u b l i c i n t enqTid ;
p u b l i c A t o m i c I n t e g e r deqTid ;
p u b l i c Node (V va l , i n t e t i d) {

v a l u e = v a l ;
n e x t = new AtomicReference<Node>(n u l l) ;
enqTid = e t i d ;
deqTid = new A t o m i c I n t e g e r (−1) ;

}
}

p r o t e c t e d c l a s s OpDesc {
p u b l i c long phase ;
p u b l i c b o o l e a n pend ing ;
p u b l i c b o o l e a n enqueue ;
p u b l i c Node node ;
p u b l i c OpDesc (long ph , b o o l e a n pend , b o o l e a n enq , Node n) {

phase = ph ;
pend ing = pend ;
enqueue = enq ;
node = n ;

}
}

p r o t e c t e d AtomicRefe rence<Node> head , t a i l ;
p r o t e c t e d AtomicRefe renceAr ray<OpDesc> s t a t e ;

p u b l i c A t o m i c I n t e g e r enqed = new A t o m i c I n t e g e r (0) ;
p u b l i c A t o m i c I n t e g e r deqed = new A t o m i c I n t e g e r (0) ;

p u b l i c WFQueueAd () {
Node s e n t i n e l = new Node (n u l l , −1);
head = new AtomicRefe rence<Node>(s e n t i n e l) ;

50

t a i l = new AtomicRefe rence<Node>(s e n t i n e l) ;

s t a t e = new AtomicRefe renceAr ray<OpDesc>(T e s t . numThreads) ;

f o r (i n t i = 0 ; i < s t a t e . l e n g t h () ; i ++) {
s t a t e . s e t (i , new OpDesc (−1 , f a l s e , t r u e , n u l l)) ;

}
}

p u b l i c vo id enq (i n t t i d , V v a l u e) {
l ong phase = maxPhase () + 1 ;
s t a t e . s e t (t i d ,

new OpDesc (phase , t r u e , t r u e , new Node (va lue , t i d))) ;
h e l p (phase) ;
h e l p f i n i s h e n q () ;

}

p u b l i c V peekHead () {
Node n e x t = head . g e t () . n e x t . g e t () ;
i f (n e x t == n u l l)

r e t u r n n u l l ;
r e t u r n n e x t . v a l u e ;

}

p u b l i c b o o l e a n c o n d i t i o n a l l y R e m o v e H e a d (V e x p e c t e d V a l u e) {
Node cur rHead = head . g e t () ;
Node n e x t = cur rHead . n e x t . g e t () ;
i f (n e x t == n u l l | | ! n e x t . v a l u e . e q u a l s (e x p e c t e d V a l u e))

r e t u r n f a l s e ;
i f (head . compareAndSet (currHead , n e x t)) {

h e l p f i n i s h e n q () ;
cu r rHead . n e x t . s e t (n u l l) ;
r e t u r n t r u e ;

}
e l s e

r e t u r n f a l s e ;
}

p r o t e c t e d vo id h e l p (long phase) {
f o r (i n t i = 0 ; i < s t a t e . l e n g t h () ; i ++) {

OpDesc desc = s t a t e . g e t (i) ;
i f (de sc . pend ing && desc . phase <= phase) {

i f (de sc . enqueue) {
h e l p e n q (i , phase) ;

}
}

}
}

51

p r o t e c t e d vo id h e l p e n q (i n t t i d , l ong phase) {
w h i l e (i s S t i l l P e n d i n g (t i d , phase)) {

Node l a s t = t a i l . g e t () ;
Node n e x t = l a s t . n e x t . g e t () ;
i f (l a s t == t a i l . g e t ()) {

i f (n e x t == n u l l) {
i f (i s S t i l l P e n d i n g (t i d , phase)) {

i f (l a s t . n e x t . compareAndSet
(nex t , s t a t e . g e t (t i d) . node)) {

h e l p f i n i s h e n q () ;
r e t u r n ;

}
}

} e l s e {
h e l p f i n i s h e n q () ;

}
}

}
}

p r o t e c t e d vo id h e l p f i n i s h e n q () {
Node l a s t = t a i l . g e t () ;
Node n e x t = l a s t . n e x t . g e t () ;
i f (n e x t != n u l l) {

i n t t i d = n e x t . enqTid ;
OpDesc curDesc = s t a t e . g e t (t i d) ;
i f (l a s t == t a i l . g e t () && s t a t e . g e t (t i d) . node == n e x t) {

OpDesc newDesc = new OpDesc
(s t a t e . g e t (t i d) . phase , f a l s e , t r u e , n e x t) ;

s t a t e . compareAndSet (t i d , curDesc , newDesc) ;
t a i l . compareAndSet (l a s t , n e x t) ;

}
}

}

p r o t e c t e d long maxPhase () {
l ong maxPhase = −1;
f o r (i n t i = 0 ; i < s t a t e . l e n g t h () ; i ++) {

l ong phase = s t a t e . g e t (i) . phase ;
i f (phase > maxPhase) {

maxPhase = phase ;
}

}
r e t u r n maxPhase ;

}

p r o t e c t e d b o o l e a n i s S t i l l P e n d i n g (i n t t i d , l ong ph) {

52

r e t u r n s t a t e . g e t (t i d) . pend ing &&
s t a t e . g e t (t i d) . phase <= ph ;

}
}

B Implementing a Contention Failure Counter in the Presence of Infinite
Insertions

A somewhat hidden assumption in the fast-path-slow-path technique (and consequently, in our technique
as well), is the ability to be able to identify effectively when a thread fails to complete an operation due
to contention. Failing to recognize contention will foil wait-freedom, as the relevant thread will not ask
for help. Counting the number of failed CASes is generally a very effective way of identifying contention.
However, it is not always enough. For example, in the binary search tree, a thread may never fail a CAS,
and yet be held forever executing auxiliary CASes for other threads’ operations. Identifying such a case is
generally easy. For the binary tree algorithm, we did so by counting invocations of the parallelizable help
methods.

However, there is one problem that often presents a greater difficulty. We refer to this problem as the
infinite insertions problem. This is a special case in which a thread in a lock-free algorithm may never
complete an operation and yet never face contention.

Consider what happens when a data structure keeps growing while a thread is trying to traverse it. For
example, consider what happens in a linked-list, if while a thread tries to traverse it to reach a certain key,
other threads keep inserting infinitely many new nodes before the wanted key. The thread might never reach
the needed key. The complexity of searching the key in this case is linear at the size of the list, but this size
keeps growing. If the list size is some how limited (for example, if all the keys in the list must be integers),
then this cannot go on forever, and eventually the traversing thread must reach the key it seeks (or discover
it is not there). Such a bound on the size of the data structure can be used to assert for the wait-freedom
of some of the algorithms we have discussed in this paper, but it provides a rather poor bound for the wait-
freedom property, and it cannot at all be used at some cases. (Such as in a list that employs strings, instead
of integers, as keys.)

To implement a contention failure counter that is robust to this problem, we offer the following mecha-
nism to enable a thread to identify if the data structure is getting larger while it is working on it. The idea
is that each thread will read a field stating the size of the data structure prior to traversing. For example, in
a list, a skiplist or a tree, it can read the number of nodes of the data structure. During the operation, it will
count how many nodes it traverses, and if the number of traversed nodes is higher than the original total
number of nodes (plus some constant), it will abort the fast-path and will ask for help.

However, a naive implementation of this basic idea performs poorly in practice, since maintaining the
exact number of nodes in a wait-free manner can be very costly. Instead, we settle for maintaining a field
that approximates the number of keys. The error of the approximation is bounded by a linear function of the
number of threads operating on the data structure. Thus, before a thread starts traversing the data structure,
it should read the approximation, denoted SIZE-APP, and if it traverses a number of nodes that is greater
than SIZE-APP + MAX-ERROR + CONST, switch to the slow path and ask for help.

To maintain the approximation for the number of nodes, the data structure contains a global field with
the approximation, and each thread holds a private counter. In its private counter, each thread holds the
number of nodes it inserted to the data structure minus the number of nodes it deleted from it since the
last time the thread updated the global approximation field. To avoid too much contention in updating the
global field, each thread only attempts to update it (by a CAS) once it reaches a certain soft threshold (in

53

absolute value). If the CAS failed, the thread continues the operation as usual, and will attempt to update
the global approximation field at its next insert or delete operation. If the private counter of a thread reaches
a certain hard threshold, it asks for help in updating the global counter. This is done similarly to asking
help for other operations: it should enqueue a request into the help-queue. The input for the operation of
UPDATEGLOBALCOUNTER is an integer stating the required adjustment. The Generator method here is
reading the global counter, and then output a single CAS description, describing a CAS that alters the old
counter value with the wanted new one. The WRAP-UP METHOD exits the operation if the CAS succeeded,
or indicates that the operation should be restarted if the CAS failed9. Such an approximation of the size of the
data structure can be maintained very cheaply, and is enough to solve the problem of the infinite insertions.

9In essence, we have just described the normalized lock-free algorithm for a shared counter.

54

