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Abstract

In today’s world, where nearly every desktop and laptop contains several cores, parallel
computing has become the standard. Concurrent data structures are designed to utilize
all available cores to achieve faster performance. In this thesis we design new concurrent
data structures, we provide techniques for improving the guarantees of concurrent data
structures, we propose efficient iterators for concurrent data structures, we propose new
programming techniques, and we formally prove some inherent limitations of concurrent
data structures.

In particular, we study data structures that offer progress guarantees. Wait-freedom,
which is the strongest progress guarantee by the standard definitions, is a central
concept in this thesis. We start by designing the first wait-free linked-list with practical
performance. We then generalize the technique, and offer an automatic transformation
that allows even a non-expert to design efficient wait-free data structures. We use the
proposed transformation to obtain fast wait-free skiplist, and binary search tree.

Our study continues with an investigation of the concept of help in wait-free algo-
rithms. The wait-free progress guarantee is often achieved by allowing some threads to
help other threads complete their own work. We propose a formal definition for the
notion of help, and prove that many wait-free data structures cannot be implemented
without using help.

Our next step is to design an iterator that can be used in concurrent wait-free data
structures. An iterator is an interface which allows a traversal of all of the nodes that
belong to a certain data structure. Until recently, no wait-free data structures offered
support for an iterator. Finally, we propose a programming paradigm that facilitates
the use of hardware transactional memory (HTM) with concurrent data structures, and

particularly with concurrent data structures that provide a progress guarantee.






Chapter 1

Introduction

The era of multi-core architectures has been having a huge impact on software develop-
ment: exploiting parallelism has become the main challenge of today’s programming.
With multiple processors communicating by accessing shared memory, the behavior of
concurrent algorithms is measured by both safety/correctness and progress conditions.
Typically, the stronger the progress guarantee is, the harder it is to design the algorithm,
and often, stronger progress guarantees come with a higher performance cost.

Most of the code written today is lock-based, but this is shifting towards codes without
locks [HS08]. Standard progress guarantees include obstruction-freedom, lock-freedom
(a.k.a. non-blocking), and wait-freedom. The strongest among these is wait-freedom. A
wait-free algorithm guarantees that every thread makes progress (typically completing
a method) in a finite number of steps, regardless of other threads’ behavior. The
holy grail of designing concurrent data structures is in obtaining efficient wait-free
implementations, with research dating back to some of the most important studies in
distributed computing [Lam74, FLP85, Her88|.

This worst-case guarantee has its theoretical appeal and elegance, but is also critical
in practice for making concurrent data structures useable with real-time systems. Even
when run on a real-time platform and operating system, a concurrent application must
ensure that each thread makes its deadlines, i.e., has a bounded worst-case response
time in worst-case scenarios. Furthermore, wait-freedom is a desirable progress property
for many systems, and in particular operating systems, interactive systems, and systems
with service-level guarantees. For all those, the elimination of starvation is highly
desirable. However, until recently, only few wait-free data structures were known, as
they are considered notoriously hard to design, and largely inefficient.

The weaker lock-freedom guarantee is more common. A lock-free algorithm guaran-
tees that at least one thread makes progress in a finite number of steps. The downside
of the lock-free guarantee is that all threads but one can starve in an execution, meaning
that lock-freedom cannot suffice for a real-time scenario. As lock-free data structures
are easier to design, constructions for many lock-free data structures are available in the
literature, including the stack [HS08], the linked-list [Har01], the skiplist [HS08], and



the binary search tree [EFRvB10]. Furthermore, practical implementations for many
lock-free algorithms are readily available in standard Java libraries and on the Web.

Recently, wait-free designs for the simple stack and queue data structures appeared
in the literature [KP11, FK11]. Wait-free stack and queue structures are not easy to
design, but they are considered less challenging as they present limited parallelism, i.e.,
a limited number of contention points (the head of the stack, and the head and the tail
of the queue).

The existence of wait-free data structures has been shown by Herlihy [Her90] using
universal simulations. Universal simulation techniques have evolved dramatically since
then (e.g., [Her93, AM99, ADT95, Gre02, FK09, CER10, CIR12]), but even the state
of the art universal construction [CER10] is too slow compared to the lock-free or
lock-based implementations and cannot be used in practice'. Universal constructions
achieve a difficult task, as they go all the way from a sequential data structure to a
concurrent wait-free implementation of it. It may therefore be hard to expect that the
resulting wait-free algorithm will be efficient enough to become practicable.

This thesis provides new and efficient wait-free data structures, better techniques
to design them, and better understanding of the nature of wait-freedom. We offer a
rigorous study of the concept of help, which we prove to be essential in many wait-free
structures; We enhance both wait-free and lock-free structures by adding a fast wait-free
iterator to them; and we suggest a programming paradigm that can be used to harness
transactional memory (TM) to be used in data structures, even if a progress guarantee

is required.

1.1 Wait-Free Linked-Lists

A linked-list is one of the most commonly used data structures. The linked-list seems a
good candidate for parallelization, as modifications to different parts of the list may
be executed independently and concurrently. Indeed, parallel linked-lists with various
progress properties are abundant in the literature. Among these are lock-free linked-lists.

A lock-free linked-list was first presented by Valois [Val95]. A simpler and more
efficient lock-free algorithm was designed by Harris [Har01], and Michael [Mic04] added
a hazard-pointers mechanism to allow lock-free memory management for this algorithm.
Fomitchev and Ruppert achieved better theoretical complexity in [FRO04].

The first contribution of this thesis is a practical, linearizable, fast and wait-free
design and implementation of a linked-list. Our construction builds on the lock-free
linked-list of Harris [Har01], and extends it using a helping mechanism to become
wait-free. The main technical difficulty is making sure that helping threads perform
each operation correctly, apply each operation exactly once, and return a consistent

result (of success or failure) according to whether each of the threads completed the

!The claim for inefficiency of universal constructions has been known as a folklore only. In Section
3.12.3 we provide the first measurements substantiating this claim.



operation successfully. This task is non-trivial and it is what makes wait-free algorithms
notoriously hard to design.

Next, we extend our design using the fast-path-slow-path methodology [KP12], in
order to make it even more efficient, and achieve performance that is almost equivalent
to that of the lock-free linked-list of Harris. Here, the idea is to combine both lock-free
and wait-free algorithms so that the (lock-free) fast path runs with (almost) no overhead,
but is able to switch to the (wait-free) slow path when contention interferes with its
progress. It is also important that both paths are able to run concurrently and correctly.

The fast-path-slow-path method attempts to separate slow handling of difficult cases
from the fast handling of the more typical cases. This method is ubiquitous in systems
in general and in parallel computing particularly [Lam87, MA95, AK99, AK00]. It has
been adapted recently in [KP12] for creating fast wait-free data structures.

According to the fast-path-slow-path methodology of [KP12], an operation starts
executing using a fast lock-free algorithm, and only moves to the slower wait-free path
upon failing to make progress in the lock-free execution. It is often the case that an
operation execution completes in the fast lock-free path, achieving good performance.
But some operations fail to make progress in the fast path due to contention, and in this
case, the execution moves to the slower wait-free path in which it is guaranteed to make
progress. As many operations execute on the fast (lock-free) path, the performance of
the combined execution is almost as fast as that of the lock-free data structure. It is
crucial to note that even the unlucky threads, that do not manage to make progress in
the fast path, are guaranteed to make progress in the slow path, and thus the strong
wait-free guarantee can be obtained. Thus, we obtain the best of both worlds: the
performance and scalability of the lock-free algorithm combined with the wait-free

guarantee.

1.2 A General Wait-Free Simulation for Lock-Free Data

Structures

Our next step is to examine the design process we did to obtain the fast wait-free linked-
list, and try to generalize it for a wide range of data structures. The design process
of our wait-free linked-list, and also of the wait-free queue presented in [KP11, KP12],
is to start with a lock-free data structure, work (possibly hard) to construct a correct
wait-free data structure by adding a helping mechanism to the original data structure,
and then work (possibly hard) again to design a correct and efficient fast-path-slow-path
combination of the lock-free and wait-free versions of the original algorithm. Designing
a slow-path-fast-path data structure is non-trivial. One must design the lock- and
wait-free algorithms to work in sync to obtain the overall combined data structure with
the required properties.

We ask whether this entire design can be done mechanically, and so also by non-



experts. More accurately, given a lock-free data structure of our choice, can we apply a
generic method to create an adequate helping mechanism to obtain a wait-free version
for it, and then automatically combine the original lock-free version with the obtained
wait-free version to obtain a fast, practical wait-free data structure?

We answer this question in the affirmative. Thus, the second major contribution
of this thesis is an automatic transformation that takes a linearizable lock-free data
structure in a normalized representation (that we define) and produces a practical
wait-free data structure from it. The resulting data structure is almost as efficient as
the original lock-free one.

We claim that the normalized representation we propose is meaningful in the sense
that important known lock-free data structures can be easily specified in this form. In
fact, all linearizable lock-free data structures that we are aware of in the literature can be
stated in a normalized form. We demonstrate the generality of the proposed normalized
form by stating several important lock-free data structures in their normalized form
and then obtaining wait-free versions of them using the mechanical transformation.
In particular, we transform the linked-list [Har01, FRO04], the skiplist [HS08], and the
binary search tree [EFRvB10], and obtain practical wait-free designs for them all.

1.3 On the relations between Wait-Freedom and Help

When designing our wait-free linked-list, and also when presenting our general trans-
formation, we employed a helping mechanism. This approach is frequently used in
wait-free designs in literature [Plo89, Her88, Her90, Her91, HS08, KP11, FK11, KP12].
Loosely speaking, in helping mechanisms, apart from completing their own operation,
processes perform some additional work whose goal is to facilitate the work of others.
Curiously, despite being a crucial ingredient, whether explicitly or implicitly, in many
implementations of concurrent data structures, the notion of helping has been lacking
thorough study as a concept.

Intrigued by the tools needed in order to achieve wait-freedom, we offer a rigorous
study of the interaction between the helping paradigm and wait-freedom. In particular,
we are interested in the following question: Does wait-freedom require help? To this
end, we start by proposing a formal definition of help. The proposed definition is based
on linearization order of histories of an implementation rather than on a semantic
description. We give evidence that the proposed definition matches the intuitive notion.
We then present and analyze properties of types for which any wait-free implementation
necessitates help. Such types include popular data structures such as the stack and
the queue. In contrast, we show that other types can be implemented in a wait-free
help-free manner. A natural example is an implementation of a set (with the INSERT,
DELETE, and CONTAINS operations) with a bounded range of possible values.

We note that there is some ambiguity in the literature regarding the concept of help;

it is used informally to describe two different things. One usage of help is in the common



case where processes of lock-free algorithms coordinate access to a shared location.
Here, one process p; completes the (already ongoing) operation of another process ps in
order to enable access to shared data and to allow p; to complete its operation. Barnes
[Bar93] uses this practice as a general technique to achieve lock-freedom. This is also
the case for the queue of [MS96], where processes sometimes need to fix the tail pointer
to point to the last node (and not the one before last) before they can execute their
own operation. Loosely speaking, the purpose of the above practice is not “altruistic”.
A process fixes the tail pointer because otherwise it would not be able to execute its
own operation.

This is very different from the usage of help in, e.g., UPDATE operations in [AAD'93],
which perform embedded scans for the sole “altruistic” purpose of enabling concurrent
SCAN operations. It also differs from reading a designated announcements array, whose
sole purpose is to allow processes to ask other processes for help, such as in [Her88].
In [Her88|, a process could have easily completed its operation without helping any
other operation (by proposing to the consensus object used in this build a value that
consists only the process’s own value, without values of other processes viewed in the
announcements array). Our definition of help deliberately excludes the former concept
(where a process simply enables data access for its own operation), and captures only
the latter “altruistic” form of help.

Having a formal notion of helping, we turn to study the interaction between wait-
freedom and help. We look into characterizing properties of types that require help
in any wait-free implementation. We define and analyze two general types of objects.
The first type, which we call Ezact Order Types, consists of types in which the order of
operations affects the result of future operations. That is, for some operations sequences,
every change in the order of operations influences the final state of the object. Natural
examples of exact order types are FIFO queues and LIFO stacks.

We note that exact order types bare some similarity to previously defined objects,
such as perturbable objects [JTT00] and class G objects [EHS12], since all definitions deal
with an operation that needs to return different results in several different executions.
However, these definitions are not equivalent. For example, queues are exact order types,
but are not perturbable objects, while a max-register is perturbable but not exact order.
We mention perturbable objects in Section 4.10.

The second type, which we call Global View Types, consists of types which support
an operation that obtains the entire state of the object. Examples of global view types
are snapshot objects, increment objects, and fetch&add. For instance, in an increment
object that supports the operations GET and INCREMENT, the result of a GET depends
on the exact number of preceding INCREMENTS. However, unlike the queue and stack,
the result of an operation is not necessarily influenced by the internal order of previous
operations. Notice that global view types are not equivalent to readable objects as
defined by Ruppert [Rup00], since for some global view types any applicable operation

must change the state of the object. For example, a fetch&increment object is a global



view type, but is not a readable object.
We prove that every wait-free implementation of any exact order type and any global
view type requires help. Furthermore, when the CAS primitive is not available, we show

that a max register [AACH12] requires help even in order to provide lock-freedom.

Theorems 4.3, 4.8, 4.11 (rephrased): A linearizable implementation of a wait-free
exact order type or a wait-free global view type using READ, WRITE, and CAS, or a
lock-free max register using READ and WRITE, cannot be help-free.

We prove the above by constructing infinite executions in which some operation
never completes unless helping occurs. This is done by carefully combining the definition
of help with the attributes of the type.

We then show positive results, i.e., that some types can be implemented in a wait-free
help-free manner. This is trivial for a vacuous type whose only operation is a NO-OP,
but when CASes are available this also holds for a max register and for a set type, which
supports the operations INSERT, DELETE and CONTAINS?.

The proof that these types have wait-free help-free implementations can be gen-
eralized to additional types, provided they have an implementation in which every
operation is linearized in a specific step of the same operation. Intuitively, these are
implementations in which the result of an operation “does not depend too strongly” on
past operations.

Naturally, the characterization of types which require help depends on the primitives
being used, and while our results are generally stated for READ, WRITE, and CAS, we
discuss additional primitives as well. In particular, we show that exact order types
cannot be both help-free and wait-free even if the FETCH& ADD primitive is available, but
the same statement is not true for global view types. Finally, we show that a fetch&cons
primitive is universal for wait-free help-free objects. This means that given a wait-free

help-free fetch&cons object, one can implement any type in a wait-free help-free manner.

1.4 Iterator

Almost none of the designs of wait-free, or even of lock-free structures, support operations
that require global information on the data structure, such as counting the number of
elements in the structure or iterating over its nodes. In general, operations such as
these will be trivially enabled if snapshot operations are supported because snapshot
operations enable a thread to obtain an atomic view of the structure. But creating a
“consistent” or linearizable snapshot without blocking simultaneous updates to the data

structure is a difficult task.

2A degenerated set, in which the INSERT and DELETE operations do not return a boolean value
indicating whether they succeeded can also be implemented without CASes.



The next major contribution of this thesis, is the design of wait-free, highly efficient
iterators for concurrent data structures that implement sets. We use this design to
implement iterators for the linked-list and skiplist. The iterator is implemented by first
obtaining a consistent snapshot of the data structure, i.e., an atomic view of all the
nodes currently in it. Given this snapshot, it is easy to provide an iterator, or to count
the number of nodes in the structure.

A well-known related problem is the simpler atomic snapshot object of shared memory
[AAD*93], which has been extensively studied in the literature. An atomic snapshot
object supports only two types of operations: UPDATE and SCAN. An UPDATE writes a
new value to a register in the shared memory, and a SCAN returns an atomic view of all
the registers.

Unfortunately, existing snapshot algorithms cannot easily be extended to support a
(practical) data structure iterator. One problem is that atomic snapshot objects are
designed for pre-allocated and well-defined memory registers. Therefore, they are not
applicable to concurrent data structures that tend to grow and shrink when nodes are
added or removed. Still, one could imagine borrowing ideas from snapshot objects,
generalizing them, and building a snapshot algorithm for a memory space that grows
and shrinks.

A more substantial problem is that data structures require both fast read and fast
write (update) operations. The UPDATE operation in classic snapshot object algorithms
[AAD"93, And94] requires O(n) steps (n is the number of threads), which is too
high an overhead to impose on all operations that modify the data structure. Later
snapshot algorithms support UPDATE in O(1) steps. Examples are the coordinated
collect algorithm of Riany et al. [RST95], subsequently leading to the interrupting
snapshots algorithm [AST09], and the time optimal snapshot algorithms of Fatourou
and Kallimanis [FK07].

The simple nature of a READ operation, i.e., reading a memory register, might
at first glance suggest that implementing it in O(1) should be easy. However, this is
not the case. State of the art algorithms that support UPDATE in O(1) steps employ
non-trivial linearization properties. Some of them ([RST95, AST09, FKO07]) even allow
the linearization point of an UPDATE to occur before the new value has actually been
written to any register in the memory. Thus, a simple READ has no way of retrieving the
value it is supposed to return, since this result is not available anywhere. Consequently,
there is no available snapshot object algorithm that supports both fast reads and fast
writes. One might think of it as a tradeoff: the complex linearization properties that
are used to enable UPDATE in O(1), are precisely those that prevent an implementation
of a READ operation. Section 5.3 specifies Jayanti’s algorithm, which is an example for
an algorithm that uses such an unusual linearization point.

The algorithm of Jayanti [Jay05] is wait-free and supports UPDATE operations in
O(1) steps. Jayanti’s algorithm does not support a READ operation, and it is not trivial

to add an efficient READ to it, but our work builds on ideas from this algorithm. An



UPDATE operation of Jayanti’s algorithm first executes the required update, and then
checks whether a SCAN is currently being taken. If so, the update operation announces
the update again in a designated memory register. In this work we extend this basic idea
to provide a snapshot that supports an efficient READ as well as the INSERT, DELETE,
and CONTAINS operations, which are more complex than the simple UPDATE operation.
This facilitates the desirable iterator operation for the data structure.

Although most lock-free data structures do not provide iterators, one notable
exception is the recent CTrie of Prokopec et al. [PBBO12]. This lock-free CTrie
efficiently implements the creation of a snapshot in constant time, but the performance
of updates deteriorates when concurrent snapshots are being taken, because each updated
node must be copied, together with the path from the root to it. An additional recent
work presenting a concurrent data structure that supports snapshot operations is the
practical concurrent binary search tree of Bronson et al. [BCCO10]. But their work
uses locks, and does not provide a progress guarantee.

This thesis presents a wait-free snapshot mechanism that implements an O(1)
UPDATE and READ operations. We have implemented a linked-list and skiplist that
employ the snapshot and iterator and measured the performance overheads. In our
implementation we made an effort to make updates as fast as possible, even if iterations
take a bit more time. The rationale for this design is that iterations are a lot less frequent
than updates in typical data structures use. It turns out that the iterator imposes
an overhead of roughly 15% on the INSERT, DELETE, and CONTAINS operations when
iterators are active concurrently, and roughly 5% otherwise. When compared to the
CTrie iterator of [PBBO12], our iterator demonstrates lower overhead on modifications
and read operations, whereas the iteration of the data structure is faster with the CTrie

iterator.

1.5 Harnessing HTM to Support Data Structures with

Progress Guarantees

Transactional memory (TM) is becoming an increasingly central concept in parallel
programming. Recently, Intel introduced the TSX extensions to the x86 architecture,
which include RTM: an off-the-shelf hardware that supports hardware transactional
memory. There are practical reasons for a developer to avoid using hardware transac-
tional memory. First, HI'M is only available for some of the computers in the market.
Thus, a code that relies on HTM only suits a fraction of the available computers and
must be accompanied with a different code base for the other platforms. Second, RTM
transactions are “best effort” and are not guaranteed to succeed. Thus, to work with
HTM, a fall-back path must also be provided and maintained, in case transactions
repeatedly fail.

The final contribution of this thesis is a new programming discipline for highly-
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concurrent linearizable objects that takes advantage of HT'M when it is available, and still
performs reasonably when it is not available. For this purpose, we suggest to encapsulate
the HTM inside an intermediate level operation. The intermediate operation is compiled
to an HTM implementation on platforms that support HTM, and to a non-transactional
implementation otherwise. To a certain extent, our intermediate operation can even
be implemented with an “out of the box” fall-back path for failing transactions. This
fall-back path can be made lock-free, or even wait-free, thus rendering our operation a
valid alternative for designing lock-free operations.

The intermediate operation we find best suited for this purpose is a slight variation
of the well-known MCAS (Multi-word Compare And Swap) operation. The MCAS
operation executes atomically on several shared memory addresses. Each address is
associated with an ezrpected-value and a new-value. An execution of MCAS succeeds
and returns true iff the content of each specified address equals its expected value. In
this case, the data in each address is replaced with the new value. If any of the specified
addresses contains data that is different from the expected value, then false is returned
and the content of the shared memory remains unchanged.

We propose an extended interface of MCAS called MCMS (Multiple Compare
Multiple Swap), in which we also allow addresses to be compared without being
swapped. The extension is functionally redundant, because, in effect, comparing an
address without swapping it is identical to an MCAS in which this address’ expected
value equals its new value. However, when implementing the MCMS using transactional
memory, it is ill-advised to write a new (identical) value to replace an old one. Such a
replacement may cause unnecessary transaction aborts.

In order to study the usability of the MCMS operation, we designed two algorithms
that use it. One for the linked-list data structure, and one for the binary search tree.
The MCMS tree is almost a straightforward MCMS-based version of the lock-free
binary search tree by Ellen et al. [EFRvB10]. But interestingly, attempting to design a
linked-list that exploits the MCMS operation yielded a new algorithm that is highly
efficient. The main idea is to mark a deleted node in a different and useful manner.
Instead of using a mark on the reference (like Harris [Har01]), or using a mark on the
reference and additionally a backlink (like Fomitchev and Ruppert [FR04]), or using
a separate mark field (like the lazy linked-list [HHL05]), we mark a node deleted by
setting its pointer to be a back-link, referencing the previous node in the list. This
approach works excellently with transactions.

We present three simple fall-back alternatives to enable progress in case RTM
executions of MCMS repeatedly fail. The simplest way is to use locks, in a similar
manner to lock-elision [RGO1]. The second approach is to use CAS-based MCMS
([HFPO02)) as a fall-back. The third alternative is a copying scheme, where a new copy of
the data structure is created upon demand to guarantee progress. Both the linked-list
and tree algorithm outperform their lock-free alternatives when using either a lock-based

fall-back path or a copying fall-back path. The list algorithm performs up to X2.15
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faster than Harris’s linked-list, and the tree algorithm performs up to X1.37 faster than
the tree of Ellen et al. A fall-back path (that does not use transactions) is at times a bit
faster (up to X1.1) and at times a bit slower than the lock-free alternatives, depending
on the specific benchmark and configuration.

Another important advantage of programming with MCMS is that the resulting
algorithms are considerably simpler to design and debug compared to standard lock-free
algorithms that build on the CAS operation. The stronger MCMS operation allows
lock-free algorithms to be designed without requiring complicated synchronization

mechanisms that facilitate lock-freedom.

1.6 Outline of this Thesis

The main contributions of this thesis appear in Chapters 2 — 6. Chapter 2 gives the
design of our wait-free linked-list, and the extension of it using the fast-path-slow-path
technique to match the performance of the lock-free linked-list of Harris. In Chapter 3
we present our general technique to transform lock-free data structures into wait-free
ones, and use it to obtain four new wait-free data structures. In Chapter 4 we explore
the interaction between help and wait-freedom. We give a formal definition of the
concept of help, and show that many wait-free data structures cannot be implemented
without employing a help mechanism. In Chapter 5 we present a design of an efficient
iterators for lock-free and wait-free data structures that implement sets. In Chapter
6 we discuss our proposed MCMS operation, and show how to use it to obtain faster
lock-free data structures, and still keep a simple design.

Each chapter starts with a small introduction, which adds details and related work,
and also connects the chapter to the previous chapters of this thesis. Excluding Chapter
4, which is more theoretical, all chapters present new designs and implementations of
data structures, and end with a performance measurements section that compare the
new designs to previous alternatives. The individual chapters also include correctness

proves for the main implementations and techniques presented in them.
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Chapter 2

Wait-Free Linked-Lists

2.1 Introduction

As discussed in Section 1.1, this chapter gives the first practical implementation of a
wait-free linked-list. A (shorter) version of the work presented here was published in
[TBKP12]. Our build starts from the lock-free list of Harris [Har01], and add a helping
mechanism to obtain wait-freedom. We then use the fast-path-slow-path technique of
[KP12] to achieve faster performance. This chapter includes the design of the linked-list,
correctness proof, and performance measurements.

We compared our wait-free linked-list’s efficiency with that of Harris’s lock-free
linked-list. Our first design(slightly optimized) performs worse by a factor of 1.5 when
compared to Harris’s lock-free algorithm. This provides a practical, yet not optimal,
solution. However, the fast-path-slow-path extension reduces the overhead significantly,
bringing it to just 2-15 percents. This seems a reasonable price to pay for obtaining a
data structure with the strongest wait-free guarantee, providing non-starvation even in
worst-case scenarios, and making it available for use with real-time systems.

We begin in Section 2.2 with an overview of the algorithm and continue in Section
2.3 with a detailed description of it. The correctness proof appears in Section 2.4. The
linearization points of the algorithm are specified in Section 2.5. We give describe the
fast-path-slow-path extension of the algorithm in Section 2.6, Section 2.7 presents the
performance measurements, and we conclude in Section 2.8. Java implementations of
the wait-free algorithm and of the fast-path-slow-path extension are given in Appendices
A and C respectively. The basic algorithm uses versioned pointers (pointers with a
counter associated with them). Appendix B gives a Java implementation of a variation

of the algorithm that eliminates their need, and uses only regular pointers.

2.2  An Overview of the Algorithm

Before getting into the technical details (in Section 2.3) we provide an overview of

the design. The wait-free linked-list supports three operations: INSERT, DELETE, and
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CONTAINS. All of them run in a wait-free manner. The underlying structure of the
linked-list is depicted in Figure 2.2. Similarly to Harris’s linked-list, our list contains
sentinel head and tail nodes, and the next pointer in each node can be marked using
a special mark bit, to signify that the entry in the node is logically deleted.

To achieve wait-freedom, our list employs a helping mechanism. Before starting
to execute an operation, a thread starts by publishing an Operation Descriptor, in a
special state array, allowing all the threads to view the details of the operation it is
executing. Once an operation is published, all threads may try to help execute it. When
an operation is completed, the result is reported to the state array, using a CAS which
replaces the existing operation descriptor with one that contains the result.

A top-level overview of the insert and delete operations is provided in Figure 2.1.

When a thread wishes to INSERT a key k to the list, it first allocates a new node with

boolean insert(key)
Allocate new node (without help)
Publish the operation (without help) Search for the node to delete
Search for a place to insert the node If key doesn’t exist, return with failure

1: 1: boolean delete(key)

2 2:

3 3

4: 4:

S: If key already exists, return with failure 5:  Announce in the state array the node to be deleted

6: 6:

7 7

8 8
9

Publish the operation (without help)

Direct the new node next pointer Mark the node next pointer to make it logically deleted
Insert the node by directing its predecessor next pointer Physically remove the node
Return with Success Report the node has been removed

Compete for success (without help)

Figure 2.1: Insert and Delete Overview

key k, and then publishes an operation descriptor with a pointer to the new node. The
rest of the operation can be executed by any of the threads in the system, and may also
be run by many threads concurrently. Any thread that executes this operation starts
by searching for a place to insert the new node. This is done using the search method,
which, given a key k, returns a pair of pointers, prev and curr. The prev pointer points
to the node with the highest key smaller than k£, and the curr pointer points to the
node with the smallest key larger than or equal to k. If the returned curr node holds a
key equal to the key on the node to be inserted, then failure is reported. Otherwise
the node should be inserted between prev and curr. This is done by first updating the
new node’s next pointer to point to curr, and then updating prev’s next field to point
to it. Both of these updates are done using a CAS to prevent race conditions, and the
failure of any of these CASes will cause the operation to restart from the search method.
Finally, after that node has been inserted, success is reported.

While the above description outlines the general process of inserting a node, the
actual algorithm is a lot more complex, and requires care to avoid problematic races
that can make things go wrong. For example, when two different threads help insert the
same node, they might get different prev and curr pointers back from the search method,
due to additional changes that are applied concurrently on the list. This could lead

to various problems, such as one of the threads reporting failure (since it sees another
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node with the same key) while the other thread successfully inserts the node (since
it doesn’t see the same node, which has been removed). In addition to these possible
inconsistencies, there is also a potential ABA problem that requires the use of a version
mark on the next pointer field!. We discuss these and other potential races in Section
2.3.4.

When a thread wishes to DELETE a key k from the list, it starts by publishing the
details of its operation in the state array. The next steps can be then executed by
any of the threads in the system until the last step, which is executed only by the
thread that initiated the operation, denoted the owner thread. The DELETE operation is
executed (or helped) in two stages. First, the node to be deleted is chosen. To do this,
the search method is invoked. If no node with the key k is found, failure is reported.
Otherwise, the node to be deleted is announced in the state array. This is done by
replacing the state descriptor that describes this operation to a state descriptor that has
a pointer to the specific node to be deleted. This announcement helps to ascertain that
concurrent helping threads will not delete two different nodes, as the victim node for
this operation is determined to be the single node that is announced in the operation
descriptor. In the second stage, deletion is executed similarly to Harris’s linked-list: the
removed node’s next field is marked, and then this node is physically removed from the
list. The node’s removal is then reported back to the state array.

However, since multiple threads execute multiple operations, and as it is possible
that several operations attempt to DELETE the same node, it is crucial that exactly
one operation be declared as successfully deleting the node’s key and that the others
return failure. An additional (third) stage is required in order to consistently determine
which operation can be considered successful. This step is executed only by the owner
threads, and is given no help. The threads that initiated the concurrent delete operations
compete among themselves for the ownership of the deletion. To this end, an extra
success-bit designated for this purpose is added to each node in the list. The thread
that successfully CASes this bit from false to true is the only one that reports success
for this deletion. We believe that using an extra bit to determine an ownership of an
operation is a useful mechanism for future wait-free constructions as well. The full
details of the DELETE operation are given in Section 2.3.5.

The CONTAINS operation is much simpler than the other two. It starts by publishing
the operation. Any helping thread will then search for it in the list, reporting success

(on the operation record) if the key was found, or failure if it was not.

2.3 The Algorithm

In this section we present the details of the algorithm.

!The versioning method provides a simple solution to the ABA problem. A more involved solution
that does not require a versioned pointer appears in Appendix B.
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2.3.1 The Underlying Data Structures

List: Node: OpDesc:
— head key type
tail next pointer phase
+— statearra\ success bit node
—
currentMaxPhase searchResult

[ = [ = [ = [ B = 1]

OpDesc of thread 0 OpDesc of thread 1 OpDesc of thread 2 OpDesc of thread 3

Figure 2.2: General structure

The structure of the linked-list is depicted in Figure 2.2. A node of the linked list
consists of three fields: a key, a success bit to be used when deleting this node, and
a special pointer field. The special pointer field has its least significant bit used by
the algorithm for signaling between threads. In addition, this pointer is versioned, in
the sense that there is a counter associated with it (in an adjacent word) and each
modification of it (or of its special bit) increments the counter. The modification and
counter increment are assumed to be atomic. This can be implemented by squeezing all
these fields into a single word, and limiting the size of the counter and pointer, or by
using a double-word compare-and-swap when the platform allows. Alternatively, one
can allocate a “pointer object” containing all these fields and bits, and then atomically
replace the existing pointer object with a new one. The latter approach is commonly
used with Java lock-free implementations, and we use it as well.

In addition to the nodes of the list, we also maintain an array with an operation-
descriptor for each thread in the system. The OpDesc entry for each thread describes
its current state. It consists of a phase field phase, the OpType field signifying which
operation is currently being executed by this thread, a pointer to a node, denoted node,
which serves the insert and delete operations, and a pair of pointers (prev, curr), for
recording the result of a search operation. Recall that the result of a SEARCH operation

of a key, k, is a pair of pointers denoted prev and curr, as explained in Section 2.2 above.

The possible values for the operation type (OpType) in the operation descriptor state are:
insert asking for help in inserting a node into the list.

search_delete asking for help in finding a node with the key we wish to delete.
execute_delete asking for help in marking a node as deleted (by tagging its

next pointer) and unlinking it from the list.

contains asking for help in finding out if a node with the given key exists.
success operation was completed successfully.
failure operation failed (deletion of a non-existing key or insertion of an existing key).
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determine_deletéecide if a delete operation completed successfully.

The first four states in the above list are used to request help from other threads.
The last three states indicate steps in the executions in which the thread does not require
any help. The linked-list also contains an additional long field, currentMaxPhase, to

support the helping mechanism, as described in Subsection 2.3.2.

2.3.2 The Helping Mechanism

Before a thread starts executing an operation, it first selects a phase number larger
than all previously chosen phase numbers. The goal of assigning a phase number to
each operation is to let new operations make sure that old operations receive help and
complete before new operations are executed. This ensures non-starvation. The phase
selection mechanism ensures that if operation Oy arrives strictly later than operation
01, i.e., O1 receives a phase number before Oy starts selecting its own phase number,
then Oy will receive a higher phase number. The phase selection procedure is executed
in the MAXPHASE method depicted in Figure 2.3. Note that although a CAS is used in
this method, the success of this CAS is not checked, thus preserving wait-freedom. If
the CAS fails, it means that another thread increased the counter concurrently, which is
sufficient for the phase numbering. After selecting a phase number, the thread publishes
the operation by updating its entry in the state array. It then goes through the array,
helping all operations with a phase number lower than or equal to its own. This ensures
wait-freedom: a delayed operation eventually receives help from all threads and soon

completes. See Figure 2.3 for the pseudo-code.

2.3.3 The Search Methods

The CONTAINS method, which is part of the data structure interface, is used to check
whether a certain key is a part of the list. The SEARCH method is used (internally)
by the INSERT, DELETE, and CONTAINS methods to find the location of a key and
perform some maintenance during the search. It is actually nearly identical to the
original lock-free SEARCH method. The SEARCH method takes a key and returns a pair
of pointers denoted window: pred, which points to the node containing the highest key
less than the input key, and curr, which points to the node containing the lowest key
higher than or equal to the requested key. When traversing through the list, the SEARCH
method attempts to physically remove any node that is logically deleted. If the remove
attempt fails, the search is restarted from the head of the list. This endless attempt
to fix the list seems to contradict wait-freedom, but the helping mechanism ensures
that these attempts eventually succeed. When an operation delays long enough, all
threads reach the point at which they are helping it. When that happens, the operation
is guaranteed to succeed. The SEARCH operation will not re-iterate if the operation that

executes it has completed, which is checked using the ISSEARCHSTILLPENDING method.
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28: private Window search(int key, int tid, long phase) {
29: Node pred = null, curr = null, succ = null;

30:  boolean[] marked = {false}; boolean snip;

31:  retry : while (true) {

1: private long maxPhase() {
2:  long result = currentMaxPhase.get();
3 currentMaxPhase.compare AndSet(result, result+1);

;1 , return result; 2. pred = head:
6: 33: curr = pred.next.getReference(); > advancing curr
. . 34: while (true) {
7: private void help(long phase .
P L P( ep ){ . 35: > Reading both the reference and the mark:
8:  for (inti=0;i < state.length(); i++) {
. 36: succ = curr.next.get(marked);
9: OpDesc desc = state.get(i); . . .
. . 37: while (marked[0]) { > curr is logically deleted
10: if (desc.phase <= phase) { > help older perations .
. . 38: > Attempt to physically remove curr:
11: if (desc.type == OpType.insert) { .
. 39: snip = pred.next.compareAndSet
12: helplInsert(i, desc.phase);
13: } else if (desc.type == OpType.search_delete 40: (curr, suc, false, falsc);
: op plype. - 41; if (lisSearchStillPending(tid,phase))
14: || desc.type == OpType.execute_delete) { .
. 42: return null; > to ensure wait-freedom.
15: helpDelete(i, desc.phase); . . . .
. . 43: if (!snip) continue retry; > list has changed, retry
16: } else if (desc.type == OpType.contains) { R
. 44: curr = succ; > advancing curr
17: helpContains(i, desc.phase); R
18- 358! 45: succ = curr.next.get(marked); > advancing succ
) 46: }
19: e . .
20: private boolean isSearchStillPending(int tid, long ph) { 47 if (currkey > lfey) > The window is found
. 48: return new Window(pred, curr);
21:  OpDesc curr = state.get(tid); .
. 49: pred = curr; curr = succ; > advancing pred & curr
22:  return (curr.type == OpType.insert ||
50: }
23: curr.type == OpType.search_delete ||
51}
24: curr.type == OpType.execute_delete || 52 1
25: curr.type==OpType.contains) && 5%:
26: curr.phase == ph;
27: } 34
55:

Figure 2.3: The Help and Search methods

If the associated operation is complete, then the SEARCH method returns a null. The
pseudo-code for the search method is depicted in Figure 2.3.

2.3.4 The Insert Operation

Designing operations for a wait-free algorithm requires dealing with multiple threads
executing each operation, which is substantially more difficult than designing a lock-free
operation. In this section, we present the insert operation and discuss some of the races
that occur and how we handle them. The basic idea is to coordinate the execution of
all threads using the operation descriptor. But more actions are required, as explained
below. Of-course, a proof is required to ensure that all races have been handled. The
pseudo-code of the INSERT operation is provided in Figure 2.4. The thread that initiates
the operation is denoted the operation owner. The operation owner starts the INSERT
method by selecting a phase number, allocating a new node with the input key, and
installing a link to it in the state array.

Next, the thread (or any helping thread) continues by searching the list for a location
where the node with the new key can be inserted (Line 17 in the method HELPINSERT).
In the original lock-free linked-list, finding a node with the same key is interpreted as
failure. However, in the presence of the helping mechanism, it is possible that some
other thread that is helping the same operation has already inserted the node but has
not yet reported success. It is also possible that the node we are trying to insert was

already inserted and then deleted, and then a different node, with the same key, was
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inserted into the list. To identify these cases, we check the node that was found in the
search. If it is the same node that we are trying to insert, then we know that success
should be reported. We also check if the (next field of the) node that we are trying to
insert is marked for deletion. This happens if the node was already inserted into the list
and then removed. In this case, we also report success. Otherwise, we attempt to report
failure. If there is no node found with the same key, then we can try to insert the node
between pred and curr. But first we check to see if the node was already inserted and
deleted (line 35), in which case we can simply report success.

The existence of other threads that help execute the same operation creates various
races that should be properly handled. One of them, described in the next paragraph,
requires the INSERT method to proceed with executing something that may seem
redundant at first glance. The INSERT method creates a state descriptor identical to the
existing one and atomically replaces the old one with the new one (Lines 42-45). The
replacement foils all pending CAS operations by other threads on this state descriptor,
and avoids confusion as to whether the operation succeeds or fails. Next, the method
executes the actual insertion of the node into the list (Lines 46-48) and it attempts to
report success (Lines 49-52). If any of the atomic operations fail, the insertion starts
from scratch. The actual insertion into the list (Lines 46-48) is different from the
insertion in the original lock-free linked-list. First, the next pointer in the new node is
not privately set, as it is now accessible by all threads that help the insert operation. It
is set by a CAS which verifies that the pointer has not changed since before the search.
Namely, the old value is read in Line 16 and used as the expected value in the CAS of
Line 46. This verification avoids another race, which is presented below. Moreover, the
atomic modification of the next pointer in the previous node to point to the inserted
node (Lines 47-48) uses the version of that next pointer to avoid the ABA problem.
This is also justified below.

Let us first present the race that justifies the (seemingly futile) replacement of the
state descriptor in Lines 42-45. Suppose Thread T} is executing an INSERT operation of
a key k. T1 finds an existing node with the key &k and is about to report failure. 77 then
gets stalled for a while, during which the other node with the key k is deleted and a
different thread, T5, helping the same INSERT operation that T is executing, does find a
proper place to insert the key k, and does insert it, but at that point 77 regains control
and changes the descriptor state to erroneously report failure. This sequence of events
is bad, because a key has been inserted but failure has been reported. To avoid such a
scenario, upon finding a location to insert k, T5 modifies the operation descriptor to
ensure that no stalled thread can wake up and succeed in writing a stale value into the
operation descriptor.

Next, we present a race that justifies the setting of the next pointer in the new
node (Line 46). The INSERT method verifies that this pointer has not been modified
since it started the search. This is essential to avoid the following scenario. Suppose

Thread T3 is executing an INSERT of key k and finds a place to insert the new node N
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1:
2
3
4:
5:
6.
7
8 }
9:

public boolean insert(int tid, int key) {

long phase = maxPhase(); > getting the phase for the op
Node newNode = new Node(key); > allocating the node
OpDesc op = new OpDesc(phase, OpType.insert, newNode,null);

state.set(tid, op); > publishing the operation
help(phase); > when finished - no more pending operation with lower or equal phase

return state.get(tid).type == OpType.success;

10: private void helpInsert(int tid, long phase) {

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56: }

while (true) {
OpDesc op = state.get(tid);
if (!(op.type == OpType.insert && op.phase == phase))
return; > the op is no longer relevant, return
Node node = op.node; > getting the node to be inserted
Node node_next = node.next.getReference();
Window window = search(node.key,tid,phase);

if (window == null) > operation is no longer pending
return;

if (window.curr.key == node.key) { > chance of a failure
if ((window.curr==node)||(node.next.isMarked())){ > success

OpDesc success =
new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, op, success))
return;
}

else { > the node was not yet inserted - failure
OpDesc fail=new OpDesc(phase,OpType.failure,node,null);
> the following CAS may fail if search results are obsolete:
if (state.compareAndSet(tid, op, fail))
return;
}

}
else {
if (node.next.isMarked()){ > already inserted and deleted
OpDesc success =
new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, op, success))
return;
}

int version = window.pred.next.get Version(); > read version.
OpDesc newOp=new OpDesc(phase,OpType.insert,node,null);
> preventing another thread from reporting a failure:
if (Istate.compareAndSet(tid, op, newOp))
continue; > operation might have already reported as failure
node.next.compareAndSet(node_next,window.curr,false,false);
if (window.pred.next.compareAndSet
(version, node.next.getReference(), node, false, false)) {
OpDesc success =
new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, newOp, success))
return;
}

}

Figure 2.4: The insert operation
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in between a node that contains £ — 1 and a node that contains k£ + 2. Now T} gets
stalled for a while and T5, helping the same INSERT operation, inserts the node N with
the key k , after which it also inserts another new node with key k£ + 1, while 77 is
stalled. At this point, Thread T} resumes without knowing about the insertion of these
two nodes. It modifies the next pointer of N to point to the node that contains k + 2.
This modification immediately foils the linked-list because it removes the node that
contains k 4 1 from the list. By making 77 replace the next field in NV atomically only
if this field has not changed since before the search, we know that there could be no
node between N and the node that followed it at the time of the search.

Finally, we justify the use of a version for the next pointer in Line 47, by showing
an ABA problem that could arise when several threads help executing the same insert
operation. Suppose Thread T} is executing an INSERT of the key k into the list. It
searches for a location for the insert, finds one, and gets stalled just before executing
Line 47. While T} is stalled, T> inserts a different k into the list. After succeeding
in that insert, 75 tries to help the same insert of k£ that 77 is attempting to perform.
T5 finds that k already exists and reports failure to the state descriptor. This should
terminate the insertion that 77 is executing with a failure report. But suppose further
that the other k is then removed from the list, bringing the list back to exactly the
same view as 17 saw before it got stalled. Now T} resumes and the CAS of Line 47
actually succeeds. This course of events is bad, because a key is inserted into the list
while a failure is reported about this insertion. This is a classical ABA problem, and
we solve it using versioning of the next pointer. The version is incremented each time
the next pointer is modified. Therefore, the insertion and deletion of a different k key

while T} is stalled cannot go unnoticed. 2

2.3.5 The Delete Operation

In this section we describe the DELETE operation. Again, a more complicated mechanism
is required to safely execute the operation by multiple threads. Most of the problems are
solved by a heavy use of the operation record to coordinate the concurrently executing
threads. However, an interesting challenge here is the proper report of success or failure
of the deletion in a consistent manner. We handle this problem using the success bit
as described below.

The pseudo-code of the DELETE operation is provided in Figure 2.5. The DELETE
operation starts when a thread changes its state descriptor to announce the key that
needs to be deleted, and that the current state is search_delete (the first stage in
the delete operation). The thread that performs this DELETE operation is called the
operation owner. After setting its state descriptor, other threads may help the delete.

The main part of the DELETE operation, which is run in the HELPDELETE method, is

2We also implemented a more involved technique for handling this problem, using only a regular
Markable Pointer. The full code for this alternative solution is given in Appendix B.
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partitioned into two. It starts with the initial state search_delete and searches for the
requested key. If the requested key is found, then the state is updated to execute_delete,
while leaving the PRED and CURR pair of pointers in the operation descriptor. From
that point and on, there is a specific node whose deletion is attempted. In particular,
when the state becomes execute_delete, it can never go back to search_delete. If the

requested key is not found, HELPDELETE will attempt to report failure (Lines 27-28).

As the state becomes execute_delete and the node to be deleted is fixed, the second
stage is executed in Lines 36-44. The attemptMark method used on the pointer in
Line 38 tests that the pointer points to the expected reference, and if so, attempts
by an atomic CAS to mark it for deletion. It returns true if the CAS succeeded, or
if the node was marked already. In lines 37-39, the thread repeatedly attempts to
mark the found node as deleted. After succeeding, it runs a search for the node. Our
SEARCH method guarantees that the node of the corresponding DELETE operation is
“physically” disconnected from the list. After deleting the node, the state is changed into
determine_delete (Line 41-43), a special state meaning the operation is to be completed
by the owner thread. The deleted node is linked to the operation descriptor, and the

method returns.

Helping DELETE is different from helping INSERT in the sense that the help method
in this case does not execute the entire DELETE operation to its completion. Instead,
it stops before determining the success of the operation, and lets the operation owner
decide whether its operation was successful. Note that this does not foil wait-freedom,
as the operation owner will never get stuck on deciding whether the operation was
successful. When the help method returns, there are two possibilities. The simpler
possibility is that the requested key was not found in the list. Here it is clear that the
operation failed and in that case the state is changed by the helper to a failure and the
operation can terminate. The other possibility is that the requested key was found and
deleted. In this case, it is possible that several DELETE operations for the same key
were run concurrently by several operation owners and by several helping threads. As
the delete succeeded, it has to be determined which operation owner succeeded. In such
a case there are several operation owners for the deletion of the key k& and only one
operation owner can return success, because a single DELETE has been executed. The
others operation owners must report failure. This decision is made by the operation
owners (and not by the helping threads) in Line 9 of the DELETE method itself. It
employs a designated success bit in each node. Whoever sets this bit becomes the
owner of the deletion for that node in the list and can report success. We believe that
this technique for determining the success of a thread in executing an operation in the

presence of helping threads can be useful in future constructions of wait-free algorithms.
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1: public boolean delete(int tid, int key) {
2:  long phase = maxPhase(); > getting the phase for the op
3 state.set(tid, new OpDesc
4:  (phase, OpType.search_delete, new Node(key),null)); > publishing
5. help (phase); > when finished - no more pending operation with lower or equal phase
6:  OpDesc op = state.get(tid);
7 if (op.type == OpType.determine_delete)
8: > Need to compete on the ownership of deleting this node:
9: return op.searchResult.curr.success.compareAndSet(false, true);

10:  return false;

11: }

12:

13: private void helpDelete(int tid, long phase) {
14:  while (true) {

15: OpDesc op = state.get(tid);

16: if (!((op.type == OpType.search_delete ||

17: op.type == OpType.execute_delete) &&

18: op.phase==phase))

19: return; > the op is no longer relevant, return
20: Node node = op.node; > holds the key we want to delete
21: if (op.type == OpType.search_delete) {

22: Window window = search(node.key,tid,phase);

23: if (window==null)

24: continue; > operation is no longer the same search_delete
25: if (window.curr.key != node.key) { > key doesn’t exist - failure
26: OpDesc failure=new OpDesc(phase,OpType.failure,node,null);

27: if (state.compareAndSet(tid, op, failure))

28: return;

29: }

30: else { > key exists - continue to executre_delete
31: OpDesc found = new

32: OpDesc(phase, OpType.execute_delete, node, window);

33: state.compareAndSet(tid, op, found);

34: }

35:

36: else if (op.type == OpType.execute_delete) {

37: Node next = op.searchResult.curr.next.getReference();

38: if (lop.searchResult.curr.next.attemptMark(next, true)) > mark
39: continue; > will continue to try to mark it, until it is marked
40: search (op.node.key,tid,phase); > to physically remove the node
41: OpDesc determine = new OpDesc

42: (op.phase,OpType.determine_delete,op.node,op.searchResult);

43: state.compareAndSet(tid, op, determine);

44: return;

45: }

46: '}

47: '}

Figure 2.5: The delete operation
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2.3.6 The Contains Operation

The CONTAINS method does not modify the list structure. Accordingly, some publications
claim that it is wait-free even without the use of a help mechanism (see [HS08]). This
is not entirely accurate. For example, consider a linked-list of sorted strings. A
CONTAINS method traversing it without any help may never reach the letter B, because
of infinite concurrent insertions of strings starting with an A. Thus, we provide here an

implementation of the CONTAINS method that employs a help mechanism?.

The CONTAINS operation starts when a thread changes its state descriptor to
announce the key it wants to find. It then proceeds to the help method as usual. In the
HELPCONTAINS method, a helping thread calls the SEARCH method, and uses a CAS
to try to alter the state to a success or failure, depending on whether the wanted key
was found. The help mechanism guarantees that the search will not suffer from infinite
concurrent insertions of new keys, since other threads will help this operation before
entering new keys (perhaps excluding a key they are already in the process of inserting).
The pseudo-code for the CONTAINS and the HELPCONTAINS methods is depicted in
Figure 2.6. The HELPCONTAINS method differs from the HELPINSERT and HELPDELETE
methods in that it doesn’t require a loop, as a failure of the CAS updating the state for

this operation can only occur if the operation was already completed.

2.3.7 Memory management

The algorithm in this work relies on a garbage collector (GC) for memory management.
A wait-free GC does not currently exist. This is a common difficulty for wait-free
algorithms. A frequently used solution, which suits this algorithm as well, is Michael’s
Hazard Pointers technique [Mic04]. Hazard pointers can be used for the reclamation
of the operation descriptors as well, and not only for the reclamation of the list nodes

themselves.

2.4 A Correctness Proof

In this section we elaborate the proof for correctness and wait-freedom of the algorithm
described in Section 2.3, and in particular of its Java implementation in Appendix A.
All references to lines of code refer to the implementation of Appendix A. We begin
this section with an overview containing only the highlights of the proof. A full proof
follows after that.

3Technically, for a list of sorted integers, it is possible to easily implement a wait-free contains that
does not use the help mechanism since the number of possible keys is bounded. However, this yields a
poor bound on the time.
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1: public boolean contains(int tid, int key) {

2: long phase = maxPhase();

3 Node n = new Node(key);

4: OpDesc op = new OpDesc(phase, OpType.contains, n, null);

5: state.set(tid, op);

6: help(phase);

7 return state.get(tid).type == OpType.success;

8 }

9:
10:  private void helpContains(int tid, long phase) {
11: OpDesc op = state.get(tid);
12: if (!((op.type == OpType.contains) && op.phase==phase))
13: return; > the op is no longer relevant, return
14: Node node = op.node; > the node holds the key we need to search
15: Window window = search(node.key, tid, phase);
16: if (window == null)
17: return; > can only happen if operation is already complete.
18: if (window.curr.key == node.key) {
19: OpDesc success = new OpDesc(phase, OpType.success, node, null);
20: state.compareAndSet(tid, op, success);
21: }
22: else {
23: OpDesc failure = new OpDesc(phase, OpType.failure, node, null);
24: state.compareAndSet(tid, op, failure);
25: }
26:  }

Figure 2.6: The contains and helpContains methods

2.4.1 Highlights

Basic Concepts and Definitions. The mark bit, is the bit on the next field of each
node, and it is used to mark the node as logically deleted. A node can be marked or
unmarked according to the value of this bit. We define the nodes that are logically
in the list to be the unmarked nodes that are reachable from the list’s head. Thus, a
logical change to the list, is a change to the set of unmarked nodes reachable from the
head. We say that a node is an infant node if it has never been reachable from the head.
These are nodes that have been prepared for insertions but have not been inserted yet.

In the proof we show that at the linearization point of a successful insert, the inserted
value becomes logically in the list and that at a linearization point of a successful delete,
a node with the given value is logically deleted from the list. To show this, we look at

the actual physical modifications that may occur to the list.

Proof Structure. One useful invariant is that a physical change to the list can
only modify the node’s next field, as a node’s key is final and never changes after
the initialization of a node. A second useful invariant is that a marked node is never
unmarked, and that it’s next field never changes (meaning, it will keep pointing to the
same node). This is ascertained by examining all the code lines that change a node’s

next field, and noting that all of them do it using a CAS which prevents a change from
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taking effect if the node is marked. We next look at all possible physical changes to a

node’s next field, and show that each of them falls in one of the following four categories:
* Marking: changing the mark bit of a node that is logically in the list to true.
* Snipping: physically removing a marked node out of the list.

* Redirection: a modification of an infant node’s next pointer (in preparation for its

insertion).

* Insertion: a modification of a non-infant node to point to an infant node (making

the latter non-infant after the modification).

Proving that every physical change to a node’s next field falls into one of the four
categories listed above, is the most complicated part of the formal proof, and is done by
induction, with several intermediate invariants. Finally, it is shown that any operation
in the marking category matches a successful delete operation and any operation in
the insertion category matches a successful insert operation. Thus, at the proper
linearization points the linked list changes according to its specification. Furthermore,
it is shown that physical operations in the Redirection and Snipping categories cause no
logical changes to the list, which completes the linearizability proof.

To show wait-freedom, we claim that the helping mechanism ensures that a limited
number of concurrent operations can be executed while a given insert or delete execution
is pending. At the point when this number is exhausted, all threads will help the

pending operation, and then it will terminates within a limited number of steps.

2.4.2 General

The linked list interface corresponds to that of a set of keys. The keys considered to be
in the set at any given point are the keys found on unmarked (see Definition 2.4.17)
nodes reachable from the head. An insert(key) method should succeed (return true)
and add the key to the set if and only if the key is not in the set; otherwise it should
fail (return false). A delete(key) method should succeed (return true) and remove a
key from the set if and only if the key is in the set; otherwise it should fail (return
false). The contains method is not included in this proof, since it has not changed from

previous implementations, and is independent of the rest of the proof.

2.4.3 Definitions

Definition 2.4.1. Head key and Tail key. The Head key is defined to be smaller than
all valid keys, and the tail key is greater than all valid keys.

Definition 2.4.2. A threadID (or tid). A threadID is a unique identifier for each
thread.
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Definition 2.4.3. Operation. An operation is an attempt to insert or delete a key

from the list, and is initiated by calling either the insert or the delete method.

Definition 2.4.4. Legal operation. A legal operation is initiated by a thread calling
either the insert(tid, key) or delete(tid, key) method with its own tid. (Calling it with a
different tid is considered illegal.) Moreover, the key must be strictly greater than the
head key, and strictly smaller than the tail key. We assume no illegal operations are

attempted.

Definition 2.4.5. Operation phase number. Each operation receives a phase number,
chosen at the insert or delete method that initiated it. This is the number returned

from the maxPhase() method called from the appropriate (insert or delete) method.

Definition 2.4.6. Operation’s methods. The insert or delete method that initiated an
operation is part of the operation. In addition the search, helpInsert, and helpDelete
methods all receive a tid and a phase number as parameters. They are thus considered

as a part of the operation that corresponds to this tid & phase pair.

Definition 2.4.7. Operation owner. The operation owner, or the owner thread, is the

thread that initiated the operation.

Definition 2.4.8. The operation’s node, the operation’s key. The (single) node allo-
cated in each insert or delete operation will be called the operation’s node. The node
can also be said to belong to the operation. Its key will be called the operation’s key.

At an insert operation, we may also refer to the operation’s node as the inserted node.

Definition 2.4.9. Successful operation. A successful operation is an operation for

which the (insert or delete) method that initiated it returned true.

Definition 2.4.10. Thread’s entry. A thread’s entry in the state array is the entry in

the state array corresponding to state[tid].

Definition 2.4.11. Thread’s state. A thread’s state is the OpType of its entry in
the state array (one of: insert, search_delete, execute_delete, success, failure, deter-

mine_delete).

Definition 2.4.12. State’s phase number. A state’s phase number is the phase number

present at the phase field of its entry in the state array.

Definition 2.4.13. Pending states. The insert, search_delete and execute_delete states

are considered pending states. The other states are non-pending.

Definition 2.4.14. Pending operation. An operation is considered pending if its owner’s

state is pending with the phase number of the operation.
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Definition 2.4.15. Publishing an operation. A thread publishes an operation, by (first)
changing its state into pending, with the phase number of the operation. (This is done
only at the insert and delete methods, and if all operations are legal, can only be done

by the operation’s owner.)

Definition 2.4.16. List initialization. The list initialization includes all the actions
done in the constructor of the list. These operations must all be completed before the

initialization of the first operation to the list.

Definition 2.4.17. Mark bit. A node’s mark bit is the additional bit at the node’s
next field. A node is considered marked if this node is on (set to 1). Otherwise a node

is said to be unmarked.

Definition 2.4.18. Reachable node. A reachable node is a node reachable from the
head. Sometimes we shall specifically mention ’a node reachable from node x’, but

otherwise reachable means reachable from the head.

Definition 2.4.19. Nodes/Keys logically in the list. The set of nodes logically in the
list is the set of unmarked reachable nodes. The set of keys logically in the list is the
set of keys that are in the set of nodes logically in the list.

Definition 2.4.20. Logical change. A logical change to the list is a change to the set

of unmarked reachable nodes.

Definition 2.4.21. Physical change. A physical change to the list is a change to one
of the fields (key, next, or mark bit) of a node.

Definition 2.4.22. Infant node. At any given point, an infant node is a node that was

not reachable until that point.

Definition 2.4.23. Node’s logical set. A node’s logical set is the set of unmarked

nodes reachable from it, not including itself.

Definition 2.4.24. Node’s inclusive logical set. A node’s inclusive logical set is the set
of unmarked nodes reachable from it, including itself. (Note that for a marked node, its

logical set is identical to its inclusive logical set.)

One final note regarding the definitions: in order to prove correctness, we must
also assume the phase number will not overflow its range and thus become negative
(or duplicate). When using the long field, this can be done by assuming no more than
263 operations are executed on the list. Although this limit is surely enough for any
practical use, we do not want to give any bound to the number of operations, because
that will severely limit the value of the wait-freedom definition. Instead, we will assume
that if the number of operations is bigger than 293, the phase field will be replaced with

a field of sufficient size.
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2.4.4 General List Invariants

Observation 2.4.25. After the list initialization, the head and tail never change,

meaning that the head and tail fields of the list always refer to the same nodes.
Observation 2.4.26. A node’s key is never changed after its initialization.
Observation 2.4.27. New nodes are always allocated unmarked.

Observation 2.4.28. All nodes, excluding the head, are unreachable at the moment

of allocation.
Claim 2.4.29. A marked node is never unmarked.

Proof: Changes to a node’s next field are made only in lines 18, 39, 75, 138, 140, 174.
We shall go over them one by one.

Line 18, node.next is initialized as unmarked.

Line 39, head.next is set to unmarked.

Line 75, a CAS that cannot change the mark is performed.

Line 138, a CAS that cannot change the mark is performed.

Line 140, a CAS that cannot change the mark is performed.

Line 174, attemptMark is made to try and set the mark to true.

Claim 2.4.30. A marked node’s next field never changes.

Proof: Changes to node.next field are made only in lines 18, 39, 75, 138, 140, 174. We
shall go over them one by one.

Line 18, initialization. The node cannot be marked at this point.

Line 39, head.next is set. The head cannot be marked at this point, since this is executed
only in the constructor of the list, and marking has not yet taken place.

Line 75, a CAS is performed that checks the node.next to be unmarked.

Line 138, a CAS is performed that checks the node.next to be unmarked.

Line 140, a CAS is performed that checks the node.next to be unmarked.

Line 174, attemptMark is performed. It is a CAS instruction that never changes the

reference of node.next, and can only change the node from unmarked to marked.

Claim 2.4.31. Once a node has become marked, its next field will never change.

Proof: This follows directly from Claims 2.4.29,2.4.30

Observation 2.4.32. The search method never touches infant nodes. In particular,
a window (Pred, Curr) that is returned from the search method never contains infant

nodes.

This is correct since the search method only traces objects that are reachable (or were

once reachable from the head).
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Observation 2.4.33. Throughout the code, window(Pred, Curr) instances are created
only in the search method. This means that both Pred and Curr in any window instance

are never infant nodes.

We are about to introduce the most important and complicated lemma in the proof.
Loosely speaking, this lemma characterizes all the possible physical changes that may be

applied to a node. But before introducing the lemma, we need to define those changes.

Definition 2.4.34. Marking, Snipping, Redirection, and Insertion

Marking: the mark bit of the next field of a reachable node is set (from 0 to 1).
Snipping: the execution of an atomic change (CAS) from the state: A->R->B, when R
is marked and A is unmarked and reachable, to A->B, when A is still unmarked.
Redirection: loosely speaking, redirection is the operation of preparing a new node A
for insertion to the list. It consists of setting its next pointer to point to what should
be its next node, B. Formally, a redirection is an atomic change of a node A’s next field
to point to a node B such that:

(a) B is not an infant (see Definition 2.4.22) at the time the CAS is executed.

(b) B.key > A.key (recall that, by Observation 2.4.26, keys do not change during the
execution).

(c) A’s logical set (see Definition 2.4.23) at the time the CAS is executed (and before
the CAS assignment takes effect) is a sub-set of B’s inclusive logical set (see Definition
2.4.24) at the time the CAS is executed.

Insertion: loosely speaking, insertion is the atomic operation that adds a node B
into the list by making a reachable node point to it. Formally, insertion is an atomic
modification (CAS) of a node A’s next field to point to B such that:

(a) A is reachable and unmarked at the time the CAS operation is executed, and also
immediately after the CAS assignment takes effect.

(b) B.key > A key

(c) B is an infant immediately before the CAS (as a result of this CAS, B ceases being
an infant).

(d) Immediately before the CAS, A’s logical set and B’s logical set are identical. (Intu-
itively speaking, the insertion logically adds B to the list, without making any other

logical changes).

Lemma 2.4.35. After the list is initiated, there are only four possible modifications
of a mode’s next field: Marking, Snipping, Redirection and Insertion, as defined in
Definition 2.4.34. (These four possible changes do not include the allocation of nodes.)
Furthermore:

1) Marking can occur only in line 174, and line 174 may result in Marking or have no
effect at all.
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2) Insertion can occur only in line 140, and line 140 may result in Insertion, Redirection,

or have no effect at all.

Proof: The proof is by induction. Before any modifications are made to any node’s next
field, it is trivially true that all the modifications were one of the allowed modifications.
We shall prove that if all the modifications until a particular moment in time were one
of the allowed four defined in Definition 2.4.34, then all the modifications made at that
moment also fall into that category.

Let T; be a moment in time, and assume that all modifications of a node’s next field
before T; were Marking, Snipping, Redirection or Insertion. We shall prove that all the
modifications made at T; are also one of these four. But before proving it directly, we

need several additional claims.

Claim 2.4.36. Before T;, an infant node cannot be marked.

Proof: Before T;, the only changes possible to a node’s next field are the four mentioned
above. Of these, only marking can result in a node being marked, and marking can only

be done on a reachable (and thus non-infant) node.

Claim 2.4.37. Before T;, a reachable nmode cannot become unreachable while it is

unmarked.

Proof: Before T;, the only possible changes to the next field of nodes are Marking,
Snipping, Redirection and Insertion; none of them will cause an unmarked node to
become unreachable:

Marking doesn’t change reachability.

Snipping only snips out a single marked node.

Redirection may only add nodes to the set of unmarked reachable nodes of a given node.

Insertion may only add a node to the set of unmarked reachable nodes of a given node.

Claim 2.4.38. Before T;, if B is in A’s logical set (see Definition 2.4.23) at any given

moment, then it will remain in A’s logical set as long as it is unmarked.

The proof is by observing that none of the four possible changes to a next field can

invalidate this invariant, and is similar to the proof of the previous claim.

Claim 2.4.39. Before T;, a node may only ever point to a node with a key higher than

its own.

Proof by induction: Before the first execution line after the initialization, the only
node pointing to another node is head-> tail, and is thus sorted by the definition of
the head key and tail key (Definition 2.4.1). By Observation 2.4.26, a node’s key is
never changed. Before T}, the only possible changes to a node’s next field are Marking,

Snipping, Redirection and Insertion. Marking doesn’t change the pointed node, and
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thus cannot invalidate the invariant. Snipping, by definition, only snips out a node,
and thus, by transitivity, if the invariant holds before snipping, it will hold after it.
Redirection and Insertion can, by definition, only change a node’s next field to point to

a node with a higher key.

Corollary 2.1. Before T;, the list is sorted in a strictly monotonously increasing order,

and there are no two reachable nodes with the same key.

Proof: This follows directly from Claim 2.4.39.

Claim 2.4.40. Before T;, the head is never marked.

Proof: Changes to a node’s next field are only made in lines 18, 39, 75, 138, 140, 174.
Looking at these lines, we can see that the only place that a node can become marked is
in line 174. In this line, an attempt is made to mark the node that appears as the Curr
field in a window. By Observation 2.4.33, this window was originally returned from the
search method. In the search method, Curr can only be read from the next field of a node.
Before T;, a node can only ever point to a node with a higher key than its own, by Claim
2.4.39. By Definition 2.4.1, no node can have a key smaller than the head key, so we
conclude that before T;, no node can point to the head, and thus the head cannot be re-

turned as the Curr field in a window by the search method, and thus it cannot be marked.

The following Claim refers to the linearization point of the search method. Loosely

speaking, it means that before T;, the search method works correctly.

Claim 2.4.41. Before T;, when calling the search(key) method, if the method returns
with a valid (not null) window (Pred,Curr), then during the method’s execution there
was a point (the search linearization point) in which all the following were true:

(a) Pred.key < key, and Pred was the last node in the list satisfying this condition.

(b) Curr.key >= key, and Curr was the first node in the list satisfying this condition.
(c) Pred was unmarked.

(d) Curr was unmarked.

(e) Pred.next pointed to Curr.

Proof: We start by proving that Pred.key<key. Pred is initialized in line 69 as the head,
and by Definition 2.4.1, head.key < all possible keys. Pred is later modified only in line
84, but the failure of the condition in line 82 guarantees that the new value of Pred.key
will remain lower than the key (recall that, by Observation 2.4.26), a node’s key never
changes so pred.key < key throughout the run. Next, we show that curr.key >= key
upon return from the search method. If the search method did not return null, then
it must have returned via line 83. The condition in line 82 guarantees that Curr.key
>= key. Given that Pred.key<key and Curr.key >= key and since the list is sorted

in a strictly monotonously increasing order (by Corollary 2.1), showing (e), i.e., that
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Pred.next pointed to Curr, will guarantee the second part of (a), i.e., that Pred was the
last node satisfying Pred.key < key, and similarly, the second part of (b), that Curr
was the first node satisfying Curr.key >= key. So it remains to show that (e) holds, to
conclude that (a) and (b) also hold. We next show that (e), (c), and (d) hold.

The last update of Curr before returning from the search method must happen after
the last update of Pred, because whenever Pred is updated, there is always an update
to Curr right after. (See Lines 69, 70, and 84 where Pred is modified.) There are three
possible cases for when curr was last updated, and for each we will show that (c), (d),
and (e) hold:

1. The last update to Curr was in line 70.

Then during the read of Pred’s (head) next field, Pred pointed to Curr (e), and Pred was
unmarked since, by Claim 2.4.40, the head is never marked (c). Now, if the condition
in line 73 were true, then Curr would have been updated again (either in line 79 or
again in 70) and thus after the last update to Curr it was false, meaning that Curr
wasn’t marked at line 72, which happened after line 70. Since a marked node is never
unmarked (Claim 2.4.29), then it was also unmarked during the read of Pred’s next
field in line 70 (d).

2. The last update to Curr was in line 79.

The condition in line 78 guarantees that line 79 can only be reached if the CAS in line 75
(Snipping) succeeds. That CAS changes pred.next field to point to the value that Curr
will receive in line 79, and only succeeds if Pred is unmarked. Thus, if we reached line
79, then at the point immediately after that CAS, Pred.next pointed to Curr eventual
value (e), and Pred was unmarked (c). Similarly to the previous case, if this is the last
update of Curr, then the loop condition in line 73 checked after this update must be
false (otherwise there would be another update), and thus Curr was unmarked during
the read of line 80, and since a marked node is never unmarked (Claim 2.4.29), then
also during the CAS of line 73. (d)

3. The last update to Curr was in line 84.

In line 84 Pred gets the value of Curr, and right after that Curr gets the value of Succ.
This Succ value was read either at line 72 or 80, in each case, from Curr.next. So in
the execution of line 84, Pred gets the Curr that pointed to the Succ that is now being
put into Curr. So during the setting of Succ (line 72 or 80) prior to the last update of
Curr in line 84, the eventual Pred pointed to the eventual Curr (e). Also, after the read
of Succ (the eventual Curr) either in line 72 or 80, the condition in line 73 is checked,
and must be false (otherwise Curr would be updated again), which guarantees that at
that point the (eventual) Pred wasn’t marked (c). Finally, after the last update of Curr
in line 84, curr.next is read again (line 72), and tested again (in line 73) to make sure

Curr isn’t marked either, and therefore was also not marked at any time before (d).

Claim 2.4.42. Before T;, a node’s next field never points to an infant node.
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(Note that this isn’t entirely trivial, since infant means "has never been reachable from
the head’, and not 'has never been reachable from any node.) Proof: Let us see that
the four possible changes to a node’s next field cannot cause a non-reachable node to
point to an infant node. (Making a reachable node point to an infant node will simply
cause the node to cease being infant, not invalidate the claim). Marking, Snipping and
Insertion specifically define that only the next field of a reachable node can be changed,

and Redirection specifically defines that the newly pointed node must be a non-infant.

Corollary 2.2. Before T;, an unmarked node that is reachable from any node, is also
reachable from the head. (Alternatively, the logical set (Definition 2.4.23) of any node is
a subset of the set of nodes logically in the list (Definition 2.4.19).)

Proof: This follows from Claims 2.4.29,2.4.37,2.4.42.

Definition 2.4.43. A node’s maximal set is the set of all the unmarked reachable

nodes with a key greater than its own.

Claim 2.4.44. Before T;, Redirection (Definition 2.4.34) cannot affect A’s logical set
(Definition 2.4.23) if A’s logical set is already maximal prior to the Redirection.

Proof: By definition, Redirection can only add nodes to a node’s logical set. But it
is impossible to add nodes to it, if it is already maximal, since by Corollary 2.2 and

Definition 2.4.43, a node’s logical set is always a subset of its maximal set.

Corollary 2.3. An unmarked node that is not an infant is reachable and thus logically
in the list.

Proof: This follows from Claim 2.4.37.

Claim 2.4.45. Before T;, a Redirection of the next field of a node A cannot change the

logical set of any non-infant node B.

Proof: If A is an infant itself, then it cannot be reachable from any node (Claim
2.4.42), and thus redirection on its next field can only affect its own logical set, and
since A is an infant, this is allowed. If A is marked, then by definition, Redirection
cannot be applied on its next field anyway. If A is non-infant and unmarked, then
it is reachable (Corollary 2.3). So, since the list is sorted (Corollary 2.1), all the
unmarked reachable nodes with a key greater than A.key are reachable from A. By
definition, Redirection can only increase A’s logical set, but there are no keys larger
than A’s key in the list. Also, redirection cannot be made to point to an infant (i.e.,

unreachable) node. Thus, redirecting A’s next pointer cannot change the logical set of A.

We are now ready to show that any modifications to a node’s next field at time T;

are restricted to Marking, Snipping, Redirection, and Insertion, and thus conclude the
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proof of Lemma 2.4.35.
Changes to a node’s next field are made only in lines 18, 39, 75, 138, 140, 174. We shall
go over them one by one:

Line 18: The allocation of a new node is excluded from the statement of the Lemma.

Line 39: This line is only executed during the list initialization, and is thus also

excluded from the Lemma assertion.

Line 75: This instruction line is Snipping, which is inside the search method. For
the change to take place, the CAS must succeed. Let us verify that in this case all the
Snipping requirements are met:

Pred, Curr, and Succ nodes of the search method are here A, R, and B of the snipping
definition. We need to show that the CAS is from state Pred->Curr->Succ when Pred
is unmarked and reachable and Curr is marked, to Pred->Succ, when Pred is still
unmarked and reachable. The condition in line 73 guarantees that the Curr was marked.
Claims 2.4.29 and 2.4.31 guarantee that once marked, it will remain marked, and that
its next field will never change. Thus, if the CAS in line 75 succeeds, we know for certain
that before its execution the state was Pred->Curr->Succ (that CAS checks Pred->Curr,
and Curr->Succ is guaranteed by Claim 2.4.31), that Curr was marked (Claim 2.4.29),
and that Pred wasn’t marked (the CAS verifies this). Also, since the search method
never reaches infant nodes (Observation 2.4.32) and Pred is unmarked, then Pred is
reachable (By Corollary 2.3). Thus, after the execution, the state is Pred->Succ, Curr
is still marked, and Pred is still not marked, and thus also surely reachable (Claim
2.4.37). Also note that A is surely reachable: this is true because line 75 is inside the
search method, which never reaches infant nodes and A is also unmarked. We con-

clude that it is a legal Snipping, and thus line 75 can either do nothing or a legal Snipping.

Line 138: This instruction line is Redirection, which is done inside the helpInsert
method. Let us see that if the CAS succeeds, then all the redirection requirements are
met: this CAS attempts to set the inserted node’s (see Definition 2.4.8) next field to
point to window.curr. Window is the value returned from the search method called in
line 110. (This search is for the operations’s key.) We need to show:

(a) Window.curr is not an infant. (This is immediate from Observation 2.4.33.)

(b) Window.curr.key > operation’s key.

(c) Immediately before the CAS, the inserted node’s logical set is a subset of the Win-
dow.curr inclusive logical set (Definitions 2.4.23, 2.4.24).

(a) is immediate, as stated above.
(b) The search method linearization claim (Claim 2.4.41) guarantees that Window.curr.key
>= the operation’s key. The condition in line 113 guarantees that window.curr.key

= operation’s key, otherwise line 138 wouldn’t have been reached, so window.curr.key
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must be larger than the operation’s key.

(c) Now, line 138 is trying by a CAS to replace the inserted node’s next with window.curr,
and it compares the inserted node’s next to the value node_next read in line 109, before
the search method that returned the window is called. If node_next is null and the CAS
succeeds, then the set of unmarked reachable nodes from the inserted node immediately
before the CAS is the empty set, trivially fulfilling the condition. So we shall assume
node_next is not null. By Claim 2.4.42, node_next is also not an infant node. By Claim
2.4.41 (the search method linearization claim), there was a point, the search linearization
point, at which Window.curr was the first unmarked reachable node in the list, with a
key >= the operation’s key.

We will prove (c) by claiming following: Before T}, suppose there is a point in time in
which two nodes A and B satisfy that there exists a key K such that:

1. Neither A nor B are infants.

2. Both A.key and B.key >= K.

3. A is the first unmarked reachable node in the list satisfying A.key >= K.

Then B’s logical set will always be a subset of A’s logical set (as long as none of them
is reclaimed). This is true by induction: at the search linearization point, the set of
unmarked nodes reachable from A is the maximum possible set for nodes with a key
greater than K, and thus, B’s logical set is surely a subset of this set. The four possible
changes to a node’s next field before T;:

Marking: Only affects the mark of the marked node, and not the reachability of any
node from any node. This clearly can’t produce an unmarked reachable node from B
which is not reachable from A.

Snipping: Only snips out a marked node, and doesn’t affect reachability of any unmarked
nodes.

Redirection: Since neither A nor B are infant, by Claim 2.4.45 Redirection cannot
change the set of unmarked reachable nodes from them.

Insertion: Two Cases:

1. At the search linearization point, B is marked; thus, its next field cannot be changed
(by Claim 2.4.31), and in particular cannot be changed by insertion. So the only way
to add a node to B’s logical set is by insertion (changing the next field of one of the
unmarked nodes reachable from B), but all these nodes are also reachable from A, and
thus this will also add this node to the set of unmarked nodes reachable from A.

2. At the search linearization point, B is unmarked. Since B is not an infant, it is
reachable from the head, and since A was the first unmarked node with a key greater
than K in the list, then B was reachable from A. Since while B is unmarked it will
remain reachable from A (by Claim 2.4.38), then also changing B’s next field by insertion
directly will add the new node to the set of nodes reachable from A. Once B is marked

and its logical set is still a subset of A’s logical set, we are back to case 1.

Line 140: This line is inside the helpInsert method as well. The instruction in it
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is normally an Insertion, and can sometimes be a (private case of) Redirection. Let us
see that if the CAS succeeds, either all Insertion or all Redirection requirements are
met.

This line contains a CAS that changes window.pred to point to the inserted node.
Window was the search result for the operation’s key in line 110. Note that this CAS
also checks for version. To prove a valid Insertion, we need to show that all the following
are true:

(a) window.pred is reachable and unmarked immediately before the CAS, and also
immediately after the CAS.

(b) The operation’s key > window.pred.key

(c) The inserted node is an infant immediately before the CAS.

(d) Immediately before the CAS, window.pred’s logical set is identical to the inserted
node’s logical set.

Note that if (c) is not fulfilled, then this is a legal Redirection, so we will focus on
proving (a), (b), (d).

(a) window.pred is clearly not an infant since it was returned by the search method.
The CAS makes sure it is unmarked and, by Corollary 45, reachable.

(b) This is immediate from Claim 2.4.41 since window is the result of the search for the
operation’s key in line 110.

(d) In the CAS of line 140, we compare window.pred.next pointed node to the one
previously read from the inserted node’s next field. If the inserted node’s next field
hasn’t changed between its reading and the CAS, then immediately before the CAS
both the inserted node’s next field and the window.pred.next point to the same node,
so obviously the set of unmarked nodes reachable from both is identical. If the node
pointed by the inserted node’s next field has changed, then the set of unmarked nodes
reachable from it could only have grown, since before 7T; all changes to a node’s next field
can only add to the set of unmarked nodes reachable from it. However, window.pred is
unmarked and reachable, its logical set is the maximum, and thus the two sets must
still be equal.

Now, recall that we don’t need (and can’t) prove item (c), since line 140 can be either
Insertion or Redirection. Note that if it is a Redirection, it is a futile one by Claim 2.4.45
(meaning that it doesn’t change the logical set of any node). In general, all redirections

changing the next field of a non-infant node are futile (unwanted, but harmless).

Line 174: This line contains the Marking instruction, and it is inside the helpDelete
method. In this line we attempt to mark the next field of a node stored in the searchRe-
sult.curr field of a state entry. This field (the searchResult of the OpDesc class) can
only be written to a value different than null in line 168. In line 168 this field(the
searchResult of the OpDesc) receives the result of a search method. Thus, since the
search method doesn’t return in its window nodes that are infants (Observation 2.4.32),

we know for sure that this is an attempt to mark a non-infant node. If it is already
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marked, then this line cannot possibly make any difference. If it is not, then by Corollary
2.3 this node is reachable, and thus this is a CAS to mark the next field of a reachable

node, and thus a legal marking.

To conclude, we have seen that if all modifications to a node’s next field before T; are
due to Marking, Snipping, Redirection or Insertion, then all modifications at T; also

belong to one of these categories, and we have finished proving Lemma 2.4.35.

Corollary 2.4. All the claims used during the proof of Lemma 2.4.35 hold throughout
the run (And not only ’before T;’).

Proof: A direct result of proving Lemma 2.4.35. For the rest of the proof we shall treat

those claims in their general form.

Corollary 2.5. Insertion and Marking (as defined in Definition 2.4.34) are the only
logical changes to the list, when Insertion adds exactly one node (the inserted node) into

the list, and Marking removes exactly one node (the marked node) from the list.

Proof: This is a direct result of Observation 2.4.26 (a node’s key is never changed), and
of Lemma 2.4.35.
Snipping: Only changes the reachability of a marked node, and thus makes no logical
changes to the list.
Redirection: According to Claim 2.4.45, it is clear that Redirection cannot make logical
changes to the list.
Marking: Since we mark a reachable node, it is clear this takes this node logically out
of the list.
Insertion: By definition Insertion inserts a previously infant node, while making no
other changes to the set of unmarked reachable nodes.

Notes about parallel CASes that happen at exactly the same time:
a. A node cannot be marked more than once even at the same moment, since this is
done by a CAS on its next field. So it is safe to assume that each marking has the effect
of logically removing a distinct node from the list.
b. The same node cannot be inserted more than once even at the same moment, since
at any given moment the node has only one possible place in the list, and thus the
Insertion CAS is on a specific field. So it is safe to assume that each Insertion has the
effect of logically adding a distinct node to the list.
c. It can easily be shown that the same node cannot be marked and inserted at the
same moment (it must be inserted before it is marked), but this is not necessary for the

point of our discussion.

Claim 2.4.46. An infant node can only cease being infant via its Insertion.

Proof: By Claim 2.4.42, no node can ever point to an infant node, and thus, the first

time a node is pointed to is when it stops being infant, meaning that the first time it is
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pointed to it is from a node reachable from the head. This first time it is pointed to
must be when one of the four possible changes occurs:

Marking doesn’t change the pointed node, and thus the change that causes the node to
cease being infant cannot be Marking.

Snipping by definition changes a node’s next field to point to a node that was already
pointed to by another node before, and thus it cannot be the first time a node is pointed
to.

Redirection by definition changes a node’s next field to point to a node that is not an
infant, and thus it cannot be the change that causes a node to cease being infant.

So the first time a node is pointed to by the next field of any node can only be when an
Insertion occurs. This Insertion makes the node reachable from the head, and thus no

longer infant.

Claim 2.4.47. An infant node is never marked.

Proof: Of the four possible instructions that modify a node’s next field, the only one
modifying the mark of a node is Marking, which is done on a reachable (and thus

non-infant) node by definition.

Observation 2.4.48. The fields of an Operation Descriptor (opDesc in the code) are

final. That is, they are never changed after initialization.

Claim 2.4.49. After initialization, a non-pending state (success, failure or deter-

mine_delete) for a thread cannot be altered by any thread other than itself.

Proof: The state array changes in lines 49, 56, 117, 123,130,136,142,163,169,179.
Lines 49 and 56: These lines are inside the insert method and the delete method. Both
methods are only called by the operation owner thread to initiate the operation. By
definition of legal operations (Definition 2.4.4), both are only called with the tid of the
thread owner. Thus, both can only alter the state of the running thread.

Lines 117,123,130 and 136 are inside the helpInsert method. They contain a CAS that
only succeeds if the operation is the one read in line 105. The condition in line 106
guarantees that it is a pending (insert) operation, and Observation 2.4.48 guarantees
that it will remain so.

Line 142: This line contains a CAS and only succeeds if the old operation is the one
created in line 133. This operation is a pending (insert) state.

Lines 163,169,179: These lines are inside the helpDelete method, and they use a CAS
that compares the given parameter to the value read at line 151. The condition in
line 152 guarantees that the state in that case is pending (either search_delete or

execute_delete).

Claim 2.4.50. FEach thread can execute at most one operation with a given phase
number. This means that a pair consisting of a threadID (Definition 2.4.2) and a phase

number (Definition 2.4.5) uniquely identifies an operation.
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Proof: By definition of legal operations (Definition 2.4.4), the insert and delete methods,
which initiate operations, can only be executed with a threadID matching the thread
that runs them. So for any given threadID, the operations are executed sequentially,
one after the other. When a thread calls the maxPhase method twice in succession, then
this method is guaranteed to return two different phaselDs, since each call increases
the maxPhase integer by at least one during the run of each maxPhase. Note that if
the CAS that increases this integer fails, then it must hold that another thread has
incremented this number, as all modifications to this number (except for its initialization)

are increments.

Claim 2.4.51. A non-pending operation (Definition 2.4.14) cannot revert to pending.

Proof: We have already seen in the proof of the previous claim that a non-pending
operation can only be changed inside the insert or delete methods (which are only
executed by the owner thread and not by helper threads). But these methods never
change an operation’s state to non-pending; they only create a new state operation,

which will have a different phaselD.

Claim 2.4.52. A search method might only return a null window if its operation

(Definition 2.4.6) is no longer pending.

Proof: Immediate from the condition in line 76.

2.4.5 The Insert Operation

Recall first the definition of Insertion (Definition 2.4.34). Note the difference between an
Insertion, which is a single CAS that inserts a node, and an insert operation (Definitions
2.4.3,2.4.6), which consists several methods that may be called by several different
threads, and is initiated when the owner thread of the operation calls the insert method
(Definition 2.4.7). Also recall that a successful operation is one for which the method
that initiated it returned true (Definition 2.4.9). In this part of the proof, we want to
establish a connection between Insertions and insert operations. In particular, we will
show a one-to-one correspondence between Insertions and successful insert operations.
We will use the (tid, phase) pair as a connector between them. First, we shall define

four functions.

Definition 2.4.53. The Insert Functions - A,B,C,D

Function A: Insertion -> (tid, phase) pair.
Matches each Insertion to the (tid, phase) pair that were that parameters for the
helpInsert method that the insertion was a part of. (Recall that, by Lemma 2.4.35,

Insertions may only occur in line 140).

Function B: insert operation -> (tid, phase) pair.
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Matches each insert operation to a (tid, phase) pair, such that the tid is that of the
owner thread (which by definition of legal operations is also the tid parameter of the
insert method), and the phase is the number returned from the maxPhase() method

invoked inside the insert method that initiated this operation.
Function C: Insertion -> insert operation. C(x) = B~}(A(x)).

Function D: insert operation -> Insertion or NULL.
D(y) = C~(y) if defined
or NULL otherwise

Claim 2.4.54. A thread whose state is other than insert can only reach the insert state

i an insert method called by the same thread.

Proof:

Line 49: This line is indeed inside the insert method. It changes the state for the given
tid and, by definition of legal operations (Definition 2.4.4) the given tid must be that of
the running thread.

Line 136: This line contains a CAS that can only succeed if the current state of the
operation owner is the one read in line 105, and the condition in line 106 guarantees
that the state of the operation owner is already an insert.

The rest of the lines never attempt to write an operation with the insert state.

Claim 2.4.55. Function A (Definition 2.4.53) is an injective function.

Proof : Let x be an insertion. By Lemma 2.4.35, we know that Insertion can only take
place in a successful CAS in line 140, so we know that x took place in line 140. In this
line an attempt is made to insert the node read in line 108 from the variable op into
the list. The condition in line 106 guarantees that this op has the same (tid, phase)
pair as A(x). Claim 2.4.50 guarantees that there is no other operation with the same
(tid, phase) pair. The node read in line 108 is the operation’s node (Definition 2.4.8)
allocated in the insert method, so if another Insertion x’ exists such that A(x) = A(x),
then both Insertions are inserting the same node. But by definition of Insertion, it is
inserting an infant node into the list, and immediately after that the node is no longer
infant. So two Insertions of the same node cannot happen at two different times. Two
Insertions of the same node also cannot happen at the same moment because the list
is sorted (Corollary 2.1), and thus at a single moment a node can only be inserted
into a specific place in the list. So two simultaneous insertions of the same node must
execute a CAS on the same predecessor for this node, which cannot be done at the
same time. We conclude that each node can only be inserted (via Insertion) once, and
thus two distinct Insertions must insert two distinct nodes, and thus have two distinct

(tid, phase) pairs.
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Claim 2.4.56. Function B is an injective function.

This follows directly, and is a private case of Claim 2.4.50.

Claim 2.4.57. Function C is defined for every insertion, and is injective.

Proof: C(x) is defined as B~!(A(x)). We should first note that B~! is well defined.
We know this from Claim 2.4.56 that B is injective. B~! is thus also injective, and By
Claim 2.4.55 A is also injective. So C is injective as a composition of injective functions.
We still need to show that C is defined for every Insertion x. A is defined for every
Insertion x, but B~! is most certainly not defined for every (tid, phase) pair. However,
B is defined for all insert operations, and thus B~! is defined for all (tid, phase) pairs
that match an insert operation. This is all we need, since for every insertion x, A(x) is
indeed a (tid, phase) pair that matches an insert operation. This is true since Insertion
only happens at the helpInsert method, and helpInsert is only called in line 94, when the
condition in line 93 guarantees that the (tid, phase) pair matches a state of a (pending)
insert. Claim 2.4.54 guarantees that this can only be the case if the (tid, phase) pair

matches an insert operation.

Claim 2.4.58. Function D is well defined.

Proof: This is true since C is an injective function (Claim 2.4.57).

Claim 2.4.59. A helpInsert method will not be finished while its operation is pending.

Proof : The HelpInsert method is comprised of an infinite loop and can only be ended
in one of the following lines:

107: The condition in line 106 guarantees this can only happen if the insert operation is
no longer pending.

112: The condition in line 111 guarantees this can only happen if the search method
returned null, which can only happen if the operation (given to it) is no longer pending
(Claim 2.4.52)

118: The condition in line 117 guarantees this can only happen if the state was
successfully changed to non-pending in the same line (117).

124: The condition in line 123 guarantees this can only happen if the state was
successfully changed to non-pending in the same line (123).

131: The condition in line 130 guarantees this can only happen if the state was
successfully changed to non-pending in the same line (130).

143: The condition in line 142 guarantees this can only happen if the state was

successfully changed to non-pending in the same line (142).

Corollary 2.6. A help(phase) method will not finish while a pending insert operation

with the same phase number exists.
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This is an immediate conclusion by the structure of the help method (it calls the
helpInsert method) and Claim 2.4.59.

Corollary 2.7. An insert method will not be finished while the operation initiated by it

is still in a pending state.

This is an immediate conclusion by the structure of the insert method (it calls the help
method) method and Corollary 2.7.

Claim 2.4.60. A thread in a pending inert state can only reach a different state in the

helpInsert method.

Proof: According to Corollary 2.7, the insert and delete methods cannot change this
state since while the insert is pending the owner thread hasn’t yet finished the insert
operation. The helpDelete method cannot change this state since every change of a
state in it is by a CAS that ensures it only changes a pending delete (search_delete
or execute_delete) state. The rest of the lines that change a state are only inside the

helpInsert method.

Claim 2.4.61. A thread’s state can only be changed into success in the helpInsert

method, and only if the insert’s operation’s node is no longer an infant.

Proof: A success state can only be written (throughout the code) in the helpInsert
method. We will go over each of the lines that change a state into success and see that
they can only be reached if the operation’s node is no longer an infant. A success state
can be written in the following lines:

Line 117: The condition in line 114 guarantees that this line can only be reached in one
of two cases:

1. The operation’s node is marked, and thus, by Claim 2.4.47 is not an infant.

2. The node was returned inside the window that the search method returned, and thus
is not an infant (Observation 2.4.32).

Line 130: The condition in line 128 guarantees this line can only be reached if the
inserted node is marked and thus non-infant (Claim 2.4.47).

line 142: The condition in line 140 guarantees this line can only be reached if the CAS
in line 140 succeeded. By Lemma 2.4.35, if this CAS succeeds it is either an Insertion
of the inserted node (which thus ceases being an infant node), or a Redirection, and
thus the inserted node is already not an infant, by definition of Redirection (Definition
2.4.34).

Claim 2.4.62. For each successful insert operation (recall successful means returned
true) denoted y, D(y) is not NULL.

Proof : Another way to formulate this claim is that for each insert method that returned

true, an insertion took place during the insert operation. The structure of the insert
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method guarantees that it returns true if and only if the state of the owner will be
changed into success. By Claim 2.4.61, it means that the operation’s node is no longer

an infant. By Claim 2.4.46, this implies that a corresponding Insertion took place.

Claim 2.4.63. The key added to the list as a result of an Insertion (the Insertion is

denoted x) is identical to the key given as a parameter to the insert method that initiated

Clx).

Proof: The key added to the list as a result of an Insertion x is the key that is on
the inserted node, which is the operation’s node read from the state in line 108. The
operation’s node for an insert operation is created in line 47, with the key given to the

insert method.

Claim 2.4.64. Immediately before insertion, the key to be inserted is not in the list.

Proof: By Corollary 2.1 a valid insert retains the strict monotonicity of the list, and

therefore the key cannot exist in the list during Insertions.

Claim 2.4.65. For an unsuccessful insert operation (meaning that the insert method
that initiated it returned false), denoted y, D(y) = NULL.

Proof: An unsuccessful insert operation can only happen if the pending insert operation
changed to something other than success. By Claim 2.4.60, this can only happen in
the helpInsert method. By Corollary 2.7, the insert operation will not be finished while
the state is still pending, and if the state changed to success, the operation will not
fail. Since for an insert operation y, d(y) can only be an Insertion in which the inserted
node is the operation’s node, it is enough to show that the operation’s node in a failing
operation can never be inserted. A word of caution: it is not enough to show that when
the insert operation ceases to be in a pending state, the node of that operation is still an
infant. We also need to show that it cannot possibly be inserted later by other threads
currently inside a helpInsert method for the same operation. Let us go over the changes
of the state inside the helpInsert method. For each one, we shall see that one (and only
one) of the following holds:

1. It changes the state to success, and thus the operation will result in being successful,
not relevant here (lines 117, 130, 142).

2. It changes the state but to a state that is still a pending insert, and thus the insert
method must still be in progress and cannot (yet) return false (line 136).

3. It changes the state to failure, but we can show that the node that belongs to the
operation is certainly an infant and also cannot be inserted later(line 123).

In line 110 a search is done for the operation’s key. The condition in line 113 guarantees
that line 123 can only be reached if the search method found a node with the same key.
The condition in line 114 guarantees that line 123 can only be reached if that node is

not the operation’s node, and also that the operation’s node is not marked (at least not
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at this time). So, during the search of line 110 we know that there was a point, the
search linearization point, at which:

1. The operation’s node was not in the list.

2. The operation’s node was not marked. (Claim 2.4.29)

3. A different node with the same key was in the list (we will call it the hindering node).
1 and 2 together mean that the operation’s node was infant at the time (using Claims
2.4.37, and also 2.4.29 again). Now, if an Insertion of the operation’s node is to take
place, then it must be in a concurrent thread running helpInsert of the same operation
after reading op in line 105. (If it did not yet read op, it will find the operation no longer
pending, and will return from the helpInsert method.) Now, before this concurrent
thread gets to the Insertion (line 140), it must also change the state in a (successful)
CAS in line 136. There are two possible cases:

1. The CAS of the failure in line 123 takes place before the concurrent CAS in line 136.
But then the CAS in line 136 cannot be successful, because it will compare the current
state to the obsolete state read in line 105.

2. The CAS of the failure in line 123 takes place after the concurrent CAS in line 136.
Then, in order for the CAS of the failure in line 123 to succeed, it must have read the
old state after the CAS of the concurrent thread in line 136. This also means that it
reached line 110, and the search point, only after the concurrent thread read the version
of its window.pred in line 133. Now, if at the time the concurrent thread read the
version in line 133, the hindering node was already in the list, then the window.pred
could not point past it (since the keys are sorted), and thus, the CAS of the Insertion
in line 142 must have failed. It can only succeed if the pointer in window.pred hasn’t
changed, and also it points to a node equal to one read from the operation’s node next
field, which must have a key greater than the (identical) key of the hindering node and
the operation’s node. If at the time the concurrent thread read the version in line 133
the hindering node was not yet in the list, and window.pred.next pointed to a node with
a key greater than the operation’s key, then the hindering node must be later inserted
into the list, and this must change the next field of the window.pred, advancing the
version, and ensuring that the insertion CAS in line 140 cannot succeed (indeed, this is

the reason why we needed the version in the first place).

Claim 2.4.66. For every Insertion z, the CAS operation that caused it occured during

the execution time of the insert method that initiated C(z).

(This claim is necessary to show that this Insertion is a legal linearization point for the
insert method.)

Proof: For the insert operation y = C(x), we know that D(y) = x, which means by
Claim 2.4.65 that y was a successful insert, and returned true. That can only happen
if the state of the owner thread was success, which by Claim 2.4.61, can only happen
if the Insertion x has already taken place. The Insertion cannot take place before the

insert operation C(x) starts, because the (tid, phase) pair of a state is created only at
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the insert method that initiates the operation.

Claim 2.4.67. An insert operation can only fail if during a search method belonging
to that operation, another node with the same key was logically in the list (at the

linearization point of that search method).

Proof: We have seen in the Proof of Claim 2.4.65 that an unsuccessful insert operation
can only be the result of a CAS changing the state of the operation to failure in line
123. The combined conditions of lines 113 and 114 guarantee that this line can only be
reached if an appropriate hindering node, with the same key, was returned from the

search method of that operation that was called in line 110.

Lemma 2.4.68. An insert method that finished "works correctly’, meaning that one of

the following has happened:

* It returned true, inserted the key, and at the point of linearization no other node

with the same key eristed.

* It returned false, made no logical changes to the list, and at the point of lineariza-

tion another node with the same key existed.

Proof: If the insert method that initiated an operation denoted y returned true (i.e.,
the operation was successful), then by Claim 2.4.62 D(y) is a corresponding Insertion,
which happened during the execution time of the insert (Claim 2.4.66), which inserted
a key that was not in the list at that time (by Claim 2.4.64). If the insert method
returned false, then by Claim 2.4.66 it corresponds to no insertion, and by Claim 2.4.67,
another node with the same key existed at the linearization point of a search method
that belonged to this operation, and this point is also defined as the linearization point

of the insert operation.

2.4.6 The Delete Operation

Recall first the definition of Marking (Definition 2.4.34), and the definition of a delete
operation (Definitions 2.4.3,2.4.6). Also recall that a successful operation is one for
which the method that initiated it returned true (Definition 2.4.9).

Claim 2.4.69. A thread’s state can only be changed into search_delete in the delete
method called by the same thread.

Proof: Line 56 is inside the delete method, and indeed changes a thread’s state into
a search_delete. By the definition of legal operations (Definition 2.4.4) this can only
be called by the same thread. The other lines that change a thread’s state (49, 117,
123,130,136,142,163,169,179) never attempt to make the state a search_delete.

Claim 2.4.70. A thread can only reach the execute_delete state directly from the

search_delete state.

46



Proof: An attempt to set a state to execute_delete is made only in line 169 using a CAS.
The condition in line 156 guarantees that this CAS may only succeed if the value it is

compared to (the previous state) is a search_delete.

Claim 2.4.71. A delete method will not finish while the operation it belongs to is
pending.

Proof: The delete method is constructed so that it publishes a (pending) delete (using
the search_delete state), and then calls the help method. The help method loops through
the state array. If by the time it reads the state of the owner thread of the delete
operation it is no longer pending, there is nothing left to prove. If it is still pending, it
will call the helpDelete method. If so, we can now refer to the helpDelete method, which
was called as part of this delete operation by the operation owner. This helpDelete
method is constructed by an infinite loop that may only exit at one of the following
lines:

line 154: In which case the condition in lines 152-153 guarantees that the operation is
no longer pending. (By Claim 2.4.51 it cannot return to a pending state.)

line 164: In which case the condition in line 163 guarantees the operation is changed to
no longer being pending.

line 180: The condition in line 172 guarantees that line 180 can only be reached if the
operation was at state execute_delete. There are two possible cases for this.

1. When the helpDelete method called by the operation owner reached line 179, the
CAS succeeded, and thus in line 180 the operation is no longer pending.

2. When the helpDelete method called by the operation owner reached line 179, the
CAS didn’t succeed. This can only happen if some other thread changed the state.
But a different thread could not have done it in the insert or delete method, since
those can only be called by the operation owner (by definition of legal operations).
All other changes to a state are by means of a CAS. The only one that can possibly
change an execute_delete state is the one in line 179, which would have made the state
determine_delete and no longer pending. Other lines cannot be reached if the value that
is compared to is an operation with a state of execute_delete. (In other words, there is
no need to check that the CAS in line 179 succeeded, because it can only fail if another
thread already executed the same CAS.)

Claim 2.4.72. An execute_delete can only be changed into a determine_delete state,
and only in a CAS in line 179.

This is an immediate result of the proof of the previous claim. We shall briefly reiterate
the relevant parts.

An execute_delete state cannot be changed inside the delete or insert methods, since in
these methods a thread only changes its own state (by definition of legal operations),
but, according to the previous claim, the owner thread will not finish the delete method

that initiated this operation while the operation is pending. The remaining changes to
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a state are executed by a CAS, and the only CAS that compares the previous value to a

state with execute_delete is the one in line 179, which changes it into a determine_delete.

Definition 2.4.73. Possible routes of a delete operation’s state.

Route 1: published search_delete in line 56 -> CAS into failure in line 163.
Route 2: published search_delete in line 56 -> CAS into execute_delete in line 169 ->
CAS into determine_delete in line 179.

Claim 2.4.74. The state of any delete operation from publishing until it is not pending

can only follow one of the two routes in Definition 2.4.73.

Proof:

Fact: A pending delete operation’s state cannot be changed outside the helpDelete
method.

This is because inside the helplnsert there is a CAS that checks that the operation is
a pending insert operation, and the changes in the delete and insert methods cannot
be made since the operation is still pending. Using this fact, we can just focus on the
changes inside the helpDelete method.

Line 163 is a CAS that leads to failure, and the condition in line 156 guarantees the
previous state is search_delete.

Line 169 is a CAS that leads to execute_delete, and the condition in line 156 guarantees
the previous state is search_delete.

Line 179 is a CAS that leads to determine_delete, and the condition in line 172 guaran-

tees the previous state is execute_delete.

We shall now define two functions that will correlate between delete operations that
followed route 2, and Marking, as defined in Definition 2.4.34. Using a process similar
to the one we used in our proof of the insert operation, we wish to prove a one-to-one

correspondence between successful delete operations and Markings.

Definition 2.4.75. The Delete Functions A,B

Function A: Delete Operations that followed route 2 -> Marking.

For a delete operation that followed route 2 (as defined in Definition 2.4.73), denoted vy,
the operation was at some point in a state of execute_delete. At that point, there was a
window stored in the searchResult field of that operation descriptor. (The condition
in line 158 guarantees that a state of execute_delete always contains a valid (not null)
window in the searchResult field.) We say that A(y) is the Marking of the node that
was stored in searchResult.Curr. (We shall prove immediately that this defines a single

Marking for every delete operation that followed route 2.)

Function B : Marking -> Delete Operation that followed route 2.
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We say for a marking, denoted x, that : B(x) = y if and only if both of the following
are true:

1. A(y) = x.

2. y was a successful delete operation (returned true).

We shall prove soon that function B is well defined and injective.

Claim 2.4.76. A is defined for every delete operation that reached the execute_delete
state, denoted y, and the Marking A(y) always takes place during the run of the operation
y. (It always takes place between the invocation of the delete method that started it, and
the end of the same delete method.) Furthermore, A(y) is a Marking of a node that has
the same key as was given as a parameter to the delete method that initiated the (y)

operation.

Proof:

Part One: A(y) matches every delete operation that reached the execute_delete state to
at least one Marking that executed during its run:

By Claim 2.4.74, execute_delete can only be changed in a CAS in line 179. The condition
in line 174 guarantees that this CAS can only be reached if the node found at the
op.searchResult.curr is marked. The searchResult window was returned from a search
method called in line 157. By Claim 2.4.41, there was a point in time that this node
was unmarked, and this certainly happened during this delete operation. The condition
in line 160 guarantees that the execute_delete state would only have been reached if the
searchResult.curr.key equalled the operation’s key.

Part Two: A(y) matches every delete operation to no more than one Marking:

By Claim 2.4.74, execute_delete can only be reached once (with a specific operation de-
scriptor) in a delete operation. The Marking can only be done on the op.searchResult.curr.
This is only a single node, and each node cannot be marked more than once (Claim

2.4.29). Thus execute_delete correlates to no more than one Marking.

Claim 2.4.77. Function B matches each Marking, denoted x, to a single and distinct
delete operation. (By the definition of Function B (Definition 2.4.75), it also follows

that this delete operation returned true.)

Proof: Each delete operation that reached the execute_delete state matches the Marking
of the node found in the op.searchResult.curr, and its state can only be changed
into determine_delete (Claims 2.4.74,2.4.76). In the delete method belonging to this
operation, after the help method is done the operation is no longer pending, and thus it
must have reached the determine_delete at that point. Then all the delete operations
that reached execute_delete can only be exited in line 61. Line 61 contains a CAS on
the op.searchResult.curr.d, trying to change it from false to true. Since this field is
initiated as false, and is never modified apart from this line, then no more than one
operation can succeed on this CAS, but if at least one of them tried, then at least (and

exactly) one must succeed.

49



Claim 2.4.78. For a successful delete operation denoted vy, there exists a Marking © of

a node with the same key as the operation’s key (see Definition 2.4.8), satisfying B(z) =
Y.

Proof: A successful delete operation can only go by route 2, since route 1 always ends
with a failure by Definition 2.4.73. By Claim 2.4.76, we conclude that A(y) = x is a
Marking of a node with the operation’s key. Since the delete operation was successful,
and A(y) = x, then by definition of function B, B(x) =y, and by Claim 2.4.77, B is
well defined.

Claim 2.4.79. A delete operation that followed route 1 made no logical changes to the
list.

Insertion can only take place inside the helpInsert method, which cannot be reached in
a delete operation. Marking can take place only in line 174 (By Lemma 2.4.35), but the
condition in line 172 guarantees that this line can only be reached if the state of the
operation was at some point execute_delete, which means this delete operation followed

route 2.

Claim 2.4.80. A delete operation can only follow route 1 if at some point during its

execution there is no node in the list with a key equal to the operation’s key.

Proof: Route 1 requires a CAS in line 163. The condition in line 160 guarantees that
line 163 can only be reached if the search method called in line 157 returned a window
with window.Curr.key != the operation’s key. By Claim 2.4.41, there was a point, the
search linearization point, when this node was the first node in the list satisfying that
its key >= the operation’s key, meaning that the operation’s key was not in the list at
that time. (This search linearization point is also the linearization point for a delete

operation that followed route 1.)

Lemma 2.4.81. A delete method that finished "works correctly’, meaning that one of
the following has happened:

* It returned true, and during the operation a reachable node with a corresponding

key was marked, and this Marking, denoted z, satisfies B(x) = y.

* It returned false. During the operation a mode with a corresponding key was
marked, but this Marking, denoted x, doesn’t satisfy B(z) =y (and also no other
Marking satisfies that condition,).

* It returned false, without making any logical changes to the list, and during its

run there was a moment in which the operation’s key wasn’t logically in the list.
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Proof: If the delete method returned from line 61, then by the condition in line 59 we
know that it finished in the determine_delete state, meaning it followed route 2. If the
CAS in line 61 succeeded, then the method returned true, and by Claim 2.4.78, there
exists a Marking x satisfying B(x) = y as required. This is case 1. If the CAS in line
61 failed, then no Marking x can satisfy B(x) = y since by definition of function B
(Definition 2.4.75) it can only match Markings to successful delete operations. This is
case 2. If the method did not return from line 61, then it returned false, and by the
condition in line 60, we know it followed route 1. Then by Claims 2.4.79 and 2.4.80, it
made no logical changes to the list, and during its run there was the linearization point

in which the operation’s key wasn’t in the list.

2.4.7 Wait-Freedom

Definition 2.4.82. The pending time of an operation is the time interval in which the

operation is pending.

Claim 2.4.83. The number of logical changes to the list at a given interval of time is
bounded by the number of (delete and insert) operations that were pending during that

interval.

Proof: Recall by Corollary 2.5 that Insertion and Marking are the only logical changes
to the list. Claim 2.4.57 matches every Insertion to a distinct insert operation, and
Claim 2.4.66 guarantees that this Insertion happened during the execution of the insert
operation. Claims 2.4.76 and 2.4.77 match every Marking to a distinct delete operation,
and guarantee the marking happened during it. We conclude that, in a given time
interval, every logical change to the list, be it Marking or Insertion, is matched in a
one-to-one correspondence to a distinct operation that happened (at least partially)
during this time interval, and thus the number of logical changes is bounded by the

operations.

Claim 2.4.84. The number of Redirections (as defined in Definition 2.4.84) at a given
interval of time is bounded by [the number of insert operations that were pending (at
least partially) at the time interval] * [Logical changes to the list linearized at that time
interval + 1] * 2

Proof: Redirections can result from a CAS either in line 138 or 140, both in the
helpInsert method. For a given insert operation, and a given logical state of the list, the
new value in both of these CASes is uniquely defined: In line 138, a pointer to the first
node in the list with a key larger than its own, and in line 140, a pointer operation’s
node. The logical states that the list can be in an interval are: its initial state + another
state for each logical change. Hence the total number of logical states the list can be
in a given interval is the number of logical changes to the list linearized at that time

interval + 1. We multiply by two because the Redirection can happen at either line 138
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or 140. The last missing argument is that a different Redirections set exists for every

operation’s node; hence we also multiply by the number of insert operations.

Claim 2.4.85. The number of Snippings (as defined in Definition 2.4.34) at a given
interval of time is bounded by [Overall marked nodes that existed at some point during
that time interval] * [Insertions + Redirections that happened during that interval of
time + 1]

Proof: By Definition 2.4.34, only reachable marked nodes can be snipped. Once a
node is marked it is no longer reachable and thus cannot be snipped again, that is,
unless it becomes reachable again. A node can become reachable again by Insertion or
a Redirection. (Marking doesn’t affect reachability and Snipping only makes a single
reachable node unreachable). So any marked node can be snipped at most 1 + Number

of Insertions + Number of Redirections.

Claim 2.4.86. The number of successful CASes performed on nodes at any interval of
time is bounded by the Insertions + Markings + Redirections + Snippings performed at

that interval, and thus bounded.

Proof: By Lemma 2.4.35, all the changes to a node’s next field are either Markings,
Snippings, Insertions, or Redirections. We have bounded all of those groups in the
previous claims of this subsection, and thus the total number of successful CASes is
bounded.

Claim 2.4.87. FEach CAS on the state array belongs to a specific operation.

CASes on the state array are done only in the helpInsert and helpDelete methods. By

Definition 2.4.6, each instance of these methods belongs to a specific operation.

Claim 2.4.88. The number of successful CASes on the state array belonging to any

delete operation is bounded by a constant of 2.

By Claim 2.4.74 a delete operation may have either one successful CAS (from search_delete
to failure) or two successful CASes (from search_delete to execute_delete to deter-

mine_delete).

Claim 2.4.89. The number of operations that have a pending time with an overlap
to the pending time of any given operation is bounded by twice the overall number of

threads in the system.

Intuitively, this is the outcome of the help mechanism, which basically guarantees that a
thread will not move on to subsequent operations before helping a concurrent operation
that began before its last operation.

Proof: The structure of the maxPhase method guarantees that for two non-concurrent

executions of it, the later one will receive a larger phase number. For a given operation,
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at the moment it becomes pending, any other thread is pending on no more than one
operation. It can later begin a new operation, but this new operation will have a
larger phase number. Each operation (be it an insert or a delete operation) calls the
help method. The help method structure guarantees that it will not exit while there
is a pending operation with a smaller phase number. So no thread can start a third

concurrent operation while the given operation is still pending.

Claim 2.4.90. The number of physical changes (i.e., successful CASes) on the list that

can occur during the pending time of any given operation is bounded.

Proof: By Claim 2.4.89, the number of other operations that can be pending while the
given operation is pending is bounded. Thus, the number of physical changes that can
happen during this time is bounded by Claims 2.4.83,2.4.84,2.4.85,2.4.86.

Claim 2.4.91. The number of successful CASes on the state array belonging to an

insert operation is bounded.

CASes on the state array that are performed during an insert operation are only
performed in the helplnsert method, and all of them check that the previous state is a
pending insert state. Thus, once a CAS successfully changes the operation to something
other than a pending insert, no more CASes are possible inside the helpInsert method.
Thus, the only possible CAS that has the potential of unbounded repetition is the one
in line 136. After a thread succeeds in that CAS, it will not attempt it again before
it attempts the CAS in line 140. If it fails the CAS in line 140, it must be due to a
physical change to a node’s next field that was made since the (linearization point of
the) search method called by in line 110, but that may only happen a limited number
of times, by Claim 2.4.90. Thus, there is only a bounded number of times that the CAS
in 136 can succeed in that insert operation, until the CAS in line 140 of that insert
operation succeeds (at least once) as well. After the CAS in line 140 succeeds, the
operation’s node has already been inserted to the list. It cannot become unreachable
while it is unmarked (Claim 2.4.37). Thus, after that point, each thread that restarts
the loop of lines 104-146 will not reach line 136 again, because either the condition in

line 113 or the one in line 128 will be true, and the method will exit.

Claim 2.4.92. All the methods in the code will exit in a bounded number of steps.

Proof: We shall go over all the methods one by one.

All constructors are just field initializations that contain no loops or conditions, and
thus will be finished in a small number of steps.

The maxPhase method doesn’t contain loops or conditions, and will thus finish after a
small number of steps. (Note: it doesn’t check the condition of the CAS, and will exit
even if the CAS fails.)

The search method is bounded since it searches a specific key and only goes forward
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in the list, so it must reach it (or beyond it) after a bounded number of times and
thus exit in line 83. (This is because the tail always holds a key larger than all other
possible keys by definition 2.4.1, so there is at least one key that answers the condition
in line 83.) The only possibility for a search method to go backwards in the list is
if the condition in line 78 returns true. For this to happen, the CAS in line 75 must
have failed, which may only happen a bounded number of times while the operation is
pending. If the operation is no longer pending, the condition in line 76 guarantees that
the search method will exit.

The helpDelete and helpInsert methods call the search method, which is bounded. Other
than that, they might only enter another iteration of a loop because of changes that were
made to the list or state, but these changes are bounded by Claims 2.4.90,2.4.87,2.4.88,2.4.91
while the operation is pending, and once it becomes non-pending, it will exit due to the
condition in line 106 or 152.

The help method is a finite loop that calls helpInsert and helpDelete a finite number of
times.

The insert and delete methods call the maxPhase and the help method, and have no
loops. Note that even though the delete method attempts a CAS, it returns even if the
CAS fails.

Corollary 2.8. Wait-Freedom

Proof: A result of the previous claim.

2.4.8 Final Conclusion

Corollary 2.9. The described algorithm creates a wait-free linked-list.

This follows from Lemmas 2.4.68, 2.4.81, and Corollary 2.8.

2.5 Linearization Points

In this section we specify the linearization point for the different operations of the
linked-list. The SEARCH method for a key k returns a pair of pointers, denoted pred
and curr. The prev pointer points to the node with the highest key smaller than k,
and the curr pointer points to the node with the smallest key larger than or equal to k.
The linearization point of the SEARCH method is when the pointer that connects pred
to curris read. This can be either at Line 36 or 45 of the SEARCH method. Note that
curr’s next field will be subsequently read, to make sure it is not marked. Since it is an
invariant of the algorithm that a marked node is never unmarked, it is guaranteed that
at the linearization point both pred and curr nodes were unmarked.

The linearization point for a CONTAINS method is the linearization point of the
appropriate SEARCH method. The appropriate SEARCH method is the one called from
within the HELPCONTAINS method by the thread that subsequently successfully reports
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the result of the same CONTAINS operation. The linearization point of a successful insert
is in Lines 47-48 (together they are a single instruction) of the helpInsert method. This
is the CAS operation that physically links the node into the list. For a failing insertion,
the linearization point is inside the linearization point of the SEARCH method executed
by the thread that reported the failure.

The linearization point of a successful delete is at the point where the node is logically
deleted, which means successfully marked (Line 38 in the helpDelete method). Note
that it is possible that this is executed by a helping thread and not necessarily by the
operation owner. Furthermore, the helping thread might be trying to help a different
thread than the one that will eventually own the deletion. The linearization point of
an unsuccessful delete is more complex. A delete operation may fail when the key is
properly deleted, but a different thread is selected as the owner of the delete. In this
case, the current thread returns failure, because of the failure of the CAS of the DELETE
method (at Line 9). In this case, the linearization point is set to the point when the
said node is logically deleted, in Line 38 of HELPDELETE. The linearization point of
an unsuccessful delete, originating from simply not finding the key, is the linearization

point of the SEARCH method executed by the thread that reported the failure.

2.6 A Fast-Path-Slow-Path Extension

2.6.1 overview

In this section, we describe the extension of the naive wait-free algorithm using the
fast-path-slow-path methodology. The goal of this extension is is to improve performance
and obtain a fast wait-free linked-list. We provide a short description of the method
here. Full motivation and further details appear in [KP12]. A full Java code for the
fast-path-slow-path list is presented in Appendix C.

The idea behind the fast-path-slow-path [KP12] approach is to combine a (fast)
lock-free algorithm with a (slower) wait-free one. The lock free algorithm provides a
basis for a fast path and we use Harris’s lock-free linked-list for this purpose. The
execution in the fast path begins by a check whether a help is required for any operation
in the slow path. Next, the execution proceeds with running the fast lock-free version
of the algorithm while counting the number of contentions that end with a failure
(i.e., failed CASes)*. Typically, few failures occur and help is not required, and so the
execution terminates after running the faster lock-free algorithm. If this fast path fails
to make progress, the execution moves to the slow path, which runs the slower wait-free
algorithm described in Section 2.3, requesting help (using an operation descriptor in its

slot in the state array) and making sure the operation eventually terminates.

4 Another point to consider is the possibility that a thread can’t make progress since other threads
keep inserting new nodes to the list, and it can’t finish the search method. We address this potential
problem in Section 2.6.7.
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The number of CAS failures allowed in the fast path is limited by a parameter called
MAX_FAILURES. The help is provided by threads running both the fast and slow path,
which ensures wait-freedom: if a thread fails to complete its operation, its request for
help is noticed both in the fast and in the slow path. Thus, eventually all other threads
help it and its operation completes. However, help is not provided as intensively as
described in Section 2.3. We use the delayed help mechanism, by which each thread only
offers help to other threads once every several operations, determined by a parameter
called HELPING_DELAY.

Combining the fast-path and the slow-path is not trivial, as care is needed to
guarantee that both paths properly run concurrently. On top of other changes, it is
useful to note that the DELETE operation must compete on the success-bit even in
the fast-path, to avoid a situation where two threads running on the two different paths

both think they were successful in deleting a node.

2.6.2 The Delayed Help Mechanism

In order to avoid slowing the fast path down, help is not provided to all threads in
the beginning of each operation execution. Instead, help is provided to at most one
thread, in a round-robin manner. Furthermore, help is not provided in each run of an
operation, but only once every few operation executions. This scheme still guarantees
wait-freedom for the threads that require help, but it does not overwhelm the system
with contention of many helping threads attempting to run the same operation on the

same part of the list.

The above mechanism is called delayed-help. In addition to an entry in the state
array, each thread maintains a helping record. The first field in a helping record holds
the TID of the helped thread. This thread is the next one in line to receive help, if needed.
In addition to the TID of the helped thread, the helping record holds a nextCheck
counter, initialized to the HELPING_DELAY parameter and decremented with each
operation that does not provide help, and a phase number, recording the phase the

helped thread had when the help of the previous thread terminated.

Before a thread T' performs an operation (in the fast or slow path), T decrements
the nextCheck counter in its helping record by one. If nextCheck reaches zero, than
T checks whether the helped thread has a pending operation (i.e., it needs help) and
whether this pending operation has the same phase that was previously recorded. This
means that the helped thread made no progress for a while. If this is the case, then
T helps it. After checking the helped thread’s state and providing help if required, T’
updates its help record. The field holding the TID of the helped thread is incremented to
hold the id of the next thread, the phase of this next thread is recorded, and NEXTCHECK
is initialized to HELPING_DELAY. Pseudo-code for this is depicted in Figure 2.7
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1: class HelpRecord {
2: int curTid; long lastPhase; long nextCheck;
3: HelpRecord() { curTid = -1; reset(); }
4: public void reset() {
5: curTid = (curTid + 1) % Test.numThreads;
6: lastPhase = state.get(curTid).phase;
7 nextCheck = HELPING_DELAY;
8: }
9: }
10:

11: private void helpIfNeeded(int tid) {
12:  HelpRecord rec = helpRecords[tid*width];

13:  if (rec.nextCheck-- == 0) { > delay help HELPING_DELAY times
14: OpDesc desc = state.get(rec.curTid);

15: if (desc.phase == rec.lastPhase) { > help might be needed
16: if (desc.type == OpType.insert)

17: helpInsert(rec.curTid, rec.lastPhase);

18: else if (desc.type == OpType.search_delete ||

19: desc.type == OpType.execute_delete)

20: helpDelete(rec.curTid, rec.lastPhase);

21:

22: rec.reset();

23:  }

24: }

Figure 2.7: The delayed help mechanism

2.6.3 The Search Method

The FASTSEARCH method (Figure 2.8) is identical to the original lock-free search,
except for counting the number of failed CAS operations. If this number reaches
MAX _FAILURES, FASTSEARCH returns null. It is up to the caller (fastInsert or
fastDelete) to move to the slow path, if null is returned. The slowSearch method (called
SEARCH hereafter) operation is identical to the wait-free search introduced method in
Section 2.3.

2.6.4 The Insert Operation

The INSERT operation (Figure 2.9) starts in the fast path and retreats to SLOWINSERT
(Figure 2.10) when needed. It starts by checking if help is needed. After that, it operates
as the original lock-free insert, except for counting CAS failures. It also checks whether
FASTSEARCH has returned a null, in which case it reverts to the slow path.

The SLOWINSERT method (Figure 2.10) is similar to the wait-free insert, except that
it performs its own operation only, and does not help other operations. The helplnsert

method is identical to the wait-free method presented in Section 2.3.

2.6.5 The Delete Operation

The DELETE method (Figure 2.11) is similar to the delete operation of the original

lock-free list with some additions. In addition to checking the number of failures, further
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public Window fastSearch(int key) {
int tries = 0; Node pred = null, curr = null, succ = null;
boolean[] marked = {false};
boolean snip;

retry : while (tries++ < MAX_FAILURES) { > do I need help?
pred = head;
curr = pred.next.getReference(); > advancing curr
while (true) {
succ = curr.next.get(marked); > advancing succ
while (marked[0]) { > curr is logically deleted

> The following line is an attempt to physically remove curr:
snip = pred.next.compareAndSet(curr, succ, false, false);

if (!snip) continue retry; > list has changed, retry
Curr = succ; > advancing curr
succ = curr.next.get(marked); > advancing succ
}
if (curr.key >= key) > the window is found
return new Window (pred, curr);
pred = curr; curr = succ; > advancing pred & curr
}
}
return null; > asking for help

o}

Figure 2.8: The FPSP fastSearch method

public boolean insert(int tid, int key) {

helpIfNeeded(tid);

int tries = 0O;

while (tries++ < MAX_FAILURES) { > do I need help?
Window window = fastSearch(key);
if (window == null) > search failed MAX_FAILURES times

return slowInsert(tid, key);
Node pred = window.pred, curr = window.curr;
if (curr.key == key)

return false; > key exists - operation failed.
else {
Node node = new Node(key); > allocate the node to insert

node.next = new
Versioned AtomicMarkableReference<Node>(curr, false);
if (pred.next.compareAndSet(curr, node, false, false))
return true; > insertion succeeded
}
}

return slowInsert(tid, key);

o}

Figure 2.9: The FPSP insert method
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1: private boolean slowlInsert(int tid, int key) {

2 long phase = maxPhase(); > getting the phase for the op
3 Node n = new Node(key); > allocating the node
4 n.next = new

5: Versioned AtomicMarkableReference<Node>(null, false);

6:  OpDesc op = new OpDesc(phase, OpType.insert, n,null);
7.

8

9

0

state.set(tid, op); > publishing the operation - asking for help
helplInsert(tid, phase); > only helping itself here
: return state.get(tid).type == OpType.success;
10: }
Figure 2.10: The FPSP slowInsert method

1: public boolean delete(int tid, int key) {

2 helpIfNeeded(tid);

3 int tries = 0; boolean snip;

4:  while (tries++ < MAX_FAILURES) { > do I need help?

5: Window window = fastSearch(key);

6: if (window == null) > search failed MAX_FAILURES times

7 return slowDelete(tid, key);

8: Node pred = window.pred, curr = window.curr;

9: if (curr.key != key) > key doesn’t exist - operation failed
10: return false;
11: else {
12: Node succ = curr.next.getReference();
13: > The following line is an attempt to logically delete curr:
14: snip = curr.next.compareAndSet(succ, succ, false, true);
15: if (!snip)
16: continue; > try again
17: > The following line is an attempt to physically remove curr:
18: pred.next.compareAndSet(curr, succ, false, false);
19: > the following is needed for cooperation with the slow path:
20: return curr.d.compareAndSet(false, true);
21: }
22:  }
23:  return slowDelete(tid, key);
24: }

Figure 2.11: The FPSP delete method

cooperation is required between threads. Determining which thread deleted a value is
complicated in the wait-free algorithm and requires some cooperation from the fast path
as well. In particular, after performing a delete that is considered successful in the fast
path, the new DELETE method must also atomically compete (i.e., try to set) the extra
success bit in the node. This bit is used by the wait-free algorithm to determine
which thread owns the deletion of a node. Neglecting to take part in setting this bit may
erroneously allow both a fast-path delete and a concurrent slow-path delete to conclude
that they both are successful for the same delete. Upon failing to set the success bit

in the node, DELETE returns failure.

The SLOWDELETE method (Figure 2.12) is similar to the wait-free version of
the DELETE method, except that it does not need to help any other threads. The
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1: private boolean slowDelete(int tid, int key) {

2:  long phase = maxPhase(); > getting the phase for the op
3 state.set(tid, new OpDesc

4 (phase, OpType.search_delete, new Node(key), null));

5:  helpDelete(tid,phase); > only helping itself here
6:  OpDesc op = state.get(tid);

7:  if (op.type == OpType.determine_delete)

8 > the following competes on the ownership of deleting the node:
9 return op.searchResult.curr.d.compareAndSet(false, true);

0
1

10:  return false;
11: }

Figure 2.12: The FPSP slowDelete method

HELPDELETE method is identical to the one presented in Section 2.3.

2.6.6 Linearization Points

The linearization points are simply the linearization points of the lock-free and wait-free
algorithms, according to the path in which the operation takes place. In the fast path,
a successful insert operation is the CAS linking the node to the list (line 15 in the insert
method), and an unsuccessful one is at the fastSearch method (line 9 or 15, whichever
is read last). A successful delete is linearized in a successful CAS in line 14 of the delete
method. Note that it is possible for an unsuccessful delete to be linearized at this point
too, if a slow-path operation will own this deletion eventually. The usual unsuccessful
delete (the key doesn’t exist) linearization point is similar to the one described in Section
2.5, at the begining of the fastSearch method if the key didn’t exist then, or at the
point when it was marked, if it did exist. The other linearization points, those of the
slow-path, are unchanged from those elaborated on in Section 2.5. It is worth noting
that the linearization point of a successful delete in the slow path, which is always upon
marking the node, might actually happen during a run of the fast path of a delete
method.

2.6.7 The Contains Operation and Handling Infinite Insertions

In Section 2.3.6, we noted that infinite concurrent insertions into the list create a
challenge to the wait-freedom property, since the CONTAINS method may never be able
to reach the desired key if more and more keys are inserted before it. This problem
has a bound when dealing with integers, as there is a bound to the number of possible
integer keys, but has no bound when dealing with other types of keys, such as strings.
If every operation on the list is always done using the help mechanism, this problem
cannot occur, since other threads will help the pending operations before entering new
keys. This is how the problem was handled in the CONTAINS method in Section 2.3.6.

It is perhaps debatable whether a wait-free algorithm should offer a solution for

this problem, as the failure does not happen due to contention, but due to the fact

60



that the linear complexity of the problem (in the number of keys) increases while the
thread is working on it. This debate as beyond the scope of our work, and our goal
here is to offer solutions to the problem. For the basic wait-free algorithm, we could
solve this problem by making sure that all operations (including CONTAINS) will use the
helping mechanism. However, for the fast-path-slow-path extension, it is by definition
impossible to force all threads to use the helping mechanism, as this would contradict
the entire point of the fast-path-slow-path. Instead, a thread must be able to recognize
when its operation is delayed due to many concurrent insertions, and ask for help (aka,
switch to the slow path) if this problem occurs. The purpose of this section is to suggest
an efficient way to do that.

The idea is that each thread will read the number of total keys in the list prior to
starting the search. During the search, it will count how many nodes it traversed, and
if the number of traversed nodes is higher than the original total number of keys (plus
some constant), it will abort the search and ask for help in its operation. The problem
is that maintaining the size of the list in a wait-free manner can be very costly. Instead,
we settle for maintaining a field that approximates the number of keys. The error of the
approximation is also bounded by a constant (actually, a linear function in the number
of threads operating on the list). Thus, before a thread starts traversing the list, it
should read the approximation, denoted Size_App, and if it traverses a number of nodes
that is greater than Size_App + Max_Error + Const, switch to the slow path and ask
for help.

To maintain the approximation for the number of keys in the list, the list contains
a global field with the approximation, and each thread holds a private counter. In its
private counter, each thread holds the number of nodes it inserted to the list minus
the number of nodes it deleted from the list since the last time it updated the global
approximation field. To avoid too much contention in updating the global field, each
thread only attempts to update it (by a CAS) once it reached a certain soft_threshold (in
absolute value). If the CAS failed, the thread continues the operation as usual, and will
attempt to update the global approximation field at its next insert or delete operation.
If the private counter of a thread reached a certain hard_threshold, it asks for help in
updating the global counter, similarly to asking help for other operations.

Some care is needed to implement the helping mechanism for updating the ap-
proximation field in a wait-free manner. This is not very complicated, but is also
not completely trivial. The full Java code that also handles this difficulty is given if
Appendix C.

2.7 Performance

Implementation and platform. We compared four Java implementations of the
linked-list. The first is the lock-free linked-list of Harris, denoted LF, as implemented
by Herlihy and Shavit in [HS08]. (This implementation was slightly modified to allow
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nodes with user-selected keys rather than the object’s hash-code. We also did not use
the item field.)

The basic algorithm described in Section is denoted WF-Orig in the graphs below.
A slightly optimized version of it, denoted WF-Opt, was changed to employ a delayed
help mechanism, similar to the one used in the fast-path- slow-path extension. This
means that a thread helps another thread only once every k operations, where k is a
parameter of the algorithm set to 3. The idea is to avoid contention by letting help
arrive only after the original thread has a reasonable chance of finishing its operation on
its own. This optimization is highly effective, as seen in the results. Note that delaying
help is not equivalent to a fast-path-slow-path approach, because all threads always ask
for help (there is no fast path). All the operations are still done in the helpInsert and
helpDelete methods.

The fast-path-slow-path algorithm, denoted FPSP, was run with the HELPING_DELAY
parameter set to 3, and MAX_FAILURES set to 5. This algorithm combines the new
wait-free algorithm described in this chapter with Harris’s lock-free algorithm, to achieve
both good performance and the stronger wait-freedom progress guarantee.

We ran the tests in two environments. The first was a SUN’s Java SE Runtime,
version 1.6.0 on an IBM x3400 system featuring 2 Intel(R) Xeon(R) E5310 1.60GHz
quad core processors (overall 8 cores). The second was a SUN FIRE machine with an
UltraSPARC T1 8 cores each running four hyper-threads.

Workload and methodology. In the micro-benchmarks tested, we ran each experi-
ment for 2 seconds, and measured the overall number of operations performed by all the
threads during that time. Each thread performed 60% CONTAINS, and 20% INSERT and
DELETE operations, with keys chosen randomly and uniformly in the range [1,1024].
The number of threads ranges from 1-16 (in the Intel(R) Xeon(R)) or from 1-32 (In
the UltraSPARC). We present the results in Figure 2.13. The graphs show the total
number of operations done by all threads in thousands for all four implementations, as
a function of the number of threads. In all the tests, we executed each evaluation 8

times, and the averages are reported in the figures.

Results. It can be seen that the fast-path-slow-path algorithm is almost as fast as the
lock-free algorithm. On the Intel machine, the two algorithms are barely distinguishable;
the difference in performance is 2-3%. On the UltraSPARC the fast-path-slow-path
suffers a noticeable (yet, reasonable) overhead of 9-14%. The (slightly optimized) basic
wait-free algorithm is slower by a factor of 1.3—-1.6, depending on the number of threads.
Also, these three algorithms provide an excellent speed up of about 7 when working
with 8 threads (on both machines), and about 24 when working with 32 multi-threads
on the UltraSPARC. The basic non-optimized version of the wait-free algorithm doesn’t
scale as well. There, threads often work together on the same operation, causing a
deterioration in performance and scalability. The simple delayed-help optimization

enables concurrency without foiling the worst-case wait-freedom guarantee.
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Figure 2.13: The number of operations done in two seconds as a function of the number
of threads

2.8 Conclusion

We presented a wait-free linked-list. To the best of our knowledge, this is the first design
of a wait-free linked-list in the literature, apart from impractical universal constructions.
This design facilitates for the first time the use of linked-lists in environments that
require timely responsiveness, such as real-time systems. We have implemented this
linked-list in Java and compared it to Harris’s lock-free linked-list. The naive wait-free
implementation is slower than the original lock-free implementation by a factor of 1.3
to 1.6. We then combined our wait-free design with Harris’s lock-free linked-list design
using the fast-path-slow-path methodology, and implemented the extended version as
well. The extended algorithm obtains performance which is very close to the original

lock-free algorithm, while still guaranteeing non-starvation via wait-freedom.
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Chapter 3

A Practical Wait-Free Simulation
for Lock-Free Data Structures

3.1 Introduction

In the previous chapter we designed the first practical wait-free linked-list. To do that,
we started from the lock-free linked list [Har01], added a helping mechanism, and then
applied the fast-path-slow-path methodology [KP12] to enhance the performance. Such
a design process is complicated and error prone. As discussed in Section 1.2, in this
chapter we present a general transformation that converts any lock-free data structure
(given in a normalized form, that we define) to a wait-free data structure. That is,
our transformation is a generic way to add a helping mechanism and combine the
help-less lock-free algorithm with the wait-free one according to the fast-path-slow-path
methodology in such a way that preserves linearizability and performance. A (shorter)
version of this transformation was published in [TP14].

Using the new method, we have designed and implemented wait-free linked-list,
skiplist, and tree and we measured their performance. It turns out that for all these
data structures the wait-free implementations are only a few percent slower than their
lock-free counterparts.

The contributions of this chapter include the definition of the normalized form
for a lock-free data structure; the design of the generic wait-free simulation for a
normalized lock-free data structure; A demonstration of the generality of the normalized
representation, by showing the normalized representation for lock-free linked-list, skiplist
and tree; A formal argument for the correctness of the transformation, and thus also the
obtained wait-free data structures; and implementations and measurements validating
the efficiency of the proposed scheme.

We limit our discussion to the field of lock-free linearizable data structures. We believe
our ideas can be applied to other algorithms as well, such as lock-free implementations
of STM, but this is beyond the scope of this work.

The chapter is organized as follows. Section 3.2 discusses additional related work to
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that described in Section 1.2. In Section 3.3 we provide an overview of the proposed
transformation. In Section 3.4 we briefly discuss the specifics of the shared memory
model assumed in this work. In Section 3.5 we examine typical lock-free data structures,
and characterize their properties in preparation to defining a normalized representation.
The normalized representation is defined in Section 3.6, and the wait-free simulating for
a normalized lock-free data structure appears in Section 3.7. We prove the correctness
of the transformation in 3.8. We discuss the generality of the normalized form in Section
3.9. Next, in Section 3.10, we show how to easily convert four known lock-free data
structures into the normalized form, and thus obtain a wait-free version for them all.
Some important optimizations are explained in Section 3.11 , and our measurements

are reported in Section 3.12.

3.2 Additional Related Work

The idea of mechanically transforming an algorithm to provide a practical algorithm
with a different progress guarantee is not new, and not limited to universal constructions.
Taubenfeld introduced contention-sensitive data structures (CSDS) and proposed various
mechanical transformation that enhance their performance of progress guarantees
[Tau09]. Ellen et al suggested a transformation of obstruction-free algorithms into wait-
freedom algorithms under a different computation model known as semisynchronous
[FLMSO05]. This construction does not extend to the standard asynchronous model.

Recently, we have seen some progress with respect to practical wait-free data
structures. A practical design of a wait-free queue relying on compare and swap (CAS)
operations was presented in [KP11]. Next, an independent construction of a wait-free
stack and queue appeared in [FK11]. A wait-free algorithm for the linked-list has been
published in [TBKP12] and given here in Chapter 2. Finally, a wait-free implementation
of a red-black tree appeared in [NSM13].

One of the techniques employed in this work is the fast-path-slow-path method,
which attempts to separate slow handling of difficult cases from the fast handling of
the more typical cases. This method is ubiquitous in systems in general and in parallel
computing particularly [Lam87, MA95, AK99, AK00], and has been adopted recently

[KP12] for creating fast wait-free data structures.

3.3 Transformation overview

The move from the lock-free implementation to the wait-free one is executed by simulating
the lock-free algorithm in a wait-free manner. The simulation starts by simply running
the original lock-free operation (with minor modifications that will be soon discussed).
A normalized lock-free implementation has some mechanism for detecting failure to
make progress (due to contention). When an operation fails to make progress it asks

for help from the rest of the threads. A thread asks for help by enqueuing a succinct
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description of its current computation state on a wait-free queue (we use the queue of
[KP11]). One modification to the fast lock-free execution is that each thread checks
once in a while whether a help request is enqueued on the help queue. Threads that
notice an enqueued request for help move to helping a single operation on the top of
the queue. Help includes reading the computation state of the operation to be helped
and then continuing the computation from that point, until the operation completes
and its result is reported.

The major challenges are in obtaining a succinct description of the computation state,
in the proper synchronization between the (potentially multiple) concurrent helping
threads, and in the synchronization between helping threads and threads executing
other operations on the fast lock-free path. The normalized representation is enforced
in order to allow a succinct computation representation, to ensure that the algorithm
can detect that it is not making progress, and to minimize the synchronization between
the helping threads to a level that enables fast simulation.

The helping threads synchronize during the execution of an operation at critical
points, which occur just before and just after a modification of the data structure.
Assume that modifications of the shared data structure occur using a CAS primitive.
A helping thread runs the operation it attempts to help independently until reaching
a CAS instruction that modifies the shared structure. At that point, it coordinates
with all helping threads which CAS should be executed. Before executing the CAs, the
helping threads jointly agree on what the CAS parameters should be (address, expected
value, and new value). After deciding on the parameters, the helping threads attempt
to execute the CAS and then they synchronize to ensure they all learn whether the cas
was successful. The simulation ensures that the CAS is executed exactly once. Then
each thread continues independently until reaching the next CAS operation and so forth,
until the operation completes. Upon completing the operation, the operation’s result is
written into the computation state, the computation state is removed from the queue,
and the owner thread (the thread that initiated the operation in the first place) can
return.

There are naturally many missing details in the above simplistic description, but
for now we will mention two major problems. First, synchronizing the helping threads
before each CAS, and even more so synchronizing them again at the end of a CAS
execution to enable all of them to learn whether the CAS was successful, is not simple.
It requires adding version numbering to some of the fields in the data structure, and
also an extra modified bit. We address this difficulty in Section 3.7.

The second problem is how to succinctly represent the computation state of an
operation. An intuitive observation (which is formalized later) is that for a lock-free
algorithm, there is a relatively light-weight representation of its computation state. This
is because by definition, if at any point during the run a thread stops responding, the
remaining threads must be able to continue to run as usual. This implies that if a

thread modifies the data structure, leaving it in an “intermediate state” during the
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computation, then other threads must be able to restore it to a “normal state”. Since
this often happens in an execution of a lock-free algorithm, the information required to
do so must be found on the shared data structure, and not (solely) in the thread’s inner
state. Using this observation, and distilling a typical behavior of lock-free algorithms,
we introduce a normalized representation for a lock-free data structure, as defined in
Section 3.6. The normalized representation is built in a way that enables us to represent
the computation state in a compact manner, without introducing substantial restrictions
on the algorithm itself.

There is one additional key observation required. In the above description, we
mentioned that the helping threads must synchronize in critical points, immediately
before and immediately after each cAs that modifies the data structure. However, it
turns out that with many of the cases, which we informally refer to as auziliary CASes,
we do not need to use synchronization at all. As explained in Section 3.5, the nature
of lock-free algorithms makes the use of auxiliary CASes common. Most of Section
3.5.2 is dedicated to formally define parallelizable methods; these are methods that
only execute auxiliary CASes, and can therefore be run by helping threads without any
synchronization. These methods will play a key role in defining normalized lock-free

representation in Section 3.6.

3.4 Model and General Definitions

We consider a standard shared memory setting. In each computation step, a single
thread executes on a target address in the shared memory one of three atomic primitives:
READ, WRITE, or CAS. A computation step may also include a local computation, which
may use local memory.

A CAS primitive is defined according to a triplet: target address, expected-value
and new-value. A CAS primitive atomically compares the value of the target ad-
dress to the expected-value, and WRITES the new value to the target address if the
expected-value and old value in the target address are found identical. A CAS in
which the expected-value and old value are indeed identical returns true, and is said
to be successful. Otherwise the CAS returns false, and is unsuccessful. A CAS in which
the expected-value and new-value are identical is a futile CAS.

An abstract data type, ADT, is defined by a state machine, and is accessed via
operations. An operation receives zero or more input parameters, and returns one result,
which may be null. The state machine of a type is a function that maps a state and an
operation (including input parameters) to a new state and a result of the operation.

A method is a sequence of code-instructions that specify computation steps, including
local computation. The next computation step to be executed may depend on the
results of previous computation steps. Similarly to an operation, a method receives
zero or more input parameters, and returns one result, which may be null. A code

instruction inside a method may invoke an additional method.
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A special method, ALLOCATE, which receives as an input the amount of memory
needed and returns a pointer to the newly allocated memory is assumed to be available.
We assume automatic garbage collection is available. This means that threads need not
actively invoke a DEALLOCATE method, and an automatic garbage collector reclaims
memory once it is no longer reachable by the threads. For further discussion about
memory management, see Section 3.12.1.

A data structure implementation is an implementation of an ADT. (e.g., Harris’s
linked-list is a data structure implementation). Such an implementation is a set of
methods that includes a method for each operation, and may include other supporting
methods.

A program is a set of one or more methods, and an indication which method is the
entry point of the program. In an execution, each thread is assigned a single program.
The thread executes the program by following the program’s code-instructions, and
execute computation steps accordingly.

An execution is a (finite or infinite) sequence of computation steps, cleaned out of
the local computation. A scheduling is a (finite or infinite) sequence of threads. Each
execution defines a unique scheduling, which is the order of the threads that execute
the computation steps. Given a set of threads, each of which coupled with a program,
and a scheduling, a unique corresponding execution exists.

An execution must satisfy MEMORY CONSISTENCY. That is, each READ primitive in
the execution must return the value last WRITTEN, or successfully cAsed, to the same
target address. Also. Each CAS must return true and be successful if and only if the
expected-value is equal to the last value written (or successfully CASes) into the same
target address. Most works do not particularly define MEMORY CONSISTENCY and take
it for granted, but the way we manipulate executions in our correctness proof (Section

3.8) makes this definition essential.

3.5 Typical Lock-Free Algorithms

In this section we provide the intuition on how known lock-free algorithms behave and
set up some notation and definitions that are then used in Section 3.6 to formally specify

the normalized form of lock-free data structures.

3.5.1 Motivating Discussion

Let us examine the techniques frequently used within lock-free algorithms. We tar-
get linearizable lock-free data structures that employ CASes as the synchronization
mechanism. A major difficulty that lock-free algorithms often need to deal with is
that a CAs instruction executes on a single word (or double word) only, whereas the

straightforward implementation approach requires simultaneous atomic modification of
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multiple (non-consecutive) words!'. Applying a modification to a single-field sometimes
leaves the data structure inconsistent, and thus susceptible to races. A commonly
employed solution is to use one CAs that (implicitly) blocks any further changes to
certain fields, and let any thread remove the blocking after restoring the data structure
to a desirable consistent form and completing the operation at hand.

An elegant example is the delete operation in Harris’s linked-list [Har0O1]. In order to
delete a node, a thread first sets a special mark bit at the node’s next pointer, effectively
blocking this pointer from ever changing again. Any thread that identifies this “block”
may complete the deletion by physically removing the node (i.e., execute a CAS that
makes its predecessor point to its successor). The first CAS, which is executed only by
the thread that initiates the operation, can be intuitively thought of as an owner CAs.

In lock-free algorithms’ implementations, the execution of the owner CAS is often
separated from the rest of the operation (restoring the data structure to a “normal” form,
and “releasing” any blocking set by the owner CAs) into different methods. Furthermore,
the methods that do not execute the owner CAs but only restore the data structure
can usually be safely run by many threads concurrently. This allows other threads to
unblock the data structure and continue executing themselves. We call such methods

parallelizable methods.

3.5.2 Notations and Definitions Specific to the Normalized Form.

In this section we formally define concepts that can be helpful to describe lock-free data

structures, and are used in this work to define the normalized form.

Definition 3.5.1. (Equivalent Executions.) Two executions E and E’ of operations on

a data structure D are considered equivalent if the following holds.

o (Results:) In both executions all threads execute the same data structure opera-

tions and receive identical results.

e (Relative Operation Order:) The order of invocation points and return points of

all data structure operations is the same in both executions.

e (Comparable length:) either both executions are finite, or both executions are

infinite.

Note that the second requirement does not imply the same timing for the two executions.
It only implies the same relative order of operation invocations and exits. For example,
if the ith operation of thread 77 was invoked before the jth operation of T5 returned in
E, then the same must also hold in E’. Clearly, if E and E’ are equivalent executions,
then E is linearizable if and only if E’ is linearizable.

In what follows we consider the invocation of methods. A method is invoked with
zero of more input parameters. We would like to discuss situations in which two or

more invocations of a method receive the exact same input parameters. If the method

! This is one of the reasons why transactional memories are so attractive.
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parameters do not include pointers to the shared memory, then comparing the input is
straight-forward. However, if a method is invoked with the same input I at two different
points in the execution ¢; and 9, but I includes a pointer to a memory location that
was allocated or deallocated between ¢; and to, then even though I holds the same bits,
in effect, it is different. The reason for this this that in ¢; and ¢o I holds a pointer to a
different “logical memory”, which happens to be physically allocated in the same place.

To circumvent this difficulty, we use the following definition.

Definition 3.5.2. (Memory ldentity.) For a method input I and an execution E, we
say that I satisfies memory identity for two points in the execution t; and %o, if no

memory in I, or reachable from I, is allocated or deallocated between ¢; and to in E.

Next, we identify methods that can be easily run with help, i.e., can be executed in
parallel by several threads without harming correctness and while yielding adequate
output. For those familiar with Harris’s linked-list, a good example for such a method is
the search method that runs at the beginning of the DELETE or the INSERT operations.
The search method finds the location in the list for the insert or the delete and during
its list traversal it snips out of the list nodes that were previously marked for deletion
(i.e., logically deleted entries). The search method can be run concurrently by several
threads without harming the data structure coherence and the outcome of any of these
runs (i.e., the location returned by the search method for use of insert or delete) can
be used for deleting or inserting the node. Therefore, the search method can be easily
helped by parallel threads. In contrast, the actual insertion, or the act of marking a
node as deleted, which should happen exactly once, is a crucial and sensitive (owner)
CAsS, and running it several times in parallel might harm correctness by making an
insert (or a delete) occur more than once.

To formalize parallelizable methods we first define a harmless, or avoidable parallel

run of a method. Intuitively, an avoidable method execution is an execution in which
each CAS executed during the method can potentially be avoided in an alternative
scheduling. That is, in an avoidable method execution, there is an equivalent execution
in which the method does not modify the shared memory at all.
Definition 3.5.3. (Avoidable method execution) A run of a method M by a thread T
on input [ in an execution F of a program P is avoidable if there exists an equivalent
execution E’ for E such that in both F and E’ each thread follows the same program,
both E and E’ are identical until right before the invocation of M by T on input I, and
in £’ each CcAS that T executes during M either fails or is futile.

Definition 3.5.4. (Parallelizable method.) A method M is a parallelizable method of a
given lock-free algorithm, if for any execution in which M is called by a thread T with
an input I the following two conditions holds. First, the execution of a parallelizable
method depends only on its input, the shared memory, and the results of the method’s
CAS operations. In particular, the execution does not depend on the executing thread’s

local state prior to the invocation of the parallelizable method.
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Second, At any point in E that satisfies memory identity to I with the point in E
in which M is invoked, If we create and run a finite number of parallel threads, and
the program of each of these threads would be to run method M on input I, then in
any possible resulting execution E’, all executions of M by the additional threads are

avoidable.

Loosely speaking, for every invocation of a parallelizable method M by one of the
newly created threads, there is an equivalent execution in which this method’s invocation
does not change the data structure at all. In concrete known lock-free algorithms, this
is usually because every CAS attempted by the newly created thread might be executed
by one of the other (original) threads, thus making it fail (unless it is futile). For
example, Harris’s linked-list search method is parallelizable. The only CASes that the
search method executes are those that physically remove nodes that are already logically
deleted. Assume T runs the search method, and that we create an additional thread T,
and run it with the same input.

Consider a CAS in which T, attempts to physically remove a logically deleted node
from the list. Assume T, successfully executes this CAS and removes the node from
the list. Because the node was already logically deleted, this CAS does not affect the
results of other operations. Thus, there exists an equivalent execution, in which this
CAS is not successful (or not attempted at all.) To see that such an equivalent execution
exists, consider the thread 77 that marked this node as logically deleted in the first
place. This thread must currently be attempting to physically remove the node so that
it can exit the delete operation. An alternative execution in which 77 is given the time,
right before T, executes the CAS, to physically remove the node, and only then does T,
attempt the considered CAS and fails, is equivalent.

It is important to realize that many methods, for example, the method that logically
deletes a node from the list, are not parallelzable. If an additional thread executes
CAS that logically deletes a node from the list, then this can affect the results of other
operations. Thus, there exist some executions, that have no equivalent executions in
which the additional thread does not successfully execute this CAs.

Parallelizable methods play an important role in our construction, since helping
threads can run them unchecked. If a thread cannot complete a parallelizable method,
helping threads may simply execute the same method as well.

We now focus on a different issue. In order to run the fast-path-slow-path methodol-
ogy, there must be some means to identify the case that the fast path is not making
progress on time, and then move to the slow path. To this end, we define the Contention
failure counter. Intuitively, a contention failure counter is a counter associated with an
invocation of a method (i.e. many invocations of the method imply separate counters),

measuring how often the method is delayed due to contention.

Definition 3.5.5. (Contention failure counter.) A contention failure counter for a

method M is an integer field C' associated with an invocation of M (i.e. many invocations
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of M imply many separate contention failure counters). Denote by C(t) the value of
the counter at time ¢. The counter is initialized to zero upon method invocation, and is

updated by the method during its run such that the following holds.

e (Monotonically increasing:) Each update to the contention failure counter incre-

ments its value by one.

e (Bounded by contention:) Assume M is invoked by Thread 7" and let d(t) denote
the number of data structure modifications by threads other than 7" between the
invocation time and time ¢. Then it always hold that C(t) < d(t). 2

e (Incremented periodically:) The method M does not run infinitely many steps

without incrementing the contention failure counter.

Remark. The contention failure counter can be kept in the local memory of the thread

that is running the method.

A lock-free method must complete within a bounded number of steps if no modifi-
cations are made to the data structure outside this method. Otherwise, allowing this
method to run solo results in an infinite execution, contradicting its lock-freedom. Thus,
the requirements that the counter remains zero if no concurrent modifications occur,
and the requirement that it does not remain zero indefinitely, do not contradict each
other. The contention failure counter will be used by the thread running the method
to determine that a method in the fast-path is not making progress and so the thread
should switch to the slow path.

For most methods, counting the number of failed CASes can serve as a good
contention failure counter. However, more complex cases exist. We further discuss such
cases in Appendix E.

In order to help other threads, and in particular, execute CAS operations for them,
we will need to have CASes published. For this publication act, we formalize the notion

of a CcAs description.

Definition 3.5.6. (CAS description.) A CAS description is a structure that holds the
triplet (addr, expected,new) which contains an address (on which a CAs should be
executed), the value we expect to find in this address, and the new value that we would
like to atomically write to this address if the expected value is currently there. Given a
pointer to a CAS description, it is possible to execute it and the execution can be either

successful (if the CAS succeeds) or unsuccessful (if the cas fails).

3.6 Normalized Lock-Free Data Structures

In this section, we specify what a normalized lock-free data structure is. We later show

how to simulate a normalized lock-free algorithm in a wait-free manner automatically.

2 In particular, this implies that if no modifications were made to the data structure outside the
method M since its invocation until time ¢, then C(t) = 0.
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3.6.1 The Normalized Representation

A normalized lock-free data structure is one for which each operation can be presented
in three stages, such that the middle stage executes the owner CAses, the first is a
preparatory stage and the last is a post-execution step.

Using Harris’s linked-list example, the DELETE operation runs a first stage that
finds the location to mark a node as deleted, while sniping out of the list all nodes that
were previously marked as deleted. By the end of the search (the first stage) we can
determine the main CAS operation: the one that marks the node as deleted. Now comes
the middle stage where this CAS is executed, which logically deletes the node from the
list. Finally, in a post-processing stage, we attempt to snip out the marked node from
the list and make it unreachable from the list head.

In a normalized lock-free data structure, we require that: any access to the data
structure is executed using a read or a CAS; the first and last stages be parallelizable, i.e.,
can be executed with parallelizable methods; and each of the CAS primitives of the second
stage be protected by versioning. This means that there is a counter associated with
the field that is incremented with each modification of the field. This avoids potential
ABA problems, and is further discussed in Section 3.7.

Definition 3.6.1. A lock-free data structure is provided in a normalized representation
if:

e Any modification of the shared memory is executed using a CAS operation.

e Every operation of the data structure consists of executing three methods one
after the other and which have the following formats.
1) cas-generator, whose input is the operation’s input, and its output is a list
of cAs-descriptors. The CAs-generator method may optionally output additional
data to be used in the WRAP-UP method.
2) cas-executor, which is a fixed method common to all data structures imple-
mentations. Its input is the list of CAS-descriptors output by the CAs-generator
method. The cAs-executor method attempts to execute the CASes in its input
one by one until the first one fails, or until all CASes complete. Its output is the
index of the CAs that failed (which is -1 if none failed).
3) Wrap-Up, whose input is the output of the cAs-ezecutor method plus the list
of cas-descriptors output by the CAs-generator, plus (optionally) any additional
data output by the cAs-generator method to be used by the WRAP-UP method.
Its output is either the operation’s result, which is returned to the owner thread,
or an indication that the operation should be restarted from scratch (from the
GENERATOR method).

e The GENERATOR and the WRAP-UP methods are parallelizable and they have an
associated contention failure counter.

e Finally, we require that the CASes that the GENERATOR method outputs be for

fields that employ versioning (i.e., a counter is associated with the field to avoid
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an ABA problem). The version number in the expected-value field of a CAS
that the GENERATOR method outputs cannot be greater than the version number
currently stored in the target address. This requirement guarantees that if the
target address is modified after the GENERATOR method is complete, then the
cas will fail.

All lock-free data structures that we are aware of today can be easily converted
into this form. Several such normalized representations are presented in Section 3.10.
This is probably the best indication that this normalized representation covers natural
lock-free data structures. In Section 3.9 we show that all abstract data types can be
implemented in a normalized lock-free data structure, but this universal construction is
likely to be inefficient.

Intuitively, one can think of this normalized representation as separating owner
CASes (those are the CAses that must be executed by the owner thread) from the other
(denoted auxiliary) cAses. The auxiliary CASes can be executed by many helping threads
and therefore create parallelizable methods. Intuitively, the first (generator) method can
be thought of as running the algorithm without performing the owner CcAses. It just
makes a list of those to be performed by the executor method, and it may execute some
auxiliary CASes to help previous operations complete.

As an example, consider the DELETE operation of Harris’s linked-list. When trans-
forming it to the normalized form, the GENERATOR method should call the search
method of the linked-list. The search method might snip out marked (logically deleted)
nodes; those are auxiliary CASes, helping previous deletions to complete. Finally, the
search method returns the node to be deleted (if a node with the needed key exists in
the list). The cAs that marks this node as logically deleted is the owner CcAs, and it
must be executed exactly once. Thus, the GENERATOR method does not execute this
owner CAS but outputs it to be executed by the CAS-EXECUTER method. If no node
with the needed key is found in the list, then there are no owner CASes to be executed,
and the GENERATOR method simply returns an empty list of CASes.

Next, the CAS-EXECUTOR method attempts to execute all these owner CAses. In
Harris’s linked list, like in most known algorithms, there is only one owner cAs. The
CAS-EXECUTER method attempts the owner CAS (or the multiple owner CASes one by
one), until completing them all, or until one of them fails. After the CAS-EXECUTER
method is done, the operation might already be over, or it might need to start from
scratch (typically if a CAs failed), or some other auxiliary cAses should be executed
before exiting. The decision on whether to complete or start again (and possibly further
execution of auxiliary CASes) is done in the WRAP-UP method. In Harris’ linked-list
example, if the GENERATOR method outputted no CcASes, then it means that no node
with the required key exists in the list, and the wrap-up method should return with
failure. If a single CAs was outputted by the GENERATOR but its execution failed in the
EXECUTER, then the operation should be restarted from scratch. Finally, if a single cAS
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was outputted by the GENERATOR and it was successfully executed by the EXECUTER,
then the wrap-up method still needs to physically remove the node from the list (an
auxiliary CAS), and then return with success. Removing the node from the list can be
done similarly to the original algorithm, by calling the SEARCH method again.

We note that the normalized representation requires all data structure modifications
to be executed with a CAS, and allows no simple WRITE primitives. This is in fact the
way most lock-free data structures work. But this requirement is not restrictive, since
any WRITE primitive can be replaced by a loop of repeatedly reading the old value and
then trying to CAS it to the new value until the CAS is successful.

To see that this does not foil the lock-free property, replace the WRITES with such
loop cAsSes one by one. Now, for a single such replacement note that either the CAses
always succeed eventually and then the algorithm is still lock-free, or there exists an
execution of this loop that never terminates. In the later case, other threads must
be executing infinitely many steps that foil the cASes, while the current thread never
modifies the data structure. This is similar to a case where this thread is not executing
at all, and then the other threads must make progress, since the algorithm (without the

looping thread) is lock-free.

3.7 Transformation Details

In this section, we provide the efficient wait-free simulation of any normalized lock-free
data structure. To execute an operation, a thread starts by executing the normalized
lock-free algorithm with a contention failure counter checked occasionally to see if
contention has exceeded a predetermined limit. To obtain non-starvation, we make the
thread check its contention failure counter periodically, e.g., on each function call and
each backward jump. If the operation completes, then we are done. Otherwise, the
contention failure counter eventually exceeds its threshold and the slow path must be
taken.

There is also a possibility that the contention failure counter never reaches the
predetermined limit for any execution of a single method, but that the wrRAP-UP
method constantly indicates that the operation should be restarted from fresh. (This
must also be the result of contention, because if an operation is executed alone in the
lock-free algorithm it must complete.) Thus, the thread also keeps track of the number
of times the operation is restarted, and if this number reaches the predetermined limit,
the slow path is taken as well. The key point is that an operation cannot execute
infinitely many steps in the fast-path. Eventually, it will move to the slow-path.

The slow path begins by the thread creating an operation record object that
describes the operation it is executing. A pointer to this operation record is then
enqueued in a wait-free queue called the help queue. Next, the thread helps operations
on the help queue one by one according to their order in the queue, until its own

operation is completed. Threads in the fast path that notice a non-empty help queue
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OperationRecordBox: CAS Descriptor:

val // points to a record target // target address
expected-value
new-value

state // pending / failure / success

OperationRecord:
ownerTid // the owner thread of this operation
operation // Optype, i.e., insert, delete, contains...
input // input parameters for the operation
state // one of: preCASes / executeCASes / postCASes / completed
result // operation result (when completed)
CAS-list  // alist of CAS descriptors

Figure 3.1: Operation Record

provide help as well, before starting their own fast-path execution.

3.7.1 The Help Queue and the Operation Record

The description of operations that require help is kept in a wait-free queue, similar to
the one proposed by Kogan and Petrank in [KP11]. The queue in [KP11] supports the
standard ENQUEUE and DEQUEUE operations. We slightly modify it to support three
operations: ENQUEUE, PEEK, and CONDITIONALLY-REMOVE-HEAD. ENQUEUE operations
enqueue a value to the tail of the queue as usual. The new PEEK operation returns the cur-
rent head of the queue, without removing it. Finally, the conditionally-remove-head
operation receives a value it expects to find at the head of the queue, and removes
it (dequeues it) only if this value is found at the head. In this case it returns true.
Otherwise, it does nothing and returns false. This queue is in fact simpler to design than
the original queue, because DEQUEUE is not needed, because PEEK requires a single read,
and the conditionally-remove-head can be executed using a single CAS. (Therfore,
conditionally-remove-head can be easily written in a wait-free manner.) Some care
is needed because of the interaction between ENQUEUE and CONDITIONALLY-REMOVE-
HEAD, but a similar mechanism already appears in [KP11], and we simply used it in
our case as well. The Java implementation for our variation of the queue is given in

Appendix D.

We use this queue as the help queue. If a thread fails to complete an operation due
to contention, it asks for help by enqueuing a request on the help queue. This request
is in fact a pointer to a small object (the operation record box) that is unique to the
operation and identifies it. It is only reclaimed when the operation is complete. In this
operation record box object there is a pointer to the operation record itself, and this
pointer is modified by a CAS when the operation’s status needs to be updated. We
specify the content of this object and record in Figure 3.1.
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1: void help (boolean beingHelped, OperationRecordBox myHelpBox) {

2 while (true) {

3 OperationRecordBox head = helpQueue.peekHead();

4 if (head != null)

5: helpOp(head);

6 if (IbeingHelped || myHelpBox.get().state == OpState.completed)
7 return;

8

9

}
}

Figure 3.2: The help method

3.7.2 Giving Help

When a thread T starts executing a new operation, it first PEEKs at the head of the
help queue. If it sees a non-null value, then T" helps the enqueued operation before
executing its own operation. After helping to complete one operation, T" proceeds to
execute its own operation (even if there are more help requests pending on the queue).

To participate in helping an operation, a thread calls the HELP method, telling it
whether it is on the fast path, and so willing to help a single operation, or on the slow
path, in which case it also provides a pointer to its own operation record box. In the
latter case, the thread is willing to help all operations up to its own operation. The HELP
method will PEEK at the head of the help queue, and if it sees a non-null operation
record box, it will invoke the HELPOP method. A null value means the help queue is
empty, and so no further help is needed.

The HELPOP, invoked by the HELP method, helps a specific operation O, until it is
completed. Its input is O’s operation record box. This box may either be the current
head in the help queue or it is an operation that has been completed and is no longer
in the help queue. As long as the operation is not complete, HELPOP calls one of the
three methods, PRECASES, EXECUTECASES, or POSTCASES, as determined by the
operation record. If the operation is completed, HELPOP attempts to remove it from the
queue using CONDITIONALLY-REMOVE-HEAD. When the HELPOP method returns, it is
guaranteed that the operation record box in its input represents a completed operation
and is no longer in the help queue.

The PRECASES method invokes the CAS-GENERATOR method of the normalized
lock-free algorithm, which generates the list of cAS-descriptions for the CAS-EXECUTOR.
As the CAS-GENERATOR method is parallelizable, it can be run by several threads
concurrently at no risk®. It runs a monitored version of the generator, which occasionally
checks the contention failure counter in order to guarantee this method will not run
forever. If the contention failure counter reaches the predetermined threshold, the
thread simply quits this method with null and reads the operation record box to see if
another thread has made progress with this operation (if not, the HELPOP method will
call the PRECASES method again).

3This is formally proved at Section 3.8.
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1: void helpOp(OperationRecordBox box) {

2 OperationRecord record = null;

3 do {

4: record = box.val;

5 OpState state = record.state;

6 if (state == OpState.preCASes) {

7 preCASes(box, record); > Executes the CAS generator supplied by the normalized

algorithm plus attempt to make the result visible.

8: }

9: if (state == OpState.executeCASes) {
10: int failedIndex = executeCASes(record.list); > carefully execute the CAS list outputted

by the CAS generator.

11: record.failedCasIndex = failedIndex;
12: record.state = OpState.postCASes;
13:
14: if (state == OpState.postCASes) {
15: postCASes(box, record); > execute the wrap-up method, plus some administrative work
16: }
17: } while (state != OpState.completed);
18: helpQueue.conditionallyRemoveHead (box);
19:  }

Figure 3.3: The helpOp method

The PRECASES method allocates a new operation record that holds the result of
the run of the CAS-GENERATOR method. The outcome of the PRECASES can either
be a null pointer if the method was stopped by the contention failure counter, or a
list of cAs-descriptors if the method completed successfully. If the result of the cAs-
GENERATOR execution is not a null, the PRECASES method creates a new operation
record and attempts to make it the official global operation record for this operation
by attempting to atomically change the operation record box to reference it. There is
no need to check whether this attempt succeeded as the CAS-GENERATOR method is
a parallelizable method and any result by any of its concurrent executions is a proper
result that can be used to continue the operation.

If the OperationRecord is not replaced by a new one, then soon enough all threads
will only run this method, all helping the same operation. In that case, it is guaranteed
to be completed because the simulation is equivalent to running this operation solo?.
After the OperationRecord is successfully replaced by a CAs, some threads might still be
executing the GENERATOR method. Since we monitor the execution with a contention
failure counter, and since the counter is required to be incremented repeatedly (cannot
maintain any value forever), then we know that these threads do will not execute
infinitely many steps in these methods.

The CAS-EXECUTOR method is not parallelizable and therefore helping threads
cannot simply run it concurrently. Only one execution of each CAS is allowed, and it
should be clear to everyone whether each CAS execution succeeded or failed. So we

replace it with a carefully designed concurrent method, named EXECUTECASES (Figure

1A formal argument for the wait-freedom is given in Section 3.8.2.
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1: void preCASes(OperationRecordBox box, OperationRecord record) {
2 cas-list = MonitoredRun(Of GeneratorMethod on record);
3: if (cas-list != null) {
4: newRecord =
new  OperationRecord(record.ownerTid, record.operation, record.input, Op-
State.executeCASes, null, cas-list);
5: CAS(box.val, record, newRecord);
6: }
7}

Figure 3.4: The preCASes method

3.5) .

The EXECUTECASES method receives as its input a list of cAs-descriptors to be
executed. Each CAs description is also associated with a state field, which describes the
execution state of this CAS: succeeded, failed, or still pending. The controlled execution
of these critical CASes requires care to ensure that: each CAS is executed exactly once,
the success of the CAS gets published even if one of the threads stops responding, and
an ABA problem is not created by letting several threads execute this sensitive CAS
instead of the single thread that was supposed to execute it in the original lock-free
algorithm. The ABA problem is introduced because a thread may be inactive for a
while and then successfully execute a CAS that had been executed before, if after its
execution the target address was restored back to its old value.

Ideally, we would have liked to execute three instructions atomically: (1) read the
state, (2) attempt the cAs (if the state is pending), and (3) update the CAS state.
Unfortunately, since these three instructions work on two different locations (the CAS’s
target address and the descriptor’s state field) we cannot run this atomically without
using a heavy mutual exclusion machinery that foils wait-freedom (and is also costly).

To solve this atomicity problem, we introduce both a versioning mechanism to the
fields being caAsed, and an additional bit, named modification-bit, to each cAsed
field. (In a practical implementation, the modified-bit is on the same memory word
as the version number.)

The modified-bit will signify that a successful CAS has been executed by a helping
thread, but (possibly) not yet reported. So when a CAS is executed in the slow path, a
successful execution will put the new value together with the modified-bit set. As
a result, further attempts to modify this field must fail, since the expected-value of
any CAS never has this bit set. When a field has the modified-bit set, it can only
be modified by a special CAS primitive designated to clear the modified-bit. This
CAS, which we refer to as a CLEARBIT CAsS, is the only CAS that is executed without
incrementing the version number. It only clears the modified-bit, and nothing more.
However, before any thread attempts the CLEARBIT CAS, it must first update the state

of the CAS to reflect success.

Our transformation keeps the invariant that in the entire data structure, only a
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single modified-bit might be set at any given moment. This is exactly the bit of
the CAs that is currently being helped by all helping threads. Before clearing this
modified-bit, no other CAS execution can be helped.

Let us examine an execution of the EXECUTECASES method. The executing thread
goes over the CASes in the list one by one, and helps execute them as follows. First,
it reads the CAS state. If it is successful, it attempts the CLEARBIT CAS to clear
the modified-bit, in case it hasn’t been done before. The expected-value of the
CLEARBIT CAS exactly matches the new-value of the CAS-descriptor except that the
modified-bit is set. Thus, due to the version number, the CLEARBIT CAS can only
clear a modified-bit that was switched on by the same cAs-descriptor. (This is
formally proved in Section 3.8.1.)

Otherwise, if the CAS state is currently set to failure, then the EXECUTECASES
method immediately returns with the index of the failing cAs. Otherwise, the state
is pending, and EXECUTECASES attempts to execute the listed CAS and set the
modified-bit atomically with it. Next, it checks whether the modified bit is set,
and if it is, it sets the (separate) CAS state field to success and only then attempts to
clear the modified-bit.

Setting the state field to success is done with an atomic CAS, which only succeeds
if the previous state is pending. This is required to solve a race condition in which the
execution of the CAs-descriptor has failed, yet the modified-bit is set to true is the
result of a successful execution of a later cAS. Afterwards, and only if the state is now
indeed success, the CLEARBIT is attempted. Next, if at that point the CAS state field is
still not set to success, then it means the CAS has failed, and thus EXECUTECASES sets
this state to failure and returns. Otherwise, success is achieved and EXECUTECASES
proceeds to the next CAS in the list.

The existence of the modified-bit requires minor modifications to the fast-path.
First, READ primitives should ignore the modified-bit (always treat it as if the bit
were off.) This should be easy: the modified-bit is adjacent to the version number,
which does not normally influence the execution (only when calculating the next version
number for the new-value of a CAS.)

Second, when a thread attempts a CAS and the CAS fails in the fast-path, it should
check to see whether the CAS failed because the modified-bit in the required field is
set, and if so, whether the cAs would have succeeded were the bit turned off.

Thus, after a CAS in the fast-path fails, instead of continuing as usually, the thread
that attempted the CAS READS the value from the CAS’s target address. If this value
differs from the CAS’s expected-value in other bits than the modified-bit, then
the thread continues the execution as usual, since the CAS has “legitimate” reasons
for failure. However, if the value in the CAS’s target address is identical to the
CAS’s expected-value in all the bits but the modified-bit, then the thread pauses
its current execution and calls the help method to participate in helping the current

operation to complete (clearing this bit in the process.)
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1: private void executeCASes(cas-list cl) {
2 for (int i = 0; 1 < cl.size(); i++) {
3 ICasDesc cas = cl.get(i);
4 if (cas.GetState() == CasState.success) {
5: cas.ClearBit();
6: continue;
7
8 if (cas.GetState() == CasState.failure)
9: return i;
10: cas.ExecuteCas();
11: if (cas.ModifiedBitSet()) { > Checks whether the modified bit in the target address is set.
12: cas.CASStateField(CasState.pending, CasState.success); > Attempt with a CAS to change
the descriptor’s state from pending to success.
13: if (cas.GetState == CasState.success) { cas.ClearBit(); }
14:
15: if (cas.GetState() != CasState.success) {
16: cas.WriteStateField(CasState.failure); > CAS MUST HAVE FAILED, SET THE DESCRIPTOR’S
STATE TO FAILURE.
17: RETURN I;
18: }
19: }
20: RETURN -1; > THE ENTIRE CAS-LIST WAS EXECUTED SUCCESSFULLY
21:  }

Figure 3.5: The executeCASes Method

After the help method returns the modified-bit is guaranteed to have been cleared.
Thus, the CAs is attempted again, and the execution continues as usual from that point.
Even if the re-execution fails, there is no need to READ the target address again. It
is guaranteed that the value in the target address is now different from the CAs’s
expected-value: if the modified-bit is turned back on after being cleared, it can
only be done together with incrementing the version number.

After the cases are executed, the HELPOP method calls the POSTCASES method
(Figure 3.6), which invokes the WRAP-UP method of the original lock-free algorithm. If
the WRAP-UP method fails to complete due to contention, the monitored run will return
null and we will read again the operation record box. If the WRAP-UP method was
completed without interruption, the POSTCASES method attempts to make its private
operation record visible to all by atomically attempting to link it to the operation
record box. Note that its private operation record may indicate a need to start
the operation from scratch, or may indicate that the operation is completed. When
the control is returned to the HELPOP method, the record is read and the execution

continues according to it.

3.8 Correctness

Our goal is to prove that given a normalized linearizable lock-free data structure
implementation for a particular abstract data type, our transformation generates a

wait-free linearizable implementation for the same abstract data type. As a preliminary
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void postCASes(OperationRecordBox box, OperationRecord record) {
shouldRestart, operationResult = MonitoredRun(of Wrapup Method on record);
if (operationResult == Null) Return
if (shouldRestart)
newRecord = new OperationRecord(record.ownerTid, record.operation, record.input, Op-
State.preCASes, null, null);
else
7 newRecord = new OperationRecord(record.ownerTid, record.operation, record.input, Op-
State.completed, operationResult, null);
8:  box.val.compareAndSet(record, newRecord);

9: }

@

Figure 3.6: The postCASes Method

step, we first prove that the implementation of the EXECUTECASES method, as given in
Figure 3.5 is correct. The exact definition of a correct behavior of the EXECUTECASES
method is given in the following subsection (Definition 3.8.1). Subsection 3.8.1 proves
that our implementation is indeed correct. Given this result, Subsection 3.8.2 proves

that the generated algorithm of our transformation is linearizable and wait-free.

3.8.1 Correctness of the EXECUTECASES Implementation

In the EXECUTECASES method, potentially many threads are working together on
the same input (same CAS list). A CAs-list is a structure that holds zero or more CAs-
descriptors, and a field indicating the length of the list. Each caAs-descriptor consists
of four fields: target address, expected-value, new-value, and status. The three
first fields are final (never altered) after a cAs-descriptor has been initialized.

Loosely speaking, to an “outside observer” that inspects the shared memory, many
threads executing the EXECUTECASES method on a certain cAs-list should appear
similar to a single thread executing the CAS-EXECUTER method (the second method
in the normalized form) on a private (but identical) cAs-list input. Recall that in the
CAS-EXECUTER method, the CASes are executed according to their order until they are
completed or the first one among them fails. The output of the method is the index of
the first cAs that failed, or minus one if no CAS failed.

The main difference between an execution of the CAS-EXECUTER method by a single
thread, and concurrent executions of the EXECUTECASES method by many threads,
is that in the latter each CAS is executed in two steps. We refer to the first (main)
step simply as executing the CAS-descriptor, and to the second step as executing the
CLEARBIT of the cAs-descriptor. An execution of a CcAs-descriptor (which occurs in
line 10 of the EXECUTECASES method) is an execution of a CAS for which the target
address, expected-value and new-value are the same as the CcAs-descriptor’s, except
that the new-value is altered such that the modified-bit is set. An execution of a
CLEARBIT of a cAs-descriptor (which occurs in lines 5 and 13) is an execution of a CAS

for which the target address and the new-value are the same as the CAS-descriptor’s,
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and the expected-value is identical to the new-value except that the modified-bit
is set. (Thus, the expected-value of the second step is the new-value of the first
step.)

In what follows, we formally define what is a correct concurrent behavior for the
EXECUTECASES method and prove that the implementation of it given in Figure 3.5 is
indeed correct. The correctness of the transformation, as detailed in subsection 3.8.2,
relies on the correctness of the EXECUTECASES method stated here. However, the
two proofs are independent of each other, and the reader may skip the proof in this

subsection if he chooses to, without loss of clarity.

Definition 3.8.1. (Correct Behavior of the EXECUTECASES method.) When one or
more threads execute concurrently the EXECUTECASES method using the same CAs-list

input, the following should hold.

e All computation steps inside the EXECUTECASES method are either: a) an
execution of a cAs-descriptor, b) a CLEARBIT of a cAs-descriptor, or ¢) applied
on the memory of the cas-list (e.g., altering the state field of a cAs-descriptor).

e For every cas-descriptor ¢: a) any attempt to execute ¢ except the first attempt
(by some thread) must fail, and b) any attempt to execute the CLEARBIT of ¢
except the first attempt (by some thread) must fail.

e Before a cAs-descriptor ¢ in a CAs-list ¢l is executed for the first time: a) all the
previous CAs-descriptors in ¢l have been successfully executed, and b) CLEARBIT

has already been executed for all the previous CAs-descriptors in cl.

e Once some thread has completed executing the EXECUTECASES method on an
input cas-list ¢l the following holds.
1) Either all the cAs-descriptors have been successfully executed, or all the CAs-
descriptors have been executed until the first one that fails. Further cAs-descriptors
(after the first one that fails) have not been executed, and will not be executed in
the rest of the computation.
2) A CLEARBIT was successfully executed for each cAs-descriptor that was

successfully executed.

e The return value of the EXECUTECASES for every thread that completes it is:
1) The index of the first (and only) cAs-descriptor whose execution failed the first
time it was attempt, if such exists.

2) -1 otherwise.

Our goal is to prove that the EXECUTECASES method as implemented in Figure
3.5 is correct by Definition 3.8.1, assuming that its input is legal. More precisely, we
consider an execution E in which the EXECUTECASES method is invoked (possibly many

times). We use several assumptions on E, (all fulfilled by an execution of an algorithm
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that results from applying our transformation on a normalized form algorithm) about
how the EXECUTECASES method is used, and prove that F fulfills definition 3.8.1. We

assume the following.

Assumption 3.8.2. Only a single cas-list for which the execution (by some thread)
is not yet completed is active at any given moment. More precisely: whenever the
EXECUTECASES method is invoked in E with an input CAs-list cl, then for all prior
invocations of the EXECUTECASES method with an input cAs-list ¢l’, by any thread,
one of the following holds.

1) ¢l and ¢l are equal.

2) An execution of the EXECUTECASES method for which the input was ¢!’ is already

completed.

Remark. Note that we do not assume that all executions of the EXECUTECASES method

with input ¢!’ are already completed.

Assumption 3.8.3. Any address that is used as a target address of any cas-descriptor
is only ever modified in £ with a CAS (no writes). Outside the EXECUTECASES
method, all the cAses that modify this address has the modified-bit off both in the

expected-value and in the new-value.

Assumption 3.8.4. A version number is associated with every address that is used as a
target address of a CAs-descriptor. For every CcAS in F that attempts to modify such
an address outside the EXECUTECASES method, the version number of the new-value
is greater by one than the version number of the EXPECTED VALUE. (That is, each

successful CAS increments the version number by one.)

Assumption 8.8.5. CAs-descriptors are initialized with a pending state, and the state
field is never modified outside the EXECUTECASES method.

Assumption 3.8.6. When a CAS-descriptor is initialized, the version number in the
expected-value field is no greater than the current version number stored in the
target address of the cAs. (That is, cAs-descriptors are not created speculatively

with “future” version numbers.)

Remark. Usually in a CAS, the expected-value is a value that was previously read

from the target address. If that is the case, this assumption will always hold.

To simplify the proof, we first define a few terms used in the proof. First, we define
a total order between all the CAs-lists that are used as an input to the EXECUTECASES
method in F, and to all the cAs-descriptors used in these CAS-lists.

Definition 3.8.7. (Total order of cAs-lists.) Given two different cas-lists ¢l; and cly
used as an input to the EXECUTECASES method in E, we say that cl; is before cly (or
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prior to clg) if the first time that an EXECUTECASES method with input ¢l is invoked
in E is prior to the first time that an EXECUTECASES method with input cly is invoked
in F.

Remark. Note that by Assumption 3.8.2, if ¢y is prior to clo, then some thread completes
executing the EXECUTECASES method on input cl; before the first time that the
EXECUTECASES method is invoked with cls.

Definition 3.8.8. (Total order of CAs-descriptors.) Given a CAs-descriptor ¢; that
belongs to a CAS-list cl;, and a cAs-descriptor co that belongs to a CAS-list clo, we say
that ¢; is before ¢ (or prior to cg) if either: 1) ¢ly is before cla, or 2) cl; and cly are

equal, and ¢ appears before ¢y in the CAS-list.

Next, we define the most recent CAS-list, most recent EXECUTECASES iteration,
and most recently active CAS-descriptor for a given point in time t. For an execution F,

time ¢ is the point in the execution after exactly ¢ computation steps.

Definition 3.8.9. (Most recent CAs-list, most recent EXECUTECASES iteration, most
recently active CAS-descriptor) At time ¢, the most recent CAS-list cl is the latest CAs-list
(Definition 3.8.7) such that an EXECUTECASES method is invoked with ¢l as an input
before time t. The most recent EXECUTECASES iteration at time ¢ is the latest iteration
(with the largest i variable) of the loop in lines 2-17 of the EXECUTECASES method
that any thread was executing at or before ¢t on the most recent cl of time ¢t. The most
recently active CAS-descriptor is the CAs-descriptor that is read at the beginning of the
most recent EXECUTECASES iteration.

Remark. Note that if the first time the EXECUTECASES method is invoked in F is after
time ¢, then the most recent CAS-list, most recent EXECUTECASES iteration, and most

recently active CAS-descriptor are undefined for time ¢.

Definition 3.8.10. (modified-bit belongsto a CAs-descriptor.) We say that amodified-bit
that is true at time t belongs to the cas-descriptor whose execution switched this bit

to true most recently prior to ¢t. (Note that a modified-bit can only be set to true in

line 10 of the EXECUTECASES method. (Assumption 3.8.3.))

Claim 3.8.11. At any point in the computation, if a modified-bit is on, it belongs

to some CAS-descriptor.

Proof. By Assumption 3.8.3, a modified-bit cannot be switched on outside of the
EXECUTECASES method. Inside the EXECUTECASES method, it can only be switched
on by executing a CAS-descriptor in line 10. It follows from Definition 3.8.10 that when

a modified-bit is on, it belongs to some CAs-descriptor. O
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In what follows we state several invariants that are true throughout execution E.
After stating them all, we will prove them using induction on the computation steps of
the execution. The induction hypothesis is that all the following invariants are correct
after ¢ computation steps, and we shall prove they all hold after ¢ + 1 computation steps.
When proving that an invariant holds for ¢ 4+ 1 steps, we will freely use the induction
hypothesis for any one of the invariants, and may also rely on the fact that previously
proved invariants hold for i 4+ 1 steps. All the invariants trivially hold for i = 0 steps:
the first invariant holds since by Assumption 3.8.5 all cAas-descriptors are initialized as
pending, and the rest of the invariants hold for ¢ = 0 steps vacuously, since they refer to

a condition that is always false before a single execution step is taken.

Invariant 3.1. The state of a CAS-descriptor that has not yet been executed is pending.

Invariant 3.2. If the state of a cAs-descriptor is failure, then the first attempt to

execute the cAs-descriptor has already occurred, and it has failed.

Invariant 3.3. If the state of a CAS-descriptor is success, then the first attempt to

execute the cAs-descriptor has already occurred, and it has succeeded.

Invariant 3.4. If a CAs-descriptor’s state is not pending (i.e., either success or failure),

then it is final (never changes again).

Invariant 3.5. An attempt to execute a particular CAS-descriptor in a given CAS-list,

except the first attempt by the first thread that attempts it, must fail.

Invariant 3.6. If some thread ¢ is currently executing the nth iteration of the loop in
some instance of the EXECUTECASES method (formally: if the last computation step
taken by t is inside the nth iteration of the loop), then the states of the cAs-descriptors

read in iterations 0 to n — 1 of the same EXECUTECASES instance are success.

Invariant 3.7. If a cAs-descriptor ¢ in a CAS-list ¢l has been executed, then the states

of all the previous CAS-descriptors in ¢l are success.

Invariant 3.8. If the state of a CAS-descriptor ¢ in a CAs-list ¢l is not pending, then

the states of all the previous CAS-descriptors in ¢l are success.

Invariant 3.9. If some thread ¢ has already completed the execution of an EXECUTE-
CASES method with input CAs-list ¢/, then either 1) the states of all the CAs-descriptors
in ¢l are success, or 2) the state field of exactly one cAs-descriptor ¢ in ¢l is failure,
the states of all the cAs-descriptors before ¢ in ¢l (if any) are success, and the states

of all the cas-descriptors after ¢ in ¢l (if any) are pending.

Invariant 3.10. If a cAs-descriptor has already been successfully executed, then one of
the following holds.
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1) The cas-descriptor’s state field indicates success, or
2) The cas-descriptor’s state field indicates a pending state, and the target address
of the cas still holds the CAS’s new-value, and in particular, the modified-bit is set

to true.

Invariant 3.11. If some thread ¢ is currently executing the loop in lines 2-19 (formally:
if the last execution step taken by ¢ is inside the loop), in which the CcAs-descriptor c is
read, but the iteration ¢ is executing is not the most recent EXECUTECASES iteration,
(which means that c¢ is not the most recently active CAs-descriptor), then ¢’s state is

not pending.

Invariant 3.12. If some thread t has already completed executing the loop in lines 2-19
(either by breaking out of the loop in line 9 or 17, or by continuing to the next loop
from line 6, or simply by reaching the end of the iteration), in which the cas-descriptor

c is read, then there is no modified-bit that is set to true and that belongs to c.

Invariant 3.13. 1If a certain modified-bit is true, then this modified-bit belongs to

the most recently active CAs-descriptor.

Proof. (Invariant 3.1.) Each caAs-descriptor is initialized as pending, and its state can
potentially be changed only in lines 12 and 16 of the EXECUTECASES method. Before
a thread t executes one of these lines for a certain cAs-descriptor, it first attempts to
execute the same CAS-descriptor in line 10. Thus, if a CAS-descriptor has never been

executed, its state must be pending. O

Proof. (Invariant 3.2.) Assume by way of contradiction that in step ¢+ 1 a thread ¢ sets
a CAS-descriptor ¢’s state to failure, and that the first attempt to execute ¢ has not
yet occurred or has been successful. Step ¢ + 1 must be an execution of line 16, since
this is the only line that sets a state field to failure (Assumption 3.8.5). Consider the
execution right after ¢ executed line 10 of the same iteration of the loop in lines 2-19. ¢
has just executed ¢, so it is impossible that ¢ has not yet been executed. Thus, the first
attempt to execute ¢ must have been successful.

By the induction hypothesis (Invariant 3.10), in each computation step after ¢ was
first executed (and in particular, after thread ¢ executed it in line 10), and until step 4,
c’s state is either success, or it is pending and the modified-bit is set to true. Thus,
when t executes line 11, there are two cases.

The first case is that ¢’s state is success. Since there is no code line that changes
a state back to pending, and since until step ¢ + 1 the state cannot be failure by
the induction hypothesis (Invariant 3.10), then the state must also be success when ¢
executes line 15. Thus, the condition in this line is false, line 16 is not reached, and ¢
cannot set ¢’s state to failure at step ¢ + 1, yielding contradiction for the first case.

The second case is that ¢’s state field is pending and that the modified-bit is set.

In that case, t will attempt by a CAS to switch the state from pending to success in
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line 12. After executing this line, ¢’s state must be success (since it cannot be failure
by the induction hypothesis (Invariant 3.10), and if it were pending the cAS would have
changed it to success). Similarly to the previous case, the state must also be success
when ¢ executes line 15, and thus line 16 is not reached, yielding contradiction for the

second case. O

Proof. (Invariant 3.3.) Assume by way of contradiction that in step i 4 1 a thread ¢ sets
a CAS-descriptor ¢’s state to success, and that the first attempt to execute ¢ has not
yet occurred or has been unsuccessful. Step 7 + 1 must be an execution of line 12, since
this is the only line that sets a state field to success (Assumption 3.8.5). ¢ has already
executed line 10 of the same iteration of the loop, thus the first attempt to execute the
CAS-descriptor has already occurred, and thus it must have failed.

Consider the execution when t executes line 11 of the same iteration of the loop.
The modified-bit must have been on, otherwise line 12 would not have been reached.
By Claim 3.8.11, this modified-bit must belong to a CAs-descriptor. We consider
three cases. The first case is that the modified-bit belongs to c. In this case c’s first
execution attempt must have been successful, yielding contradiction.

The second case is that the modified-bit belongs to a CAS-descriptor prior to c.
However, when t executes line 11, then by the induction hypothesis (Invariant 3.13), the
modified-bit must belong to the most recently active CAs-descriptor. Since c is active
at that point, then any CAs-descriptor prior to ¢ cannot be the most recently active one
by definition, and thus the modified-bit cannot belong to it, yielding contradiction
for the second case.

The third case is that the modified-bit belongs to a CAs-descriptor that comes
after ¢. Thus, by the induction hypothesis (Invariant 3.11), after ¢ computation steps
¢’s state cannot be pending. (¢ is executing the loop in lines 2-19 after i steps, but
¢ cannot be the most recently active CAS-descriptor since a later cAs-descriptor has
already been active to set the modified-bit to true.) If ¢’s state is not pending after
1 steps, then ¢ cannot set it to success in step 7 + 1 via an execution of line 12, yielding

contradiction for the third case. O

Proof. (Invariant 3.4.) This follows directly from Invariants 3.2 and 3.3, which are
already proven for ¢ + 1 steps. That is, if ¢’s state is failure after ¢ steps, then by
Invariant 3.2, the first attempt to execute ¢ must have failed. Thus, by Invariant 3.3,
the state cannot be success after ¢ 4+ 1 steps. Similarly, if ¢’s state is success after ¢
steps, then by Invariant 3.3, the first attempt to execute ¢ must have succeeded. Thus,
by Invariant 3.2, the state cannot be failure after ¢ + 1 steps. Finally, a state cannot
be changed from success or failure to pending, because no line in the EXECUTECASES
method changes a state to pending, and by Assumption 3.8.5, no line in the code
outside the EXECUTECASES does that either. O
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Proof. (Invariant 3.5.) Assume that in step i + 1 a CAs-descriptor ¢ is attempted, and
this is not the first attempt to execute this CAS. We shall prove this attempt must fail.
By Assumption 3.8.4, each CAs-descriptor is to a target address that is associated
with a version number. Furthermore, by combining Assumption 3.8.4 with Assumption
3.8.6, the version number of the expected-value is never greater than the current value
stored in the target address. Thus, we consider two cases. The first case is that the
first attempt to execute a ¢ had succeeded. In this case, after this execution, the version
number is greater than the expected-value’s version number, and thus the attempt to
execute it again in step ¢ + 1 must fail.

The second case is that the first attempt to execute a ¢ had failed. If it failed
because at the time of the attempt the version number stored in the target address
had already been greater than the version number of the expected-value, then this
must still be true, and the attempt to execute ¢ in step ¢ + 1 must also fail. If the
first attempt to execute c failed because even though the version numbers matched,
the value stored in the target address differed from that of the expected-value, and
the difference was not limited to the modified-bit, then in order for the execution
attempt in step ¢ 4+ 1 to succeed the value stored in the target address must then be
changed, but in such a case the version number must be incremented, and thus again
¢’s execution in step ¢ + 1 is doomed to failure.

The last possibility is that the first attempt to execute ¢ had failed only because the
modified-bit was set to true at the time. Since the modified-bit can be switched
off by executing a CLEARBIT without incrementing the version number, this could
theoretically allow ¢ to be successfully executed later. However, this is impossible.
Consider ¢’s first execution. Since this happens before step ¢ + 1, then by the induction
hypothesis (Invariant 3.13), if the modified-bit was set, the modified-bit must
belonged to the most recently active CAs-descriptor. This cannot be ¢, since ¢ was not
successfully executed at the time. Thus, by the induction hypothesis (Invariant 3.11)
c’s state at the time was not pending. And thus, by Invariants 3.2 and 3.3, ¢ must have

been executed before, and this cannot be ¢’s first execution. ]

Proof. (Invariant 3.6.) To reach the nth iteration, ¢ must have first completed iterations
0 to n — 1. Consider t’s execution of line 15 for each of these iterations. In this line, the
state of the CAS-descriptor that is read in the same iteration is checked. If the state is
set to success, then by Invariant 3.4 (which is already proved for i 4+ 1 steps), the state
is also success after i + 1 steps, and we are done. If the state is not success, then ¢ will

break out of the loop in line 15, and the nth iteration would not be reached. O

Proof. (Invariant 3.7.) By the induction hypothesis for the same invariant (Invariant
3.7), the invariant holds after i steps. Assume by way of contradiction that the invariant
does not hold after ¢ + 1 steps. Thus, the ¢ + 1-st step must be one of the following.

1) A thread ¢ executes a CAs-descriptor ¢ in a CAs-list ¢/ while the state of a previous

CcAs-descriptor in ¢l is not success.
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2) The state of a cAs-descriptor c¢o in a CAS-list ¢/ changes from success to a different
value, while a later cAs-descriptor in ¢l has already been executed.

The first case yields contradiction because if ¢ is executing a CAs-descriptor c,
then the states of all the previous CAs-descriptors in the same list must be success
by Invariant 3.6, which is already proved for ¢ 4+ 1 steps. The second case yields a
contradiction because a non-pending state is final by Invariant 3.4, which is also already

proved for ¢ + 1 steps. O

Proof. (Invariant 3.8.) If the state of a cAS-descriptor ¢ is not pending, then ¢ has
already been executed by Invariant 3.1 (which is already proved for i 4+ 1 steps). If ¢
has already been executed, then the states of all the previous CAs-descriptors in the

same cl are success by Invariant 3.8 (which is also already proved for ¢ + 1 steps). [

Proof. (Invariant 3.9.) By the induction hypothesis for the same invariant (Invariant
3.9), the invariant holds after i steps. Assume by way of contradiction that the invariant
does not hold after ¢ + 1 steps. Thus, the 7 4+ 1-st step must be one of the following.
1) A thread t completes the execution of the EXECUTECASES method on input CAs-list
cl, yet cl does not meet the requirements.

2) A thread ¢ changes the state field of a CAs-descriptor in a CAs-list ¢/ that met the
requirements after ¢ steps. (And this ¢l was used as an input to an EXECUTECASES
invocation that is already completed.)

Consider the first possibility, and in particular, consider which computation step
could be the last computation step that t executes when completing the execution of
the EXECUTECASES method on input ¢l. For each of them, we will demonstrate that
after it, ¢/ must meet the requirements of Invariant3.9, thus reaching contradiction for
the first possibility. The last computation step in an execution of the EXECUTECASES
method can be one of the following. a) Reading a failure value out of a cAs-descriptor’s
state field and breaking out of the loop (lines 8-9). Thus, by Invariant 3.8, which is
already proved for ¢ 4 1 steps, the fact that the cAs-descriptor’s state field is failure
(not pending), proves that the states of all the previous cAs-descriptors in the list
are success, and the fact that the cAs-descriptor’s state field is failure (not success),
proves that the states of all the later cAs-descriptor in the list are pending.

b) Writing a failure value to a CAs-descriptor’s state field and breaking out of the
loop (lines 16-17). Again, by Invariant 3.8, the fact that the cAs-descriptor’s state is
failing implies that earlier CAs-descriptors’s states are success and later CAS-descriptor’s
states are pending.

¢) attempting to clear the modified-bit and “continuing” after the last iteration of
the loop in lines 5-6. In this case, the fact that the condition in line 4 was true implies
that the state of the last cas-descriptor in the list was success, and by Invariant 3.4,
which is already proved to i + 1 steps, the state of the last CAs-descriptor must still be

Snote that breaking out of the loop is not a computation step by itself, since it is neither a READ,
WRITE or CAS to the shared memory, but just an internal computation.
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success after ¢ + 1 steps. Thus, using Invariant 3.8, which is also proved for ¢ + 1 steps,
the states of all the previous CAs-descriptors must be success as well.

d) Reading a success value out of the last cAs-descriptor in a CAs-list and finishing
the last loop iteration (line 15). In this case, again, the state of the last cAs-descriptor
is success, and thus, using Invariant 3.8, the states of all the previous cAs-descriptors
are also success. In all of the cases (a)-(d), the CcAs-list meets the requirements of
Invariant 3.9, and thus the invariant is not violated, yielding contradiction for the first
possibility.

Now consider the second possibility. By Invariant 3.4, which is already proved for
i + 1 steps, if the state of a CAS-descriptor is not pending then it never changes again.
Thus, in step 7 + 1 thread ¢ must be changing the state of ¢ from pending to a different
value. However, since ¢l met the requirements of Invariant 3.9 for a cAs-list used as
input for a completed EXECUTECASES method after ¢ steps, and yet ¢, which belongs to
cl, has it state set to pending, it means that after ¢ steps there must be a CAs-descriptor
in ¢l before ¢, whose state is failure. By Invariant 3.8, which is already proved for i + 1
steps, after ¢ + 1 steps, if a CAs-descriptor’s state is not pending, then the states of
all previous cAs-descriptors in the same CAS-list are success. Thus, changing c’s state

to anything other than pending in step ¢ + 1 yields contradiction. O

Proof. (Invariant 3.10.) Assume by way of contradiction that in step i + 1 thread ¢
executes a step that violates Invariant 3.10 for a cAs-descriptor ¢. By using the induction
hypothesis for the same Invariant 3.10, such a step must be one of the following.

1) A successful execution of ¢ (after which neither of the post conditions holds).

2) Changing c’s state field either from pending to failure, of from success to a different
value.

3) Changing the value stored in ¢’s target address from the new-value with a set
modified-bit to a different value (while the state is pending).

We will go over each of these possibilities. In the first case, step ¢ + 1 must be the
first execution of ¢ (by Invariant 3.5, which is already proved for i 4+ 1 steps). Thus, by
the induction hypothesis (Invariant 3.1) ¢’s state must be pending after i steps. Thus,
after ¢ 4+ 1 steps, ¢’s state is still pending (since executing ¢ does not change its state
field), and since the execution in step i + 1 is successful, then after ¢ + 1 steps the value
stored in ¢’s target address is ¢’s new-value, with the modified-bit set. It follows
that after step ¢ 4+ 1 Invariant 3.10 still holds, yielding contradiction for the first case.

Consider the second case. Recall we assumed that step ¢ + 1 violates Invariant 3.10.
For the second case (i.e., a change of ¢’s state field) to violate the invariant, ¢ must
have been successfully executed at some step before step 7 + 1. By Invariant 3.5, any
attempt but the first attempt to execute ¢ cannot be successful. Thus, the first attempt
to execute ¢ must have been successful. It follows that step ¢ + 1 cannot change the
state of ¢ to failure, by using Invariant 3.2, which is already proved for i 4+ 1 steps.

Furthermore, step ¢ + 1 also cannot change ¢’s state to pending, simply because no line
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in the code does that, yielding contradiction for the second case.

Finally, consider the third case. By Assumption 3.8.3, changing the value stored in a
target address of any CAs-descriptor, while the modified-bit is set, cannot be done
outside the EXECUTECASES method. The only places in the code where the contents
of an address with a set modified-bit can be switched are the CLEARBIT instructions
in lines 5 and 13. However, note that in order to reach a contradiction, we need to refer
both to the possibility that step ¢ + 1 changes the value stored in ¢’s target address
because it is an execution of the CLEARBIT of ¢, and that step ¢ + 1 changes the value
stored in ¢’s target address because it is an execution of a CLEARBIT of a different
cAs-descriptor ¢, that shares the same target address.

If step i + 1 is a CLEARBIT of ¢, then in order to execute it either in line 5 or 13,
c’s state must be previously checked and found to be success. By using the induction
hypothesis (Invariant 3.4) the state of ¢ must still be success after i steps, and since
changing the value stored in the target address does not change the state, then also
after ¢ + 1 steps. Thus, the invariant holds after step ¢ + 1, yielding contradiction for
this particular sub-case of the third case.

Now consider the possibility that step ¢ + 1 is a CLEARBIT of a CAS-descriptor
¢ different than ¢ that shares the same target address. By the assumption of the
third case, the value stored in the target address after ¢ computation steps is the
new-value of ¢ with the modified-bit set. Thus, in order for the CLEARBIT of ¢
to successfully change this value, ¢ and ¢’ must both have the exact same new-value,
including the version number. Thus, it is impossible for both ¢ and ¢’ to be executed
successfully, since the first one of them that is executed successfully increments the
version number. We assumed (contradictively) that ¢ was executed successfully, and
thus ¢ cannot be successful. Thus, by the induction hypothesis (Invariant 3.3) the
state of ¢ cannot be success in the first i computation steps, and thus a CLEARBIT

instruction of ¢’ cannot be reached for the i + 1-st step, completing the contradiction.]

Proof. (Invariant 3.11.) Assume by way of contradiction that after ¢ + 1 steps 1) thread
t1 is executing the loop in lines 2-17 in which the cAs-descriptor c is read, 2) ¢’s state
is pending, and 3) c is not the most recently active CAs-descriptor. By the induction
hypothesis for the same invariant (Invariant 3.11), one of these three is not true after
steps. Thus, one of the following holds.

1) In step i+ 1 ¢; starts executing a new iteration of the loop in lines 2-17. (This could
also be the first iteration in a new EXECUTECASES invocation.) c is the cas-descriptor
for this new iteration, ¢’s state is pending, and ¢ is not the most recently active
CAS-descriptor.

2) In step i + 1 ¢’s state is changed back to pending.

3) In step i + 1 a thread ¢s starts executing a new iteration of the loop in lines 2-17
(possibly the first iteration in a new EXECUTECASES invocation), thus making ¢ no

longer the most recently active cAS-descriptor.
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We consider each of these cases. In the first case, let to be the thread that executed
(or is executing) an iteration that is after the iteration ¢; is currently executing. (If no
such thread exists, then c is the most recently active CAs-descriptor and we are done.
Also, note that we do not assume t; # to.) If t5 is executing (or was executing) a later
iteration than ¢; is currently executing, then we consider two possibilities. The first
possibility is that to is executing (or was executing) a later iteration on the same CcAs-list
that t1 is iterating on. This case leads to a contradiction because ¢’s state cannot
be pending by Invariant 3.6, which is already proved for ¢ + 1 iterations. The second
possibility is that ty is iterating (or was iterating) on a different ¢l than t; is currently
iterating on. Thus, by Assumption 3.8.2, some thread already completed the execution
of an EXECUTECASES method with ¢l as the input. This leads to a contradiction
because by Invariant 3.9, which is already proved for i + 1 steps, either the states of
all the cas-descriptor are success (and then ¢’s state cannot be pending), or that there
is a cAs-descriptor with a state failure before ¢ (and then, by using Invariant 3.6, t;
cannot be executing the iteration in which c is read).

We now turn to consider the second case. This case yields a contradiction immediately,
because no line of code inside the EXECUTECASES changes a state back to pending,
and by Assumption 3.8.5, no line of code outside the EXECUTECASES method does
that either.

Finally, we consider the third case. The proof here is very similar to the first
case. We consider two possibilities. The first possibility is that to is executing a later
iteration on the same cAs-list that ¢; is iterating on. This case leads to a contradiction
because ¢’s state cannot be pending by Invariant 3.6, which is already proved for ¢ + 1
iterations. The second possibility is that to is iterating on a different ¢l than t; is
iterating on. Thus, by Assumption 3.8.2, some thread already completed the execution
of an EXECUTECASES method with ¢l as the input. This leads to a contradiction
because by Invariant 3.9, which is already proved for ¢ + 1 steps, either the states of
all the cas-descriptor are success (and then ¢’s state cannot be pending), or that there
is a cAs-descriptor with a state failure before ¢ (and then, by using Invariant 3.6, ¢;

cannot be executing the iteration in which c¢ is read). O

Proof. (Invariant 3.12.) By the induction hypothesis for the same invariant (Invariant
3.12), the invariant holds after i steps. Assume by way of contradiction that the invariant
does not hold after ¢ + 1 steps. Thus, the i + 1-st step must be one of the following.
1) A thread t2 successfully executes a CAS-descriptor ¢ (line 10), while a different thread
t has already completed a loop iteration in which ¢ was read.
2) A thread t completes the execution of an iteration in which ¢ is read, while there is
still a modified-bit that is set to true and that belongs to c.

If the first case is true, then by Invariant 3.5, which is already proved for i + 1
steps, step 7 + 1 must be the first step in which ¢ is executed. Consider t’s execution

of the iteration in which ¢ is read. If ¢ reached line 6, then ¢’s state much have been
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success, which by the induction hypothesis (Invariant 3.3) means ¢ had been executed
before. If t reached line 9, then ¢’s state must have been failure, which by the induction
hypothesis (Invariant 3.2) also means ¢ had been executed before. If ¢ did not complete
the loop in either line 6 or 9, then ¢ must have reached and executed line 10, which
again means that ¢ was executed before step ¢ + 1. Whichever way ¢ completed the
iteration, CAs-descriptor ¢ must have been executed before step 7 + 1, thus it cannot be
executed successfully in step ¢ + 1, yielding contradiction for the first case.

If the second case is true, then consider the different possibilities for ¢ to complete
the loop. If t breaks out of the loop in line 9 or in line 17, then ¢’s state is failure.
By Invariant 3.2, which is already proved for ¢ + 1 steps, this means the first attempt
to execute ¢ was not successful. By Invariant 3.5, it follows that no execution of c is
successful until step ¢ + 1. It follows that there is no modified-bit that belongs to c,
yielding contradiction for this sub-case of the second case.

If ¢ completes the loop via the continue in line 6 then in t’s last execution step
inside the loop (which is assumed to be step i + 1 of the execution) ¢ attempts by a CAS
to clear the modified-bit. If the modified-bit is previously set to true and belongs
to ¢, then the value stored in c’s target address is the same as the expected-value
for the CLEARBIT cAs, and the modified-bit will be successfully cleared, yielding
contradiction for this sub-case of the second case.

If t completes the loop by reading a success value out of ¢’s state field and then
reaching the end in line 15, then consider the execution when t executes line 11 of the
same iteration. If the modified-bit is off at that time, then a modified-bit cannot
belong to c at step i+ 1, since ¢ has already been executed at least once, and thus further
attempts of it until step 7 + 1 must fail (Invariant 3.5). If the modified-bit is on, then
t will reach line 12. When ¢ executes the CAS in this line, then either the state is
changed from pending to success, either the state is already success (the state cannot
be failure, otherwise ¢ would not have read a success value from it in line 15, because a
non-pending state is final (by the induction hypothesis (Invariant 3.4). It follows that
when ¢ reached line 13, it attempted a CLEARBIT CAS to clear the modified-bit. If
the modified-bit is previously set to true and belongs to ¢, then the value stored in
¢’s target address is the same as the expected-value for the CLEARBIT CAS, and

the modified-bit will be successfully cleared, yielding contradiction. O

Proof. (Invariant 3.13.) By the induction hypothesis for the same invariant (Invariant
3.13), the invariant holds after i steps. Assume by way of contradiction that the invariant
does not hold after ¢ + 1 steps. Thus, the ¢ + 1-st step must be one of the following.
1) A thread t successfully executes a cAs-descriptor ¢ (line 10), while ¢ is not the most
recently active CAs-descriptor.

2) A thread t starts a new iteration of the loop in lines 2-17, thus making ¢ no longer
the most recently active CAS-descriptor, while a modified-bit that belongs to c is on.

Consider the first case. Since c is successfully executed at step ¢+ 1, then by Invariant
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3.5, which is already proved for ¢ + 1 steps, this must be the first attempt to execute
c¢. Thus, by using the induction hypothesis (Invariant 3.1), ¢’s state must be pending.
Thus, by the fact that ¢ is currently executing the loop iteration in which c is read,
and by using the induction hypothesis (Invariant 3.11), ¢ is the most recently active
CcAs-descriptor, yielding contradiction for the first case.

Now consider the second case. We claim that since ¢ starts an iteration that is after
the iteration in which c¢ is read, then some thread ¢’ (which may be t) has previously
completed an iteration of the EXECUTECASES method in which ¢ is read. To see this,
consider the iteration that ¢ starts. If it is a later iteration on the same CAS-list to which
¢ belong, then ¢ itself must have completed the iteration in which ¢ is read (thus, t’ = t).
If it is a later iteration on a different CAs-list, then by Assumption 3.8.2, some thread
(which is ¢') has already completed an execution of the EXECUTECASES method on the
CAS-list to which ¢ belong. To complete the EXECUTECASES method, ¢ must either
complete the iteration in which ¢ is read, or break out of the loop earlier. However,
t' cannot break out of the loop earlier, because that requires a CAS-descriptor with
a failure state to be in the CAs-list before ¢, and if that were the case, then by the
induction hypothesis (Invariant 3.7) ¢ could not have been executed, and thus there
could not have been a modified-bit belonging to c¢. To conclude, some thread ¢’ has
completed an iteration of the EXECUTECASES method in which ¢ is read. It follows by
Invariant 3.12, which is already proved for i + 1 steps, that there is no modified-bit

belonging to ¢, yielding contradiction. O

At this point, Invariants 3.1-3.13 are all proved to be correct throughout the
execution. Relying on these invariants, we now complete the proof for the correctness
of the EXECUTECASES method.

Observation 3.8.12. All execution steps inside the EXECUTECASES method are either:
a) an execution of a CAs-descriptor, b) a CLEARBIT of a cAs-descriptor, or ¢) applied
on the memory of the CAs-list.

Proof. True by observing the code. Line 10 (execution of a CcAs-descriptor) and lines
5,13 (CLEARBIT of a CAs-descriptors) are the only lines that execute on shared memory
that is not inside the CAs-list. The other computation steps either read a state field of
a CAS-descriptor, write to a state field, execute a CAS on a state field, or read the

number of CASes in the CAS-list. OJ

Claim 3.8.13. Before a CLEARBIT of a CAS-descriptor ¢ is executed for the first time,

c has been successfully executed.

Proof. A CLEARBIT for a cAs-descriptor ¢ can only be attempted (either in line 5,13)
if the state of the ¢ was previously read and turned out to be success. By Invariant

3.3, this means that ¢ had been successfully executed before. O
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Claim 3.8.14. For every CAS-descriptor c:
1) Any attempt to execute ¢ except the first attempt (by some thread) must fail.
2) Any attempt to execute the CLEARBIT of ¢ except the first attempt (by some thread)

must fail.

Proof. (1) is simply restating the already proved Invariant 3.5. It remains to prove (2).
Recall that an execution of a CLEARBIT is an execution of a CAs in which the target
address is ¢’s target address, the expected-value is ¢’s new-value (including the
version number) except that the modified-bit is on, and the new-value is the exact
new-value of ¢. By Claim 3.8.13, when ¢’s CLEARBIT is executed, ¢ has already been
successfully executed, and it follows that the version number stored in the target
address is already at least equals to the version number of the expected-value of
the CLEARBIT cAS. By Assumption 3.8.4, the version number is incremented in every
successful cAs outside the EXECUTECASES method. It follows that the version is
incremented in any successful CAS excluding the CLEARBIT CAS, in which it remains the
same. Thus, If the first execution of the CLEARBIT CAS fails, every further execution of
it must fail as well, since the value stored in the target address can never hold the
expected-value of the cAS. Similarly, if the first execution ¢’s CLEARBIT is successful,
then after it the modified-bit is off, and cannot be set on again without the version
number being incremented. And thus, additional executions of ¢’s CLEARBIT CAS must
fail. O]

Claim 3.8.15. A modified-bit that belongs to a CAS-descriptor ¢ can only be turned
off by executing the CLEARBIT of c.

By Assumption 3.8.3, a modified-bit cannot be turned off outside the EXECUTE-
CASES method since cAses outside the EXECUTECASES method always expect the
modified-bit to be off. Inside the EXECUTECASES method, a modified-bit can only
potentially be turned off when executing a CLEARBIT CAS. It remains to show that a
modified-bit that belongs to a CAs-descriptor ¢ cannot be turned off by executing a
CLEARBIT of a different cas-descriptor ¢'.

If any modified-bit belongs to c, it follows that ¢ has been successfully executed.
By Claim 3.8.13, to execute the CLEARBIT of ¢/, ¢ must first also be successfully
executed. In order for the CLEARBIT of ¢ to turn off a modified-bit that belongs
to ¢, both ¢ and ¢ must have the same target address, and, moreover, the same
new-value, otherwise executing the CLEARBIT of ¢ would fail. However, if both ¢
and ¢ have the same new-value, both must share the same version number in the
expected-value, which implies that only one of them can possibly succeed. Thus, ¢/
couldn’t have been successfully executed, and thus it cannot clear the modified-bit of

C.

Claim 3.8.16. Before a CAS-descriptor ¢ in a CAS-list cl is executed for the first time:

1) All the previous CAS-descriptors in cl have been successfully ezecuted.
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2) CLEARBIT has already been executed for all the previous CAS-descriptors in cl.

(Note: the claim vacuously holds for CAS-descriptors that are never executed.)

Proof. By Invariant 3.6, when c is executed, all the previous CAS-descriptors in ¢l has
their state set to success, which by Invariant 3.3 means they have all been successfully
executed, proving (1). By Invariant 3.12, all modified-bits of all the previous CAS-
descriptors have already been switched off, which by Claim 3.8.15 implies that the
CLEARBIT of all the previous CAs-descriptors in ¢l has already been executed, proving
(2). O

Claim 3.8.17. For any CAS-descriptor c, the first attempt to execute the CLEARBIT of
¢ (by some thread) is successful. (Note: the claim vacuously holds for cAs-descriptors

for which a CLEARBIT is never ezvecuted.)

Proof. Immediately after executing ¢, the value stored in the target address is exactly
the expected-value of the CLEARBIT cAS. This value cannot be changed before a
CLEARBIT CAS is executed, since no CAS except the CLEARBIT expects to find the
modified-bit on, and there are no writes (without a CAS) to the target address
(Assumption 3.8.3). Thus, until a CLEARBIT is executed on this address, the value
remains unchanged. By Claim 3.8.15, a CLEARBIT of a CAS-descriptor other than ¢
cannot be successful. Thus, the value in the target address remains the expected
value of the CLEARBIT CAs until the CLEARBIT is executed, and thus, the first attempt
to execute the CLEARBIT of ¢ is successful. O

Claim 3.8.18. Once some thread has completed executing the EXECUTECASES method
on an input CAS-list cl the following holds.

1) Fither all the caAs-descriptors have been successfully executed, or all the CAS-
descriptors have been executed until one that fails. Further CAs-descriptors (after
the first one that fails) have not been executed, and will also not be executed in the rest
of the computation.

2) A CLEARBIT was successfully executed for each CAS-descriptor that was successfully

executed.

Proof. By Claim 3.9, once some thread has completed the EXECUTECASES method on
the input cl, either the state field of all the cAs-descriptors ¢l is set to success, or that
one of them is set to failure, the ones previous to it to success, and the ones after it to
pending. By Invariants 3.2 and 3.3, the CAS-descriptors whose state is success were
executed successfully, and the CAS descriptor whose state is failure failed. By Invariant
3.7, cAs-descriptors after the cAs-descriptor that failed are not executed. Thus, (1)
holds.

The thread that completed executing the EXECUTECASES method on ¢l, has
completed executing an iteration for each successful cAs-descriptor in c¢l, and thus

by Invariant 3.12, all the modified-bits have already been switched off. By Claim
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3.8.15, amodified-bit can only be turned off by a CLEARBIT of the cASs-descriptor
that previously set the bit on, and thus, it follows that a CLEARBIT was successfully
executed for each successful cas-descriptor, and (2) holds. O

Claim 3.8.19. The return value of the EXECUTECASES for every thread that completes
it 18:

1) The index of the first (and only) CAS-descriptor whose execution failed the first time
it was attempted, if such exists.

2) -1 otherwise.

Proof. Each thread that executes the EXECUTECASES method may exit it via one of
three possible code-lines: 9, 17 or 20. If the thread exited via line 9, or via line 17, and
returned ¢ (the loop variable), then the state of the ith cAS-descriptor is failure, and
thus its execution has failed by Invariant 3.2. By Claim 3.8.18 (1), this must be the
only CAS that failed. Thus, in the case that a thread exits via line 9 or via line 17, the
returned value is that of the first and only CAs-descriptor whose execution failed the
first time it was attempted.

If a thread reaches line 20 and returns -1, then immediately before that it must
be executing the last iteration of the loop in lines 2-19. Thus, by Invariant 3.6, the
states of all the previous CAs-descriptors are success, and thus, by Invariant 3.3, all
the cAs-descriptors before the last one were executed successfully. As to the last one,
its state must be success as well (and thus, it must also have succeeded), otherwise
when the thread reads the cAs-descriptors state and compares it to success in line 15,
it would enter the if clause and leave through line 17. Thus, in the case that a thread

exits reaches 20, all the cAs-descriptors were executed successfully, and -1 is returned.[]

Lemma 3.8.20. The implementation of the EXECUTECASES method as given in Figure

3.5, is correct, meaning that it satisfies Definition 3.8.1.

Proof. Follows from Observation 3.8.12, and Claims 3.8.14, 3.8.16, 3.8.18, and 3.8.19.[]

3.8.2 Linearizability and WaitFreedom

Assume that LF is a linearizable lock-free algorithm given in the normalized form for a
certain abstract data type, ADT. Let WF be the output algorithm of our transformation
as described in Section 3.7 with LF being the simulated lock-free algorithm. Our goal is
to prove that WF is a linearizable wait-free algorithm for the same abstract data type,
ADT.

We claim that for every execution of WF, there is an equivalent execution (Definition
3.5.1) of LF. Since we know that LF is correct and linearizable, it immediately follows
that WF is correct and linearizable as well. We start from a given execution of WF,

denoted Ejy, and we reach an equivalent execution of LF in several steps.
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For each intermediate step, we are required to prove two key points. First, that the
newly created execution preserves memory consistency. That is, each READ returns the
last value written (or put via CAS) to the memory, and each CAS succeeds if and only if
the value previously stored in the target address equals the expected-value. Proving
memory consistency is required in order to prove that the newly created execution is
indeed an execution.

Second, for each intermediate step, we are required to prove equivalency. That is,
that each thread executes the same data structure operations in both executions, that
the results are the same, and that the relative order of invocation and return points is
unchanged. For the last execution in the series of equivalent executions, we will also

prove that it is an execution of LF.

Step I: Removing Steps that Belong to the Additional Memory used by WF

WF uses additional memory than what is required by LF. Specifically, WF uses a help
queue, in which it stores operation record boxes, which point to operation records.
Operation records hold cAs-lists, which are in fact also used by LF, only that the CAS
lists used by WF holds an extra state field for each CAS, not used in the original LF
algorithm. In this step we erase all the computation steps (READS, WRITES, and CASES)
on the additional memory used by WF.

Let E; be the execution resulting from removing from Ej all the execution steps on
the additional memory (the memory of the help queue, the operation record boxes,
and the operation records excluding the CcAs-lists - yet including the state field of each
CAS in the cAs-lists).

Claim 3.8.21. Ey and Ep are equivalent, and E1 preserves memory consistency.

Proof. E7 has the same invocations and results of operations as Ey, and their relative
order remain unchanged, thus Fy and E; are equivalent by definition. F; preserves
memory consistency since Fy is memory consistent, and each memory register used in
E; is used in Ej in exactly the same way (same primitives with same operands, results,

and order) as in Ejp. O

Step II: Tweaking CASes of the EXECUTECASES Method

Most of the steps of Fy that belong to neither the GENERATOR, WRAPUP or CAS-
EXECUTER method were dropped in E;. However, in E; there are still two sources
for steps that should be dropped. The main source is the EXECUTECASES method
(the other source will be reminded shortly). Recall that Ej is an execution of WF,
which employs both the CAS EXECUTER method (in the fast path) and the concurrent
EXECUTECASES method (in the slow path), while the original algorithm LF only
employs the CAS EXECUTER method. By Lemma 3.8.20, all the computation steps of the
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EXECUTECASES method are either executing a CAs-descriptor, executing a CLEARBIT
of a cAs-descriptor, or steps on the state field of a CAS-descriptor in the CAS list.

Steps on the state field were already dropped in the move from Ej to Fi. Next,
according to Lemma 3.8.20, each execution of a CAS-descriptor that is not the first
attempt to execute a given CcAs-descriptor, and each execution of a CLEARBIT that is
not the first attempt to execute the CLEARBIT for the same cAS-descriptor, must fail.
It follows that these cASes do not modify the memory and can be dropped without
violating memory consistency. Afterwards, according to Lemma 3.8.20, what remains
of the EXECUTECASES are pairs of successful cAses: each successful execution of a
CAS-descriptor is followed by a successful execution of a CLEARBIT CAS of the same
descriptor. Possibly, at the end of these successful pairs remains a single unsuccessful
execution of a CAS-descriptor.

We now tweak these pairs CASes to be identical to an execution of the (fast path)
CAS-EXECUTER method. To do that, each pair is merged into a single cAs. More
precisely, the new-value of each execution of a CAs-descriptor is changed such that the
modified-bit is off (this alternative new-value is the same as the original new-value
of the following CLEARBIT CAS), and each CLEARBIT CAS is dropped. After this change
what remains of the EXECUTECASES method is identical to the CAS-EXECUTER method
(except that the CAses are executed by several thread instead of by a single thread,
but this will be handled when moving from Es to F3). However, the last change can
potentially violate memory consistency.

Memory consistency is potentially violated for READ primitives that were originally
(that is, in EFp and E;) executed between an execution of a CAs-descriptor to the
following CLEARBIT CAS. Memory consistency is violated because the value stored
in the target address now has the modified-bit switched off immediately after the
first execution of the CAS, instead of being switched off only after the CLEARBIT CAS.
More importantly than READ primitives, the memory consistency of CAS primitives
executed (in Ey and E7) between a CAs-descriptor and the following CLEARBIT CAS is
also potentially violated.

To regain memory consistency, READ primitives in between a pair are changed such
that their returned value indicates that the modified-bit is unset. Recall that when
we described the changes induced to the fast-path in our transformation, we mentioned
that all READ operations always disregard the modified-bit (the fast-path acts as if
the bit were off). Thus, changing the execution such that now the bit is really off only
takes us “closer” into an execution of LF.

CAS primitives that occurred in between a pair of CASes are handled as follows.
Recall that in order to be compatible with the modified-bit, the fast path in WF is
slightly altered. This is the second source of computation steps (the first being the
CLEARBIT cASes) that belong to WF and that do not originate from the three methods
of the normalized structure. Whenever a CAS is attempted and failed in the fast-path of

WEF, the same memory address is subsequently read. If the value is such that implies
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that the CAS could have succeeded were the modified-bit switched off, then HELP
is called, and then the CAS is retried. In what follows we simultaneously remove the
extra READs and CASes originating from this modification of the fast-path and restore
memory consistency.

For each CAs that failed in the fast-path, examine the corresponding READ following
it. If the result of this READ indicates that the cAs should fail regardless of the
modified-bit, then move the CAS forward in the execution to be at the place where
the READ is, and drop the READ. If the results of the READ indicates that the cAs
should succeed (or can succeed if the modified-bit would be switched off), then drop
both the cAs and the READ. (The re-attempt of the CAS is guaranteed to be after the
modified-bit is switched off.) We are now ready to formally define Es.

Let Ey be the execution resulted from applying the following changes to Ej.

e Each execution of a CAS-descriptor in the EXECUTECASES method, excluding the
first attempt for each cAs-descriptor, is dropped.

e Each execution of a CLEARBIT CAS is dropped.

e The remaining execution of CAs-descriptors in the EXECUTECASES method are
changed such that their new-value has the modified-bit off.

e For each unsuccessful CAs executed in the fast path:

— If the cas was re-attempted as a result of the subsequent corresponding
READ, drop both the cAs and the READ, and keep only the re-attempt of the

CAS (regardless whether this re-attempt succeeds or fails.)

— Otherwise, move the CAS later in the execution to the place where the

subsequent READ is, and drop the READ.

e (Remaining) READ primitives that were originally between a pair of a CAs-
descriptor execution and the corresponding CLEARBIT execution, and that target
the same memory address such as these CAses, are modified such that their

returned value has the modified-bit switched off.

Claim 3.8.22. Es and FEp are equivalent, and Ey preserves memory consistency.

Proof. E5 has the same invocations and results of operations as F4, and their relative
order remain unchanged, thus F; and F, are equivalent by definition. Dropping
executions of CAs-descriptors that are not the first attempt of a given cAs-descriptor
cannot violate memory consistency, because these CASes are unsuccessful by Lemma
3.8.20, and thus do not change the memory. Dropping the CLEARBIT CASes together
with modifying the execution of the CAs-descriptors such that they set the modified-bit
to off changes the state of the memory only for the time between each such pair of CASes,
and thus can only violate memory consistency at these times. Consider the primitives

that occur at these time frames.
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By the definition of the normalized form, WRITE primitives are not used on these
addresses. Furthermore, there could be no successful cASes between such a pair of CASes,
because the modified-bit is on at these times, and the CLEARBIT CAS is the only
CAS that ever has the modified-bit set in its expected-value. An Unsuccessful CAS
receives special treatment. It is followed by a designated READ. If this READ determines
the CcAs can fail regardless of the modified-bit, then at the time of the READ, the CAS
can fail without violating memory consistency in Fo as well. Since in E5 this CAS is
moved in place of the READ (and the READ is dropped), then memory consistency is
preserved for these CAses as well.

If the designated READ determines that the CAS may succeed, then the CAsS is
re-attempted. In such a case the CAS (together with the READ is dropped, and thus it
does not violate memory consistency anymore. As for the re-attempt CAS, because it is
only attempted after HELP is called, it is guaranteed to be executed after the CLEARBIT
CAS. There are thus two options. Either the re-attempt CAS succeeds (both in F; and
in Ey), and thus it is certainly not between a a pair of CASes, or the re-attempt CAS
can fail. If it fails, then this cannot violate memory consistency. This is true even if the
re-attempt CAS occurs between a (different) pair of CASes, because the fact that the
CAS is re-attempted implies that its version number suits the previous pair of CASes,
and cannot suit the new pair that is surrounding the re-attempt CAs.

As for other READ primitives between a pair of CAses(other than the designated
READ that are specially inserted after a failure in a CAs), they are modified to return
the value with the modified-bit off. Thus, memory consistency is restored for these

READ primitives as well. O

Step III: Changing the Threads that Executed the Steps

In E5 all the execution steps belong, or could legitimately belong, to one of the
GENERATOR, WRAPUP, and cas executer methods. However, the threads that executes
the steps are still mixed up differently than in LF. In this step the execution steps or
their order are not altered, but the threads that execute them are switched. In Fs,
the original threads of Fy (which are the same as the threads of E; and of Ej) act
accordingly to LF, and other additional threads (not present in Es) are created to
execute redundant runs of the GENERATOR and WRAPUP methods.

While a thread executes an operation in the fast path, without helping other
operations, he follows the original LF algorithm. However, this changes when a thread
moves to the slow path. First, a thread can move to the slow path because the contention
failure counter of either the GENERATOR or WRAPUP methods causes it to stop. In such
a case, the method has not been completed and will be executed again in the slow path.
The execution steps originating from this uncompleted method are thus moved to an
additional thread created for this purpose.

In the slow path, we examine all the executions of the GENERATOR and WRAPUP
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methods. For each execution of such a method, we go back and examine what happens
afterwards in Ey. If the thread that executes this method in Ej later successfully CAS
the operation record with the method’s result to the operation record box (either in line
5 in the PRECASES method (Figure 3.4) or in lines 6 or 8 in the POSTCASES method
(Figure 3.6)), then the computation steps of this method are moved to the owner of the
operation being helped (the thread that asked for help). Note that it is also possible
that these steps belong to this owner thread in the first place, and are not moved at all.

If the thread that executes the method (either GENERATOR or WRAPUP) does not
successfully CAS the result of the method into the operation record box, then the results
of the method are simply discarded and never used. In this case, the computation steps
of this method are moved to an additional thread created for this method only.

It remains to switch the owner of the CASes originating from the EXECUTECASES
method of the slow path. Some of them were dropped in the move from E; to Fs, and
the rest were modified. We set the owner of the operation being helped (the thread that
asked for help) to be the thread that executes these remaining CASes.

Let E3 be the execution resulted from applying the following changes to Es.

e For each GENERATOR method or WRAPUP method that is not completed due to
contention (either in the fast path or in the slow path), create an additional thread,

and let it execute the computation steps originating from this method.

e For each GENERATOR method or WRAPUP method executed in the slow path,
whose results are not later successfully cAsed into the operation record box, create
an additional thread, and let it execute the computation steps originating from
this method.

e For each GENERATOR method or WRAPUP method executed in the slow path, whose
results are later successfully cAsSed into the operation record box, let the owner
thread of the operation being helped execute the computation steps originating

from this method.

e For each execution of the EXECUTECASES method, let the owner of the operation
being helped execute the CASes that originated from this method (if any remained
in EQ)

Since Fj3 includes additional threads that are not a part of Es5, we can only claim
that F3 and E5 are equivalent when considering only the threads that participate in Ej.

We formalize this limited equivalency as follows.

Definition 3.8.23. (Limited Equivalency of Executions.) For two executions E and E’
we say that F limited to the threads of E' and E’ are equivalent if the following holds.

e (Results:) The threads of E’ execute the same data structure operations and

receive identical results in both E’ and E.
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e (Relative Operation Order:) The order of invocation points and return points of
all data structure operations is the same in both executions. In particular, this
means that threads of E that do not participate in E’ execute no data structure

operations.

e (Comparable length:) either both executions are finite, or both executions are

infinite.

Claim 3.8.24. FEj3 limited to the threads of Eo and Esy are equivalent, and E3 preserves

memory consistency.

Proof. All the threads of Es have the same invocations and results of operations in Fj
that they have in F9, and their relative order remains unchanged, thus F3 and F; are
equivalent by definition. By Claim 3.8.22, Fy preserves memory consistency. Fs only
differs from F» in the threads that execute the primitive steps, but the steps themselves

and their order remain unchanged, thus E3 preserves memory consistency as well. [J

Claim 3.8.25. FEj3 is an execution of LF, possibly with additional threads executing the
GENERATOR and WRAPUP methods.

Proof. By Claim 3.8.24, F5 preserves memory consistency. It remains to show that
each thread in Fj either 1) follows the LF program structure of GENERATOR, CAS
EXECUTER and WRAPUP methods, or 2) executes a single parallelizable method (either
the GENERATOR or WRAPUP). To do this, we need to simultaneously consider executions
FE5 and Ey. Note that each computation step in F3 originates from a single computation
step in Ey. (Some computation steps from Ey were dropped and have no corresponding
computation steps in E3. Some computation steps in Ey were slightly altered by changing
the value of the modified-bit, and some were transferred to a different thread. Still,
each computation step in F3 originates from a single specific computation step in Ej.)

Fix an operation executed in F3 and follow the thread that executes it. Originally, in
FEy, the thread starts by offering help. However, all the computation steps that involve
reading the help queue and operation records were already dropped in the move from FEj
to E1; the remaining computation steps that involve helping the operation of a different
thread are transferred either to the thread being helped or to an additional thread in the
move from Es to F3. Thus, in F3 the thread starts executing the GENERATOR directly.

Originally, in Ey, while the execution is in the fast-path it is similar to LF with three
small modifications. The first modification is that after executing a CAS that fails, the
thread executes a READ on the target address, and then possibly re-executes the CAs.
These extra steps were dropped in the transition from E7 to Eo. The second modification
is that the execution of the GENERATOR and WRAPUP methods is monitored, in the
sense that a contention failure counter is updated and read periodically. However, there
is no need for the contention failure counter to be in the shared memory. It is in a

thread’s local memory, and thus such monitoring occurs in the local steps and is not
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reflected in the execution. It only affects the execution if the contention threshold is
reached and help is asked. The third modification is that the number of times that the
WRAPUP method indicates that the operation should be restarted from scratch is also
monitored, in order to move to the slow-path if this number reaches a predetermined
limit. Similarly to the contention failures counter, this monitoring is done within a
threads’s local computation.

Thus, as long as the execution of an operation in Fj is in the fast-path (which could
very well be until its completion), the corresponding execution in Fj3 of the operation’s
owner thread is according to LF. Next, we examine what happens in Fy when the
thread asks for help and move to the slow-path. The method that was interrupted by
the contention failure counter (if any) is transferred to an additional thread.

Once an operation in Ej is in the slow path, the owner thread, and possibly helping
threads, start executing one of three methods: the GENERATOR, EXECUTECASES, or
WRAPUP, depending on the state of the operation record pointed by the operation
record box. We examine how this execution is reflected in Fj.

For the GENERATOR and WRAPUP methods, the owner thread (the thread that asked
for the help) executes in E3 the steps of the thread that in Ey successfully replaced the
operation record with a CAS. These steps were transferred to the owner thread in the
transition from Fs to E3. Other executions of the GENERATOR and WRAPUP methods,
by threads that did not successfully replaced the operation record, are transferred to
additional threads. Since only one thread may successfully CAS the operation record box
from pointing to a given operation record to point to a new one, then in E3 the owner
thread executes the required parallelizable method (either GENERATOR or WRAPUP)
once, as is done in an execution of LF. Afterwards, in Ey, helping threads will start
executing the next required method (if any) according to the new state of the operation
record.

The case is different for the EXECUTECASES method. Executions of the EXE-
CUTECASES method are not transferred to additional threads, and the steps that
are transferred to the owner in the transition from FEs to E3 were possibly executed
by several different threads in Ey. To see that the steps that are executed in E3 by
the owner are indeed an execution of the CAS-EXECUTER method, we rely on Lemma
3.8.20. By this lemma, the first attempts of all the cAs-descriptors in the CcAs-list are
done according to their order, and once the first CAS-descriptor fails, the following
CAs-descriptors in the list will not be attempted. In the transition from E; to Es, only
these first attempts of each CAs-descriptor in the list are kept, and further attempts are
dropped. Also, the attempted CASes are changed and have the modified-bit of the
new-value switched off. These modified CcASes are transferred to the owner thread in
the transition from Esy to Fs.

Thus, in F3, the owner thread executes the CAses of the list one by one according to
their order, until one of them fails. This is simply an execution of the CAS-EXECUTER
method. By Lemma 3.8.20, before the first thread exits the EXECUTECASES method,
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all these cAses (all first attempts of cas-descriptors) have already occurred. Thus,
when in Fj the operation’s state is changed to post-CASes, and helping threads might
start executing the WRAPUP method, all the computation steps of the EXECUTECASES
(possibly apart from steps that are dropped in the transition from Fy to E; or from E
to E) are already completed.

Regarding the output of the EXECUTECASES method, according to Lemma 3.8.20,
the returned value of the EXECUTECASES method is the index of the first CcAs that
fails, or -1 if all cAses are executed successfully. In Fy, this value is stored inside the
operation record and is used as the for the threads that read the operation record
and execute the WRAPUP method. Thus, in Ejy, and also in E3, the WRAPUP method
execution have the correct input.

We conclude that the execution of each operation in Fj3 is according to LF. If in
Ey the operation is completed in the fast-path, then the operation owner executes the
operation similarly in E3, minus extra steps that were dropped, and steps that give help
that are transferred either to additional threads or to the owner of the helped operation.

If an operation in Fy starts in the fast-path and then moves to the slow-path, then
the parallelizable methods (GENERATOR and WRAPUP) are transferred to the operation
owner if their output was used, or to additional threads if the output was discarded.
The execution of the EXECUTECASES is modified to an execution of CAS-EXECUTER and
is transferred to the owner thread. Thus, F3 is an execution of LF, possibly with extra
threads, each of them executes once either the GENERATOR method, or the WRAPUP
method. O

Step IV: Dropping Additional Threads

The purpose of this step is to drop all of the additional threads along with the paralleliz-
able methods they are executing. Each additional thread executes a single parallelizable
method. Each additional thread executes only a finite number of steps (because the
method it executes is monitored in Ey by a contention failure counter), and thus only a
finite number of successful cAses. Thus, to drop an additional thread along with the
parallelizable method it executes, we use the characteristic property of parallelizble
methods, as given in Definition 3.5.4.

For each additional ¢ executing a parallelizable method, we replace the execution
with an equivalent execution in which all the threads follow the same program, but
t’s execution is avoidable. That is, ¢t executes only futile and non-successful CASes.
Such an execution, which is also an execution of LF plus additional threads executing
parallelizable methods, exists by Definition 3.5.4. Then, ¢ is simply dropped from the
execution entirely. This does not violate memory consistency, because t’s execution
steps do not alter the data structure at all. This process is repeated for every additional
thread.

Let E4 be the execution resulted from the process describe above. Specifically, for

107



each additional thread ¢, we replace the execution with an equivalent execution in which
t’s executed method is avoidable, as is guaranteed by Definition 3.5.4, and then each

additional thread is dropped.

Claim 3.8.26. FEs3 limited to the threads of E4 and E3 are equivalent, and E, preserves

memory consistency.

Proof. For each additional thread, the transition to an equivalent execution as guaranteed
by Definition 3.5.4 preserves equivalence and memory consistency. An additional thread
that only executes READs, failed CASes, and futile cASes can be dropped without harming

memory consistency (as it does not alter the shared memory). O
Claim 3.8.27. E> and E4 are equivalent.

Proof. E5 and E4 has the same set of threads: threads that are added in the transition
from Fy to E3 are dropped in the transition from F3 to E4. Both Ey and Ej are
equivalent to Es3 limited to their threads (Claims 3.8.24 and 3.8.26). It follows that Eb

and Fj are equivalent. ]
Claim 3.8.28. E; is an execution of LF.

Proof. By Claim 3.8.25, Ej3 is an execution of LF with possibly additional threads
executing parallelizable methods. The equivalent execution guaranteed in Definition
3.5.4 is such in which each thread follows the same program. Thus, each (non-additional)
thread follows the same program in E3 and in E4, which means that each thread in F,
follows an execution of LF. All the additional threads of F3 are dropped, and thus Fj
is an execution of LF. O

Linearizability of WF

Corollary 3.14. For each execution of WF, there exists an equivalent execution of LF.
Proof. Follows directly from Claims 3.8.21, 3.8.22, 3.8.27, and 3.8.28. ]
Theorem 3.15. WF' is a linearizable.

Proof. 1t is given that LF is linearizable. For each execution of WF there exists an
equivalent execution of LF (Corollary 3.14). Thus, each execution of WF is linearizable,
and WF itself is linearizable. O
Wait Freedom of WF

To show that WF is wait-free, we first claim that it is lock-free. Then, we show that

due to the helping mechanism, WF cannot be lock-free without being wait-free as well.

Claim 3.8.29. WF is lock-free.
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Proof. Assume by way of contradiction that WF is not lock-free. Thus, there exists
an infinite execution of WF in which only a finite number of operations are completed.
By Corollary 3.14, for each execution of WF exists an equivalent execution of LF. By
definition of equivalent executions, the equivalent execution of LF must also be infinite,
and only a finite number of operations may be completed in it. This contradicts the
fact that LF is lock-free. O

Theorem 3.16. WF' is wait-free.

Proof. Assume by way of contradiction that WF' is not wait-free. Thus, there exists
an infinite execution of WF, in which some thread executes infinitely many steps yet
completes only a finite number of operations. Let E be such an execution, and T the
thread that completes only a finite number of operations. Consider the last operation
that T starts (which it never completes).

T cannot execute infinitely many steps in the fast-path: executions of the GENERATOR
and WRAPUP methods are monitored by a contention failures counter, and at some
point in an infinite execution of them the threshold must be reach, and help will be
asked. Thus, it is impossible to execute infinitely many steps in a single method of
the fast-path. However, it is also impossible to execute infinitely many loops of the
GENERATOR, CAS-EXECUTER and WRAPUP methods, since when a certain threshold is
reached, help is asked. Thus, at some point, T" must ask for help.

When asking for help, T' enqueues a help request into the wait-free help queue.
Since this queue is wait-free, then after a finite number of steps the help request must
be successfully enqueued into the queue, with only a finite number of help requests
enqueued before it.

While the help queue is not empty, each thread, when starting a new operation, will
first help the operation at the head of the help queue until it is completed and removed
from the help queue. Only then, the thread will go and execute its own operation. It
follows that once a help request for an operation op is enqueued to the help queue,
each thread can only complete a finite number of operations before op is completed.
To be accurate, if at a given moment op is the n’th operation in the queue, then each
thread can complete a maximum of n operations before op is completed.

Thus, once T successfully enqueues the help request into the help queue, only a
finite number of operations can be completed before T' completes its operation. Since T
never completes its operation, then only a finite number of operations can be completed
at all. Thus, in the infinite execution F, only a finite number of operations is completed.
This contradicts the fact that WF is lock-free (Claim 3.8.29). O

3.9 On the Generality of the Normalized Form

Our simulation can automatically transform any lock-free linearizable data structure

given in a normalized form into a wait-free one. A natural question that arises is how
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general the normalized form is. Do all abstract data types (ADT) have a normalized
lock-free implementation? We answer this question in the affirmative. However, the
value of this general result is theoretical only as we do not obtain efficient normalized
lock-free implementations. The main interest in the transformation described in this
chapter is that it attempts to preserve the efficiency of the given lock-free data structure.

Thus, it is not very interesting to invoke it on an inefficient lock-free implementation.

We claim that any ADT can be implemented by a normalized lock-free algorithm
(given that it can be implemented sequentially). This claim is shown by using (a
simplified version of) the universal construction of Herlihy [Her90], which transforms
any sequential data structure to a linearizable lock-free one. Recall that in this universal
construction, there is a global pointer to the shared data structure. To execute an
operation, a thread reads this pointer, creates a local copy of the data structure, executes
the operation on the local copy, and attempts by a CAS to make the global pointer
point to its local copy. If the CAS succeeds the operation is completed, and if it fails,
the operation is restarted from scratch. We observe that this construction is in effect
already in the normalized form, it just needs to be partitioned correctly into the three
methods.

Specifically, the CAS-GENERATOR method creates the local copy of the data structure,
executes the operation on it, and outputs a list with a single CAs descriptor. The CAS
defined in the cAs-descriptor is the attempt to make the global pointer point to the local
copy that was prepared in the CAS-generator. The CAs-executer method is the fixed
method of the normalized representation, which simply attempts this CAS and (since it
is the only one) reports the result. The WRAP-UP method then indicates a restart from

scratch if the CAS failed, or returns with the appropriate results if it succeeded.

Of course, this construction is not practical. A lock-free data structure built in this
manner is likely to be (very) inefficient. But this construction shows that each ADT

can be implemented using the normalized form.

3.10 Examples: the Transformation of Four Known Algo-

rithms

In this section we will present how we converted four known lock-free data structures
into wait-free ones, using the described technique. The four data structures are: Harris’s
linked-list, Fomitchev & Ruppert’s linked-list, a skiplist, and a binary-search-tree.
During this section we will also explain how to wisely construct the parallelizable
GENERATOR and WRAP-UP methods, in a manner which is easy to implement, efficient,

and strait-forward.
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3.10.1 Harris’s linked-list

Harris designed a practical lock-free linked-list. His list is a sorted list of nodes in which
each node holds an integer key, and only one node with a given key may be in the list at
any given moment. He employed a special mark bit in the next pointer of every node,
used to mark the node as logically deleted. Thus, a node is deleted by first marking
its next pointer using a CAs (in effect, locking this pointer from ever changing again)
and then physically removing it from the list by a CAS of its predecessor’s next field.
Inserting a new node can be done using a single CAs, making the new node’s designated
predecessor point to the new node. In this section we assume familiarity with Harris’s
linked-list. A reader not familiar with it may skip this section and read on.

We start by noting that Harris’s SEARCH method, which is used by both the INSERT
and DELETE operations, is a parallelizable method. The SEARCH method’s input is an
integer key, and its output is a pair of adjacent nodes in the list, the first with a key
smaller than the input value, and the second with a key greater than or equal to the
input value. The SEARCH method might make changes to the list: it might physically
remove marked nodes, those nodes that are logically deleted. The search method is
restarted in practice anytime an attempted CAS fails. (Such an attempted CAS is always
an auxiliary CAs, attempting to physically remove a logically deleted node.) A simple
enough contention failure counter for this method can be implemented by counting
number of failed CASes.

We now specify a normalized version of Harris’s linked-list:

e A contention failure counter for all of the methods in Harris’s linked-list can be

implemented by counting the number of failed CAses.

e The (parallelizable) GENERATOR method is implemented as follows: For an
insert(key) operation:
— Call the original SEARCH(KEY) method.

— If a node is found with the wanted key, return an empty list of cAs-descriptors.
(The insert fails.)

— If a pair (pred, succ) is returned by the search method, create a new node n
with the key, set n.next = succ, and return a list with a single CAs descriptor,

describing a change of pred.next to point to n.
The GENERATOR method for a delete(key) operation is:

— Call the original SEARCH(KEY) method.
— If no node is found with the given key, return an empty list of CAS-descriptors.

— If a node n was found appropriate for deletion, return a list with a single

CAS-descriptor, describing a change of n.next to set its mark-bit.

The GENERATOR method for a contains(key) operation is:
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— return an empty list of of cAs-descriptors.

e The (parallelizable) WRAP-UP method is implemented as follows: For an insert(key)

or a delete(key) operation:

— If the list of cAs-descriptors is empty, exit with result false (operation failed).

— If the CAS-descriptor was executed successfully, exit with result true (opera-

tion succeeded).

— If the CAS-descriptor was not successful, indicate that a restart of the

operation is required.
For a contains(key) operation:

— Call the original contains(key) method (which is already a parallelizable

method) and exit with the same result.

We would like to make a remark concerning the contention failure counter. Im-
plementing a counter that simply counts the number of cAs failures is good enough
for a linked-list of integers (like the one Harris and others have implemented), but is
insufficient for a linked-list of strings, and other data types as well. This is because
infinitely many insertions before the key searched for by a CONTAINS method or a
SEARCH method, can delay a thread forever without it ever failing a CAS operation.
In such cases a more evolved contention failure counter is needed. Its implementation
requires holding an approximation counter on the number of keys in the list. Holding
the exact count is possible, but inefficient, whereas maintaining an approximation with
a bounded error can be achieved with a negligible time overhead and is enough. The
more evolved contention failure counter reads the approximation at the beginning of
each method and its value is #failed cases + Max(0, traversed keys - (approximation
+ max error)). The full details for implementing this contention failure counter along

with the needed approximation appear in Appendix E.

3.10.2 Binary Search Tree

The first practical lock-free binary search tree was presented in [EFRvB10]. The al-
gorithm implements a leaf-oriented tree, meaning that all the keys are stored in the
leaves of the tree, and each internal node points to exactly two children. When a thread
attempts to insert or delete a node, it begins its operation by a CAS on an internal
node’s state field. It stores a pointer to an Info object, describing the desired change.
This (owner) CAS effectively locks this node, but it can be unblocked by any other
thread making the desired (auziliary) cAses. In [EFRvB10], storing the initial pointer
to the Info object is also referred to as Flagging, and we shall use this notation as well.
In a DELETE operation, they also use Marking, that permanently locks the internal node

that is about to be removed from the tree. Familiarity with [EFRvB10] is required to
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fully understand this part. In a nutshell, an INSERT is separated into three CASes:

e [-1. Flagging the internal node that its child sub-tree is needed to be replaced.
e [-2. Replacing the child pointer to point to the new sub-tree
e [-3. Unflagging the parent.
A DELETE operation is separated into four CASes:
e D-1. Flagging the grandfather of the leaf node we wish to delete.

e D-2. Marking the parent of the node we wish to delete(this parent will be removed

from the tree as well, but the child is the only leaf node that is to be removed).
e D-3. Changing the grandfather’s child pointer to point to a new sub-tree.
e D-4. Unflagging the grandparent.

The neat design of this algorithm makes it very easy to convert it into the normalized
structure and thus into a wait-free algorithm, since the methods in it are separated
by their functionality. It contains a SEARCH method, designed to find a key or its
designated location. This method does not change the data structure, and is thus
trivially a parallelizable method.

It contains additional parallelizable methods designed to help intended operations
already indicated by Info fields: The HELP, HELP-DELETE, HELP-MARKED and HELP-
INSERT methods.

In this algorithm, the linearization points of the operations happens after the
blocking (owner) CASes, inside the parallelizable methods, thus the normalized version
would have to do some work after the CAS-EXECUTOR method is completed. This is
naturally done in the WRAP-UP method.

e A contention failure counter implementation consists of the following.

— Count the number of times CASes failed.
— Count the number of times parallelizable methods were called (except the
first time for each method).

e The GENERATOR, For an insert(key) operation:

— Call the original SEARCH(KEY) method.
— If a node with the requested key is found, return an empty list of CASes.

— If the parent is Flagged: call the (original) HELP method, and afterwards

restart the Generator.
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— Return a list with a single CAs-descriptor containing a CAS to change the state
of the designated parent to point to an Info object describing the insertion
(cas-I-1).

e The WRAP-UP method for an insert(key) operation:

— If the list of CASes is empty, exit with result false (operation failed).
— If cas-I-1 failed, return restart operation from scratch.
— Else, call (the original parallelizable method) HELPINSERT (which will perform

CAS-1-2 and ¢cAS-1-3) and exit with true (operation succeeded).

e The GENERATOR method, for a delete(key) operation:

Call the original SEARCH(KEY) method.

If a node with the requested key was not found, return an empty list of

CASes.

If the grandparent is Flagged: call the (original) HELP method, and afterwards
restart the GENERATOR method.

— If the parent is Flagged: call the (original) HELP method, and afterwards
restart the GENERATOR method.

Return a list with a single cAs-descriptor, containing a CAS to change the
state of the grandparent to point to an Info object describing the deletion
(cas-D-1).

e The WRAP-UP method, for a delete(key) operation:

— If the list of CASes is empty, exit with result false (operation failed).
— If cas-D-1 failed, return restart operation from scratch.

— Else, call the (original) HELPDELETE method (which potentially executes
CAS-D-2; cas-D-3, and cAs-D-4, but may fail).

% if HELPDELETE returned true, return operation succeeded.

* else, return restart operation from scratch.
e The GENERATOR method, for a contains(key) operation:
— Return an empty list of cAses.
e The WRAP-UP method, for a contains(key) operation:

— call the original SEARCH(KEY) method.
— If a node with the requested key was found, exit with result true.

— FElse, exit with result false.
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Note that the binary-search-tree algorithm is designed in a way that during a single
operation, each parallelizable method can only be called more than once as a result of
contention (since other thread had to make a change to the tree that affects the same
node). Additionally, the remark about Harris’s linked-list (the additional effort needed

in some cases in order to implement a contention failure counter) applies here as well.

3.10.3 Skiplist

Let us refer to the lock-free skiplist that appears on [HS08]. It is composed of several
layers of the lock-free linked-list of Harris. Each node has an array of next fields, each
point to the next node of a different level in the skiplist. Each next field can be marked,
signifying the node is logically deleted from the corresponding level of the skiplist. The
keys logically in the list are defined to be those found on unmarked nodes of the lowest
list’s level. To delete a key, first the FIND(KEY) method is called. If a corresponding
node is found, its next fields are marked by a CAS from its top level down to level zero.
To insert a key, again, the FIND(KEY) method is called first, returning the designated
predecessor and successor for each level. The node is inserted to the lowest (zero) level
first, and then to the rest of the levels from bottom up. Familiarity with chapter 14.4 of
[HS08] is required to fully understand the process.

When designing this algorithm, a subtle design decision was made that carries
interesting implications for our purposes. As the algorithm appears in [HS08], the
only auxiliary CASes are snipping out marked nodes in the FIND method, similar to
Harris’s linked-list. Fully linking a node up after it has been inserted to the lowest
level is done only by the thread that inserted the node. Thus, in order to achieve
lock-freedom, operations by other threads must be allowed to complete while some
nodes are incomplete (not fully linked). These operations might include inserting a node
immediately after an incomplete node, or even deleting an incomplete node. Allowing
such operations to complete causes some difficulties. One result is that when two nodes
are being inserted concurrently, and they are intended to be adjacent nodes at some
level of the skiplist, it is possible that the node that should come first will bypass the
link to its designated successor, skipping over it, and even past other nodes entered
concurrently to the same level. This cannot happen at the bottom level, and so it does
not hamper the algorithm’s correctness, but it can cause higher levels to hold less nodes
than they were supposed to, arguably foiling the log(n) complexity of the skiplist.

It is a small and relatively simple change to make the linking up of an inserted node
to be done by auxiliary CAsSes, which are attempted by each thread that traverse that
node in the FIND method, instead of doing it by owner CASes only attempted by the
thread that inserts the node. If we would make this change, these CASes could be done
by other threads in their GENERATOR method. As it is, however, they can only be done
in the WRAP-UP method, and only by the owner thread. Since our purpose here is to

show how our technique should be used to convert a given lock-free algorithm into a
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wait-free one, and not to suggest variants to the lock-free algorithm, we shall focus on

showing how to normalize the algorithm of [HS08] this way.

e A contention failure counter for each method can be implemented by counting the

number of failed CASes.
e The GENERATOR for an insert(key) operation:

— Call the original FIND(KEY) method.
— If a node is found with the desired key, return an empty list of CASes.

— Else, create a new node n with the key, set its next field in each level to point
to the designated successor, and return a list with a single cAs-desciptor, to

change the prev.next at the bottom level to point to n.
e The WRAP-UP method for an insert(key) operation:

— If the cAs-list is empty, return false (operation failed).
— If the CAS in the cas-list failed, return restart operation from scratch.

— Else, follow the original algorithm’s linking up scheme. That is, until the

new node is fully linked:

* Call FIND(KEY).

* Try by a CAS to set the predecessor’s next field to point to the newly
inserted node for each unlinked level. Use the successor returned from
the FIND method as the expected value for the cAs. Restart the loop if
the cAs fails.

e The GENERATOR method for a delete(key) operation:

— Call the original FIND(KEY) method.
— If no node is found with the given key, return an empty CAs-list.

— If a node n was found appropriate for deletion, return a list with a CAs-
descriptor for each level in which the node is linked, from the highest down

to level zero, to mark its next field.
e The WRAP-UP method for a delete(key) operation is as follows.

— If the CcAs-list is empty, return false (operation failed).
— Else, if all cases were successful, return true (operation succeeded).

— Else, return restart operation from scratch.
e The GENERATOR method for a contains(key) operation:

— Return an empty list of CASes.
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e The WRAP-UP method for a contains(key) operation is as follows.

— Call the original FIND(KEY) method.
— If a node with the requested key was found, exit with result true.

— Else, exit with result false.

The remark about Harris’s linked-list (the additional effort needed in some cases in

order to implement a contention failure counter) applies here as well.

3.10.4 The Linked-List of Fomitchev and Ruppert

In the list of Fomitchev and Ruppert, before deleting a node, a backlink is written into
it, pointing to its (last) predecessor. This backlink is later used to avoid searching the
entire list from the beginning the way Harris did when a node he used was deleted.
Fomitchev and Ruppert employ two special bits in each node’s next field. The mark
bit, similarly to Harris’s algorithm, to mark a node as logically deleted, and the flag
bit, that is used to signal that a thread wants to delete the node pointed by the flagged

pointer. Deletion is done in four phases:

Flagging the predecessor

Writing the backlink on the victim node to point to the predecessor

Marking the victim node

physically disconnecting the node and unflagging the predecessor (both done in a

single CAS).

The main (owner) CAS in this case, which must be done in the CAS-EXECUTER method,
is the first (flagging the predecessor). This flagging blocks any further changes to the
predecessor until the flag is removed. Removing the flag can be done by any thread in
the parallelizable HELPFLAGGED method. The second phase, of writing the backlink, is
actually not done by a CAS, but by a direct WRITE. This is safe, since the algorithm is
designed in a way that guarantees that for a specific node, there is only a single value
that will be written to it (even if many threads will write it). Keeping this non-CAs
modification of the data structure will not harm our transformation and it will still
provide a correct wait-free algorithm, yet it does not technically match our definition
of the normalized representation. To solve this, we can replace this WRITE action
with a CAS that uses NULL as the expected-value. This change have no algorithmic
applications. The insert operation is done similarly to the insert operation in Harris’s
linked-list, except that it uses the backlinks to avoid searching the list from the beginning,
and that it calls the HELPFLAGGED method to remove the “lock” on a flagged node, if

needed.

e A contention failure counter implementation consists of the following.
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— Count the number of times CASes failed.
— Count the number of times the HELPFLAGGED method is called (except the
first time).

e The GENERATOR, for an insert(key) operation:

— Call the original search(key) method.
— If a node is found with the wanted key, return an empty list of CAs-descriptors.

— Else, if a window(pred, succ) is returned, and pred is flagged, call the (original)

HELPFLAGGED method.

— If a window (pred, succ) that is fit for inserting the key is found, create a
new node n with the key, set n.next = succ, and return a list with a single

CAS-descriptor, describing a change of pred.next to point to n.
e The WRAP-UP method for an insert(key) operation:

— If the list of cAs-descriptors is empty, exit with result false (operation failed).

— If the cas-descriptor was executed successfully, exit with result true (operation

succeeded).
— If the cas-descriptor was not successful, indicate restart operation from
scratch.

e The GENERATOR, for a delete(key) operation:

— Call the original search(key) method.
— If no node is found with the given key, return an empty list of cAs-descriptors.

— If a victim node and its predecessor were found, return a list with a single cAs-
descriptor, describing a change of the predecessor.next so that its flag-bit

will be set.
e The WRAP-UP method for a delete(key) operation:

— If the list of cAs-descriptors is empty, exit with result false (operation failed).

— If the cas-descriptor was executed successfully, call the (original) HELPFLAGGED

method, and afterwards exit with result true (operation succeeded).

— If the cas-descriptor was not successful, indicate restart operation from

scratch.
e The GENERATOR method for a contains(key) operation:
— Return an empty list of CAses.

e The WRAP-UP method for a contains(key) operation:
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— Call the original SEARCH(KEY) method.
— If a node with the requested key was found, exit with result true.

— Else, exit with result false.

As with all the examples, the remark appearing after Harris’s linked list applies here
as well. In the following section, we describe an important optimization that is especially
important in the case of the transformation of the list of Fomitchev & Ruppert; the
normalized representation of the algorithm does not fully utilize the strength of the
backlinks, which is a key feature of this algorithm when comparing it to Harris’s. Using
the optimization in 3.11.1 guarantees that most operations will still fully utilize the
backlinks, while the few operations that will complete in the slow path may extract

only part of its benefits.

3.11 Optimizations

3.11.1 Using the Original Algorithm for the Fast Path

In order to use our simulation technique and obtain a wait-free practical algorithm, the
first thing we need to do is to express the lock-free data structure in the normalized
form. As mentioned above, in our work we expressed four data structures this way. Our
intuition is that the data structure in the normalized form is in some way “the same”
as the original algorithm, only expressed differently. In what follows, we provide some

formalization for this intuition and then use it for an optimization.

Definition 3.11.1. (Interoperable Data Structures.) We say that two lock-free data
structure algorithms are interoperable if they can be run on the same memory concur-

rently and maintain linearizability and correctness.

The above definition means that for each data-structure operation that we would like
to perform, we can arbitrarily choose which of the two algorithms to use for running
it, and the entire execution remains linearizable for the same ADT. All of the four
normalized algorithms we created are interoperable with their original versions®. We
would like to exploit this fact in order to use the original lock-free algorithm, and not
the normalized version of it, as the fast-path for the simulation. The slow path, in
which help is given, still works in the normalized manner. This optimization is possible,
but requires some care. To safely allow the original algorithm to work with the help
mechanism of the normalized algorithm, we require that a slightly stronger parallelism
property will be kept by the parallelizable methods. Recall that a parallelizable method
is a one whose executions are avoidable. In what follows we strengthen the definition of

avoidable method execution.

5Excluding the fact that version numbers must be added to the original algorithms as well.
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Definition 3.11.2. Strongly avoidable method execution: A run of a method M by a
thread 7" on input [ in an execution E of a program P is strongly avoidable if there
exists an equivalent execution E’ for E such that in both F and E’ each thread follows
the same program, both £ and E’ are identical until right before the invocation of M
by T on input I, in E’ each cAs that T executes in M either fails or is futile, and (the
new requirement): In F and E’ the shared memory reaches the same states in the same

order.

A state of the shared memory is simply the contents of all memory. Failed CASes, futile
CASes, and READ primitives, do not alter the state of the shared memory. The new
requirement does not mean that after n computation steps the state of the shared
memory is the same in F and in E’, since each one of them can have a different
set of computation steps that do not alter the memory. The meaning of the extra
requirement is that the alternative execution E’ is not only equivalent to E, but is
also indistinguishable from it, in the sense that an observer who examines the shared

memory cannot tell whether £ or E’ has taken place.

This stronger definition is not needed for our technique to work, only to ensure a
safe use of this specific optimization. All of the four algorithms we expressed in the
normalized form naturally fulfill this stronger requirement. Thus, since the original
algorithm can work interoparably with the normalized one, it can also work interoparably
with the normalized one in the presence of “extra” avoidable executions of parallelizable
methods, and we can safely use it as the fast-path, given that we adjust it to have

contention failure counters for its methods.

3.11.2 Avoiding versions

As explained in Section 3.7.2, while executing the CASes, a helping thread may create an
ABA problem if it is delayed and then returns to execute when the CAS it is attempting
to simulate has already been completed and the algorithm has moved on. To ensure
that this helping thread does not foil the execution, we introduced versioning to make
sure its CAS fails and it can continue executing properly. For some data structures, ABA
problems of this type cannot occur because the original data structure is designed to
avoid them. For example, the tree algorithm of Ellen et al. [EFRvB10] allows helping
threads to operate within the original lock-free algorithm and it supports such help with
a special mechanism that eliminates such ABA problems. Therefore, for the tree there
is no need to add the versioning mechanism to each cAs, and indeed we did not use
versioning when making the tree wait-free. This does not eliminate the need to use the

modified-bit for a structured execution of the public CAses.
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3.12 Performance

3.12.1 Memory Management

In this work we do not specifically address the standard problem of memory management
for lock-free (and wait-free) algorithms. In the Java implementation we just use Java’s
garbage collector, which is probably not wait-free. If the original lock-free algorithm has
a solution for memory management, then the obtained simulation works well with it,
except that we need to reclaim objects used by the generated algorithm: the operation
records and the operation record boxes. This can be done using hazard pointers [Mic04].
The implementation is tedious, but does not introduce a significant difficulty and we do

not deal with it in the currently.

3.12.2 Owur Wait-Free Versions vs. the Original Lock-Free Structures

We chose four well-known lock-free algorithms, and used the transformation described in
this chapter to derive a wait-free algorithm for each. We implemented these algorithms
and, when possible, used the optimizations described in Section 3.11. The performance
of each wait-free algorithm was compared against the original lock-free algorithm. We
stress that we compared against the original lock-free version of the algorithm without
adding versioning to the CAS operations and without modifying it to fit a normalized
representation.

The four lock-free algorithms we chose were Harris’s linked-list [Har01], the binary-
search-tree of Ellen et al. [EFRvBI10], the skiplist of Herlihy and Shavit [HS08], and
the linked-list of Fomitchev and Ruppert [FR04]. All implementations were coded in
Java. The Java implementations for the lock-free algorithms of Harris’s linked-list and
the skiplist were taken from [HS08]. We implemented the binary search tree and the
list of Fomitchev and Ruppert ourselves, in the most straightforward manner, following
the papers.

All the tests were run on SUN’s Java SE Runtime, version 1.6.0. We ran the
measurements on 2 systems. The first is an IBM x3400 system featuring 2 Intel(R)
Xeon(R) E5310 1.60GHz quad core processors (overall 8 cores) with a memory of
16GB and an L2 cache of 4MB per processor. The second system features 4 AMD
Opteron(TM) 6272 2.1GHz processors, each with 8 cores (overall 32 cores), each running
2 hyper-threads (overall 64 concurrent threads), with a memory of 128GB and an L2
cache of 2MB per processor.

We used a micro-benchmark in which 50% of the operations are contains, 25% are
insert, and 25% are delete. Each test was run with the number of threads ranging from
1 to 16 in the IBM, and 1 to 32 in the AMD. In one set of tests the keys were randomly
and uniformly chosen in the range [1,1024], and in a different set of tests the keys were
chosen in the range [1,64]. In each test, each thread executed 100,000 operations overall.

We repeated each test 15 times, and performance averages are reported in the figures.

121



The maximum standard deviation is less than 5%. The contention threshold was set to
k = 2. In practice, this means that if one of the three simulation stages encounters k
failed cAses, it gives up the fast path and moves to the slow path.

Figure 3.7 compares the four algorithms when running on the AMD (the left graph
of each couple) and on the IBM (right) for 1024 possible keys. The figure show the
execution times (seconds) as a function of the number of threads.

For 1024 keys, the performance of the wait-free algorithms is comparable to the
lock-free algorithms, the difference being 2% on average. The close similarity of the
performance between the original lock-free algorithms and the wait-free versions produced
using our simulation suggests that the slow-path is rarely invoked.

Figure 3.8 indicates how many times the slow path was actually invoked in each of
the wait-free data structures as a function of the number of threads. Keep in mind that
the overall number of operations in each run is 100,000 multiplied by the number of
threads. The results reported are again the averages of the 15 runs (rounded to whole
numbers). As expected, the fraction of operations that require the slow path is very
small (maximum fraction of about 1/3,000 of the operations). The vast majority of
the operations complete in the fast-path, allowing the algorithm to retain performance
similar to the lock-free algorithm. Yet, a minority of the operations require the help
mechanism to guarantee completion in a bounded number of steps, thus achieving
wait-freedom.

The results for 64 keys are depicted in figures 3.9 and 3.10. The behavior for 64
keys is different than for 1024 keys. The smaller range causes a lot more contention,
which in turn causes a lot more operations to ask for help and move to the slow-path.
Asking for help in the slow path too frequently can dramatically harm the performance.
This is most vividly displayed in the tree data structure on the AMD. When running 32
parallel threads, about 1 in 64 operations asks for help and completes in the slow-path.
This means that roughly during half of the execution time there is an operation running
in the slow-path. As a result, all threads help this operation, sacrificing scalability for
this time. Thus, it is not surprising that the performance are down by about 50%.

In such circumstances, it is advisable to set the contention threshold to a higher
level. Setting it to 3 (instead of 2) causes a significant improvement in the performance.
This comes with the cost of allowing some operations to take longer, as some operations

will first fail 3 times, and only then ask for help.

3.12.3 Our Wait-Free Transformation vs. a Universal Construction

Universal constructions achieve a difficult task, as they go all the way from a sequential
data structure to a concurrent wait-free implementation of it. It may therefore be difficult
to also make the resulting wait-free algorithm efficient enough to become practicable.
Our technique builds on a tailored made lock-free data structure and achieve the smaller

step from lock-freedom to wait-freedom. This may be the reason why we are able to
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Figure 3.9: Lock-Free versus Wait-Free algorithms, 64 keys. Left:
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retain practicable performance.

To demonstrate the performance difference, we implemented the state of the art
universal construction of Chuong, Ellen, and Ramachandran [CER10] for a standard
sequential algorithm of a linked-list. The obtained wait-free linked-list was compared
against the wait-free linked-list generated by applying our technique to Harris’s lock-free
linked-list. 7

We ran the two implementations on our AMD Opetron system featureing 4 AMD
Opteron(TM) 6272 2.1GHz processors, each with 8 cores (overall 32 cores), each running
2 hyper-threads (overall 64 concurrent threads), with a memory of 128GB and an L2
cache of 2MB per processor. In the micro-benchmark tested, each thread executed
50% contains, 25% insert, and 25% delete operations. The keys were randomly and
uniformly chosen from the range [1,1024]. The number of threads was ranging from 1
to 32. In each measurement, all the participating threads were run concurrently for 2
seconds, and we measured the overall number of operations executed. Each test was
run 10 times, and the average scores are reported in the figures.

In Figure 3.11 the total number of operations (in millions) done by all the threads is
reported as a function of the number of the threads. It can be seen that the wait-free list
obtained in this chapter (and so also the lock-free linked-list) drastically outperforms the
universal construction for any number of threads. Also, while our list scales well all the
way up to 32 threads, the list of the universal construction does not scale at all. Figure
3.12 is based on the same data, but demonstrates the ratio between our construction of
the wait-free linked-list and the universal construction of wait-free linked list. For a

single thread, our list is 6.8 times faster and this ratio grows with any additional thread,

7 Note that implementing the universal construction of [CER10] on Harris’s lock-free linked-list,
instead of using the universal construction on a standard sequential list, is possible, but ill-advised.
Although both implementations would result in a wait-free list, the one based on a lock-free algorithm
would undoubtedly be slower. The universal construction already handles the inter-thread race conditions,
and implementing it on Harris’s linked-list would force it to also use the (unneeded) synchronization
mechanisms of Harris.
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up to a factor of 198 times faster than the universal construction for 32 threads.
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Chapter 4

Help!

4.1 Introduction

As discussed in Section 1.2, a helping mechanism, such as the one employed in Chapters
2 and 3, is a common technique used to obtain wait-freedom. Curiously, despite its
abundant use, to date, helping has not been formally defined nor was its necessity
rigorously studied.

In this chapter we offer a rigorous study of the interaction between wait-freedom and
helping. We start with presenting a formal definition of help, capturing the intuition of
one thread helping another to make progress. Next, we present families of object types
for which help is necessary in order to obtain wait-freedom. In other words, we prove that
for some types there are no linearizable wait-free help-free implementations. In contrast,
we show that other, simple types, can be implemented in a linearizable wait-free manner
without employing help. Finally, we provide a universal strong primitive for obtaining
wait-free with no help. Specifically, given a wait-free help-free fetch&cons object, one
can implement any type in a wait-free help-free manner.

Naturally, the characterization of types which require help depends on the primitives
being used, and while our results are generally stated for READ, WRITE, and CAS, we
discuss additional primitives as well. In particular, we show that exact order types
(Definition 4.5.1) cannot be both help-free and wait-free even if the FETCH&ADD primitive
is available, but the same statement is not true for global view types (Definition 4.6.18).
Finally, we show that a fetch&cons primitive is universal for wait-free help-free objects.
This means that given a wait-free help-free fetch&cons object, one can implement any
type in a wait-free help-free manner.

This chapter is organized as follows. Section 4.2 discusses additional related work
to the work discussed in Section 1.2. Model and definitions for this chapter are given
in Section 4.3. The concept of help is formally defined in Section 4.4. In Section 4.5
we define exact order types (examples are the queue and the stack), and prove that
they cannot be implemented in a wait-free help-free manner. Section 4.6 defines global

view types (such as a snapshot object) and proves a similar claim for them. In Section
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4.7, we prove that if the CAS primitive is not available, max-registers also cannot be
implemented in a help-free wait-free manner. Section 4.8 discusses some types that
can be both help-free and wait-free. Section 4.9 proves that a fetch&cons primitive is
universal, in the sense that given such a primitive, every type can be implemented in a

help-free wait-free manner. We end this chapter with a short discussion in Section 4.10.

4.2 Additional Related Work

Helping mechanisms come in different forms. Many wait-free implementations use a
designated announcement array, with a slot for each process. Each process uses its
slot to describe the operation it is currently seeking to execute, and other processes
read this announcement and help complete the operation. This is perhaps the most
widely used helping mechanism, appearing in specific designs, as well as in universal
constructions [Her88], and also in the general technique presented in Chapter 3.

But other forms of help exist. Consider, for example, the form of help that is used for
the double-collect snapshot algorithm of [AADT93]. In this wait-free snapshot object,
each UPDATE operation starts by performing an embedded SCAN and adding it to the
updated location. A SCAN operation op; that checks the object twice and sees no change
can safely return this view. If a change has been observed, then the UPDATE operation
ops that caused it also writes the view of its embedded SCAN, allowing op; to adopt
this view and return it, despite the object being, perhaps constantly, changed. Thus,
intuitively, the UPDATES help the SCANS.

4.3 Model and Definitions

We consider a standard shared memory setting with a fixed set of processes P. In each
computation step, a process executes a single atomic primitive on a shared memory
register, possibly preceded with some local computation. The set of atomic primitives
contains READ, WRITE primitives, and usually also CAS. Where specifically mentioned,
it is extended with the FETCH&ADD primitive.

A CAs primitive is defined by a triplet, consisting of a target register, an expected-
value, and a new-value. When a CAS step is executed, the value stored in the target
register is compared to the expected-value. If they are equal, the value in the target
register is replaced with the new-value, and the Boolean value true is returned. In
such a case we say that the CAsS is successful. Otherwise, the shared memory remains
unchanged, and false is returned. We stress that a CAS is executed atomically.

A FETCH&ADD primitive is defined by a target register and an integer value. An
execution of the FETCH&ADD primitive atomically returns the value previously stored
in the target register and replaces it with the sum of the previous value and the

FETCH& ADD’s integer value.
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A type (e.g., a FIFO queue) is defined by a state machine, and is accessed via
operations. An operation receives zero or more input parameters, and returns one result,
which may be null. The state machine of a type is a function that maps a state and an
operation (including input parameters) to a new state and a result of the operation.

An object, is an implementation of a type using atomic primitives. An implementation
specifies the primitives and local computation to be executed for each operation. The
local computation can influence the next chosen primitive step. When the last primitive
step of an operation is finished, the operation’s result is computed locally and the
operation is completed.

In the current work, we consider only executions of objects. Thus, a program of
a process consists of operations on an object that the process should execute. The
program may include local computations, and results of previous operations may affect
the chosen future operations and their input parameters. A program can be finite
(consisting of a finite number of operations) or infinite. This may also depend on the
results of operations.

A history is a log of an execution (or a part of an execution) of a program. It consists
of a finite or infinite sequence of computation steps. Each computation step is coupled
with the specific operation that is being executed by the process that executed the step.
The first step of an operation is also coupled with the input parameters of the operation,
and the last step of an operation is also associated with the operation’s result. A single
computation step is also considered a history (of length one).

A schedule is a finite or infinite sequence of process ids. Given a schedule, an object,
and a program for each process in P, a unique matching history corresponds. For a
given history, a unique schedule corresponds. Given two histories, hi, ho, we denote
by h1 o ho the history derived from the concatenation of history ho after hy. Given a
program prog for each process in P, and a history h, for each p € P we denote by hop
the history derived from scheduling process p to take another single step following its
program immediately after h.

The set of histories created by an object O is the set that consists of every history h
created by an execution of any fixed set of processes P and any corresponding programs
on object O, in any schedule S.

A history defines a partial order on the operations it includes. An operation op; is
before an operation ops if op; is completed before ops begins. A sequential history is
a history in which this order is a total order. A linearization [HW90] L of a history
h is a sequence of operations (including their input parameters and results) such that
1) L includes all the operations that are completed in h, and may include operations
that are started but are not completed in h, 2) the operations in L have the same input
parameters as the operations in A, and also the same output results for operations that
are completed in h, 3) for every two operations op; and ops, if op; is completed before
op2 has begun in h, and ops is included in L, then op; is before ops in L, and 4) L is

consistent with the type definition of the object creating history h. An object O is a
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linearizable implementation of type T if each history in the set of histories created by
O has a linearization.

Lock-freedom and wait-freedom are forms of progress guarantees. In the context of
our work, they apply to objects (which are, as mentioned above, specific implementations
of types). An object O is lock-free if there is no history h in the set of histories created
by O such that 1) A is infinite and 2) only a finite number of operations is completed
in h. That is, an object is lock-free if at least one of the executing processes must
make progress and complete its operation in a finite number of steps. Wait-freedom is
a strictly stronger progress guarantee. An object O is wait-free if there is no history
h in the set of histories created by O such that 1) h includes an infinite number of
steps by some process p and 2) the same process p completes only a finite number of
operations in h. That is, O is wait-free if every process that is scheduled to run infinite

computation steps must eventually complete its operation, regardless of the scheduling.

4.4 What is Help?

The conceptual contribution of this work is in establishing that many types cannot be
implemented in a linearizable wait-free manner without employing a helping mechanism.
To establish such a conclusion, it is necessary to accurately define help. In this section
we discuss help intuitively, define it formally, and consider examples showing that the
formal definition expresses the intuitive concept of help. Additionally, we will establish

two general facts about help-free wait-free implementations.

4.4.1 Intuitive Discussion

Many wait-free algorithms employ an array with a designated entry for each process.
A process announces in this array what operation it wishes to execute, and other
processes that see this announcement might help and execute this operation for it. Such
mechanisms are used in most wait-free universal constructions, dating back to [Her88]
and many other constructions since. These mechanisms are probably the most explicit
way to offer help, but not the only one possible. Considering help in a more general
form, we find it helpful' to think of the following scenario.

Consider a system of three processes, p1, ps, p3, and an object that implements a
FIFO queue. The program of p; is ENQUEUE(1), the program of ps is ENQUEUE(2),
and the program of p3 is DEQUEUE(). First consider a schedule in which p3 starts
running solo until completing its operation. The result of the dequeue, regardless of the
implementation of the FIFO queue, is null. If before scheduling ps, we schedule p; and
let it complete its operation, and only then let p3 run and complete its own operation, p3
will return 1. If we schedule p; to start executing its operation, and stop it at some point

(possibly before its completion) and then run ps solo until completing its operation,

'Pun intended.
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it may return either null or 1. Hence, if we consider the execution of p; running solo,
there is (at least) one computation step S in it, such that if we stop p; immediately
before S and run ps solo, then ps returns null, and if we stop p; immediately after S
and run ps solo, ps returns 1.

Similarly, if we consider the execution of py running solo, there is (at least) one
computation step that “flips” the value returned by ps when running solo from null to
2. We now consider a schedule that interleaves p; and py until one of them completes.
In any such execution, there is (at least) one computation step that “flips” the result of
p3 from null to either 1 or 2. If a step taken by po “flips” the result of ps and causes it
to return 1 (which is the value enqueued by p;) we say that ps helped p;. Similarly, if a
step taken by p; “flips” the result of p3 and causes it to return 2, then p; helped ps.

This is the intuition behind the help notion that is defined below. Some known
lock-free queue algorithms do not employ help, such as the lock-free queue of Michael
and Scott [MS96]. However, we prove in Section 4.5 that any wait-free queue algorithm

must employ help.

4.4.2 Help Definition

We say that an operation op belongs to history h if h contains at least one computation
step of op. Note that op is a specific instance of an operation on an object, which has
exactly one invocation, and one result. We say that the owner of op is the process that

executes op.

Definition 4.4.1. (Linearization Function.) We say that f is a linearization function

over a set of histories H, if for every h € H, f(h) is a linearization of h.

Definition 4.4.2. (Decided Operations Order.) For a history h in a set of histories H,
a linearization function f over H, and two operations op; and ops, we say that opy is
decided before ops in h with respect to f and the set of histories H, if there exists no

s € H such that h is a prefix of s and opa < opy in f(s).

Definition 4.4.3. (Help-Free Implementation.) A set of histories H is without help, or
help-free, if there exists a linearization function f over H such that for every h € H,
every two operations opi, opa, and a single computation step v such that hoy € H it
holds that if op; is decided before ops in h o~ and op; is not decided before opsy in h,
then computation step 7y is a step in the execution of op; by the owner of op;.

An object is a help-free implementation, if the set of histories created by it is

help-free.

To better understand this definition, consider an execution of an object. When
considering two concurrent operations, the linearization of these operations dictates

which operation comes first. The definition considers the specific step, «, in which it is
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decided which operation comes first. In a help-free implementation, v is always taken
by the process whose operation is decided to be the one that comes first.

Consider the wait-free universal construction of Herlihy [Her88]. One of the phases
in this construction is a wait-free reduction from a fetch-and-cons list to consensus.
A fetch-and-cons (or a fetch-and-cons list) is a type that supports a single operation,
fetch-and-cons, which receives a single input parameter, and outputs an ordered list of
the parameters of all the previous invocations of fetch-and-cons. That is, conceptually,
the state of a fetch-and-cons type is a list. A fetch-and-cons operation returns the
current list, and adds (hereafter, cons) its input operation to the head of the list.

The reduction from fetch-and-cons to consensus is as follows. A special announce
array, with a slot for each process, is used to store the input parameter of each ongoing
fetch-and-cons operation. Thus, when a process desires to execute a fetch-and-cons
operation, it first writes its input value to its slot in the announce array.

Next, the process reads the entire announce array. Using this information, it
calculates a goal that consists of all the operations recently announced in the array.
The process will attempt to cons all of these operations into the fetch-and-cons list. It
reads the current state of the fetch-and-cons list, and appends this list to the end of its
own goal (removing duplications.) Afterwards, the process starts executing (at most) n
instances of consensus (n is the number of processes). In each instance of consensus, a
process proposes its own process id.

The goal of the process that wins the consensus represents the updated state of
the fetch-and-cons list. Thus, if the process wins a consensus instance, it returns
immediately (as its own operation has definitely been applied). If it loses a consensus,
it updates its goal again to be his original goal (minus duplications that already appear
it the updated state) followed by the new list, which is the goal of the last winner.
After participating in n instances of consensus, the process can safely return, since at
least one of the winners in these instances already sees the process’s operation in the
announces array, and includes it in its goal.

This is a classic example of help. Wait-freedom is obtained due to the fact that the
effect of process p winning an instance is adding to the list all the items it saw in the
announce array, not merely its own item. To see that this algorithm is not help-free
according to Definition 4.4.3 consider a system of four processes?. Each process first
announces its wanted item in the ANNOUNCE array, and then reads all of the array.
Assume pq’s place in the array is before po’s, but that ps writes to the announce array
first. p3 then reads the announce array and sees po’s item. Then p; writes to the
announce array, and then py reads the entire announce array.

At this point p; and po are stalled, while p3 and p4 start competing in consensus. If
the winner is p3, then the item of ps is added to the list, but the item of p; not as yet.

If p4 wins the consensus, then it adds p1’s item before po’s item. Thus, there exists an

2A tighter analysis considering only three processes is possible.
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execution, in which the question of which of the fetch-and-cons operations of p; and po

comes first is decided while p; and py are stalled. This contradicts help-freedom.

4.4.3 General Observations

In this subsection we point out two facts regarding the decided operations order
(Definition 4.4.2) that are useful to prove that some types cannot be both wait-free
and help-free. The first fact is true for non help-free implementations as well, as it is
derived directly from the linearizability criteria. It states that for completed operations,
the decided order must comply with the partial order a history defines, and for future

operations, the decided order cannot contradict partial orders that may apply later on.

Observation 4.4.4. In any history h:

(1) Once an operation is completed it must be decided before all operations that have
not yet started.

(2) While an operation has not yet started it cannot be decided before any operation of
a different process.

(3) In particular, the order between two operations of two different processes cannot be

decided as long as none of these operations have started.

The second fact is an application of the first observation for help-free implementations.

Claim 4.4.5. In a help-free implementation in a system that includes at least three
processes, for a given history h and a linearizarion function f, if an operation opy of a
process p1 is decided before an operation ops of a process ps, then opy must be decided

before any future (not yet started) operation of any process.

Proof. Immediately following h, allow ps to run solo long enough to complete the
execution of ops. By Observation 4.4.4, op, must now be decided before any future
operation. Thus, by transitivity, op; must be decided before any future operation as
well. In a help-free implementation, op; cannot be decided before a different operation
as a result of a step of po. Thus, op; must be decided before future operations already
at h. O

4.5 Exact Order Types

In this section we prove that some types cannot be implemented in a linearizable,
wait-free, and help-free manner. Simply put: for some types, wait-freedom requires
help. We first prove this result for systems that support only READ, WRITE, and CAS
primitives. We later extend the proof to hold for systems that support the FETCH& ADD
primitive as well. This section focuses on exact order types. Roughly speaking, these

are types in which switching the order between two operations changes the results of
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future operations. An intuitive example for such a type is the FIFO queue. The exact
location in which an item is enqueued is important, and will change the results of future
dequeues operations.

In what follows we formally define exact order types. This definition uses the concept
of a sequence of operations. If S is a sequence of operations, we denote by S(n) the
first n operations in S, and by S,, the n-th operation in S. We denote by (S + op?) a
sequence that contains S and possibly also the operation op. That is, (S + op?) is in
fact a set of sequences that contains S, and also sequences that are similar to S, except
that a single operation op is inserted in somewhere between (or before or after) the

operations of S.

Definition 4.5.1. (Exact Order Types.) An exact order type t is a type for which
there exists an operation op, an infinite sequence of operations W, and a (finite or an
infinite) sequence of operations R, such that for every integer n > 0 there exists an
integer m > 1, such that for at least one operation in R(m), the result it returns in any
execution in W (n + 1) o (R(m) + op?) differs from the result it returns in any execution
in W(n)oopo (R(m)+ Wypi17).

Examples of such types are a queue, a stack, and the fetch-and-cons used in [Her88|.
To gain some intuition about the definition, consider the queue. Let op be an ENQUEUE(1)
operation, W be an infinite sequence of ENQUEUE(2) operations, and R be an infinite
sequence of DEQUEUE operations. The queue is an exact order type, because the (n+ 1)-
st dequeue returns a different result in any execution that starts with n + 1 ENQUEUE(2)
operations compared to in any execution that starts with n ENQUEUE(2) operations
and then an ENQUEUE(1).

More formally, let n be an integer, and set m to be n + 1. Executions in W (n +
1) o (R(m) + op?) start with n + 1 ENQUEUE(2) operations, followed by n + 1 DEQUEUE
operations. (There is possibly an ENQUEUE(1) somewhere between the dequeues, but not
before any of the ENQUEUE(2).) Executions in W(n) oop o (R(m) + W;,417) start with
n ENQUEUE(2) operations, then an ENQUEUE(1) operation, and then n + 1 DEQUEUE
operations. (Again, there is possibly an ENQUEUE(2) somewhere between the dequeues.)
From the specification of the FIFO queue, the last DEQUEUE must return a different
result in the first case (in which it must return 2) than in the second case (in which it
must return 1).

We now turn to prove that any exact order type cannot be both help-free and
wait-free. Let @ be a linearizable, help-free implementation of an exact order type. The
reader may find it helpful to consider a FIFO queue as a concrete example throughout
the proof. We will prove that @) is not wait-free. For convenience, we assume () is
lock-free, as otherwise, it is not wait-free and we are done. Let op;, W, and R be the
operation and sequences of operations, respectively, guaranteed in the definition of exact
order types. Consider a system of three processes, p1, p2, and ps. The program of

process p; is the operation op;. The program of process po is the infinite sequence W.
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The program of process ps is the (finite or infinite) sequence R. The operation of p; is
op1, an operation of po is denoted opo, and the first operation of ps is denoted ops.
We start by proving two claims that are true to any execution of @) in which p1, ps,
and ps follow their respective programs. These claims are the only ones that directly
involve the definition of exact order types. The rest of the proof considers a specific

execution, and builds on these two claims.

Claim 4.5.2. Let h be a history such that the first n operations are already decided
to be the first n operations of pa (which are W(n)), and p3 has not yet taken any step.
(Denote the (n + 1)-st operation of pa by opa.)

(1.) If in h op; is decided before ops, then the order between opy and opy is already
decided.

(2.) Similarly, if in h op2 is decided before ops, then the order between opy and opsy is
already decided.

Proof. For convenience, we prove (1). The proof of (2) is symmetrical. Assume that
in h op; is decided before ops, and let m be the integer corresponding to n by the
definition of exact order types. Immediately after h, let p3 run in a solo execution until
it completes exactly m operations. Denote the history after this solo execution of ps by
K/, and consider the linearization of h'.

The first n operations in the linearization must be W (n). The linearization must
also include exactly m operations of p3 (which are R(m)), and somewhere before them,
it must also include op;. The linearization may or may not include opy. There are two
cases. If the (n + 1)-st operation in the linearization is op;, then the linearization is
in W(n) o opy o (R(m) + Wy417), while if the n 4 1-st operation in the linearization
is ope, then the linearization must be exactly W (n + 1) o op; o R(m) which is in
W(n+1)o (R(m)+op1?). We claim that which ever is the case, the order between op;
and ops is already decided in A/.

To see this, consider any continuation k' oz of h’. Consider the linearization of h' o x.
This linearization must also start with W (n), must also include R(m), and somewhere
before R(m) it must include op;. It may or may not include ops somewhere before R,,.
All the rest of the operations must be linearized after R,,, because they where not yet
started when R, was completed. Thus, the prefix of the linearization of A’ o z (and of
any other continuation of b’ as well) must belong to either W (n)oopy o (R(m) + Wy417)
or to W(n+1)o (R(m)+ op1?).

In A/, the operations R(m) are already completed, and their results are set. By
definition of exact order types, these results cannot be consistent with both W(n) o
op1 o (R(m) + Wy11?) and W(n + 1) o (R(m) + op1?). Thus, if the linearization of h’ is
in W(n) oopy o (R(m) + Wy417), then the results of R(m) mean that the prefix of the
linearization of any continuation of A’ cannot be in W(n + 1) o (R(m) + op1?), and thus

must also belong to W (n) o opy o (R(m) + Wp417?). Similarly, if the linearization of b’ is
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in W(n+1)o (R(m)+ op1?), then the prefix of the linearization of any continuation of
h' must be in W(n+ 1) o (R(m) + op1?) as well.

Thus, in A/, the (n + 1)-st operation is already decided, meaning that the order
between op; and ops is already decided. Since () is a help-free implementation, then
the order between op; and ops cannot be decided during the solo execution of p3 which
is the delta between h and h'. It follows that the order between op; and ops is already
decided in h. O

Claim 4.5.3. Let h, I/, and h” be three histories, such that in all of them the first n
operations are already decided to be the first n operations of pa (which are W(n)), and
ps3 has not yet taken any step. (Denote the (n + 1)-st operation of pa by ops.) Further
more, in h the order between opy and the ops is not yet decided, in h' opy is decided
before ops, and in h” ops is decided before op .

(1.) b’ and h" are distinguishable by ps.

(2.) h and I/ are distinguishable by at least one of py and ps.

(3.) h and W' are distinguishable by at least one of p1 and ps.

Remark. (3.) is not needed in the proof, but is stated for completeness.

Proof. Let m be the integer corresponding to n by the definition of exact order types.
We start by proving (1). Assume that immediately after A’ p3 is run in a solo execution
until it completes exactly m operations. The linearization of this execution must start
with W (n), followed by op;. This linearization must also include the first m operations
of ps (which are R(m), and it may or may not include ops. Thus, the linearization must
be in W(n) o opy o (R(m) + Wp417).

Now assume that immediately after A’ p3 is run in a solo execution until it completes
exactly m operations. This time, the linearization must be in W(n+1) o (R(m) + op1 7).
By the definition of exact order types, there is at least one operation in R(m), that is,
at least one operation of p3, which returns a different result in these two executions.
Thus, A’ and h” are distinguishable by process ps.

We turn to prove (2). Assume that immediately after A’ py is run until it completes
op2, and then p3 is run in a solo execution until it completes exactly m operations. The
linearization of this execution must be exactly W(n) o op; o Wy41 o R(m) which is in
W(n)oopy o (R(m)+ Wpi1?).

Now assume that immediately after A ps is run until it completes ops and then p3 is
run in a solo execution until it completes exactly m operations. At the point in time
exactly after opy is completed, and exactly before ps starts executing ops, ops is decided
before ops (Observation 4.4.4). Thus, by Claim 4.5.2; the order between op; and ops is
already decided. Since the order is not decided in h, the implementation is wait-free,

and p; has not taken another step since h, it follows that ops must be decided before

op1.
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1: h=g¢
2: op1 = the single operation of p;

3: while (true) > main loop
4:  op2 = the first uncompleted operation of p2;

5:  while (true) > inner loop
6: if op1 is not decided before op2 in h o p1

7 h = hopa;

8: continue; > goto line 5
9: if op2 is not decided before op; in h o p2
10: h = h o po;

11: continue; > goto line 5
12: break; > goto line 13
13:  h=hops; > this step will be proved to be a CAS
14: h=hops; > this step will be proved to be a failed cAs
15:  while (op2 is not completed in h) > run p2 until ops is completed
16: h = hopa;

Figure 4.1: The algorithm for constructing the history in the proof of Theorem 4.3.

In other words, in the execution in which after h po completes ops and then ps
completes exactly m operations, opy, which is W, 41, is decided before both ops and op;.
Thus, the linearization of this execution must be in W (n + 1) o (R(m) + op1 7).

By the definition of exact order types, there is at least one operation in R(m), that
is, at least one operation of p3, which returns a different result in these two executions.
Thus, h and h' are distinguishable by at least one of the processes ps and p3. The proof
of (3) is similar. O

In the rest of the proof of the main theorem we build an infinite history h, such that
the processes p1, p2, and ps3 follow their respective programs, and p; executes infinitely
many (failed) CAS steps, yet never completes its operation, contradicting wait-freedom.
The algorithm for constructing this history is depicted in Figure 4.1. In lines 5-12, p;
and po are scheduled to run their programs as long as it is not yet decided which of
their operations comes first. Afterwards, the execution of ) is in a critical point. If p;
were to take a step, then op; will be decided before opo, and if ps were to take a step,
then opy will be decided before op;. We prove using indistinguishability arguments, that
the next step by both p; and ps is a cAs. Next (line 13), ps executes its CAS, and then
(line 14) p; attempts a CAS as well, which is going to fail. Afterwards, py is scheduled
to complete its operation, and then the above is repeated with po’s next operation.

It is shown that in iteration n + 1 of the algorithm for constructing h, the n first
operations are already decided to be the first n operations of py (that is, W(n)), and
iteration n+ 1 is a “competition” between op; and W, 11. The key feature of exact order
types, is that once the (n + 1)-st operation is decided, it must be distinguishable by
ps, because a long enough solo execution of p3 returns different results if the (n 4 1)-st
operation is op; or if it is Wy, 11. Let us formalize this claim.

We prove a series of claims on the execution of history A, which is a history of
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object (). Most claims refer to the state of the execution of @ in specific points in the
execution, described by a corresponding line in the algorithm given in Figure 4.1. These
claims are proved by induction, where the induction variable is the iteration number of
the main loop (lines 3-16). The induction hypothesis is that claims (4.5.4-4.5.14) are
correct. Claim 4.5.4 is the only one to use the induction hypothesis directly. The other

claims follow from Claim 4.5.4.

Claim 4.5.4. Immediately after line 4, it holds that 1) the order between op1 and opa
is not yet decided, and 2) all the operations of pa prior to ops are decided before op;.

Proof. For the first iteration of the main loop, this is trivial because h is empty
(Observation 4.4.4). For iteration ¢ > 2, it follows from the induction hypothesis,
Observation 4.5.11, and Claim 4.5.14. [

Observation 4.5.5. The order between op; and ops cannot be decided during the

inner loop (lines 5-12).

This follows from the fact that @ is help-free, and from inspecting the conditions in

lines 6 and 9.

Observation 4.5.6. Process ps never takes a step in h.

Claim 4.5.7. The order between opy and ops must be decided before any one of opy

and opy is completed.

Proof. If op; is completed, then op; must be decided before all future operations of ps
(Observation 4.4.4). All the operations of ps prior to opy are already decided before op;
(Claim 4.5.4), and by Observation 4.5.6, ps hasn’t taken any steps. Thus, by Claim
4.5.2, the order between op; and ops is already decided.

Similarly, if ops is completed, then ops must be decided before all future operations
of p3 (Observation 4.4.4). Again, all the operations of ps prior to opy are already decided
before op; (Claim 4.5.4), and by Observation 4.5.6, ps hasn’t taken any steps. Thus, by
Claim 4.5.2, the order between op; and ops is already decided. O

Claim 4.5.8. The execution of the inner loop (lines 5-12) is finite.

Proof. By combining Observation 4.5.5 and Claim 4.5.7, no operation in () is completed
in A during the execution of the inner loop. Since @ is lock-free, and each loop iteration

adds a single step to h, this cannot last infinitely. O

Observation 4.5.9. Immediately before line 13 op; is decided before ops in h o p1, ops

is decided before op1 in h o ps, and, hence, the order of op; and ops is not decided in h.

From observing the code, the inner loop exits and line 13 is reached only if the next
step of either p; or ps will decide the order. Since the queue algorithm is help-free, in

h o p1, opy is decided before opo, and in h o po, ops is decided before op;.
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Claim 4.5.10. Immediately before line 13 the following holds.

(1.) The next primitive step in the programs of both p1 and py is to the same memory
location.

(2.) The next primitive step in the programs of both p1 and ps is a CAS.

(3.) The expected-value of both the CAS operations of p1 and py is the value that appears
in the designated address.

(4.) The new-value of both the CAS operations is different than the expected-value.

Proof. By Observation 4.5.9, in h o p1, op; is decided before ops. It follows that op; is
decided before opy in h o pj opy as well. Similarly, ops is decided before opy in hopg o py.
By Claim 4.5.3 (1), it follows that h o p; o p, must be distinguishable from h o py o p1 by
process ps. It immediately follows that the next primitive step of both p; and ps is to
the same memory location. Furthermore, the next step of both p; and ps cannot be a
READ primitive. Also, it cannot be a CAS that does not change the shared memory, i.e.,
a CAS in which the expected-value is different than the value in the target address, or a
CAS in which the expected-value and new-value are the same.

Thus, the next step by both p; and ps is either a WRITE primitive or a CAS which
satisfies conditions (3) and (4) of the claim. It remains to show the next step is not a
WRITE. Assume by way of contradiction the next step by py is a WRITE. Then, h o p; is
indistinguishable from h o ps o p1 to all process excluding ps, again contradicting Claim

4.5.3 (1). A similar argument also shows that the next step of ps cannot be a WRITE.[]

Claim 4.5.10 immediately implies:

Corollary 4.1. The primitive step ps takes in line 13 is a successful CAS, and the
primitive step py takes in line 14 is a failed CAS.

Observation 4.5.11. Immediately after line 13, ops is decided before op; .

This follows immediately from Observation 4.5.9, and from line 13 of the algorithm for

constructing h. Next, for convenience, we denote the first operation of p3 as ops.

Claim 4.5.12. Immediately before line 13, the order between op1 and ops is not yet
decided.

Proof. Process p3 has not yet taken any steps (Observation 4.5.6), and thus its operation
cannot be decided before op; (Observation 4.4.4). Assume by way of contradiction that
op; is decided before ops. All the operations of ps prior to ops are already decided
before op; (Claim 4.5.4) and thus by Claim 4.5.2, the order between op; and ops is
already decided. But the order between op; and ops is not yet decided before line 13
(Claim 4.5.4 and Observation 4.5.5), yielding contradiction. O

Claim 4.5.13. Immediately after completing line 16, the order between opy and ops is
not yet decided.

139



Proof. By Claim 4.5.12, the order between op; and ops is not yet decided before line 13.
Steps by po cannot decide the order between op; and ops in a help-free algorithm, and
thus the only step which could potentially decide the order until after line 16 is the step
p1 takes in line 14. Assume by way of contradiction this step decides the order between
op1 and ops.

If this step decides the order between op; and ops then after this step op; must be
decided before ops. By Corollary 4.1, this step is a failed cAS. Thus, the state immedi-
ately before this step and the state immediately after this step are indistinguishable to

all processes other than p;. This contradicts Claim 4.5.3 (2). O

Claim 4.5.14. Immediately after line 16, the order between opy and the operation of
po following ops is not yet decided.

Proof. The operation of po following ops has not yet begun, and thus it cannot be
decided before op; (Observation 4.4.4). Assume by contradiction that op; is decided
before the next operation of po. Thus, by Claim 4.4.5, op; must be decided before all
future operations of ps, including ops. But by Claim 4.5.13, op; is not yet decided

before ops, yielding a contradiction. O
Corollary 4.2. Q is not wait-free.

Proof. By Claim 4.5.8, each execution of the inner loop is finite. Thus, there are
infinitely many executions of the main loop. In each such execution, p; takes at least a
single step in line 14. Thus p; takes infinitely many steps. Yet, by combining Claims
4.5.4, and 4.5.7, op1 is not completed in any iteration of the main loop, which implies it

is never completed. Thus, () is not wait-free. O

Since the assumptions on ) were that it is linearizable, help-free, and lock-free, we

can rephrase Corollary 4.2 as follows.

Theorem 4.3. A wait-free linearizable implementation of an exact order type cannot

be help-free.

It is interesting to note that in history h built in this proof, process p3 never takes a
step. Nevertheless, its existence is necessary for the proof. History h demonstrates that
in a lock-free help-free linearizable implementation of an exact order type, a process
may fail a CAS infinitely many times, while competing processes complete infinitely
many operations. This is indeed a possible scenario in the lock-free help-free linearizable
queue of Michael and Scott [MS96], where a process may never successfully ENQUEUE

due to infinitely many other ENQUEUE operations.

4.5.1 Generalizing the Proof To Cover the Fetch& Add Primitive

In the proof of Theorem 4.3, we assumed the allowed primitives were READ, WRITE, and

CAS. Another primitive, not as widely supported in real machines, is the FETCH&ADD
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primitive. As we shall see in Section 4.6, when it comes to the question of wait-free
help-free types, the FETCH& ADD primitive adds strength to the computation, in the
sense that some types that cannot be implemented in a wait-free help-free manner using
only the READ, WRITE, and CAS primitives, can be implemented in a wait-free help-free
manner if the FETCH&ADD primitive is allowed (An example for such a type is the
fetch&add type itself). However, in this subsection we claim that types such as the
queue and stack cannot be implemented in a linearizable, help-free, wait-free manner,
even if FETCH&ADD is available. In what follows we give this proof.

If we allow the FETCH& ADD primitive, yet leave the proof of Theorem 4.3 unchanged,
the proof fails since Claim 4.5.10 fails. Originally, Claim 4.5.10 shows that immediately
before line 13, the next steps in the programs of both p; and ps are CAS primitives to
the same location. Furthermore, the claim shows that each of these CAS operations, if
executed immediately, will modify the data structure. That is, the expected-value is
the same as the value in the target address, and the new-value is different than the
expected-value. Claim 4.5.10 proves this by elimination: it proves that the next steps
of both p; and py cannot be a READ, a WRITE, or a CAS that doesn’t modify the data
structure. This remains true when FETCH&ADD is allowed. However, a CAS that changes
the data structure ceases to be the only remaining alternative.

We claim that immediately before line 13, it is impossible that the next steps of both
p1 and py are FETCH&ADD, because then h o py o po is indistinguishable from h o ps o py
by p3. After any of these two sequences, the order between op; and ops must be decided,
and thus the first one of them must also be decided before all the future operations of
ps (Claim 4.4.5). Thus, a long enough solo execution of p3 will reveal which of one of
opy and ops is linearized first, and the indistinguishability yields a contradiction.

Thus, immediately before line 13 it is impossible that the next steps of both p; and
po are FETCH&ADD. However, it is possible indeed that one of them is FETCH&ADD,
and the other is a cAs. This foils the rest of the proof. To circumvent this problem,
we add an extra process, denoted pg. The program of py consists of a single operation,
denoted opyg.

A solo execution of p3 should return different results if opy is executed, op;y is
executed, or opy is executed. For instance, in the case of the FIFO queue, opg can be
ENQUEUE(0), op1 ENQUEUE(1), and ops ENQUEUE(2). As before, the program of po
is an infinite sequence of ENQUEUE(2) operations. The program of p3 is an infinite
sequence of DEQUEUE operations. In these settings, three process (pg, p1, p2) “compete”
to linearize their operation first in each iteration of the main-loop.

The inner loop (originally lines 5-12) is modified to advance the three processes. The
conditions in lines 6 and 9 need not be changed; it is enough to check for each operation
that it is not decided before one of the other two: at the first time an operation of opy,
op1 and op9 is decided before another one of these three operations, it is also decided
before the last one. To see this, assume without loss of generality that at the first time

such a decision is made, op; is decided before ops. By Claim 4.4.5, it must also be
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decided before future operations of p3. Run ps long enough, and see which operation
comes first. Since opg is not yet decided before opy, and cannot be decided to be before
it during a solo execution of p3, then ps must witness that op; is the first linearized
operation, which implies that op; is decided before opg as well.

Thus, after the inner loop, the order between opg, op1, and ops is not yet decided,
but if any of the processes pg, p1 or ps takes a step, its operation will be decided before
the other two. As before, the next step of all of them must be to the same memory
location. As before, their next steps cannot be a READ, a WRITE, or a CAS that does
not change the memory. It is possible that the next step of one of them is FETCH&ADD,
but as shown above, it is impossible that the next step of two of them is FETCH& ADD.
Thus, the next step of at least one out of pg and p; must be a CAS. Next, we schedule
p2 to take a step, and afterwards we schedule py or p; (we choose the one whose next
step is a CAS) to take is step. This step must be a failed CAs.

The proof continues similarly as before. The failed CAS cannot decide an operation
before ops because of indistinguishability. Process ps runs to complete ops, and the
above is repeated with the next operation of ps. In each iteration of the main loop, at
least one of pg and p; takes a single step, but neither opg or op; is ever completed, and
thus the data structure is not wait-free. The conclusion is that a queue (or a stack)
cannot be linearizable, help-free, and wait-free, even if the FETCH&ADD primitive as
available.

To generalize this result to a family of types, we need to slightly strengthen the
requirements of exact order types. The current definition of exact order types implicitly
implies a repeated “competition” between two threads, the result of which can be
witnessed by a third thread. Extending this definition to imply a repeated competition
of three threads yields the following definition.

Definition 4.5.15. (Extended Exact Order Types.) An extended exact order type T is a
type for which there exist two operations opy and opy, an infinite sequence of operations
W, and a (finite or an infinite) sequence of operations R, such that for every integer
n > 0 there exists an integer m > 1, such that for at least one operation in R(m), the
value it returns in any execution in W(n + 1) o ((R(m) + opo?) + op1?) differs from the
value it returns in any execution in W(n) o opg o ((R(m) + Wy117) 4+ op1?), and both
differ from the value it returns in any execution in W(n)oopy o ((R(m)+Wy41?)+0po?).

4.6 Global View Types

In this section we investigate a different set of types, that can also not be obtained
in a wait-free manner without using help. These are types that support an operation
that returns some kind of a global view. We start by addressing a specific example: a
single-scanner snapshot. We later identify accurately what other types belong to this

group. The technique of the proof used here is similar to that of Section 4.5, but the
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details are different and more complicated.

The single scanner snapshot type supports two operations: UPDATE and SCAN. Each
process is associated with a single register entry, which is initially set to L. An UPDATE
operation modifies the value of the register associated with the updater, and a SCAN
operation returns an atomic view (snapshot) of all the registers. This variant is referred
to as a single-writer snapshot, unlike a mulit-writer snapshot object that allows any
process to write to any of the shared registers. In a single scanner snapshot, only a
single SCAN operation is allowed at any given moment?.

Let S be a linearizable, help-free implementation of a single scanner snapshot. We
prove that S is not wait-free. For convenience, we assume S is lock-free, as otherwise,
it is not wait-free and we are done. Consider a system of three processes, p1, p2, and
p3. The program of p; is a single UPDATE(Q) operation, the program of po is an infinite
sequence alternating between UPDATE(0) and UPDATE(1) operations, and the program
of process p3 is an infinite sequence of SCAN operations.

Again, we build an infinite history h, such that the process pi, p2, and ps follow
their respective programs. This time, we show that in h either p; executes infinitely
many (failed) CAS steps, yet never completes its operation (as before), or alternatively,
that starting at some point, neither p; nor ps complete any more operations, but at
least one of them executes infinitely many steps.

The algorithm for constructing this history is depicted in Figure 4.2. In every
iteration, the operations of pi, ps, p3 are denoted op1, ops, ops respectively. In lines 6-13,
processes p1 and py are scheduled to run their programs as long as neither op; nor ops is
decided before ops. After the loop is ended, if p; takes another step op; will be decided
before ops, and if ps takes another step then ops will be decided before ops.

Then, in lines 14-15, p3 is run as much as possible without changing the property
achieved at the end of the previous loop. That is, when the loop of lines 14-15 is
stopped, it is still true that 1) if p; takes another step then op; will be decided before
ops, and 2) if ps takes another step then opy will be decided before ops. However, if p3
will take another step, then at least one of (1) and (2) will no longer hold.

Now, the execution is divided into two cases. The first possibility is that if p3 takes
another step, both (1) and (2) will cease to hold simultaneously. In this case, similarly
to the proof of Theorem 4.3, we show that both the CAS operations of p; and po are to
the same address, we allow py to successfully executes its CAS, and let p; attempt its
CAS and fail. Afterwards both ops and ops are completed, and we repeat the process
with the next operations of po and ps.

The other possibility is that the next step of ps only causes one of the conditions
(1) and (2) to cease to hold. Then, we allow p3 to take the next step, and afterwards

schedule the process (either p; or py) that can take a step without causing its operation

3Formally, the type is a snapshot, and a single-scanner implementation is a constrained implementation
of it, in the sense that its correctness is only guaranteed as long as no two SCAN operations are executed
concurrently.
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1: h=g¢

2: while (true) > main loop
3:  op1 = the first uncompleted operation of p1;

4: op2 = the first uncompleted operation of ps;

5: ops = the first uncompleted operation of ps; > scan operation
6:  while (true) > first inner loop
7 if op; is not decided before ops in h o p;

8: h=hops;

9: continue; > goto line 6
10: if op2 is not decided before ops in h o ps
11: h = hopo;
12: continue; > goto line 6
13: break; > goto line 14

14:  while (op:1 is decided before ops in h o ps o p1 and op2 is decided before ops in h o p3 o p2) >
second inner loop

15: h=ho P3

16:  if (op1 is not decided before ops in h o ps o p1 and ops is not decided before ops in h o p3 o p2)
17: h = h o po; > this step will be proved to be a CAS
18: h=hop; > this step will be proved to be a failed cas
19: while (op2 is not completed in h) > run p2 until ops is completed
20: h = h o pa;

21:  else

22: Let k € {1,2} satisfy op is not decided before ops in h o ps o pi

23: Let j € {1,2} satisfy op; is decided before ops in h o p3 o p;

24: h = h o ps;

25: h = h o pg;

26:  while (ops is not completed in h) > run ps until ops is completed
27: h = h o ps;

Figure 4.2: The algorithm for constructing the history in the proof of Theorem 4.7.

to be decided before op3. We prove this step is not a “real” progress, and cannot be the
last step in the operation. Afterwards we allow opg to be completed, and repeat the
process with the next operation of ps.

Throughout the proof we avoid using the fact that a SCAN (op3) returns a different
result when it is linearized after op; and before ops compared to when it is linearized
before ops and after op;. We rely only on the fact that ops returns three different results
if it is linearized before both UPDATE operations, before one of them, or after both.
This more general approach slightly complicates the proof in a few places, but it makes
the proof hold for additional types. In particular, this way the proof also holds for an
increment object.

We use a similar inductive process as we did when proving Theorem 4.3: we prove
a series of claims on the execution of history h, which is a history of object S. These
claims are proved by induction, where the induction variable is the iteration number of
the main loop (lines 2-27). The induction hypothesis is that claims (4.6.1-4.6.13) are
correct. Claim 4.6.1 is the only one to use the induction hypothesis directly, while the

other claims follow from it.

Claim 4.6.1. Immediately after line 5, it holds that 1) the operation ops has not yet
started, 2) the order between op1 and ops is not yet decided, 3) the order between ops
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and ops is not yet decided.

Proof. For the first iteration, none of the operations has started, thus the claim holds by
Observation 4.4.4. For iteration ¢ > 2, the claim follows from the induction hypothesis
and Claim 4.6.13. 0

Claim 4.6.2. Immediately before line 14, it holds that 1) the operation opy is not
decided before any operation by either py or ps, 2) the operation ops is not decided before
any operation by either py or ps, and 3) the operation ops is not decided before any

operation by either p1 or pa.

Loosely speaking, this claim states that no new ordering is decided during the

execution of the first inner loop (lines 6-13).

Proof. By Claim 4.6.1(1), ops has not yet started after line 5. Since ps never advances
in lines 6-13 then ops has not yet started immediately before line 14. Thus, ops cannot

be decided before any operation of a different process (Observation 4.4.4), and we obtain
(3). O

We now turn to prove (1). First, we observe that before line 14, op; is not decided
before ops: by Claim 4.6.1(2), the operation op; is not decided before ops after line 5;
the condition in line 7 guarantees that op; is not decided before ops as result of line 8,
and the fact that the algorithm is help-free guarantees op; is not decided before ops as
result of line 11.

Second, we claim op; is not decided before any operation of ps. Assume by way
of contradiction that op; is decided before an operation op of ps. Thus, op; must be
decided before all future operations of p3 (Claim 4.4.5), including ops. We just proved
that op; is not decided before ops, yielding a contradiction. Therefore, op; cannot be
decided before any operation of po.

Finally, we claim that op; is not decided before any future operation of ps. Assume by
way of contradiction that op; is decided before an operation op of p3. Using again Claim
4.4.5, op; must be decided before all future operations of po, yielding contradiction.

Thus, we have shown that immediately before line 14, the operation op; is not
decided before ops, not decided before any operation of ps, and not decided before any
(future) operation of p3 as well, and (1) is proved. Condition (2) is proven the same

way as (1).

Claim 4.6.3. No operation in h is completed during the execution of the first inner
loop (lines 6-13).

Proof. By Claim 4.6.2, neither op; nor opy are decided before ops immediately before
line 14. However, at the same point, ops has not yet begun (by Claim 4.6.1 and
observing the code). If op; (or opy) were completed immediately before line 14, then by
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Observation 4.4.4, it must have been decided before the future operation ops. Thus,
neither op; nor ops are completed immediately before line 14. Since only p; and po take
steps during the first inner loop and they do not complete their operations, it follows

that no operation is completed. O

Claim 4.6.4. No operation in h is completed during the execution of the second inner
loop (lines 14-15).

Proof. By Claim 4.6.2, neither op; nor opy are decided before ops immediately before
line 14. The operation ops itself has not yet begun before line 14. The condition in line
14 guarantees that ops will not be decided before op; or ops during the execution of
the second inner loop, since after the second inner loop is over, a single step by p1 (p2)
will decide op; (op2) before ops. Thus, after the second inner loop, the order between
ops and op; and the order between ops and ops are not yet decided. In what follows we
show that ops cannot be completed before these orders are decided, and thus reach the
conclusion that ops cannot complete during the execution of the second inner loop.

The result of ops depends on the orders between ops and ops, and between opsg and
op1: the operation opsg returns a certain result if ops is linearized before both op; and
ops, a different result if ops is linearized after both the other operations, and yet a
different result than both previous results if ops is linearized before only one of op; and
ops.

It follows that if the result of ops is consistent with none of op; and op, linearized
before it, then ops must already be decided before both op; and opy. If the result is
consistent with both op; and opy being linearized after ops, then both must already
be decided before ops. Next, we claim that if the result is consistent with ops being
linearized before exactly one of op; and ops, then it must already be decided before
each one. Assume by way of contradiction ops is not yet decided before either op; or
op2, but returns a result consistent with being linearized before exactly one of them.

According to the condition of line 14, after the second loop is completed, at least
one of op; and ops will be decided before ops if its owner process will take one step. Let
the owner take this step, and its operation (either op; or ops) is now decided before
op3. Thus, ops must now be decided before the other operation (one of op; and ops).
However, in a help-free implementation ops cannot be decided before another operation
as a result of a step taken by a process other than p3, and thus ops must have been
decided before either op; or ops before the second inner loop was completed, which
yields a contradiction.

To conclude, ops cannot be completed before the order is decided, which means ops
cannot be completed during the second inner loop. No other operation can be completed

during the second inner loop as p3 is the only process that advances in that loop. [

Claim 4.6.5. The executions of the first inner loop (lines 6-13) and second inner loop
(lines 14-15) are finite.
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Proof. In each iteration of the first and second inner loops, a process advances a step in
h. The history h is a history of the lock-free object S, and thus an infinite execution
without completing an operation is impossible. By Claims 4.6.3 and 4.6.4, no operation

is completed in these two loops, and thus their execution must be finite. ]

Claim 4.6.6. Immediately before line 16, it holds that 1) the operation opy is not
decided before any operation by either pa or ps, and 2) the operation ops is not decided

before any operation by either py or ps.

Proof. These conditions have already been shown to hold before line 14 (Claim 4.6.2).
The only process that takes steps in the second inner loop (lines 14-15) is p3. In a
help-free algorithm, steps by ps can only decide an operation of ps before any other

operation. ]

Observation 4.6.7. If the condition in line 16 is true, then immediately before line 17,
the operation op; is decided before ops in h o p1, the operation op;y is not decided before
op3 in h o p3 o p1, the operation ops is decided before ops in h o po, and the operation

ops is not decided before ops in h o p3 o po.

Claim 4.6.8. If the condition in line 16 is true, then immediately before line 17 the
following holds.

(1.) The next primitive step in the programs of p1, p2, and ps is to the same memory
location.

(2.) The next primitive step in the programs of both p1 and py is a CAS.

(3.) The expected-value of both the CAS operations of p1 and py is the value that appears
in the designated address.

(4.) The new-value of both the CAS operations is different than the expected-value.

Proof. By Observation 4.6.7, in hop; op3, the operation op; is decided before ops, while
in hopsop, the operation op; is not decided before opz. Thus, in an execution in which
p3 runs solo and completes ops immediately after h o p; o p3 it must return a different
result than in an execution in which ps runs solo and completes ops immediately after
hopsop; (because each operation by p; changes the return value of ops). Thus, hopszop;
and h o pj ops must be distinguishable, and thus the next primitive step in the programs
of both p; and p3 must be to the same memory location. Similarly, the next primitive
step in the programs of both ps and ps3 must be to the same memory location, and (1)
is proved.

As mentioned, ops’s result is different if p3 completes ops solo immediately after
h o p1 than ops’s result if p3 completes ops solo immediately after h o pg o p;. Thus, the
next primitive step by the program of p; cannot be a READ, otherwise the two executions
will be indistinguishable by ps. Similarly, the next primitive step of p; cannot be a CAS
that does not change the shared memory (i.e., a CAS in which the expected-value is

different from the value in the target address, or a CAS in which the expected-value and
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the new-value are the same.) The symmetric argument for p, demonstrates that the
next step in the program of py cannot be a READ or a CAS that does not change the
shared memory as well.

Thus, the next steps of both p; and py are either a WRITE, or a CAS that satisfies
(3) and (4). It remains to show the next steps are not a WRITE. Assume by way of
contradiction that the next step by p; is a WRITE. Thus, h o ps o p; is indistinguishable
from h o p; to all processes excluding po. Assume that after either one of these two
histories, p; runs solo and completes the execution of op;, and immediately afterwards,
p3 runs solo and completes the execution of ops. If psy executes the next step following h,
then ops should return a result consistent with an execution in which both op; and ops
are already completed. In the other case, in which the step following A is taken by p1,
ops should return a result consistent with an execution in which op; is completed and
ops is not. Since both of these results are different, but the histories are indistinguishable
to p3, we reach a contradiction. Thus, in A, the next step by p; is not a WRITE, and
similarly, the next step by ps is also not a WRITE. ]

Claim 4.6.8 immediately implies:

Corollary 4.4. If the condition in line 16 is true, then the primitive step ps takes in

line 17 is a successful CAS, and the primitive step py1 takes in line 18 is a failed CAS.

Claim 4.6.9. If the condition in line 16 is true, then immediately after line 18, the

operation op1 is not decided before any operation of ps.

Proof. Immediately before line 16, the operation op; is not decided before any operation
of p3 by claim 4.6.6. In a help-free implementation such as S, an operation can only
be decided before another operation following a step of its owner process. Following
this rule, the only step which could potentially decide op; before any operation of p3
is the step p; takes at line 18. By Corollary 4.4, this step is a failed cAS. Thus the
state before this step and after this step are indistinguishable to all processes excluding
p1. Assume by way of contradiction that this failed CAS decides op; to be before an
operation op of p3. If psg is run solo right before the failed CAS of p;, and this run is
continued until op is completed, the result of op should be consistent with op; not yet
executed (since op; cannot be decided before op in a help-free implementation during a
solo execution of p3); If ps is run solo right after the failed CcAs of p;, and this run is
continued until op is completed, the result of op should be consistent with op; already
executed. These two scenarios are indistinguishable by ps, yet the results are different
according to the semantics of the specification and the respective programs, yielding a

contradiction. O

Corollary 4.5. If the condition in line 16 is true, then immediately after line 18, the

operation opy s not yet completed.
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Proof. Immediately after line 18, the operation op; is not decided before any operation
of ps (Claim 4.6.9). Were op; completed, then by Observation 4.4.4, it must have also
been decided before all future operations of p3 that have not started yet. O

Claim 4.6.10. If the condition in line 16 is false, then immediately after line 25, the
order between op; and ops is not yet decided. Furthermore, the order between op; and

any of the future operation by ps is not decided as well.

Proof. Immediately before line 14 the order between op; and ops, or between op; and
any future operation of p3 is not yet decided (Claim 4.6.2). In lines 14-15, p3 is the
only process to advance. By the condition in line 14, ops is not decided before neither
op1 or ops during the execution of the second inner loop. Furthermore, by the condition
in line 16, and by the definition of op;, ops is not decided before op; after line 24. p;
did not make any step since line 14, and thus op; cannot be decided before op3 or any

future operation of ps. ]

Observation 4.6.11. If the condition in line 16 is false, then immediately after line

25, op; is not yet completed.

The above is true because op; did not execute a step since line 14, and was not completed
at the time (Claim 4.6.3).

Claim 4.6.12. If the condition in line 16 is false, then immediately after line 25, opy,

is not decided before any operation of ps.

Proof. According to the condition of line 16 and the definition of k, after line 25 opy,
is not decided before ops. Immediately after line 25, the order between op3 and op; is
not yet decided (Claim 4.6.10). Thus, opy, is not decided before op; (because op; may
still be before ops, which in turn may still be before opy). Assume by contradiction
that after line 25, opy, is decided before some operation op of p3. Note that op; is not
decided before op at this point (Claim 4.6.10). Let ps run solo until op is completed.
We claim that after such a run, op is decided before op;. It is already assumed
(contradictively) that opy is decided before op; no future operations of py (operations
not yet started) can be decided before the already completed op (Observation 4.4.4); all
operations of p; before op were completed before op has begun, and are thus before it.
Thus, for every operation O # op; the order between O and op is already decided.
According to the semantics of the specification, op returns a different result if op;
is before op than if op; is after op, given that the relative order between op and all
other operations is fixed. Consequently, once op is completed, the order between op;
and op must also be decided. However, op; cannot be decided before op: it was not
decided before op immediately after line 25 and p; has not taken a step since. The only

remaining possibility is that op is decided before op;.
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If op is indeed decided before op; then by transitivity opy is decided before op;.
However, since p3 is not the owner of opy, then a solo execution of p3 cannot decide opy

to be before op; in the help-free S, yielding a contradiction. O

Corollary 4.6. If the condition in line 16 is false, then immediately after line 25, opy

s not yet completed.

Proof. Immediately after line 25, the operation opy, is not decided before any operation
of ps (Claim 4.6.12). Were opj, completed, then by Observation 4.4.4 it must have been
decided before all future operations of ps that have not started yet. O

Claim 4.6.13. Immediately after exiting the loop of lines 26-27, it holds that 1) the
operation ps has completed operation ops and has not yet started the next operation,
2) the operation opy has not yet completed, 3) the order between opy and any future
operation of p3 is not yet decided, and /) the order between the first uncompleted

operation of ps and any future operation of ps is not yet decided.

Proof. By Claim 4.6.4, ops is not completed in lines 14-15. In lines 1625, ps takes
at most one step (line 24), because ops is not completed in lines 14-15, the step must
be a step of ops, and not of the next operation of p3. The code of lines 26-27 ensures
p3 will complete ops if it is not yet completed, but will not start the next operation,
guaranteeing (1).

Now, divide into two cases. If the condition in line 16 is true, then ops is completed
in lines 19-20. Thus, the first uncompleted operation of p has not yet begun. The order
between two operations that have not yet begun cannot be decided (Observation 4.4.4),
and we get (4). The operation op; has not yet completed by Corollary 4.5, giving (2).
The operation op; was not decided before any operation of p3 after line 18 (Claim 4.6.9).
Process p; did not take another step since line 18 and S is a help-free implementation,
thus opy is not decided before any operation of p3. Any future operation of p3 cannot
be decided before op; by Observation 4.4.4, and thus we get (3).

If the condition in line 16 is false, then op; and ops are op; and op, (not necessarily
in that order). Immediately after line 25, opy is not decided before any operation of
p3 (Claim 4.6.12), opy, is not completed (Corollary 4.6), op; is not decided before any
operation of p3 (Claim 4.6.10), and op; is not completed (Observation 4.6.11)). In lines
26-27 only p3 may progress, thus both op; and ops cannot be completed (guaranteeing

(2)), and cannot be decided before any other operation since S is help-free (guaranteeing

(3) and (4)). O
Claim 4.6.14. Ewvery iteration of the main loop (lines 2-27) is finite.

Proof. In every iteration of the main loop, the executions of the first inner loop (lines
6-13) and second inner loop (lines 14-15) are finite (Claim 4.6.5). The other two inner

loops (lines 19-20 and 26-27) run a single process exclusively until it completes its
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operation, which always takes a finite number of execution steps in a lock-free algorithm.
Thus, each execution of an inner loop is finite, as every iteration of the main loop is
finite. O

Claim 4.6.15. S is not wait-free.

Proof. By Claim 4.6.14, each iteration of the main loop is finite. It follows that when
history h is constructed following the algorithm in Figure 4.2 the main loop is run
infinitely many times. Thus, we consider two cases. The first case is that the condition
in line 16 is true only a finite number of times (in a finite number of iterations of the
main loop). In this case, We consider the part of history h created since after the last
iteration in which the condition in line 16 is true. If the condition is never true, we
consider the entire history h. In this part of the history, neither p; nor ps complete
any operation: in each iteration these operations are not completed until after line 25
(Corollary 4.6, Observation 4.6.11), and only ps makes progress in lines 26-27. On the
other hand, in each iteration at least one of p; and ps takes at least one step - in line
25. This contradicts wait-freedom.

The second case is that the condition in line 16 is true infinitely many times. In
this case, op; is never completed (Claim 4.6.13 (2)), yet p; takes infinitely many steps:
each time the condition in line 16 is true, p; takes a step in line 18, also contradicting

wait-freedom. O

Since the assumptions on S were that it is linearizable, help-free, and lock-free, we

can rephrase Claim 4.6.15 as follows.

Theorem 4.7. A wait-free linearizable single-scanner snapshot implementation cannot

be help-free.

4.6.1 From Single Scanner Snapshot to Global View Types

The first natural observation is that if a wait-free linearizable single-scanner snapshot
cannot be implemented without help, then this conclusion holds for more general
snapshot variants as well, such as the multiple-scanner snapshot object, or simply the
snapshot object. However, we can generalize the result further. The proof relies on
the fact that for every SCAN, its result changes if it is linearized before op; and opo,
compared to when it is linearized after the first of op; and ops, and compared to when
it is linearized after both.

In what follows, we generalize this result to global view types. Similarly to the proof
above, we think of a single operation op (similar to op; of p1), an infinite sequence of
operations Modifiers (similar to the infinite UPDATE sequence of ope, and an infinite
sequence of operations Views (similar to the infinite SCAN sequence of p3).

Next, a certain property that holds for every modifier and every view operation

is needed. Specifically, this property states that the view returns a different result if

151



another (either modifier or the op operation) is added before it, and yet a different
result if both the modifier and op are added before it. For this purpose, we define three
sets of sequential histories for each pair of modifier and view. Setq is histories in which
the view is after the specified modifier, but not after any other modifier, and not after
op either. Set; is histories in which either op or one more modifier is before the view,
and Sets is the histories in which both the one more modifier and op are before the

view. The definition follows.

Definition 4.6.16. (Modifiers-Viewers Sets.) Given a single operation denoted op, an
infinite sequence of operations denoted Modifiers, and an infinite sequence of operations
denoted Views, for every pair of integers ¢ > 0 and j > 1 we define the following three
modifier-i-view-j sets.

Setg is the set of all sequential histories h that include the first ¢ Modifiers operations
in their relative order, include the first j Views operations in their relative order, include
no other operation and the last operation in h is in Views.

Sety is the set of all sequential histories h that include the first ¢ Modifiers operations
in their relative order, include the first j Views operations in their relative order, include
op or include the (i + 1)-st operation of Modifiers somewhere after the first ¢ operations
of Modifiers but not both, include no other operations, and the last operation in A is in
Views.

Sety is the set of all sequential histories A that include the first ¢ + 1 operations of
Modifiers in their relative order, include the first j operations of Views in their relative

order, include op, include no other operations, and the last operation in A is in Views.

The interests we have in these sets relies in the result of the last (view) operation in
each history. Specifically, for our proof to hold, if two histories h and h’ belong to two
different modifier-i-view-j set, then the results of their last operation should be different.

We use the following definition to help formalize this.

Definition 4.6.17. (Modifiers-Viewers Result Sets.) Given a single operation denoted
op, an infinite sequence of operations denoted Modifiers, and an infinite sequence of
operations denoted Views, for every pair of integers ¢ > 0 and j > 1 we define the
following three modifier-i-view-j-results sets as follows:

RS; = {r|r is the returned value of the last (view) operation in a history h € Set; }

Definition 4.6.18. (Global View Types.) A type ¢, for which there exists an operation
op, an infinite sequence of operations Modifiers and an infinite sequence of operations
Views, such that for every pair of integers ¢ > 0 and j > 1 the three modifier-i-view-j-

results sets are disjoint sets, is called a Global View Type.

Using this definition, Theorem 4.7 is generalized as follows:

Theorem 4.8. A global view type has no linearizable, wait-free, help-free implementa-

tion.
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Both snapshot objects and increment objects are such types. Another interesting
type is the fetch&increment type, which is sometimes used as a primitive. This type
supports only a single operation, which returns the previous integer value and increments
it by one. In the type of the fetch&increment, op, the Modifiers sequence, and the Views
sequence, all consists only fetch&increment operations. Its easy to see that for every
pair ¢ and 7, the three results sets are disjoint, because each set contains histories with
a different number of operations. Finally, the fetch-and-cons object, used in [Her88], is

another example of a type that satisfies the condition in theorem 4.8.

4.7 Max Registers

In this section we turn our attention to systems that support only the READ and
WRITE primitives, (without the CAs primitive). We prove that for such systems, help
is often required even to enable lock-freedom. We prove this for the maz-register
type [AACH12|. A max-register type supports two operations, WRITEMAX and READ-
Max. A WRITEMAX operation receives as an input a non-negative integer, and has no
output result. A READMAX operation returns the largest value written so far, or 0, if no
WRITEMAX operations were executed prior to the READMAX. If the CAS primitive is
allowed, then there is a help-free wait-free max-register implementation. (See Subsection
4.8.2.)

Assume by way of contradiction that M is a linearizable, help-free, lock-free max-
register implementation. Consider a system of five processes, p1, p2, ps3, p4, and ps.
The programs of processes p1, p2, and ps all consists of a single operation, which is
WRITEMAX (1), WRITEMAX(2), and WRITEMAX(3) respectively. The programs of
processes p4 and ps are both a single READMAX operation. We denote the operations
of p1, p2, and p3 by Wy, Ws, and W3 respectively. We denote the operations of py and
ps by R and Ro respectively.

In the proof we build a history A, such that the processes p1, p2, p3, p4, and ps
follow their respective programs. We show this yields a contradiction to help-freedom.
The algorithm for constructing this history is depicted in Figure 4.3. Processes p1, p2
are scheduled to run their programs as long as their operations are not decided before
R;. Process p4 is scheduled to run its program as long is it can make a step without
deciding its operation before Wy, or alternatively, without deciding its operation before
Ws. We prove that during the execution of the main loop, no operation is ever decided
before any other operation. We also prove that the execution of the main loop must be
finite.

Afterwards, the execution of M is in a critical point. If p; were to take a step, then
W1 will be decided before Ry; if po were to take a step, then W5 will be decided before
R1; and if py were to take a step, then Ry will be decided before both Wy and Ws. We

will prove using indistinguishability arguments that this yields a contradiction.

4An increment object supports two operations, INCREMENT and GET.
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1: h=g¢

2: while (true) > main loop
3: if Wi is not decided before R; in h o p1
4: h = hops;
5: continue; > goto line 2
6: if W5 is not decided before R; in h o p2
7 h = h o pa;
8: continue; > goto line 2
9: if R; is not decided before Wi in h o py
10: h = h o py;
11: continue; > goto line 2
12: if R; is not decided before W5 in h o py
13: h = h o pg;
14: continue; > goto line 2
15 break; > goto line 16
16:  Contradiction > reaching this line immediately yields contradiction.

Figure 4.3: The algorithm for constructing the history in the proof of Theorem 4.11.

Claim 4.7.1. During the execution of the main loop (lines 2-15), no operation is

decided before any other operation.

Proof. The proof is by induction on the iteration number of the main loop. The induction
hypothesis for iteration i is that no operation is decided before another operation during
the execution of the first ¢ — 1 iterations. For the first iteration this is trivial. We
assume that the hypothesis is correct for iteration ¢, and prove that it holds for iteration
1+ 1 as well. That is, we prove that given that no operation is decided in the first ¢ — 1
iterations, no operation is decided in iteration i.

Before the execution of the main loop, no operation is decided before any other
operation because h is empty (Observation 4.4.4). By the induction hypothesis, no
operation was decided during the first ¢ — 1 iterations of the main loop. It follows that
if an operation is decided before another operation during iteration ¢ of the main loop,
then it must be the first time any operation is decided before a different operation in h.
If this indeed happens, then it must be in one of the lines: 4,7,10, or 13. We go over
them one by one, and prove that an execution of none of them can be the first time an
operation is decided before a different operation.

Assume by way of contradiction that the execution of line 4 in iteration i is the
first time in which an operation is decided before a different operation. Because M is
a help-free algorithm, the operation that is decided before a different operation must
be Wi. Since Wi is now decided before a different operation, and since Wj is not yet
decided, then in particular, W7 must be decided before W3 (Claim 4.4.5).

At this point, let p3 run solo until completing W3. We consider two cases. The
first case is that after this run of ps, W3 is decided before R;. If this is the case, then
by transitivity, W7 must also be decided before Ri. However, in a help-free algorithm
W1 cannot be decided before Ry during a solo execution of ps. It follows that W; was

already decided before R; prior to this solo execution. Thus, W; must be decided before
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R in the execution of line 4. But this contradicts the condition in line 3, and thus the
first case is impossible.

The second case is that after the solo run of p3 which completes W3, W3 is not
decided before R;. If W3 is not decided before R; after the completion of W3, then it
follows that W3 can never be decided before Ry in a help-free algorithm (because any
such future decision cannot be inside the execution of W3, and will thus be help.) Thus,
R; cannot possibly return any value > 3: returning such a value would indicate it is
after W3 (because W3 is decided to be the first operation that writes a value > 3, as no
other operation that writes a value > 3 has even started, and W3 is already completed).
But if Ry cannot possibly return a value > 3, then R; is decided before W3. However,
R; cannot be decided before another operation during the execution of line 4 or during
the solo execution of p3 in a help-free algorithm. Since we assumed that line 4 is the first
time any operation is decided before any other operation, this yields a contradiction,
making the second case impossible as well.

Thus, we have established that line 4 in iteration i of the main-loop cannot decide
any operation before any other operation. The argument for line 7 is similar. We move
on to consider line 10.

Assume by way of contradiction that the execution of line 10 in iteration i is the
first time in which an operation is decided before a different operation. Because M is
a help-free algorithm, the operation that is decided before a different operation must
be R;. Since R; is now decided before a different operation, and since R is not yet
decided, then in particular, R; must be decided before Ry (Claim 4.4.5).

At this point, let ps run solo until completing Rs. We consider two cases. The first
case is that Ry returns 0. If this is the case, then Ry is decided before both W7 and
Ws, and by transitivity, R; is decided before W; and W5 as well. However, R; cannot
be decided before W7 in a help-free algorithm during a solo execution of ps. It follows
that R; was already decided before W before this solo execution. Thus, Ry must be
decided before Wi in the execution of line 10. But this contradicts the condition in line
9, and thus the first case is impossible.

The second case is that Ro returns a value greater than 0. In such a case, either
W1 or Wy must be decided before Ry (depending on the value returned). But both
W1 and W5 cannot be decided before Ry during the solo execution of ps, or during the
execution of line 10, in a help-free algorithm. Since we assumed line 10 is the first time
any operation is decided before any other operation, then this yields a contradiction,
making the second case impossible as well.

Thus, we have established that line 10 in iteration 4 of the main-loop cannot decide
any operation before any other operation. The argument for line 13 is similar, and the

proof is complete. O

Corollary 4.9. No operation is completed during the execution of the main loop (lines
2-15).
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Proof. By Claim 4.7.1, no operation is decided before any other operation during
the execution of the main loop. By Observation 4.4.4, an operation that is already
completed must be decided before all operations that have not yet started. Since there
are operations that are never started (W3, Rz), but no operation is decided before any

operation, then no operation can be completed during the execution of the main loop.[]
Corollary 4.10. The execution of the main loop (lines 2-15) is finite.

Proof. In each iteration of the main loop excluding the last one, a process takes a step in
M. However, during the execution the main loop no operation is completed. (Corollary
4.9.) Since M is a lock-free implementation then this cannot continue infinitely, and

thus the execution of the main loop is finite. ]

Observation 4.7.2. Immediately before line 16 the order of any two operations is not
yet decided. Furthermore, immediately before line 16, it holds that 1) in h o p;, the
operation W is decided before R;, 2) in h o ps, the operation Wy is decided before R,
and 3) in h o p4, the operation R; is decided before both W and Wa.

From Claim 4.7.1 the order between any two operations is not decided immediately
before line 16.

From observing the code, the main loop exits and line 16 is reached only if (1), (2), and
(3) hold.

Claim 4.7.3. Reaching line 16 yields contradiction.

Proof. By Observation 4.7.2, in h o py o p4, the operation W7 is decided before R, and
in h o ps o p1, the operation Ry is decided before both W7 and Ws. It follows that
h o p1 opyg and h o pg o p; must be distinguishable to process p4, since if p4 continues to
run solo after h o pgop; then Ry must return 0, and if p; runs solo after h o p; o py then
R must return at least 1. It follows that the next steps of both p; and ps must be to
the same memory address. Furthermore, to enable distinguishability by p4, the next
step by p1 must be a WRITE, and the next step by ps must be a READ.

For similar reasons, the next step of ps must also be a WRITE to the same memory
address. Thus, the next step by both p; and ps is a WRITE to the same location. Thus,
hopoopy and hopy are indistinguishable to p4. Since in h o ps o py the operation Ws is
decided before R;, a solo execution by p4 starting from that point until R; is completed
must cause R; to return 2. Since this is indistinguishable to p4 from h o p1, then a solo
execution of py immediately after i o p; must also return 2. However, this would imply
W3 is decided before R;. But W is not decided before R; in h (Observation 4.7.2), and
cannot be decided before it during a step of p; or during the solo execution of p4 in a

help-free algorithm, yielding a contradiction. O

Theorem 4.11. A lock-free implementation of a max-register using only READ and

WRITE primitives cannot be help-free.
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Proof. We assumed a lock-free help-free implementation of a max-register using only
READ and WRITE primitives. However, while examining the algorithm for constructing
history h depicted in Figure 4.3, we reached the conclusion that the main-loop execution
must be finite (Corollary 4.10), but also the conclusion that line 16 can never be reached

(Claim 4.7.3). This yields contradiction, and proves the Theorem. O

4.8 Types that Do Not Require Help

In this section, we establish that some types can be implemented in a wait-free manner
without using help. Loosely speaking, if the type operations dependency is weak enough
then no help is required. As a trivial example, consider the vacuous type. A vacuous
object supports only one operation, NO-OP, which receives no input parameters and
returns no output parameters (void). Thus, the result of a NO-OP does not depend on the
execution of any previous operations. Consequently, there is no operations dependency
at all in the vacuous type. It can trivially be implemented by simply returning void

without executing any computation steps, and without employing help.

4.8.1 A Help-Free Wait-Free Set

As a more interesting example, consider the set type of a finite domain. The set type
supports three operations, INSERT, DELETE, and CONTAINS. Each of the operations
receives a single input parameter which is a key in the set domain, and returns a boolean
value. An INSERT operation adds the given key to the set and returns true if the key is
not already in the set, otherwise it does nothing and returns false. A DELETE operation
removes a key from the set and returns true if the key is present in the set, otherwise it
does nothing and returns false. A CONTAINS operation returns true if and only if the
input key exists in the set.

Consider the following wait-free help-free set implementation given in Figure 4.4.
The implementation uses an array with a bit for every key in the set domain. Initially,
all bits are set to zero, and the set is empty. To insert a key to the set, a process
performs a CAS operation that changes the bit from zero to one. If the CAS succeeds,
the process returns true. If the CAS fails, that means that the key is already in the set,
and the process returns false. Deletion is executed symmetrically by cAsing from one
to zero, and contains reads the appropriate bit and returns true if and only if it is set
to one.

In this set algorithm, it is easy to specify the linearization point of each operation. In
fact, every operation consists of only a single computation step, which is the linearization
point of that operation. For any type, an obstruction-free implementation in which the
linearization point of every operation can be specified as a step in the execution of the
same operation is help-free.

The function f that proves such an implementation is help-free is derived naturally
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bool insert(int key) {
bool result = cas(Alkey],0,1); > linearization point
return result; }

bool delete (int key) {
bool result = cas(Alkey],1,0); > linearization point
return result; }

bool contains (int key) {
bool result = (Alkey] == 1); > linearization point
return result; }

Figure 4.4: A help-free wait-free set implementation

from the linearization points. For each given history, the operations are ordered
according to the order of the execution of their linearization points. Consider a type T,
an obstruction-free implementation of it O, and the corresponding set of histories H.
Assume the code of O specifies the linearization point of each operation at the execution
of a specific computation step of the same operation. Let f be the linearization function

derived from this specification.

Claim 4.8.1. For every h € H, every two operations op1,ops, and a single computation
step v such that ho~y € H, it holds that if op1 is decided before ops in h o~ and op; s

not decided before ops in h, then v is the linearization point of op:.

As a direct result, 7y is executed by the owner of op1, and thus O is help-free.

Proof. First, we observe that op; is not yet linearized in h. If it were, then the order
between op; and opy would have already been decided: were ops linearized before op;
then ops would have been decided before opi, and were op; linearized before ops or
op1 is linearized and ops not, then op; would have been decided before ops. Thus, opq
cannot be linearized in h.

Second, we observe that op; is linearized in h oy. Were it not, then a solo execution
of the owner of ops until the linearization of ops would have linearized opy before opq,

contradicting the assumption that op; is decided before ops in h o 7. O

4.8.2 A Help-Free Wait-Free Max Register

In Section 4.7 we proved that a lock-free max register cannot be help-free if only READS
and WRITES are available. In this subsection we show that a help-free wait-free max
register is possible when using the CAs primitive. The implementation uses a shared
integer, denoted value, initialized to zero. This integer holds the current max value.
The implementation is given in Figure 4.5.

A WRITEMAX operation first reads the shared integer value. If it is greater than or
equal to the input key, then the operation simply returns. Otherwise it tries by a CAS
to replace the old (smaller) value with the operation’s input key. If the CAS succeeds,

the operation returns. Otherwise the operation starts again from the beginning. This
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1: void WriteMax(int key) {

2:  while(true) {

3: int local = value; > linearization point if value > key
4: if (local > key)

5: return;

6: if (cas(value, local, key)); > linearization point if the CAS succeeds
7 return;

8 1}

9: int ReadMax() {
10:  int result = value; > linearization point
11:  return result;
12: }

Figure 4.5: A help-free wait-free max register implementation

implementation is wait-free because each time the CAS fails, the shared value grows by
at least one. Thus, a WRITEMAX () operation is guaranteed to return after a maximum
of = iterations. A READMAX operation simply reads the value and returns it.
Help-Freedom is proved similarly to the wait-free help-free set, using Claim 4.8.1. In
the given max register implementation, the linearization point of every operation can be
specified as a step in the execution of the same operation, and thus it is help-free. The
linearization point of a WRITEMAX operation is always its last computation step. This
is either reading the value variable (if the read value is greater than the input key), or
the cAs (if the CAs succeeds). The linearization point of a READMAX is reading the

value.

4.9 A Universality of Fetch-And-Cons

A fetch-and-cons object allows a process to atomically add (con) an item to the beginning
of a list and return the items following it. In this section, we show that fetch-and-cons
is universal with respect to help-free wait-free linearizable objects. That is, given a
help-free wait-free atomic fetch-and-cons primitive, one can implement any type in a
linearizable wait-free help-free manner. Not surprisingly for a universal object, both
Theorems 4.3 and 4.8 hold for fetch-and-cons and show it cannot be implemented in
a help-free wait-free manner. Before demonstrating the universality of fetch-and-cons,
we shortly discuss the strength of different primitives when it comes to overcoming
indistinguishability problems.

Consider two processes, p1 and ps, at a certain point in an execution. Consider
only their immediate next computation step. With this regard, there are five possible
states: 1) neither have yet taken its next step, 2) p; has taken its next step and po
has not, 3) p2 has taken its next step and p; has not, 4) p; has taken its next step,
and afterwards py has taken its next step, and 5) p, has taken its next step, and
afterwards p; has taken its next step. Different primitives can be measured by their

ability to support distinguishability between each of these five possibilities. Perfect
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distinguishability allows each process in the system to know exactly which one of the
five scenarios occurred.

Using such a metric, we can state that a system supporting only READ and WRITE
is weaker than a system that also supports CAS. When both p; and py are attempting
a CAS at the same memory location, it is possible for every process in the system to
distinguish between (4) and (5), while also distinguishing between (3) and (4). This is
impossible when using only READ and WRITE. Still, a CAS is not perfect: for example,
it is still impossible to distinguish between (2), (3) and (4) at the same time.

FETCH&ADD adds more strength to the system. When both p; and ps execute
FECTH&ADD, in which they add different values to the same location, it is possible
for every process in the system to distinguish between (1), (2), (3), and (4). In fact,
FETCH&ADD is almost perfect: its only weakness is that it does not allow processes
other than p; and ps to distinguish between (4) and (5). By contrast, fetch-and-cons is
perfect: it allows every process in the system to distinguish between all five possibilities.
Intuitively, this is the source of its strength.

To show that fetch-and-cons is indeed universal, we use a known wait-free reduction
from any sequential object to fetch-and-cons, described in detail in [Her88]. We claim
that the reduction is help-free. In essence, each process executes every operation in two
parts. First, the process calls fetch-and-cons to add the description of the operation
(such as ENQUEUE(2)) to the head of the list, and gets all the operations that preceded
it. This fetch-and-cons is the linearization point of the operation.

Second, the process computes the results of its operation by examining all the
operations from the beginning of the execution, and thus determining the “state” prior
to its own operation and the appropriate result. Note that since every operation is

linearized in its own fetch-and-cons step, then this reduction is help-free by Claim 4.8.1.

4.10 Discussion

This chapter studies the fundamental notion of help for wait-free concurrent algorithms.
It formalizes the notion, and presents conditions under which concurrent data structures
must use help to obtain wait-freedom.

We view our contribution as a lower-bound type of result, which sheds light on a
key element that implementations of certain object types must contain. As such, we
hope it will have a significant impact on both research and design of concurrent data
structures. First, we believe it can lead to modularity in designs of implementations
that are shown to require a helping mechanism in order to be wait-free, by allowing to
pinpoint the place where help occurs.

Second, we ask whether our definition of help can be improved in any sense, and
expect this to be an important line of further research. We think that our proposed
definition is a good one, but there exist other possible definitions as well. An open

question is how various formalizations of this notion relate to each other. Another
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important open problem is to find a definition for the other notion of help, as we
distinguish in the introduction. Such a definition should capture the mechanisms that
allow a process to set the ground for its own operation by possibly assisting another
operation, for the sole purpose of completing its own operation. In this chapter we do
not refer to the latter as help, as captured by our definition.

An additional open problem is the further characterizations of families of data
structures that require help to obtain wait-freedom. For example, we conjecture that
perturbable objects [JTTO00] cannot have wait-free help-free implementations when using
only READ and WRITE primitives, but the proof would need to substantially extend our

arguments for the max register type.
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Chapter 5

Lock-Free Data-Structure

Iterators

5.1 Introduction

Concurrent data structures are often used with large concurrent software. An iterator
that traverses the data structure items is a highly desirable interface that often exists
for sequential data structures but is missing from (almost all) concurrent data-structure
implementations. In this chapter we introduce a technique for adding a linearizable
wait-free iterator to a wait-free or a lock-free data structure that implements a set, given
that their implementations fulfill some necessary conditions. We use this technique to
implement an iterator for the lock-free and wait-free linked-lists presented in Chapter 2,
and for the lock-free skip-list.

As discussed in Section 1.4, in this chapter we start from the snapshot algorithm of
Jayanti [Jay05], extend it to support READ operations, and convert it to be used for
data structures that implement the set abstract data type. Once a snapshot is available,
we easily obtain an iterator.

Our iterator is quite efficient, and imposes an overhead of roughly 15% on the
INSERT, DELETE, and CONTAINS operations when iterators are active concurrently, and
roughly 5% otherwise. When compared to the CTrie iterator of [PBBO12], which is
the only other available lock-free data structure that offers a linearizable iterator, our
iterator demonstrates lower overhead on modifications and read operations, whereas
the iteration of the data structure is faster with the CTrie iterator.

This chapter is organized as follows. Section 5.2 discusses the exact conditions a data
structure must meet in order for our iteration technique to be applicable. Section 5.3
recaptures the single scanner snapshot of Jayanti. Section 5.4 discusses the differences
and difficulties between a single scanner snapshot and an iterator for multiple iterating
threads. Together, Sections 5.3 and 5.4 offer a good overview for our algorithm. Section
5.5 gives the details of our wait-free iterator. Section 5.6 discusses the implementation of

a snap-collector, which is a major building block used in our iterator implementation and
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discussed as a black-box in Section 5.5. Section 5.7 gives a detailed proof of correctness
for the iterator presented in this chapter. We give the performance measurement results

in Section 5.8, and conclude this chapter in Section 5.9.

5.2 Goals and Limitations

Our technique aims at extending data structures that implement the set ADT to
support taking a snapshot as well. Given an atomic snapshot, iterating the data
structure becomes trivial, thus throughout this work we will focus on the problem of

obtaining a snapshot. The set ADT consists of three operations:

e INSERT. An INSERT operation receives an input key. If the input key is not already
in the set, the operation adds the key to the set and returns true. Otherwise, the

set remains unchanged and false is returned.

e DELETE. A DELETE operation receives an input key. If the input key is in the set,
the operation removes the key from the set and returns true. Otherwise, the set

remains unchanged and false is returned.

e CONTAINS. A CONTAINS operation receives an input key. If the input key is in the

set, the operation returns true. Otherwise, it returns false.

Our technique is applicable for set data structures that uphold certain conditions.
These conditions are met by many data structures that implement sets, but not by all.
First, we require that each key is stored in a different node. Second, a node’s key should
never change until the node is reclaimed. Third, we require it is possible to traverse the
data structure’s nodes without missing any node that has not been inserted or deleted
during the traversal. This last condition may be foiled by some tree implementations
for which rotations that rebalance the tree do not support this requirement. To keep
our technique wait-free, we also require that traversing the data structure’s nodes can
be done in a wait-free manner. If traversing the nodes is lock-free but not wait-free,
than our technique will yield a lock-free snapshot.

Last, we require a particular two-steps deletion process. Two steps deletion is a
technique commonly used in lock-free data structures to ensure that a node’s outgoing
pointers will not be edited during or after the node’s removal. It was first introduced
by Harris [Har01]. In a two steps deletion, a node is removed from the data structure
in two steps. In the first step the node is marked as logically deleted, and this is the
linearization point of the deletion. Starting from here, the node’s key is no longer in
the set. In the second step, the node is physically disconnected from the data structure.

Given the limitations, our technique particularly suits linked-list and skiplists, and
we focus on these data structures. For these data structures, there is currently no
alternative option for implementing a lock-free snapshot (or an iteration). Considering

performance, our first priority is to inflict minimal loss on the INSERT, DELETE and
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CONTAINS operations. Naturally, the performance of a SNAPSHOT operation is also
important, but we are ready to slightly compromise that in order to help reduce the
overhead of the main three operations.

Another data structure for which a concurrent iterator exists is the CTrie [PBBO12].
The approach taken in the CTrie design is different both in performance considerations
and in the limitations it induces on the data structure. The CTrie introduces a special
i-node connector between each two nodes of the tree. That is, a parent points to an
i-node, and the i-node points to the parent’s child. Such a technique is suitable for data
structures with short paths, such as trees, but is ill-suited for a data structure such as
a linked-list, where duplicating the time a traversal takes is problematic in practice.
Furthermore, the snapshot mechanism of the CTrie relies on the fact that each node has
a single predecessor. It is unclear whether this technique can be modified to support
data structures such as skiplists, that do not uphold that limitation. Finally, the CTrie
allows excellent performance for taking a snapshot, but taking many snapshots severely
hinders the performance of the three other operations.

The dictionary ADT is a natural extension of the set ADT, which associates a value
with each key. The transition from the set ADT to the dictionary ADT is very simple.
In fact, the linked-list and skiplist we extended with our snapshot mechanism, as well
as the CTrie, support the wider dictionary ADT. For simplicity, we keep the discussion
in this chapter limited to the set ADT. However, note that the actual implementations

and measurements are done on data structures that support the dictionary ADT.

5.3 Jayanti’s Single Scanner Snapshot

Let us now review Jayanti’s snapshot algorithm [Jay05] whose basic idea serves the
(more complicated) construction in this chapter. This basic algorithm is limited in
the sense that each thread has an atomic read/write register associated with it. (this
variant is sometimes referred to as a single-writer snapshot, in contrast to a snapshot
object that allows any thread to write to any of the shared registers.) Also, it is a single
scanner algorithm, meaning that it assumes only one single scanner acting at any point
in time, possibly concurrently with many updaters. In [Jay05], Jayanti extends this
basic algorithm into more evolved versions of snapshot objects that support multiple
writers and scanners. But it does not deal with the issue of a READ operation, which
imposes the greatest difficulty for us. In this section we review the basic algorithm, and
later present a data structure snapshot algorithm that implements a READ operation
(as well as eliminating the single-writer and single-scanner limitations), and combines it
with the INSERT, DELETE, and CONTAINS operations.

Jayanti’s snapshot object supports two operations: UPDATE and SCAN. An UPDATE
operation modifies the value of the specific register associated with the updater, and a
SCAN operation returns an atomic view (snapshot) of all the registers. Jayanti uses three

arrays of read/write registers, A[n|, B[n], C[n], initialized to null, and an additional

165



A[n], B[n], C[n]: arrays of read/write Scan()
registers initiated to Null 1. ongoingScan=1

ongoingScan: a bit initiated to 0. 2. Foriinl.n
3 B[i] = NULL
Update(tid, newValue) 4. Foriinl.n
1. A[tid] = newValue 5. Cli] = Al
2. If (ongoingScan==1) 6. ongoingScan=0
3. B[tid]=newValue 7. Foriinl.n
8 If (B[i] != NULL)
9 C[i] = B[i]
10. Array C now holds the Snapshot

Figure 5.1: Jayanti’s single scanner snapshot algorithm

bit, which we denote ongoingScan. This field is initialized to false. Array A may be
intuitively considered the main array with all the registers. Array B is used by threads
that write during a scan to report the new values they wrote. Array C is never read in
the algorithm; it is used to store the snapshot the scanner collects. The algorithm is
depicted in figure 5.1. When thread number k executes an UPDATE, it acts as follows.
First, it writes the new value to A[k]. Second, it reads the ongoingScan boolean. If it is
set to false, then the thread simply exits. If it is set to true, then the thread reports the

new value by also writing it to B[k], and then it exits.

When the scanner wants to collect a snapshot, it first sets the ongoingScan bit to
true. Then, in the second step, it sets the value of each register in the array B to null
(in order to avoid leftovers from previous snapshots). Third, it reads the A registers one
by one and copies them into the C array. Fourth, it sets the ongoingScan to false. This
(fourth) step is the linearization point for the SCAN. At this point array C might not
hold an atomic snapshot yet, since the scanner might have missed some updates that
happened concurrently with the reading of the A registers. To rectify this, the scanner
uses the reports in array B; thus in the final step, it reads the B registers one by one,

and copies any non-null value into C. After that, C holds a proper snapshot.

The linearizability correctness argument is relatively simple [Jay05]. The main point
is that any UPDATE which completes before the linearization point of the SCAN (line 6)
is reflected in the snapshot (either it was read in lines 4-5 or will be read in lines 7-9),
while any UPDATE that begins after the linearization point of the SCAN is not reflected
in the snapshot. The remaining updates are concurrent with each other and with the
scan since they were all active during the linearization point of the SCAN (line 6). This
gives full flexibility to reorder them to comply with the semantics of the snapshot object
ADT. Note that there is no specific code line that can mark the linearization point of

an UPDATE operation.
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5.4 From Single Scanner Snapshot to Multiple Data

Structure Snapshots

Our goal is to add a SNAPSHOT operation to existing lock-free or wait-free data structures.
We are interested in data structures that support the set ADT. Similarly to the scanner
object, to take a snapshot, the entire data structure is scanned first, and reports are
used to adjust the snapshot afterwards. Here too, a snapshot is linearized after the first
scan and before going over the reports. Threads executing the INSERT, the DELETE, or

the CONTAINS operations cooperate with a scanner in the following way.

e Execute the operation as usual.
e Check whether there exists a parallel ongoing scan that has not yet been linearized.

e If the check is answered positively, report the operation.

Two major complications that do not arise with a single scanner snapshot algorithm
arise here: the need to report operations of other threads, and the need to support

multiple concurrent snapshots.

5.4.1 Reporting the Operations of Other Threads

The need to report operations of other threads stems from dependency of operations.
Suppose, for example, that two INSERT operations of the same key (not currently exist
in the data structure) are executed concurrently, and are not concurrent with any
DELETE. One of these operations should succeed and the other should fail. This creates
an implicit order between the two INSERTs. The successful INSERT must be linearized
before the unsuccessful INSERT. In particular, we cannot let the second operation return
before the linearization of the snapshot and still allow the first operation not to be
visible in the snapshot. Therefore, we do not have the complete flexibility of linearizing
operations according to the time they were reported, as in Section 5.3.

To solve this problem, we add a mechanism that allows threads, when necessary, to
report operations executed by other threads. Specifically, in this case, the failing INSERT
operation will first report the previous successful INSERT, and only then exit. This will
ensure that if the second (failing) INSERT operation returns before the linearization of
the snapshot, then the first INSERT operation will be visible in the snapshot. In general,
threads need to report operations of other threads if: (1) the semantics of the ADT
requires that the operation of the other thread be linearized before their own operation,
and (2) there is a danger that the snapshot will not reflect the operation of the other
thread.

5.4.2 Supporting Multiple Snapshots

In the basic snapshot algorithm described in Section 5.3, only a single simultaneous

scanning is allowed. To construct a useful itertor, we need to support multiple simul-
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taneous SNAPSHOT operations. A similar extension was also presented in [Jay05], but
our extension is more complicated because the construction in [Jay05] does not need to
even support a READ, whereas we support INSERT, DELETE, and CONTAINS.

In order to support multiple snapshots, we cannot use the same memory for all of
them. Instead, the data structure will hold a pointer to a special object denoted the
snap-collector. The snap-collector object holds the analogue of both arrays B and C
in the single scanner snapshot, meaning it will hold the “copied” data structure, and
the reports required to “fix” it. The snap-collector will also hold a bit equivalent to

ongoingScan, indicating whether the SNAPSHOT has already been linearized.

5.5 The Data Structure Snapshot Algorithm

The pseudo-code for adding a SNAPSHOT to an applicable underlying data structure is
depicted in Figure 5.2. This algorithm applies as is to the wait-free linked-list (Chapter
2, the lock-free linked-list [Mic02], and the lock-free skiplist [HS0S].

To optimize performance, we allow several concurrent threads that want to iterate
to cooperate in constructing the same snapshot. For this purpose, these threads need
to communicate with each other. Other threads, which might execute other concurrent
operations, also need to communicate with the snapshot threads and forward to them
reports regarding operations which the snapshot threads might have missed. This
communication will be coordinated using a snap-collector object.

The snap-collector object is thus a crucial building block of the snapshot algorithm.
During the presentation of the snapshot algorithm, we will gradually present the interface
the snap-collector should support. The implementation of the snap-collector object that
supports the required interface is deferred to Section 5.6. All snap-collector operations
are implemented in a wait-free manner so that it can work with wait-free and lock-free
snapshot algorithms.

To integrate a snapshot support, the data structure holds a pointer, denoted PSC, to
a snap-collector object. The PSC is initialized during the initialization of the structure
to point to a dummy snap-collector object. When a thread begins to take a (new)
snapshot of the data structure, it allocates and initializes a new snap-collector object.
Then, it attempts to change the PSC to point to this object using a compare-and-swap
(CAS) operation. Concurrent scanners may use the same snap-collector object, if they
arrive early enough to be certain they have not missed the linearization point of the
SNAPSHOT.

5.5.1 The Reporting Mechanism

A thread executing INSERT, DELETE or CONTAINS operation might need to report its
operation to maintain linearizability, if a snapshot is being concurrently taken. It firsts

executes the operation as usual. Then it checks the snap-collector object, using the
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later’s IsActive method, to see whether a concurrent snapshot is in progress. If so,
and in case forwarding a report is needed, it will use the snap-collector Report method.
The initial dummy snap-collector object should always return false when the IsActive
method is invoked.

There are two types of report. An insert-report is used to report a node has been
inserted into the data structure, and a delete-report used to report a removal. A report
consists of a pointer to a node, and an indication which type of report it is. Using
a pointer to a node, instead of a copy of it, is essential for correctness (and is also
space efficient). It allows a scanning thread to tell the difference between a relevant
delete-report to a node it observed, and a belated delete-report to a node with the same

key which was removed long ago.

Reporting a Delete Operation

It would have been both simple and elegant to allow a thread to completely execute
its operation, and only then make a report if necessary. Such is the case in all of
Jayanti’s snapshot algorithms presented in [Jay05]. Unfortunately, in the case of a
DELETE operation, such a complete separation between the “normal” operation and the
submission of the report is impossible because of operation dependence. The following
example illustrates this point.

Suppose a thread S starts taking a snapshot while a certain key x is in the data
structure. Now, another thread 77 starts the operation DELETE(z) and a third thread
T concurrently starts the operation CONTAINS(x). Suppose T completes the operation
and removes x, but the scanner missed this development because it already traversed =,
and suppose that now 77 is stalled and does not get to reporting the deletion. Now T3
sees that there is no x in the data structure, and is about to return false and complete
the CONTAINS(z) operation. Note that the CONTAINS operation must linearize before it
completes, whereas the snapshot has not yet linearized, so the snapshot must reflect
the fact that x is not in the data structure anymore. Therefore, to make the algorithm
linearizable, we must let 7% first report the deletion of x (this is similarly to the scenario
discussed in Section 5.4.1.). However, it cannot do so: to report that a node has been
deleted, a pointer to that node is required, but such a pointer is no longer available,
since = has been removed.

We solve this problem by exploiting the delete mechanism of the linked-list and
skiplist (and other lock-free data structures as well). As first suggested by Harris in
[Har01], a node is deleted in two steps. First, the node is marked. A marked node is
physically in the data structure, and still enables traversing threads to use it in order to
traverse the list, but it is considered logically deleted. Second, the node is physically
removed from the list. The linearization of the DELETE operation is in the first step.
We will exploit this mechanism by reporting the deletion between these two steps (lines
11-13 in Figure 5.2).
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Any thread that is about to physically remove a marked node will first report a
deletion of that node (given a snapshot is concurrently being taken). This way, the
report is appropriately executed after the linearization of the DELETE operation. Yet,
if a node is no longer physically in the data structure, it is guaranteed to have been
reported as deleted (if necessary). Turning back to the previous scenario, if T, sees the
marked node of z, it will be able to report it. If it doesn’t, then it can safely return.
The deletion of x has already been reported.

Note that reports of DELETE operations are thus created not only inside a DELETE
operation, but also in any occasion where the original algorithm physically removes a
node. For example, Harris’s algorithm may physically remove a node inside the search
method called by the INSERT operation as well. Such removals are also preceded with a

report (e.g., line 17 in Figure 5.2).

Reporting an Insert Operation

After inserting a node, the thread that inserted it will report it. To deal with operation
dependence, a CONTAINS method that finds a node will report it as inserted before
returning, to make sure it did not return prior to the linearization of the corresponding
insertion. Furthermore, an INSERT operation that fails because there is already a node
N with the same key in the data structure will also report the insertion of node N
before returning, for similar reasons.

However, there is one additional potential problem: an unnecessary report might
cause the SNAPSHOT to see a node that has already been deleted. Consider the following
scenario. Thread T} starts INSERT(3). It successfully inserts the node, but gets stalled
before checking whether it should report it (between lines 22 and 23). Now thread T5
starts a DELETE(3) operation. It marks the node, checks to see whether there is an
ongoing SNAPSHOT, and since there isn’t, continues without reporting and physically
removes the node. Now thread S starts SNAPSHOT, announces it is scanning the
structure, and starts scanning it. 7T} regains control, checks to see whether a report
is necessary, and reports the insertion of the 3. The report is of course unnecessary,
since the node was inserted before S started scanning the structure, but 77 does not
know that. T5 did see in time that no report is necessary, and that is why it did not
report the deletion. The trouble is that since the deletion is not reported, reporting
the insertion is not only unnecessary, but also harmful: it causes S to see the reported
node even though it was removed by 75 before the SNAPSHOT has begun, contradicting
linearizability.

We solve this problem by exploiting again the fact that a node is marked prior to

its deletion. An insertion will be reported in the following manner (lines 31-35).
e Read PSC, and record a private pointer to the snap-collector object, SC.

e Check whether there is an ongoing snapshot, by calling SC.IsActive().

170



e If not, return. If there is, check whether the node you are about to report is

marked.
e If it is, return without reporting. If it is not marked, then report it.

The above scheme solves the problem of harmfully reporting an insertion. If the
node was unmarked after the relevant SNAPSHOT has already started, then a later delete
operation that still takes place before the linearization of the SNAPSHOT will see that it
must report the node as deleted. There is, however, no danger of omitting a necessary
report; if a node has been deleted, there is no need to report its insertion. If the delete
occurred before the linearization of the SNAPSHOT, then the snapshot does not include
the node. If the delete occurred after the linearization of the SNAPSHOT, then the
insert execution must be still ongoing after the linearization of the SNAPSHOT as well
(since it had a chance to see the node is marked), and therefore it is possible to set the

linearization of the insertion after the SNAPSHOT as well.

5.5.2 Performing a Data Structure Snapshot

A thread that desires to perform a SNAPSHOT first reads the PSC pointer and checks
whether the previous SNAPSHOT has already been linearized by calling the IsActive
method (line 53). If the previous SNAPSHOT has already been linearized, then it cannot
use the same snapshot, and it will allocate a new snap-collector. After allocating it, it
will attempt to make the global PSC pointer point to it using a CAS (line 56). Even if
the CAS fails, the thread can continue by taking the new value pointed by the PSC
pointer, because the linearization point of the new snap-collector is known not to have
occurred before the thread started its SNAPSHOT operation. Therefore, this CAS doesn’t
interfere with wait-freedom, because the thread can continue even if the CAS fails.

A snapshot of the data structure is essentially the set of nodes present in it. The
scanning thread scans the data structure, and uses the snap-collector to add a pointer
to each node it sees along the way (lines 62-68), as long as this node is not marked as
logically deleted. The scanning thread calls the AddNode method of the snap-collector
for this purpose.

When the scanning thread finishes going over all the nodes, it is time to linearize the
snapshot. It calls the Deactivate method in the snap-collector for this purpose (this is
similar to setting ongoingScan to zero in Jayanti’s algorithm). Afterwards, further calls
to the IsActive method will return false. An INSERT, DELETE, or CONTAINS operation
that will start after the deactivation will not report to this snap-collector object. If a
new SNAPSHOT starts, it is no longer able to use this snap-collector, and so it allocates
a new one.

To ensure proper linearization in the presence of multiple scanning threads, some
further synchronization is required between them. A subtle implied constraint is that

all threads that scan concurrently and use the same snap collector object must decide
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on the same snapshot view. This is needed because they all share the same linearization
point, which is the (first) time the Deactivate method of the snap-collector has been
called.

To ensure the snapshot is consistent for all threads we enforce the following. First,
before a thread calls the Deactivate method, it calls the BlockFurtherNodes (line
66). The snap-collector ensures that after a call of BlockFurtherNodes returns, further
invocations of AddNode cannot install a new pointer, or have any other effect. Second,
before the first scanning thread starts putting together the snapshot according to the
collected nodes and reports, it blocks any further reports from being added to the
snap-collector. This is achieved by invoking the BlockFurtherReports method (line
69). From this point on, the snap-collector is in a read-only mode.

Next, the scanning thread assembles the snapshot from the nodes and reports stored
in the snap-collector. It reads them using the ReadPointers and ReadReports methods.
A node is in the snapshot iff: 1) it is among the nodes added to the snap-collector
OR there is a report indicating its insertion AND 2) there is no report indicating its
deletion.

Calculating the snapshot according to these rules can be done efficiently if the nodes
and reports in the snap-collector are sorted first. As explained in Section 5.6.1, the
snap-collector is optimized so that it holds the nodes sorted throughout the execution,
and thus sorting them requires no additional cost. The reports, however, still need to
be sorted. Another part of the cost of taking a snapshot is that BlockFurtherReports
is called for every thread in the system. Thus, the overall complexity of a snapshot
is O(n + r*log(r) 4+ t), where n is the number of different nodes viewed during the
node-traversal phase, r is the number of reports, and t is the number of threads. This
complexity analysis assumes that while traversing the nodes, finding the successor of
each node (line 68) is done in O(1) steps. If this takes longer, then the complexity could

potentially be worse.

5.5.3 Memory Reclamation

Throughout the algorithm description, the existence of an automatic garbage collection is
assumed. In this subsection, the adaptation of the technique into environments without
GC is briefly discussed. General techniques for reclaiming deleted nodes in lock-free data
structures are discussed in literature, most notably pass the buck [HLMMO05], hazard
pointers, [Mic04] and the anchor technique [BKP13].

The approach used by all of these techniques is as follows. When a thread physically
deletes a node, it becomes the owner of that node, and is responsible for freeing its
memory. However, for safety, the memory must not be reclaimed while another thread
might still have a pointer to the deleted node. For this purpose, while threads are
traversing the data structure, they dynamically announce (in a designated location)

which nodes are potentially being accessed by them. In the hazard pointers and pass the
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Shared data: pointer PSC to snap-collector.

1.

3
4
5.
6.
7

Initialize()
initialize the underlying data structure
as usual.
PSC = (address of) NewSnapCollector()
PSC->Deactivate()

Delete(int key)

search for a node with required key,

but before removing a marked node,

first call ReportDelete()

if no node with the key found

return false

. else //found a victim node with the key
mark the victim node
ReportDelete(pointer to victim)
physically remove the victim node
return true

. Insert(Node n)
search for the place to insert the node
n as usual, but before removing
a marked node, first call ReportDelete()
if n.key is already present in the data
structure on a different node h
Reportinsert(pointer to h)
return false
else
Insert n into the data structure
Reportinsert(pointer to n)
return true

. ReportDelete(Node *victim)

. SC = (dereference) PSC

. if (SC.IsActive())
SC.Report(victim, DELETED, tid)

. Reportinsert(Node* newNode)
SC = (dereference) PSC
if (SC.IsActive())
if (newNode is not marked)
Report(newNode, INSERTED, tid)

37

38.
39.
41.
42.
43,
44,
45,

46

47.
48.
49.

51

. Contains(int key)
search for a node n with the key
if not found then return false
else if n is marked
ReportDelete(pointer to n)
return false
else
Reportinsert(pointer to n)
return true

. Snapshot()

SC = AcquireSnapCollector()
CollectSnapshot(SC)
ReconstructUsingReports(SC)

. AcquireSnapCollector()
SC = (dereference) PSC
if (SC.IsActive())
return SC
newSC = NewSnapCollector()
CAS(PSC, (reference of)SC, (ref) newSC)
newSC = (dereference) PSC
return newSC

. CollectSnapshot(SC)
Node curr = head of structure
while (SC.IsActive())
if (curr is not marked)
SC.AddNode(pointer to curr)
if (curr.next is null) // curr is the last
SC.BlockFurtherNodes()
SC.Deactivate()
curr = curr.next
fori=1... max_tid
SC.BlockFurtherReports(i)

. ReconstructUsingReports(SC)
. nodes = SC.ReadPointers()
. reports = SC.ReadReports()
. anode N belong to the snapshot iff:
((N has a reference in nodes
OR N has an INSERTED report)
AND
(N does not have a DELETED report)
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buck techniques, the specific nodes that might be accessed are reported explicitly. In
the anchor technique, a more general information about the region of the data structure
currently being accessed is written.

Whichever technique is used, the owner of the deletion operation uses the announce-
ments to determine when a node can be safely freed. All of these techniques, with slight
modifications, are applicable when applying our snapshot algorithm as well. When an
owner of a node wants to physically free its memory, it should first establish that no
other thread might currently access the node (as is already described in [HLMMO5],
[Mic04] and [BKP13]), but then, it should also check that the node cannot be present
in any snapshot that is still accessible by a thread.

To achieve the latter, each snap-collector object is associated with a counter. When
a thread allocates a new snap-collector object, and before attempting a CAS instruction
to atomically make this snap-collector object accessible via the PSC, it sets the snap-
collector’s counter to a value higher by one than the snap-collector currently pointed by
the PSC. In addition, there will be another array with a slot for each thread, where each
thread declares the number of the oldest snap-collector object the thread has access to.

When a node is deleted, the owner of that node checks the number of the snap-
collector currently pointed by the PSC. Once all threads advance past that number, the
node cannot be a part of any active snapshot, and it can safely be freed. Some care
is needed regarding the reclamation of the memory of the snap-collector object itself.
Each thread should use a hazard pointer before it can safely access the snap-collector
via the PSC. The thread that originally allocated a snap-collector can safely free it
once 1) all threads declare in the designated array that they are no longer using this
snap-collector, and 2) no thread has a hazard pointer pointing to that snap-collector.

The additional hazard pointer for the PSC is required to prevent races in which the
thread that deallocates the snap-collector missed the fact that it is still needed. While
the implementation is tedious, it does not bring up challenging difficulties beyond those
already discussed in [HLMMO5], [Mic04] and [BKP13].

5.6 The Snap-Collector Object

One can think of the snap-collector object as holding a list of node pointers and a list
of reports. The term install refers to the act of adding something to these lists. Thus,
the snap-collector enables the scanning threads to install pointers, and the modifying
threads to install reports. It supports concurrent operations, it is linearizable, and it
must be wait-free since it is designed as a building block for wait-free and lock-free
algorithms.

The definition of the snap-collector object follows. To relate the new algorithm to
the basic one, we also mention for each method (in italics), its analogue in the single

scanner snapshot.
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AddNode(Node* node). Analogue to copying a register into array C. If the Block-
FurtherNodes() method (see below) has previously been executed this method
does nothing. Otherwise it installs a pointer to the given node. Has no return

value.

Report(Report* report, int tid). Analogue to reporting a new value in array B. If
the BlockFurtherReports(int tid) (see below) has previously been executed with
the same tid, this method does nothing. Otherwise it installs the given report.

Has no return value.

IsActive(). Analogue to reading the ongoingScan bit. Returns true if the Deacti-

vate() method has not yet been executed, and false otherwise.

BlockFurtherNodes(). No analogue. Required to synchronize between multiple
scanners. After this method is executed at least once, any further calls to AddNode

will do nothing. Has no return value.

Deactivate(). Analogue to setting ongoingScan to false. After this method is
executed at least once, any call to IsActive returns false, whereas before this

method is executed for the first time, IsActive returns true. Has no return value.

BlockFurtherReports(int tid). No analogue. Required to synchronize between multi-
ple scanners. After this method is executed, any further calls to Report with the

same tid will do nothing. Has no return value.

ReadPointers(). No analogue. Returns a list of all the pointers installed in the
snap-collector object (via the AddNode method) before BlockFurtherNodes was

executed.

ReadReports(). No analogue. Returns a list of all the reports installed in the
snap-collector object (via the Report method).

Some methods of the snap-collector receive an id as a parameter, which we refer

to as tid (Thread Identifier). IDs are supposed to be known in advance, and thus this

implicitly assumes prior knowledge of the number of active threads in the system. This

requirement is not really a mandatory assumption in our algorithm. It is possible to

run the algorithm and allow several threads (or even all of them) to share the same id.

The only change required is to ensure the snap-collector implementation would work

correctly when the REPORT method is called concurrently from several threads which

use the same id. This could easily be done by using a wait-free data structure to hold

the reports (for example, the wait-free queue of [KP11] would suit the task well), but

it would cause a slight degradation in performance, comparing to the implementation

suggested in Subsection 5.6.1.
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Shared data: 23. IsActive()

Reportltem[] ReportHeads 24. return Active

Reportitem[] ReportTails

NodeWrapperPointer NodesHead 25. BlockFurtherNodes()

Bit Active 26. NodeWrapper blk=NewNodeWrapper()
27. blk.Node = new sentinel (MAX_VALUE)

1. Initialize() 28. blk.Next = Last

2. Active = true 29. NodesHead= blk

3. NodesHead = new sentinel

4. fori=1.. max_tid 30. Deactivate()

5 ReportHeads[i] = new sentinel 31. Active = false

6 ReportTails[i] = ReportHeads][i]
32. BlockFurtherReports(int tid)

7. AddNode (Node n) 33. Reportltem tail = ReportTails[tid]

8. Last = NodesHead 34. CAS(tail.next, null, new sentinel)

9.  If (Last.Node.key >= key)

10. Return Last.Node 35 ReadPointers()

11. NewWrapper = NewNodeWrapper() 36. Return a linked-list starting from

12. NewWrapper.Node =n NodesHead

13. NewWrapper.Next = Last
13. if (CAS(NodeHead, Last, NewWrapper) | 37. ReadReports()

14. return n 38. Return a concatenation of
15. else all the lists of Reportltems
16. return NodesHead.Node

=

7. Report (Report r, int tid)

18. Reportltem tail = ReportTails[tid]

19. Reportltem nltem = new Reportltem()
20. nltem.report=r

21. If (CAS(tail.next,null, nltem))

22. ReportTails[tid] = nltem

Figure 5.3: An Implementation of the Snap-Collector

5.6.1 The Snap-Collector Implementation

The implementation of the snap-collector object is orthogonal to the SNAPSHOT algorithm,
but different implementations can affect its performance dramatically. This section
briefly explains the particulars of the implementation used in this work. The pseudo

code for the snap-collector is given in Figure 5.3.

Our proposed implementation of the snap-collector slightly changes the ADT seman-
tics of the AddNode method. This is an optimization, and the motivation for this is

given in the paragraph about the AddNode method.

The implementation of the snap-collector object maintains a separate linked-list
of reports for each thread. Every such linked list holds Reportltems, each of which is
a report and a pointer to the next Reportltem. The snap-collector also maintains a
single linked-list of pointers to the nodes of the data structure. This is a linked list of
Node WrapperPointers, each of which is a pointer to a node and a pointer to the next
NodeWrapperPointer. Finally, the snap-collector holds one bit field indicating whether

it is currently active (not yet deactivated).
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IsActive, Deactivate. The IsActive method is implemented simply by reading a bit.
The Deactivate method simply writes false to this bit.

AddReport. When a thread needs to add a report using the AddReport method, it
adds it to the end of its local linked-list dedicated to this thread’s reports. Due to the
locality of this list its implementation is fast, which is important since it is used also
by threads that are not attempting to take a snapshot of the data structure. Thus, it
facilitates low overhead for threads that only update the data structure.

Although no other thread may add a report to the thread local linked- list, a report
is still added via a CAS, and not a simple write. This is to allow the scanning threads
to block further reports in the BlockFurtherReports method. However, when a thread
adds a report, it does not need to check whether the CAS succeeded. Each thread might
only fail once in adding a report for every new SNAPSHOT. After failing such a CAS,
it will hold that the IsActive method will already return false for this snapshot and

therefore the thread will not even try to add another report.

BlockFurtherReports. This method goes to the local linked-list of the thread whose
future reports are to be blocked, and attempts by a CAS to add a special dummy report
at the end of it to block further addition of reports. This method should only be invoked
after the execution of the Deactivate method is completed. The success of this CAS
need not be checked. If the CAS succeeds, no further reports can be added to this list,
because a thread will never add a report after a dummy. If the CAS fails, then either
another scanning thread has added a dummy, or a report has just been added. The first
case guarantees blocking further repots, but even in the latter case, no further reports
can now be added to this list, because the thread that just added this report will see

that the snap-collector is inactive and will not attempt to add another report.

AddNode. One possible approach to implement AddNode is to use a lock-free stack.
To install a pointer to a node, a thread reads the head pointer. It attempts by a CAS
to add its node after the last node. If it fails, it retries.

Used naively, this approach is not wait-free as the thread may repeatedly fail to
add its node and make progress. We use a simple optimization that slightly alters the
semantics of the AddNode method. To this end, we modify AddNode to expect nodes
to be added to the snapshot view in an ascending order of keys. The AddNode method
will (intentionally) fail to add any node whose key is smaller than or equal to the key
of the last node added to the snap-collector. When such a failure happens, AddNode
returns a pointer to the data structure node that was last added to the snap-collector
view of the snapshot. This way, a scanning thread that joins in after a lot of pointers
have already been installed, simply jumps to the current location. This also reduces

the number of pointers in the snap-collector object to reflect only the view of a single
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sequential traverse, avoiding unnecessary duplications. But most importantly, it allows
wait-freedom.

Similarly to the naive approach of using a lock-free stack, the snap-collector object
holds the head pointer to the stack. To push a pointer to a node that holds the key k,
a thread reads the head pointer. If the head node holds a key greater than or equal to
k, it doesn’t add the node and simply returns the head node. If the CAS to change the
head pointer fails, then this means that there is another thread that has just inserted a
new node to the snapshot view. In this case, this new node is either the same node we
are trying to add or a larger one. Thus, the thread can safely returns the new head,
again, without adding the new node.

This optimization serves three purposes: it allows new scanning threads to jumps to
the current location; it makes the AddNode method fast and wait-free; and it keeps
the list of pointers to nodes sorted by their keys, which then allows a simple iteration
over the keys in the snapshot. Note that the CollectSnapshot method in Figure 5.2 also
needs to be modified in order to use this optimization: it must use the returned value

of AddNode, and assign it to curr.

BlockFurtherNodes. This method sets the head pointer of the nodes list to point
to a special dummy with a key set to the maximum value. Combined with our special
implementation of AddNode, further calls to AddNode will then read the head’s special

maximum value and will not be able to add additional nodes.

ReadPointers, ReadReports. These methods simply return a list with the pointers
/ reports stored in the snap-collector. They are called only after the BlockFurtherNodes,
Deactivate, and BlockFurtherReports methods have all been completed, thus the lists

of pointers and reports in the snap-collector are immutable at this point.

5.6.2 Some Simple Optimizations

The implementation used for the performance measurements also includes the following

two simple optimizations.

Elimination of many of the reports. An additional bit was added to each node,
initialized to zero. When a thread successfully inserts a node, and after reporting it if
necessary, this bit is set to 1. Future INSERT operations that fail due to this node, and
future CONTAINS operations that successfully find this node, first check to see if this bit
is set. If so, then they know that this node has been reported, and therefore, there is no
need to report the node’s insertion.

If a large portion of the operations are CONTAINS operations, as is the case in typical
data structure usage, this optimization avoids a significant portion of the reports. This

is because in such cases most of the reports are the result of successful CONTAINS
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operations. However, note that this optimization is not always recommended, as it adds

overhead to the INSERT operations even if SNAPSHOT is never actually called.

Avoidance of repeated sorting. After a single thread has finished sorting the
reports, it posts a pointer to a sorted list of the reports, and saves the time it would

take other threads to sort them as well, if they haven’t yet started to do so.

5.7 Proof

In this section we prove that the construction presented in this chapter is linearizable.
Specifically, we show that adding the iterator to Harris’s linked-list is linearizable, and
to make everything concrete, we assume the specific implementation of a lock free
linked-list given in [HSO08]. This implementation is a variation of the linked-list of Maged
Michael [Mic02], who based his implementation on Harris’s algorithm [HarO1]. In what
follows, we denote the algorithm that extends Harris’s linked-list with support for the
SNAPSHOT operations as presented in this chapter as the iterable list algorithm. Similar
claims can be made for an iterable skiplist.

For simplicity, we provide the proof assuming a single scanner, that is, assuming
that no two SNAPSHOT operations are executed concurrently. Again, all the claims hold
for the case of multiple scanners as well, but some of the arguments and definitions
need to be adjusted for this case. The necessary adjustments to the proof for the case
of multiple scanners are sketched in Subsection 5.7.6.

We assume that a linearizable snap-collector is given as a basic block. We discuss
the linearizability of the snap-collector separately in Subsection 5.7.7. We prove the
correctness of the snapshot algorithm in Figure 5.2, which uses such a snap-collector
as a building block. We use the linearizability of Harris’s linked-list. We rely on
characterizations of this linearizability, that are established in literature. In particular,
we use the fact that the linearization point of a successful DELETE operation is the CAS
that marks the node as logically deleted, and that the linearization point of a successful
INSERT operation is the CAS that physically inserts the (new) node into the list.

Our task is to prove that the iterable list algorithm is linearizable. To do that, we
will show that for each execution F of the iterable list algorithm, there is a total order of
the operations of the iterable list, such that sequential consistency (operations’ results
are consistent with the total order) and real-time consistency (operations that do not

overlap retain their original order) hold.

Computation Model. We use the standard shared-memory model. Each compu-
tation step is either a primitive step(an atomic read, write, or compare-and-swap of
a register), possibly preceded with some internal computation, or an execution of a

compound step of the (linearizable) snap-collector. An execution is a sequence of
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computation steps. Each step is characterized by the thread that executed it, and the

atomic primitive step or snap-collector operation.

Wait-Freedom. In our snapshot algorithm (Figure 5.2), the loop in lines 62-68
traverses the nodes of the data structure. As mentioned in Section 5.2, to maintain
wait-freedom, this is needed to be possible in a wait-free manner. Otherwise, our
technique is lock-free, and not wait-free. Other than that, wait-freedom (assuming
wait-freedom of the underlying data structure) is trivial. The loop in lines 69-70 runs a
constant number of iterations. The method in lines 72-76 runs after the snap-collector

is in a read-only mode. Other methods do not include loops.

5.7.1 Overview

As a first step of the proof, we strip an execution of the iterable list algorithm and
retain an execution of the underlying (Harris’s) linked-list algorithm. This execution
is linearizable, thus there is a total order of its operations that satisfies sequential
consistency and real-time consistency. We identify this execution, and its matching
total order (which we denote base-order) in Subsection 5.7.2.

In addition, the same subsection defines several important terms used in the proof.
Most importantly, visible and non-visible operations are defined. Intuitively, an operation
is visible by a specific SNAPSHOT if the operation changed the list (e.g., entered a new
node into the list) and occurred early enough to influence the snapshot. For example,
an DELETE operation that deleted a node from the list before the snapshot has begun is
visible by that snapshot.

Other important concepts include quiet operations, and the deactivation point
of a SNAPSHOT operation. Quiet operations are operations that do not change the
underlying set, such as CONTAINS operations, and unsuccessful INSERTS and DELETES.
The deactivation point of a SNAPSHOT operation, is when the DEACTIVATE method of
the snap-collector is executed.

Using these concepts, we can present an algorithm for constructing the whole-order
for a given execution of the iterable list. Whole-order is the total order that satisfies both
sequential and real-time consistency. Whole-order is built from the base-order, inserting
the SNAPSHOT operations one by one. However, during the construction of whole-order,
the order of (non-snapshot) operations is also slightly adjusted. The construction of
whole-order is described Subsection 5.7.3

Before proving that whole-order indeed satisfies sequential and real-time consistency,
we need to establish several claims about visibility. This is done in Subsection 5.7.4. For
example, we claim that visibility satisfies monotonicity, in the sense that if an operation
is visible by a snapshot, then prior operations with the same key are also visible. Most
importantly, we show that a snapshot indeed returns what is intuitively visible to it.

That is, the result returned by a snapshot is consistent with a sequential execution
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in which all the visible operations occur before the snapshot, and all the non-visible
operations occur after it.

The final step is to show that whole-order satisfies sequential and real-time consis-
tency. This is done in Subsection 5.7.5, relying on the visibility properties established
in Subsection 5.7.4.

5.7.2 Definitions

This subsection identifies and defines the key concepts of our proof. Mainly, for each
execution FE of the iterable list, we identify an underlying execution of Harris’s linked-list
Ep, and the linearization of Ep, denoted Baser. We classify operations to quiet (such
as CONTAINS) and non-quiet (such as a DELETE that successfully removed a node from
the list). We give a specific name for each operation. (Operationy, ; is the jth operation
executed with key k). Finally, we identify operations that are visible for a specific
snapshot, which intuitively, are the operations that affect the snapshot result.

Let F be an execution of the iterable list algorithm. We examine E as consisting
of execution steps that originate from Harris’s linked-list algorithm, plus some extra
steps that originate from our snapshot algorithm. The extra steps include all the steps
executed by a thread inside the SNAPSHOT operations, all the steps that are operations
of the snap-collector, reading of the PSC field (the pointer to the snap-collector), and
reading the mark bit of a node inside the ReportInsert method (line 34 Figure 5.2). Let
E'1, be the subset of the computation steps of E that includes all the steps originating
from Harris’s linked-list algorithm, but none of the extra steps mentioned above. The
following observation states that this sub-execution is simply an execution of Harris’s
linked-list.

Observation 5.7.1. Ej, is an execution of Harris’s linked-list.

Since E, is an execution of Harris’s linked-list, and Harris’s linked-list is a linearizable
algorithm, then there is a total order on the linked-list operations that satisfies the
linearizability requirements (sequential consistency and real-time consistency). In what

follows we formally define this order.

Definition 5.7.2. (Base-Order, Baseg.) Let E be an execution of the iterable-list
algorithm. We define the base-order of E, denoted Baseg, to be a total order on the
operations of Ey, that satisfies the linearizability requirements, according to the following

linearization points.

e A successful INSERT is linearized at the step that physically inserts the (new) node
into the list (that is, the step that makes the node reachable from the list’s head).

e A successful DELETE is linearized at the step that marks the next pointer of the
node that is deleted. (that is, the step of the logical delete).
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e An unsuccessful INSERT is linearized at the (last) step that reads the next pointer
of a node with the same key as the input key of the unsuccessful INSERT

e An unsuccessful DELETE is linearized at the (last) step that reads the next
pointer of the node with the greatest key that is still smaller than the key of the

unsuccessful DELETE.

e A successful CONTAINS is linearized at the (last) step that reads the next pointer
of the node with the same key as the input key of the CONTAINS.

e For an unsuccessful CONTAINS there are two possibilities for its linearization point.
If a node with the same key as the key of the contains was read, and it was found
to be logically deleted, then the linearization point of the CONTAINS is the step the
logically deleted that node (which was executed by a different thread). If no node
with the same key as the key of the contains was read, then the linearization point
of the contains is at the (last) step that reads the next pointer of the node with
the greatest key that is still smaller than the key of the unsuccessful CONTAINS.

Remark. Note that unsuccessful INSERT and successful CONTAINS are linearized upon
reading the next pointer of a node with the same key, since that is where the mark is

located, indicating the node is not logically deleted.

Next, we identify the operations that affect the state of the linked-list. These are
operations that successfully insert or remove a node from the list. Specifically, these are
INSERT and DELETE operations that return true. Other operations are quiet operations,

as they do not affect the state of the linked-list, and the results of other operations.

Definition 5.7.3. (Quiet, Non-Quiet Operations). We call an INSERT or DELETE op-
erations that return true non-quiet operations. Other operations are called quiet

operations.

For a non-quiet operation, we also define the operation node.

Definition 5.7.4. (Operation Node.) For a successful INSERT operation, the operation
node is the new node inserted into the list in the operation’s execution. For a successful
DELETE operation, the operation node is the node removed from the list. (For other

operations, the operation node is undefined.)

Definition 5.7.5. (Operation Key.) For an INSERT, DELETE or CONTAINS operation,

the operation key is the key given as an input parameter to the operation.

Definition 5.7.6. (Operation Owner, Scanning Thread.) The operation owner of an
operation is the thread that invoked and executed the operation. For a SNAPSHOT

operation, we refer to the owner as the scanning thread.
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Definition 5.7.7. (Matching Operations.) An INSERT and a DELETE operations that

have the same operation node are called matching operations.

It is useful to note that each successful DELETE operation has exactly one matching
INSERT operation. This is the operation that inserted the node that is removed by
the delete. In the base-order, the matching of a DELETE operation will always be the
non-quiet operation of the same key that comes before it. Fix any key k, and consider
the non-quiet operations with key k£ according to their base-order, they will be matching,
such that each odd position contains an INSERT, and each successive even position
has its matching DELETE. The last non-quiet operation may be an insert without a
matching delete.

A key technique we use in the proof is to divide the linked-list operations into disjoint
sets according to their operation key. In particular, it is important to realize that an
operation’s result depends only on the (non-quiet) operations with the same input key.
Thus, reordering the base-order of the operations, but without changing the relative
order of operations with the same key, will not violate sequential consistency. That
is, each operation will still return a result consistent with the sequential execution. In
Subsection 5.7.3 we indeed alter the base-order in such a way, but for now we need the

following definition.

Definition 5.7.8. (Operationy, j, Node(Operation)y ;.) Operationy, ; is the jth operation
executed with key k in the base-order. If Operationy, ; is non-quiet, then Node(Oper-

ation ), j is its operation node.

Definition 5.7.9. (The critical point of a (non-quiet) operation.) The critical point of
a non-quiet operation is the linearization point of the non-quiet operation. Namely,
The critical point of a (successful) delete is the CAS that marks the operation node as
logically deleted. The critical point of a (successful) insert is the CAS that physically
inserts the operation node into the list. (That is, the CAS that causes the operation
node to be reachable from the list head.)

Remark. A quiet operation does not have a critical point.

We now move on to discuss snapshots. To simplify the discussion, we start by
assuming that snapshots occur one at a time. Namely, there are no simultaneous
concurrent snapshots. In this case, we can safely refer to snapshot number ¢ in the
execution F, where ¢ is a natural number that is smaller than or equal to the total
number of SNAPSHOT operations in E.

For each snapshot, we consider four different phases: activation, node-traversal,
deactivation, and wrap-up. The activation consists of acquiring a new snap-collector
object, and making the PSC field point to it. After the activation is complete and until
deactivation, any thread that reads the PSC and then tests to see if the snapshot is

active will see that it is.
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Immediately after the activation, the node-traversal starts. In this phase, the
scanning thread follows the pointers of the nodes in the list starting from the head until
reaching the tail. When reading a new node, the scanning thread first checks to see if it
is marked as logically deleted. If it isn’t, the scanning thread installs a pointer to this
node in the snap-collector, before reading the next field and moving to the next node.
We know from the properties of Harris’s linked-list, that during the node-traversal, the
scanning thread must see each node that belongs to the list during the entire traversal
phase, and can not see a node that does not belong to the list throughout the entire
traversal phase.

The deactivation consists of calling the DEACTIVATE method of the snap-collector.
We assume the deactivation is atomic, and refer to the deactivation point as an atomic
point in time. This assumption is legitimate because linearizability is compositional
[HW90, HS08]. Given that the snap-collector object is linearizable, we can prove the
linearization of an algorithm that uses the snap-collector, while assuming that its
operations are atomic.

The wrap-up of the SNAPSHOT consists of blocking further reports, collecting the
reports and constructing a snapshot. We consider all these operations as a single phase,
because our reasoning does not require partitioning this phase further to discuss each

part separately.

Definition 5.7.10. (The Deactivation Point of Snapshot i.) The deactivation point of
Snapshot i, is the (first) point in time that the DEACTIVATE method of the corresponding

snap-collector is executed. We assume this point to be an atomic step.

In what follows, we define visible and non-visible operations by Snapshot i. Both
visible and non-visible operations are non-quiet operations. Intuitively, an operation
is visible by snapshot i, if it influenced the snapshot, in the sense that the snapshot’s
result reflects that operation.

Loosely speaking, there are two scenarios that make an operation visible by a
snapshot. One is that during the node-traversal phase, the scanning thread observes
the list as already reflecting the result of the operation. The other is that the operation

is reported (successfully, that is, before reports are blocked) into the snap-collector.

Definition 5.7.11. (Visible Operations by Snapshot i.) We say that a successful
DELETE(k), which removes a node N from the list, is visible by Snapshot i, if at

least one of the following holds.

1. N is marked as logically deleted before the beginning of the node-traversal phase
of Snapshot 1.

2. The deletion of N is (successfully) reported in the snap-collector associated with

Snapshot 1.
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3. During the node-traversal step of Snapshot ¢, the scanning thread reads node N,
and finds it logically deleted, and an insertion of N is not (successfully) reported

in the snap-collector associated with Snapshot .

We say that a successful INSERT(k), which inserted the node N into the list, is visible
by Snapshot i, if at least one of the following holds.

1. N is (physically) inserted to the list before the beginning of the node-traversal
phase of Snapshot i

2. The insertion of N is (successfully) reported to the snap-collector associated with

Snapshot .
3. During the node-traversal step of Snapshot i, the scanning thread reads node N.

4. The deletion of N is (successfully) reported in the snap-collector associated with

Snapshot 1.

Let us provide some intuition for why Definition 5.7.11 makes sense. If a node is
logically deleted or inserted prior to the beginning of the node-traversal phase, then the
scanning thread notices it during the node-traversal. Next, if an operation is reported,
then the scanning thread knows about it by examining the reports. Item number 4
may seem a bit odd for defining a visible insert, but note that upon seeing a deletion
report, the scanning thread can deduce not only that the node IV was deleted, but also
that it was inserted (beforehand). When an operation is executed concurrently with
the snapshot, the scanning thread may notice it during its node-traversal phase. The
scanning thread can notice an insertion by seeing the node as logically not deleted, and
it can see a deletion by seeing the node as logically deleted.

One counterintuitive issue is that it is possible for the scanning thread to see a
node as logically deleted during the node-traversal phase, but the deletion may still
be non-visible, because insertion is reported. Consider the following chain of events.
Thread T} starts a SNAPSHOT, and completes the activation step. Thread T5 inserts a
node N into the list, then check to see if there is an ongoing (active) snapshot. Since
there is, it checks to see that the node N is not marked (i.e., the node is not logically
deleted), and then it reports the insertion of N. Next, T3 logically deletes N. It checks
to see if there is an active snapshot, and is about to report the deletion, but is stalled.
Then T executes the node-traversal phase (seeing N as logically deleted, thus not
installing a pointer to it), blocks further reports, then sees a report of N’s insertion,
and returns IV as part of the SNAPSHOT result.

Although the scanning thread (77) observes N as logically deleted during the node-
traversal, T} does not record this fact anywhere, so the report of NV as being inserted
causes the scanner it to ‘forget” what it saw. This is not harmful to linearizability. A
similar problem cannot happen if N is marked as logically deleted before the beginning

of the node-traversal phase: before a thread reports the insertion of IV it checks that a
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SNAPSHOT is active (i.e., that a node-traversal phase has began) and then that N is
unmarked. In this case, either the inserting thread will not yet see an active traversal
(and thus will not report insertion), or it will already see the node as marked for deletion,

and then it will not report the insertion as well.

Definition 5.7.12. (Non-Visible Operations by Snapshot i.) A non-visible operation is

a successful INSERT or DELETE operation that is not visible by Snapshot .

5.7.3 Constructing the Whole-Order

In what follows we present an algorithm that constructs a whole-order for a given
execution E of the iterable linked-list algorithm. This whole-order includes all the
operations in E (including SNAPSHOTS), and we will claim that it satisfies the two
linearization requirements (sequential consistency and real-time consistency). We build
it by starting from the base-order (Baseg), defined in Definition 5.7.2, and then inserting
the SNAPSHOT operations one by one. For each snapshot that we insert, we will also
slightly adjust the order of other operations. The purpose of these adjustments is to

ensure the following.

e Each operation visible by a snapshot should come before it, and each operation

non-visible by a snapshot should come after it.

e Each operation that is completed before the deactivation point of a snapshot
should come before it, and each operation that is invoked after the deactivation

point of a snapshot should come after it.

e for every key k, the relative order of the operations with that key should be
preserved, excluding, perhaps, “internal” reordering of quiet operations that have

no non-quiet operations between them.

The algorithm that generates the whole-order, hence, the whole-order algorithm is

presented in Figure 5.4.

5.7.4 Visibility Properties

To complete the proof, we would like to show that whole-order satisfies both sequential
and real-time consistency. However, before we can do that, we need to lay the ground
by proving several claims regarding the visibility property. These claims form the heart
of the proof.

We claim that a non-quiet operation that is completed before the deactivation point
of a snapshot is visible by it (Claim 5.7.14), and that a non-quiet operation that is
invoked after the deactivation point of a snapshot is non-visible by it (Claim 5.7.15).
The more interesting operations (for the proof) are those that happen concurrently

with the deactivation of the snapshot. We claim that visibility to Snapshot ¢ satisfies
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1: Init: whole-order = base-order
2: for ¢ in 1... total number of snapshots do:

10:

11:
12:

13:

insert Snapshot ¢ immediately before the first operation in whole-order that is
non-visible by Snapshot i. (if non-such exists, place Snapshot i at the end of
whole-order)
initialize three sets of operations, Premature-Quiets, Belated-Quiets,
Belated-Visibles to be ()
for every Op in base-order
if (Op is a quiet operation) and (Op is placed before Snapshot ¢ in whole-order)
and (Op is invoked after the deactivation point of Snapshot ¢ in E) then:
Premature-Quiets = Premature-Quiets U{Op}
if (Op is a quiet operation) and (Op is placed after Snapshot i in whole-order)
and (Op is completed before the deactivation point of Snapshot i in E) then:
Belated-Quiets = Belated-Quiets U{Op}
if (Op is a visible by Snapshot ¢) and (Op is placed after Snapshot i in whole-
order) then:
Belated-Visibles = Belated-Visibles U{Op}
move the operations in Premature-Quiets to be immediately after Snap-
shot i in whole-order (without changing the relative order of the operations in
Premature-Quiets).
move the operations in Belated-Quiets U Belated-Visibles to be immedi-
ately before Snapshot ¢ in whole-order (without changing the relative order of the
operations in Belated-Quiets U Belated-Visibles.

Figure 5.4: Generating The Whole-Order for an Execution
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monotonicity, both in the sense that if an operation is visible by Snapshot 4, then all
prior non-quiet operations with the same key are also visible (Claim 5.7.16), and in
the sense that if an operation is visible by Snapshot ¢, then it is also visible by later
snapshots (Claim 5.1).

Then, we make claims that also consider the timing of quiet operations. We prove
that if an operation Op is visible by Snapshot ¢, then all operations with the same
key that are linearized before Op, including quiet operations, are invoked before the
deactivation point of Snapshot ¢ (Claim 5.2), and that if an operation Op is non-visible
by Snapshot ¢, then all operations with the same key that are linearized after Op are
completed after the deactivation point (Claim 5.7.23).

Finally, we show that Snapshot ¢ indeed returns what is intuitively visible to it. That
is, the result returned by Snapshot ¢ is consistent with a sequential execution in which
all the visible operations occur before Snapshot i, and all the non-visible operations
occur after it (Lemma 5.7.24).

We sometimes say that an operation is visible (non-visible), without specifying by
which snapshot, where the snapshot number is clear from the context. We sometimes
omit a reference to execution F (like in the following claim), when it is clear from the

context.

Claim 5.7.13. If Op is a non-quiet operation, and its critical point occurs before the

beginning of the node-traversal phase of Snapshot i then Op is visible by Snapshot 1.

Proof. This claim follows from Definition 5.7.11. If Op is an INSERT, and the physical
insertion of its node occurs before the beginning of the node-traversal phase of Snapshot
i, then the Op is visible by Definition 5.7.11. Similarly, if Op is a DELETE, and the
logical deletion of its node occurs before the beginning of the node-traversal phase of

Snapshot ¢, then the operation is visible by Definition 5.7.11. ]

Claim 5.7.14. If Op is a non-quiet operation that is completed before the deactivation
point of Snapshot i, then Op is visible by Snapshot i.

Proof. Let Op be a non-quiet operation, and ¢ be an integer such that 1 < i < total
number of snapshots. After executing the critical point of Op, the owner thread of Op
reads PSC and checks if the snapshot is active. We consider three possibilities. Snapshot
7 might not yet be active at the point of the check, or it might already been deactivated,
or it might be active.

If Snapshot ¢ is not yet active, then Op is visible by Snapshot i because its critical
point occurs before the beginning of the node-traversal phase of Snapshot i (Claim
5.7.13). If Snapshot i has already been deactivated, then Op is not completed before
the deactivation point of it.

If Snapshot 7 is active at the point of the check, then the owner-thread of Op

will attempt to report the operation into the snap-collector associated with Snapshot
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i. If the report is successful, then Op is visible by Snapshot i (by Definition 5.7.11).
Otherwise, BLOCKFURTHERREPORTS method must have been invoked prior to the
completion of the report. The BLOCKFURTHERREPORTS method is only invoked after
the deactivation point, and thus in this case Op is not completed before the deactivation

point of Snapshot . O

Claim 5.7.15. If Op is a non-quiet operation that is invoked after the deactivation
point of Snapshot i, then Op is non-visible by Snapshot i.

Proof. Let Op be a non-quiet operation, and ¢ be an integer such that 1 <7 < total
number of snapshots. Let us consider (and eliminate) all the different ways for Op
to become visible. If Op is an INSERT operation, then the physical insertion does not
occur before the beginning of the node-traversal phase; the scanning thread cannot see
the operation-node during the node-traversal phase (since this phase ends before the
physical insertion); a report of the insertion cannot be made: a thread only reports an
insertion if after the physical insertion of the node the thread sees the snapshot is still
active; and finally, a report of the deletion of the same node cannot be made: the node
is logically deleted only after it is physically inserted, which occurs in this case after the
deactivation point, and a thread only reports a deletion if after the logical deletion of
the node the thread sees the snapshot as still active.

If Op is a DELETE operation, then the logical deletion does not occur before the
beginning of the node-traversal phase; the scanning thread cannot see the operation-node
as logically deleted during the node-traversal phase; finally, a report cannot be made: a
thread only reports a deletion if after the logical deletion of the node, the thread sees

the snapshot as still active. ]

Claim 5.7.16. If Operationy, ; is visible by Snapshot i, then all earlier operations of
the same key: Operationy 4, such that ¢ < j, are either visible by the same snapshot, or

quiet.

Proof. Let g be an integer such that ¢ < j. (If ¢ = j the claim is trivial.) If Operationy, 4
is a contains or a non-successful operation, then it is quiet. If Operationy 4 is a non-quiet
operation, then we examine each of the possible causes for the jth operation on Key k
Operationy, ; to become visible to Snapshot ¢, and show that the gth operation must be
visible to Snapshot i as well.

If Operationy,; is visible because its critical point (physically inserting the node,
or marking it as logically deleted) occurs prior to the beginning of the node-traversal
phase of Snapshot 7, then the same is true for Operationy, ,. This is because physically
inserting (or logically deleting) a node is the linearization point in Harris’s linked-list,
and the operations are ordered in the base-order according to these linearization points.

An insert Operationy, j can also be visible if during the node-traversal phase the

scanning thread reads Node(Operation)y, ;, and a delete Operationy, ; can be visible if
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during the node-traversal phase the scanning thread reads Node(Operation)s, j, and finds
it marked as logically deleted. Both of these events imply that the scanning thread
reads Node(Operation)y, ;. Now, if Node(Operation)y, j and Node(Operation), 4 are the
same (i.e., Operationy ; and Operationy, are matching operations) then the earlier
Operationy, ; must be a visible insert. If Node(Operation), ; and Node(Operation), 4 are
not the same, then Node(Operation)y, , must have been in the list and then removed,
since Node(Operation)y, ; was inserted after it.

Thus, the physical delete of Node(Operation)y, , must happen early enough for the
scanning thread to view Node(Operation)y ;, that is, no later than during the node-
traversal phase. Either Node(Operation)y, 4 is marked as logically deleted prior to the
node-traversal phase (making Operationy , become visible) or that it is marked as
logically deleted, and is physically removed, both during the node-traversal case.

Before physically removing a node, the thread that removes it report it as logically
deleted. That is, unless there is no active snapshot. Since the node is both logically
and physically deleted during the node-traversal phase, then there must be a report of
its deletion. Such a report will guarantee that Operationy 4 is visible by Snapshot i.

If Operationy, ; is visible due to a report, similar logic holds. If Node(Operation)y, ;
and Node(Operation)y, , are the same one, then the same report also makes Operationy, 4
(which must be an INSERT) visible. Otherwise, the report of Operationy, ; means that the
operation occurs no later than the node-traversal phase (Because afterwards comes the
deactivation point, and threads cease to report their operations to the corresponding
snap-collector.) Thus, again, either Node(Operation)y, , is marked as logically deleted
prior to the node-traversal phase or that it is marked as logically deleted, and is

physically removed, both during the node-traversal case. O

Claim 5.7.17. If Operation Op is visible by Snapshot i, then the critical point of Op

occurs before the deactivation point of the same snapshot.

Proof. Consider each of the different causes for the visibility of Op according to Definition
5.7.11.

If Op is an INSERT visible by Snapshot ¢ because the critical point of Op occurs
before the beginning of the node-traversal phase of Snapshot ¢, then it also happens
before the deactivation point of Snapshot ¢, establishing the claim.

If Op is an INSERT visible by Snapshot ¢ because during the node-traversal phase of
Snapshot ¢, the scanning thread reads Op’s operation node then the critical point of Op
must occur before the end of the node-traversal phase of Snapshot ¢, and hence also
before the deactivation point, establishing the claim.

If Op is an INSERT visible by Snapshot ¢ because of a report of Op’s operation node’s
insertion then consider the order of steps a thread executes when it reports. First, the
reporting thread must complete, or witness the completion of the physical insertion
of the operation node. Then, the reporting thread reads the PSC pointer, and then
checks whether the snapshot is still active. The thread only reports if the snapshot is
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still active at that point. Thus, the critical point of the Op must occur prior to the
deactivation point of Snapshot 4, establishing the claim.

If Op is an INSERT visible by Snapshot ¢ because of a report of Op’s operation
node’s deletion the logic is similar. Consider the order of steps a thread executes when
it reports. First, the reporting thread must complete, or witness the completion of
the logical deletion of the operation node. Then, the reporting thread reads the PSC
pointer, and then checks whether the snapshot is still active. The thread only reports
if the snapshot is still active at that point. Thus, the logical deletion of the operation
node, and hence also the physical insertion of the same node, must occur prior to the
deactivation point of Snapshot 4, establishing the claim.

If Op is a DELETE visible by Snapshot ¢ because the critical point of Op occurs
before the beginning of the node-traversal phase of Snapshot ¢, then it also happens
before the deactivation point of Snapshot ¢, establishing the claim.

If Op is a DELETE visible by Snapshot ¢ because during the node-traversal phase of
Snapshot ¢, the scanning thread reads Op’s operation node and finds it logically deleted,
then the critical point of Op must occur before the end of the node-traversal phase of
Snapshot ¢, and hence also before the deactivation point, establishing the claim.

If Op is a DELETE visible by Snapshot 7 because of a report of Op’s operation node’s
deletion, consider the order of steps a thread executes when it reports. First, the
reporting thread must complete, or witness the completion of the logical deletion of
the operation node. Then, the reporting thread reads the PSC pointer, and then checks
whether the snapshot is still active. The thread only reports if the snapshot is still
active at that point. Thus, the logical deletion of the operation node must occur prior

to the deactivation point of Snapshot ¢, establishing the claim. O

Corollary 5.1. If Operation Op is visible by Snapshot i, then Op is visible by all later

snapshots as well.

Proof. Let i,¢ be integers such that 0 < ¢ < £ < total number of snapshots, and
assume Op is visible by Snapshot ¢. Then, by Claim 5.7.17, the critical point of Op
occurs before the deactivation point of Snapshot i, which is before the node-traversal
phase of Snapshot ¢. Thus, the critical point of Op occurs before the beginning of the
node-traversal phase of Snapshot ¢, and thus, by Claim 5.7.13, Op is visible by Snapshot
L. O

Claim 5.7.18. If Operationy, ; is non-quiet, then Vq, g < j, it holds that Operationy, 4

is invoked before the critical point of Operationy, ;.

Proof: By Definition 5.7.2, the order of operations in the base-order is according
to their linearization points in Harris’s linked-list. For a non-quiet operation, this
linearization point and the critical point are the same one. Thus, for a non-quiet
operation Operationy j, every Operationy 4 that comes before Operationy ; in Baseg

must be invoked in E prior to the critical point of Operationy, ;.
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Corollary 5.2. If Operationy ; is visible by Snapshot i, then Vg < j Operationy, , is

inwvoked before the deactivation point of Snapshot i.
Proof. This follows from Claims 5.7.17 and 5.7.18. O

Claim 5.7.19. If during the execution of an operation Op, the owner thread of Op
calls the REPORT method of the snap-collector associated with Snapshot i, then either
the report is successful, or Operation Op completes its execution after the deactivation

point of Snapshot 1.

Proof. The report must be successful, unless the BLOCKFURTHERREPORTS method is
executed (by the scanning thread) first. However, BLOCKFURTHERREPORTS is only

invoked after the deactivation point. O

Remark. Note that the report attempted during the execution of Op does not necessarily
report Op. Recall that threads sometimes report the operations of other threads. In

particular, Op could be a quiet operation.

Claim 5.7.20. Let Op be a DELETE operation. If Op is non-visible by Snapshot i, then
Op’s operation node is physically deleted after the deactivation point of Snapshot i.

Proof. The logical deletion of Op’s operation node must occur after the beginning of
the node-traversal phase of Snapshot i, otherwise the operation would have been visible.
Consider the thread T that executed the physical deletion. After seeing the node as
logically deleted (alternatively, after marking it as logically deleted itself, if T" is the
same thread that made the logical deletion), T" reads the PSC pointer and then checks
whether the snapshot is active. The check whether the snapshot is active must happen
after the logical deletion, which must occur after the beginning of the node-traversal
phase of Snapshot i (otherwise, the operation would have been visible). Thus, either the
Snapshot 7 is still active at the point of the check, or the check is after the deactivation
point. If the check is after the deactivation point then so is the physical deletion and the
claim is proven. If the snapshot is still active, then T" will attempt to report the deletion
of Op’s operation node. T can’t be successful in this report, because that would make
Op visible. Thus, the report must be completed after the BLOCKFURTHERREPORTS

method is executed, which is also after the deactivation point. ]

Corollary 5.3. If (Operationy, ; is non-visible by Snapshot i) and (Node(Operation)y, ;
is deleted in E) then Node(Operation)y ; is physically deleted after the deactivation
point of Snapshot 1.

Proof. If Operationy, ; is a DELETE operation, then the corollary is equivalent to Claim
5.7.20. If Operationy ; is an INSERT operation, and its operation-node is deleted in

the execution E, then there must be a ¢ > j such that Operation; 4 is the matching
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operation of Operationy, j. By the monotonicity of visibility (Claim 5.7.16), Operationy, q
must be non-visible as well, and then by Claim 5.7.20, Node(Operation)y, , (which is
the same of Node(Operation)y, ; is physically deleted after the deactivation point of
Snapshot 1. O

In the next claim we show that if an operation is non-visible by Snapshot ¢, then
it is completed after the deactivation point of the snapshot. The goal is to let the
analysis set the linearization point of this operation to after the linearization point of
the snapshot. The setting of the linearization points of the operations and the snapshots
will be discussed later. To prove this claim, we must first revisit the linearization points
in Harris’s linked-list, as discussed in Definition 5.7.2.

In every operation in Harris’s linked-list, the list is first searched for the operation
key. Searching for a key is done by traversing the nodes of the list starting from the head.
During the search, the searching thread attempts to physically remove logically deleted
nodes. Occasionally, the traversal needs to restart from the head of the list. This is due
to contention, i.e., a failure in the execution of a desired CAS. This CAS may either be
an attempt to physically remove a logically deleted node, or it may be an attempt to
execute the critical point of the operation. For example, a thread executing an INSERT
operation may fail in the CAS that attempts to physically insert the operation-node
into the list. In Harris’s algorithm, this failure also causes a new traversal of the list,
since the result of the old traversal may now be obsolete.

The linearization points of non-quiet operations, as defined in Definition 5.7.2, are
according to the execution step of a critical CAS (physically inserting, or logically
deleting a node.) As to quiet operations, with the exception of a failed CONTAINS,
the linearization points are at the end of the last time the list is traversed during the
operation. A failed CONTAINS could be linearized either at the end of the traversal of the
list (if the required key is not found), or immediately after the logical deletion of a node
with the same key (if the key is found in this logically deleted node). In the following
facts 5.7.21 and 5.7.22 we formalize the intuition that if a non-quiet Operationy ; is
linearized before another operation on the same key k, then the later operation “sees”
the list after the list is modified by Operation, ;.

In the first assertion, we state the simple fact that if a later operation does not
“see” a node of an earlier operation, than that node must be removed before the later

operation terminates.

Fact 5.7.21. If Operationy j is non-quiet, then Vg > j either Operationy, 4 is completed
after the physical deletion of Node(Operation)y j, or the owner thread of Operationy, 4
reads Node(Operation)y ; (during the execution of Operationy, 4).

Note that Node(Operationy, ;) is well defined and this node can be read by Operationy, 4
no matter if Operationy, ; is a delete operation (and then Node(Operationy, ;) is about to
be deleted) or an insert operation that is installing Node(Operationy, ;) into the list. If

Operationy, j is a DELETE operation, then we can state a slightly stronger fact.
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Fact 5.7.22. If Operation;, ; is a non-quiet DELETE operation, then Vg > j either
Operationy, 4 is after the physical deletion of Node(Operation)y ;, or the owner thread of
Operationy, 4 reads Node(Operation)y, ; and finds it logically deleted (during the execution

of Operationy, q).

Claim 5.7.23. If Operationy, ; is non-visible by Snapshot i then Vq > j Operationy 4

is completed after the deactivation point of Snapshot i.

Proof. Let q, j be integers such that ¢ > j. Since Operationy, ; is non-visible by Snapshot
i, then its critical point must occur after the beginning of the node-traversal phase of
Snapshot i (Claim 5.7.13). If ¢ = j, then Operaiony, 4 is completed after the deactivation
point of Snapshot ¢ by Claim 5.7.14. Assume ¢ > j. Thus, using Fact 5.7.21, either
1) Operationy, 4 is completed after the physical deletion of Node(Operation)y, ;, or 2)
during Operationy, 4 the owner thread of it reads Node(Operation)y, ;. If (1), then because
Operationy, ; is non-visible by Snapshot i, the deletion of Node(Operation )y, ; must occur
after the deactivation point of Snapshot ¢ (Corollary 5.3), and thus Operationy, , is
completed after the deactivation point as well.

Otherwise (2), Operationy, , must read Node(Operation)y, ;. We divide into four cases:
Operationy, ; is an INSERT and the (later) quiet Operationy, ; reads Node(Operation)y, ;
as not logically deleted; that Operationy ; is an INSERT and that Operationy , reads
Node(Operation)y, ; as logically deleted; Operationy, ; is an INSERT and Operationy, 4 is
its matching DELETE; and finally, Operationy, j is a DELETE.

In all of these cases, the logic is the same: the owner thread of the later Operation, 4
must read the PSC pointer to see if there is an active snapshot. If Snapshot 4 is completed
(no longer active), then the claim is established. If the snapshot is still active, then
the owner of Operationy, 4 will attempt a report that must fail (otherwise Operationy, ;
would have been visible), and then by Claim 5.7.19, Operation;, ; must complete after
the deactivation point of Snapshot i. In all the cases, assume the critical point of
Operationy, ; occurs after the beginning of the node-traversal phase of Snapshot 7. This
is certain because Operationy ; is non-visible by Snapshot 7, and then by Claim 5.7.13,
this assumption is correct.

If Operationy, ; is an insert and Operationy, 4 is a quiet operation that sees Node(Oper-
ation )i, j as unmarked, it will read the PSC pointer to test if there is an active snapshot.
Since the critical point of Operationy, ; (which is the physical insertion of Node(Oper-
ation)y, j) occurs after the beginning of the node-traversal of Snapshot ¢, then if Snapshot
i is not currently active we are done. If Snapshot i is still active, the owner thread of
Operation, 4 will attempt to report the insertion of Node(Operation)y ;. This report
must fail (otherwise Operationy, ; would have been visible by Snapshot ), and thus by
Claim 5.7.19, Operationy, ; must complete after the deactivation point of Snapshot i.

If Operationy,; is an insert and Operationy, , sees Node(Operation)y ; as logically

deleted, it will read the PSC pointer to test if there is an active snapshot. The logical
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deletion of Node(Operation)y, ; can only happen after the physical insertion of Node(Oper-
ation )y, j, which occurs after the beginning of the node-traversal of Snapshot i. Thus, if
Snapshot ¢ is not currently active we are done. If Snapshot ¢ is still active, the owner
thread of Operationy, 4 will attempt to report the deletion of Node(Operation)y ;. This
report must fail (otherwise Operationy, ;, which is the insertion of the same node, would
have been visible by Snapshot ¢), and thus by Claim 5.7.19, Operationy, ; must complete
after the deactivation point of Snapshot i.

If Operationy, ; is an insert and Operationy, 4 is its matching (delete) operation, then
after the logical deletion, the owner thread of Operationy, , will read the PSC pointer to
see if there is an active snapshot. Again, if not, then we are done. If Snapshot i is still
active, then the thread will attempt to report the deletion of the operation-node. This
report must fail, otherwise Operationy, ; would have been visible, and again, by Claim
5.7.19, this means Operationy, 4 is completed after the deactivation point of Snapshot .

If Operationy, ; is a DELETE operation, we use the strong Fact 5.7.22. Using this
stronger fact, the owner of the (later) Operationy 4 not only reads Node(Operation)y ;,
but finds it logically deleted. The owner thread of Operation; , will then read the
PSC pointer. Again, If Snapshot i is no longer active, we are done. Otherwise, the
owner of Operationy, , will attempt to report a deletion. This report must fail, otherwise
Operationy, ; would have been visible, and again, by Claim 5.7.19, this means Operationy, 4

is completed after the deactivation point of Snapshot 3. O

Lemma 5.7.24. Vi  snapshot i returns a result consistent with a sequential execution
in which all the operations that are visible by Snapshot i are executed before it, none
of the non-visible operations by Snapshot i are executed before it, and Yk, the relative

order of the operations with key k is the same as in the base-order.

Remark. Note that because of the monotonicity of visibility (Claim 5.7.16), such an

order exists.

Proof. Let i be an an integer such that 1 < ¢ < total number of snapshots. We denote by
R; the set of nodes read by the scanning thread of Snapshot ¢ during the node-traversal
step, excluding those read as logically deleted; by I; the set of nodes reported as inserted
to the snap-collector corresponding with Snapshot ¢; and by D; the set of nodes reported
as deleted to the snap-collector. According to the snapshot algorithm, Snapshot i
returns (R; U L;) \ D;.

According to the set ADT specifications, a node with associated key k is in the set,
iff it is the last node to have been successfully inserted into the set with key k, and no
delete(k) followed its insertion. Let k be a possible key. We will examine three cases: 1)
the last operation with operation key k visible by Snapshot ¢ is an insert operation, 2)
the last operation with operation key k visible by Snapshot ¢ is a delete operation, and
3) no operation with operation key k is visible by Snapshot i. In each case, we will show
that for every node with key k, it belongs to (R; U I;) \ D; iff it is in the set according
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to the ADT specifications. Before referring to each of the three cases, we will prove two

intermediate claims that will help.

Claim 5.7.25. If Operation Op is non-visible by Snapshot i then Op’s operation node
¢ (R, UL)\ D;

Proof. If Op is non-visible by Snapshot ¢, then the scanning thread does not see Op’s
operation node during the node-traversal phase of Snapshot i (as that would make
Op visible), and thus, Op’s operation node ¢ R;. Likewise, if Op is non-visible by
Snapshot ¢, the insertion of Op’s operation node is not (successfully) reported to the
snap-collector associated with Snapshot i (as that too would make Op visible), and thus,

Op’s operation node ¢ R;. O

Claim 5.7.26. If Operationy, ; is a DELETE operation visible by Snapshot i then Vq < j
such that Operationy, 4 is non-quiet, Node(Operation) ; ¢ (R; U I;) \ D;.

Remark. Recall that for a quiet operation, its operation node is undefined.

Proof. Let q be an integer such that ¢ < j and Operationy, 4 is non-quiet. Due to the
monotonicity of visibility (Claim 5.7.16), Operationy, 4 is visible. Whether Operationy, q
is an insert or a delete, the deletion of Node(Operation)y 4 is visible. If Operationy, q
is a delete, then this is immediate. If Operation;, is an insert, then j # ¢ and the
matching operation of Operation; , must also be visible due to the monotonicity of
visibility (Claim 5.7.16). Consider the three possible causes for a delete operation to be
visible (Definition 5.7.11).

The deletion of Node(Operation), , can be visible because the node is marked as
logically deleted prior to the beginning of the node traversal of Snapshot i. In such a
case, Node(Operation)y, 4 ¢ R;, because the scanning thread cannot read it to be logically
unmarked. Also Node(Operation) , ¢ I;, because in order to report an insertion a
thread reads the PSC, then checks if the snapshot is active, then check if the node is
marked, and only then report it. However, Node(Operation)y, 4 is already marked when
Snapshot ¢ becomes active, so its insertion cannot be reported. Thus, in that case
Node(Operation) ¢ ¢ (R; U L;) \ D;.

The deletion of Node(Operation)y, 4 can be visible because the node is successfully
reported as deleted into the snap-collector. In that case Node(Operation), , € D;, and
thus Node(Operation)y, q ¢ (R; U L;) \ D;.

The deletion of Node(Operation), , can be visible by Snapshot ¢ because during
the node-traversal the scanning thread reads Node(Operation), , and finds it logically
deleted, and the insertion of Node(Operation )y, 4 is not successfully reported into the snap-
collector associated with Snapshot i. In such a case, Node(Operation)y , ¢ I; (because
the insertion of Node(Operation)i 4 is not reported), and Node(Operation),, ¢ R;
(because the scanning thread read Node(Operation)y, 4 as logically deleted). We conclude
that in this case as well, Node(Operation), , ¢ (R; U I;) \ D;. O
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We now go back to refer to each of the three cases needed to complete the proof of
Lemma 5.7.24. Casel: The last operation with operation key k wvisible by Snapshot i is
an insert operation. Let Op be this operation, and N the inserted node. In this case,
according to the ADT specifications, N is in the set, and no other node with key k is
in the set. Thus, we need to show that: i) N € R; U I;, ii) N ¢ D;, and iii) any other
node Ny # N with key k satisfies that No ¢ (R; U I;) \ D;. The first two follow almost
immediately from the definition of visible operations by Snapshot i: if Op is visible,
then either the scanning thread reads its associated node during the node traversal
(N € R;) or the node is reported as inserted (N € I;). An operation that deletes N,
if exists, must come after Op. However, Op is the last visible operation with key k,
and due to the monotonicity of visibility, such an operation must be non-visible. Thus,
N ¢ D;, otherwise the operation that deletes N would have been visible.

To complete Casel, it remains to show that any other node Ny # N with key k
satisfies that No ¢ (R; U I;) \ D;. Let Opy be the operation that inserted Ny into the
list. If Opy comes after Op in the base-order, then by the monotonicity of visibility
(Claim 5.7.16), Opo is non-visible, and thus, by Claim 5.7.25 No ¢ R; U I; \ D;.

If Opy comes before Op in the base-order, then Op is not the first operation with
key k in the base-order. Consider the operation previous to Op in the base-order,
Opp, which must be a delete(k). Let j be an integer such that Operationy ; is Opy.
By the monotonicity of visibility (Claim 5.7.16), Operationy, ; is visible by Snapshot
i. Thus, Operationy, ; is a DELETE operation visible by Snapshot ¢, and thus by Claim
5.7.26, Vq < j such that Operationy, 4 is non-quiet, Node(Operation ) & (R; U I;) \ D;.
Since Opo comes before Op in the base-order, then there exists ¢ < j such that Opy =
Operationy, 4, and No = Node(Operation ) q ¢ (R; U L) \ D;.

Case2: The last operation with key k wvisible by Snapshot i is a delete operation.
In such a case, by the specifications of the ADT, no node with key k should be
returned by the snapshot. Thus, we need to show that any node N with key k satisfies:
N ¢ (R; UI)\ D;. Let j be an integer such that the last operation with key k
visible by Snapshot i is Operationy, ; (which is a delete operation). For all ¢ > j, by
the monotonicity of visibility (Claim 5.7.16), Operationy, 4 is either quiet (and has no
operation-node) or non-visible by Snapshot i. If Operationy, 4 is non-visible, then by
Claim 5.7.25, Node(Operation)y, 4 ¢ (R; U1;)\ D;. If ¢ < j, then by Claim 5.7.26, Vg < j
such that Operationy, 4 is non-quiet, Node(Operation) q ¢ (R; U L;) \ D;.

Case3: no operation with operation key k is visible by Snapshot i. Thus any operation
with key k is either quiet (and have no operation node) or non-visible by Snapshot i,
and then by Claim 5.7.25, its operation node ¢ (R; U I;) \ D;. O

Corollary 5.4. FEvery snapshot ¢ returns a result consistent with a sequential execution
in which all the operations that are visible by Snapshot i are executed before it, none
of the non-visible operations by Snapshot i are executed before it, and for every (non-

snapshot) operation Op with key k, the set of non-quiet operations with the same key k
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that comes prior to Op is the same as in the base-order.

Proof. Follows immediately from Lemma 5.7.24. The total order we use for in Corollary
5.4 is the same as the one defined in 5.7.24, apart from possible reordering of quiet
operations without moving them across any visible operations. Such reordering does

not change the result of a sequential execution. O

5.7.5 Sequential and Real-Time Consistency of the Whole-Order.

In what follows we turn our attention back to the whole-order. To prove that the iterable
list algorithm is linearizable, we will prove that whole-order satisfies both sequential
consistency and real-time consistency. We will use a few intermediate claims in the

process.

Claim 5.7.27. For every operation Op, the set of non-quiet operations with the same

key k that comes prior to Op is the same in whole-order and in base-order.

Remark. Although whole-order contains SNAPSHOT operations, this claim refers only to

non-snapshot operations.

Proof. By induction of the steps of the whole-order algorithm. The invariant that for
every operation Op, the set of non-quiet operations with the same key k that comes
prior to Op is the same as in base-order, is maintained throughout the whole-order
algorithm.

Initially, whole-order is set to be identical to base-order. Only lines 12 and 13 move
(non-snapshot) operations. We will show that none of these lines can violate the invariant.
Let ¢ be an integer such that 1 <14 < total number of snapshots. Consider the execution
of lines 12 and 13 in loop-iteration number ¢ of the whole-order algorithm. (The term
“loop-iteration number i of the whole-order algorithm” should not be confused with
Snapshot ¢ of the execution F. Using this terminology, loop-iteration number i in the
whole-order algorithm is the i’th execution of Lines 3-13 in the whole-algorithm depicted
in Figure 5.4. During the execution of loop-iteration number ¢ of the whole-order
algorithm, Snapshot i of the execution E is placed inside the whole-order.)

Line 12. In this line we move quiet operations that are invoked after the deactivation
point of Snapshot i to be placed immediately after Snapshot i (given that before the
execution of this line these quiet operations are placed before the snapshot). Let Op4 be
an operation such that Op4 € Premature-Quiets. Opy4 is invoked after the deactivation
point of Snapshot 4, and thus, By Corollary 5.2, there are no visible operations by
Snapshot ¢ with the same key placed after Op4s. Prior to the execution of line 12,
Snapshot i is placed before the first non-visible operation (by Snapshot 7). Thus, there
are no non-visible operations placed between Op4 and Snapshot ¢ in whole-order. Thus,
moving Op4 to be immediately after Snapshot ¢ does not move it across any non-quiet

operations with the same key.
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Line 13. In this line we move quiet operations that are completed before the
deactivation point of Snapshot i to be placed immediately before Snapshot i. This
line also moves all visible operations by Snapshot ¢ to be placed immediately before
the Snapshot i. Again, operations are moved only if before the execution of line 13
they were placed at the ”wrong” side of the Snapshot ¢ (in this case, after it). By the
monotonicity of visibility (Claim 5.7.16), this replacement cannot cause any non-quiet
operation to move across another non-quiet operation with the same key.

As for quiet operations, let Opp be an operation such that Opp € Belated-Quiets.
Opp is completed before the deactivation point of Snapshot ¢, and thus, by Claim 5.7.23,
there are no non-visible operations by Snapshot ¢ with the same key placed before
Opp. Thus, moving Opp to be immediately before Snapshot ¢ cannot move it across
any non-visible operation with the same key. It also cannot move it across any visible
operation, because any visible operation by Snapshot ¢ placed after Snapshot i belongs
to Belated-Visibles and is moved along with Opp, in a way that retains their relative
order. O

Claim 5.7.28. Vi, 1 < i < total number of snapshots, every visible operation by
Snapshot i is placed before Snapshot i in whole-order, and every non-visible operation

by Snapshot i is placed after Snapshot i in whole-order.

Proof. Let ¢ be an integer such that 1 < ¢ < total number of snapshots. Snapshot ¢
is first placed in whole-order before all the non-visible operations by Snapshot i (line
3). Later, in line 13, all the visible operations by Snapshot i that were previously
placed after Snapshot 4, are placed immediately before it. Thus, immediately after the
execution of line 13 in loop-iteration number i of the whole-order algorithm, Snapshot ¢
is placed after all the operations visible by it, and before all the operations that are
non-visible by it.

It remains to show that no subsequent executions of line 13 will move non-quiet
operations across Snapshot ¢ (line 13 is the only line that moves non-quiet operations.)
Due to the monotonicity of visibility (Claim 5.1), for every j > ¢ Snapshot j is placed
in whole-order after Snapshot i. Subsequent executions of line 13 will move operations
that are placed after a snapshot j for which j > i to be immediately before Snapshot j.

This does not move them across Snapshot 1. O

Claim 5.7.29. Every SNAPSHOT operation in E returns a result consistent with the

result it returns in the sequential whole-order execution.

Proof. The claim follows immediately from Corollary 5.4, Claim 5.7.27 and Claim
5.7.28. Corollary 5.4 claims an SNAPSHOT operation in F returns a result consistent
with a sequential execution in which the operations before the snapshot are the visible
operations, and for each operation Op, the set of non-quiet operations that come priors

to Op is the same as in the base-order. Claim 5.7.28 claims that in whole-order the
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operations that comes before a snapshot are the visible ones (and perhaps quiet ones as
well). Claim 5.7.27 claims that for each operation Op, the set of non-quiet operations

that come priors to Op is the same as in the base-order. O
Corollary 5.5. whole-order satisfies sequential consistency.

This follows from claims 5.7.27 and 5.7.29.

Claim 5.7.30. If Op; and Opsy are two non-concurrent operations in F, none of which

is an SNAPSHOT operation, then they retain their sequential order in whole-order.

Proof. By induction of the steps of the whole-order algorithm. Let Op; and Ops be two
non-concurrent operations in £, non of which a SNAPSHOT operation. The invariant that
Op1 and Opy retain their sequential order is maintained throughout the whole-order
algorithm. Initially, whole-order is set to be identical to base-order. Only lines 12 and
13 move (non-snapshot) operations. We will show that none of these lines can violate
the invariant. Let ¢ be an integer such that 1 < i < total number of snapshots. Consider
the execution of lines 12 and 13 in loop-iteration number i of the whole-order algorithm.

Line 12. In this line we move quiet operations that are invoked after the deactivation
point of Snapshot i to be placed immediately after Snapshot i (given that before the
execution of this line they are placed before the snapshot). If neither of Op; and Ops
are moved in the execution of line 12, then their order cannot be disturbed in the
execution of this line. If both of them are moved, then again their order cannot be
disturbed, because the relative order of moved operations is retained. It remains to
consider the case when one operation is moved and the other is not. Assume, without
loss of generality, that Op; is moved.

If prior to the execution of line 12, Ops is not placed in whole-order between Op;
and Snapshot ¢, then moving Op; across Snapshot ¢ will not disturb the relative order of
operations Op; and Ops. If Ops is placed between Op; and Snapshot 4, then we claim
that Op; and Opy must be concurrent in E (yielding contradiction).

Ops is invoked before the deactivation point of Snapshot i. Before the execution of
line 12, Ops is placed in whole-order between Op; and Snapshot ¢, which means Opo is
placed before Snapshot i. Thus, if Op is non-quiet it must be visible by Snapshot i (as
the snapshot is placed before the first non-visible operation), and thus, by Claim 5.7.15,
Opo cannot be invoked after the deactivation point. If Ops is quiet, then again it must
be invoked before the deactivation point of Snapshot i, otherwise it would have also
been moved in the execution of line 12.

Now, Ops is invoked before the deactivation point of Snapshot 7, Op; is invoked after
the deactivation point of Snapshot i, but Ops is placed after Op; before the execution
of 12. Since we assume the invariant holds before the execution line 12, then Op; and
Opo must be concurrent in F.

Line 13. In this line we move quiet operations that are completed before the

deactivation point of Snapshot ¢ to be placed immediately before the snapshot. This
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line also moves all visible operations by Snapshot ¢ to be placed immediately before the
snapshot. Again, operations are moved only if before the execution of this line they
were placed at the "wrong” side of the snapshot (in this case, after it). The logic is very
similar to the one used for line 12.

If neither of Op; and Ops are moved in the execution of line 13, then their order
cannot be disturbed in the execution of this line. If both of them are moved, then
again their order cannot be disturbed, because the relative order of moved operations is
retained. It remains to consider the case when one operation is moved and the other is
not. Assume, without loss of generality, that Op; is moved.

If prior to the execution of line 13, Ops is not placed in whole-order between Op;
and Snapshot ¢, then moving Op; across Snapshot ¢ will not disturb the relative order of
operations Op; and Ops. If Ops is placed between Op; and Snapshot 4, then we claim
that Op; and Op2 must be concurrent in E (yielding contradiction).

Opo is completed after the deactivation point of Snapshot ¢. Before the execution of
line 13, Ops is placed in whole-order between Op; and Snapshot i, which means Ops is
placed after Snapshot i. If Ops is non-quiet, then it must be non-visible by Snapshot ¢
otherwise it would have also been moved in the execution of line 13, and thus, by Claim
5.7.14, it cannot be completed before the deactivation point. If Ops is quiet, then it
must be completed after the deactivation point of Snapshot ¢, otherwise it would have
also been moved in the execution of line 13.

Now, Ops is completed after the deactivation point of Snapshot 7, Op; is completed
before the deactivation point of Snapshot i, but Ops is placed prior to Op; before the
execution of 13. Since we assume the invariant holds before the execution line 13, then

Op; and Op2 must be concurrent in F. O

Claim 5.7.31. Vi, 1 <14 < total number of snapshots, any operation that is completed
before the deactivation point of Snapshot i in E is placed before Snapshot i in whole-order,
and every operation that is invoked after the deactivation point of Snapshot i in E is

placed after Snapshot i in whole-order

Proof. Let i be an integer such that 1 < ¢ < total number of snapshots, and let Op be a
(non-snapshot) operation. If Op is visible by Snapshot 4, then by Claim 5.7.15 it cannot
be invoked after the deactivation point of Snapshot i. Also, since Op is visible, then by
Claim 5.7.28 it must be placed before Snapshot i in whole-order. Thus, Op is placed
before Snapshot ¢ in whole-order and invoked before the deactivation point of Snapshot
tin E.

If Op is non-visible by Snapshot i, then by Claim 5.7.14 it cannot be completed
before the deactivation point of Snapshot i. Also, since Op is non-visible, then by Claim
5.7.28 it must be placed after Snapshot ¢ in whole-order. Thus, Op is placed after
Snapshot ¢ in whole-order and completed after the deactivation point of Snapshot i in
E.
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If Op is a quiet operation that is invoked after the deactivation point of Snapshot 1,
then line 12 in loop-iteration number ¢ of the whole-order algorithm will move it to be
immediately after Snapshot ¢ in whole-order, if it is previously before it. If Op is a quiet
operation that is completed before the deactivation point of Snapshot 4, then line 13 in
loop-iteration number 7 of the whole-order algorithm will move it to be immediately

before Snapshot ¢ in whole-order, if it is previously after it. O
Corollary 5.6. whole-order satisfies real-time consistency.

This follows from claims 5.7.30 and 5.7.31.

Theorem 5.7. The iterable list algorithm is linearizble.

This follows from Corollary 5.5 and Corollary 5.6.

5.7.6 Adjusting the Proof for Multiple Scanners

The structure of the claims above holds for the case of multiple scanners as well, but some
adjustments have to be made. First, instead of referring to an “Snapshot ¢”, the proof
should refer to a set of SNAPSHOT operations that share the same snap-collector. The
division of a snapshot into the four phases: activation, node-traversal, deactivation, and
wrap-up remains. The activation is completed in the step that assigns the snap-collector
to PSC. The deactivation point is at the time the DEACTIVATE method is linearized for
the associated snap-collector for the first time. The node-traversal begins immediately
after the activation and ends at the deactivation point.

All the SNAPSHOT operations that share the same snap-collector are during their
execution at the deactivation point. All of them also return the same result. Thus,
they can all be linearized at the deactivation point, similar to the case of the single
SNAPSHOT. Also, there is a sequential order between the sets of SNAPSHOT operations.
They can be ordered according to their deactivation points (or according to the order
in which they are pointed by the PSC, which is the same). Thus, it is still meaningful to
refer to Snapshot-set .

The definition of visibility requires some care: a scanning thread can now see and
node but fail to install a report to it, because another scanning thread might invoke
BLOCKFURTHERNODES. The definition of visibility for the case of concurrent snapshots

follows.

Definition 5.7.32. (Visible Operations by Snapshot-Set i.) We say that a successful
DELETE(k), which removed the node N from the list, is visible by Snapshot-set 4, if at

least one of the following holds.

e N is marked as logically deleted before the beginning of the node-traversal phase

of Snapshot-set .
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e The deletion of N is (successfully) reported in the snap-collector associated with

Snapshot-set i.

e During the node-traversal phase of Snapshot-set ¢, a scanning thread reads the
node N, and finds it logically deleted, and the insertion of N is not (successfully)
reported in the snap-collector associated with Snapshot i, and N is not added
into the snap-collector by a different scanning thread that reads N and finds it
not logically deleted.

We say that a successful INSERT(k), which inserted the node N into the list, is visible
by Snapshot-set i, if at least one of the following holds.

e N is (physically) inserted before the beginning of the node-traversal phase of
Snapshot-set ¢

e The insertion of N is (successfully) reported to the snap-collector associated with

Snapshot-set i.

e During the node-traversal step of Snapshot ¢, a scanning thread reads the node
N, and either finds it logically deleted or successfully adds it to the snap-collector

associated with Snapshot-set i.

e The deletion of N is (successfully) reported in the snap-collector associated with

Snapshot-set i.

In addition to these changes, some of the arguments in the proof specifically refer
to the “scanning thread”. Such arguments should generally be replaced by similar
arguments that refer to “any of the scanning threads”. However, naturally, the particulars

of these adjustments slightly varies in each specific case.

5.7.7 Linearizability of the Snap-Collector

The snap-collector is a simple object to design, and there are many ways to design it.
Due to optimizations, the implementation used in our measurements and described
in Section 5.6 does not strictly follow the semantics of the snap-collector ADT. Thus,
for the sake of the proof, we describe here a variant which is slightly less efficient, but
follows the snap-collector ADT. This snap-collector also has the property of being almost
trivially linearizable. We rely on the (linearizable) wait-free queue [KP11]. This queue
is based on a linked-list of nodes. Though we refer to the snap-collector as a single

object, its ADT semantics practically divide into three separate groups.

AddNode, BlockFurtherNodes, ReadPoiners . We maintain a wait-free queue
for these three operations. The ADT semantics require that ReadPointers will return all
the nodes added prior to BlockFurtherNodes. To add a node, a thread simply enqueues

a pointer to it. To block further nodes, a thread enqueues a special value that can
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be distinguished from other values (such as a NULL pointer). To read the pointers of
nodes installed in the snap-collector, a thread reads the nodes in the queue one by one,
until reaching the special “blocking” node. Nodes that are enqueued after the “blocking”
node are not returned. The linearizability of the queue ensures the linearizability of

these three operations.

AddReport, BlockFurtherReports, ReadReports . We maintain a separate
wait-free queue for the reports of each different thread. The ADT semantics require that
ReadReports will return all the reports that were added by a thread before the thread
was blocked by the BlockFurtherReports method. To add a report, a thread enqueues it
into its own designated queue. To block another thread from adding additional reports,
a thread enqueues a special “blocking” value into the queue of the thread whose further
reports are to be blocked. To read the reports, a thread reads the reports from all of
these queues, in each queue stopping to read once reaching the “blocking” node. The

linearizability of the queue ensures the linearizability of these three operations.

Deactivate, IsActive . We maintain a bit field, initiated to true. The ADT semantics
require that IsActive will return true as long as Deactivate has not been called. To
deactivate, a thread writes false into this field. To check if the snap-collector is active,

the bit is read. The linearizability of these two operations is trivial.

5.8 Performance

In this section we report the performance of the proposed iterator, integrated with
the lock-free linked-list and skiplist in Java. We used the linked-list implementation
as included in the book “The Art of Multiprocessor Programming” by Herlihy and
Shavit [HS08], and added to it the iterator mechanism described in this chapter. For
the skiplist, we used the Java code of ConcurrentSkipListMap by Doug Lea, and added
our mechanism. We also measured the performance of the CTrie [PBBO12]. The
CTrie is included in the Scala 2.10.0 distribution, and we used this implementation to
measure its performance. The CTrie implementation and our implementations support
the dictionary ADT, in which each key is associated with a value. In this chapter we
are only interested in the set ADT, so we used the boolean true value to serve as the
associated value of all the keys.

All the tests were run on OpenJDK 6, on a system that features 4 AMD Opteron(TM)
6272 2.1GHz processors. Each processor has 8 cores (32 cores overall), and each core
runs 2 hyper-threads (i.e., 64 concurrent threads overall). The system employs a memory
of 128GB and an L2 cache of 2MB per processor.

The algorithms were tested on a micro-benchmark in which one thread repeatedly
executes ITERATION operations, going over the nodes one by one continually. For the

other threads, 50% of the operations are CONTAINS, 25% are INSERT, and 25% are
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DELETE, with the number of threads varying between 1-31. In each test the keys for
each operation were randomly and uniformly chosen in the ranges [1,32], [1,128], or
[1,1024]. In each test, all the threads were run concurrently for 2 seconds.

We run each specific test-case (i.e., the number of threads and the key range) 8
times for each algorithm (linked-list, CTrie, and skiplist). Each algorithm was run on a
separate JVM, after first running this JVM for several seconds on the data structure to
allow it to warm up. Each of the 8 measurements was run a 2 seconds interval. We
repeated the complete set of experiments 3 times. Thus, overall, each test was run 24
times. The averages of these 24 measurements are reported in the figures.

For each key range, we present three different graphs. In the first graph, we measure
the number of operations executed as a fraction of the number of operations executed
without the additional iterating thread. For example, for a range of keys [1, 32|, for 20
threads, the number of operations executed while an additional thread is continually
iterating the nodes is 89% of the number of operations executed by 20 threads in the
skiplist data structure that does not support iteration at all. Thus, this graph presents
the cost of adding the support for an iterator, and having a single thread continually
iterate over the structure. For the CTrie, there is no available lock-free implementation
that does not support iteration at all, so we simply report the number of operations as
a fraction of the number of operations executed when there is no additional concurrent
thread iterating over the structure. In the second graph, we report the absolute number
of INSERT, DELETE, and CONTAINS operations executed in the different data structures
while a single thread was iterating, and in the third graph we report the number of
ITERATION operations that the single thread completed. This last measure stands for
the efficiency of the iterator itself.

The results appear in Figure 5.5. In general, the results show that the iterator
proposed in this chapter has a small overhead on the other threads (which execute
INSERT, DELETE and CONTAINS), and in particular, much smaller than the overhead
imposed by the CTrie iterator. The overhead of the proposed iterator for other threads
is usually lower than 20%, except when the overall number of threads is very small.
This means that the proposed iterator does relatively little damage to the scalability
of the data structure. As for overall performance, we believe it is less indicative of
the contribution of our work, as it reflects mainly the performance of the original data
structures regardless of the iterator. Having said that, the linked-list performs best for
32 keys, the skiplist for 128 keys, and the CTrie and skiplist performs roughly the same
for 1024 keys.

Standard Deviation and Error Bounds. The standard deviation in the measure-
ments of the linked-list is quite small in all test-cases, up to 4%. This makes the error
for 24 measurements bounded by less than 2.5% with a 99% confidence interval. The
standard deviation for the skiplist measurements is only slightly higher than that for

ranges of [1,32] and [1, 128] keys, but it is significantly higher for a range of 1024 possible

205



keys, reaching 16%. This suggests an error bound of up to 10% for these measurements.
In particular, this suggests that the fluctuations of the skiplist results with 1024 keys
for high number of threads could be the result of measurements error, and that the
difference in the absolute number of INSERT, DELETE, and CONTAINS operations for 1024
keys between the CTrie and the skiplist is inside the error margin.

The CTrie measurements have standard deviation of about 10% for ranges of [1, 32]
and [1,128] keys (error bounded at 6%), excluding the measurement of the number of
operations done by a single thread while a different thread is constantly performing
iterations. This single test-case yielded a high standard deviation of 18% for 32 keys
and 84%(!) for 128 keys. The results also show that this test case is where the CTrie
performance particularly bad (an overhead of 95% and 98%, and total operations 6
times and 10 times slower than the linked-list, for 32 and 128 keys, respectively). Thus,
its bad performance in this case are coupled with high instability. For a 1024 possible
keys the CTrie is more stable, with standard deviation of up to 8% in the measurements,

suggesting an error bound smaller than 5%.

5.9 Conclusion

In this chapter we added support of lock-free and wait-free iterators for data structures
that support set operations and that adhere to certain constraints. Our technique
is especially adequate for linked-lists and skiplists. The proposed algorithm takes a
snapshot of the data structure, while imposing low overhead on concurrent readers and
writers of the data structure. Once a snapshot is obtained, iterations are run on it.
Our construction supports efficient snapshot taking and iterations for data structures
that previously lacked it, such as linked-list and skiplist. Compared to previous work
by Prokopec et al. [PBBO12] that presented a concurrent trie (CTrie) with support
for a snapshot and iterations, the CTrie provides very fast (constant time) SNAPSHOT
operations, while our construction enables lower overhead for the regular (INSERT,

DELETE, and CONTAINS) set operations.
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Chapter 6

A Practical Transactional

Memory Interface

6.1 Introduction

As discussed in Section 1.5, hardware transactional memory (HTM) is becoming widely
available on modern platforms. However, software using HTM requires at least two
carefully-coordinated code paths: one for transactions, and at least one for when
transactions either fail, or are not supported at all. Such a fall-back path is particularly
important to enable implementations with a progress guarantee.

We present the MCMS interface that allows a simple design of fast concurrent data
structures. MCMS-based code can execute fast when HTM support is provided, but it
also executes well on platforms that do not support HTM, and it handles transaction
failures as well. To demonstrate the advantage of such an abstraction, we designed
MCMS-based linked-list and tree algorithms. The list algorithm outperforms all known
lock-free linked-lists by a factor of up to X2.15. The tree algorithm builds on Ellen
et al. [EFRvB10] and outperforms it by a factor of up to X1.37. Both algorithms are
considerably simpler than their lock-free counterparts.

This chapter is organized is follows. Section 6.2 discusses additional related work to
the work covered in Section 1.5. Section 6.3 formally define MCMS and discusses its
implementation. Section 6.4 presents our MCMS based linked-list algorithm. Section
6.5 gives our MCMS based binary search tree algorithm. In Section 6.6 we discuss
alternatives for a generic fall back execution. Performance measurements are given in

Section 6.7, and we conclude this chapter in Section 6.8.

6.2 Additional Related Work

The search of means for simplifying the design of highly concurrent data structures, and
in particular lock-free ones, has been long and it led to several important techniques and

concepts. Transactional memory [HM93, ST97] is arguably the most general of these; a
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transaction can pack any arbitrary operation to be executed atomically. But the high
efficacy comes with a cost. State of the art software implementations of transactional
memory incur a high performance cost, while hardware support only spans across few
platforms, and usually only provides “best-effort” progress guarantee (e.g., the widely
available Haswell RTM).

MCAS [IR94] is another tool for simplifying the design of concurrent data structures.
It may be viewed as a special case of a transaction. Several CAS-based software
implementations of MCAS exist [HFP02, Sun11] with reasonable performance. A similar,
yet more restrictive primitive is the recent LLX/SCX [BER13]. These primitives enable
to atomically read several words, but write only a single word. Atomically with the
single write, it also allows to finalize other words, which has the effect of blocking
their value from ever changing again. A CAS-based software implementation of these
primitives is more efficient than any available implementation of MCAS, and these
primitives have been shown to be particularly useful for designing trees [BER14]. Yet,
allowing only a single word to be written atomically can be too restrictive: our MCMS
linked-list algorithm, which atomically modifies two different pointers, cannot be easily
implemented this way.

Dragojevic and Harris explored another form of restricted transactions in [DH12].
They showed that by moving much of the “book keeping” responsibility to the user,
and keeping transactions very small, almost all of the overhead of software transactional
memory can be avoided. Using their restricted transactions is more complicated than
using MCAS, and they did not explore hardware transactional memory.

Speculative lock elision [RGO01] is a technique to replace a mutual exclusion lock
with speculative execution (i.e., transaction). This way several threads may execute
the critical section concurrently. If a read/write or a write/write collision occurs, the
speculative execution is aborted and a lock is taken. [BMV™T07] studies the interaction
between transactions and locks and identifies several pitfalls. Locks that are well suited
to work with transactions are proposed in [RHPT07]. Intel’s TSX extension also includes
support of Hardware Lock Elision (HLE). Our MCMS interface lends itself to lock-elision,
and also has the potential to use other fall-back paths, which could be lock-free.

6.3 The MCMS Operation

In this section we specify the MCMS interface, its semantics and implementation. The
semantics of the MCMS interface are depicted in Figure 6.1(left). The MCMS operation
receives three parameters as input. The first parameter is an array of CAS descriptors
to be executed atomically, where each CAS descriptor has an address, an expected
value, and a new value. The second parameter, N, is the length of the array, and
the last parameter C signifies the number of entries at the beginning of the array that
should only be compared (but not swapped). We use a convention that the addresses

that should only be compared and not swapped are placed at the beginning of the array.
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The MCMS Semantics HTM Implementation of the MCMS Operation

Atomically execute: 1: bool MCMS(CASDesc* descriptors, int N ,int C) {
1: bool MCMS (CASDesc* descriptors, int N, int C) { | 2: while (true) {
2: foriin1toN:{ 3: XBEGIN(retry); //an aborted transaction
3:  if (*(descriptors[i].address) != // jumps to the retry label
descriptors[i].expected_val) { 4: foriin1to N:{
4: return false; 5:  if(*(descriptors[i].address) !=
5.} descriptors[i].expected_val) {
6 } 6 XEND();
7: foriin C+1to N:{ 7 return false; } }
8: *(descriptors[i].address) = 8: foriinC+1toN:{
descriptors[i].new_val; 9 *(descriptors[i].address) =
9: } descriptors[i].new_val; }
10: return true; 10: XEND();
11:} 11: return true;

12: retry: // aborted transactions jump here

13: forlin1to N:{

14: if(*(descriptors[i].address) !=
descriptors[i].expected_val) {

15: return false; } } } }

Figure 6.1: The MCMS Semantics (left) and its HTM Implementation (right)

Their associated new value field is ignored.

6.3.1 Implementing MCMS with Hardware Transactional Memory

Intel Haswell Restricted Transactional Memory (RTM) introduces three new instructions:
XBEGIN, XEND, XABORT. XBEGIN starts a transaction and receives a code location to
which execution should branch in case of a transaction abort. XEND announces the end

of a transaction, and XABORT forces an abort.

The implementation of MCMS, given in Figure 6.1(right), is mostly straightforward.
First, begin a transaction. Then check to see that all the addresses contain their
expected value. If not, complete the transaction and return false. If all addresses hold
the expected value, then write the new values, complete the transaction and return true.
If the transaction aborts, restart from the beginning. However, before restarting, read
all the addresses outside a transaction, and compare them to the expected value. If one

of them has a value different than the expected value, return false.

This last phase of comparing after an abort is not mandatory, but has two advantages.
The first is that in case the transaction failed because another thread wrote to one of
the MCMS addresses, then it is possible for the MCMS to simply fail without requiring
an additional transaction. The second advantage is that it handles a problem with page
faults under RTM. A page fault causes a transaction to abort (without bringing the
page). In such a case, simply retrying the transaction repeatedly can be futile, as the
transaction will repeatedly fail without loading the page from the disk. Loading the
addresses between transactions renders the possibility of repeated failures due to page

faults virtually impossible.
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6.3.2 Implementing MCMS without TM support

We also implemented the MCMS operation using the method of Harris et al. [HFP02],
including some optimizations suggested in that paper. As Harris’s algorithm refers to
MCAS, and not MCMS, we used identical expected value and new value for addresses
that are only meant for comparison. The basic idea in Harris’s algorithm is to create
an object describing the desired MCAS, and then use a CAS to try and change each
target address to point to this object if the address holds the expected value. If all
addresses are modified to point to the object this way, then they all can be updated to
hold the new values, otherwise the old values are restored. The full details of [HFP02]
are considerably more complicated, and are not described here.

When the MCMS algorithm reads from an address that might be the target of an
MCAS, it must be able to tell whether that memory holds regular data, or a special
pointer to an MCAS descriptor. In our applications, we were able to steal the two least
significant bits from target fields. For the list algorithm, each target field holds a pointer
to another node, and regular pointer values have zero in those two bits. For the tree
algorithm, each target field holds either a pointer or a binary flag, and we shift the flag
value to the left by two bits.

6.4 The Linked-List Algorithm

We consider a sorted-list-based set of integers, similar to [Har01, FR04, Val95], sup-
porting the INSERT, DELETE, and CONTAINS operations. Without locks, the main
challenge when designing a linked-list is to prevent a node’s next pointer from changing
concurrently with (or after) the node’s deletion. A node is typically deleted by changing
its predecessor to point to its successor. This can be done by an atomic CAS, but such a
CAS cannot by itself prevent an update to the deleted node’s next pointer. For details,
see [Har01].

Harris [Har01] solved this problem by partitioning the deletion of a node into two
phases. In the first phase, the node’s next pointer is marked, by setting a reserved bit
on this pointer. This locks this pointer from ever changing again, but still allows it to
be used to traverse the list. In the second phase, the node is physically removed by
setting its predecessor to point to its successor. Harris uses the pointer least significant
bit as the mark bit. This bit is typically unused, because the next pointer points to an
aligned address.

Harris’s mark bit is an elegant solution to the deletion problem, but Harris’s
algorithm still has some drawbacks. First, when a mark bit is used, traversing the list
requires an additional masking operation to be done whenever reading a pointer. This
operation poses an overhead on list traversals. Second, a thread that fails a CAS (due to
contention) often restarts the list traversal from the list head. Fomitchev and Ruppert

[FR04] suggested a remedy for the second drawback by introducing back-links into the
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linked-list. The back-link is an additional field in each node and it is written during the
node’s deletion.

Fomitchev and Ruppert used three additional fields in each node in excess of the
obligatory key and next pointer fields. Those fields are: the mark bit (similar to Harris),
another flag bit (also adjoined to the next pointer), and a back-link pointer. To delete
a node, a thread first flags its predecessor, then marks the node to be deleted, then
writes the back-link from the node to the predecessor, and finally physically removes
the node (the same CAS that removes the node also clears the flag of the predecessor.)
Due to the overhead of additional CASes, this list typically performs slower in practice
compared to the list of Harris.

To illustrate the simplicity of the MCMS operation we present a new linked-list
algorithm. The MCMS list is simpler, faster (if HTM is available), and does not use any
additional fields on top of the key and next pointer fields. Similarly to Fomitchev and
Ruppert, the MCMS list never needs to start searching from the head on a contention
failure.

The crux of our algorithm is that it uses the atomic MCMS to atomically modify the
node’s next pointer to be a back-link simultaneously with deleting it from the list (see
Figure 6.2(b)). Thus the next pointer points to the next node while the node is in the
list, and acts as a back-link once the node is deleted. Similar to [Har01, FR04, Val95]
and others, we use a sentinel head node with a key of minus infinity, and a tail node
with a key of infinity.

The algorithm is given in Figure 6.2(a)(left), and is surprisingly simple. The SEARCH
method receives three parameters, a key to search for, and pointers to pointers to the
left and right nodes. When the search returns, the pointer fields serves as outputs. The
left node is set to the last node with a key smaller than the given search key. The right
node is set to the first node with a key equal to or greater than the search key. The left
node parameter also serves as in input for the method, and indicates where to start the
search from.

An invariant of the algorithm is that if a node A (which was already inserted to
the list) points to node B, and B’s key is greater than A’s key, then both nodes are
currently in the list. When node B is deleted, modifying its next pointer to point to
A serves two purposes. First, it serves the purpose of the mark bit that ensures any
concurrent operation that might try to modify B’s next pointer will fail, which is vital
to the correctness of the algorithm. Yet, without necessitating a masking operation
before using the next pointer. Second, it establishes a back-link, which other threads
might use to avoid the necessity of redoing the search from scratch. Yet, this back-link
does not necessitate additional fields in the object, nor specific checks before following
this back-link.

Note that our algorithm, unlike the one of Fomitchev and Ruppert, doesn’t require
a separate field for the back link because of the atomicity provided by the MCMS
operation. Without MCMS, it is hard to see how to avoid using two fields. Setting the
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MCMS List: .
1. void search(int key, Node** left,Node** right) { Before:
2. *right = (**left).next; [ ) | H 4 | H . | H 1 | ]

While ((**right).key < key) { . R
*left = *right; The Deleting MCMS: ..o .. \

*right = (**left).next; }} 2 4 7 1
. bool insert(int key) {
Node *left = head; // head is first node in list 2 4 1
9. Node *right;
10. Node *newNode = new Node(key); .
11. While (true) {
12. search(key, &left, &right); (b) The MCMS List Deletion

13. if ((*right).key == key)
e Insert(25)

NV AW

14. return false; // key already exists

15. (*newNode).next = right;

16. if (CAS(&((*left).next), right, newNode))
17.  returntrue; // successfully inserted
18. }}

19.

20. bool delete(int key) {

21. Node* left = head;

22. Node* right;

23. While (true) {

24. search(key, &left, &right)

25. if ((*right).key != key)

26.  return false; // key doesn't exist

27. Node* succ = (*right).next;

28. if (MCMS(<&((*left).next), right, succ>,
29. <&((*right).next), succ, left>))

30. return true; // successfully deleted
31. }}

32.

33. bool contains(int key) {

34. Node *left = head, *right;

35. search(key, &left, &right);

36. return (*right).key == key;

37.} (d) The MCMS Tree Insertion

(a) The MCMS List Code

Figure 6.2: The List and Tree Algorithms

back-link first will cause the list to be unsearchable until the other CAS is completed,
and postponing CAS-ing the back-link to the end of the DELETE operation is not enough

to guarantee a thread never needs to search from the beginning.

6.5 The Binary Search Tree Algorithm

We base our tree algorithm on the binary search tree of Ellen et al. [EFRvB10] (this
tree was shown in [BH11] to outperform both the lock-free skiplist Java implementation
and the lock-based AVL tree of Bronson et al. [BCCO10]). Our tree is also a leaf
oriented tree, meaning all the keys are stored in the leaves of the tree, and each internal
node has exactly two children. However, in their original algorithm, each internal node
stores a pointer to a designated Info object that stores all the information required
to complete an operation. When a thread initiates an operation, it first searches the
tree for appropriate location to apply it. Then it tests the internal node Info pointer

to see whether there is already an ongoing operation, and helps such an operation if
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needed. Then it allocates an Info object describing the desired change, and attempts to
atomically make the appropriate internal node points to this info object using a CAS.
Then, it can proceed with the operation, being aware that it might get help from other
threads in the process.

MCMS allows all changes to take place simultaneously. This saves the algorithm
designer the need to maintain an Info object, and also boosts performance in the
common case, in which an HTM successfully commits. Similarly to a list, a central
challenge in a lock-free binary search tree is to ensure that pointers of an internal node
will not be modified while (or after) the node is deleted (see [EFRvB10] for details).
For this purpose, in the MCMS tree algorithm, each internal node contains a mark bit
(in addition to its key, and pointers to two children). The mark bit is in a separate
field, not associated with any pointer. Leaf nodes contain only a key. Upon deleting an
internal node, its mark bit is set. Each MCMS operation that changes pointers of a
node also reads the mark bit and compares it to zero. If the bit is set, the MCMS will
return false without changing the shared memory, guaranteeing that a deleted node’s
pointers are never mistakenly altered.

In order to avoid corner cases, we initialize the tree with two infinity keys, co; and
009, such that ooy > 0o; > any other value. The root always has the value ocoq its
right child is always ocos and its left child is always oco;. This idea is borrowed from
the original algorithm [EFRvB10]. Both the INSERT and DELETE operations begin by
calling the search method. The search method traverses the tree looking for the desired
key, and returns a leaf (which will holds the desired key if the desired key is in the tree),
its parent, and its grandparent.

To insert a key, replace the leaf returned by the search method with a subtree
containing an internal node with two leaf children, one with the new desired key, and
one with the key of the leaf being replaced (See Figure 6.2 (¢)). An MCMS operation
atomically executes this exchange while guaranteeing the parent is unmarked (hence,
not deleted).

To delete a key, the grandparent pointer to the parent is replaced by a pointer to
the deleted node’s brother (See Figure 6.2 (d)), atomically with setting the parent mark
bit on, marking it as deleted, and guarding against concurrent (or later) changes to its
child pointers. An MCMS instruction also ensures that the grandparent is unmarked,

and that the parent’s child pointers retain their expected value during the deletion.

6.6 Fall-back Execution for Failed Transactions

Formally, transactions are never guaranteed to commit successfully, and spurious failures
may occur infinitely without any concrete reason. Our experimental results show that
such repeated failures are not observed in practice. Nevertheless, we implemented
several fall-back avenues that general algorithms using MCMS may benefit from, and we

briefly overview them here. Each transaction is attempted several times before switching
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. <Node*,Node*,Node*> Search (int key) {
InternalNode *grandParent, *parent;
Node* leaf = root;
While (leaf points to an InternalNode) {

grandParent = parent;

parent = leaf;

if (key < (*leaf).key)

leaf = (*parent).left;
else
leaf = (*parent).right;
retrun (grandParnet, parent, leaf); } }

N~ WN=

12.

13. bool Insert (int key) {

14. InternalNode *parent, *newlInternal;
LeafNode *leaf, *newSibling;

LeafNode* newLeaf = new LeafNode(key);

15.
16.

17. While (true) {
18. <_, parent, leaf> = Search(key);
19.  if ((*leaf).key == key)
20. return false; // key already exists
21.  newSibling = new LeafNode((*leaf)->key);
22.  if (*newSibling).key > (*newlLeaf).key)
23. newlnternal =
new InternalNode(newLeaf,
newSibling, (*newSibling).key);
24. else
25. newlinternal =

new InternalNode(newsSibling,
newLeaf, (*newLeaf).key);
/ find address of pointer from parent to leaf:

26. Node **childPointer;

27. if ((*newlnternal).key < (*parent).key)
28. childPointer = &((*parent).left);

29. else

30. childPointer = &((*parent).right);
/I compare parent mark to 0 and
/I CAS parent pointer to point to newlntren:

31. if (MCMS (<&((*parent).mark) , 0>,

<childPointer, leaf, newinternal>))
32. return true; // successfully inserted.
33. }}

34. bool Delete(int key) {

35. InternalNode *grandParent, *parent;
36. LeafNode* leaf;

37. While (true) {

38. <grandParent, parent, leaf> =

search(key);

39. if ((*leaf).key != key)

40. return false; // key doesn't exist

41. Node** leafPointer; // the pointer from

/Iparent to leaf.

42.  Node** sibling; // the other child pointer
/lof parent.

43.  if ((*parent).key > (*leaf).key) {

44, leafPointer = &((*parent).left);

45. sibling = &((*parent).right); }

46. else{

47. leafPointer = &((*parent).right);

48. sibling = &((*parent).left); }

49.  Node” siblingVal = *sibling;

50. Node** pPointer; // the pointer from
/I grandParent to parent.

51.  if ((*grandParent).key > (*parent).key)

52. pPointer = &((*grandParent).left);

53. else

54. pPointer = &((*grandParent).right);

/I compare gp mark =0,

/I compare leafPointer points to leaf
/I compare sibling points to siblingVal
/I CAS gp to point to sibling

/I CAS parent to be marked

55.  if (MCMS(<&((*grandParent).mark), 0>,
<leafPointer, leaf>,
<sibling, siblingVal>,
<pPointer, parent, siblingVal>,
<&((*parent).mark), 0, 1>))
56. return true; // successfully deleted.
57. }}
58

59. bool Contains(int key) {

60. LeafNode* leaf;
61. <_, _, leaf> = search(key);
62. return (*leaf).key == key; }

Figure 6.3: The

Tree Algorithm
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to a fall-back execution path. The number of retries is a parameter that can be tuned,

denoted MAX_FAILURES.

6.6.1 Using Locking for the Fall-back Path

The idea of trying to execute a code snippet using a transaction, and take a lock if
the transaction fails to commit, is known as lock elision. We add a single integer field,
denoted lock to the data structure. In the HTM implementation of MCMS, before
calling XEND the lock field is read, and compared to zero. If the lock is not zero,
XABORT is called. This way, if any thread acquires the lock (by CASing it to one) all
concurrent transactions will fail. If an MCMS operation fails to commit a transaction
MAX_FAILURES times, the thread tries to obtain the lock by repeatedly trying to
CAS it from 0 to 1 until successful. The MCMS is then executed safely. When complete,
the thread sets the lock back to 0.

Our implementation of lock-elision is slightly different than that of traditional lock-
elision. As described in Section 6.3.1, after each transaction abort we compare each
address to its expected value, and thus in many cases we can return false after a failure

without using any locking or transactions at all.

6.6.2 Non-Transactional MCMS Implementation as a Fall-back Path

Another natural fall-back path alternative is to use the non-transactional MCMS
implementation of Harris et al., described in Section 6.3.2. While this implementation
was proposed for implementing the MCMS on a platform that does not support HTM,
it may also be used as a fall-back when hardware transactions repeatedly fail. Several
threads can execute this implementation of the MCMS operation concurrently. However,
as mentioned in Section 6.3.2, during the execution of the MCMS operations, the
target addresses temporarily store a pointer to a special operation descriptors instead of
their “real” data. This requires a careful test for any read of the data structure, which
unfortunately comes with a significant overhead.

We experimented with several different mechanisms to guarantee that each read
of the data structure is safe. The first mechanism is to always execute the same read
procedure that is applied when MCMS is implemented without TM, as described in
[HFP02]. The second alternative is to use transactions for the reads as well. Instead
of doing a simple read, we can put the read in a transaction, and before executing the
transaction XEND, read a lock field and abort if it does not equal zero. Each thread
that executes a non-transactional MCMS increments the lock before starting it, and
decrements the lock once the MCMS is completed. The reads can be packed into a
transaction in different granularity. One may place each read in a different transaction
and add a read of the lock field; but one may also pack all the reads up to an MCMS
into a single transaction and add a single read of the lock. We tried a few granularities

and found out that packing five reads into a transaction was experimentally optimal.

217



6.6.3 A Copying-Based Fall-back path

A third avenue for implementing a fall-back for failing transactions is copying-based.
Again, a lock field is added. Additionally, a single global pointer which points to the
data structure is added. When accessing the data structure an indirection is added:
the external pointer is read, and the operation is applied to the data structure pointed
by it. As usual, each HTM based MCMS operation compares the lock to zero before
committing, and aborts if the lock is not zero.

Unlike previous solutions, in the copying fall-back implementation the lock is per-
manent, and the current copy of the data structure becomes immutable. After setting
the lock to one, the thread creates a complete copy of the data structure, and applies
the desired operation on that copy. Other threads that observes the lock is set act
similarly. The new copy is associated with a new lock that is initiated to zero. Then,
a CAS attempts an atomic change of the global pointer to point to the newly created
copy instead of the original copy of the data structure (from which it copied the data).
Afterwards, execution will continue as usual on the new copy, until the next time a
thread will fail to commit a transaction MAX_FAILURES times.

6.7 Performance

In this section we present the performance of the different algorithms and variants
discussed in this work. In Figures 6.4 and 6.5 we present the throughput of the list
and tree algorithms compared against their lock-free counterparts. Each line in each
chart represent a different variant of an algorithm. In the micro-benchmarks tested
each thread executes either 50% INSERT and 50% DELETE operations, 20% INSERT, 10%
DELETE, and 70% CONTAINS operations, or a 100% CONTAINS operations. The operation
keys are integers that are chosen randomly and uniformly in a range of either 1-32,
1-1024, or 1-1048576. Before starting each test, a data structure is pre-filled to 50%
occupancy with randomly chosen keys from the appropriate range. Deleted nodes were
not reclaimed.

In all our experiments, we set the number of MAX_FAILURES to be 7. With
this setting, we see MCMS operations that need to complete execution in the fallback
path. Reducing this parameter to 6 causes a (slight) performance degradation in a few
scenarios. We also tested the number of total MCMS transaction aborts, and the number
of MCMS operations that were completed in the fall-back path, when valid. Higher
MAX_FAILURES values yield similar performance, but with almost no executions in
the fall-back path. This makes the measurements less informative, so 7 was chosen.

The measurements were taken on an Intel Haswell i7-4770, with 4 dual cores (overall
8 hardware threads) and 6MB cache size, running Linux Suse. Haswell processors with
more cores that support HTM are currently unavailable. The algorithms were written

in C++ and compiled with GNU C++ compiler version 4.5. In each chart we present
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nine algorithms, as specified in the figures.

The fastest performing algorithm is always the HTM-based MCMS without any
fall-back path. On a range of 1048576 available keys, this list algorithm outperforms
Harris’s by 30-60%; on a range of 1024 available keys, it outperforms by 40-115%, and
on a range of 32 keys, it outperforms by 20-55%. The tree algorithm outperforms the
tree of Ellen et al. by 6-37%. For both data structures the lock-based fall-back path
adds very little overhead, and the corresponding algorithms trail behind the algorithms
without the fall-back path by 1-5%.

The copying fall-back path algorithm also performs excellently for the linked-list.
On average, it performs the same as the lock-based algorithm, with a difference smaller
than half a per cent. This makes the HTM MCMS algorithm with the copying fall-back
path the fastest lock-free linked-list by a wide margin. The copying tree algorithm is not
as good, trailing behind the pure HTM algorithm by about 10%. Yet this algorithm still
beats the lock-free algorithm of Ellen et al. in all number of threads for all benchmarks,
excluding, surprisingly, the benchmark of 100% contains for 32 and 1024 available keys.
This is surprising, because in this benchmark MCMS is not executed at all. We suspect
that the reason is the fact that the search method of the copying based tree receives the
root of the tree as an input parameter. In the pure HI'M algorithm, the root is known
at compile time to be final (never changed once it is allocated), which could allow the
compiler to optimize its reading.

Using a CAS-based MCMS fall-back path does not work as well as the copying or
the lock-based fall-back alternatives. For the list, packing five reads into a transaction
yields reasonable performance, usually beating Harris’s linked list for a lower number of
threads and a larger range of keys (up 20% faster), but trailing up to 40% behind it
for 8 threads in 32 or 1024 keys when the micro-benchmark is 50% INSERTS and 50%
DELETES. Packing all the reads into a single transaction works quite badly for the longer
lists, were the large number of reads causes the vast majority of reading transactions to
abort. It also works badly for a 32 keys range when the benchmark is 50% INSERTS and
50% DELETE. The high number of MCMS transactions combined with read transactions
results in poor performance. For the tree, is at times better and at times worse than
the tree of Ellen et al., and the difference is up to 10%. This holds for the option of

packing all the reads into a single transaction as well.

Aborts and fall-back executions. As expected from the performance results, the
number of MCMS executions that are completed in the fall-back path is low. For
instance, a copying of a list or a tree of 1048576 keys, which one would expect to be
costly, never takes place. On the other end, In a list of 32 keys, for 8 threads, in the
micro-benchmark of 50% INSERTS and 50% DELETES, copying is executed once every
5000 list operations. In a list of 1024, it is never executed. In a tree of 32 keys when
executing with 8 threads, on the 50% INSERTS and 50% DELETES micro-benchmark, a

copying occurs once every 1730 tree operations, and once every 54000 operations for a
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Figure 6.4: MCMS-based lists vs. Harris’s linked-list. The x-axis represents the number
of threads. The y-axis represents the total number of operations executed in a second
(in millions key ranges 32 and 1024, in thousands for key range 1048576.

tree of 1024 keys running 8 threads. In general, note that once an MCMS is executed
in the fall-back path, other MCMS’s may abort as a result of the lock field being set.

6.8 Conclusions

In this work we proposed to use MCMS, a variation of MCAS operation, as an intermedi-
ate interface that encapsulates HT'M on platforms where HTM is available, and can also
be executed in a non-transactional manner when HTM is not available. We established
the effectiveness of the MCMS abstraction by presenting two MCMS-based algorithms,
for a list and for a tree. When HTM is available, these algorithms outperform their
lock-free counterparts. We have also briefly discussed possible “fall-back” avenues for
when transactions repeatedly fail. We have implemented these alternatives, and explored

their performance overhead.
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Chapter 7

Conclusions

In this thesis we presented a significant contribution to the understanding and design of
concurrent data structures, and particularly of wait-free data structures. Prior to our
work, wait-free data structures were considered notoriously hard to design. While wait-
free universal constructions have been known for decades, they only provide theoretical
designs, which are too slow for use in practice.

In fact, prior to our work, the only available practical wait-free data structures were
for the queue and stack abstract data types. Wait-free stack and queue structures are
not easy to design, but they only provide limited parallelism, i.e., a limited number of
contention points (the head of the stack, and the head and the tail of the queue).

This dissertation started with a novel design of the first practical wait-free linked-list.
This list is the first wait-free data structure that can scale to support a large number
of concurrent operations, thanks to the fact that it does not have a limited number of
contention points. Using the fast-path-slow-path methodology, we successfully created a
wait-free linked-list that is just a few percents slower than the best lock-free linked-list.

Our study continued with a generalization of the technique, which offers an easy
wait-free simulation of lock-free data structures. Using our proposed simulation, it
becomes easy to design many wait-free data structures, while paying only a small price
in the overall throughput. As concrete examples, we used our general simulation to
derive fast wait-free skiplist and binary search tree.

Both the wait-free linked-list design and the general wait-free simulation employed
a help mechanism in which some threads help other threads to complete their work.
The help mechanism was the key feature that allowed our constructions to be wait-free.
The next study in this dissertation explored the interaction between wait-freedom and
help. We started by formalizing the notion of help. Next, we presented conditions
under which concurrent data structures must use help to obtain wait-freedom. Natural
examples that satisfy these conditions are a wait-free queue or a wait-free stack.

This contribution is a lower-bound type of result, which sheds light on a key element
that implementations of certain object types must contain. As such, we hope it will

have a significant impact on both research and design of concurrent data structures.
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We believe it can lead to modularity in designs of implementations that are shown to
require a helping mechanism in order to be wait-free, by allowing to pinpoint the place
where help occurs.

With regard to help, a remaining open problem is to find a full characterizations of
the abstract data types that require help to obtain wait-freedom. As a possible interim
step towards the goal of full characterization, we conjecture that perturbable objects
cannot have wait-free help-free implementations when using only READ and WRITE
primitives.

In addition to providing better understanding and implementations of wait-free
data structures, our research also focused on extending the interface that such data
structures often implement. We added support for lock-free and wait-free iterators for
data structures that implement set operations and that adhere to certain constraints.
We used our techniques specifically to obtain wait-free iterators for linked-lists and
skiplists. The proposed technique excels in imposing a very low overhead on concurrent
operations that are applied to the data structure while some threads are iterating over
it.

Finally, we were interested in the question whether lock-free and wait-free data
structures could benefit from the use of hardware transactional memory. Our study
answered this question in the affirmative. We demonstrated that by using an intermediate
interface that encapsulates HTM, but can also be executed in a non-transactional manner,
lock-free data structures can be made not only faster, but also simpler to design. As

examples, we designed a faster lock-free linked-list and a tree.
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Appendix A

A Full Java Implementation of
the Wait-Free Linked List

In this appendix, we give a full Java implementation for the basic wait-free linked-list.
This basic implementation also uses a Versioned AtomicMarkableReference, in which
the reference is associated with a version number for avoiding an ABA problem. A
solution and Java code with no versioning requirement is specified in Appendix B. The
solution there only employs the standard AtomicMarkableReference. The source for the
class Versioned AtomicMarkableReference which implements such versioned pointers is
also given right after the WFList. It is obtained by slightly modifying the code of the
AtomicMarkableReference of Doug Lea.

import java.util.concurrent.atomic.AtomicReferenceArray;
import java.util.concurrent.atomic.AtomicBoolean;

import java.util.concurrent.atomic.AtomicLong;

public class WFList {
enum OpType {insert , search_delete, execute_delete, success, failure,

determine_delete , contains};

private class Window {
public final Node pred, curr;
public Window(Node p, Node c¢) { pred = p; curr = c¢; }

private class Node {
public final int key;
public final VersionedAtomicMarkableReference<Node> next ;
public final AtomicBoolean d;
public Node (int key) {
next = new VersionedAtomicMarkableReference<Node>(null, false);
this.key = key; d = new AtomicBoolean (false);
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private class OpDesc {
public final long phase; public final OpType type;
public final Node node; public final Window searchResult;
public OpDesc (long ph, OpType ty, Node n, Window sResult) {
phase = ph; type = ty; node = n; searchResult = sResult;

}

private final Node head, tail;
private final AtomicReferenceArray<OpDesc> state;

private final AtomicLong currentMaxPhase; // used in maxPhase method

public WFList () {
currentMaxPhase = new AtomicLong(); // used in mazPhase method
currentMaxPhase . set (0) ;

)

head = new Node(Integer .MIN.VALUE); // head’s key is smaller than all
the rests’

tail = new Node(Integer MAXVALUE); // tail’s key is larger than all
the rests’

head .next.set (tail , false); // init list to be empty

state = new AtomicReferenceArray<OpDesc>(Test.numThreads) ;

for (int i = 0; i < state.length(); i++) // state entry for each
thread

state.set (i, new OpDesc(0, OpType.success, null null));

public boolean insert(int tid, int key) {
long phase = maxPhase(); // getting the phase for the op
Node newNode = new Node(key); // allocating the node
OpDesc op = new OpDesc(phase, OpType.insert , newNode,null);
state.set (tid, op); // publishing the operation.
help (phase); // when finished — mno more pending operation with lower
or equal phase

return state.get(tid).type = OpType.success;

public boolean delete(int tid, int key) {
long phase = maxPhase(); // getting the phase for the op.
state.set (tid , new OpDesc(phase, OpType.search_delete , new Node(key),
null));// publishing.
help (phase); // when finished — mno more pending operation with lower
or equal phase
OpDesc op = state.get (tid);
if (op.type = OpType.determine_delete)
// compete on the ownership of deleting this node
return op.searchResult.curr.d.compareAndSet(false, true);

return false;
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private Window search (int key, int tid, long phase) {
Node pred = null, curr = null, succ = null;
boolean [] marked = {false}; boolean snip;

retry : while (true) {

pred = head;
curr = pred.next.getReference(); // advancing curr
while (true) {
succ = curr.next.get(marked); // advancing succ and reading curr.

next ’s mark
while (marked[0]) { // curr is logically deleted a should be

removed
// remove a physically deleted node
snip = pred.next.compareAndSet(curr, succ, false, false);

if (!isSearchStillPending (tid ,phase))
return null; // to ensure wait—freedom.
if (!snip) continue retry; // list has changed, retry
curr = succ; // advancing curr
succ = curr.next.get (marked); // advancing succ and reading curr
.next’s mark
}
if (curr.key >= key) // the curr.key is large enough — found the
window
return new Window(pred, curr);

pred = curr; curr = succ; // advancing pred & curr

private void help (long phase) {
for (int i = 0; i < state.length(); i++) {
OpDesc desc = state.get(i);
if (desc.phase <= phase) { // help all pending operations with a
desc.phase <= phase

if (desc.type = OpType.insert) { // a pending insert operation.
helpInsert (i, desc.phase);
} else if (desc.type = OpType.search_delete

|| desc.type == OpType.execute_delete) { // a pending delete
operation
helpDelete (i, desc.phase);
} else if (desc.type = OpType.contains) { helpContains(i, desc.
phase); }

}

private void helplnsert(int tid, long phase) {
while (true) {
OpDesc op = state.get (tid);
if (!(op.type = OpType. insert && op.phase = phase))

return; // the op is no longer relevant, return

227



Node node = op.node; // getting the node to be inserted

Node node_next = node.next.getReference(); //must read node_next
before search

Window window = search (node.key, tid ,phase); //search a window to
insert the node into

if (window = null) // can only happen if operation is no longer
pending
return;
if (window.curr.key = node.key) { // key exists — chance of a
failure
if ((window.curr = node) || (node.next.isMarked())) {
// the node was already inserted — success

OpDesc success = new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, op, success))
return;
}
else { // the node was not yet inserted — failure
OpDesc fail = new OpDesc(phase, OpType.failure , node, null);
// CAS may fail if search results are obsolete
if (state.compareAndSet(tid, op, fail))
return;

}

else {

if (node.next.isMarked()) { // node was already inserted and
marked (=deleted)

OpDesc success = new OpDesc(phase, OpType.success, node, null);

if (state.compareAndSet(tid, op, success))

return;

}

int version = window.pred.next.getVersion(); // read wversion for
CAS later.

OpDesc newOp = new OpDesc(phase, OpType.insert , node, null);
// the following prevents another thread with obsolete search results
to report failure:
if (!state.compareAndSet(tid, op, newQOp))
continue; // operation might have already reported as failure
node. next.compareAndSet (node_next , window.curr, false, false);
// if successful — than the insert is linearized here
if (window.pred.next.compareAndSet(version, node.next.getReference
(), node, false, false)) {
OpDesc success = new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, newOp, success))

return;

private void helpDelete (int tid, long phase) {
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while (true) {
OpDesc op = state.get(tid);
if (!((op.type = OpType.search_delete || op.type = OpType.
execute_delete)
&& op.phase=—phase))
return; // the op is no longer relevant, return
Node node = op.node; // the node holds the key we want to delete
if (op.type = OpType.search_delete) { // need to search for the
key
Window window = search (node.key,tid ,phase);
if (window=—=null)
continue; // can only happen if operation is mno longer the same
search_delete
if (window.curr.key != node.key) {
// key doesn’t exzist — failure
OpDesc failure = new OpDesc(phase, OpType.failure , node, null);
if (state.compareAndSet(tid, op, failure))

return;
}
else {
// key exists — continue to executre_delete

OpDesc found = new OpDesc(phase, OpType.execute_delete , node,
window ) ;

state.compareAndSet (tid, op, found);

}

else if (op.type = OpType.execute_delete) {
Node next = op.searchResult.curr.next.getReference () ;
if (lop.searchResult.curr.next.attemptMark(next, true)) // mark
the node
continue; // will continue to try to mark it, until it is marked
search (op.node.key, tid ,phase); // will physically remove the node
OpDesc determine =
new OpDesc(op.phase, OpType.determine_delete, op.node, op.
searchResult);
state.compareAndSet(tid, op, determine);

return;

public boolean contains(int tid, int key) {
long phase = maxPhase() ;

Node n = new Node(key);
OpDesc op = new OpDesc(phase, OpType.contains, n, null);
state.set (tid, op);

help (phase);

return state.get(tid).type = OpType.success;
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private void helpContains(int tid, long phase) {
OpDesc op = state.get(tid);
if (!((op.type = OpType.contains) && op.phase=—phase))
return; // the op is no longer relevant, return
Node node = op.node; // the node holds the key we want to find
Window window = search (node.key, tid, phase);
if (window = null)
return; // can only happen if operation is already complete.
if (window.curr.key = node.key) {
OpDesc success = new OpDesc(phase, OpType.success, node, null);
state.compareAndSet (tid , op, success);
}
else {
OpDesc failure = new OpDesc(phase, OpType. failure , node, null);
state.compareAndSet (tid, op, failure);

private long maxPhase() {
long result = currentMaxPhase. get () ;

// ensuring marPhase will increment before this thread next operation
currentMaxPhase . compareAndSet (result , result+1);

return result;

private boolean isSearchStillPending (int tid, long ph) {
OpDesc curr = state.get(tid);

return (curr.type = OpType. insert || curr.type = OpType.
search_delete
|| curr.type = OpType. execute_delete || curr.type = OpType.
contains) &&
curr.phase = ph; // the operation is pending with a phase lower
than ph.

public class VersionedAtomicMarkableReference<V> {

private static class ReferenceBooleanTriplet<T> {
private final T reference;
private final boolean bit;
private final int version;
ReferenceBooleanTriplet (T r, boolean i, int v) {

reference = r; bit = i; version = v;

private final AtomicReference<ReferenceBooleanTriplet<V>> atomicRef;
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public VersionedAtomicMarkableReference(V initialRef , boolean
initialMark) {
atomicRef = new AtomicReference<ReferenceBooleanTriplet<V>> (new
ReferenceBooleanTriplet <V>(initialRef , initialMark ,0));

}

public V getReference () {

return atomicRef.get ().reference;

public boolean isMarked () {
return atomicRef.get (). bit;

public V get (boolean[] markHolder) {
ReferenceBooleanTriplet<V> p = atomicRef.get () ;
markHolder [0] = p. bit;

return p.reference;

public boolean weakCompareAndSet (V expectedReference ,
A\ newReference ,
boolean expectedMark ,
boolean newMark) {

ReferenceBooleanTriplet<V> current = atomicRef. get () ;

return expectedReference = current.reference &&
expectedMark = current . bit &&
((newReference = current.reference && newMark = current. bit)

atomicRef.weakCompareAndSet (current ,

new ReferenceBooleanTriplet <V>(

newReference ,
newMark ,
current . version+1)));
}
public boolean compareAndSet (V expectedReference ,
A\ newReference ,
boolean expectedMark ,
boolean newMark) {
ReferenceBooleanTriplet <V> current = atomicRef.get ();
return expectedReference = current.reference &&
expectedMark = current . bit &&
((newReference = current.reference && newMark = current . bit)

atomicRef.compareAndSet (current ,
new ReferenceBooleanTriplet <V>(
newReference ,

newMark ,
current . version+1)));
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public void set(V newReference, boolean newMark) {
ReferenceBooleanTriplet<V> current = atomicRef.get () ;
if (newReference != current.reference || newMark != current.bit)
atomicRef.set (new ReferenceBooleanTriplet<V>(newReference,

newMark , current . version+1));

}

public boolean attemptMark(V expectedReference, boolean newMark) {
ReferenceBooleanTriplet <V> current = atomicRef.get ();
return expectedReference =— current.reference &&
(newMark = current . bit ||
atomicRef.compareAndSet
(current , new ReferenceBooleanTriplet<V>(expectedReference ,

newMark, current . version+1)

public int getVersion ()

{

return atomicRef.get (). version;

public boolean compareAndSet(int version, V expectedReference, V
newReference, boolean expectedMark, boolean newMark) {

ReferenceBooleanTriplet <V> current = atomicRef.get ();

return expectedReference = current.reference &&
expectedMark = current.bit && version = current.version &&
((newReference = current.reference && newMark = current . bit)

atomicRef.compareAndSet (current ,
new ReferenceBooleanTriplet <V>(
newReference ,
newMark ,

current . version+1)));

}
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Appendix B

Avoiding Versioned Pointers for
the Wait-Free Linked List

In the implementation of the basic wait-free linked-list, we used a versioned pointer
at the next field of each node. While such a solution is the simplest, it requires the
use of a wide CAS. In this appendix we provide a way to avoid the use of versioned
pointers. This solution only uses regular pointers with a single mark bit, similarly to
the original lock-free algorithm by Harris (in Java, this mark bit is implemented via the
AtomicMarkeableReference class). In the basic implementation, we used the CAS of
Line 140 (the line notations correspond to the code in Appendix A), when inserting a
new node into the list. As described in Section 2.3, we need it to avoid the following
ABA problem. Suppose Thread T3 is executing an insert of the key k into the list. It
searches for a location for the insert, it finds one, and gets stalled just before executing
Line 140. While T} is stalled, T5 inserts a different k into the list. After succeeding
in that insert, 75 tries to help the same insert of k£ that 77 is attempting to perform.
T5 finds that k already exists and reports failure to the state descriptor. This should
terminate the insertion that 7} is executing with a failure report. But suppose further
that the other k is then removed from the list, bringing the list back to exactly the same
view as T saw before it got stalled. Now 77 resumes and the CAS of Line 140 actually
succeeds. This course of events is bad, because a key is inserted into the list while a
failure is reported about this insertion. Instead of using a versioned pointer to solve
this problem, we can use a different path. We will mark the node that is about to be
inserted as logically deleted. This way, even if the ABA problem occurs, the node will
never appear in the list. Namely, when failure is detected, we can mark the next pointer
of the node we failed inserting. While this won’t prevent the node from physically being
inserted into the list because of the described ABA problem, it will only be inserted as
a logically deleted node, and will be removed next time it is traversed, without ever
influencing the logical state of the list. However, marking the next field of the node
requires care. Most importantly, before we mark the node, we must be certain that it

was not already inserted to the list (by another thread), and when we mark it, we ought
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to be sure that the operation will be correctly reported as failure (even if the marked
node was later physically inserted). To ensure this, we use a gadget denoted block. The
block is a node with two extra fields - the threadID and the phase of the operation it is
meant to fail. The procedure for a failing insertion is thus as follows. Say an operation
for inserting a node with key 4 is in progress. This node would be called the failing
node. Upon searching the list, a node that contains key 4 was found. This node is the

hindering node.
* Using a CAS, a block will be inserted right after the hindering node.
* The failing node’s next field will be marked.
* The state of the operation will be changed to failure.
* The block will be removed.

By ensuring that a node right before a block (this is the hindering node) cannot be
logically deleted, and that a new node cannot be inserted between the hindering node
and the block, it is guaranteed that when marking the failing node as deleted, a failing
node was not yet inserted into the list (since the block is still there, and thus also the
hindering node). The block’s next field will never be marked, and will enable traversing
the list. The block key will be set to a value that is lower than all possible keys in the
list (can be the same as the head key). This serves two purposes: first, it allows to
differentiate between a regular node and a block (in a strongly typed language such
as Java, this is done differently), and second, it allows the contains method to work
unchanged, without being aware of the existence of blocks, since it will always traverse
past a (node/block) with a smaller key than the one searched for. In Java, the block
looks like this :

private class Block extends Node {
int tid; long phase;
public Block (int tid, long phase) {
super (Integer MIN.VALUE); this.tid = tid; this.phase = phase;
}
}

Upon reaching a block, we need to make sure that the failing node’s next field is
marked, report the operation as failed, and then remove the block. This is done in the

removeBlock method :

private void removeBlock (Node pred, Block curr) {
OpDesc op = state.get (curr.tid);
// both loops are certain to finish after test.numofThreads iterations

(likely sooner)
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while (op.type = OpType.insert && op.phase = curr.phase) {
// mark the node that its insertion is about to be set to failure

while (!op.node.next.attemptMark(op.node.next.getReference(), true))
OpDesc failure = new OpDesc(op.phase, OpType.failure, op.node, null)

state.compareAndSet (curr.tid, op, failure); // report failure
op = state.get(curr.tid);

}
// physically remove the block (if CAS fails , then the block was
already removed)

pred.next.compareAndSet (curr, curr.next.getReference(), false, false);

}

Note that since the presence of a block doesn’t allow certain modifications to the list
until it is removed (such as deleting the hindering node), we must allow all threads to
help remove a block in order to obtain wait-freedom (or even lock-freedom). Accordingly,
the search method plays a role in removing blocks when it traverses them, similarly to
the role it plays in physically removing marked nodes. Thus, the loop in the search

method to remove marked nodes (lines 73-81) should be modified to :

while (marked[0] || curr instanceof Block) {

if (curr instanceof Block) {
removeBlock (pred, (Block)curr);

}

else {
// remove a physically deleted node
snip = pred.next.compareAndSet(curr, succ, false, false);
if (!isSearchStillPending (tid ,phase))

return null; // to ensure wait—freedom

if (!snip) continue retry; // list has changed, retry

curr = succ; // advancing curr
succ = curr.next.get (marked); // advancing succ and reading curr

.next’s mark

}

As mentioned above, we should also make sure that the hindering node will not be
marked while the block is still after it. To ensure that, we modify the part in the
helpDelete method, that handles the execute_delete OpType (lines 172-181) to be :

else if (op.type = OpType.execute_delete) {
Node next = op.searchResult.curr.next.getReference();
if (next instanceof Block) { // cannot delete a node while it is
before a block
removeBlock (op.searchResult.curr, (Block)next);

continue;
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}

if (lop.searchResult.curr.next.attemptMark (next, true)) // mark
the mnode

continue; // will continue to try to mark it, until it is marked
search (op.node.key, tid ,phase); // will physically remove the mnode
OpDesc determine =

new OpDesc(op.phase, OpType.determine_delete , op.node, op.

searchResult);

state.compareAndSet (tid , op, determine);

return;

}

The only thing left is to modify the helpInsert method, so that it will insert a
block upon failure. Some additional care is needed since, in the basic implementation,
observing that the node to be inserted is marked was an indication that the operation
succeeded. Now, it can only be used as such an indication if there is not a hindering
node with block after it that is trying to fail that same operation. Once the block
is removed, the fact that the node’s next field is marked can indeed be used for an
indication of success, since if it was marked because of a block, the fact that the block
was already removed tells us that the operation was already reported as failing in the
state array, and there is no danger it will be mistakenly considered a success. The

modified helpInsert method is as follows :

private void helplnsert(int tid, long phase) {
while (true) {
OpDesc op = state.get(tid);
if (!(op.type = OpType. insert && op.phase =— phase))
return; // the op is no longer relevant, return
Node node = op.node; // getting the node to be inserted
Node node_next = node.next.getReference(); //must read node_next
before search
if (node_next instanceof Block)

{

removeBlock (node, (Block)node_next);

continue;
}
Window window = search (node.key,tid ,phase);//search a window to
insert the node into
if (window = null) // can only happen if operation is no longer
pending
return;
if (window.curr.key = node.key) {// key ezists — chance of a
failure
if ((window.curr = node) || (node.next.isMarked())) {

Node window_succ = window. curr.next.getReference () ;
if (window._succ instanceof Block) {

removeBlock (window. curr , (Block)window_succ);
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continue;
}
// the node was already inserted — success
OpDesc success = new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, op, success))

return;
}
else { // the node was not yet inserted — failure
Node window_succ = window. curr.next.getReference () ;

Block block = new Block(tid, op.phase);
block.next.set (window_succ, false);
// linearization point for failure
if (window.curr.next.compareAndSet(window_succ, block, false,
false))
removeBlock (window. curr, block); // will complete the

operation

}
else {
if (node.next.isMarked()) { // node was already inserted and
marked (=deleted)
OpDesc success = new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, op, success))
return;
}
OpDesc newOp = new OpDesc(phase, OpType.insert , node, null);
// the following prevents another thread with obsolete search results
to report failure:
if (!state.compareAndSet(tid, op, newOp))
continue; // operation might have already reported as failure
node . next.compareAndSet (node_next , window.curr, false, false);
// if successful — than the insert is linearized here
if (window.pred.next.compareAndSet(node.next.getReference (), node,
false, false)) {
OpDesc success = new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, newOp, success))
return;

}

The linearization point of a failing insert operation is now moved to the CAS that
inserts the block. The list is still wait-free, since each thread that comes upon a block

can always remove it in a bounded number of steps.
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Appendix C

The Full Code of the
Fast-Path-Slow-Path Extension
for the Wait-Free Linked-List

import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.atomic. AtomicReference;
import java.util.concurrent.atomic.AtomicReferenceArray;

import java.util.concurrent.atomic.AtomicBoolean;

public class FPSPList implements {
enum OpType {insert , search_delete, execute_delete, success, failure,

determine_delete , contains, update_approximation };

private class Window {
public final Node pred, curr;
public Window(Node p, Node c¢) { pred = p; curr = c¢; }

private class Node {
public final int key;
public VersionedAtomicMarkableReference<Node> next;
public final AtomicBoolean successBit;
public Node (int key) {
this.key = key;
successBit = new AtomicBoolean(false);
// the next field will be initialized later.

private class OpDesc {
public final long phase; public final OpType type;
public final Node node; public final Window searchResult;

239



public OpDesc (long ph, OpType ty, Node n, Window sResult) {
phase = ph; type = ty; node = n; searchResult = sResult;

class HelpRecord {
int curTid; long lastPhase; long nextCheck;
public HelpRecord() { curTid = —1; reset(); }
public void reset () {
curTid = (curTid + 1) % Test.numThreads;
lastPhase = state.get(curTid).phase;
nextCheck = HELPING DELAY ;

private class Approximation {

public Approximation (int size, int tid, long phase) {
this.app_size = size; this.tid = tid; this.phase = phase;

}

final int app-_size;

final int tid; // used to allow safe help

final long phase; // used to allow safe help

private final Node head, tail;

private final AtomicReferenceArray<OpDesc> state;

private final AtomicLong currentMaxPhase;

private final HelpRecord helpRecords[];

private final long HELPINGDELAY = 20;

private final int MAXFAILURES = 20;

private final int width = 128; // an optimization, to avoid false
sharing .

private AtomicReference<Approximation> app; // holds the size
approximation

private final int[] difCouners; // a private size counter for each
thread

private final int soft_threshold = 35; // a thread will try to wupdate
size approxrimation

private final int hard_threshold = 50; // a thread will ask help to

update size approximation

public FPSPList () {
currentMaxPhase = new AtomicLong(); // used in mazPhase method
currentMaxPhase.set (1) ;
head = new Node(Integer .MIN.-VALUE); // head’s key is smaller than all
the rests’
tail = new Node(Integer MAXVALUE); // tail’s key is larger than all

the rests’
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head.next = new VersionedAtomicMarkableReference<Node>(tail , false);//
init an empty list

tail .next = new VersionedAtomicMarkableReference<Node>(tail , false);

state = new AtomicReferenceArray<OpDesc>(Test.numThreads) ;
helpRecords = new HelpRecord[Test.numThreadsxwidth];

for (int i = 0; i < state.length(); i++) { // state & helpRecord
entries for each thread
state.set (i, new OpDesc(0, OpType.success, null, null));
helpRecords [i*xwidth] = new HelpRecord () ;

difCouners = new int[Test.numThreadsxwidth |;

app = new AtomicReference<Approximation>(new Approximation(0, —1, —1))

private void helpIfNeeded (int tid) {
HelpRecord rec = helpRecords[tid+width];
if (rec.nextCheck— == 0) { // only check if help is needed after
HELPING_DELAY times
OpDesc desc = state.get(rec.curTid);
if (desc.phase = rec.lastPhase) { // if the helped thread is on the
same operation
if (desc.type = OpType. insert)
helpInsert (rec.curTid, rec.lastPhase);
else if (desc.type = OpType.search_delete || desc.type = OpType.
execute_delete)
helpDelete (rec.curTid, rec.lastPhase);
else if (desc.type = OpType.contains)
helpContains(rec.curTid, rec.lastPhase);
else if (desc.type =— OpType.update_approximation)
helpUpdateGlobalCounter (rec.curTid, rec.lastPhase);

}

rec.reset ();

public boolean insert(int tid, int key) {
if (updateGlobalCounterIfNeeded (tid, difCouners|[tid+width]))
difCouners[tid*xwidth] = 0;
helpIfNeeded (tid);
int tries = 0;
while (tries++ < MAXFAILURES) { // when tries reaches MAXFAILURES —
switch to slowPath
Window window = fastSearch (key, tid);
if (window = null) {// happens if search failed MAXFAILURES times
boolean result = slowlInsert (tid, key);
if (result)
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difCouners [ tid*width]++;

return result;

}

Node pred = window.pred, curr = window. curr;

if (curr.key = key)

return false; // key exists — operation failed.
else {
Node node = new Node(key); // allocate the node to imnsert

node.next = new VersionedAtomicMarkableReference<Node>(curr, false

if (pred.next.compareAndSet(curr, node, false, false))

return true; // insertion succeeded

}

boolean result = slowlInsert (tid, key);
if (result)
difCouners [tid*width]++;

return result;

public boolean delete(int tid, int key) {
if (updateGlobalCounterIfNeeded (tid, difCouners|[tid+width]))
difCouners [tid*width] = 0;

helpIlfNeeded (tid) ;
int tries = 0; boolean snip;
while (tries++ < MAXFAILURES) { // when tries reaches MAX FAILURES —
switch to slowPath
Window window = fastSearch (key, tid);
if (window = null) {// happens if search failed MAXFAILURES times
boolean result = slowDelete (tid, key);
if (result)
difCouners [tid*width]——;

return result ;

}

Node pred = window.pred, curr = window.curr;
if (curr.key != key) // key doesn’t exist — operation failed
return false;
else {
Node succ = curr.next.getReference () ;
snip = curr.next.compareAndSet(succ, succ, false, true); //
logical delete
if (!snip)

continue; // try again
pred.next.compareAndSet (curr, succ, false, false); // physical
delete (may fail)
boolean result = curr.successBit.compareAndSet(false, true); //
needed for cooperation with slow path
if (result)
difCouners [tid*width]——;
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return result ;

}

boolean result = slowDelete (tid, key);
if (result)
difCouners[tid*width]——;

return result;

final long MaxError = Test.numThreadsxhard_threshold;

public Window fastSearch (int key, int tid) {

long maxSteps = sizeApproximation ()+MaxError;
int tries = 0;

Node pred = null, curr = null, succ = null;
boolean [] marked = {false};

boolean snip;
retry : while (tries++ < MAXFAILURES) { // when tries reaches
MAX FAILURES — return null
long steps = 0;

pred = head;
curr = pred.next.getReference(); // advancing curr
while (true) {

steps—++;

if (steps >= maxSteps)
{
return null;
}
succ = curr.next.get (marked); // advancing succ and reading curr.
next’s mark
while (marked[0]) { // curr is logically deleted a should be
removed
if (steps >= maxSteps)
{
return null;
}
// remove a physically deleted node
snip = pred.next.compareAndSet(curr, succ, false, false);
if (!snip) continue retry; // list has changed, retry
curr = succ; // advancing curr
succ = curr.next.get(marked); // advancing succ and reading curr
.next’s mark
steps—+-+;
}
if (curr.key >= key) // the curr.key is large enough — found the
window
return new Window(pred, curr);

pred = curr; curr = succ; // advancing pred & curr
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}

return null;

private boolean slowlnsert(int tid, int key) {
long phase = maxPhase(); // getting the phase for the op
Node n = new Node(key); // allocating the node
n.next = new VersionedAtomicMarkableReference<Node>(null, false); //
allocate node.next
OpDesc op = new OpDesc(phase, OpType.insert, n,null);
state.set (tid, op); // publishing the operation — asking for help
helpInsert (tid, phase); // only helping itself here
return state.get(tid).type = OpType.success;

private boolean slowDelete (int tid, int key) {
long phase = maxPhase(); // getting the phase for the op
state.set (tid , new OpDesc(phase, OpType.search_delete , new Node(key),
null)); //publishing

helpDelete (tid , phase) ; // only helping itself here
OpDesc op = state.get(tid);
if (op.type = OpType.determine_delete)

// compete on the ownership of deleting this node
return op.searchResult.curr.successBit.compareAndSet(false, true);

return false;

private Window search (int key, int tid, long phase) {
Node pred = null, curr = null, succ = null;
boolean [] marked = {false}; boolean snip;

retry : while (true) {

pred = head;
curr = pred.next.getReference(); // advancing curr
while (true) {
succ = curr.next.get (marked); // advancing succ and reading curr.

next ’s mark
while (marked[0]) { // curr is logically deleted a should be
removed
// remove a physically deleted node
snip = pred.next.compareAndSet(curr, succ, false, false);
if (!isSearchStillPending (tid ,phase))
return null; // to ensure wait—freedom.
if (!snip) continue retry; // list has changed, retry
curr = succ; // advancing curr
succ = curr.next.get (marked); // advancing succ and reading curr
.next’s mark
}
if (curr.key >= key) // the curr.key is large enough — found the
window

return new Window(pred, curr);
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pred = curr; curr = succ; // advancing pred & curr

private void helpInsert (int tid, long phase) {
while (true) {
OpDesc op = state.get(tid);
if (!(op.type = OpType.insert && op.phase = phase))
return; // the op is no longer relevant, return
Node node = op.node; // getting the node to be inserted
Node node_next = node.next.getReference(); //must read node_next
before search
Window window = search (node.key, tid ,phase); //search a window to

insert the mnode into

if (window = null) // can only happen if operation is no longer
pending
return;
if (window.curr.key = node.key) { // key ezxists — chance of a
failure
if ((window.curr = node) || (node.next.isMarked())) {
// the node was already inserted — success

OpDesc success = new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, op, success))
return;
}
else { // the node was not yet inserted — failure
OpDesc fail = new OpDesc(phase, OpType.failure , node, null);
// CAS may fail if search results are obsolete
if (state.compareAndSet(tid, op, fail))

return;

}

else {
if (node.next.isMarked()) { // node was already inserted and
marked (=deleted)
OpDesc success = new OpDesc(phase, OpType.success, node, null);

if (state.compareAndSet(tid, op, success))

return;

}

int version = window.pred.next.getVersion(); // read version for
CAS later.

OpDesc newOp = new OpDesc(phase, OpType.insert , node, null);
// the following prevents another thread with obsolete search
results to report failure:
if (!state.compareAndSet(tid, op, newOp))
continue; // operation might have already reported as failure
node . next .compareAndSet (node_next , window.curr, false, false);

// if successful — than the insert is linearized here

245



if (window.pred.next.compareAndSet(version, node_next, node, false
, false)) {
OpDesc success = new OpDesc(phase, OpType.success, node, null);
if (state.compareAndSet(tid, newOp, success))

return;

private void helpDelete (int tid, long phase) {
while (true) {
OpDesc op = state.get(tid);
if (!((op.type = OpType.search_delete || op.type = OpType.
execute_delete)
&& op.phase=—phase))
return; // the op is no longer relevant, return
Node node = op.node; // the node holds the key we want to delete
if (op.type = OpType.search_delete) { // need to search for the
key
Window window = search (node.key,tid ,phase);
if (window=—null)
continue; // can only happen if operation is mo longer the same
search_delete
if (window.curr.key != node.key) {
// key doesn’t exist — failure
OpDesc failure = new OpDesc(phase, OpType.failure , node, null);
if (state.compareAndSet(tid, op, failure))

return;
}
else {
// key exists — continue to executre_delete

OpDesc found = new OpDesc(phase, OpType.execute_delete , node,
window ) ;

state.compareAndSet(tid, op, found);

}
else if (op.type =— OpType.execute_delete) {
Node next = op.searchResult.curr.next.getReference ();
if (lop.searchResult.curr.next.attemptMark(next, true)) // mark
the mnode
continue; // will continue to try to mark it, until it is marked
search (op.node.key, tid ,phase); // will physically remove the node
OpDesc determine =
new OpDesc(op.phase, OpType.determine_delete, op.node, op.
searchResult) ;
state.compareAndSet (tid , op, determine);

return;
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public boolean contains(int tid, int key) {
long maxSteps = sizeApproximation ()+MaxError;
long steps = 0;
boolean [] marked = {false };
Node curr = head;
while (curr.key < key) { // search for the key
curr = curr.next.getReference();
curr.next.get (marked) ;
if (steps++ >= maxSteps)
return slowContains (tid, key);
}
return (curr.key = key && !marked[0]); // the key is found and is
logically in the list

private boolean slowContains(int tid, int key) {;
long phase = maxPhase() ;
Node n = new Node(key);
OpDesc op = new OpDesc(phase, OpType.contains, n, null);
state.set (tid, op);
helpContains (tid, phase);
return state.get(tid).type = OpType.success;

private void helpContains(int tid, long phase) {

OpDesc op = state.get(tid);

if (!((op.type = OpType.contains) && op.phase=—phase))
return; // the op is no longer relevant, return

Node node = op.node; // the node holds the key we want to find

Window window = search (node.key, tid, phase);

if (window = null)
return; // can only happen if operation is already complete.

if (window.curr.key = node.key) {
OpDesc success = new OpDesc(phase, OpType.success, node, null);
state.compareAndSet (tid, op, success);

}

else {
OpDesc failure = new OpDesc(phase, OpType.failure , node, null);
state.compareAndSet(tid, op, failure);

private long maxPhase() {
long result = currentMaxPhase.get () ;

// ensuring mazPhase will increment before this thread next operation

currentMaxPhase . compareAndSet (result , result+1);

return result ;
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private boolean isSearchStillPending(int tid, long ph) {
OpDesc curr = state.get (tid);

return (curr.type = OpType.insert || curr.type = OpType.
search_delete
|| curr.type = OpType.execute_delete || curr.type = OpType.
contains) &&
curr.phase = ph; // the operation is pending with a phase lower
than ph.

private boolean updateGlobalCounterIfNeeded (int tid, int updateSize) {
if (Math.abs(updateSize) < soft_threshold)
return false; // no update was done.
Approximation old = app.get();
// old.tid != —1 means you cannot update since a help for updating is
currently in action
if (old.tid = -1)
{
Approximation newApp = new Approximation(old.app_size + updateSize ,
-1, —1);
if (app.compareAndSet(old, newApp))
return true; // update happened successfully.
}
if (Math.abs(updateSize) < hard_threshold)
return false; // update failed once, we will try again next
operation .
// need to ask for help in updating the counter, since it reached
hard_threshold
long phase = maxPhase() ;
Node n = new Node(updateSize); // we will use the node key field to
hold the wupdate size needed.
OpDesc desc = new OpDesc(phase, OpType.update_approximation, n, null);
state.set (tid, desc);
helpUpdateGlobalCounter (tid , phase);
// after the help returned, the counter is surely updated.

return true;

private void helpUpdateGlobalCounter(int tid, long phase) {
while (true) {
OpDesc op = state.get(tid);
if (!((op.type = OpType.update_approximation) && op.phase=—phase))
return; // the op is no longer relevant, return
Approximation oldApp = app.get();
if (op != state.get(tid))
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return; // wvalidating op.
if (oldApp.tid != —1) { // some help (maybe this one) is in process
OpDesc helpedTid = state.get (oldApp.tid);
if (helpedTid.phase = oldApp.phase && helpedTid.type = OpType.
update_approximation) {
// mneed to report to the oldApp.tid that its update is completed

OpDesc success = new OpDesc(helpedTid.phase, OpType.success,
helpedTid .node, null);
state.compareAndSet (oldApp.tid, helpedTid, success);
}
// now we are certain the success has been reported, clean the
approzxzimation field .
Approximation clean = new Approximation(oldApp.app._size, —1, —1);
app.compareAndSet (oldApp, clean);

continue;

}

int updateSize = op.node.key; // here we hold the updateSize

Approximation newApp = new Approximation(oldApp.app-sizetupdateSize
tid , phase);

app . compareAndSet (oldApp, newApp);

private long sizeApproximation () {

return app.get().app-size;
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Appendix D

The Wait-Free Queue Used in the
Wait-Free Simulation

In the simulation given in Chapter 3, we rely on a wait-free queue supporting the
operations enqueue, peek and conditionally-remove-head, rather then enqueue and
dequeue as given in [KP11]. Adjusting the queue from [KP11] to our needs was a very
easy task. The java implementation of the adjusted queue that we used is provided

here.

import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicReference;

import java.util.concurrent.atomic.AtomicReferenceArray ;

public class WFQueueAd<V> {

class Node {

public V value;

public AtomicReference<Node> next;

public int enqTid;

public AtomicInteger deqTid;

public Node (V val, int etid) {
value = val;
next = new AtomicReference<Node>(null);
enqTid = etid;
deqTid = new AtomicInteger(—1);

protected class OpDesc {
public long phase;
public boolean pending;
public boolean enqueue;
public Node node;
public OpDesc (long ph, boolean pend, boolean enq, Node n) {
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phase = ph;
pending = pend;
enqueue = eng;

node = n;

protected AtomicReference<Node> head, tail;
protected AtomicReferenceArray<OpDesc> state;

public Atomiclnteger enqed = new AtomiclInteger (0);

public AtomicIlnteger deqed = new Atomiclnteger (0);

public WFQueueAd () {

Node sentinel = new Node(null, -1);
head = new AtomicReference<Node>(sentinel);
tail = new AtomicReference<Node>(sentinel);

state = new AtomicReferenceArray<OpDesc>(Test.numThreads);

for (int i = 0; i < state.length(); i++) {
state.set (i, new OpDesc(—1, false, true, null));

public void enq(int tid, V value) {
long phase = maxPhase() + 1;
state.set (tid ,
new OpDesc(phase, true, true, new Node(value, tid)));
help (phase) ;
help_finish_enq () ;

public V peekHead () {
Node next = head.get () .next.get ();
if (next = null)
return null;

return next.value;

public boolean conditionallyRemoveHead (V expectedValue) {

Node currHead = head.get () ;

Node next = currHead.next.get () ;

if (next = mnull || !next.value.equals(expectedValue))
return false;

if (head.compareAndSet(currHead, next)) {
help_finish_enq () ;
currHead . next.set (null);

return true;
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else
return false;

protected void help(long phase) {
for (int i = 0; i < state.length(); i++) {
OpDesc desc = state.get(i);
if (desc.pending && desc.phase <= phase) {
if (desc.enqueue) {
help_enq (i, phase);

protected void help_enq(int tid, long phase) {
while (isStillPending (tid, phase)) {
Node last = tail.get();
Node next = last.next.get();
if (last = tail.get()) {
if (next = mnull) {
if (isStillPending(tid, phase)) {
if (last.next.compareAndSet
(next, state.get(tid).node)) {
help_finish_enq () ;

return;

}
} else {

help_finish_enq () ;

protected void help_finish_enq () {
Node last = tail.get();
Node next = last.next.get();
if (next != null) {
int tid = next.enqTid;
OpDesc curDesc = state.get(tid);
if (last = tail.get() && state.get(tid).node = next) {
OpDesc newDesc = new OpDesc
(state.get(tid).phase, false, true, next);
state.compareAndSet (tid , curDesc, newDesc);

tail.compareAndSet (last , next);
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protected long maxPhase() {
long maxPhase = —1;
for (int i = 0; i < state.length(); i++) {
long phase = state.get(i).phase;
if (phase > maxPhase) {

maxPhase = phase;

}

return maxPhase;

protected boolean isStillPending (int tid, long ph) {
return state.get(tid).pending &&
state.get(tid).phase <= ph;
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Appendix E

Implementing a Contention
Failure Counter in the Presence

of Infinite Insertions

A somewhat hidden assumption in the fast-path-slow-path technique (and consequently,
in the simulation presented in Chapter 3 as well), is the ability to be able to identify
effectively when a thread fails to complete an operation due to contention. Failing to
recognize contention will foil wait-freedom, as the relevant thread will not ask for help.
Counting the number of failed CAses is generally a very effective way of identifying
contention. However, it is not always enough. For example, in the binary search tree,
a thread may never fail a CAS, and yet be held forever executing auxiliary CAses for
other threads’ operations. Identifying such a case is generally easy. For the binary tree

algorithm, we did so by counting invocations of the parallelizable help methods.

However, there is one problem that often presents a greater difficulty. We refer to
this problem as the infinite insertions problem. This is a special case in which a thread

in a lock-free algorithm may never complete an operation and yet never face contention.

Consider what happens when a data structure keeps growing while a thread is trying
to traverse it. For example, consider what happens in a linked-list, if while a thread
tries to traverse it to reach a certain key, other threads keep inserting infinitely many
new nodes before the wanted key. The thread might never reach the needed key. The
complexity of searching the key in this case is linear at the size of the list, but this size
keeps growing. If the list size is some how limited (for example, if all the keys in the list
must be integers), then this cannot go on forever, and eventually the traversing thread
must reach the key it seeks (or discover it is not there). Such a bound on the size of the
data structure can be used to assert for the wait-freedom of some of the algorithms we
have discussed in Chapter 3, but it provides a rather poor bound for the wait-freedom
property, and it cannot at all be used at some cases. (Such as in a list that employs

strings, instead of integers, as keys.)
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To implement a contention failure counter that is robust to this problem, we offer
the following mechanism to enable a thread to identify if the data structure is getting
larger while it is working on it. The idea is that each thread will read a field stating the
size of the data structure prior to traversing. For example, in a list, a skiplist or a tree,
it can read the number of nodes of the data structure. During the operation, it will
count how many nodes it traverses, and if the number of traversed nodes is higher than
the original total number of nodes (plus some constant), it will abort the fast-path and
will ask for help.

However, a naive implementation of this basic idea performs poorly in practice, since
maintaining the exact number of nodes in a wait-free manner can be very costly. Instead,
we settle for maintaining a field that approximates the number of keys. The error of the
approximation is bounded by a linear function of the number of threads operating on
the data structure. Thus, before a thread starts traversing the data structure, it should
read the approximation, denoted S1ZE-APP, and if it traverses a number of nodes that
is greater than S1ZE-APP + MAX-ERROR + CONST, switch to the slow path and ask
for help.

To maintain the approximation for the number of nodes, the data structure contains
a global field with the approximation, and each thread holds a private counter. In
its private counter, each thread holds the number of nodes it inserted to the data
structure minus the number of nodes it deleted from it since the last time the thread
updated the global approximation field. To avoid too much contention in updating the
global field, each thread only attempts to update it (by a CAS) once it reaches a certain
soft_threshold (in absolute value). If the cAs failed, the thread continues the operation
as usual, and will attempt to update the global approximation field at its next insert or
delete operation. If the private counter of a thread reaches a certain hard_threshold, it
asks for help in updating the global counter. This is done similarly to asking help for
other operations: it should enqueue a request into the help-queue. The input for the
operation of UPDATEGLOBALCOUNTER is an integer stating the required adjustment.
The Generator method here is reading the global counter, and then output a single CAS
description, describing a CAS that alters the old counter value with the wanted new one.
The WRAP-UP METHOD exits the operation if the CAS succeeded, or indicates that the
operation should be restarted if the cas failed!. Such an approximation of the size of
the data structure can be maintained very cheaply, and is enough to solve the problem

of the infinite insertions.

In essence, we have just described the normalized lock-free algorithm for a shared counter.

256



Bibliography

[AACH12] James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic

[AAD+93]

[ADT95]

[AK99)

[AK00]

[AMO99]

[And94]

[AST09]

[Bar93]

concurrent data structures from monotone circuits. J. ACM, 59(1):2:1—
2:24, March 2012.

Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt,
and Nir Shavit. Atomic snapshots of shared memory. J. ACM,
40(4):873-890, September 1993.

Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast
(extended abstract). In Proceedings of the Twenty-Seventh Annual
ACM Symposium on Theory of Computing, 29 May-1 June 1995, Las
Vegas, Nevada, USA, pages 538-547, 1995.

James H. Anderson and Yong-Jik Kim. Fast and scalable mutual
exclusion. In Distributed Computing, 15th International Symposium,
Bratislava, Slavak Republic, September 27-29, 1999, Proceedings, pages
180-194, 1999.

James H. Anderson and Yong-Jik Kim. Adaptive mutual exclusion
with local spinning. In Distributed Computing, 14th International
Conference, DISC 2000, Toledo, Spain, October 4-6, 2000, Proceedings,
pages 29-43, 2000.

James H. Anderson and Mark Moir. Universal constructions for large
objects. IEEE Trans. Parallel Distrib. Syst., 10(12):1317-1332, 1999.

James H. Anderson. Multi-writer composite registers. Distributed
Computing, 7(4):175-195, 1994.

Yehuda Afek, Nir Shavit, and Moran Tzafrir. Interrupting snapshots
and the javat™ size() method. In Distributed Computing, 23rd In-
ternational Symposium, DISC 2009, Elche, Spain, September 23-25,
2009. Proceedings, pages 78-92, 2009.

Greg Barnes. A method for implementing lock-free shared-data struc-
tures. In SPAA, pages 261-270, 1993.

257



[BCCO10]

[BER13]

[BER14]

[BH11]

[BKP13]

[BMV+07]

[CER10]

[CIR12]

Nathan Grasso Bronson, Jared Casper, Hassan Chafi, and Kunle
Olukotun. A practical concurrent binary search tree. In Proceedings
of the 15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPOPP 2010, Bangalore, India, January
9-14, 2010, pages 257-268, 2010.

Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives
for non-blocking data structures. In ACM Symposium on Principles
of Distributed Computing, PODC 13, Montreal, QC, Canada, July
22-24, 2013, pages 13-22, 2013.

Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for
non-blocking trees. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’1}, Orlando, FL, USA,
February 15-19, 2014, pages 329-342, 2014.

Trevor Brown and Joanna Helga. Non-blocking k-ary search trees.
In Principles of Distributed Systems - 15th International Conference,
OPODIS 2011, Toulouse, France, December 13-16, 2011. Proceedings,
pages 207-221, 2011.

Anastasia Braginsky, Alex Kogan, and Erez Petrank. Drop the anchor:
lightweight memory management for non-blocking data structures. In
25th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’13, Montreal, QC, Canada - July 23 - 25, 2013, pages 33-42,
2013.

Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D.
Hill, Michael M. Swift, and David A. Wood. Performance pathologies
in hardware transactional memory. In 34th International Symposium
on Computer Architecture (ISCA 2007), June 9-13, 2007, San Diego,
California, USA, pages 81-91, 2007.

Phong Chuong, Faith Ellen, and Vijaya Ramachandran. A universal
construction for wait-free transaction friendly data structures. In
SPAA 2010: Proceedings of the 22nd Annual ACM Symposium on
Parallelism in Algorithms and Architectures, Thira, Santorini, Greece,
June 13-15, 2010, pages 335-344, 2010.

Tyler Crain, Damien Imbs, and Michel Raynal. Towards a universal
construction for transaction-based multiprocess programs. In Dis-
tributed Computing and Networking - 13th International Conference,
ICDCN 2012, Hong Kong, China, January 3-6, 2012. Proceedings,
pages 61-75, 2012.

258



IDH12]

[EFRvB10]

[EHS12]

[FKO7]

[FKO09]

[FK11]

[FLMS05]

[FLPS5]

[FROA]

Aleksandar Dragojevic and Tim Harris. STM in the small: trading
generality for performance in software transactional memory. In Eu-
ropean Conference on Computer Systems, Proceedings of the Seventh
EuroSys Conference 2012, EuroSys ’12, Bern, Switzerland, April
10-13, 2012, pages 1-14, 2012.

Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van
Breugel. Non-blocking binary search trees. In Proceedings of the 29th
Annual ACM Symposium on Principles of Distributed Computing,
PODC 2010, Zurich, Switzerland, July 25-28, 2010, pages 131-140,
2010.

Faith Ellen, Danny Hendler, and Nir Shavit. On the inherent se-
quentiality of concurrent objects. SIAM J. Comput., 41(3):519-536,
2012.

Panagiota Fatourou and Nikolaos D. Kallimanis. Time-optimal, space-
efficient single-scanner snapshots & multi-scanner snapshots using
CAS. In Proceedings of the Twenty-Sizth Annual ACM Symposium on
Principles of Distributed Computing, PODC 2007, Portland, Oregon,
USA, August 12-15, 2007, pages 33-42, 2007.

Panagiota Fatourou and Nikolaos D. Kallimanis. The redblue adaptive
universal constructions. In Distributed Computing, 25rd International
Symposium, DISC 2009, Elche, Spain, September 23-25, 2009. Pro-
ceedings, pages 127-141, 2009.

Panagiota Fatourou and Nikolaos D. Kallimanis. A highly-efficient
wait-free universal construction. In SPAA 2011: Proceedings of the
23rd Annual ACM Symposium on Parallelism in Algorithms and
Architectures, San Jose, CA, USA, June -6, 2011 (Co-located with
FCRC 2011), pages 325-334, 2011.

Faith Ellen Fich, Victor Luchangco, Mark Moir, and Nir Shavit.
Obstruction-free algorithms can be practically wait-free. In Dis-
tributed Computing, 19th International Conference, DISC 2005, Cra-
cow, Poland, September 26-29, 2005, Proceedings, pages 78-92, 2005.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Im-
possibility of distributed consensus with one faulty process. J. ACM,
32(2):374-382, April 1985.

Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip
lists. In Proceedings of the Twenty-Third Annual ACM Symposium

259



[Gre02]

[Har01]

[Hers3]

[Her90]

[Her91]

[Her93]

[HFP02]

[HHL*05]

[HLMMO5]

on Principles of Distributed Computing, PODC 2004, St. John’s,
Newfoundland, Canada, July 25-28, 2004, pages 50-59, 2004.

Michael Greenwald. Two-handed emulation: how to build non-
blocking implementation of complex data-structures using DCAS.
In Proceedings of the Twenty-First Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2002, Monterey, California,
USA, July 21-24, 2002, pages 260-269, 2002.

Timothy L. Harris. A pragmatic implementation of non-blocking
linked-lists. In Distributed Computing, 15th International Conference,
DISC 2001, Lisbon, Portugal, October 3-5, 2001, Proceedings, pages
300-314, 2001.

Maurice P. Herlihy. Impossibility and universality results for wait-
free synchronization. In Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages
276-290, 1988.

Maurice Herlihy. A methodology for implementing highly concurrent
data structures. In Proceedings of the Second ACM SIGPLAN Sym-
posium on Princiles € Practice of Parallel Programming (PPOPP),
Seattle, Washington, USA, March 14-16, 1990, pages 197-206, 1990.

Maurice Herlihy. Wait-free synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124-149, January 1991.

Maurice Herlihy. A methodology for implementing highly concurrent
objects. ACM Trans. Program. Lang. Syst., 15(5):745-770, 1993.

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-
word compare-and-swap operation. In Distributed Computing, 16th
International Conference, DISC 2002, Toulouse, France, October
28-30, 2002 Proceedings, pages 265—-279, 2002.

Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William
N. Scherer III, and Nir Shavit. A lazy concurrent list-based set
algorithm. In Principles of Distributed Systems, 9th International
Conference, OPODIS 2005, Pisa, Italy, December 12-14, 2005, Re-
vised Selected Papers, pages 3—-16, 2005.

Maurice Herlihy, Victor Luchangco, Paul A. Martin, and Mark Moir.
Nonblocking memory management support for dynamic-sized data
structures. ACM Trans. Comput. Syst., 23(2):146-196, 2005.

260



[HM93)

[HS08]

[HW90]

[IR94]

[Jay05]

[JTTO0]

[KP11]

[KP12]

[Lam74]

[Lam87]

[MA95)]

Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Ar-
chitectural support for lock-free data structures. In Proceedings of
the 20th Annual International Symposium on Computer Architecture.
San Diego, CA, May 1993, pages 289-300, 1993.

Maurice Herlihy and Nir Shavit. The art of multiprocessor program-

ming. Morgan Kaufmann, 2008.

Maurice Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Trans. Program. Lang.
Syst., 12(3):463-492, 1990.

Amos Israeli and Lihu Rappoport. Disjoint-access-parallel imple-
mentations of strong shared memory primitives. In Proceedings of
the Thirteenth Annual ACM Symposium on Principles of Distributed
Computing, Los Angeles, California, USA, August 14-17, 199/, pages
151-160, 1994.

Prasad Jayanti. An optimal multi-writer snapshot algorithm. In Pro-
ceedings of the 87th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, pages 723-732, 2005.

Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower
bounds for nonblocking implementations. SIAM J. Comput., 30(2):438-
456, 2000.

Alex Kogan and Erez Petrank. Wait-free queues with multiple en-
queuers and dequeuers. In Proceedings of the 16th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming,
PPOPP 2011, San Antonio, TX, USA, February 12-16, 2011, pages
223-234, 2011.

Alex Kogan and Erez Petrank. A methodology for creating fast wait-
free data structures. In Proceedings of the 17th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPOPP
2012, New Orleans, LA, USA, February 25-29, 2012, pages 141-150,
2012.

Leslie Lamport. A new solution of dijkstra’s concurrent programming
problem. Commun. ACM, 17(8):453-455, August 1974.

Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans.
Comput. Syst., 5(1):1-11, 1987.

Mark Moir and James H. Anderson. Wait-free algorithms for fast,
long-lived renaming. Sci. Comput. Program., 25(1):1-39, 1995.

261



[Mic02]

[Mic04]

[MS96]

[NSM13]

[PBBO12

[P1o89)

[RCGO1]

[RHP07]

[RST95]

Maged M. Michael. High performance dynamic lock-free hash tables
and list-based sets. In Proceedings of the fourteenth annual ACM
symposium on Parallel algorithms and architectures, SPAA ’02, pages
73-82, New York, NY, USA, 2002. ACM.

Maged M. Michael. Hazard pointers: Safe memory reclamation for
lock-free objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491-504,
2004.

Maged M. Michael and Michael L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In Pro-
ceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing, Philadelphia, Pennsylvania, USA, May 23-26,
1996, pages 267-275, 1996.

Aravind Natarajan, Lee Savoie, and Neeraj Mittal. Concurrent wait-
free red black trees. In Stabilization, Safety, and Security of Distributed
Systems - 15th International Symposium, SSS 2013, Osaka, Japan,
November 13-16, 2013. Proceedings, pages 45—60, 2013.

Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and
Martin Odersky. Concurrent tries with efficient non-blocking snap-
shots. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP 2012, New
Orleans, LA, USA, February 25-29, 2012, pages 151-160, 2012.

S. A. Plotkin. Sticky bits and universality of consensus. In Proceedings
of the Eighth Annual ACM Symposium on Principles of Distributed
Computing (PODC), pages 159-175, 1989.

Ravi Rajwar and James R. Goodman. Speculative lock elision: en-
abling highly concurrent multithreaded execution. In Proceedings
of the 34th Annual International Symposium on Microarchitecture,
Austin, Texas, USA, December 1-5, 2001, pages 294-305, 2001.

Christopher J. Rossbach, Owen S. Hofmann, Donald E. Porter,
Hany E. Ramadan, Bhandari Aditya, and Emmett Witchel. Txlinux:
using and managing hardware transactional memory in an operating
system. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA,
October 14-17, 2007, pages 87-102, 2007.

Yaron Riany, Nir Shavit, and Dan Touitou. Towards A practical
snapshot algorithm. In ISTCS, pages 121-129, 1995.

262



[Rup00]

[STY7]

[Sunll]

[Tau09]

[TBKP12]

[TP14]

[Val95]

Eric Ruppert. Determining consensus numbers. STAM J. Comput.,
30(4):1156-1168, 2000.

Nir Shavit and Dan Touitou. Software transactional memory. Dis-
tributed Computing, 10(2):99-116, 1997.

Hakan Sundell. Wait-free multi-word compare-and-swap using greedy
helping and grabbing. International Journal of Parallel Programming,
39(6):694-716, 2011.

Gadi Taubenfeld. Contention-sensitive data structures and algorithms.
In Distributed Computing, 23rd International Symposium, DISC 2009,
Elche, Spain, September 23-25, 2009. Proceedings, pages 157171,
2009.

Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank.
Wait-free linked-lists. In Principles of Distributed Systems, 16th
International Conference, OPODIS 2012, Rome, Italy, December
18-20, 2012. Proceedings, pages 330-344, 2012.

Shahar Timnat and Erez Petrank. A practical wait-free simulation
for lock-free data structures. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPOPP), pages
357-368, 2014.

John D. Valois. Lock-free linked lists using compare-and-swap. In
Proceedings of the Fourteenth Annual ACM Symposium on Principles
of Distributed Computing, Ottawa, Ontario, Canada, August 20-23,
1995, pages 214-222, 1995.

263






LDNNR OONN DY OMNTPNN NN IVARD NN NNPOON IUR 10V NDWHN NNnovn Dy Naon
DY ,072aPNn NN AN HY DA DV YVXIP DT NN NMYY N DY, wNnan 19IN2
IRNNY VNI PHIYN 19N NIPNY RO

D27NYN NN TRPHN .NINHNNN YOIN PAD NRY PAVY IWPN DY P1T01 ONNDNS IPNND DONY DN
PR RYDN DY PNND AYWARD 1D 7 INNNN YOIN NNVIAND 1PNIAON NN NRY ONN :NYNRYA
NITHINNY MNONT NRYD DIYIV DX .DNRYN IVIND TPONNND NITHIN DY Nysn Dy DYNNn
DN NN 1PN INND AN DY NYDPNN IPDOINIVIND IYWONN NN DNNIN ORNINON
VIDYY 27NN NINKNNNK SWIN DINNI 220N DY vIn Y5 0NAY TWN DPYNHN DY MNON 0NN
DN NN IVN TN D LM NIDNN 1N TRY DI¥I19) DDV OYDID YN DPpwnn NNyl

NITY NOD DY NMINNNN SWAN NINY 19IND VI DNDNY) TUNR DPYNN D) WV

MOYON

M2Y92 OOMNY NP DPYAN 77 1229NX IN ,MINKNNN DPYIN DINN) 1IN NI PRY VYND
132N TINA OXVINIRN MND DY N0 1D, 02NN MIAN YW H1ANN DY ONIITY YN MYNT IUN
PP ION JND MDY OO 191N L(MPXIVIR) NIANN DY DPDDIN PN DY 12PN IN NN

LDONNIN AN DY TMVN NINNN DAPY Y JN) DN VIDMID TN MOV

231 NINNNN PWAIN NVIVN NIN NN RN IPNNRN NTIAY DY NNN ARIND DPMYNRYHN DMIND
YNND MNTOY YSINN INONI DVNNYN DN .INAPN YNNI DOMN YN DN AN May
DMIVOND YD OTIP NDNIN ,MOIVIND NN PYND T .0NDT NIV NAWVIPN NNYYID MVIVIN
N, NMOIVN PIDD DR, TPMOND NNNNN NN .DNMN 1IN DY TMMILN 2NN NNNN NNPO

132103 OXVINHRN 90N NR NIDY

HNTPNN NINVAN DY DINI IINT NPNPIIN0 P99 NNY

D TaYND MIANIN NPNN DVIN ,ININNRD IDX2PN NMIDNA RDIN IV 7PN TN NIPIPIITIO PION
NOVW 1IONNY WPV MDD NND PYLANT DY IPNPHI0 NI DY NmIN MYDI1D YN DY
PV DTAYNN D PN P NNYP RN DI0IN ,TPYNT 2IPNPTI0 PIOR VIY muyd
JPNPTIN0N DY NNONND NNV KD TR 20V YOINRD (NOY DY NDDIAN NR»PN NIIND ,NNDY

Y)Y NPNPIVY NIPNY IMON D1DDN D) PODI ¥ IPKPIII0 )NID% DY Tiayd > 1D 100

NIVIND VIDPYW NIYVARND TUN MIDN NHPTID NN R IPNN NTIAY YW ININND TIIN ImIND
TOIN NPX NIYAND MWD TSN 1D, D020 NN AYUND 7PMNIT I TIN IPXPHI0 PO
DOWNN NN I NIVNY T NN DD DPRY DXTIYN DY D) D PIAD DN D) MTYY
DVIYY VIO NDANPNN D»YIAN NS .0»»2 NYYH TINA IPIPHIVN PNIORN OV DD
D PN VDY NVIY NOVW VI  NNMP NPRNNND NIDIND TUND 2IPXPIII0 PNIDRI VDY
NYMNHD DYDY G D910 1OV D»IAN N2 ,DMIDN DIPNA NN NPNX NIMIND IUND
NN NOMN 1 NNON VTN 9N MOV NPNPTIIVY NIPHNL 29N 550N 0) TOMNY 19N

INTPNN NNVIANA DOMIN YN DXNNI AN NIAY D) DINNND 1OV NNITIN VI

iii



NOYP ANPN KD ,NINNNN YAOIN NP2 DPTHN MNTPNNN NNVIAN DY PDAPN NIVIPH NI
ININNY TY

DIIMOND .MINNNN NPYVINM 1PV NN TPD2APN NNPYI NN N IPNN DY NNYNRIN NMINN
Y NAtY2 VIV TIN IMNX 22N ,OIND NIND 1PDAPN NPYI DY ONINON DY DDANN 1OV
O2ONNNY MLIANY ON 12322 OMOINN OMIDVN OPYPN  .NINNNN PWNIND IMN TIdND NN
INYNN) MR NINN 1PN ,TA52 DNN DY ,NO) 19INT DY NI 9D Y8 NRY DIPIYNY
N ION OPVUP DY MTTINNN .ONOX YIN TONNN SV INDIYS DNN NONYD DNNNA (KD N

257 Nnwn

oY PON"DIDUNTPAN"DDDN NV MYNNINI NIIPND IDYIN IR DI9YN DR 10N INNY
NN IR ,DIND DY NPWID DN DYNIY DN PYND ,INY 1PN NPNND NN TI9ND NN
2190102 NTIAY RN PVNR"NIDDNPIN-DDDN NV NPV AP N MNTPNN NNVIAN NN
200NY TayNa TMND NNT OY THN L(NDYIN YaIN) ANy IYON MNTPNN NNVIAN NIV PN

NATIN DY NNY PR MNTPNNN IYNRD ,MINNNN YN TNV INY YON

N9V OHYOIN DINNI 2N MINNN NMYIIN ISHNID NPV

29510 MOIN ,NIVIPNN NNXYIN MY IPYYY DY NYN TOIN DX PN NIN DOV XN 2IOVN
NN DIIPHNN DDOYIN MIAY IPVYY POINN .O0PAPN DONN) NIAN DY 2N NNV NIAY NN
2P YIND WPYND L(NDYIN YAIN) NP NYON MNTPNN NNVIAN YNHY DNNY MDY NNND
P23 DY NWY NIN HY GO YHIRND WPYND TR, NINNNN VAN PYND NN DY 1O NY NN
“5100N NVXWIA NN MAN N SVINR™IDON™PNIN"O0N NV DNIVPINONN MY DY Dy
PI2IDA YD IDIPY T YOIRM PNNN 21DONN DX PIND W :OP TOHNN MIPR POINR"IDDN~PNN
2% 103 NINY DONN) 132N NN TPO0N ARNINNY NIN-OY NN NN IMN DY My

NNNN HVHIN

NN NIPNY N T DY O) IO ONI INDND JOINI MYYND D120 M POINN 95 ORN DYNIWY DN
DITY 1IN POY 200D YN ,NDYIN WAIN DINN) NIAN JNPNA ORN DOYNIV DX ,I0105 .0INNa
021NN MM P2 20N 2ADYH YUMIVIN 19INA TN ,NINNNN PWANN DXNNI 1IN PYND NI DY 15

SON"YONTPNN"DODN NVIYA NINNNNY PWAIND T2NNIN NIAN DY NDYIN SWIINN

ND D IPNND NTIAY DY 1IVN NIVNN DMAINN AN NN T NINRYD N2IVNNY DRI DN
o) DY 0) NINY NN NMIAND NDYIN WAHN NN NN NN YR YOMOVIX NINN TONN
LNNNN YN

MNNN YINT DY AV wWph Dy

TPNOINON NP2OYL NN NN TYUND DN ,MINKNN THPYOINN NIVIPHNN NDPYIN NN NIANY TUND
MTAYa DX NIV DY ST .INNNN YOHN PYND TN DY NIRY DY NN NYHNYH 050N
NV NTIAY YNAN NI NTRY POy PONN IYUNRD YNNI dNda 19INI .OINNI MODN M)

ii



851

VITIVDN NPNY TON PAPH 2N, DTAYN 190N I1DINT TR AVYNN YD VYND IWND 01D
PYNY TN Dy YN DTAYNN 9O NN YNID NTVNI ONIOINND 0»IAPN NN NIAN OPHN
MPAIOV DXWNN ,DVTN DP2°2APN DXNN) 232N DXIANYN NN I NTIAYa NN DD OPnn DN
,07952010 01N 2N NAY DYDY DXNVIVN D2IONN ,0»2aAPN DNN) AN Y MNONN NWD
2NV NMONN DY MY NN MINNINS 19N DM, MYTH MIDIN NMINPS MPPIdY DNNAN

.PODY D)1 DNYWDS D»Y PN TN

MNTPNNN MNVIN PN .MNTPNN MNVINI OOMN IYNX DINN) AN DXTPRNN DN TIN»2
N R NVAM NP2 NPINN NNVANN NN(waitfreedom)  NINNNN YAIN , MO0 MNINN
MINNNN TPYAIN NIVIPRN IDPYIN NONN DDNNHN NDNIN .1’D IPNND NTIAY DI W
TPOMIVIN NV DXWNM ,NP2IOVN NN D291 NVNIN 1O INRY .0PYYN DHNNI NOYI NNIYRIN
POIN .MNNAN OPYAINT DY NN DIN ANYD DINNI NINMIN IPRY MND G NIVINIY
DPYAIN O PNN(skiplist) DMNDT NPT AN VIDN Y NWY NIN DY NN NP0V DIVNNYN

1IN0

NINNNN YAOIN .IMNNNN OPYAIN DXNNPINONI NRYN IV DY NPPND 0212y NDNIN 19N INNRD
.ONTIAY DX DHOYND OINK DXPONND INYD DXDNND DIYANRNY T >T DY D27 DIPNA IV
SV 1MPP DA DPYNN MNIAYY DO [,NNYN IVIND NPT TPONNNS DTN DNN DN

JIVAN YN NIN NIY NOD MINNNN SVIN 0NN NIAN

LINNNM O»YIN D”'J’JP)Q NN 22N YHNYD 510w MOIVN DY 121y NN 1OV NN TSN
LINND TY .0NDN DN MHAN OV DPDDIN PO YD DY 92YN IWANNY PYNN NI NOION
S5y DMIVIN DN ,(NOAVIND PYNNI 10NNV NINNNND O’V D”b’JPD NN 72N OO0 P RO
NN VI MUY NAYAND YN IYTN MIDN NNXPTIS DOYSN 1IN ,0P0 NRIPD .0t Yo
DN 23202 VIS ,0P’APN 0NN IANA(Hardware Transactional Memory) NPIPXPIIIO PO

JMIPpnn nNvan oy

MNNN MHION MIVIPN NMYH

TRV NI DT DINN 132N P9 DY LINPA NN DNNIN NN TAN NN NIVIPHN NI
YN YDAPY JOIND YNIANNY DO NDPYAN DY DNV DPOND DNDTYY DIWN 51200 PIND
LSRG QY TR .MN902 M) J0 MNTPNN MNVIAN BY NP2IAPH MIVIPHN NI )1ONY ION






AYNNN PYTND NO2NPO ,PIT0S TIN NOMI DY INPNINA YA IPNNN

NAPN ToNNA 20102 IPNNY POMY) T12NNN NNYD OIANNDI INDNI Mt NN MNRIND I PON
YN NP2 NMIDTYN ONPMIRDI IYR ,I1ANNN DY ONOVPYTN IPHN

Keren Censor-Hillel, Erez Petrank, and Shahar Timnat. Help! In Proceedings of the 34th
Annual ACM Symposium on Principles of Distributed Computing, PODC 2015, Donostia-San
Sebastian, Spain, July 21-23, 2015.

Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In Distributed
Computing - 27th International Symposium, DISC 2013, Jerusalem, Israel, October 14-18,
2013. Proceedings, pages 224-238, 2013.

Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Petrank. Wait-free linked-lists.
In Principles of Distributed Systems, 16th International Conference, OPODIS 2012, Rome,
Ttaly, December 18-20, 2012. Proceedings, pages 330-344, 2012.

Shahar Timnat, Maurice Herlihy, and Erez Petrank. A practical transactional memory
interface. In Furo-Par 2015 Parallel Processing - 21st International Conference, Vienna,
Austria, August 24-28, 2015. Proceedings.

Shahar Timnat and Erez Petrank. A practical wait-free simulation for lock-free data structures.
In ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP),
pages 357-368, 2014.

MmN

NONNN 2D PRIYAY NDMNM NOTTHN DY ,PIIVS 1IN NUMI POV NN MTIND NI N
YTIN DR TN 1IN 2AY NP 20N NNMNN NXINY YIID POD D PN NY 0909 Ty DTN
1290 N2Y NN 9952 OPND 1M VNVPITI 1N NV NNY PIYND YT PN 25 aMH Trn oY
L0MNMOPYITO NN INY
MINN M PN N NPYN DNPNNI DTIAYIY 00NN IR NOMNIAY 0) NTNYH DTN
NN TPNY 1NYY ONONN PRNPYI DY 5PDIN DN NMOMIAY MTIND NI DN ,0PDY . Thna
LOMN WND N2 YN TITN O pnTay

MY DP?Y NI M0 0 MTIND DX N IT PN P DY IPIDVD NNON NN NN
901 NN LYTND TPMINDD YIPN >T DY D) NINNI PNTIAY 2012 NV YNOPY DNP») NN
2012171 9901 N9 ONIYN 1IN MININ OV NaMWNN IpNnn 1P T Oy ,283/10






DYy D921 0N NAN

AIPNN DYy NN

ANINN NOAPY MWATN DY YPoN N DvhH
P9 NOMT

MmN mnvY

NI MYNOV NN — IDVN VIDY YIN
2015 )Y namn n’ywnn Yo






Doy DN”IAPN 0NN NAN

MmN nvY



	List of Figures
	Abstract
	1 Introduction
	1.1 Wait-Free Linked-Lists
	1.2 A General Wait-Free Simulation for Lock-Free Data Structures
	1.3 On the relations between Wait-Freedom and Help
	1.4 Iterator
	1.5 Harnessing HTM to Support Data Structures with Progress Guarantees
	1.6 Outline of this Thesis

	2 Wait-Free Linked-Lists
	2.1 Introduction
	2.2 An Overview of the Algorithm
	2.3 The Algorithm
	2.3.1 The Underlying Data Structures
	2.3.2 The Helping Mechanism
	2.3.3 The Search Methods
	2.3.4 The Insert Operation
	2.3.5 The Delete Operation
	2.3.6 The Contains Operation
	2.3.7 Memory management

	2.4 A Correctness Proof
	2.4.1 Highlights
	2.4.2 General
	2.4.3 Definitions
	2.4.4 General List Invariants
	2.4.5 The Insert Operation
	2.4.6 The Delete Operation
	2.4.7 Wait-Freedom
	2.4.8 Final Conclusion

	2.5 Linearization Points
	2.6 A Fast-Path-Slow-Path Extension
	2.6.1 overview
	2.6.2 The Delayed Help Mechanism
	2.6.3 The Search Method
	2.6.4 The Insert Operation
	2.6.5 The Delete Operation
	2.6.6 Linearization Points
	2.6.7 The Contains Operation and Handling Infinite Insertions

	2.7 Performance
	2.8 Conclusion

	3 A Practical Wait-Free Simulation for Lock-Free Data Structures
	3.1 Introduction
	3.2 Additional Related Work
	3.3 Transformation overview
	3.4 Model and General Definitions
	3.5 Typical Lock-Free Algorithms
	3.5.1 Motivating Discussion
	3.5.2 Notations and Definitions Specific to the Normalized Form.

	3.6 Normalized Lock-Free Data Structures
	3.6.1 The Normalized Representation

	3.7 Transformation Details
	3.7.1 The Help Queue and the Operation Record
	3.7.2 Giving Help

	3.8 Correctness
	3.8.1 Correctness of the executeCASes Implementation
	3.8.2 Linearizability and WaitFreedom

	3.9 On the Generality of the Normalized Form
	3.10 Examples: the Transformation of Four Known Algorithms
	3.10.1 Harris's linked-list
	3.10.2 Binary Search Tree
	3.10.3 Skiplist
	3.10.4 The Linked-List of Fomitchev and Ruppert

	3.11 Optimizations
	3.11.1 Using the Original Algorithm for the Fast Path
	3.11.2 Avoiding versions

	3.12 Performance
	3.12.1 Memory Management
	3.12.2 Our Wait-Free Versions vs. the Original Lock-Free Structures
	3.12.3 Our Wait-Free Transformation vs. a Universal Construction


	4 Help!
	4.1 Introduction
	4.2 Additional Related Work
	4.3 Model and Definitions
	4.4 What is Help?
	4.4.1 Intuitive Discussion
	4.4.2 Help Definition
	4.4.3 General Observations

	4.5 Exact Order Types
	4.5.1 Generalizing the Proof To Cover the Fetch&Add Primitive

	4.6 Global View Types
	4.6.1 From Single Scanner Snapshot to Global View Types

	4.7 Max Registers
	4.8 Types that Do Not Require Help
	4.8.1 A Help-Free Wait-Free Set
	4.8.2 A Help-Free Wait-Free Max Register

	4.9 A Universality of Fetch-And-Cons
	4.10 Discussion

	5 Lock-Free Data-Structure Iterators
	5.1 Introduction
	5.2 Goals and Limitations
	5.3 Jayanti's Single Scanner Snapshot
	5.4 From Single Scanner Snapshot to Multiple Data Structure Snapshots
	5.4.1 Reporting the Operations of Other Threads
	5.4.2 Supporting Multiple Snapshots

	5.5 The Data Structure Snapshot Algorithm
	5.5.1 The Reporting Mechanism
	5.5.2 Performing a Data Structure Snapshot
	5.5.3 Memory Reclamation

	5.6 The Snap-Collector Object
	5.6.1 The Snap-Collector Implementation
	5.6.2 Some Simple Optimizations

	5.7 Proof
	5.7.1 Overview
	5.7.2 Definitions
	5.7.3 Constructing the Whole-Order
	5.7.4 Visibility Properties
	5.7.5 Sequential and Real-Time Consistency of the Whole-Order.
	5.7.6 Adjusting the Proof for Multiple Scanners
	5.7.7 Linearizability of the Snap-Collector

	5.8 Performance
	5.9 Conclusion

	6 A Practical Transactional Memory Interface
	6.1 Introduction
	6.2 Additional Related Work
	6.3 The MCMS Operation
	6.3.1 Implementing MCMS with Hardware Transactional Memory
	6.3.2 Implementing MCMS without TM support

	6.4 The Linked-List Algorithm
	6.5 The Binary Search Tree Algorithm
	6.6 Fall-back Execution for Failed Transactions
	6.6.1 Using Locking for the Fall-back Path
	6.6.2 Non-Transactional MCMS Implementation as a Fall-back Path
	6.6.3 A Copying-Based Fall-back path

	6.7 Performance
	6.8 Conclusions

	7 Conclusions
	A A Full Java Implementation of the Wait-Free Linked List
	B Avoiding Versioned Pointers for the Wait-Free Linked List
	C The Full Code of the Fast-Path-Slow-Path Extension for the Wait-Free Linked-List
	D The Wait-Free Queue Used in the Wait-Free Simulation
	E Implementing a Contention Failure Counter in the Presence of Infinite Insertions
	Bibliography
	Hebrew Abstract

