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Abstract

The pervasiveness of multiprocessor and multicore hardware and
the rising level of available parallelism are radically changing the
computing landscape. Can software deal with tomorrow’s poten-
tial higher parallelism? In this paper we study this issue from the
garbage collection perspective. In particular, we investigate the
scalability of parallel heap tracing, which stands at the core of the
garbage collection activity. Heap shapes can be sequential in na-
ture, and prevent the collector from scaling the trace. We start by
proposing the idealized trace utilization as a scalability measure
for evaluating the scalability of a given heap shape. We then exam-
ine standard Java benchmarks and evaluate the existence of non-
scalable object-graph shapes in their execution. Next, we propose
and implement a prototype of garbage collection techniques that
attempt to ameliorate the object-graph shape problem. Finally, we
measure and report their efficacy.

Categories and Subject Descriptors D.1.5 [Object-oriented Pro-
gramming]: Memory Management; D.3.3 [Language Constructs
and Features]: Dynamic storage management; D.3.4 [Proces-
sors]: Memory management (garbage collection); D.4.2 [Storage

Management]: Garbage Collection

General Terms Languages, Performance, Algorithms.

Keywords Runtime systems, Memory management, Garbage col-
lection, Parallel garbage collection.

1. Introduction

During recent years, we have witnessed a fundamental change in
how computer productivity is approached. The exponential growth
of the processor speeds we have been used to for several decades
has come to an end and efforts to speed up serial computation have
been abandoned in favor of increasing hardware parallelism. Dual
core desktops are now standard for home and office; computers in-
stalled in server farms have an increasing number of processors and
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cores; and even embedded systems have started to enjoy multicore
designs. As was predicted by researchers and technologists [33],
this new approach to hardware productivity has brought about a
fundamental change in the software landscape as well. Sequential
programs can no longer benefit substantially just by being run on
a newer hardware. In order to harvest the benefits of new parallel
hardware, new parallel software must be created.

Managed programming languages such as Java and C# are be-
coming the main vehicle for writing large software projects. They
provide built-in security, threading support, impressive multi pur-
pose standard class libraries, and last but not least, garbage col-
lection (GC). In order to maintain the advantages of managed lan-
guages, it is crucial that applications written in these languages be
efficient and scale well on modern and future platforms. In par-
ticular, runtime systems including the garbage collection must be
made adequately scalable to support efficient execution on future
platforms. A vast literature on designing parallel and concurrent
garbage collection exists (e.g., [31, 32, 14, 9, 16, 15, 19, 17, 18,
28, 11, 23, 25, 4, 21, 3, 6]); however, the available techniques can
probably not fit a highly parallel platform ‘as is’. Moreover, even if
the garbage collection algorithms scaled perfectly, a new problem
arises, because the shape of the object-graph becomes more domi-
nant in foiling scalability. Imagine a program that employs a large
linked list. A traversal of such a list is sequential in nature and foils
tracing scalability. Other (less extreme) object-graph shapes may
be detrimental to parallelism as well.

Understanding the scalability of heap tracing is interesting in
general, but it is particularly important in the context of real-time
garbage collection [5, 13, 26]. In this area, it is crucial to compute
bounds on the progress of the collector and make sure it terminates
on time, before the heap gets exhausted. Otherwise, the program
may get stuck while trying to allocate on a full heap that has not
been garbage collected on time.

A question that naturally arises is whether this problem of heap
shapes that are detrimental to tracing scalability actually exists in
typical programs. And if the problem does exist, then what can we
do about it? Namely, is there a way to ameliorate this problem and
facilitate scalability of the garbage collector for such programs? If
we cannot solve this problem, then the scalability of the Java and
the C# runtimes becomes questionable.

This paper initiates a rigorous investigation of the heap trac-
ing scalability issue. First, since many-core machines are not yet
available on the market, we start by proposing an idealized trace
utilization measure that, given an object-graph shape, evaluates the
amount of parallelism it enables. The measure is highly intuitive, in
the sense that it simulates a clean parallel trace of this object-graph
shape for a given number of processors. Next, we use the ideal-
ized trace utilization measure to evaluate the object-graph shapes
of standard Java benchmarks. Our measurements show that non-
scalable object-graph shapes exist for some of the benchmarks. We
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then propose, implement a prototype, and evaluate a couple of solu-
tions to this problem. Our solutions attempt to add functionality to
the collector in order to ameliorate non-scalability of object-graph
shapes.

The first solution is to let the collector (or the compiler) add
pointers to the the headers of objects, to artificially modify the
object-graph shape and make it more scalable. Details appear in
Section 4.1. The second solution is to let additional garbage col-
lection threads run on idle processors. These auxiliary collector
threads pick objects at random in the heap and trace from them as
if they were alive. At a later stage, it is determined whether the set
of objects traced by each thread is reachable or not. The additional
tracing can happen concurrently on many processors even if it is
not yet clear which objects are alive, and thus this method entails
high concurrency even with linked lists. Details appear in Section
4.2.

We have implemented a prototype, to evaluate the potential
effectiveness of each solution, on Jikes RVM [2] using the MMTK
[8]. We ran measurements on the SPECjvm98 benchmark suite, the
SPECjbb2005 benchmark, and the DaCapo benchmark suite [1, 7].
We present and discuss these results in Section 5.

We could not check the actual benefits on a many-core platform,
because many-cores cannot be (practically) obtained today. Never-
theless, we believe that preparing the ground for high parallelism is
an important goal of system research. In particular, we believe that
preparing memory management today for a highly-parallel plat-
form that may arrive tomorrow is an important research goal.

Organization In Section 2 we define and study heap depths of
standard Java benchmarks. In Section 3 we describe the idealized
trace utilization measure we have devised to quantify object-graph
scalability. In Section 3.1 we present scalability measurements for a
variety of widespread Java benchmarks, and demonstrate that some
of these benchmarks generate object-graphs with poor scalability.
In Section 4 we describe two possible solutions. Implementations
and results are discussed in Section 5. Related work is reviewed in
Section 6, and we conclude in Section 7.

2. Preliminaries: Heap Depth and Tracing

Garbage collectors (GCs) trace objects in the heap to discover
which ones are reachable. Tracing collectors, either mark-sweep
or copying collectors, trace the heap in order to identify all the live
objects; whereas reference counting collectors trace the transitive
closure of dead objects whose reference counts drop to zero. This
work concentrates on tracing collectors, often employed in today’s
large systems. These collectors trace all objects reachable from a
well-defined set of pointers called roots. For details on classical
garbage collectors, see [24].

The process of tracing live objects is iterative (or recursive). It
starts from a list of objects directly reachable from the roots. Then,
each object in the list is marked and each of the unmarked objects
directly reachable from it is added to the list. The list of pointers
is typically managed as a queue or a stack, creating a BFS or DFS
traversals of the live objects respectively. A DFS traversal is usually
considered more cache friendly [29], whereas a BFS traversal is
more scalable, because more paths are discovered early on and
better distribution of work is enabled.

By definition, each reachable object in the heap has one or more
paths of pointers starting from a root and leading to it. The length
of the shortest such path is defined as the depth of the object or
its distance from the roots. The depth of the entire live object-
graph in the heap is defined as the maximum over the depths
of all the reachable objects. Note that in order to discover an
object of depth d during a heap trace, at least d pointers must be
dereferenced sequentially. Therefore, deep objects are detrimental

to the scalability of the trace. Even assuming a clean execution in
which each object is traced in one single computation step, it still
holds that using P processors to trace a heap in which the live
object-graph has L live objects and depth D requires time of at
least max{L/P, D} computation steps.

As a first step in our investigation we measured the object-
graph depth for all benchmarks in the following benchmarks suites:
SPECjvm98 [1], SPECjbb2005 [1], and DaCapo [7]. These results
extend previous work [20, 30], which provided similar measure-
ments only for SPECjvm98 and pBob (a work-constrained ver-
sion of SPECjbb2000). In order to perform the measurements, we
changed the mark and sweep stop-the-world garbage collector of
Jikes RVM to measure the live object-graph depth, and triggered a
garbage collection very frequently during the run – after every 32
KBytes of allocation.

This step gave us a first glimpse into the existence of deep
live object-graphs in typical benchmarks, and furthermore, on how
object-graph shapes change during the execution of the bench-
marks. It turned out that several benchmarks (javac, raytrace and
mtrt of SPECjvm98 and bloat, pmd and xalan of blac06) exhibit
deep and narrow forms of live object-graphs. We note that these
results are consistent with the partial information provided by pre-
vious work [30, 34]. An additional observation we could make
was that non-scalable live shapes appeared consistently during the
runs of some benchmarks (mtrt and xalan), but only occasionally
in the run of others. These latter applications exhibited life cycle
dependent patterns. For example, in javac and bloat, the depth of
the object-graph increases consistently through the run (or phase
in javac) while in pmd the object graph is very deep at the be-
ginning of the run and is consistently shallow afterwards. The
SPECjbb2005 benchmark consistently demonstrated an object-
graph of depth 24, for all heap sizes and in all garbage collection
cycles throughout the execution. Thus, SPECjbb2005 produces a
scalable object-graph and we do not study it further in this paper.

The scalability of the tracing procedure with benchmarks that
only occasionally manifest non-scalable object-graph shapes is sen-
sitive to the time at which the collections are triggered. An unlucky
triggering, at a time when the object-graph is non-scalable, will
create a non-scalable trace and behave badly on a highly parallel
platform. On the other hand, if the triggering is always lucky, i.e., it
always occurs at the times when the object-graph shape is shallow,
then no scalability problem arises. The probability that an execu-
tion will hit a bad triggering point depends on the length of time in
which the heap is non-scalable during the run, and on the frequency
of performing a garbage collection. The latter is determined by the
ratio between the size of the live space and the maximal size of the
heap. When the heap is made large, collections become infrequent,
and for some benchmarks, this means that they are less likely to hit
a point in which the live-object shape is not scalable.

We proceeded by executing the benchmarks at regular runs dur-
ing which the object-graph was scanned at times dictated by the dy-
namically triggered garbage collector, but with varying heap sizes.
As expected, some benchmarks (mtrt and raytrace of SPECjvm)
manifested deep object-graphs during regular scans for all (sane)
heap sizes while the manifestation of deep object-graph shapes with
other benchmarks (mostly javac) were sensitive to the maximal
heap size provided to the JVM for the run. The smaller the heap
size, the more often the garbage collection is run and the greater
the chance for a tracing collection to occur when the object-graph
is the deepest. Different GC cycles during the run experienced dif-
ferent object-graph depths. In Table 1 we present the maximal and
the average object-graph depths for SPECjvm and blac06 bench-
marks together with the heap sizes used to obtain these results. We
also report the number of GC cycles triggered by Jikes RVM on
the selected heap size. To reduce the amount of presented data, we
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heap size GC max avg
name (MBytes) cycles depth depth

db 32 3 16 14
jack 16 34 38 36
javac 32 15 1,234 231
jess 16 63 32 29
mtrt 32 8 1,416 1,413

antlr 32 16 60 30
bloat 48 344 1,195 352
hsqldb 128 6 47 38
jython 64 49 128 124
lusearch 64 65 38 14
pmd 48 59 18,482 362
xalan 128 129 8,476 4,199

Table 1. Number of GC cycles and maximal and average object-
graph depths for the SPECjvm98 and the DaCapo benchmark
suites; and the heap size used to obtain the results with the nor-
mally triggered GC cycles.

have omitted data for check, compress and mpegaudio from all the
tables and figures that follow. These benchmarks are very small in
terms of their heap usage and their object-graphs are typically shal-
low. Data for benchmarks that show non-scalable live object-graph
shapes and that will be discussed further in this paper is emphasized
in bold typesetting.

In Figure 1, we show the distribution of objects depths when
the object graph is the deepest encountered by a normally triggered
GC cycle. For each possible depth (on the x-axis), the value on the
y-axis depicts how many objects with this depth exist in the object-
graph. Note that for all the benchmarks, the number of objects
(on the y-axis) is shown on a logarithmic scale. Furthermore, for
benchmarks with deep object-graphs, we had to put the depths (on
the x-axis) on a logarithmic scale as well, to make the data in
the graph visible. These graphs show the long-tail distribution of
objects’ depths for javac, mtrt, bloat, pmd and xalan benchmarks.
For example, in the heap built by xalan, the majority of the objects
are of depth at 17 or less. Looking at higher depths, the shape of the
object-graph becomes more and more narrow, until, starting from
depth 39 there are only two objects at each depth.

The object-graph depth parameter alone cannot be considered
a sufficient indicator of how well the object-graph yields itself to a
parallel trace. Consider, for example, a trace executed on P parallel
processors in which the object-graph consists of P very long linked
lists of the same length. Although the above object-graph is very
deep, the potential parallelization is excellent for this number of
tracing threads. We, therefore, proceeded and further investigated
the shape of the live object-graphs to identify their scalability.

3. Idealized Trace Utilization Measure

Next, we propose a measure that expresses the scalability of a given
live object-graph with respect to a given number of processors.
In the remainder of this paper, we will denote by heap shape the
shape of the live object-graph in the heap. To better understand
the scalability of heap shapes, we consider a simplified and clean
version of a trace when run with a given number of processors.
Recall that in a trace we maintain a list of objects to be scanned and
iteratively pick one, mark it, and insert its unmarked descendants
into the list. The tracing threads need to coordinate the selection
of an object in the list, they need to synchronize the insertion
of objects into the list, and in order to get well balanced work
distribution they need to make sure that the work is evenly split.

 1
 100

 10000

 2  4  6  8  10  12  14

db

 1
 100

 10000

 5  10  15  20  25  30

jess

 1
 100

 10000

 5  10  15  20  25  30  35

jack

 1
 100

 10000

 5  10  15  20  25  30

lusearch

 1
 100

 10000

 5  10  15  20  25  30  35

hsqldb

 1
 100

 10000

 10  20  30  40  50

antlr

 20  40  60  80  100  120

jython

 1  10  100  1000

bloat

 1  10  100  1000

javac

 1  10  100  1000

mtrt

 1  10  100  1000  10000

xalan

 1  10  100  1000  10000

pmd

Figure 1. Object distribution among the different depths. The x-
axis represents the depth and the y-axis represents the number of
objects found at that depth.

To measure the scalability of a given heap shape, we imagine an
idealized tracing procedure that ignores all of these issues. We first
assume that the load balancing is perfect. Namely, the list of objects
that have been found reachable but not yet traced is accessible by
all the tracing threads with no load-distribution or synchronization
problems. Second, we assume that within a single clock tick1, a
tracer thread can atomically pick an object A from this list, mark
A, find all objects directly reachable from A, discover which of
them are not marked, and mark and add these to the list. Third,
we assume uniform memory access times, with no delays due to
cache misses, cache line conflicts or false sharing. And last, we
assume the BFS style of traversal which is geared towards higher
parallelism. These assumptions imply that P tracing threads on
P processors can trace P objects from the list (and add their
descendants to the list) in a single clock tick. We call such trace
runs idealized traces. The only remaining difference between such
clean runs on different heap shapes is whether the work list contains
P elements to be handled in each clock tick. If not, some processors
become idle, and scalability is hindered.

For example, if the object-graph is a single linked list, then at
any point in time the list of objects to scan consists of a single object
and all tracing threads, except for one, remain idle throughout the
trace. This happens because, at each clock tick, the single available
object is pulled (by one of the threads) from the list, but scanning it
only yields a single object that is added to the list instead of the one
that was just pulled out. Therefore, at all clock ticks P − 1 tracing
threads are idle. The fraction of utilized CPU time during the trace
is 1

P
and this fraction is monotonically decreasing with P .

To measure the relevant properties of the heap shape, we have
modified Jikes RVM collector to measure how many objects are
available in the list at each clock tick. Of course, this number
depends on the number of tracing threads (denoted by P ), because
at any clock tick t, the first P objects are pulled out of the work list
and all their descendants are added to the list. Note that because
the assumptions above, this is inherent to the heap shape. It is
independent of both the collector implementation and the particular

1 We use the term clock tick to denote the time it takes to execute a single
computation step. In our idealized procedure, we assume synchronized
cores, and ignore cache misses, page faults, interrupts, etc.
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Figure 2. Worst case object graph idealized trace utilization for
various levels of parallelism. The lines of javac and bloat are hard
to distinguish as they almost collide, due to similar behavior.

hardware employed. Also, it can be measured on a single processor,
i.e., evaluating this measure does not require a many-core platform.

From the above gathered information we distilled a single num-
ber, representing the processor utilization, which we report in this
paper. For each clock tick, if P objects are available in the work list
then all processors are utilized. However, if there are t < P objects
available for scanning in the work list, then t processors are utilized
at that clock tick, but P −t are not utilized, i.e., are idle. Going over
the entire clean trace execution, we can compute the utilization for
each clock tick, and also the percent of processor utilization dur-
ing the entire run. This idealized trace utilization is the measure we
propose for the scalability of a given heap shape, and this is what
we report next for our benchmarks.

3.1 Idealized Trace Utilization Measurements

We ran a modified version of Jikes RVM, computing the idealized
trace utilization measure for 2 . . . 1024 processors. Our measure-
ments cover the SPECjvm98 and the DaCapo benchmark suites, as
it was established earlier that SPECjbb2005 does not manifest deep
heap shapes. We computed the idealized trace utilization measure
for each GC cycle and then observed the average and minimal val-
ues (over all collection cycles) for each benchmark run. Results are
presented in Figures 2 and 3, where we show the worst case and av-
erage utilization as a function of the number of working processors
P for every benchmark.

Recall that the idealized trace utilization measure is geared to-
wards demonstrating non-scalability, as it runs imaginary perfectly-
coordinating parallel tracing threads. When this measure shows bad
utilization, we know that scalability is a problem. When it shows
good scalability, it is not clear whether such good load distribution
and speedups are attainable on a real system.

It can be seen that for machines with up to eight proces-
sors, which are typical of many of today’s parallel platforms, the
average-case scalability of all benchmarks looks good. Even on
the worst-case measurements, some benchmarks exhibit 15% idle
time, which is still reasonable. At the level of 32 processors, which
is a level of parallelism available today, we start to see substantial
idle times, which naturally increase when the level of parallelism
goes up. To diminish the clutter in our graphs, we do not show data
for benchmarks with worst case utilization values above 90%. Out
of the fifteen benchmarks measured above, five came out as prob-
lematic for tracing on highly parallel platforms: javac, bloat, mtrt,
pmd and xalan.
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Figure 3. Average object graph idealized trace utilization for vari-
ous levels of parallelism.

4. Improving the Scalability of Object Graph

Tracing

The above measurements revealed the existence of Java bench-
marks that generate heaps with inherently non-scalable shapes, lim-
iting the scalability of parallel tracing. Poorly-scalable heap shapes
should be avoided, since they may prevent Java applications from
scaling on multiple computation cores. We proceed with proposing
and studying possible solutions.

The main idea is to have runtime systems attempt to handle non-
scalable structures and avoid problems that can result from certain
patterns in them. There are various ways to handle this problem.
Here we present our investigation of two approaches where prob-
lematic object-graph patterns are handled by the garbage collector.

4.1 Adding Shortcuts

The first approach we investigated aims at modifying the object-
graph structure by adding new references that are invisible to the
application, but useful for the tracing threads. The goal is to shorten
the depth of objects, by creating shortcuts into long narrow struc-
tures. This yields a more shallow graph, which in turn, yields more
work for the tracers to execute at earlier stages of the trace.

In this work, we built a prototype and used it for assessing the
shortcuts method on standard benchmarks. Our prototype runs the
benchmarks, and after each normal garbage collection trace, the ap-
plication is paused. During that pause, the prototype fixes the heap
using shortcuts as described below and then runs the trace again to
observe how much the utilization has improved. Our scheme intro-
duces one additional reference slot in the header of each object in
the heap, initiating it with Null. When a potential shortcut to a deep
object is discovered, the shortcut edge is installed in the header for
use by the collector. We next describe how shortcuts are chosen to
be added to the heap. Measurements and results are presented in
Section 5.1.

Consider a heap object O and its subgraph, i.e., all objects
reachable from O in the heap. We need to decide whether a shortcut
should be added to O, and if it should, we need to select an object in
O’s subgraph as the target. To decide whether a shortcut is useful,
we categorize the subgraph of O by two parameters: the size of
the subgraph, i.e., how many objects are reachable from O, and the
depth of the subgraph, i.e., the distance of O from the node that
is farthest from it in the subgraph. We only install a shortcut in O
if the size of its subgraph is larger than a predetermined threshold
size, and if the ratio of the depth to the size of the subgraph is larger

4



1 2 3 4 5 6 7 8 9

shortcut
distance

shortcut length

Figure 4. An example of a linked list with shortcuts added. Here,
the shortcut length is 4 and the shortcut distance is 2.

than ratio. Note that the largest possible ratio value, which is 1, is
obtained for a linked list structure.

Once a candidate object is found with a subgraph of appropriate
parameters, we add a shortcut to it. It does not make sense to make
the deepest object in the graph the target of the shortcut, because
letting the trace jump to the end of the structure is not helpful.
We, therefore, set a parameter shortcut length, which is always
set as the length of all shortcuts. Also, often, when an object is
a candidate for a shortcut installation, then its parent is also a good
candidate. This is clearly the case for a linked list. However, it is
not very effective to install shortcuts both in an object and in its
parent, leading to a target and the target’s parent. Thus, we also
maintain a distance between installations of shortcuts, which is also
a parameter denoted shortcut distance. An example is depicted in
Figure 4.

We devised and implemented an algorithm that adds shortcuts
to the graph during a traversal. The algorithm is a modified DFS
traversal that upon retreating to a parent O during the traversal,
retains enough information from the lower nodes to be able to
evaluate the size and depth of O’s subgraph. Furthermore, if a
shortcut is required, then this modified DFS algorithm provides a
target object in the subgraph whose depth is shortcut-length with
respect to O. At this point, the tracer installs a shortcut from O to
the target. Our modified DFS was incorporated into Jikes RVM and
the implementation was used to check the efficacy of the shortcuts.
We do not elaborate on this algorithm in this short version of the
paper, as it is not a target in this investigation, and its description
requires more space.

To obtain the measurements presented in Section 5.1, we com-
puted the idealized trace utilization measure, described in Section
3 above, before and after the shortcuts were added. We removed
all the shortcut references after each collection so they have no
bearing on the next collection cycle. The algorithm can be run by
several tracers simultaneously with no additional synchronization.
Note that this scheme cannot fail the correctness of the garbage col-
lector as no object can cease to be reachable as a result of adding
shortcuts.

Our implementation is a prototype because we have conve-
niently added shortcuts to the heap while the world is stopped. In
a real implementation one has to decide when to add the shortcuts
and how to maintain them efficiently and effectively.

4.2 Tracing Randomly in Parallel

The second approach we investigated does not modify the heap
shape at all but attempts to use idle processors to trace random
elements in the heap. The idea is that when a deep data structure
actually exists in the heap, then the trace cannot be well parallelized
and processors become idle during this time. Such idle threads can
be used to trace objects randomly and when lucky, aid the tracing
effort and increase scalability. This method was mentioned in [12]
but as far as we know has not been investigated prior to this work.

Denote the effort of the normal tracing threads as the main trace.
While the main trace is executing, a thread that becomes idle selects

main trace

red trace

Figure 5. An example of a red trace, which is hit by the main
trace. Note that only some of the red vertices are reachable. The
rest create floating garbage.

at random an object in the heap that has not yet been marked. It then
traces the descendants of this object, marking the objects and its
descendants with a special color uniquely assigned to this thread,
say red. If the main tracing procedure discovers that a red object is
reachable from the roots, then the entire red component is declared
reachable and the front of the red trace is added to the work list of
the main trace.

This method, though simple to describe, has some problems.
First, if the main trace hits a red object, we can be sure that some of
the red objects are alive, but not all of them. It is possible that the
main trace discovered a reachable red object, but one that is deep
in the trace of the idle thread. All its predecessors in this trace may
actually be unreachable. An example is depicted in Figure 5. So if
we do not want to trace from the reachable red object and determine
accurately which red objects are reachable, then we need to assume
conservatively that all red objects are reachable too. This creates an
inaccuracy in the trace and implies floating garbage 2. To restrict the
amount of floating garbage, we limit the number of objects that an
idle thread marks with any single color by the trace-limit parameter.
Second, note that there is a need to synchronize access to the color
marks in the objects and to detect trace completion correctly. This
synchronization is essential to achieve algorithmic correctness and
can add an overhead.

In the implementation we investigated, each idle thread chose
a random unmarked element, obtained a unique color and marked
the object and its descendants by the unique colors, until trace-
limit objects were marked. At this point, it recorded the objects on
its trace list, i.e., the objects that had been marked by the unique
color, but whose children had not yet been visited, in a special list
associated with this color. It then looked for more tracing work to
be executed. When the main trace encountered an object marked by
a color c, it made a note that c is reachable and added the objects
from the c-trace list to the main trace list. A different encounter
is possible when a trace of color c1 traces into an object that has
already been marked by a different color c2. In this case, we make
a special note that the reachability of c1 implies the reachability of
c2. In general, we keep such records for each pair of colors. Thus,
when a color is discovered to be reachable, all colors reachable
from it are immediately identified as reachable as well. The trace is
completed when all the main tracers are done and trace lists of all
the reachable colors are processed. Note that processing a reachable
color’s trace list can make more colors reachable so that their lists
have to be processed as well.

Our prototype implementation does not really run on a many-
core but on an eight-core machine. We decided to check this
method, by letting four cores run the main trace, while the other
four cores ran the task of the idle threads, picking objects at random

2 Floating garbage is a term that denotes all unreachable objects that the
collector does not identify as such, and does not reclaim.
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and tracing their descendants. This execution gave us an indication
of how well this method works when half of the processors are idle
and perform random traces during the execution of the main trace.
It simulates a scenario in which half of the threads make progress
in the main scan, and at the same time, half of the threads seek
random traces to aid the main trace.

As before, a real implementation would have to make various
implementation decisions that we settled in ways convenient to us
and suitable to the system with which we worked. First, we chose
the objects to be scanned at random in the following manner. Each
thread has a random number generator seeded with a unique seed.
When a new root is needed, the thread generates two new random
numbers. The first random number is used as a heap offset to obtain
the beginning of an allocation block. We then inspected objects in
this block, using the second random number to skip slots between
the inspected objects. Objects that were found to be already marked
by the regular or the additional tracers were excluded from the
search, as were primitive arrays that contain no pointers.

The parameter that needs tuning is the trace-limit, which limits
the number of objects that can be traced with each unique color as
discussed above.

4.2.1 Random choices with filters and biases

In the simple scheme, unmarked objects are chosen randomly in the
heap, and their descendants are traced. Note that if a dead object is
chosen, then its descendants are traced in vain, and effort is wasted.
Therefore, the question arises whether we can bias the choice of
objects to be more effective.

Our initial measurements were not very encouraging because a
lot of the idle threads’ work was in vain. The main problem is that
the chances of picking a dead object and tracing its descendants
are high to start with, and they monotonically increase as the live
objects become marked. This problem is reflected in our initial
measurements. Can this method be improved?

In general, it is possible to further filter randomly picked objects
for some desired properties, like the number of referents, objects
size or object type. Another possible solution would be to use more
specific hints collected by runtime helpers when the program is
run, such as information about objects that were recently updated
and thus have higher probability of being alive, or compile-time
information on which objects have a higher probability of being a
part of a recursive data structure.

One good bias that is obtained for free in our Jikes RVM based
implementation is that it only considers blocks that have been
allocated or that are ready for allocation. It does not consider
large, free spaces that are not yet allocated. Nonetheless, this is
not enough to make the method a winner. We, therefore, made an
ad-hoc check to see whether additional information can help. In
particular, we added the following test for every inspected object.
We accessed the object’s type information at runtime, and checked
whether the object had a reference to an object of the same type as
its own. On the positive side, this test improves the likelihood that
a linked list will be chosen. On the other hand, this test does not
recognize all the possible deep structures. It must be remembered
that this filtering test is only a prototype meant to validate the
potential of further optimizations.

5. Results

We implemented our two prototypes on Jikes RVM version 3.1.0,
using the stop-the-world mark-and-sweep collector as the starting
point. We ran the prototypes on an IBM x3400 system featuring 2
Intel(R) Xeon(R) E5310 1.60GHz quad core processors.

As discussed above, we did not measure the execution time of
the prototypes, as the above platform is not a many-core machine.
We evaluated the idealized trace utilization measure on the different

heap shapes. Therefore, a single run for each measurement point
sufficed for the method of adding shortcuts. For the method of trac-
ing through random roots, every measurement point is averaged
over 5 runs to account for the nondeterminism resulting from pick-
ing roots at random.

5.1 Adding Shortcuts

In this section we report the results of computing the idealized trace
utilization measure before and after adding shortcuts as explained
in Section 4.1. For each GC cycle, we first measured the idealized
trace utilization, then added shortcuts, and finally, measured the
idealized trace utilization of the resulting object-graph. For each
execution, we have accumulated these values in order to compute
the worst and the average values among all the GC cycles. In what
follows, we present and analyze the worst case utilization and the
average utilization, and report the maximal and the average number
of shortcuts that were added to achieve the impact.

Recall that the algorithm described Section 4.1 uses several pa-
rameters. We have set the following values: we only added short-
cuts to an object whose subgraph has size of at least 50 objects and
depth-to-size ratio of at least 0.2. The distance between the short-
cut source and the shortcut target (shortcut length) was set to 50
and the distance between two consecutive sources in the same path
(shortcut distance) was set to 25.

For benchmarks with no obvious scalability problems, the al-
gorithm did not add shortcuts at all and so there was no change
in object-graph properties and in the calculated measure. These
benchmarks were: check, compress, jess, db, mpegaudio, jack,
hsqldb, and lusearch. For antlr, there were several cycles where
the algorithm added a few shortcuts but this had no effect on the
already highly scalable heap shape of antlr. The maximal amount
of added shortcuts was 16, while the average was less than 10, in a
heap of about 230,000 live objects. It was already observed in Sec-
tion 3.1, that all the above benchmarks show no problematic heap
shapes. This result provided a sanity check: our algorithm does not
introduce unneeded shortcuts.

For the jython benchmark, almost the same amount of shortcuts
were added in all the collection cycles: a maximum of 263 shortcuts
and an average of 251. This may seem superficial as jython did not
show poor heap shapes in Section 3.1 for up to 512 processors.
However, as can be seen in Figures 2 and 3, for 1024 processors the
utilization of jython’s heap shape drops to 82 on average and to 81
in the worst case. Indeed, when shortcuts are added, the utilization
improves for this large number of processors. Figure 6 shows this
improvement graphically. We note here that while jack benchmark
shows idealized trace utilization measure values similar to those of
jython in Figures 2 and 3, our algorithm did not add shortcuts in
jack. This can be explained by the smaller size of jack benchmark
as compared to jython both in terms of running time and the heap
size. There are on average about 500 thousands live heap objects in
jython while only a 100 thousands live objects in jack; moreover,
jython requires 64 MBytes of heap while jack fits comfortably in
16.

Dramatic improvements were obtained for mtrt as shown in
Figure 7. The maximal number of added shortcuts was 110 and
the average was 94, in a heap of about 500 thousands live objects.
Excellent improvements were obtained for xalan too, as shown in
Figure 8. The maximal number of added shortcuts was 888 and the
average was 536, in a heap of about 400 thousands live objects.
Consistent improvement was achieved for bloat as well, as shown
in Figure 9. The maximal number of added shortcuts was 940 and
the average was 378, in a heap of about 400 thousands live objects.

For the javac and the pmd benchmarks no consistent results
were obtained with our default set of parameters. It was noted be-
fore (see Table 1) that these two benchmarks generate deep object-
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Figure 6. Worst case object-graph trace utilization before and after
adding shortcuts for jython.
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Figure 7. Worst case and average object-graph trace utilization
before and after adding shortcuts for mtrt.
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Figure 8. Worst case and average object-graph trace utilization
before and after adding shortcuts for xalan.
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Figure 9. Worst case and average object-graph trace utilization
before and after adding shortcuts for bloat.
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Figure 10. Worst case object-graph trace utilization before and
after adding shortcuts for javac and pmd.

graphs only at some points during the program’s execution. For
javac, the live object-graph depth grows throughout the benchmark
cycle; for pmd, the live object-graph is very deep at the begin-
ning and remains consistently shallow afterwards. When the heap
is large relative to the live objects set, garbage collection tends to be
triggered at points where the object-graph is shallow. This is why
for these two benchmarks, the average case value of the idealized
trace utilization measure is very different from the worst case. With
the default set of parameters we could see only a few garbage col-
lection cycles during the run for which improvement was gained.
This was not frequent enough to show on the average case, and did
not happen for the worst-case cycle. Still, in those rare cycles the
depth was reduced by a factor of 10 and the idealized trace utiliza-
tion measure score was improved.

Since the default set of parameters did not allow improvements,
we attempted further tuning. We attempted reducing the amount
of added shortcuts (by increasing the shortcut distance). For javac,
we increased the minimum subgraph size from 50 to 500, reduced
the depth-to-size ratio from 0.2 to 0.1, and increased the shortcut
length from 50 to 100. As a result, less shortcuts were introduced:
a maximum of 292 shortcuts and an average of 16 shortcuts were
introduced in the heap that contained about 383 thousands live
objects. In addition, these shortcuts were longer than with the
default shortcut length parameter and succeeded in collapsing worst
case object graph. In Figure 10 we can see that the utilization has
improved with the new set of parameters for the worst-case; the
average was less affected because the worst case is rare in javac.

A similar tuning was required for pmd. We increased the limit
on the subgraph size to 600, reduced the depth-to-size ratio limit to
0.1, increased the shortcut length to 120, and the shortcut distance
to 40. As a result, a maximum of 5,874 shortcuts and an average
of 432 shortcuts were introduced in a heap of about 434 thousands
live objects, leading to impressive improvement of the worst-case
utilization shown in Figure 10.

As we see in the example of the javac and pmd benchmarks,
it may be possible to achieve better improvements by additional
tuning. In general, it would be interesting to investigate the rela-
tionships between the algorithm parameters, the amount of added
shortcuts and the resulting change in the heap shape. Another in-
teresting question for future research is how to dynamically fit the
algorithm’s parameters to the application at hand.

5.2 Tracing Randomly in Parallel

We now turn to reporting the results of our prototype implementa-
tion of random tracing by idle threads on the SPECjvm98 and the
DaCapo benchmarks. To evaluate the efficacy of this approach, we
needed to adapt the idealized trace utilization measure from Sec-
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Figure 11. The change in utilization when using random trace
without the filter for mtrt.

tion 3 to take into account the extra color tracing. We modified it as
follows. Consider the heap at the end of the trace. It contains both
reachable and unreachable objects and some connected subgraphs
are colored in various colors. Some of these colored components
are considered reachable and some unreachable, depending on the
reachability status of the color. We now compute the idealized trace
utilization measure while treating the additional colors in a special
manner. We optimistically assume that all the special tracing by
reachable colors was executed before the main trace encountered
it. In practice, it is possible that some of it was executed concur-
rently, but we ignored this possible delay. Under this assumption,
when the main trace hits a color, say red, we think of it as if all red
objects are added to the trace immediately at no cost, whereas the
work list of the red color trace is added to the main work list at that
same clock tick. Thus, more objects are available to the main trace
earlier and the load balancing improves. Given this special color
treatment we evaluated the idealized trace utilization measure of a
heap in the presence of special color tracing.

To collect the results, for each garbage collection cycle we ran
the following three passes. We first evaluated the scalability of the
heap shape according to the idealized trace utilization measure as
described in Section 3. Next, we ran the main trace on half of
the processors and the special color trace on the other half of the
processors as explained in Section 4.2. Finally, we ran an evaluation
on the obtained heap taking note of the special colors as described
above. We therefore obtained the same type of results as for the
shortcuts method, showing for each possible number of processors,
the improvement in the scalability of the trace.

In Figure 11, we report the improvement obtained for mtrt. In
fact, the improvement seems negligible for this method. However,
when introducing the random choice filter described in Section
4.2.1, the improvements become significant, see Figure 12. Thus,
for mtrt, picking at random only objects that reference an object of
the same type is effective for obtaining improvements with random
tracing.

For javac the results were not as good. Without the filter (see
Figure 13), we could not gain much improvement for the worst-case
collection. Moreover, on the average, the scalability deteriorated
due to a large amount of dead objects that were traced in vain. With
the filter, the situation was a bit better; we did not get deterioration,
but the improvement was negligible as shown in Figure 14.

To understand the behavior of the random tracing algorithm,
we report some statistics collected during the trace in Tables 2 and
3. For each benchmark, we report the total number of live objects
in the heap and the amount of objects colored by the additional
tracers. The latter amount is presented as a percentage of live ob-
jects. Since in some cases there are more dead than live objects,
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Figure 12. The change in utilization when using random trace for
mtrt, with the filter described in Section 4.2.1.
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Figure 13. The change in utilization when using random trace
without the filter for javac. While there were a lot of GC cycles
with improved utilization, including the worst case, the average
utilization became worse due to many dead recursive structures
traced by the special trace in other GC cycles.
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Figure 14. The change in utilization when using random trace for
javac, with the filter described in Section 4.2.1.
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live useful wasted
name objects helpers helpers floating

(thousands) work (%) work (%) garbage (%)

db 384 3.99 0.01 0.01
jack 110 11.7 0.16 0.072
javac 316 9.3 0.16 357.6
jess 128 11.9 0.17 0.12
mtrt 363 8.69 0.72 12.52

antlr 220 9.9 0.95 7.14
bloat 380 7.94 0.05 0.07
hsqldb 3,360 4.11 0 0
jython 128 3.31 0.04 0.023
lusearch 230 9.16 0.08 0.17
pmd 370 7.25 0.41 37.24
xalan 330 5.89 0.07 0.84

Table 2. Properties of the random trace with a trace-limit of 1000
(no filter): overall number of live objects, the percentage of live ob-
jects discovered by random trace, the percentage of dead objects
traced by the helper threads, and the percentage of objects that be-
came floating garbage due to the random trace. All the percentages
are of the overall number of live objects.

the percentage of traced objects can exceed the 100%, as it some-
times does. To obtain better understanding of the trace, objects col-
ored by the additional tracers are separated into three categories:
(1) reachable objects colored by reachable colors, (2) unreachable
objects colored by unreachable colors, and (3) unreachable objects
colored by reachable colors. The reported information is accurate,
since we determine reachability in a separate independent regular
trace, while the program is still halted. Work invested into tracing
objects of type (1) can be considered useful because it saves time
for the main trace and parallelizes the trace. Tracing objects of type
(2) is wasted, since it does not help the main trace and does not
harm it. Tracing objects of type (3) is harmful, as it creates floating
garbage and can impose additional work on the main trace because
the main trace continues to trace from where the helper threads fin-
ished. As can be seen in the tables, large percentages of floating
garbage created by additional tracers is the main problem we en-
countered with javac.

The tests were run with a trace-limit of 1000, i.e., the number
of objects colored by any color does not exceed a thousand. The
results are produced for every GC cycle. For the statistics, we
then computed the average values for the run. To account for the
algorithm’s non determinism resulting from random object picking,
we ran each benchmark five times and averaged the results. In Table
2 we report the results obtained without the filter and in Table 3 –
with the filter. It can be seen that the filter, i.e., the bias towards
objects that can reference their own type, typically increases the
percentage of useful work by the tracers and reduces the amount of
floating garbage. The latter is especially noticeable for javac. But it
is not deterministic. For pmd the floating garbage actually increased
with the use of the filter.

6. Related Work

Much of the related work was already mentioned when relevant in
the paper. We further mention the most relevant such work here.

Researchers developing garbage collection algorithms have
noted long ago [9] that deep linked lists of objects can be a source
of imbalance and poor scalability for parallel heap tracing. Devel-
opers of load balancing algorithms for parallel garbage collection
trace [19, 22, 6, 34] either explicitly state that long linked lists

live useful wasted
name objects helpers helpers floating

(thousands) work (%) work (%) garbage (%)

db 384 10.8 0.036 0.004
jack 110 25.8 0.08 0.024
javac 316 14.61 0.14 27.01
jess 128 30.22 0.21 0.045
mtrt 363 18.25 2.31 0.92

antlr 220 13.93 1.35 0.13
bloat 380 17.58 0.13 0.2
hsqldb 3,30 4.8 0.023 0
jython 128 12.2 0.1 0.03
lusearch 230 20.75 0.78 0.467
pmd 370 14.39 0.58 51.24
xalan 330 15.74 0.11 0.98

Table 3. Properties of the random trace. This table is similar to
Table 2 except that the random choices filter described in Section
4.2.1 was used.

present a scalability problem or implicitly assume that such struc-
tures are rare or non existent.

Recently, a study of object-graph depths was reported by Siebert
[30] in the intention of pointing out problems with highly paral-
lel tracing. They reported long linked lists in several SPECjvm98
benchmarks and offered theoretical prediction on how maximal
object-graph depth can influence the scalability of garbage collec-
tion tracing. Another relevant study trying to predict the scalability
of parallel garbage collection tracing was performed back in 2001
by Endo et al [20]. They measured the object-graph depths to make
scalability predictions. Ming Wu and Xiao-Feng Li [34] report that
they did not encounter the problematic object-graph layouts in their
experiments with the pseudojbb benchmark, which is a work con-
strained version of the SPECjbb benchmark. This is consistent with
our result that SPECjbb has a very consistent shallow object-graph
of depth 24.

We improve over the above previous work by extending the
benchmark coverage. We also propose and study the idealized
trace utilization measure, which provides more information on the
scalability of a heap shape. The measurements in this work are
consistent with the partial results obtained in previous work and
provide more information on more benchmarks. In the second part
of this paper, we also investigate avenues to ameliorate the tracing
scalability problem. As far as we know, this is the first study of
possible ways to ameliorate the heap shape scalability problem.

Click [12] proposed the idea of using idle processors to ran-
domly trace objects and aid the trace of non-scalable heap shapes.
As far as we know his proposal was not implemented, nor inves-
tigated prior to this work. Also, as far as we know, the method of
adding shortcuts was not previously proposed.

7. Conclusion

As garbage collected languages remain highly desirable and as the
amount of parallelism is steadily rising, expected to reach tens and
hundreds of processors available to trace a heap, the question of
tracing scalability becomes acute. In this paper we provided an in-
vestigation of the heap-tracing scalability. We started by propos-
ing the idealized trace utilization measure. Next, we demonstrated
that heap shapes with low scalability are produced by some of the
standard Java benchmarks. Such heap shapes can foil the scala-
bility of the application on highly parallel platforms, due to the
non-scalability of the garbage collection tracing activity during the
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execution. We then investigated two possible directions for ame-
liorating the problem: adding heap shortcuts and tracing on idle
processors. Further investigation is required to validate the use of
these methods within a full garbage-collected system.
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