~

[1"200nN TECHNION
219120 (19N u Israel Institute
TN of Technology

4 A

[1'1200 NIM90
The Technion Libraries

017" XIAI ['1NX "V D'D>NOoIN 'TIN'?77 1901 N'a
Irwin and Joan Jacobs Graduate School

\

©
All rights reserved to the author

This work, in whole or in part, may not be copied (in any media), printed,
translated, stored in a retrieval system, transmitted via the internet or
other electronic means, except for "fair use" of brief quotations for
academic instruction, criticism, or research purposes only.
Commercial use of this material is completely prohibited.

©
n/nann? nnme nrpTm 7

IX N7 112'N ,01702°X2 Y'ON7 ,UT'1 1AXNA [ONX7 ,01IN7 ,0'9TN7 ,('"NW7d N'TN1) 7'NYN7 |'X
IX N7 ,NXIN ,TIA'YZ NN0AY 112NN [N DIX7 D'WOZA "an win'w" oyn? ,11nn j77n 72
.07nNN2a 1IoX AT AN 71750 AN "Non wIN'Y 7NN

A GPU-Friendly Skiplist
Algorithm

Nurit Moscovici

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

A GPU-Friendly Skiplist
Algorithm

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Nurit Moscovici

Submitted to the Senate
of the Technion — Israel Institute of Technology
Tamuz 5777 Haifa July 2017

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

This research was carried out under the supervision of Prof. Erez Petrank, in the Faculty

of Computer Science.

Some results in this thesis have been published as articles by the author and research
collaborators in conferences and journals during the course of the author’s MSc degree,

the most up-to-date versions of which being:

Nurit Moscovici, Nachshon Cohen, and Erez Petrank. A gpu-friendly skiplist algorithm. In
International Conference on Parallel Architecture and Compilation Techniques (PACT), 2017,
2017. (in press).

Nurit Moscovici, Nachshon Cohen, and Erez Petrank. Poster: A gpu-friendly skiplist
algorithm. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 449-450. ACM, 2017.

The paper has been chosen as a contender for the best paper award at PACT 2017,

which has not yet taken place as of the time of writing this thesis.

The generous financial support of the Technion is gratefully acknowledged.

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Contents

List of Figures

Abstract

Abbreviations and Notations

1 Introduction

2 Preliminaries

2.1 GPU And The CUDA Programming Model
2.2 Considerations For Efficient GPU Programming

2.3 Skiplists
3 Algorithm Overview

4 Algorithm Details
4.1 Structure Details . .

4.2 Data Structure Operations.

4.2.1 Contains. . .
4.2.2 Insert
4.2.3 Delete

4.3 Some Words on Correctness v o i e

5 Measurements/Results
5.1 Experimental Setup
5.2 Static Configurations

5.3 Performance Results
6 Related Work
7 Conclusion

Hebrew Abstract

© 9 9

11

15
15
16
16
22
33
40

43
44
44
48

51

53

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

List of Figures

21

3.1
3.2

4.1

4.2
4.3

4.4

4.5

4.6

5.1

5.2
5.3

5.4

A classic skiplist structure Lo

Format of a chunk of size N
GFSL: A chunked skiplist

Example of the Contains operation, pwrforming down-steps, lateral steps
and backtracks oL
Example of the Insert operation, inserting key 15
Inserting key 15 into a chunk without a split. Each thread reads the entry to
its left, and if it is greater than 15 copies it into its own entry. Order of copying
is from right to left.o
Insertion of key 22 causes a split. Keys 20 and 25 are moved from chunk B to D
(the new chunk). B’s next pointer and key 20’s down-pointer in A are redirected
to D. Lo e e e e e e e
Example of the Delete operation. Key 13 is removed from the structure,
causing a merge tO OCCUT.« v v v i v i v v i
Deleting key 13 from a chunk. All keys greater than 13 are moved one entry to
the left. e e

Throughput comparison of GFSL using chunks and teams of size 16
(GFSL-16), and of size 32 (GFSL-32), and M&C. The benchmark pre-
sented is [i,d,c]=[10,10,80] on a 1M key range
Ratio between GFSL and M&C as a function of the key range.
Throughput, in millions of operations per second, as a function of key
TANZE. « v v e e e e e e e e e e e e e e e e
Throughput, in millions of operations per second, as a function of key

range. Each graph shows the throughput of a single operation type.

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Abstract

We propose a design for a fine-grained lock-based skiplist optimized for execution on
Graphics Processing Units (GPUs). GPUs have become increasingly popular in recent
years as a platform for accelerating general purpose computations (GPGPU). GPUs
are often used to accelerate streaming parallel computations, and it has been shown
that highly data-intensive applications can achieve an order of magnitude speedup
when run on a GPU. However, it remains a significant challenge to efficiently offload
concurrent computations with more complicated data-irregular access and fine-grained
synchronization. Natural building blocks for such computations would be concurrent
data structures, such as skiplists, which are widely used in general purpose computations.
Many efficient implementations of concurrent data structures have been designed and
are widely used in parallel applications for the CPU. However, many of these algorithms
do not fit with the specialized architectural requirements of the GPU, and may not scale
well or even perform correctly. Our design utilizes array-based nodes which are accessed
and updated by warp-cooperative functions, thus taking advantage of the fact that
GPUs are most efficient when memory accesses are coalesced and execution divergence is
minimized. The proposed design has been implemented, and measurements demonstrate

improved performance of up to 11.6x over skiplist designs for the GPU existing today.

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Abbreviations and Notations

GPU
GPGPU
CPU
GFSL
M&C
JIT
SPMD
SIMT
SIMD
SM
CUDA
OpenCL
B

GB

L2

warp

hal f-warp :

team
chunk
tld

N
DATA
NEXT
LOCK
split
merge
zombie
Dhey

Pehunk
[i,d, c]

Graphics Processing Unit

General Purpose Programming on the GPU

Central Processing Unit

GPU-Friendly Skiplist

Skiplist implementation by Misra and Chaudhuri [MC12b]

Just In Time compilation

Single Program Multiple Data

Single Instruction Multiple Thread

Single Instruction Multiple Data

Streaming Multiprocessor

Compute Unified Device Architecture, by Nvidia.

Open Computing Language, by Intel

Byte

Gigabyte

Level 2 Cache

32 threads, the smallest unit scheduled by the SM

Either the first or last 16 threads in a warp

A group of up to 32 threads that cooperate to perform GFSL operations
A node in GFSL

Thread Id within a team (between 0 and jteam size; - 1, inclusive)
The number of entries in a chunk

One of the first N — 2 entries in a chunk, holding key-value pairs
The entry in a chunk containing the pointer to the next chunk
The entry in a chunk containing the lock

Operation for handling overfull chunks

Operation for handling underfull chunks

A chunk logically, but not physically, removed from the structure
Probability that a key will be in level ¢ 4 1 if it is in level ¢
Probability that a chunk in level 7 is represented by a key in level ¢ + 1

Operation mixture with ¢% inserts, d% deletes, and ¢% contains

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Chapter 1

Introduction

In recent years, interest has surged in utilizing GPUs as a platform for accelerating
general purpose programs (GPGPU). Today’s GPUs are widely available at a low
cost, and provide hundreds of computing cores at high energy efficiency, with more
cores added in every generation. The introduction of specialized parallel programming
platforms such as CUDA [Nvil5b] and OpenCL [Opel5] over the past decade have
opened GPUs for GPGPU programming without need for a background in computer
graphics. GPUs are used today to accelerate applications in a wide variety of fields
from deep learning [WYS'15] to database operations [BS10]. However, the design and
implementation of efficient general-purpose algorithms remains a significant challenge.

GPUs are very effective for regular-access data-parallel computations on large
datasets, often utilizing large vectors or matrices. However, irregular access to memory
and control-flow divergence in applications can severely impair performance [BNP12,
Nvilba]. These behaviors are often exhibited by pointer-based data structures that
support dynamic updates and accesses, which are frequently required in general purpose
algorithms.

While many such data structures have been developed for use on the CPU [HS12],
attempts to port them directly to the GPU have shown that further GPU-specific
optimizations are necessary [MC12b, CCT12]. Several GPU-based search structures
geared toward graphics applications have been designed with good results [ZHWGOS,
LWL12,ZGHGO08|. However, these structures typically distinguish between build and
search phases, and do not allow for dynamic updates.

Relatively few dynamically updated concurrent data structures have been designed
and optimized for the GPU. Some hash table designs, both based on linear prob-
ing [Borl4] and cuckoo hashing [ZWY 15, AVS*11, KBGB15], have been proposed in
recent years. Of these, [KBGB15] and [ZWY*15] are dynamically updated. Simpler data
structures such as queues [SF15] and linked-lists [YHGT10] have also been developed
for the GPU.

The implementation of nonstreaming algorithms on GPUs is still in early stages,
and we believe that GPGPU will be able to provide complex services for the CPU in

the future, e.g., JIT compilation and garbage collection. To achieve such tasks, we first
need to build the basic blocks used in algorithmic design. Our intention is to support
this direction by focusing on important data structures, in this case, the skiplist. Such
structures are a natural basis for development of smarter applications. The target
application would probably run entirely on a GPU kernel and would invoke skiplist
operations as part of its execution.

Skiplists are popular in concurrent algorithms, as they offer a probabilistic alternative
to balanced search trees without costly balancing operations. They have been used as a
basis for key-value stores [Rocl4,Carl3] and for other data structures such as priority
queues [SLO0]. However, classic skiplist designs provide little locality of data and have
highly irregular access patterns, both of which are significant drawbacks on the GPU in
terms of performance. Additionally, thread-level synchronization on the GPU is very
costly, especially when necessary between any pair of threads in the system.

We propose GFSL, a GPU-friendly design for a fine-grained lock-based skiplist.
GFSL consists of linked lists of array-based nodes, called chunks, each of which contains
several consecutive keys. Threads are divided into teams the size of a warp or smaller.
Threads in a team access the skiplist chunks in a coalesced fashion and cooperate in
the execution of each skiplist operation. As such, we reduce the amount of concurrent
skiplist operations to gain higher memory coalescence and lower execution divergence,
thus playing to the strengths of the GPU. GFSL benefits significantly from this design
as it enables threads to cooperate during operation execution by concurrently handling
a large amount of data with each execution step.

We compare GFSL to an implementation of a lock-free skiplist algorithm running
on the GPU written by Misra and Chaudhuri [MC12b], which was shown to achieve a
speedup over the CPU implementation. Results show that our optimizations offer a
performance boost for large key ranges. In a range of 10M keys, our implementation

offers a speedup of 6.8x-11.6x.

Chapter 2

Preliminaries

2.1 GPU And The CUDA Programming Model

This work was designed and implemented in Nvidia’s CUDA C++ programming
model [Nvil5b]. CUDA programs employ a hetrogeneous model: serial, low-data-
intensive elements are executed on the host CPU, which calls functions on the GPU
device for highly parallel and data intensive computations. Communication between
the host and the device is achieved by transferring large datasets between the host and
device memory, a slow process that poses a significant bottleneck.

CUDA provides SPMD behavior using GPU-side functions called kernels. Kernel
code is executed in parallel on each of the threads launched by the user. These
threads are subdivided into blocks, which are distributed amongst the GPU’s Streaming
Multiprocessors (SMs). The SMs are the computational engines of the GPU, and execute
the blocks in parallel. When a block terminates, the SM receives and executes a new
block until all blocks have been handled.

The SMs further logically subdivide the blocks into units called warps, which are
the basic unit managed and scheduled by the SM. Threads in a warp share a program
counter and proceed through kernel code in lockstep (The SIMT programming model).
Warps on an SM are interleaved in order to hide latency. In every cycle the scheduler
chooses a warp that is not stalled (e.g., due an in-process memory transaction), and
executes its next instruction. On all existing Nvidia GPUs warps consist of 32 threads,

though this may be subject to future changes.

2.2 Considerations For Efficient GPU Programming

While GPUs have the potential to accelerate many kinds of computations, they are not
a good fit for every program. GPUs are best suited for computations that can be run on
a large number of data elements in parallel. Additionally, the high cost of data transfer
must be justified by executing sufficient operations on the GPU for each launch. We

present some well known [Nvil5a] important considerations for efficient programming

in the GPU environment.

Synchronization Communication between threads residing in separate blocks is
costly, as it can only be performed via the slow global device memory. CUDA supports
a variety of atomic operations which can be used for synchronization [SO11]; however,
simultaneous atomic operations by threads in a warp to the same destination are
serialized, and will cause the warp to stall until all have completed. Thus synchronizations
must be used sparingly and carefully in order to avoid a drop in performance.
Communication between threads within the same warp is achieved more efficiently by
utilizing specialized intra-warp operations, supported by CUDA for compute capabilities
3.0 and higher. Two such operations are _shfl(var, tId), which returns the value of a
variable held by a thread at the specified channel within the warp, and _ballot (bool),
in which each thread offers a boolean value and receives a 32 bit word comprising a
corresponding flag bit for each thread in the warp. Such operations must be used with
care, as execution divergence causes threads not in the active branch to return default

values, possibly with unintended results.

Memory Coalescing A major consideration for improving performance is memory
access optimizations [Nvilbal: the number of global memory operations in a kernel
should be minimized and coalesced into the fewest possible transactions. Each half
of a warp (half-warp) issues access requests separately, and a memory transaction is
performed for every cache line covered by the requests. Thus, if all threads in a half-warp
access values that can be coalesced into the same cache line then only one memory
transaction will occur, while scattered access results in multiple serial transactions. The

warp blocks until all transactions are completed.

Divergence If kernel execution causes threads in a warp to diverge by executing
different branches, all branches will be executed one by one (serially) by the entire warp.
Threads that should not be active in the currently executed branch will be temporarily
disabled. Thus divergence within a warp may have a negative impact on performance.
Additionally, divergence can cause more serious issues in terms of correctness. For
example, spin-locks that work correctly in CPU code may cause a deadlock on the GPU
when one thread in a warp holds the lock, but the code branch for the spinning threads

is performed before the locking thread’s branch, causing them to spin forever.

Resource Management SMs contain a fixed-size register bank which is divided
evenly amongst the threads according to the resource requirements of the kernel design.
If more resources are needed by the kernel than are available there will be a costly
“spillover” into a designated area of the global memory. Thus, access to local variables
can potentially be as expensive as global access. Resource distribution can be optimized

either by simplifying program code so that fewer resources are required by each thread,

Figure 2.1: A classic skiplist structure

or by launching blocks that consist of fewer threads, enabling SMs to distribute more

registers to each thread.

2.3 Skiplists

Skiplists are widely-used probabalistically balanced search structures that support
expected O(logn) time for online Insert, Delete and Search operations in ordered
collections. While balanced binary search trees offer these results in the worst case,
the localized balancing operations required by skiplists make them easier and more
efficient to implement in a multithreaded environment [Pug90b]. Many concurrent
skiplist algorithms exist [HS12, Pug90a, HLLS06], though none have yet been designed
with GPU-oriented optimizations.

A skiplist consists of layers of sorted linked lists, as in Figure 2.1. The bottom
level holds all elements in the collection, and every other is a sublist of the level below,
containing a random set of keys chosen with some fixed probability pye,. Each element
receives a random height upon insertion and is linked in every level up to that height.
Traversal is performed by searching through each level from the top down, using each
lateral step in the higher levels to skip over several keys in the bottom level.

Some skiplist properties make efficient porting to the GPU a challenge. Skiplists
have little locality of data, causing slow uncoalesced memory access on the GPU. Skiplist
operations also present a high probability for divergence of threads within the same
warp: each thread that operates on a different key will have a unique traversal order,
potentially causing many branches between the threads. We present a GPU-friendly
fine-grained lock-based skiplist design.

10

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Chapter 3
Algorithm Overview

As discussed in Chapter 2, GPU algorithms are most efficient when performing coalesced
memory accesses with low control flow divergence. We tune the classic skiplist structure
to these requirements by using array-based skiplist nodes and allowing threads in a
warp to cooperate in the execution of the skiplist operations.

We tackle the problem of scattered memory accesses by packing consecutive key-value
pairs residing in the same level into large cache-aligned skiplist nodes called chunks,
shown in Figure 3.1. Chunks contain a data array, a sorted array of key-value pairs,
along with a LOCK entry and a NEXT entry consisting of a pointer to the next chunk
and a max field holding the maximum key in the current chunk. Chunks are designed
to be read efficiently in the fewest possible memory transactions.

GFSL consists of several levels of chunked linked lists, each containing a subset of
the keys in the level below, as seen in Figure 3.2. Each chunk’s data array is sorted in
rising order, with empty entries denoted by a special oo value and grouped at the end
of the array. In the upper levels the value field of each entry in the data array points to
a chunk in the level below, and in the bottom level this field will hold the data element
associated with the corresponding key. A key-value pair in level ¢ + 1 generally points
to a chunk containing the same key in level i, though it may temporarily point to a
chunk containing smaller values during Inserts and Deletes. The first chunk in each
level contains a —oo key in the first entry with a pointer to the first chunk in the level
below, and is accessed via a pointer from the Head Array. The last chunk in every level
contains an oo value in both its next-pointer and max fields. co and —oo are distinct
from keys in the structure.

Threads are divided into groups called teams, which cooperate to perform the skiplist
operations. Teams can be defined by the user to be either the size of a warp or smaller.
The number of entries in a chunk is equal to the number of threads in a team, so that
the entire chunk is read in a single kernel instruction (executed in lockstep by the team).
Each thread in a team simultaneously reads data from the chunk index corresponding to
its place within the team (t/d). For a team of size N the first N-2 threads, called DATA

threads, access the data array, while the last two access the NEXT and LOCK values

11

DATA (N-2 entries) _— NEXT

Lower :
32-pits | KeyO | Key1l | ... |KeyN-3| Max Field

Upper
39-bits ValO | Vall | .. | ValN-3 | NextPtr

Figure 3.1: Format of a chunk of size N

Head DataArray _Next Lock
Array| 4|-00|570| ... |..| &
ctr | ptr ~
1 / ! _

/ -00| 10 | 25 |..|] 25 (’101 570| ... |..| ©©
2 1 Ll I~y o e

—>|-00| 5 | 10]..| 10 (' 20| 25(33|../33F8~ |570|600|810|...| o0
12 O

\ sy

Figure 3.2: GFSL: A chunked skiplist

respectively. Each thread performs computations on the value it read then cooperates
with the rest of its team to decide on the next step in the execution via intra-warp
operations.

Structure traversal is similar in spirit to traversal over a regular skiplist. A team
searching for a key k reads the first chunk in the highest level. Each DATA thread
compares k to the key read from its entry, while the NEXT thread compares k to the
maximum field. The threads share their results and decide simultaneously how to
continue the traversal: either a lateral step via the next pointer, or a step down to
the next level via a pointer in some DATA field. The team continues laterally if the
searched key is greater than the maximum and steps down otherwise via the data-entry
containing the largest key smaller or equal to k. If all keys in the chunk are greater
than k then the team must backtrack to the previous chunk in the level and step down
from there.

Insert and Delete operations are likewise performed by an entire team in tandem
while ensuring the chunks remain both internally and externally sorted. If an insertion
occurs when there is no free space in the data array a split operation is performed: A
new chunk is allocated and added to the structure after the overflowed chunk. The data
array is divided equally between both chunks, whilst remaining sorted. Conversely, if
a deletion causes a lower bound on the number of key-value pairs to be crossed then

a merge operation is performed: the chunk is marked as a zombie and its values are

12

moved to the next chunk in the level. If the next chunk is too full this operation may
cause it to be split. Pointers are redirected after both split and merge operations in
order to ensure the upper level pointers remain accurate and to physically remove a
zombie from the structure. All changes to the contents of the skiplist are performed
under the protection of the chunks’ locks, so at most one team can change the contents
of a chunk at any time.

GFSL contains fewer nodes and levels than the classic skiplist. A single node in
GFSL contains several keys, and so replaces several separate nodes in the classic version.
Thus, more keys can be inserted into a level in GFSL before it becomes necessary to add
a pointer in the level above. The teams process more data for every memory transaction
than a single thread does in the original algorithm, enabling faster traversals over the
structure, while also causing less divergence within a warp.

Unlike the classic skiplist algorithm, GFSL does not predetermine a level for every
key inserted. Instead, a key can be raised to level i 4+ 1 only as a result of a split, i.e.
when a new chunk is added to level 7. Raising the key as a result of insertion of new
chunks and not single keys causes the factor between levels to be tied to the number of
entries in a chunk, aiding in shorter traversals. In an ideal structure at most one key
from each chunk in level ¢ would appear in level ¢ + 1. In this work we differentiate
between pge,, the probability a key in level ¢ will appear in level i + 1, and pepunk, the

probability a key from some chunk ch in level ¢ will appear in level 7 + 1

13

14

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

Chapter 4

Algorithm Detalils

4.1 Structure Detalils

During the initialization stage we create the structure and allocate an array of chunks
in the device memory for a memory pool. The structure initially consists of a single
unlocked chunk in each level, containing the —oco key and a pointer to the chunk in
the level below. The head array is initialized to point to these chunks. Each head
array pointer is associated with a counter of the number of utilized chunks in the level,
initially 0. These counters are used to keep track of the highest level currently in use in
the structure, and thus to avoid traversal of empty levels.

Allocations from the memory pool are performed by incrementing a global counter
and using the resulting index as a pointer. All chunks are allocated locked with oo
values in all key-data pairs, as well as in the max field. The co max field signifies that
this is the final chunk in the level. Chunks that are to be inserted into any place but
the last in the level will have their max field updated to the maximum key contained
within the data array before connection to the structure.

In this work chunk entries are of size 8B, divided equally between key and value.
The small size of keys and values in the structure is necessary as the GPU has a small
memory capacity (3.5GB in the Maxwell architecture tested in this work) and memory
transfer between the host and device is very slow. Additionally, larger values would
require either more transactions or fewer key-value pairs read per transaction. A 32-bit
value field may be used to indicate the address of a larger object in the main memory
as in Zhang et al. [ZWYT15].

Some Definitions

Zombies: Chunks that have been removed by a merge operation but are still
connected to the structure are called zombies. Removal of chunks from the structure
occurs only during a merge operation. The deleting team marks a chunk as a zombie

using a special value in the lock field. The zombie will eventually be physically removed.

15

Table 4.1: Notations

K Key type. unsigned int.
V Value type. unsigned int.
KV Key-value pair in chunk. unsigned long.

CHK* Pointer to a chunk.

Special Values
tId (Thread Idx)%team; //thread’s index within its team
DSIZE N — 2 - size of data array
NONE A value distinguishable from any tId

While zombies are no longer considered to be in the structure they may still be reachable
until all pointers to them are redirected. Identifying when a zombie is disconnected and
can be reclaimed is difficult, as it may be pointed to by multiple chunks.

Memory reclamation is a significant challenge, even on the CPU [ALMS15,BGHZ16,
Brol5, CP15b, CP15a, DHK16], often requiring the use of complicated code or locks,
which are performance drags on the GPU. A possible reclamation scheme would be to
compact the structure between kernel launches; this is also challenging and is left for
future work. The need for reclamation in GFSL is reduced significantly compared to
Misra and Chaudhuri [MC12b] by the fact that chunk entries from which keys have

been removed can be reused as long as the chunk is not a zombie.

Enclosing Chunks: A chunk is said to enclose a key k if it is the first non-zombie
chunk in the level with a max field greater or equal to k. If k exists in level 7 it will be
found in its enclosing chunk in that level. Additionally, k£ can only be inserted into its
enclosing chunk. Thus, a traversal searching for k£ terminates when it has found the

enclosing chunk of k in the bottom level, regardless of whether k exists in the chunk.

4.2 Data Structure Operations

In this section we present the algorithms for the Insert, Delete, and Contains operations
in detail. Table 4.2 defines some notations. Note that in this section we use CHK* to
indicate a pointer to a chunk in global memory in order to simplify the pseudocode. In
actuality, chunks are accessed using 32-bit indexes to the memory pool. For chunks of
size 128B this index size can cover addresses in 512GB of memory. This is sufficient in

the foreseeable future, as modern GPUs have only a few GB of device memory.

4.2.1 Contains
General Description

Contains are typically the most common operation called in programs using skiplists,

and so it is vital that the traversal be as fast as possible. A Contains operation that

16

GEHY Lol
hunk -00| 68|99 [121]...| &
A vxxx--.xl

ch -00| 13|30 | 47 |...| 47 50| 68|81 | .. |..| 81
unk x x xj Chunk
B V o C LN
V(‘ \\/«
10

(3
-0 5| 7 |10 .. 13| 14|17 |21 |... 21I
Chunk Chunk

D \ xx\/x

(a) A team performing Contains(17).

e

Chunk 121|..| &0
un
XXX X

N1
chunk X1 13130147 |..[47 59| 68|81 .. |.|81 Chgnk
® vIVIV MR (XXX Xt

e —— {3

-00| 5| 7 (10 |..| 10 13 | T4 Trrae., [21 |5 Chunk
Chunk :
’ \ \Q

(b) A team performing Contains(52), entailing a backtrack.

Figure 4.1: Example of the Contains operation, pwrforming down-steps, lateral steps
and backtracks

must wait for a lock to be released may result in high contention, especially in the
massively multithreaded environment of the GPU. Thus, the Contains operation is

lock-free: it never acquires a lock or waits for a lock acquired by another operation.

A team performing a Contains operation searches for a key k, starting from the
first chunk in the highest level. The team searches each of the upper levels in turn for
the largest key in that level that is smaller or equal to k. Once this key is found the
team reads its associated pointer, which is used to step down to the next level. When
the bottom level is reached the team begins a lateral search for a chunk containing &
itself. A key is considered to be in the structure if it exists in a non-zombie chunk in

the bottom level.

17

zombies encountered during traversal are ignored by taking lateral steps until a
non-zombie is found. The LOCK thread contributes only in recognition of zombie chunks,
in all other steps decisions are made based solely on the values read by the DATA and
NEXT threads.

Consider Figure 4.1 for an example of the Contains operation. In Figure 4.1a the
team searches for key 17, beginning by reading Chunk A, the first chunk in the top level.
Each DATA thread checks whether its value is a candidate for a down step (less than
or equal to 17). The NEXT thread checks whether the maximum value in the chunk is
smaller than 17, indicating that a lateral step should be taken. The team uses _ballot,
which receives the boolean result of this computation and returns a bitmap to each
thread in which each bit represents the flag computed by the corresponding thread in
the warp. The threads see that Tj is the highest thread that returned t¢rue, and retrieve
the pointer data from T;. The entire team then steps down to Chunk B, and repeats
the computation, finally stepping down into Chunk E. In chunk E each DATA thread
checks whether its key is equal to 17, while the NEXT thread continues to check whether
a lateral step should be taken. The _ballot operation shows that 75 sees key 17, and
the team concludes the operation with a true indication.

Figure 4.1b showcases other possible types of steps in a traversal of GFSL with a
search for key 52. As before, the team reaches Chunk B and each thread compares the
key it read to 52. In this case, the _ballot shows that Ty gx7 is the highest thread
returning true, meaning that 52 is greater than all keys in the chunk. The team takes
a lateral step into Chunk C, and again compares the keys found to 52. However, the
_ballot now shows that no thread returned true, signifying that 52 is smaller than all
keys in this chunk. In this case, the proper key to use for a down step would be key
47 in Chunk B, as it is the greatest key in the level that is less than 52. The team
backtracks to Chunk B and steps down into the bottom level. There it will take lateral

steps until the enclosing chunk of 52 is found.

Implementation Details

Algorithm 4.1 shows the Contains operation, which calls two main functions. The
searchDown function, described in Algorithm 4.2, handles traversal of the upper levels.
It begins with calls to the getHeight and firstChunkAtLevel functions to retrieve the
height and a pointer to the first chunk. Both functions are cooperative: they utilize
intra-warp operations to share data local to each thread. Each thread reads a separate
space in the head array to see whether the level corresponding to its t/d is in use. The
team then uses _ballot and _shfl operations to discover the highest nonempty level
and retrieve its pointer.

In each iteration the team reads a chunk from memory then uses the cooperative
function getTidForNextStep described below and shown in Algorithm 4.3 to decide

what the next step should be. There are three possibilities for the next step: a lateral

18

Algorithm 4.1 Contains

1 bool contains(K k)

2 |

3 CHKx pCurr = searchDown(k)
4 return searchlateral(k, pCurr)
5}

step in the same level, a step down to the lower level, or a backtrack through the

previous chunk in the same level.

As demonstrated in the example above, down steps, shown in Algorithm 4.2, Lines
19-23, occur when k is not greater than the maximum key in the chunk. Likewise, lateral
steps (Lines 15-18) occur when k is greater than the maximum key in the chunk. In
both cases, the cooperative function getPtrFromTid is called to retrieve the pointer in
the key-value pair held by the thread with the tId chosen as the next step. A backtrack
occurs when a lateral step reaches a chunk in which all keys are greater than & (Lines
24-28, 33-38). In this case the team must step down using the maximum key in the
previous chunk. This sequence of operations is similar to the classic skiplist traversal
algorithm. To enable this step the team keeps track of the entries read from the previous

chunk in the traversal when taking lateral steps (Line 16).

The helper functions called by the searchDown algorithm are all cooperative. We
consider getTidForNextStep and getPtrFromTid as examples of such functions. These
functions showcase the usage of _shfl and _ballot, the main intra-warp operations
used in this work. Other cooperative functions described in the rest of this chapter
are implemented in a similar fashion. Note that _shfl and _ballot operations are
performed by the entire warp. Thus care must be taken to only evaluate values read by

the current team when using teams smaller than warp size.

In getTidForNextStep, shown in Algorithm 4.3, we see usage example for the _ballot
operation. Each thread simultaneously calculates a boolean value dependent on its
tId, k, and the key it read from the chunk (Lines 3-4). The threads then call _ballot
simultaneously (Line 6) to receive the results of this calculation for each thread. The
NEXT thread passes a true value to _ballot only if k is greater than the max field, and
the DATA threads pass a true value only if the key they read is less than or equal to
k. The LoCK thread always passes a false value. Any EMPTY (00) key value read by a
thread will result in a false value being evaluated. Thus, the next step required by the
algorithm can be decided by taking the highest tId that evaluated a true flag. This tId
is determined by subtracting leading zeros (clz) from the ballot return size, which is 32
bits. Precedence is effectively given to threads with higher tIds, a fact that is taken
into account during Inserts and Deletes to safeguard against traversals considering bad

chunk values. If all threads return false then a special NONE value will be returned,

19

Algorithm 4.2 SearchDown

0O UL i W N -

CHKx searchDown(K k) {
search:
KV prevKv = null
int height = getHeight()
CHKx pCurr = firstChunkAtLevel(height)

while(height>0) {
KV currKv = pCurr—>read(tld)
if (isZombie(currKv)) {
pCurr = getPtrFromTid(NEXT, currKv)
continue

}

int stepTid = getTidForNextStep(k, currKv)
if (stepTid == NEXT) { //lateral step
prevKv = currKv
pCurr = getPtrFromTid(NEXT, currKv)

}
else if (stepTid |= NONE) { //down step
height ——
prevKv = null
pCurr = getPtrFromTid(stepTid, currKv)
}
else { //backtrack
if(prevKv == null) goto search
height ——
pCurr = backTrack(prevKv, k)
}

}

return pCurr

}

CHK backTrack(KV& prevKv, K k){
int stepTid = getTidOfDownStep(k, prevKv)

CHKx pNextStep = getPtrFromTid(stepTid, prevKv)

prevKv = null
return pNextStep

20

Algorithm 4.3 Examples of Cooperative Helper Functions

1

2 void getTidForNextStep(K k, KV currKv){

3 bool elem = (tld < DSIZE) && (currKv.key <= k)
4 bool next = (tld == NEXT) && (currKv.key < k)
5

6 uint bal = __ballot(next || elem)

7 if (bal == 0)

8 return NONE

9 return 32 — clz(bal) — 1
10}
11
12 CHKx getPtrFromTid(int winningTid, KV kv){
13 return _shfl(kv.v, winningTid) //take kv.v value from thread with given tld
14 3}

signifying that a backtrack must be executed.

getPtrFromTid, in Line 12 of Algorithm 4.3, shows a usage example for the _shfl
operation. Each thread specifies the value field it is interested in receiving, and the
thread from which it wishes to receive the value. In this case, each thread takes the
value field of the KV pair held by the thread with t/d == winningT'd.

Searching along the bottom level is performed by the searchlLateral function
presented in Algorithm 4.4. The traversal is very similar to the lateral step in search-
Down, the main difference being that DATA threads evaluate whether the key they read
is equal to k, rather than less-than-or-equal (Line 4). The NEXT thread continues to
check whether a lateral step is necessary. The team calls the cooperative function
isTidWithEqualKey to determine the next step, and continues to take lateral steps
as long as the NEXT tId is returned or the current chunk is a zombie. Traversal ends
when a value other than NEXT is returned, indicating that the enclosing chunk has
been reached. The threads finally determine whether the value returned was NONE,
indicating that k& was not found, or the tId of some DATA thread, indicating that k& was
seen by that thread.

Lock-Freedom

There exists a rare state in which searchDown is delayed by a concurrent Delete operation
and must be restarted, making Contains lock-free. We use Figure 4.1a to illustrate this
edge case. A team searching for key 70 steps from chunk A to chunk C, then stalls. A
concurrent team deletes keys 59 and 68 from the structure. When the first team wakes,
it sees a chunk containing only keys greater than 70, and so decides to backtrack. As
the previous chunk in the new level is unknown, the team does not have enough data

to perform the backtrack. The previous chunk in the layer above might also not hold

21

Algorithm 4.4 SearchLateral

1 bool searchLateral(K k, CHKx pCurr){

2 do {

3 KV currKv = pCurr—>read(tld)

4 int foundTid = isTidWithEqualKey(k, currKv)
5

6 if (foundTid == NEXT || isZombie(currKv)) {
7 foundTid = NEXT

8 pCurr = getPtrFromTid(NEXT)

9 }
10
11 } while(foundTid == NEXT)
12
13 return foundTid != NONE
14 }

enough information to continue, and so the traversal is restarted.

In more general terms, a restart occurs when a down-step is taken using a pointer
associated with some key, kDown, which was concurrently deleted by another team. If
the removal of kDown causes the team to read a chunk in the lower level in which all
the keys are greater than k then the team will decide to backtrack, despite the fact that
the prevkV field was set to null after the down step (Algorithm 4.2, Line 21). These rare
restarts do not limit system progress (they are caused by progress in Delete operations),

and have a minor effect on measurements (they occur in less than 0.01% of Contains).

4.2.2 Insert
General Description

The Insert function receives <k, v>, the key-value pair to be inserted, and searches the
structure for k. The insertion is executed only if k is not already in the structure, and
performed bottom-up. If insertion causes a chunk overflow a split operation will occur
and a new chunk will be added to the structure, containing the top half of the values
from the chunk that was split.

The enclosing chunk in the bottom level is locked once it is reached and found
not to contain k. It remains locked until the Insert operation is completed, including
all insertions to higher levels. This ensures there are no concurrent Insert or Delete
operations on the same key. In all upper levels the enclosing chunk is locked before
inserting the key, then immediately unlocked to minimize contention. A key is raised to
level ¢ + 1 only as a result of a split in level ¢. The decision whether to raise a key after
a split is randomly generated (on-device) according to pepunk-

Consider Figure 4.2 as a simple example of an Insert operation, inserting key 15.

22

Chunk
A
| I I
- —
s
chunk| | -0 13| 30| 47 47I f so[o8 a1] .. |[BL]l crun
B LN}
| \ -
I — — \/
¥ \
-©| 5|7 |10]..|10 7113|1721 .| 21 [| Chunk
Chunk :
D LN}
\, \ «__,/’

(a) Path taken during traversal to find the enclosing chunk of key 15. The path contains only
one chunk per level — the chunk through which the down-step was taken

15
4. If necessary, o NN
chunk [~ 68|99 121|../ 09 lock chunk A,
A insert key, Chunk | 131 17| 21 .21
unlock chunk A E
0| 13| 30 | a7 47 3. If necessary,
Chunk| |~ lock chunk B,
B insert key,
unlock chunk B
131 15(17 | 21 21
Chunk
Chunk 13117721 - 21 1. Lock chunk E E @
E 2. Insert15
5.4 Unlock chunk E
B
(b) General order of operations when inserting to (c) Actual insertion of key 15 into chunk E. Keys
multiple levels. The chunk on the bottom level remains greater than 15 are shifted to the right to preserve
locked for the duration. If it is necessary to insert sorting. The insertion is performed cooperatively
into higher level chunks, lock-insert-unlock to reduce by the team.
contention.

Figure 4.2: Example of the Insert operation, inserting key 15

The team first traverses the structure to find the enclosing chunk of 15. Traversal is
similar to that of the Contains operation, except that in this case the traversal path is
recorded, as seen in Figure 4.2a. The path is used as a starting point for insertion into
each level - the enclosing chunk must either be in the path or reachable from it. The
team reaches Chunk E and locks it, then inserts key 15 while ensuring the sorted order
remains, as shown in Figure 4.2¢. If Chunk E is full it will be split, and a key will be
inserted into the level above at a probability of pepuni (in this case into Chunk B). If
a split should then occur in Chunk B, the process will repeat itself in the level above
(Chunk A). The lock on Chunk E is only released when all inserts to all levels have
completed. If no split occurs, Chunk E will be unlocked immediately after the insertion
of key 15. Figure 4.2b illustrates the order of locks and inserts in the various levels of

the structure.

23

Implementation Details

The Insert function, presented in Algorithm 4.5, begins by searching for k using
the searchSlow function (Algorithm 4.6), and returns false if k already exists in
the structure. searchSlow performs the same traversal as Contains, with two main
differences: firstly, searchSlow saves and returns the traversal path (Lines 4, 28-29,
36-37 in Algorithm 4.6). The path is made up of the chunks through which down-steps
were taken during the traversal, and the enclosing chunk in the bottom level. These
serve as a starting point for discovering the correct place for insertion in each level.
Secondly, when a zombie is discovered after a lateral step the team attempts to redirect
the previous chunk’s pointer to remove the zombie from lateral traversals (Lines 10-20,
42). The redirection is performed lazily by calling try-lock on the previous chunk. If
the lock fails the team continues without updating. If the zombie was the first chunk
in the level, the head array will be updated accordingly. Update of down-pointers is
discussed below.

One would expect a path to be an array of pointers to nodes in each level. Indeed,
in the classic skiplist algorithm a traversing thread saves the search path in a local array.
However, local arrays are costly in CUDA in terms of resources as they are often stored
in the ”spillover” area of global memory. Thus, the path is contained in an “artificial
array” consisting of a single variable (path) per thread. The thread with tId=i holds
the chunk in level ¢ in the path. The “array” is accessed using _shfl operations.

This limits the maximum height of the skiplist to the team size. However, this limit
was deemed sufficient, even for teams that are smaller than warp size. For example,
chunks of size 16 hold an average of 10 keys. Thus a structure with a maximum height
of 16 can be expected to support 106 keys without compromising the skiplist structure.
Likewise, chunks of size 32, which hold an average of 20 keys, allow for around 2032
keys. Both are far beyond the global memory capabilities both in current GPUs and

those in the foreseeable future.

If k was not found, insertToLevel (Algorithm 4.5, Lines 28-46) is called to perform
the insertion. insertToLevel locks the enclosing chunk and inserts k, performing a
split if necessary, then returns the locked enclosing chunk and an indication whether
a key should be raised to the next level (Lines 8, 17, and 43). insertToLevel will
return false if k was concurrently added by another team before the lock was caught.
In Algorithm 4.5, Lines15-22, insertion into higher levels is handled by further calls to
insertToLevel. The value field inserted into level ¢ + 1 is a pointer to the new chunk
in level 7 (Lines 12 and 19).

insertToLevel calculates the number of empty entries in the data array (Line
35). If there are empty entries, executelInsert is called to physically insert <k,v>,
otherwise splitInsert is called to split the current chunk and perform the insertion.
A level’s chunk counter is incremented every time a split occurs or a level is inserted

into for the first time.

24

Algorithm 4.5 Insert

1 bool insert(K k, V v){

2 <bool found, CHKx path> = searchSlow(k)
3 if (found)

4 return false

5

6 bool raiseKey = false

7 CHKx pBottom = getPathFromTid(0)

8 if (linsertToLevel(0, pBottom, k, v, raiseKey)) {
9 unlockChunk(pBottom)

10 return false

11 }

12 v = pBottom

13

14 int level =1

15 while((raiseKey) && (level < MAX_LEVEL)) {
16 CHKx pEnclose = getPathFromTid(level)
17 insertToLevel(level, pEnclose, k, v, raiseKey)
18

19 v = pEnclose
20 unlockChunk(pEnclose)
21 level++
22 }
23
24 unlockChunk(pBottom)
25 return true
26}
27
28 bool insertToLevel(int level, CHKx pEnc,
29 K k, V v, bool& raiseKey){
30 pEnc = findAndLockEnclosing(pEnc, k)
31 KV encKv = pEnc—>read(tld)
32 if (chunkContains(encKv, k)) return false
33
34 raiseKey = false
35 if (numKeysInChunk(encKv) < DSIZE) {

36 executelnsert(pEnc, encKv, k, v)

37 if ((level > 0) && (isLevelEmpty(level)))
38 incrementNumChunksAtLevel(level)
39 }
40 else {
41 <pEnc, k> = splitlnsert(pEnc, encKv, k, v, level)
42 incrementNumChunksAtLevel(level)

43 raiseKey = isKeyRaised()
44 }
45 return true

46 }

25

Algorithm 4.6 SearchSlow

1 <bool, CHKx> searchSlow(K k){
2 search:
3 KV prevKv = null
4 CHK3x path = headPtrAtHeight(tld)
5 int height = getHeight()
6 CHK: pCurr = firstChunkAtLevel(height)
7
8 while(height>0) {
9 KV currKv = pCurr—>read(tld)
10 if (isZombie(currKv)) {
11 CHK: firstNonZombie = findFirsNonZombie(currKv)
12
13 if (prevKv != null)
14 redirect ToRemoveZombie(prevKyv, firstNonZombie, currKv)
15 else if (isFirstInLevel(pCurr, height)){
16 updateHeadArray(height, firstNonZombie, pCurr)
17
18 pCurr = firstNonZombie
19 currKv = pCurr—>read(tld)
20 }
21
22 int stepTid = getTidForNextStep(k, currKv)
23 if (stepTid == NEXT) { //lateral step
24 prevKv = currKv
25 pCurr = getPtrFromTid(NEXT, currKv)
26 }
27 else if (stepTid != NONE) { //down step
28 if (tld == height)
29 path = pCurr
30 height ——
31 prevKv = null
32 pCurr = getPtrFromTid(stepTid, currKv)
33 }
34 else { //backtrack
35 if(prevKv == null) goto search
36 if (tld == height)
37 path = &prevKv
38 height ——
39 pCurr = backTrack(prevKyv, k)
40 }
41 }
42 return <findLateralWithZombieRedirect(k,pCurr), path>
43}

26

Algorithm 4.7 Executelnsert

void executelnsert(CHKx* pEnc, KV encKv, K k, V v){
KV insertKv = getChunkValFromLeftNeighbor(encKv)
uint insertldx = getlnsertionldx(insertKv, k)
if (tld == insertldx)

insertKv = pair(k,v)

1
2
3
4
5
6
7 for(int i = DSIZE—1; i >= insertldx; i ——){

8 if ((insertKv.key 1= EMPTY) && (tld == i))
9 pEnc—>AtomicWrite(tld, insertKv)

0

1

1
1

executeInsert (Algorithm 4.7) inserts <k,v> while ensuring the chunk remains
sorted. In Line 2 each thread takes the key-value pair from the previous thread in the
team using a cooperative function. Then, in Line 3 the insertion index for <k,v> in
the sorted data array is determined in another cooperative function. In Lines 7-10 every
thread with a tId higher than the insertion index writes its neighbor’s value into its
own place in the data array, thus shifting all entries greater than the new key to the
right as shown in Figure 4.3. In the same lines, the thread with the tId equal to the

insertion index inserts <k,v> into the data array.

The insertion is performed serially, from the last DATA index down to the insertion
index. In this way we ensure that we do not temporarily cause a key to be overwritten,
which may cause a concurrent search to miss an existing key. All search functions
polling a chunk for containment of a certain key give precedence to higher threads, and
so a key temporarily appearing twice in a chunk does not cause search errors. The max

field is never changed by such an insertion, from the definition of an enclosing chunk.

Locking a Chunk

findAndLockEnclosing (Algorithm 4.8) is a spin-lock that performs a lateral search
in order to ensure that the chunk being locked encloses k. If the current chunk does
not enclose k (or is a zombie) the team will read the next chunk, as seen in Lines
5-8. Otherwise the function checks whether the chunk is unlocked before the LOCK
thread attempts to lock it using CAS (Lines 10-13). The team checks whether the lock
succeeded, and if so rereads the locked chunk. If the chunk no longer encloses k the
lock will be released and the team will continue to the next chunk. This sequence is

repeated until the enclosing chunk is successfully locked.

27

Read value from

previous thread: e //

13 (17| 21 .21

-

k=15 k=17 k=21

Ifread k > 15 @@@@@
write k into own
AR IR

tld. T; writes 15

13 (15|17 (21 |..] 21

4 |

Figure 4.3: Inserting key 15 into a chunk without a split. Each thread reads the entry to its
left, and if it is greater than 15 copies it into its own entry. Order of copying is from right to left.

Split

If the chunk is already full, the team calls splitInsert (Algorithm 4.9) to perform a
split as shown in Figure 4.4. The preSplit function (Algorithm 4.9 Lines 16-21) locks
the next chunk, removing zombies if they are encountered (Line 17), then allocates a
new chunk which is initialized to point to the next chunk.

splitCopy (Algorithm 4.9 Lines 23-34) is then called to copy the top DSIZE/2
values to the new chunk (Lines 27-28). Once the copy is completed the new chunk can
be connected to the structure by redirecting the next pointer of the original chunk and
setting its max value to the highest remaining key. Both of these changes are performed
with a single atomic write by the NEXT thread (Line30). The team can then atomically
write an empty value to each of the entries in the old chunk whose values were copied
to the new (Line 32). Again, we rely on the fact that traversals give precedence to
higher tIds to argue that a concurrent traversal will not be adversely affected. The
updated max field ensures the NEXT thread’s flag in the result of a _ballot operation
is considered before those of DATA threads whose entries have not yet been emptied.

The split continues at Line 4 of Algorithm4.9, where <k, v> is inserted into the
either the old or the new chunk, depending on k’s place the sorted array of values. If
<k,v> is inserted into the new chunk during a split in the bottom level the original
chunk will be unlocked and the new chunk will remain locked until the end of the Insert

operation, thus ensuring that the enclosing chunk in the bottom level remains locked.

28

Algorithm 4.8 FindAndLockEnclosing

0 O Ui Wi

CHKx findAndLockEnclosing(KT key, CHKx* ch){
start:
KV kv = ch—>read(tld)

if (chunkNotEnclosing(kv, key)) {
ch = getPtrFrom Tid(NEXT)

goto start

¥

if (isChunkLocked(kv))
goto start

if (ILockChunkWithCAS(ch, kv))
goto start

kv = ch—>read(tld)

if (chunkNotEnclosing(kv, key)) {
unlockChunk(kv)
ch = getPtrFromTid(NEXT)
goto start

}

return ch

29

10 | 20 | 40 | .. | 40 | | Chunk
A
| L/

V Chunk

C
5 10|20 25 | 25 Cht;nk (50 T80
i
Insert 22
10/20|40| .. |40 |chunk
A
)
Chunk
y \ C
5 | 10 | 2o/ 25 Chunk Chunk
\vaAvA B 0 0 | 89
202225 .. | 25

Figure 4.4: Insertion of key 22 causes a split. Keys 20 and 25 are moved from chunk B to D
(the new chunk). B’s next pointer and key 20’s down-pointer in A are redirected to D.

30

Algorithm 4.9 Splitlnsert

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

<CHK3x, K> splitlnsert(CHKx pSplit, K k, V v, int level){

}

CHKx pNew = preSplit(pSplit)
Kv splitKv = splitCopy(pSplit, pNew)
CHK plnsert = insertNewData(k, v, pNew, pSplit, splitKv)

if (pSplit == plnsert)
unlockChunk(pNew)

else
unlockChunk(pSplit)

k = keyForNextLevel(k, plnsert, pNew, pSplit, level)
updateDownPtrs(level, splitKv, pNew)
return <plnsert, k>

CHK preSplit(CHKx pSplit){

}

CHK pNext = lockNextChunk(pSplit)
CHK:x pNew = alloc()
updateNextField(pNew, pNext)

return pNew

KV splitCopy(Chks pSplit, CHKx pNew){

KV splitKv = pSplit—>read(tld)
K thresh = getKeyFromTid(splitKv.key, DSIZE/2—1)

if (splitKv.key > thresh)
copy ToNewChunk(pNew, splitKv)
if (tld == NEXT)
updateNextField(pSplit, pNew)

setMovedValsEmpty(splitKv)
return splitKv

31

Algorithm 4.10 UpdateDownPtrs

1 void updateDownPtrs(int level, KT mKey, KT startTid,

2 int numMoved, CHKx lowerMovedCh){
3 KT k = _shfl(mKey, startTid)

4 CHKx upperCh = searchDownToLevel(level+1, k)

5 int count = 0

6 while(count < numMoved) {

7 if (findLateral(k, upperCh)){

8 upperCh = findAndLockEnclosing(k, upperCh)

9

10 if (findLateral(k, lowerMovedCh)) //update chunk in upper level
11 updateDownPtr(k, upperCh, lowerMovedCh)

12 unlockChunk(upperCh)

13 }

14 count-++

15 key = _shfl(mKey + count, startTid)

16 }

17 return

18 }

The split function determines which key will be raised should the team decide to
insert into the next level. As raising a key indicates that a new chunk was created it
would make sense to raise the minimum key in the new chunk (minK). However, if
k > minK then we cannot raise minK without performing a new traversal to discover
the path to it. Thus, in Line 11, the key raised from level 0 is chosen to be the maximum
between k and minK. In upper levels the key raised must be the key that caused the
split, as the lock on the bottom level protects only keys in the locked chunk.

Updating Down Pointers

Finally, the team updates the down-pointers in level 7 4+ 1 to reflect the changes in level
i (Line 12), by searching level i + 1 for the range of moved keys, then locking affected
chunks and atomically updating relevant down-pointers. In The example in Figure 4.4,
key 20 was moved in the split of Chunk B, causing its down pointer in Chunk A to be
updated to point to Chunk D, which is now the chunk enclosing key 20. In the time
between key 20 being copied to Chunk D and the pointer from Chunk A being updated
it continues to point to Chunk B. This is legal in terms of traversal as Chunk D can be
reached from Chunk B using lateral traversal.

updateDownPtrs (Aglorithm 4.10) is called after any change to the structure that
causes keys to be moved between chunks in level i. The team attempts to fix pointers
from level ¢ + 1 associated with keys that were movedin level ¢, either as a result of a
split or a merge. The team searches for the minimum key moved in level ¢ 4+ 1 (Line 4)

using a function identical to searchDown except that it searches until level 7 and not

32

level 0. Each thread in the team holds one of the moved keys in its mKey field. For
every two threads T,,, T, s.t. m < n the key held by T, is smaller than the key held by
T,. The team takes each such key in turn, from the lowest to the highest (Lines 3 and
15), and searches level i + 1 for that key (Line 7). If the key is found the team locks the
chunk in level i + 1 (Line 8), searches for the enclosing chunk in level i(Line 10), and

updates the pointer from i + 1 (Line 11) before unlocking the chunk in level i + 1.

4.2.3 Delete
General Description

The Delete operation is similar in spirit to the Insert. It begins by searching for the
key to be deleted, k, and creating the traversal path in the same way as Insert does. If
k is found to exist in the structure, the bottom level chunk that encloses k is locked.
After determining that k is still in the structure, the team searches all levels that are
currently in use from the top down, removing k from every level in which it is found.
The chunk in the bottom level remains locked until k& has been physically removed from
all levels, concluding the Delete operation. As in the case of Insert, this ensures that no
other team can concurrently perform updating operations on k.

If the chunk from which a key is deleted crosses some minimum threshhold, a merge
occurs. The values from the underfull chunk are moved to the next chunk to the right,
causing a split of that chunk if necessary. The old chunk is marked as a zombie, and
the team redirects pointers from the level above to reflect the changes. Copying keys
during a merge is performed in such a way as to ensure that the chunk remains sorted,
and that concurrent traversals will not be adversely effected.

Figure 4.5 shows an example of a Delete operation of key 13 which ends in a merge.
As in Insert, the team first traverses the structure to find the path to the enclosing
chunk of 13 in the bottom level and checks containment. The team locks chunk E in the
bottom level, and ensures key 13 still exists there. The team then searches for key 13 in
each level starting from the chunk saved as a part of the path, and performs a sequence
of lock-delete-unlock operations as illustrated in Figure 4.5a. Chunk A does not contain
key 13, and so is skipped. In the next iteration Chunk B is found to contain key 13 and
is locked. The key is then deleted and Chunk B is unlocked. Finally, key 13 is deleted
from Chunk E and the bottom level lock is released. The physical removal of the key is
performed by shifting larger keys one entry to the left, as shown in Figure 4.5b;

In Figure 4.5¢ we present the case in which removal of key 13 causes Chunk E to
be merged. The next chunk, F, is locked, and keys 17 and 21 are copied into Chunk F.
Keys 24 and 26 from Chunk F are moved to the end of the chunk in order to make room.
This set of copy operations is performed from right to left in order not to temporarily
overwrite any existing keys, and in order not to adversely effect concurrent traversals.
Finally, Chunk F is unlocked, and the lock field of Chunk E is marked with a zombie

value. The team will then traverse the structure to redirect pointers from the level above,

33

2. If 13 exists in A\~ EMPTY

Chunk -00| 68| 99 |121/... chunk A: lock
A A, delete 13, Chunk 1311721
unlock A E -
3. If13 existsin
=00
Chunk 13130 |47 ... chunk B: lock B,
B delete 13,
unlock B
17| 21
Chunk
Chunk 1311721 1. Lock chunk E E '
E 1| 5. Delete13
S.JLUnIock chunk E
(a) General order of operations when deleting from (b) Actual removal of key 13 from chunk E. Keys

multiple levels. The chunk on the bottom level remains greater than 13 are shifted to the right to preserve
locked for the duration. If the key exists in upper levels sorting. The insertion is performed cooperatively
into higher level chunks, lock-delete-unlock to reduce by the team.

contention. Delete from bottom chunk last.

13 17 21 21 ' 24 26 26
S & Chunk E Chunk F
Delete 13 i
..——':'_—-—:-'-==““""'===~ “‘~~~f~’: ,:’ :\) \\

1)

< ¢ Vl Vi v v
13 17 21 21@/’ 24 26 26
Chunk E Chunk F

13 17 21

17 21 24 26 26

P =) BEP

Chunk E Chunk F

(c) Removal of key 13 caused a merge in chunk E. All values but 13 are moved from E to F while
ensuring F remains sorted. Finally, E is marked as a zombie

Figure 4.5: Example of the Delete operation. Key 13 is removed from the structure,
causing a merge to occur.

thus removing down-pointers to the zombie. The pointer from the chunk preceding E in
the structure will be lazily updated by some other operation. Note that key 13 is not
actually physically removed from Chunk E. As E is now a zombie, it will be ignored by

34

Algorithm 4.11 Delete

1 bool delete(K k){

2 CHKx path

3 bool found = searchSlow(k, path)

4 if (found)

5 return false

6

7 CHKx pBottom = getPathFromTid(0)

8 pBottom = findAndLockEnclosing(pBottom, k)
9 if (IchunkContains(pBottom, k))

10 return false

11

12 int height = rereadHeightAndUpdatePath(path)
13 for (int i = height; i > 0; i——) {

14 CHKx pEnclose = getPathFromTid(i)

15 if (IsearchLateral(k, pEnclose))

16 continue

17

18 pEnclose = findAndLockEnclosing(pEnclose, k)
19 removeFromChunk(k, pEnclose, i)
20 }
21
22 removeFromChunk(k, pBottom, 0)
23 return true
24}

all future operations, effectively removing key 13 from the structure.

Implementation Details

The Delete operation, shown in Algorithm 4.11, receives a key to be deleted (k) and
begins by searching the structure. As in the Insert function, SearchSlow is called in
Line 2 to find k and the traversal path to k. If £ is not found the algorithm returns
false. Otherwise the enclosing chunk of k in the bottom level is locked and containment
of k is confirmed. The path is updated according to the current structure height, so as
not to miss new levels that may have been added since the path was found.

In Lines 13-20 of Algorithm 4.11 the team iterates over all levels in the structure
searching for and deleting k where found. In each level i, searchLateral is called to
determine whether k exists in the level, and the enclosing chunk is locked only if k
was found (Lines 15-18). If £ was found not to exist in level i the team will continue
to level ¢ — 1. Checking containment before the lock significantly reduces contention
on the higher and less populated levels of the skiplist when there are a large number
of concurrent calls to Delete. There is no need to recheck the containment of k after
locking an upper level, as the lock on the bottom level ensures that no other team is

concurrently updating k.

35

If k£ exists in level ¢ removeFromChunk is called to remove it, performing a merge if
necessary and unlocking any non-zombie chunks effected by the removal. Only in Line
22, after k has been removed from all upper levels, does the team delete it from the
bottom level, and thus from the structure itself. The bottom chunk is only unlocked
when the Delete operation concludes.

Algorithm 4.12 shows the removeFromChunk function. Removing k& from a chunk in

any level i is divided into three cases:
e k can be removed without performing a merge (Lines4-7)
e A merge is required (Lines 15-27)
e k is situated in the final chunk in level ¢ (Lines 10-13)

A merge is deemed necessary if removing k£ will cause the number of nonempty entries

in the data array to cross a predetermined minimum threshold (DSIZE/3 in this work).

Delete With No Merge If no merge is required the team calls executeRemoveNoMerge.
executeRemoveNoMerge removes k in a manner similar to executeInsert, though in
the opposite direction, as illustrated in Figure 4.6. Each thread reads the key-value
pair corresponding to its own tId from the chunk. DATA threads with tIds equal to or
higher than k’s index atomically write their value into the entry to the left of their own
index, overwriting the removed key. As in the case of insertion the order of operations
matters: the writes must occur from k’s index up to the highest DATA tId so as not
to cause keys to temporarily disappear from the chunk, which could harm concurrent
traversals.

There are two cases that must be handled when deleting k that have no equivalent
in executeInsert: Firstly, if k& was the last element in the chunk the NEXT thread must
update the max field. This must occur before the deletion of the key so that concurrent
searches do not see a max value that does not exist in the chunk. Secondly, if the chunk
was full before the removal of k£ the NEXT thread writes the EMPTY key into the last
entry in the DATA array, as there is no DATA thread to the right of this entry to empty
it.

Delete With Merge If a merge operation is deemed necessary the team locks the
next non-zombie chunk in the level, redirecting the next pointer to unlink zombies if
they are found (Line 9). If the next chunk is too full to receive the values from the
current chunk it will be split by moving the top DSIZE/2 entries into a new chunk
(Lines 16-19). The split operation is identical to the one performed during insertions,
except that no key is inserted.

executeRemovelMerge is called to perform the merge operation by copying all values
but k into the next chunk as illustrated in Figurefig:merge. The order of operations

when copying keys to the next chunk is such that higher indexes are updated first, so

36

Algorithm 4.12 RemoveFromChunk

void removeFromChunk(K k, CHKx* pEnc, int level){
KV encKv = pEnc—>read(tld)
int count = numNonEmpty(encKv)
if (count > DSIZE/3) { // no merge required

}

executeRemoveNoMerge(encKv, pEnc, k)
unlockChunk(pEnc)

else { //merge is needed.

}

CHK pNext = lockNextChunk(pEnc)

if(pNext == NULL) { // don’t merge last chunk in level
removeFromLastChunk(k, pEnc, encKv)
return

}

KV nextKv = pNext—>read(tld)

if (numNonEmpty(nextKv) + count — 1 > DSIZE) {
splitRemove(pNext, level)
incrementNumChunksAtLevel(level)

}

executeRemoveMerge(encKv, pEnc, nextKv, pNext, k)
markAsZombie(pEnc)

decrementChunkslInLevel(level)
unlockChunk(pNext)
unlockChunk(pEnc)
updateDownPtrs(level, encKv, pNext)

return

37

&)), T [T),... @
Read value from
entry in chunk: ; ;

7121

13 (1 e

m

el

k=17 k=21 k=EMPTY

ifreadk > 13 If, gl}w @
write k into entry
to the left. «~

21

17

Order of operations

Figure 4.6: Deleting key 13 from a chunk. All keys greater than 13 are moved one entry to
the left.

‘@)

o

38

that traversing teams (which give precedence to higher tIds) are not affected. Copying
the keys to the next chunk is performed by calling a series of _shfl operations after
which each DATA thread holds the value that will appear in the next chunk after the
merge.

The general idea is that the keys from the merged chunk migrate to the lower indexes
of the next chunk, while the original entries in the next chunk are moved to the right to
make space. The next chunk is updated by atomically writing each of the new values
serially in descending order of tId. This may temporarily cause the next chunk to be
unsorted, or even to contain a mixture of EMPTY and non-EMPTY entries.

Consider the merge in Figure 4.5¢: keys 17 and 21 are copied from Chunk E to
Chunk F. This causes the original keys from Chunk F, keys 24 and 26, to be moved
to make room for the new keys. The order of operations is from right to left, so key
26 is the first to be copied, and is placed in the last empty space in F. Once this move
has been completed, the second-to-last entry in F remains EMPTY, and both the second
and last entries in F contain key 26. The traversal handles this as before by giving
precedence to true values computed by higher t/ds. A concurrent team searching for
key 26 will see it in its new position at the end of the chunk, without considering the
empty entry at all. A team searching for keys smaller than 26 will compute false values
for the last three entries in the chunk (all of which are greater than the searched-for
key), thus ignoring the unsorted portion of the chunk. A team searching for keys smaller
than or equal to 21 are guaranteed to reach chunk E before chunk F as long as chunk E
has not yet been made a zombie, even if keys 17 and 21 have already been copied into
F. In fact, this remains true until the pointers to chunk E have been redirected.

Once the merge operation is completed, the team calls updateDownPtrs to redirect
down-pointers to the zombie. The number of chunks in the level is incremented and

decremented accordingly.

Deleting From Last Chunk in Level Care must be taken if k is in the last chunk
in a level. A merge operation pushes values into the next chunk, which is impossible
in this case. Thus, entries are simply removed, even if this causes the chunk to be
completely emptied. There can only be one such chunk in any level, and subsequent
inserts and merge operations can add new values to it as necessary. The last chunk
will never be marked a zombie, ensuring that all lateral traversals eventually reach a
non-zombie chunk. If the last chunk in a level contains only the —oco key after the
deletion then the chunk counter for that level is decremented to show that the level is
empty.

The reader should note that all operations in GFSL were designed to be performed
by threads in a team in tandem, with only a few divergent tId-specific operations
scattered throughout. The memory layout is such that every global memory access by a
team is to memory-contingent locations. Thus we maximize memory coalescence and

reduce divergence.

39

4.3 Some Words on Correctness

In this section we briefly describe some of the major invariants used by our algorithm.
Our main concern is that a traversal will always reach the enclosing chunk of the key it
is searching for (k) by taking only down and right (lateral) steps. Thus we must ensure
when taking a step that we never read a chunk to the right of k’s enclosing chunk. The
following properties, along with the fact mentioned in Section 4.2 that traversals give

precedence to higher ¢t/ds during _ballot operations, aid in ensuring this occurs.

The Max Field Always Decreases One important promise is that the max field
of a chunk can only decrease from the moment it is allocated. The max field is co upon

allocation, and can be changed in only three places in the algorithm:

e During allocation: Chunks are allocated only during split operations, during which
the new chunk receives the max field of the chunk being split. This value is

obviously smaller or equal to oco.

e When the chunk is split: The chunk being split (chs) has the top half of its
KV pairs moved to the newly allocated chunk. The max field of chs is updated
accordingly to the largest remaining key, which must be smaller than the max

fields former value.

e When the maximum key in a chunk is deleted: The max field will be updated to
hold the next-highest value in the chunk.

Insertion can never cause a change in the max field, as a key is only inserted into an
enclosing chunk, which by definition holds a max field higher than the inserted key.
This property is important in ensuring that teams taking lateral steps do not miss the

enclosing chunk of a key, as described next.

Lateral Ordering Between Chunks Once a key is placed in the data array of some
chunk ch a larger key will never be inserted into any chunk to the left of ch in the same
level. This continues to be true even if the key is later deleted from ch. This stems from
the previous statement: a key is only inserted into an enclosing chunk, and the max
field of a chunk only decreases. Thus if a key, k£ has been placed in ch the enclosing
chunk of any key larger than k can only be ch itself or a chunk to its right.

Furthermore, this means that a partial order exists between non-zombie chunks
in any level: a non-zombie chunk, ch,,’s NEXT pointer will always point to a chunk
containing only keys greater than or equal to the minimum key in ch,,. If ch,, is not
currently being split or merged then the minimum key in the next chunk must be greater
than the maximum in ch,,,. Only during split and merge operations is it possible that
ch,,, shares some keys with the next chunk.

This remains true even if a chunk becomes a zombie. We note that a chunk becomes

a zombie only as a result of a merge operation, and that the contents of a chunk are

40

never changed after it becomes a zombie. Thus the zombie, ch,, continues to point to
the chunk that received its values during the merge that marked it as a zombie. The
chunk pointed to by the zombie must have had a higher max value at the time ch,
became a zombie. Additionally, any chunks preceding ch, in the level at that time must
have had a lower max value than ch,. As the max value of a chunk can only decrease,
any key greater or equal to the keys ch, contained when it became a zombie can only
be inserted into chunks reachable through the NEXT pointer of ch,. Thus the enclosing
chunks of all keys that once resided in ch,, and those of all greater keys, are reachable

by taking lateral steps from ch,.

Order Between Down Pointers Keys are inserted into the structure bottom-up.
When k;;, is inserted into a chunk in level ¢ + 1, its entry is set to point to the chunk
in level ¢ into which k;, was inserted. k;,’s enclosing chunk in level ¢ is either that
chunk or a chunk reachable from it through lateral steps. A key can only be moved
to a different chunk as a result of a split or a merge operation. In both cases the key
will either remain in its original chunk or be moved to a chunk laterally reachable from
the original. As the bottom level chunk containing k;;, is locked k;,, cannot have been
concurrently deleted by another team at the point when k;, is inserted into level ¢ + 1.
Thus, after insertion k;, and all keys greater than k;, are reachable in level i from the
chunk reached by taking a down-step through a pointer ssociated with k;, in level ¢ + 1.

The Delete operation is performed from the top down with a lock on the containing
bottom level chunk. If a key kg is deleted from level 7 it follows that it does not exist in
level i + 1, either because it was never raised to that level or because the deleting team
already removed it. The lock on the bottom level enclosing chunk of k; ensures that no
concurrent Insert could have added kg4 to levels ¢ + 1 or higher until the deleting team
has concluded its execution. A Delete operation does not change the value of entries
associated with keys other than k;. These points, along with the fact that a merge
operation can only move keys to a chunk reachable from their original containing chunk,
mean that Delete operation cannot cause down pointers to point to chunks from which
the associated keys cannot be reached laterally.

A call to updateDownPointers searches for the enclosing chunk of a moved key
(km), and sets the pointer in level i 4+ 1 to point to the chunk it discovered. This chunk
must either still enclose ky,, or ky,’s enclosing chunk must still be reachable from it (if
a split/merge occurred). updateDownPointers takes a lock on the chunk in level i + 1
before updating pointers. This and the top-down order of termDelete operations mean
that any key in level ¢ + 1 whose pointer is updated by updateDownPointers must also
exist in level ¢ at that time. The key’s enclosing chunk must, if so, be reachable by
taking lateral steps from the chunk pointed to from level ¢ + 1.

All these taken together help to ensure that a down-pointer associated with k in
level i + 1 always points to a chunk that either encloses k or from which k’s enclosing

chunk in level 7 is reachable by taking lateral steps. Down-steps, if so, can safely be

41

taken as part of a traversal.

Note that this remains true even in the edge case mentioned in Subsection 4.2.1.
In the edge case, a team took a down step associated with a key kg5 in level i + 1,
then found that the chunk (ch;) reached in level i contained only keys greater than kg
(and the key searched for in the traversal, which must be greater than or equal to kys).
This was caused by a concurrent Delete operation which removed kg5 from both levels
between the time the team decided to take the down step in level 7 + 1 and the time
it read ch;. At the time kg, was read in level ¢ + 1 it must still have existed in level 7,
and have been reachable from ch;. kgs’s enclosing chunk must still be reachable from
ch;. As ch; contains only keys greater than kg, ch; itself must be kqs’s enclosing chunk.
Thus, the traversing team succeeded in reaching kys’s enclosing chunk in level i, albeit

without enough data to continue traversing, causing it to restart.

42

Chapter 5
Measurements/Results

We evaluated GFSL compared to the skiplist algorithm ported to the GPU by Misra
and Chaudhuri [MC12b]. The code for their implementation is available online [MC12a).
In the remainder of this section we refer to their implementation as “M&C”.

In this work we observed four aspects that impact performance. The first is the
structure size, which effects the traversal length and the amount of nodes that the GPU
can hold in cache. The second is the percentage of updates and searches performed, as
update operations are slower than searches. The third is GPU-specific configurations,
such as the number of threads launched, their division into blocks, the number of
operations performed by each team/thread, and, for GFSL, team/chunk size. The last
is the value of pye, for M&C and pepynt for GFSL. We choose to focus on the first two
as they are relatively universal to all GPUs, while we optimized the last two to fit our
current setup. The values of pie, and pepunk are also universal, however, a single best
option presented itself in all configurations checked, and so we show results only for
those values.

We present benchmarks for GFSL using teams of 32 threads. Chunks are of size
256B with 32 8B key-value pairs, a size which can be read in two transactions. We set
a limit on the number of threads that can run in parallel, thus ensuring each thread
receives more local resources, e.g. registers. Specifically, we launch 16 warps per block
(512 threads) out of a possible 32. Under this limit GFSL launches 2 blocks per SM
with 64 registers per thread and with an occupancy of around 48.8% out of a theoretical
50%. In this way we do not utilize the maximum possible parallelism supported by the
hardware, but reach better results as there is less local memory “spillover”.

M&C is configured to run 16 warps per block, with a single operation executed by
each thread. This correlates to the best configuration described in the original paper.
Under this configuration M&C supports two active blocks per SM, with an occupancy
of 41.6% out of a theoretical 50%, and 42 registers allocated per threads. We evaluated
M&C under several different configurations, varying the value of py.,, the number of
warps, and the number of operations per thread. For the Contains-only benchmark a

few configurations of M&C showed up to 24% better performance in the 10K range

43

than those shown in this work. However, Contains-only workloads under M&C in small
key ranges showed highly unstable performance and very large confidence intervals (up

to 50%) . Thus, we chose the configuration that yielded the best results on average.

5.1 Experimental Setup

Both GFSL and M&C were evaluated on a GM204 GeForce GTX 970 (Maxwell architec-
ture) GPU. We use the latest CUDA driver version 7.5 supporting compute capabilities
5.2. GTX 970 has 13 active streaming multiprocessors and a total of 1,664 cores. The
device memory capacity is 4 GB GDDRA5. The L2 Cache size is 1.75 MB. The core and
memory clocks are 1050MHz and 1750MHz respectively. The operating system is 64-bit
Ubuntu Server 14.04 with Linux kernel version 3.13.0-88-generic.

We tested both skiplist implementations with several different operation mixtures.
Mixtures are represented as tuples [i, d, | signifying a set of random operations with a
probability of i% Inserts, d% Deletes, and ¢% Contains. The mixtures presented are
[1,1,98], [5,5,90], [10,10,80] and [20,20,60], each evaluated by running 10M operations
in varying key ranges between 10K and 100M. We also present benchmarks for each
operation type (Insert, Delete, Contains) alone in the same key ranges. As above, the
Contains benchmark runs 10M operations. The number of operations in the Insert
and Delete benchmarks is equal to the key range, i.e. for a range of 100K keys, 100K
operations were performed. This is in order not to oversaturate small structures.

The input to the CUDA test kernels for both implementations is an array of
operations. Each entry in the array in GFSL consists of the operation type and a key.
The array in M&C consists of an operation indication, key, and a value indicating level
to which each key should be inserted (if the operation is not an insert this field is empty).
In both cases Insert operations use NULL as the value to be inserted. The operation type
and keys for each entry are generated using uniform random functions, according to the
configurations of the specific test. The initial structure on which the mixed-operation
tests are performed contains a random set of keys, exactly half the size of the key range.
Similarly, the initial structure for the Contains-only and Delete-only tests contains all
of the keys in each range, inserted in a random order. The initial structure for the
Inserts-only test is empty. Thus there is a direct correlation in our tests between the
size of the range and the structures overall size. We run each experiment ten times and

present the mean values along with 95% confidence intervals.

5.2 Static Configurations

In this section we dive down into the background behind some of our choices for static
configurations, e.g the number of warps launched per block, the chunk size in GFSL,

and the values of pre, and pepunk-

44

Warps Per Block

We tested GFSL with a varying number of warps launched per block. Table 5.1 shows
the results of running a workload with 80% Contains operations on a 1M key range as
an example of the effects of these different block sizes on throughput and SM utilization.
The throughput presented in the table showcases the tradeoff between the amount of
concurrency (number of threads launched) and the available resources. We see that the
best throughput was achieved for 16 warps launched per block, despite not having the
best occupancy or the largest amount of registers per thread.

The Occupancy of an SM is the ratio of active warps in an SM to the maximum
number of active warps supported by the SM. Theoretical occupancy is the upper limit
for the number of active warps an SM can support given the demands of the kernel
and the launch configurations. An SM may not be able to achieve the theoretical
occupancy if there are many warps that are stalled at the same time (i.e. because of
memory transactions that have not completed), leaving no warps eligible for execution
by the scheduler. High occupancy may not be an indication of high throughput if other

bottlenecks exist, most commonly memory bandwidth.

We see that the achieved occupancy when launching 32 warps per block is very
high at around 95%. However, the number of registers allocated per thread is much
lower than required. This is evident from two lines in the table: Firstly, we see that
when more resources per thread are available, e.g. when fewer threads are launched, the
compiler allocates far more registers per thread than 32. Secondly, we see that 53% of
all memory bandwidth in this configuration is taken up with access to spillover memory,

described in Section 2.2.

On the other hand, allocating enough resources that there is no spillover also does
not give maximum throughput, as seen when launching 8 warps per block. In this case
there are 79 registers allocated per thread, and there is no spillover to global memory.
The low occupancy is the bottleneck in this configuration, as the SM does not have
enough active warps that are ready to run to hide the latency caused by warps stalled at
any given moment. A major reason for stalled warps is in-progress memory transactions
to and from global memory.

In summary, each SM has a finite number of resources, which it distributes equally
amongst all threads in all active blocks. Launching more threads naturally means that
there are fewer resources per thread. If a kernel requires more resources per thread
than available there occurs ”spillover” of local variables which are then stored in global
memory, causing more global accesses. On the other hand, reducing concurrency too
much in order to gain more local resources entails fewer possible concurrently active
teams, and reduced benefits from the SM’s latency-hiding capabilities. We see that the
best balance is reached between concurrency and resource allocation when launching 16

warps per block.

Table 5.2 shows the effects of changing the number of warps per block on M&C. We

45

Table 5.1: Effects on GFSL of limiting warps launched per block

Warps per Block 8 16! 24 32
Occupancy/Theoretical 36.7%/ 37.5% | 48.8%/50% | 73%/75% | 95.8%/100%
Registers 79 64 40 32

Active Blocks 3 2 2 2

Local Memory Spillover 0% 10% 43% 53%
Throughput (MOPS)? 58.9 65.7 62.5 52.9

L The configuration presented in this chapter 2 Throughput for operation mixture [10,10,80], range 1M

Table 5.2: Effects on M&C of limiting warps launched per block

Warps per Block 8 16! 24 32
Occupancy/Theoretical 52.9%/62.5% | 41.6%/50% | 59%/75% | 79.4%/100%
Registers 42 42 40 32

Active Blocks 5 2 2 2

Local Memory Spillover 25% 23% 23% 24%
Throughput (MODS)? 20.7 21.3 20.6 20.2

! The configuration presented in this chapter 2 Throughput for operation mixture [10,10,80], range
1M

see that the throughput varies very little, regardless of the number of warps launched
or the amount of resources available to each thread. Moreover we see that M&C suffer
from spillover even when using the maximum registers deemed sufficient by the compiler.
This is most likely because they use thread-local arrays to hold the traversal path. Local
arrays are often relegated to spillover memory in CUDA. Further profiling shows that
M&C suffers, as expected, from high divergence and inefficient memory alignment and
access patterns. Indeed, between 86% and 91% of the latency in M&C’s executions is
caused by memory dependencies. This indicates that M&C, unlike GFSL, are bound by
inefficient memory accesses to the point where they cannot properly utilize available

resources on the SM.

Chunk Size

Figure 5.1 illustrates the effects on throughput of executing GFSL with teams/chunks
with 32 or 16 threads/entries (GFSL-32 and GFSL-16, respectively). The benchmark
presented consists of a workload with 80% Contains operations on a range of 1M keys.
M&C’s results are included for comparison purposes, and are discussed in Subsection 5.3.
GFSL-32 and GFSL-16 show similar performance in small ranges, with GFSL-32
outperforming GFSL-16 in the higher ranges by up to 28%. In this work we only allow
a single team to run in each warp, regardless the team size.

GFSL-16 uses chunks of size 128B, the maximum size that can be read from global
memory in a single transaction. GFSIL-32, on the other hand, uses chunks of size 256B
which require two transactions. Additionally, GFSL-16 contains 25% more levels on
average than GFSL-32. As traversal length is directly tied to structure height, traversals
in GFSL-16 theoretically require around 66% fewer memory reads than GFSL-32. Thus

46

150 B M&C H GFSL-16 GFSL-32

— 120

3

[s)

=

=~ 90

3

Q.

ey

%D 1 - -

960 : .

£ .

|_

0 .
[v . V) Y, O, 7 v .
, (&) @ (o) <, <, @
> * % % %2 72 92 9 %
Key Range

Figure 5.1: Throughput comparison of GFSL using chunks and teams of size 16
(GFSL-16), and of size 32 (GFSL-32), and M&C. The benchmark presented is
[i,d,c]=[10,10,80] on a 1M key range

we would expect GFSL-16 to outperform GFSL-32. However, the results presented in
Figure 5.1 show that this is not the case. Profiling shows that GFSL-16 uses around
half the memory bandwith as GFSL-32. We are unsure of the root cause of the disparity.
We believe that GFSL-16 would probably outperform GFSL-32 with proper support
for executing two teams within the same warp. However, synchronization between
threads in the same warp is a delicate task, as mentioned in Section 2.2. We found that
the complexity of the code needed in order to ensure teams within a warp could not
deadlock each other caused a significant degradation in performance. Thus this is left

for future work.

Pkey and Pchunk

The values of piey and pepuni influence both the number of layers traversed and the
number of keys/nodes in each level. We examined the effects of various pje, values for
M&C between 0.2 and 0.8, and found that in all operation mixtures tested the best
results were received for pge, = 0.5.

Likewise, we found that using pchunt = 1 in GFSL gave the best results in all
operation mixtures tested. This effectively results in pge, =~ 0.05 for GFSL, as there are
20 entries per chunk on average. In this case the average number of chunks read in a
traversal is between structure — height + 1 and structure — height + 2, meaning that
there are between one and two lateral steps taken on average in a traversal. Lowering
Dehunk Causes more lateral steps to be taken, while not having a significant impact on

structure height. Thus the overall average traversal is lengthened, causing more global

47

1200% ~[1,1,98]
1000% [5,5,90]

@)
0225800% —+-[10,10,80]
c --[20,20,60]
2 600%
o
2 400%
©
¥ 200%
% [0)
0% —
200% 10K 30K 100K 300K 1M 3M 10M
- (o]

Key Range

Figure 5.2: Ratio between GFSL and M&C as a function of the key range.

memory accesses.

5.3 Performance Results

Figure 5.2 shows the speedup of GFSL over M&C. GFSL is slower than M&C by up to
46% in the 10K range, up to 10% in the 30K range, then outperforms them by 27% to
1064% in the higher ranges. In Figure 5.3 we present the actual average throughput
results and confidence intervals of the various benchmarks. The figure shows that
GFSL’s performance does not change drastically as the range increases, in contrast to
M&C which melts down quickly as the range, and so the structure size, grows. This is
the root cause of the rising ratio in the previous graph.

The main advantage of GFSL is the usage of coalesced reads, which optimizes
accesses to the global memory. In the smaller range (10K), the entire structure fits into
the L2 cache in both implementations, which significantly reduces the benefits of the
coalesced reads as L2 access is much faster than global memory access. However, in
larger key ranges, M&C requires frequent uncoalesced accesses to the global memory
that causes a sharp degradation in performance. GFSL does not suffer from this
fast degradation. For example, comparing the key ranges 1M and 10M (a 10x larger
structure) in the mixed-ops test, the performance of M&C is reduced by 69%-75%,
whilst the performance of GFSL is reduced by up to 8%.

In addition to the key range, the performance is also impacted by the operation
distribution. For the 10K range, M&C is faster than GFSL by 15%-46% when the

48

150 m M&C 150 H M&C

- GFSL = GFSL
o Q.
] (o]
= 100 = 100
JS T L - ~ S - - 2 .
o ! I Q. - .
w 50 I @ 50 B
o 5 I .
< = .
= =
0 I I | 0 I I . |
0 2, U e 2 R Y, U v
o o o o, o 2 o o g o, ‘0 2
> %2922 2997 %292 %229
Key Range Key Range
(a) [l,d,C]:[l,l,QS] (b) [l,d,C]:[5,5,90}

150 m M&C 150 B M&C
@ GFSL m GFSL
o Q.

[e] o
= 100 = 100
5 5
Q . . . aQ
<) ") < .
¥ 50 I I ; : ¥ 50 ,
o o i
< <
[= =
. I . . I I iialal.
A R N PR U A A R e 02, O v
o o o o, © © o ‘o o o o, © ©
#8822 **rB et R R
Key Range Key Range
(c) [i,d,c]=[10,10,80] () [i,d,c]=[20,20,60]

Figure 5.3: Throughput, in millions of operations per second, as a function of key range.

percentage of Contains operations is high (Figures 5.3a-5.3¢), and slower by 8% when the
percentage of Inserts and Deletes grows (Figure 5.3d). The impact of the distribution
is less than the impact of the key range, as GFSL’s performance is closer to M&C’s
in the 30K range then quickly outperforms them in larger key ranges for all mixed

distributions.

Looking at GFSL we see a dip in performance in each of the mixed-ops tests. This
dip occurs in small ranges when the number of update operations is small, and in
larger ranges as the percentage of update operations grows (e.g. 300K in the [20,20,60]
benchmark). Smaller key ranges express a tradeoff between faster traversal and higher
contention. Small structures allow faster traversals, both because more of the structure
can reside in the cache and because fewer steps are required in traversals. However,
when operations are generated from a smaller range of keys there is more chance for
contention. The performance dip occurs when the benefit of small structure size cannot
cover the loss from contention. As more updates are performed the dip occurs in larger
key ranges, for which the structure is large enough not to benefit as much from faster

traversals, but is small enough to still suffer from contention. This trend is reinforced

49

150 m M&C 150 m M&C

= GFSL = GFSL
g w S
S 100 T = 100
H : 2
® 50 ¥ 50
§ WI I E
< < .
[= = " ,
OI II 0 s N_l e m i
L 0, O 2 0 2 02, 0, 2
o o992 2 9 o 7 o ‘o 9 o ‘0 2
> % %% 2%2% 7‘7‘%%7777@@047
Key Range Key Range
(a) 100% Contains (b) 100% Inserts
150 m M&C
n GFSL
[o
o
S 100
5
Qo
K=
% 50
2
<
'_
0 == i - N |
LAY R A N AU R AN VR
o o o o o
>+ 2%%2%2 %292 2

Key Range
(c) 100% Deletes

Figure 5.4: Throughput, in millions of operations per second, as a function of key range.
Each graph shows the throughput of a single operation type.

in Figure 5.4a, which shows the results of the Contains test. In this case there are no
updates, thus no contention and no dips in GFSL’s performance.

M&C’s implementation was measured up to the 10M range in the mixed-ops tests,
and up to the 3M range in the single-op-type tests, as it runs out of memory for larger
structures. In contrast, GFSL’s compact layout and partial reuse of chunks allow it to
run up to the range of 100M.

GFSL outperforms M&C for all single-op-type tests, as seen in Figure 5.4. GFSL’s
Contains operation is faster than M&C by up to 4.4x in the large key ranges, and up to
2.9x in the low key ranges (Figure 5.4a). M&C show surprisingly low performance in
small key ranges in the Contains test, especially when considering the trends in the
mixed-ops tests with few update operations; we were unable to determine the cause of
the low performance. Figure 5.4b and Figure 5.4c show the performance of Insert-only
and Delete only executions respectively. Both graphs show higher performance for
GFSL in all ranges, between 3.5x-9.1x for Insert operations and between 3.5x-12.6x for
Deletes.

50

Chapter 6

Related Work

While relatively little research has gone into designing general purpose data structures
optimized for the GPU, some have been developed.

Hong et al. [HKOO11] showed that graph algorithms can be greatly accelerated on
the GPU by designing a structure that emphasizes memory coalescing and warp-level
cooperative execution. More recently, Zhang et al. [ZWYT15] used similar techniques in
their implementation of MegKV, an in-memory key-value storage system; in the context
of a a GPU-friendly cuckoo hash table. MegaKV provided a speedup of 1.4-2.8 over the
CPU implementation of the general algorithm.

Other hash tables have been designed and/or implemented on the GPU [AVST11,
Bor14, KBGB15,BZG 16, GLHL11]. Bordawekar [Bor14] proposed multi-level bounded
linear probing, improving locality by using multiple levels of hash tables that reduce the
number of lookups. Alcantara et al. [AVST11] developed a cuckoo hashing scheme that
achieves fast construction on the GPU and ensures lookup succeeds within at most 4
steps. Another cuckoo hashing scheme, [KBGB15], uses Collaborative Lanes, a method
enabling threads in a warp to take on new tasks and so battle warp under-utilization.

Misra and Chaudhuri [MC12b] tested the speedup of several known lock-free data
structure algorithms ported to the GPU, in comparison with the CPU. Their results
indicate that while a speedup is achieved on the GPU, increasing the dataset size and
number of operations significantly reduces the GPU’s advantage, especially in the case
of more complex data structures such as skiplists and priority queues. Cederman et
al. [CCT12] performed similar experimentation on a variety of known lock-based and
lock-free queue implementations, concluding that GPU-oriented optimization would
benefit performance. In this work we show that a GPU-friendly design can perform
significantly better.

Simpler data structures such as queues [SF15] and linked-lists [YHGT10] have been
developed for the GPU. Some graph-based algorithms have also been sped up using
GPU-optimized implementations [HN07,ZH14, MGG15].

Search trees geared towards graphics applications have also been GPU-optimized to
good effect [ZHWGO08,LWL12,ZGHGO08]. However, such structures typically distinguish

51

between a construction phase in which elements are inserted, and a use phase in which
elements are searched (but are never modified). They do not allow an intermix of these
phases and so are not a good fit for general purpose applications.

Condensing data into contiguous areas of memory is a well-known technique for
accelerating data structure operations in vector SIMD architectures. Several such
structures have been designed such as binary search trees [KCST10], b+-trees [SCK*11,
ZHF14,7ZR02], and hash tables [Ros07]. Sprenger et al. [SZL16] designed a cache
conscious skiplist with index levels in memory contiguous arrays and a linked list in the
bottom level. The index levels are rebuilt periodically.

Braginsky and Petrank developed a locality-conscious linked list [BP11] and B-+tree [BP12]
for use in storage systems. A chunk based node design was proposed for the linked list
and later used in the B+ tree implementation. As the cache-alignment requirement
for efficient GPU programming can be compared to requirements for page-conscious
systems the possibility of developing such structures to GPU programs is an interesting

research question.

52

Chapter 7

Conclusion

We presented GFSL, a GPU-friendly algorithm for the skiplist data structure. We
identified aspects of classic skiplist algorithms that correlate to known performance
drags on the GPU, most importantly lack of memory coalescence and high divergence
between threads in a warp. We focused on minimizing these performance drags in the
design of GFSL by utilizing chunked skiplist nodes and warp-cooperative functions to
improve performance on the GPU.

We demonstrated the importance of designing such specialized algorithms when
attempting to execute non-streaming applications on a GPU by presenting a skiplist
design that outperforms a straightforward porting of the CPU implementation to the
GPU. GFSL was implemented and evaluated on a GeForce GTX 970 Nvidia GPU
(Maxwell architecture). Evaluation shows a speedup of up to 11.6x over previous
implementations for large key ranges.

While current results show a significant improvement over the classic skiplist design,
further optimizations may help to widen the advantage. For example, some extra
concurrency can be gained by finding an efficient way to enable multiple teams in
a warp to concurrently handle different operations. This functionality would entail
some additional divergence, however the additional computational power may very well
overshadow its effects. This is challenging in as teams in the same warp may deadlock
while trying to take the lock for the same chunk, as explained in Section 2.2.

Additionally, we believe that similar design considerations can be used to aid
in efficient porting of other irregular-access concurrent data structures to the GPU

environment, further expanding the toolkit available to GPGPU programmers.

53

54

\A ‘
Jeiqiq jenua) tseyoeA|3 ‘Abojouyos | Jo 8nisu| [9edS| - UoIuyoa | B

Bibliography

[ALMS15]

[AVS*11]

[BGHZ16]

[BNP12]

[Bor14]

[BP11]

[BP12]

[Brol5]

[BS10]

Dan Alistarh, William M. Leiserson, Alexander Matveev, and Nir
Shavit. ThreadScan: Automatic and Scalable Memory Reclamation.
In Proc. 27th ACM Symp. Parallelism Algorithms Archit. - SPAA 15,
pages 123-132, New York, New York, USA, 2015. ACM Press.

Dan A Alcantara, Vasily Volkov, Shubhabrata Sengupta, Michael
Mitzenmacher, John D Owens, and Nina Amenta. Building an efficient
hash table on the gpu. GPU Computing Gems, 2:39-53, 2011.

Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi.
Fast and Robust Memory Reclamation for Concurrent Data Structures.
In Proc. 28th ACM Symp. Parallelism Algorithms Archit. - SPAA 16,
pages 349-359, New York, New York, USA, 2016. ACM Press.

Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A Quantitative
Study of Irregular Programs on GPUs. In 2012 IEEFE International
Symposium on Workload Characterization (IISWC), pages 141-151.
IEEE, 2012.

Rajesh Bordawekar. Evaluation of parallel hashing techniques. GTC,
2014.

Anastasia Braginsky and Erez Petrank. Locality-Conscious Lock-Free
Linked Lists. In International Conference on Distributed Computing

and Networking, pages 107-118. Springer, 2011.

Anastasia Braginsky and Erez Petrank. A Lock-Free B+ Tree. In Pro-
ceedings of the twenty-fourth annual ACM symposium on Parallelism
in algorithms and architectures, pages 58—67. ACM, 2012.

Trevor Alexander Brown. Reclaiming Memory for Lock-Free Data
Structures. In Proc. 2015 ACM Symp. Princ. Distrib. Comput. - Pod.
’15, pages 261-270, New York, New York, USA, 2015. ACM Press.

Peter Bakkum and Kevin Skadron. Accelerating SQL Database Oper-
ations on a GPU with CUDA. In Proceedings of the 8rd Workshop on

55

[BZGT16]

[Carl3]

[CCT12]

[CP15a]

[CP15b]

[DHK16]

[GLHL11]

[HKOO11]

[HLLS06]

General-Purpose Computation on Graphics Processing Units, pages
94-103. ACM, 2010.

Alex D Breslow, Dong Ping Zhang, Joseph L Greathouse, Nuwan
Jayasena, and Dean M Tullsen. Horton Tables: Fast Hash Tables for
In-Memory Data-Intensive Computing. In USENIX Annual Technical
Conference, pages 281-294, 2016.

Josiah L Carlson. Redis in Action. Manning Publications Co., 2013.

Daniel Cederman, Bapi Chatterjee, and Philippas Tsigas. Under-
standing the Performance of Concurrent Data Structures on Graphics
Processors. In Furopean Conference on Parallel Processing, pages
883-894. Springer, 2012.

Nachshon Cohen and Erez Petrank. Automatic Memory Reclamation
for Lock-Free Data Structures. In Proc. 2015 ACM SIGPLAN Int.
Conf. Object-Oriented Program. Syst. Lang. Appl. - OOPSLA 2015,
volume 50, pages 260-279, New York, New York, USA, 2015. ACM

Press.

Nachshon Cohen and Erez Petrank. Efficient Memory Management for
Lock-Free Data Structures with Optimistic Access. In Proc. 27th ACM
Symp. Parallelism Algorithms Archit. - SPAA 15, pages 254-263, New
York, New York, USA, 2015. ACM Press.

Dave Dice, Maurice Herlihy, and Alex Kogan. Fast Non-Intrusive
Memory Reclamation for Highly-Concurrent Data Structures. In Proc.
2016 ACM SIGPLAN Int. Symp. Mem. Manag. - ISMM 2016, pages
36-45, New York, New York, USA, 2016. ACM Press.

Ismael Garcia, Sylvain Lefebvre, Samuel Hornus, and Anass Lasram.
Coherent parallel hashing. In ACM Transactions on Graphics (TOG),
volume 30, page 161. ACM, 2011.

Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Oluko-
tun. Accelerating CUDA Graph Algorithms at Maximum Warp. In
Proceedings of the 16th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, volume 46, pages 267-276. ACM,
2011.

Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A
Provably Correct Scalable Concurrent Skip List. In Conference On
Principles of Distributed Systems (OPODIS). Citeseer, 2006.

56

[HNO7]

[HS12]

[KBGB15]

[KCS*10]

[LWL12]

[MC12a]

[MC12b]

IMGG15]

[Nvilbal

[Nvil5b]

[Opel5]

[Pug90a]

Pawan Harish and PJ Narayanan. Accelerating Large Graph Algo-
rithms on the GPU Using CUDA. In International Conference on
High-Performance Computing, pages 197-208. Springer, 2007.

Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-
ming, Revised Reprint. Elsevier, 2012.

Farzad Khorasani, Mehmet E Belviranli, Rajiv Gupta, and Laxmi N
Bhuyan. Stadium Hashing: Scalable and Flexible Hashing on GPUs.
In Parallel Architecture and Compilation (PACT), 2015 International
Conference on, pages 63-74. IEEE, 2015.

Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, An-
thony D Nguyen, Tim Kaldewey, Victor W Lee, Scott A Brandt,
and Pradeep Dubey. Fast: fast architecture sensitive tree search on
modern cpus and gpus. In Proceedings of the 2010 ACM SIGMOD In-
ternational Conference on Management of data, pages 339-350. ACM,
2010.

Lijuan Luo, Martin DF Wong, and Lance Leong. Parallel Implemen-
tation of R-Trees on the GPU. In 17th Asia and South Pacific Design
Automation Conference, pages 353-358. IEEE, 2012.

Prabhakar Misra and Mainak Chaudhuri.
http://www.cse.iitk.ac.in/users/mainakc/lockfree.html, 2012.

Prabhakar Misra and Mainak Chaudhuri. Performance Evaluation
of Concurrent Lock-Free Data Structures on GPUs. In 18th IEEE
International Conference on Parallel and Distributed Systems, pages

53-60. IEEE, 2012.

Duane Merrill, Michael Garland, and Andrew Grimshaw. High-
Performance and Scalable GPU Graph Traversal. ACM Transactions
on Parallel Computing, 1(2):14, 2015.

Nvidia. CUDA C Best Practice Guide v7.5, September 2015, NVIDIA
Developer Zone: website, 2015.

Nvidia. CUDA C Programming Guide v7.5, september 2015. NVIDIA
Developer Zone: website, 2015.

OpenCL. OpenCL 2.1 Reference Pages, The Khronos Group Inc.:
website, 2015.

William Pugh. Concurrent Maintenance of Skip Lists. Technical
Report CS-TR-2222.1, Institute for Advanced Computer Science,
Department of Computer Science, University of Maryland, 1990.

o7

[Pug90b)]

[Roc14]

[Ros07]

[SCK*11]

[SF15]

[SLOO]

[SO11]

[SZL16]

[WYS*15]

[YHGT10]

[ZGHGO0S)

[ZH14]

William Pugh. Skip Lists: a Probabilistic Alternative to Balanced
Trees. Communications of the ACM, 33(6):668-676, 1990.

RocksDB. A Persistent Key-Value Store for Fast Storage Environments.
http://rocksdb.org/, 2014.

Kenneth A Ross. Efficient hash probes on modern processors. In Data
Engineering, 2007. ICDE 2007. IEEE 23rd International Conference
on, pages 1297-1301. IEEE, 2007.

Jason Sewall, Jatin Chhugani, Changkyu Kim, Nadathur Satish, and
Pradeep Dubey. Palm: Parallel architecture-friendly latch-free modifi-

cations to b+ trees on many-core processors. Proc. VLDB Endowment,
4(11):795-806, 2011.

Thomas RW Scogland and Wu-chun Feng. Design and Evaluation of
Scalable Concurrent Queues for Many-Core Architectures. In Proceed-
ings of the 6th ACM/SPEC International Conference on Performance
Engineering, pages 63-74. ACM, 2015.

Nir Shavit and Itay Lotan. Skiplist-Based Concurrent Priority Queues.
In Parallel and Distributed Processing Symposium, 2000. IPDPS 2000.
Proceedings. 14th International, pages 263-268. IEEE, 2000.

Jeff A Stuart and John D Owens. Efficient Synchronization Primitives
for GPUs. arXiv preprint arXiv:1110.4623, 2011.

Stefan Sprenger, Steffen Zeuch, and Ulf Leser. Cache-sensitive skip list:
Efficient range queries on modern cpus. In International Workshop on
In-Memory Data Management and Analytics, pages 1-17. Springer,
2016.

Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang
Sun. Deep Image: Scaling up Image Recognition. arXiv preprint
arXiv:1501.02876, 7(8), 2015.

Jason C Yang, Justin Hensley, Holger Griin, and Nicolas Thibieroz.
Real-Time Concurrent Linked List Construction on the GPU. In
Computer Graphics Forum, volume 29, pages 1297-1304. Wiley Online
Library, 2010.

Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo. Highly

Parallel Surface Reconstruction. Microsoft Research Asia, 2008.

Jianlong Zhong and Bingsheng He. Medusa: Simplified Graph Pro-
cessing on GPUs. IEEE Transactions on Parallel and Distributed
Systems, 25(6):1543-1552, 2014.

58

http://rocksdb.org/

[ZHF14]

[ZHWGO8)]

[ZR02]

[ZWY*15]

Steffen Zeuch, Frank Huber, and Johann-christoph Freytag. Adapting

tree structures for processing with simd instructions. 2014.

Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-Time
KD-tree Construction on Graphics Hardware. ACM Transactions on
Graphics (TOG), 27(5):126, 2008.

Jingren Zhou and Kenneth A Ross. Implementing database operations
using simd instructions. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages 145-156. ACM,
2002.

Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and
Xiaodong Zhang. Mega-KV: A Case for GPUs to Maximize the
Throughput of In-Memory Key-Value Stores. Proceedings of the VLDB
Endowment, 8(11):1226-1237, 2015.

59

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

VP NN ANV MY DNPIAN DX YN TR TY PP DN MNNMN NIV TWURD DINI
mond 6.8-11.6 % S oywaa New wyn GESL p>n 10 5752 X0 mNnann nnv- uNd
Ny S mPnan NV GESL 5S¢ anva i napna NN NmyD .mwan Yy mysiann moiysa
0.46 9 Sy DN NYIN PRI NOTY MDY DY DN DY 1T HINN DOYNIN WND DOON
MY 991 M&C 5 oma oown X omT oy Inm GESL ,mnnan 9ox 30 5w mva

M&C-5 ora mow rm GESL 9ox 30 n 5171 any mnnan

YYNIN PID N WY MIWANIN Y TNIN DY MTNINDD MNP Xin GESL Sv %590 pamn
P9 YOP YA AN OP NN NNV NIY NNE IYY 29N TAYNN HY NNIPY YOINND
(Memory ymnn map ,m npna (L2 Cache) »amn 7aynn Sv monn p>ra 15 0
MIANNY MINIPN TIMRD DN NG DX 19 PURIND PIND M w8 110 Transactions)
N910 DNY TN NN PYIN UKD WA NIPNN NPV STIYNDYNN NDYN IWIRND DY

JURIN PIOND M MDN MNP NI P9, PHIvNn oy

MNNANN NMIVY 955 PVLDAT NNYA DT ME&C YW DNNIN Tiya 5 NTIYN NN NP RN
W2 30) M PN IPTY DT DN DAV . Ta02 yIvaa nn DY A GESL 5
M2 YYa 0NPY OYIYN BY TTINNND MONN N ME&C 5v vidnn » NI (MPnon won 100y

JNNN DY AT MR NW TTnnNe oy GESL v mya yaor

iii

"I NN YA YOV T MITIDNN ,MPNINHD MIVIPN NPV SV QOIND NI5NN NPT MY
95 .2 702 DPINN MR DVININ MNNMN DO NN NN PYIN DY INNNNN NN .Nana
NNON YIBN PINNN NKNY2 NIPYI DRSDIN MNNMN Y NP NN 1YO1 ,NNNRD VIS NI
MDY NI PYID TYS DD WUND ,IPOYN NN SNN NI 992 Wen T DY YNann Mana
992 XY NN ,NPNTY I9NN N2 DX AXPN 752 INNNNN NN MNNMN 1901 Sy "oTn”
YNNYND NN TUND WHDNWn >T 5Y NYIAPIN Prey MIIANDNL 74 1 7072 D) 9 Mana Nwd i

1/4 <= Prey <= 1/2 10PON Pey TWI

1AV RO PIDN 29NN TAYNN DY 12202 DT MNIDN ¥ ORIPN NN DNDT Nvwab
792 NMANNN NPT NPYIY NI 297 Tayn Dy N0 0N T YW DY NPY Navna oY)
NI PIND NYNT R YWY G0N DPTO AN YTNRD YN NI 22572 9N M2 YTHnY
NPYA Y NPY NADNY 75D DHNN IONR MIINION 29WN TaYNa WON TINGD 1D |, TTHaN VINN

DI NYNIN NP PR DNDT

NPYYINI MDY NODID 9NN TaNN DY NI MANMNN 0T Novw ,GESL NN Doywsn 1IN
95 NI PN MIVIPR MY HY qown N2> GFSL (Fine-Grained Locking) now)
DIPY MNNN 190N N1 NMDN Y5 (chunk) "NMON” DV >N TN TN NN HPYIL IO
N2 ONYP NN DIIMN MNNAN DI ,MOITIOD NPT NPYIY NITA .Y 1TDA DINN
N9DNI NN 955 QONA . PDNNN NI MNNMN DY NP NN 1PN NINK NI 9 ,NNNNNN
LJINNN NN DNDND WIANN NIN N TIY,MDPYIN DY NINOYN MNI2 MINSDIN MAOONA Ty THNm
NYION D32 T DY P NNANN DY TN YD DIONY YTRN NI I TIY I INNNNN DRI
YIANIY DTV DY DY DTV DO MNNON YY DTHNN Y TI0N D000 MTY Y D

D9 NN NN NNOND

DNT NPV HY PVITIVDN YINNN INYA ,MNNaN 1901 2on GESL-2 nmy 55 . many o na
nysanm @+ 1 nao Nnan Poind ox NYoNNN GEFSL-2 ,9oma 7252 7NN Nnan 9on nmms 5511
DXVONN MOITHVD MPYIL NS TIOWD (Dehynk TMIANDNI) 4 NI AYTN NMDX NIXN WND 79
PN NN (Prey MIANDNI) 7 NI NN GONNNY OYS 502 ¢ + 1 7D NN PoOINd ONN
WNRND MY NS NN MNS N9on GESL 5 @ + 1 7mad mnnan mns odyn GESL-av
2900 N NN 1/4 <= prey <= 1/2 MDD 1Oya WOITIVD NPT NPV DPIP

NnNan

M2 VNN 79PN (Teams) DINY MNIPIN IPNY MBIAPY DVIND NN DPONN DN M PN
Y)Y DYNIN INY IMND DOVIND 95 297N TaYNN HY warpa DOVINN 1901 IV N JOP 1N
N NTAIND YD NNYD .ONTH NPYI DY DTN MDY NI MDY DANUM TMNDND NTNIND
W) DPYN DN NNT YD TN VAN DY Dapna YN ymny moyan mnd NN DMINNNND DN
DN APYI DY NG 72PN NNY IPIINN HY RN NPT MATANA NN PNIRD HRITO
YN TN TAYD YV 792 29NN TAYNN HY MPHND MPRNN N DONYN N¥Ipa ©VINN N2

2NN TYS D51 9T

Misra and Chaud->"y ans) WX DNDT MY wvinvno MmN 0w X GESL Ny py71ad »1oa
32 PNY 2N TN YY DaAPn vipnd IXNYNL DY 79w NN WN huri [MC12b]
MIAYN NIV NPNHDVMNM YNPNHN 23 MNXI NONN 3NN mxnn M&Cs onby vinn X

ii

PN

D79 DTy OPN .AVWNKD NPOIN NNRNY M99 1955 1980 D79 DXTaYyN MNINKRD DHYA
SV MT Y92 MDY WNN MDD 90! TN PHNA MMITNVNI NPNOON WN MDD MNHD DPIDN
O NPT OXTIYN 2 DY ODIAPN MNOND MNRMN MY MDD SV INRNN 0N .7ON DINN
D995 WM TIVY DN D79 DTaYNI YIPYH MmverS mad nnn OpenCL -y CUDA

297 oM ypa T &Y (GPGPU)

IVYPOIND PRPD WNRUN 29NN Taynn oo mNINKD 09w p»t GPGPU maom mmraa phoyn
oy oM *Ton Yy mdyaa b2 (Deep Learning) npway nmndm Snn ,0mnn S¥ and ymna
D¥97) DTAYN MY DY DHIYD DNIPIMON HY YIPNI NIONI SMYNYN NN PTY OYP NN
SV NN TAYHINN NNWY JMND MDD NNVUN DO DP9 DXTIYN 1AV PN YN M DN
POYY YyNY (MMM PNITO) "m0 Ny My oy Tinng 0297 oTayn (CPU) avnnn
D”97) DXTAYN Q0N . TYIVN IR/) DNVPY DY qDIND IXPD YPHRN WNRD TPy 2NN YNInn
M 92T 20N TAYNI NNV 29D DT DXVIND K ,;warps DRIPIN D¥IPHNI DOVIN DI
vy NNT OO 29N TAYNN NIV M NMIND PRD NP2 OV MTAND IR NN
DI IPMYNYN NYNAY N0 M5 NPIONI MPRN NP MITIAND N PIDD PNITO N
YDDIIN DN 232N DYNNYN WNR DNIPIMINI NPEPYAN 1992 MK TIND VX NN MY
YDDIIN DNINT VDY .DPAVW DNITYA DI WX (pointer-based data structures) oyasn

.D”ODD DNIMININI NI TIND VNI DWIANN

VIOV DTYPHNN DWIANN YDDIAN DYIAPN DN NN DY DI DV DNMIMNON DND»P
D797 D'TaYN DY NNIY DX DNM AN HY NPY NADN YNID MIYD) NNG DY ROIN Tayna
7921 29N TAYNN NA0Y DN DINNND 1T NPSPPOVMN TIya TN ¥ DIPHRN 2172 D WX

DN NN 19VH

oA NN NI IDWN TAYND DA DMPY NNY TAYA YOV 29NN TAYNN 1D DYNNND DN
Mo snnany nm Yy (Garbage Collection) *0moN ot MmNwy (JIT compilation) nsAn
NN ONNNN OYON IX R N2AD NAY NN NNN W OND OOI8D 297N TN wpnwnbd 195v

(skiplist) D27 YWY MO ©NM AN DOHD YR DY TNON HY NYDPDIN PNIIN AN

N9ON MPADN NNY PP 07PN DNIMIMON YVINI 291N OINNY MHAN NP DNDT NPYA
VIV MAPN YR WX ,MOI0N PN MDY TNY NOY DRMIND VIN S8y MY TPMIAN0N
(Key- 7-nnan ONND DHRIIMON 10 1OR NPV X19) Yidvh mNHNT p9apn N11v3a

(Priority Queue) nmPmITP~ NN N DINN 0»22pN ©NM MY ©o Value Stores)

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

VNN YT NP ,PITVI IR MDD SV INNINA YA PN

NYTIAND2 DDA WPNNRD PAMYI NNANNHN NND DIINKDD NDN M NN NN W 79N
PN NP2 IMIDTYN DIPMKDM N ,NIINNN SY 0000 NN NNPN T9Nna

Nurit Moscovici, Nachshon Cohen, and Erez Petrank. A gpu-friendly skiplist algorithm. In
International Conference on Parallel Architecture and Compilation Techniques (PACT), 2017,
2017. (in press).

Nurit Moscovici, Nachshon Cohen, and Erez Petrank. Poster: A gpu-friendly skiplist
algorithm. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 449-450. ACM, 2017.

NN P2 o»¥pnn NO Ty WK ,PACT 20172 9n1a 2000 NN D9 THYIND N2 IINNDN
NN

YTINONVYN TYNA NTIN NPNHNN DY PIDVY DTN MIN

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

TaYNN NAA0VY NNIRMNND DINTT NIYH
2999

PPN DYy NN

NN N2APD MWATH DY Hpbn o pvd
AVUNNN YT DYTNRY 0DHN

VPV 79

NI MNTNOV 1ON T PIDVN VIDD YN
2017 *OY non Y'yUnin Hnn

Aieiqiq jenuan JeyoeA|g ‘Abojouyoa | JO a1njiisu| |aels| - uoluyos | G

TaYNN NAA0VY NNIRMNND DINTT NIYH
2999

VPV 79N

	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Preliminaries
	2.1 GPU And The CUDA Programming Model
	2.2 Considerations For Efficient GPU Programming
	2.3 Skiplists

	3 Algorithm Overview
	4 Algorithm Details
	4.1 Structure Details
	4.2 Data Structure Operations
	4.2.1 Contains
	4.2.2 Insert
	4.2.3 Delete

	4.3 Some Words on Correctness

	5 Measurements/Results
	5.1 Experimental Setup
	5.2 Static Configurations
	5.3 Performance Results

	6 Related Work
	7 Conclusion
	Bibliography
	Hebrew Abstract

