
ספריות הטכניון
The Technion Libraries

בית הספר ללימודי מוסמכים ע"ש ארווין וג'ואן ג'ייקובס
Irwin and Joan Jacobs Graduate School

©
All rights reserved to the author

 This work, in whole or in part, may not be copied (in any media), printed,
 translated, stored in a retrieval system, transmitted via the internet or

 other electronic means, except for "fair use" of brief quotations for
 academic instruction, criticism, or research purposes only.

 Commercial use of this material is completely prohibited.

©
כל הזכויות שמורות למחבר/ת

אין להעתיק (במדיה כלשהי), להדפיס, לתרגם, לאחסן במאגר מידע, להפיץ באינטרנט, חיבור זה או
כל חלק ממנו, למעט "שימוש הוגן" בקטעים קצרים מן החיבור למטרות לימוד, הוראה, ביקורת או

מחקר. שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט.

A GPU-Friendly Skiplist
Algorithm

Nurit Moscovici

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

A GPU-Friendly Skiplist
Algorithm

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Nurit Moscovici

Submitted to the Senate

of the Technion — Israel Institute of Technology

Tamuz 5777 Haifa July 2017

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

This research was carried out under the supervision of Prof. Erez Petrank, in the Faculty

of Computer Science.

Some results in this thesis have been published as articles by the author and research

collaborators in conferences and journals during the course of the author’s MSc degree,

the most up-to-date versions of which being:

Nurit Moscovici, Nachshon Cohen, and Erez Petrank. A gpu-friendly skiplist algorithm. In
International Conference on Parallel Architecture and Compilation Techniques (PACT), 2017,
2017. (in press).

Nurit Moscovici, Nachshon Cohen, and Erez Petrank. Poster: A gpu-friendly skiplist
algorithm. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 449–450. ACM, 2017.

The paper has been chosen as a contender for the best paper award at PACT 2017,

which has not yet taken place as of the time of writing this thesis.

The generous financial support of the Technion is gratefully acknowledged.

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Contents

List of Figures

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Preliminaries 7

2.1 GPU And The CUDA Programming Model 7

2.2 Considerations For Efficient GPU Programming 7

2.3 Skiplists . 9

3 Algorithm Overview 11

4 Algorithm Details 15

4.1 Structure Details . 15

4.2 Data Structure Operations . 16

4.2.1 Contains . 16

4.2.2 Insert . 22

4.2.3 Delete . 33

4.3 Some Words on Correctness . 40

5 Measurements/Results 43

5.1 Experimental Setup . 44

5.2 Static Configurations . 44

5.3 Performance Results . 48

6 Related Work 51

7 Conclusion 53

Hebrew Abstract i

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

List of Figures

2.1 A classic skiplist structure . 9

3.1 Format of a chunk of size N . 12

3.2 GFSL: A chunked skiplist . 12

4.1 Example of the Contains operation, pwrforming down-steps, lateral steps

and backtracks . 17

4.2 Example of the Insert operation, inserting key 15 23

4.3 Inserting key 15 into a chunk without a split. Each thread reads the entry to

its left, and if it is greater than 15 copies it into its own entry. Order of copying

is from right to left. 28

4.4 Insertion of key 22 causes a split. Keys 20 and 25 are moved from chunk B to D

(the new chunk). B’s next pointer and key 20’s down-pointer in A are redirected

to D. 30

4.5 Example of the Delete operation. Key 13 is removed from the structure,

causing a merge to occur. 34

4.6 Deleting key 13 from a chunk. All keys greater than 13 are moved one entry to

the left. 38

5.1 Throughput comparison of GFSL using chunks and teams of size 16

(GFSL-16), and of size 32 (GFSL-32), and M&C. The benchmark pre-

sented is [i,d,c]=[10,10,80] on a 1M key range 47

5.2 Ratio between GFSL and M&C as a function of the key range. 48

5.3 Throughput, in millions of operations per second, as a function of key

range. 49

5.4 Throughput, in millions of operations per second, as a function of key

range. Each graph shows the throughput of a single operation type. . . 50

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Abstract

We propose a design for a fine-grained lock-based skiplist optimized for execution on

Graphics Processing Units (GPUs). GPUs have become increasingly popular in recent

years as a platform for accelerating general purpose computations (GPGPU). GPUs

are often used to accelerate streaming parallel computations, and it has been shown

that highly data-intensive applications can achieve an order of magnitude speedup

when run on a GPU. However, it remains a significant challenge to efficiently offload

concurrent computations with more complicated data-irregular access and fine-grained

synchronization. Natural building blocks for such computations would be concurrent

data structures, such as skiplists, which are widely used in general purpose computations.

Many efficient implementations of concurrent data structures have been designed and

are widely used in parallel applications for the CPU. However, many of these algorithms

do not fit with the specialized architectural requirements of the GPU, and may not scale

well or even perform correctly. Our design utilizes array-based nodes which are accessed

and updated by warp-cooperative functions, thus taking advantage of the fact that

GPUs are most efficient when memory accesses are coalesced and execution divergence is

minimized. The proposed design has been implemented, and measurements demonstrate

improved performance of up to 11.6x over skiplist designs for the GPU existing today.

1©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

2©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Abbreviations and Notations

GPU : Graphics Processing Unit

GPGPU : General Purpose Programming on the GPU

CPU : Central Processing Unit

GFSL : GPU-Friendly Skiplist

M&C : Skiplist implementation by Misra and Chaudhuri [MC12b]

JIT : Just In Time compilation

SPMD : Single Program Multiple Data

SIMT : Single Instruction Multiple Thread

SIMD : Single Instruction Multiple Data

SM : Streaming Multiprocessor

CUDA : Compute Unified Device Architecture, by Nvidia.

OpenCL : Open Computing Language, by Intel

B : Byte

GB : Gigabyte

L2 : Level 2 Cache

warp : 32 threads, the smallest unit scheduled by the SM

half -warp : Either the first or last 16 threads in a warp

team : A group of up to 32 threads that cooperate to perform GFSL operations

chunk : A node in GFSL

tId : Thread Id within a team (between 0 and ¡team size¿ - 1, inclusive)

N : The number of entries in a chunk

DATA : One of the first N − 2 entries in a chunk, holding key-value pairs

NEXT : The entry in a chunk containing the pointer to the next chunk

LOCK : The entry in a chunk containing the lock

split : Operation for handling overfull chunks

merge : Operation for handling underfull chunks

zombie : A chunk logically, but not physically, removed from the structure

pkey : Probability that a key will be in level i + 1 if it is in level i

pchunk : Probability that a chunk in level i is represented by a key in level i + 1

[i, d, c] : Operation mixture with i% inserts, d% deletes, and c% contains

3©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

4©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1

Introduction

In recent years, interest has surged in utilizing GPUs as a platform for accelerating

general purpose programs (GPGPU). Today’s GPUs are widely available at a low

cost, and provide hundreds of computing cores at high energy efficiency, with more

cores added in every generation. The introduction of specialized parallel programming

platforms such as CUDA [Nvi15b] and OpenCL [Ope15] over the past decade have

opened GPUs for GPGPU programming without need for a background in computer

graphics. GPUs are used today to accelerate applications in a wide variety of fields

from deep learning [WYS+15] to database operations [BS10]. However, the design and

implementation of efficient general-purpose algorithms remains a significant challenge.

GPUs are very effective for regular-access data-parallel computations on large

datasets, often utilizing large vectors or matrices. However, irregular access to memory

and control-flow divergence in applications can severely impair performance [BNP12,

Nvi15a]. These behaviors are often exhibited by pointer-based data structures that

support dynamic updates and accesses, which are frequently required in general purpose

algorithms.

While many such data structures have been developed for use on the CPU [HS12],

attempts to port them directly to the GPU have shown that further GPU-specific

optimizations are necessary [MC12b, CCT12]. Several GPU-based search structures

geared toward graphics applications have been designed with good results [ZHWG08,

LWL12,ZGHG08]. However, these structures typically distinguish between build and

search phases, and do not allow for dynamic updates.

Relatively few dynamically updated concurrent data structures have been designed

and optimized for the GPU. Some hash table designs, both based on linear prob-

ing [Bor14] and cuckoo hashing [ZWY+15,AVS+11,KBGB15], have been proposed in

recent years. Of these, [KBGB15] and [ZWY+15] are dynamically updated. Simpler data

structures such as queues [SF15] and linked-lists [YHGT10] have also been developed

for the GPU.

The implementation of nonstreaming algorithms on GPUs is still in early stages,

and we believe that GPGPU will be able to provide complex services for the CPU in

5©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

the future, e.g., JIT compilation and garbage collection. To achieve such tasks, we first

need to build the basic blocks used in algorithmic design. Our intention is to support

this direction by focusing on important data structures, in this case, the skiplist. Such

structures are a natural basis for development of smarter applications. The target

application would probably run entirely on a GPU kernel and would invoke skiplist

operations as part of its execution.

Skiplists are popular in concurrent algorithms, as they offer a probabilistic alternative

to balanced search trees without costly balancing operations. They have been used as a

basis for key-value stores [Roc14,Car13] and for other data structures such as priority

queues [SL00]. However, classic skiplist designs provide little locality of data and have

highly irregular access patterns, both of which are significant drawbacks on the GPU in

terms of performance. Additionally, thread-level synchronization on the GPU is very

costly, especially when necessary between any pair of threads in the system.

We propose GFSL, a GPU-friendly design for a fine-grained lock-based skiplist.

GFSL consists of linked lists of array-based nodes, called chunks, each of which contains

several consecutive keys. Threads are divided into teams the size of a warp or smaller.

Threads in a team access the skiplist chunks in a coalesced fashion and cooperate in

the execution of each skiplist operation. As such, we reduce the amount of concurrent

skiplist operations to gain higher memory coalescence and lower execution divergence,

thus playing to the strengths of the GPU. GFSL benefits significantly from this design

as it enables threads to cooperate during operation execution by concurrently handling

a large amount of data with each execution step.

We compare GFSL to an implementation of a lock-free skiplist algorithm running

on the GPU written by Misra and Chaudhuri [MC12b], which was shown to achieve a

speedup over the CPU implementation. Results show that our optimizations offer a

performance boost for large key ranges. In a range of 10M keys, our implementation

offers a speedup of 6.8x-11.6x.

6©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2

Preliminaries

2.1 GPU And The CUDA Programming Model

This work was designed and implemented in Nvidia’s CUDA C++ programming

model [Nvi15b]. CUDA programs employ a hetrogeneous model: serial, low-data-

intensive elements are executed on the host CPU, which calls functions on the GPU

device for highly parallel and data intensive computations. Communication between

the host and the device is achieved by transferring large datasets between the host and

device memory, a slow process that poses a significant bottleneck.

CUDA provides SPMD behavior using GPU-side functions called kernels. Kernel

code is executed in parallel on each of the threads launched by the user. These

threads are subdivided into blocks, which are distributed amongst the GPU’s Streaming

Multiprocessors (SMs). The SMs are the computational engines of the GPU, and execute

the blocks in parallel. When a block terminates, the SM receives and executes a new

block until all blocks have been handled.

The SMs further logically subdivide the blocks into units called warps, which are

the basic unit managed and scheduled by the SM. Threads in a warp share a program

counter and proceed through kernel code in lockstep (The SIMT programming model).

Warps on an SM are interleaved in order to hide latency. In every cycle the scheduler

chooses a warp that is not stalled (e.g., due an in-process memory transaction), and

executes its next instruction. On all existing Nvidia GPUs warps consist of 32 threads,

though this may be subject to future changes.

2.2 Considerations For Efficient GPU Programming

While GPUs have the potential to accelerate many kinds of computations, they are not

a good fit for every program. GPUs are best suited for computations that can be run on

a large number of data elements in parallel. Additionally, the high cost of data transfer

must be justified by executing sufficient operations on the GPU for each launch. We

present some well known [Nvi15a] important considerations for efficient programming

7©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

in the GPU environment.

Synchronization Communication between threads residing in separate blocks is

costly, as it can only be performed via the slow global device memory. CUDA supports

a variety of atomic operations which can be used for synchronization [SO11]; however,

simultaneous atomic operations by threads in a warp to the same destination are

serialized, and will cause the warp to stall until all have completed. Thus synchronizations

must be used sparingly and carefully in order to avoid a drop in performance.

Communication between threads within the same warp is achieved more efficiently by

utilizing specialized intra-warp operations, supported by CUDA for compute capabilities

3.0 and higher. Two such operations are shfl(var, tId), which returns the value of a

variable held by a thread at the specified channel within the warp, and ballot(bool),

in which each thread offers a boolean value and receives a 32 bit word comprising a

corresponding flag bit for each thread in the warp. Such operations must be used with

care, as execution divergence causes threads not in the active branch to return default

values, possibly with unintended results.

Memory Coalescing A major consideration for improving performance is memory

access optimizations [Nvi15a]: the number of global memory operations in a kernel

should be minimized and coalesced into the fewest possible transactions. Each half

of a warp (half-warp) issues access requests separately, and a memory transaction is

performed for every cache line covered by the requests. Thus, if all threads in a half-warp

access values that can be coalesced into the same cache line then only one memory

transaction will occur, while scattered access results in multiple serial transactions. The

warp blocks until all transactions are completed.

Divergence If kernel execution causes threads in a warp to diverge by executing

different branches, all branches will be executed one by one (serially) by the entire warp.

Threads that should not be active in the currently executed branch will be temporarily

disabled. Thus divergence within a warp may have a negative impact on performance.

Additionally, divergence can cause more serious issues in terms of correctness. For

example, spin-locks that work correctly in CPU code may cause a deadlock on the GPU

when one thread in a warp holds the lock, but the code branch for the spinning threads

is performed before the locking thread’s branch, causing them to spin forever.

Resource Management SMs contain a fixed-size register bank which is divided

evenly amongst the threads according to the resource requirements of the kernel design.

If more resources are needed by the kernel than are available there will be a costly

“spillover” into a designated area of the global memory. Thus, access to local variables

can potentially be as expensive as global access. Resource distribution can be optimized

either by simplifying program code so that fewer resources are required by each thread,

8©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

-∞

-∞

-∞

-∞

∞

∞

∞

∞

17

17

17

17

7

7

7

24

2415 3323

36

36

36

82

42

42

Figure 2.1: A classic skiplist structure

or by launching blocks that consist of fewer threads, enabling SMs to distribute more

registers to each thread.

2.3 Skiplists

Skiplists are widely-used probabalistically balanced search structures that support

expected O(logn) time for online Insert, Delete and Search operations in ordered

collections. While balanced binary search trees offer these results in the worst case,

the localized balancing operations required by skiplists make them easier and more

efficient to implement in a multithreaded environment [Pug90b]. Many concurrent

skiplist algorithms exist [HS12,Pug90a,HLLS06], though none have yet been designed

with GPU-oriented optimizations.

A skiplist consists of layers of sorted linked lists, as in Figure 2.1. The bottom

level holds all elements in the collection, and every other is a sublist of the level below,

containing a random set of keys chosen with some fixed probability pkey. Each element

receives a random height upon insertion and is linked in every level up to that height.

Traversal is performed by searching through each level from the top down, using each

lateral step in the higher levels to skip over several keys in the bottom level.

Some skiplist properties make efficient porting to the GPU a challenge. Skiplists

have little locality of data, causing slow uncoalesced memory access on the GPU. Skiplist

operations also present a high probability for divergence of threads within the same

warp: each thread that operates on a different key will have a unique traversal order,

potentially causing many branches between the threads. We present a GPU-friendly

fine-grained lock-based skiplist design.

9©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

10©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3

Algorithm Overview

As discussed in Chapter 2, GPU algorithms are most efficient when performing coalesced

memory accesses with low control flow divergence. We tune the classic skiplist structure

to these requirements by using array-based skiplist nodes and allowing threads in a

warp to cooperate in the execution of the skiplist operations.

We tackle the problem of scattered memory accesses by packing consecutive key-value

pairs residing in the same level into large cache-aligned skiplist nodes called chunks,

shown in Figure 3.1. Chunks contain a data array, a sorted array of key-value pairs,

along with a lock entry and a next entry consisting of a pointer to the next chunk

and a max field holding the maximum key in the current chunk. Chunks are designed

to be read efficiently in the fewest possible memory transactions.

GFSL consists of several levels of chunked linked lists, each containing a subset of

the keys in the level below, as seen in Figure 3.2. Each chunk’s data array is sorted in

rising order, with empty entries denoted by a special ∞ value and grouped at the end

of the array. In the upper levels the value field of each entry in the data array points to

a chunk in the level below, and in the bottom level this field will hold the data element

associated with the corresponding key. A key-value pair in level i + 1 generally points

to a chunk containing the same key in level i, though it may temporarily point to a

chunk containing smaller values during Inserts and Deletes. The first chunk in each

level contains a −∞ key in the first entry with a pointer to the first chunk in the level

below, and is accessed via a pointer from the Head Array. The last chunk in every level

contains an ∞ value in both its next-pointer and max fields. ∞ and −∞ are distinct

from keys in the structure.

Threads are divided into groups called teams, which cooperate to perform the skiplist

operations. Teams can be defined by the user to be either the size of a warp or smaller.

The number of entries in a chunk is equal to the number of threads in a team, so that

the entire chunk is read in a single kernel instruction (executed in lockstep by the team).

Each thread in a team simultaneously reads data from the chunk index corresponding to

its place within the team (tId). For a team of size N the first N-2 threads, called data

threads, access the data array, while the last two access the next and lock values

11©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Val 0

Key 0

DATA (N-2 entries)

Val 1

Key 1
Upper
32-bits

Lower
32-bits

Val N-3

Key N-3

Next Ptr

Max Field

NEXT

Lock Field

LOCK

…
…

Figure 3.1: Format of a chunk of size N

Data Array

20 25 33 … 33-∞ 5 10 … 10

101 570 … … ∞-∞ 10 25 … 25

-∞ 570 … … ∞

…

ctr ptr

1

2

12

Head
Array

570 600 810 … ∞

Next Lock

Figure 3.2: GFSL: A chunked skiplist

respectively. Each thread performs computations on the value it read then cooperates

with the rest of its team to decide on the next step in the execution via intra-warp

operations.

Structure traversal is similar in spirit to traversal over a regular skiplist. A team

searching for a key k reads the first chunk in the highest level. Each data thread

compares k to the key read from its entry, while the next thread compares k to the

maximum field. The threads share their results and decide simultaneously how to

continue the traversal: either a lateral step via the next pointer, or a step down to

the next level via a pointer in some data field. The team continues laterally if the

searched key is greater than the maximum and steps down otherwise via the data-entry

containing the largest key smaller or equal to k. If all keys in the chunk are greater

than k then the team must backtrack to the previous chunk in the level and step down

from there.

Insert and Delete operations are likewise performed by an entire team in tandem

while ensuring the chunks remain both internally and externally sorted. If an insertion

occurs when there is no free space in the data array a split operation is performed: A

new chunk is allocated and added to the structure after the overflowed chunk. The data

array is divided equally between both chunks, whilst remaining sorted. Conversely, if

a deletion causes a lower bound on the number of key-value pairs to be crossed then

a merge operation is performed: the chunk is marked as a zombie and its values are

12©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

moved to the next chunk in the level. If the next chunk is too full this operation may

cause it to be split. Pointers are redirected after both split and merge operations in

order to ensure the upper level pointers remain accurate and to physically remove a

zombie from the structure. All changes to the contents of the skiplist are performed

under the protection of the chunks’ locks, so at most one team can change the contents

of a chunk at any time.

GFSL contains fewer nodes and levels than the classic skiplist. A single node in

GFSL contains several keys, and so replaces several separate nodes in the classic version.

Thus, more keys can be inserted into a level in GFSL before it becomes necessary to add

a pointer in the level above. The teams process more data for every memory transaction

than a single thread does in the original algorithm, enabling faster traversals over the

structure, while also causing less divergence within a warp.

Unlike the classic skiplist algorithm, GFSL does not predetermine a level for every

key inserted. Instead, a key can be raised to level i + 1 only as a result of a split, i.e.

when a new chunk is added to level i. Raising the key as a result of insertion of new

chunks and not single keys causes the factor between levels to be tied to the number of

entries in a chunk, aiding in shorter traversals. In an ideal structure at most one key

from each chunk in level i would appear in level i + 1. In this work we differentiate

between pkey, the probability a key in level i will appear in level i + 1, and pchunk, the

probability a key from some chunk ch in level i will appear in level i + 1

13©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

14©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4

Algorithm Details

4.1 Structure Details

During the initialization stage we create the structure and allocate an array of chunks

in the device memory for a memory pool. The structure initially consists of a single

unlocked chunk in each level, containing the −∞ key and a pointer to the chunk in

the level below. The head array is initialized to point to these chunks. Each head

array pointer is associated with a counter of the number of utilized chunks in the level,

initially 0. These counters are used to keep track of the highest level currently in use in

the structure, and thus to avoid traversal of empty levels.

Allocations from the memory pool are performed by incrementing a global counter

and using the resulting index as a pointer. All chunks are allocated locked with ∞
values in all key-data pairs, as well as in the max field. The ∞ max field signifies that

this is the final chunk in the level. Chunks that are to be inserted into any place but

the last in the level will have their max field updated to the maximum key contained

within the data array before connection to the structure.

In this work chunk entries are of size 8B, divided equally between key and value.

The small size of keys and values in the structure is necessary as the GPU has a small

memory capacity (3.5GB in the Maxwell architecture tested in this work) and memory

transfer between the host and device is very slow. Additionally, larger values would

require either more transactions or fewer key-value pairs read per transaction. A 32-bit

value field may be used to indicate the address of a larger object in the main memory

as in Zhang et al. [ZWY+15].

Some Definitions

Zombies: Chunks that have been removed by a merge operation but are still

connected to the structure are called zombies. Removal of chunks from the structure

occurs only during a merge operation. The deleting team marks a chunk as a zombie

using a special value in the lock field. The zombie will eventually be physically removed.

15©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Table 4.1: Notations

K Key type. unsigned int.
V Value type. unsigned int.
KV Key-value pair in chunk. unsigned long.
CHK* Pointer to a chunk.

Special Values
tId (Thread Idx)%team; //thread’s index within its team
DSIZE N − 2 - size of data array
NONE A value distinguishable from any tId

While zombies are no longer considered to be in the structure they may still be reachable

until all pointers to them are redirected. Identifying when a zombie is disconnected and

can be reclaimed is difficult, as it may be pointed to by multiple chunks.

Memory reclamation is a significant challenge, even on the CPU [ALMS15,BGHZ16,

Bro15, CP15b, CP15a, DHK16], often requiring the use of complicated code or locks,

which are performance drags on the GPU. A possible reclamation scheme would be to

compact the structure between kernel launches; this is also challenging and is left for

future work. The need for reclamation in GFSL is reduced significantly compared to

Misra and Chaudhuri [MC12b] by the fact that chunk entries from which keys have

been removed can be reused as long as the chunk is not a zombie.

Enclosing Chunks: A chunk is said to enclose a key k if it is the first non-zombie

chunk in the level with a max field greater or equal to k. If k exists in level i it will be

found in its enclosing chunk in that level. Additionally, k can only be inserted into its

enclosing chunk. Thus, a traversal searching for k terminates when it has found the

enclosing chunk of k in the bottom level, regardless of whether k exists in the chunk.

4.2 Data Structure Operations

In this section we present the algorithms for the Insert, Delete, and Contains operations

in detail. Table 4.2 defines some notations. Note that in this section we use CHK* to

indicate a pointer to a chunk in global memory in order to simplify the pseudocode. In

actuality, chunks are accessed using 32-bit indexes to the memory pool. For chunks of

size 128B this index size can cover addresses in 512GB of memory. This is sufficient in

the foreseeable future, as modern GPUs have only a few GB of device memory.

4.2.1 Contains

General Description

Contains are typically the most common operation called in programs using skiplists,

and so it is vital that the traversal be as fast as possible. A Contains operation that

16©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

-∞ 5 7 … 1010

-∞ 13 30 … 4747

-∞ 68 99 … ∞121

59 68 81 … 81…

13 14 17 … 2121

…

…

1

2
3

𝑇0 𝑇1 𝑇2 𝑇𝑁𝑒𝑥𝑡𝑇3

…

…

…
Chunk
A

Chunk
B

Chunk
C

Chunk
D

Chunk
E

(a) A team performing Contains(17).

-∞ 5 7 … 1010

-∞ 13 30 … 4747

-∞ 68 99 … ∞121

59 68 81 … 81…

13 14 17 … 2121

…

…

1

2

3

𝑇0 𝑇1 𝑇2 𝑇𝑁𝑒𝑥𝑡𝑇3

…

…

…

…

Chunk
A

Chunk
B

Chunk
C

Chunk
D

Chunk
E

(b) A team performing Contains(52), entailing a backtrack.

Figure 4.1: Example of the Contains operation, pwrforming down-steps, lateral steps
and backtracks

must wait for a lock to be released may result in high contention, especially in the

massively multithreaded environment of the GPU. Thus, the Contains operation is

lock-free: it never acquires a lock or waits for a lock acquired by another operation.

A team performing a Contains operation searches for a key k, starting from the

first chunk in the highest level. The team searches each of the upper levels in turn for

the largest key in that level that is smaller or equal to k. Once this key is found the

team reads its associated pointer, which is used to step down to the next level. When

the bottom level is reached the team begins a lateral search for a chunk containing k

itself. A key is considered to be in the structure if it exists in a non-zombie chunk in

the bottom level.

17©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

zombies encountered during traversal are ignored by taking lateral steps until a

non-zombie is found. The lock thread contributes only in recognition of zombie chunks,

in all other steps decisions are made based solely on the values read by the data and

next threads.

Consider Figure 4.1 for an example of the Contains operation. In Figure 4.1a the

team searches for key 17, beginning by reading Chunk A, the first chunk in the top level.

Each data thread checks whether its value is a candidate for a down step (less than

or equal to 17). The next thread checks whether the maximum value in the chunk is

smaller than 17, indicating that a lateral step should be taken. The team uses ballot,

which receives the boolean result of this computation and returns a bitmap to each

thread in which each bit represents the flag computed by the corresponding thread in

the warp. The threads see that T0 is the highest thread that returned true, and retrieve

the pointer data from T0. The entire team then steps down to Chunk B, and repeats

the computation, finally stepping down into Chunk E. In chunk E each data thread

checks whether its key is equal to 17, while the next thread continues to check whether

a lateral step should be taken. The ballot operation shows that T2 sees key 17, and

the team concludes the operation with a true indication.

Figure 4.1b showcases other possible types of steps in a traversal of GFSL with a

search for key 52. As before, the team reaches Chunk B and each thread compares the

key it read to 52. In this case, the ballot shows that TNEXT is the highest thread

returning true, meaning that 52 is greater than all keys in the chunk. The team takes

a lateral step into Chunk C, and again compares the keys found to 52. However, the

ballot now shows that no thread returned true, signifying that 52 is smaller than all

keys in this chunk. In this case, the proper key to use for a down step would be key

47 in Chunk B, as it is the greatest key in the level that is less than 52. The team

backtracks to Chunk B and steps down into the bottom level. There it will take lateral

steps until the enclosing chunk of 52 is found.

Implementation Details

Algorithm 4.1 shows the Contains operation, which calls two main functions. The

searchDown function, described in Algorithm 4.2, handles traversal of the upper levels.

It begins with calls to the getHeight and firstChunkAtLevel functions to retrieve the

height and a pointer to the first chunk. Both functions are cooperative: they utilize

intra-warp operations to share data local to each thread. Each thread reads a separate

space in the head array to see whether the level corresponding to its tId is in use. The

team then uses ballot and shfl operations to discover the highest nonempty level

and retrieve its pointer.

In each iteration the team reads a chunk from memory then uses the cooperative

function getTidForNextStep described below and shown in Algorithm 4.3 to decide

what the next step should be. There are three possibilities for the next step: a lateral

18©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.1 Contains

1 bool contains(K k)
2 {
3 CHK∗ pCurr = searchDown(k)
4 return searchLateral(k, pCurr)
5 }

Algorithm 4.2 SearchDown

1 CHK∗ searchDown(K k) {
2 search:
3 KV prevKv = null
4 int height = getHeight()
5 CHK∗ pCurr = firstChunkAtLevel(height)
6
7 while(height>0) {
8 KV currKv = pCurr−>read(tId)
9 if (isZombie(currKv)) {

10 pCurr = getPtrFromTid(NEXT, currKv)
11 continue
12 }
13
14 int stepTid = getTidForNextStep(k, currKv)
15 if (stepTid == NEXT) { //lateral step
16 prevKv = currKv
17 pCurr = getPtrFromTid(NEXT, currKv)
18 }
19 else if (stepTid != NONE) { //down step
20 height −−
21 prevKv = null
22 pCurr = getPtrFromTid(stepTid, currKv)
23 }
24 else { //backtrack
25 if(prevKv == null) goto search
26 height −−
27 pCurr = backTrack(prevKv, k)
28 }
29 }
30 return pCurr
31 }
32
33 CHK∗ backTrack(KV& prevKv, K k){
34 int stepTid = getTidOfDownStep(k, prevKv)
35 CHK∗ pNextStep = getPtrFromTid(stepTid, prevKv)
36 prevKv = null
37 return pNextStep
38 }

5

step in the same level, a step down to the lower level, or a backtrack through the

previous chunk in the same level.

As demonstrated in the example above, down steps, shown in Algorithm 4.2, Lines

19-23, occur when k is not greater than the maximum key in the chunk. Likewise, lateral

steps (Lines 15-18) occur when k is greater than the maximum key in the chunk. In

both cases, the cooperative function getPtrFromTid is called to retrieve the pointer in

the key-value pair held by the thread with the tId chosen as the next step. A backtrack

occurs when a lateral step reaches a chunk in which all keys are greater than k (Lines

24-28, 33-38). In this case the team must step down using the maximum key in the

previous chunk. This sequence of operations is similar to the classic skiplist traversal

algorithm. To enable this step the team keeps track of the entries read from the previous

chunk in the traversal when taking lateral steps (Line 16).

The helper functions called by the searchDown algorithm are all cooperative. We

consider getTidForNextStep and getPtrFromTid as examples of such functions. These

functions showcase the usage of shfl and ballot, the main intra-warp operations

used in this work. Other cooperative functions described in the rest of this chapter

are implemented in a similar fashion. Note that shfl and ballot operations are

performed by the entire warp. Thus care must be taken to only evaluate values read by

the current team when using teams smaller than warp size.

In getTidForNextStep, shown in Algorithm 4.3, we see usage example for the ballot

operation. Each thread simultaneously calculates a boolean value dependent on its

tId, k, and the key it read from the chunk (Lines 3-4). The threads then call ballot

simultaneously (Line 6) to receive the results of this calculation for each thread. The

next thread passes a true value to ballot only if k is greater than the max field, and

the data threads pass a true value only if the key they read is less than or equal to

k. The lock thread always passes a false value. Any empty (∞) key value read by a

thread will result in a false value being evaluated. Thus, the next step required by the

algorithm can be decided by taking the highest tId that evaluated a true flag. This tId

is determined by subtracting leading zeros (clz) from the ballot return size, which is 32

bits. Precedence is effectively given to threads with higher tIds, a fact that is taken

into account during Inserts and Deletes to safeguard against traversals considering bad

chunk values. If all threads return false then a special none value will be returned,

19©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.1 Contains

1 bool contains(K k)
2 {
3 CHK∗ pCurr = searchDown(k)
4 return searchLateral(k, pCurr)
5 }

Algorithm 4.2 SearchDown

1 CHK∗ searchDown(K k) {
2 search:
3 KV prevKv = null
4 int height = getHeight()
5 CHK∗ pCurr = firstChunkAtLevel(height)
6
7 while(height>0) {
8 KV currKv = pCurr−>read(tId)
9 if (isZombie(currKv)) {

10 pCurr = getPtrFromTid(NEXT, currKv)
11 continue
12 }
13
14 int stepTid = getTidForNextStep(k, currKv)
15 if (stepTid == NEXT) { //lateral step
16 prevKv = currKv
17 pCurr = getPtrFromTid(NEXT, currKv)
18 }
19 else if (stepTid != NONE) { //down step
20 height −−
21 prevKv = null
22 pCurr = getPtrFromTid(stepTid, currKv)
23 }
24 else { //backtrack
25 if(prevKv == null) goto search
26 height −−
27 pCurr = backTrack(prevKv, k)
28 }
29 }
30 return pCurr
31 }
32
33 CHK∗ backTrack(KV& prevKv, K k){
34 int stepTid = getTidOfDownStep(k, prevKv)
35 CHK∗ pNextStep = getPtrFromTid(stepTid, prevKv)
36 prevKv = null
37 return pNextStep
38 }

5

20©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.3 Examples of Cooperative Helper Functions

1
2 void getTidForNextStep(K k, KV currKv){
3 bool elem = (tId < DSIZE) && (currKv.key <= k)
4 bool next = (tId == NEXT) && (currKv.key < k)
5
6 uint bal = ballot(next || elem)
7 if (bal == 0)
8 return NONE
9 return 32 − clz(bal) − 1

10 }
11
12 CHK∗ getPtrFromTid(int winningTid, KV kv){
13 return shfl(kv.v, winningTid) //take kv.v value from thread with given tId
14 }

Algorithm 4.4 SearchLateral

1 bool searchLateral(K k, CHK∗ pCurr){
2 do {
3 KV currKv = pCurr−>read(tId)
4 int foundTid = isTidWithEqualKey(k, currKv)
5
6 if (foundTid == NEXT || isZombie(currKv)) {
7 foundTid = NEXT
8 pCurr = getPtrFromTid(NEXT)
9 }

10
11 } while(foundTid == NEXT)
12
13 return foundTid != NONE
14 }

6

signifying that a backtrack must be executed.

getPtrFromTid, in Line 12 of Algorithm 4.3, shows a usage example for the shfl

operation. Each thread specifies the value field it is interested in receiving, and the

thread from which it wishes to receive the value. In this case, each thread takes the

value field of the KV pair held by the thread with tId == winningT id.

Searching along the bottom level is performed by the searchLateral function

presented in Algorithm 4.4. The traversal is very similar to the lateral step in search-

Down, the main difference being that data threads evaluate whether the key they read

is equal to k, rather than less-than-or-equal (Line 4). The next thread continues to

check whether a lateral step is necessary. The team calls the cooperative function

isTidWithEqualKey to determine the next step, and continues to take lateral steps

as long as the next tId is returned or the current chunk is a zombie. Traversal ends

when a value other than next is returned, indicating that the enclosing chunk has

been reached. The threads finally determine whether the value returned was none,

indicating that k was not found, or the tId of some data thread, indicating that k was

seen by that thread.

Lock-Freedom

There exists a rare state in which searchDown is delayed by a concurrent Delete operation

and must be restarted, making Contains lock-free. We use Figure 4.1a to illustrate this

edge case. A team searching for key 70 steps from chunk A to chunk C, then stalls. A

concurrent team deletes keys 59 and 68 from the structure. When the first team wakes,

it sees a chunk containing only keys greater than 70, and so decides to backtrack. As

the previous chunk in the new level is unknown, the team does not have enough data

to perform the backtrack. The previous chunk in the layer above might also not hold

21©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.3 Examples of Cooperative Helper Functions

1
2 void getTidForNextStep(K k, KV currKv){
3 bool elem = (tId < DSIZE) && (currKv.key <= k)
4 bool next = (tId == NEXT) && (currKv.key < k)
5
6 uint bal = ballot(next || elem)
7 if (bal == 0)
8 return NONE
9 return 32 − clz(bal) − 1

10 }
11
12 CHK∗ getPtrFromTid(int winningTid, KV kv){
13 return shfl(kv.v, winningTid) //take kv.v value from thread with given tId
14 }

Algorithm 4.4 SearchLateral

1 bool searchLateral(K k, CHK∗ pCurr){
2 do {
3 KV currKv = pCurr−>read(tId)
4 int foundTid = isTidWithEqualKey(k, currKv)
5
6 if (foundTid == NEXT || isZombie(currKv)) {
7 foundTid = NEXT
8 pCurr = getPtrFromTid(NEXT)
9 }

10
11 } while(foundTid == NEXT)
12
13 return foundTid != NONE
14 }

6

enough information to continue, and so the traversal is restarted.

In more general terms, a restart occurs when a down-step is taken using a pointer

associated with some key, kDown, which was concurrently deleted by another team. If

the removal of kDown causes the team to read a chunk in the lower level in which all

the keys are greater than k then the team will decide to backtrack, despite the fact that

the prevKV field was set to null after the down step (Algorithm 4.2, Line 21). These rare

restarts do not limit system progress (they are caused by progress in Delete operations),

and have a minor effect on measurements (they occur in less than 0.01% of Contains).

4.2.2 Insert

General Description

The Insert function receives <k, v>, the key-value pair to be inserted, and searches the

structure for k. The insertion is executed only if k is not already in the structure, and

performed bottom-up. If insertion causes a chunk overflow a split operation will occur

and a new chunk will be added to the structure, containing the top half of the values

from the chunk that was split.

The enclosing chunk in the bottom level is locked once it is reached and found

not to contain k. It remains locked until the Insert operation is completed, including

all insertions to higher levels. This ensures there are no concurrent Insert or Delete

operations on the same key. In all upper levels the enclosing chunk is locked before

inserting the key, then immediately unlocked to minimize contention. A key is raised to

level i + 1 only as a result of a split in level i. The decision whether to raise a key after

a split is randomly generated (on-device) according to pchunk.

Consider Figure 4.2 as a simple example of an Insert operation, inserting key 15.

22©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

-∞ 5 7 … 1010

-∞ 13 30 … 4747

-∞ 68 99 … ∞121

59 68 81 … 81…

13 17 21 … 21

…

…

𝑇0 𝑇1 𝑇2 𝑇𝑁𝑒𝑥𝑡𝑇3

Chunk
A

Chunk
B

Chunk
C

Chunk
D

Chunk
E

(a) Path taken during traversal to find the enclosing chunk of key 15. The path contains only
one chunk per level – the chunk through which the down-step was taken

-∞ 13 30 … 4747

-∞ 68 99 … ∞121

13 17 21 … 21

Chunk
A

Chunk
B

Chunk
E

1. Lock chunk E
2. Insert 15

3. If necessary,
lock chunk B,
insert key,
unlock chunk B

4. If necessary,
lock chunk A,
insert key,
unlock chunk A

5. Unlock chunk E

(b) General order of operations when inserting to
multiple levels. The chunk on the bottom level remains
locked for the duration. If it is necessary to insert
into higher level chunks, lock-insert-unlock to reduce
contention.

13 17 21 … 21Chunk
E

15

13 15 17 … 2121Chunk
E

(c) Actual insertion of key 15 into chunk E. Keys
greater than 15 are shifted to the right to preserve
sorting. The insertion is performed cooperatively
by the team.

Figure 4.2: Example of the Insert operation, inserting key 15

The team first traverses the structure to find the enclosing chunk of 15. Traversal is

similar to that of the Contains operation, except that in this case the traversal path is

recorded, as seen in Figure 4.2a. The path is used as a starting point for insertion into

each level - the enclosing chunk must either be in the path or reachable from it. The

team reaches Chunk E and locks it, then inserts key 15 while ensuring the sorted order

remains, as shown in Figure 4.2c. If Chunk E is full it will be split, and a key will be

inserted into the level above at a probability of pchunk (in this case into Chunk B). If

a split should then occur in Chunk B, the process will repeat itself in the level above

(Chunk A). The lock on Chunk E is only released when all inserts to all levels have

completed. If no split occurs, Chunk E will be unlocked immediately after the insertion

of key 15. Figure 4.2b illustrates the order of locks and inserts in the various levels of

the structure.

23©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Implementation Details

The Insert function, presented in Algorithm 4.5, begins by searching for k using

the searchSlow function (Algorithm 4.6), and returns false if k already exists in

the structure. searchSlow performs the same traversal as Contains, with two main

differences: firstly, searchSlow saves and returns the traversal path (Lines 4, 28-29,

36-37 in Algorithm 4.6). The path is made up of the chunks through which down-steps

were taken during the traversal, and the enclosing chunk in the bottom level. These

serve as a starting point for discovering the correct place for insertion in each level.

Secondly, when a zombie is discovered after a lateral step the team attempts to redirect

the previous chunk’s pointer to remove the zombie from lateral traversals (Lines 10-20,

42). The redirection is performed lazily by calling try-lock on the previous chunk. If

the lock fails the team continues without updating. If the zombie was the first chunk

in the level, the head array will be updated accordingly. Update of down-pointers is

discussed below.

One would expect a path to be an array of pointers to nodes in each level. Indeed,

in the classic skiplist algorithm a traversing thread saves the search path in a local array.

However, local arrays are costly in CUDA in terms of resources as they are often stored

in the ”spillover” area of global memory. Thus, the path is contained in an “artificial

array” consisting of a single variable (path) per thread. The thread with tId=i holds

the chunk in level i in the path. The “array” is accessed using shfl operations.

This limits the maximum height of the skiplist to the team size. However, this limit

was deemed sufficient, even for teams that are smaller than warp size. For example,

chunks of size 16 hold an average of 10 keys. Thus a structure with a maximum height

of 16 can be expected to support 1016 keys without compromising the skiplist structure.

Likewise, chunks of size 32, which hold an average of 20 keys, allow for around 2032

keys. Both are far beyond the global memory capabilities both in current GPUs and

those in the foreseeable future.

If k was not found, insertToLevel (Algorithm 4.5, Lines 28-46) is called to perform

the insertion. insertToLevel locks the enclosing chunk and inserts k, performing a

split if necessary, then returns the locked enclosing chunk and an indication whether

a key should be raised to the next level (Lines 8, 17, and 43). insertToLevel will

return false if k was concurrently added by another team before the lock was caught.

In Algorithm 4.5, Lines15-22, insertion into higher levels is handled by further calls to

insertToLevel. The value field inserted into level i + 1 is a pointer to the new chunk

in level i (Lines 12 and 19).

insertToLevel calculates the number of empty entries in the data array (Line

35). If there are empty entries, executeInsert is called to physically insert <k, v>,

otherwise splitInsert is called to split the current chunk and perform the insertion.

A level’s chunk counter is incremented every time a split occurs or a level is inserted

into for the first time.

24©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.5 Insert

1 bool insert(K k, V v){
2 <bool found, CHK∗ path> = searchSlow(k)
3 if (found)
4 return false
5
6 bool raiseKey = false
7 CHK∗ pBottom = getPathFromTid(0)
8 if (!insertToLevel(0, pBottom, k, v, raiseKey)) {
9 unlockChunk(pBottom)

10 return false
11 }
12 v = pBottom
13
14 int level = 1
15 while((raiseKey) && (level < MAX LEVEL)) {
16 CHK∗ pEnclose = getPathFromTid(level)
17 insertToLevel(level, pEnclose, k, v, raiseKey)
18
19 v = pEnclose
20 unlockChunk(pEnclose)
21 level++
22 }
23
24 unlockChunk(pBottom)
25 return true
26 }
27
28 bool insertToLevel(int level, CHK∗ pEnc,
29 K k, V v, bool& raiseKey){
30 pEnc = findAndLockEnclosing(pEnc, k)
31 KV encKv = pEnc−>read(tId)
32 if (chunkContains(encKv, k)) return false
33
34 raiseKey = false
35 if (numKeysInChunk(encKv) < DSIZE) {
36 executeInsert(pEnc, encKv, k, v)
37 if ((level > 0) && (isLevelEmpty(level)))
38 incrementNumChunksAtLevel(level)
39 }
40 else {
41 <pEnc, k> = splitInsert(pEnc, encKv, k, v, level)
42 incrementNumChunksAtLevel(level)
43 raiseKey = isKeyRaised()
44 }
45 return true
46 }

7

25©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.6 SearchSlow

1 <bool, CHK∗> searchSlow(K k){
2 search:
3 KV prevKv = null
4 CHK∗ path = headPtrAtHeight(tId)
5 int height = getHeight()
6 CHK∗ pCurr = firstChunkAtLevel(height)
7
8 while(height>0) {
9 KV currKv = pCurr−>read(tId)

10 if (isZombie(currKv)) {
11 CHK∗ firstNonZombie = findFirsNonZombie(currKv)
12
13 if (prevKv != null)
14 redirectToRemoveZombie(prevKv, firstNonZombie, currKv)
15 else if (isFirstInLevel(pCurr, height)){
16 updateHeadArray(height, firstNonZombie, pCurr)
17
18 pCurr = firstNonZombie
19 currKv = pCurr−>read(tId)
20 }
21
22 int stepTid = getTidForNextStep(k, currKv)
23 if (stepTid == NEXT) { //lateral step
24 prevKv = currKv
25 pCurr = getPtrFromTid(NEXT, currKv)
26 }
27 else if (stepTid != NONE) { //down step
28 if (tId == height)
29 path = pCurr
30 height −−
31 prevKv = null
32 pCurr = getPtrFromTid(stepTid, currKv)
33 }
34 else { //backtrack
35 if(prevKv == null) goto search
36 if (tId == height)
37 path = &prevKv
38 height −−
39 pCurr = backTrack(prevKv, k)
40 }
41 }
42 return <findLateralWithZombieRedirect(k,pCurr), path>
43 }

8

26©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.7 ExecuteInsert

1 void executeInsert(CHK∗ pEnc, KV encKv, K k, V v){
2 KV insertKv = getChunkValFromLeftNeighbor(encKv)
3 uint insertIdx = getInsertionIdx(insertKv, k)
4 if (tId == insertIdx)
5 insertKv = pair(k,v)
6
7 for(int i = DSIZE−1; i >= insertIdx; i −−){
8 if ((insertKv.key != EMPTY) && (tId == i))
9 pEnc−>AtomicWrite(tId, insertKv)

10 }
11 }

9

executeInsert (Algorithm 4.7) inserts <k, v> while ensuring the chunk remains

sorted. In Line 2 each thread takes the key-value pair from the previous thread in the

team using a cooperative function. Then, in Line 3 the insertion index for <k, v> in

the sorted data array is determined in another cooperative function. In Lines 7-10 every

thread with a tId higher than the insertion index writes its neighbor’s value into its

own place in the data array, thus shifting all entries greater than the new key to the

right as shown in Figure 4.3. In the same lines, the thread with the tId equal to the

insertion index inserts <k, v> into the data array.

The insertion is performed serially, from the last data index down to the insertion

index. In this way we ensure that we do not temporarily cause a key to be overwritten,

which may cause a concurrent search to miss an existing key. All search functions

polling a chunk for containment of a certain key give precedence to higher threads, and

so a key temporarily appearing twice in a chunk does not cause search errors. The max

field is never changed by such an insertion, from the definition of an enclosing chunk.

Locking a Chunk

findAndLockEnclosing (Algorithm 4.8) is a spin-lock that performs a lateral search

in order to ensure that the chunk being locked encloses k. If the current chunk does

not enclose k (or is a zombie) the team will read the next chunk, as seen in Lines

5-8. Otherwise the function checks whether the chunk is unlocked before the lock

thread attempts to lock it using CAS (Lines 10-13). The team checks whether the lock

succeeded, and if so rereads the locked chunk. If the chunk no longer encloses k the

lock will be released and the team will continue to the next chunk. This sequence is

repeated until the enclosing chunk is successfully locked.

27©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

13 17 21 … 21

13 15 17 … 2121

𝑇0 𝑇1 𝑇2 𝑇𝑁𝐸𝑋𝑇𝑇3 …
Read value from
previous thread:

𝑇0 𝑇1 𝑇2 𝑇𝑁𝐸𝑋𝑇𝑇3 …If read 𝑘 > 15
write 𝑘 into own
tId. 𝑇1 writes 15

𝑘=15 𝑘=17 𝑘=21

Order of operations

Figure 4.3: Inserting key 15 into a chunk without a split. Each thread reads the entry to its
left, and if it is greater than 15 copies it into its own entry. Order of copying is from right to left.

Split

If the chunk is already full, the team calls splitInsert (Algorithm 4.9) to perform a

split as shown in Figure 4.4. The preSplit function (Algorithm 4.9 Lines 16-21) locks

the next chunk, removing zombies if they are encountered (Line 17), then allocates a

new chunk which is initialized to point to the next chunk.

splitCopy (Algorithm 4.9 Lines 23-34) is then called to copy the top DSIZE/2

values to the new chunk (Lines 27-28). Once the copy is completed the new chunk can

be connected to the structure by redirecting the next pointer of the original chunk and

setting its max value to the highest remaining key. Both of these changes are performed

with a single atomic write by the next thread (Line30). The team can then atomically

write an empty value to each of the entries in the old chunk whose values were copied

to the new (Line 32). Again, we rely on the fact that traversals give precedence to

higher tIds to argue that a concurrent traversal will not be adversely affected. The

updated max field ensures the next thread’s flag in the result of a ballot operation

is considered before those of data threads whose entries have not yet been emptied.

The split continues at Line 4 of Algorithm4.9, where <k, v> is inserted into the

either the old or the new chunk, depending on k’s place the sorted array of values. If

<k, v> is inserted into the new chunk during a split in the bottom level the original

chunk will be unlocked and the new chunk will remain locked until the end of the Insert

operation, thus ensuring that the enclosing chunk in the bottom level remains locked.

28©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.8 FindAndLockEnclosing

1 CHK∗ findAndLockEnclosing(KT key, CHK∗ ch){
2 start:
3 KV kv = ch−>read(tId)
4
5 if (chunkNotEnclosing(kv, key)) {
6 ch = getPtrFromTid(NEXT)
7 goto start
8 }
9

10 if (isChunkLocked(kv))
11 goto start
12
13 if (!LockChunkWithCAS(ch, kv))
14 goto start
15
16 kv = ch−>read(tId)
17 if (chunkNotEnclosing(kv, key)) {
18 unlockChunk(kv)
19 ch = getPtrFromTid(NEXT)
20 goto start
21 }
22
23 return ch
24 }

10

29©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

5 10 20 25 10

50 89 …

50 89 …

Chunk
A

Chunk
B

Chunk
C

Chunk
A

Chunk
B

Chunk
C

Chunk
D

10 20 40 … 40

5 10 20 25 25

Insert 22

10 20 40 … 40

…20 22 25 25

Figure 4.4: Insertion of key 22 causes a split. Keys 20 and 25 are moved from chunk B to D
(the new chunk). B’s next pointer and key 20’s down-pointer in A are redirected to D.

30©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.9 SplitInsert

1 <CHK∗, K> splitInsert(CHK∗ pSplit, K k, V v, int level){
2 CHK∗ pNew = preSplit(pSplit)
3 Kv splitKv = splitCopy(pSplit, pNew)
4 CHK∗ pInsert = insertNewData(k, v, pNew, pSplit, splitKv)
5
6 if (pSplit == pInsert)
7 unlockChunk(pNew)
8 else
9 unlockChunk(pSplit)

10
11 k = keyForNextLevel(k, pInsert, pNew, pSplit, level)
12 updateDownPtrs(level, splitKv, pNew)
13 return <pInsert, k>
14 }
15
16 CHK∗ preSplit(CHK∗ pSplit){
17 CHK∗ pNext = lockNextChunk(pSplit)
18 CHK∗ pNew = alloc()
19 updateNextField(pNew, pNext)
20 return pNew
21 }
22
23 KV splitCopy(Chk∗ pSplit, CHK∗ pNew){
24 KV splitKv = pSplit−>read(tId)
25 K thresh = getKeyFromTid(splitKv.key, DSIZE/2−1)
26
27 if (splitKv.key > thresh)
28 copyToNewChunk(pNew, splitKv)
29 if (tId == NEXT)
30 updateNextField(pSplit, pNew)
31
32 setMovedValsEmpty(splitKv)
33 return splitKv
34 }

11

31©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.10 UpdateDownPtrs

1 void updateDownPtrs(int level, KT mKey, KT startTid,
2 int numMoved, CHK∗ lowerMovedCh){
3 KT k = shfl(mKey, startTid)
4 CHK∗ upperCh = searchDownToLevel(level+1, k)
5 int count = 0
6 while(count < numMoved) {
7 if (findLateral(k, upperCh)){
8 upperCh = findAndLockEnclosing(k, upperCh)
9

10 if (findLateral(k, lowerMovedCh)) //update chunk in upper level
11 updateDownPtr(k, upperCh, lowerMovedCh)
12 unlockChunk(upperCh)
13 }
14 count++
15 key = shfl(mKey + count, startTid)
16 }
17 return
18 }

Algorithm 4.11 Delete

1 bool delete(K k){
2 CHK∗ path
3 bool found = searchSlow(k, path)
4 if (!found)
5 return false
6
7 CHK∗ pBottom = getPathFromTid(0)
8 pBottom = findAndLockEnclosing(pBottom, k)
9 if (!chunkContains(pBottom, k))

10 return false
11
12 int height = rereadHeightAndUpdatePath(path)
13 for (int i = height; i > 0; i−−) {
14 CHK∗ pEnclose = getPathFromTid(i)
15 if (!searchLateral(k, pEnclose))
16 continue
17
18 pEnclose = findAndLockEnclosing(pEnclose, k)
19 removeFromChunk(k, pEnclose, i)
20 }
21
22 removeFromChunk(k, pBottom, 0)
23 return true
24 }

12

The split function determines which key will be raised should the team decide to

insert into the next level. As raising a key indicates that a new chunk was created it

would make sense to raise the minimum key in the new chunk (minK). However, if

k > minK then we cannot raise minK without performing a new traversal to discover

the path to it. Thus, in Line 11, the key raised from level 0 is chosen to be the maximum

between k and minK. In upper levels the key raised must be the key that caused the

split, as the lock on the bottom level protects only keys in the locked chunk.

Updating Down Pointers

Finally, the team updates the down-pointers in level i + 1 to reflect the changes in level

i (Line 12), by searching level i + 1 for the range of moved keys, then locking affected

chunks and atomically updating relevant down-pointers. In The example in Figure 4.4,

key 20 was moved in the split of Chunk B, causing its down pointer in Chunk A to be

updated to point to Chunk D, which is now the chunk enclosing key 20. In the time

between key 20 being copied to Chunk D and the pointer from Chunk A being updated

it continues to point to Chunk B. This is legal in terms of traversal as Chunk D can be

reached from Chunk B using lateral traversal.

updateDownPtrs (Aglorithm 4.10) is called after any change to the structure that

causes keys to be moved between chunks in level i. The team attempts to fix pointers

from level i + 1 associated with keys that were movedin level i, either as a result of a

split or a merge. The team searches for the minimum key moved in level i + 1 (Line 4)

using a function identical to searchDown except that it searches until level i and not

32©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

level 0. Each thread in the team holds one of the moved keys in its mKey field. For

every two threads Tm, Tn s.t. m < n the key held by Tm is smaller than the key held by

Tn. The team takes each such key in turn, from the lowest to the highest (Lines 3 and

15), and searches level i + 1 for that key (Line 7). If the key is found the team locks the

chunk in level i + 1 (Line 8), searches for the enclosing chunk in level i(Line 10), and

updates the pointer from i + 1 (Line 11) before unlocking the chunk in level i + 1.

4.2.3 Delete

General Description

The Delete operation is similar in spirit to the Insert. It begins by searching for the

key to be deleted, k, and creating the traversal path in the same way as Insert does. If

k is found to exist in the structure, the bottom level chunk that encloses k is locked.

After determining that k is still in the structure, the team searches all levels that are

currently in use from the top down, removing k from every level in which it is found.

The chunk in the bottom level remains locked until k has been physically removed from

all levels, concluding the Delete operation. As in the case of Insert, this ensures that no

other team can concurrently perform updating operations on k.

If the chunk from which a key is deleted crosses some minimum threshhold, a merge

occurs. The values from the underfull chunk are moved to the next chunk to the right,

causing a split of that chunk if necessary. The old chunk is marked as a zombie, and

the team redirects pointers from the level above to reflect the changes. Copying keys

during a merge is performed in such a way as to ensure that the chunk remains sorted,

and that concurrent traversals will not be adversely effected.

Figure 4.5 shows an example of a Delete operation of key 13 which ends in a merge.

As in Insert, the team first traverses the structure to find the path to the enclosing

chunk of 13 in the bottom level and checks containment. The team locks chunk E in the

bottom level, and ensures key 13 still exists there. The team then searches for key 13 in

each level starting from the chunk saved as a part of the path, and performs a sequence

of lock-delete-unlock operations as illustrated in Figure 4.5a. Chunk A does not contain

key 13, and so is skipped. In the next iteration Chunk B is found to contain key 13 and

is locked. The key is then deleted and Chunk B is unlocked. Finally, key 13 is deleted

from Chunk E and the bottom level lock is released. The physical removal of the key is

performed by shifting larger keys one entry to the left, as shown in Figure 4.5b;

In Figure 4.5c we present the case in which removal of key 13 causes Chunk E to

be merged. The next chunk, F, is locked, and keys 17 and 21 are copied into Chunk F.

Keys 24 and 26 from Chunk F are moved to the end of the chunk in order to make room.

This set of copy operations is performed from right to left in order not to temporarily

overwrite any existing keys, and in order not to adversely effect concurrent traversals.

Finally, Chunk F is unlocked, and the lock field of Chunk E is marked with a zombie

value. The team will then traverse the structure to redirect pointers from the level above,

33©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

-∞ 13 30 … 4747

-∞ 68 99 … ∞121

13 17 21 … 21

Chunk
A

Chunk
B

Chunk
E

1. Lock chunk E

3. If 13 exists in
chunk B: lock B,
delete 13,
unlock B

2. If 13 exists in
chunk A: lock
A, delete 13,
unlock A

5. Delete 13
6. Unlock chunk E

(a) General order of operations when deleting from
multiple levels. The chunk on the bottom level remains
locked for the duration. If the key exists in upper levels
into higher level chunks, lock-delete-unlock to reduce
contention. Delete from bottom chunk last.

13 17 21 … 21Chunk
E

17 21 … 21Chunk
E

EMPTY

(b) Actual removal of key 13 from chunk E. Keys
greater than 13 are shifted to the right to preserve
sorting. The insertion is performed cooperatively
by the team.

Chunk E Chunk F

13 17 21 21

Delete 13

24 26 26

13 17 21 21 24 26 26

13 17 21 21 17 21 24 26 26

Order of Operations

Chunk E Chunk F

Chunk FChunk E

(c) Removal of key 13 caused a merge in chunk E. All values but 13 are moved from E to F while
ensuring F remains sorted. Finally, E is marked as a zombie

Figure 4.5: Example of the Delete operation. Key 13 is removed from the structure,
causing a merge to occur.

thus removing down-pointers to the zombie. The pointer from the chunk preceding E in

the structure will be lazily updated by some other operation. Note that key 13 is not

actually physically removed from Chunk E. As E is now a zombie, it will be ignored by

34©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.10 UpdateDownPtrs

1 void updateDownPtrs(int level, KT mKey, KT startTid, int numMoved, CHK∗ lowerMovedCh){
2 KT k = shfl(mKey, startTid)
3 CHK∗ upperCh = searchDownToLevel(level+1, k)
4 int count = 0
5 while(count < numMoved) {
6 if (findLateral(k, upperCh)){
7 upperCh = findAndLockEnclosing(k, upperCh)
8 if (findLateral(k, lowerMovedCh))
9 updateDownPtr(k, upperCh, lowerMovedCh) //update chunk in upper level

10 unlockChunk(upperCh)
11 }
12 count++
13 key = shfl(mKey + count, startTid)
14 }
15 return
16 }

Algorithm 4.11 Delete

1 bool delete(K k){
2 CHK∗ path
3 bool found = searchSlow(k, path)
4 if (!found)
5 return false
6
7 CHK∗ pBottom = getPathFromTid(0)
8 pBottom = findAndLockEnclosing(pBottom, k)
9 if (!chunkContains(pBottom, k))

10 return false
11
12 int height = rereadHeightAndUpdatePath(path)
13 for (int i = height; i > 0; i−−) {
14 CHK∗ pEnclose = getPathFromTid(i)
15 if (!searchLateral(k, pEnclose))
16 continue
17
18 pEnclose = findAndLockEnclosing(pEnclose, k)
19 removeFromChunk(k, pEnclose, i)
20 }
21
22 removeFromChunk(k, pBottom, 0)
23 return true
24 }

12

all future operations, effectively removing key 13 from the structure.

Implementation Details

The Delete operation, shown in Algorithm 4.11, receives a key to be deleted (k) and

begins by searching the structure. As in the Insert function, SearchSlow is called in

Line 2 to find k and the traversal path to k. If k is not found the algorithm returns

false. Otherwise the enclosing chunk of k in the bottom level is locked and containment

of k is confirmed. The path is updated according to the current structure height, so as

not to miss new levels that may have been added since the path was found.

In Lines 13-20 of Algorithm 4.11 the team iterates over all levels in the structure

searching for and deleting k where found. In each level i, searchLateral is called to

determine whether k exists in the level, and the enclosing chunk is locked only if k

was found (Lines 15-18). If k was found not to exist in level i the team will continue

to level i− 1. Checking containment before the lock significantly reduces contention

on the higher and less populated levels of the skiplist when there are a large number

of concurrent calls to Delete. There is no need to recheck the containment of k after

locking an upper level, as the lock on the bottom level ensures that no other team is

concurrently updating k.

35©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

If k exists in level i removeFromChunk is called to remove it, performing a merge if

necessary and unlocking any non-zombie chunks effected by the removal. Only in Line

22, after k has been removed from all upper levels, does the team delete it from the

bottom level, and thus from the structure itself. The bottom chunk is only unlocked

when the Delete operation concludes.

Algorithm 4.12 shows the removeFromChunk function. Removing k from a chunk in

any level i is divided into three cases:

• k can be removed without performing a merge (Lines4-7)

• A merge is required (Lines 15-27)

• k is situated in the final chunk in level i (Lines 10-13)

A merge is deemed necessary if removing k will cause the number of nonempty entries

in the data array to cross a predetermined minimum threshold (DSIZE/3 in this work).

Delete With No Merge If no merge is required the team calls executeRemoveNoMerge.

executeRemoveNoMerge removes k in a manner similar to executeInsert, though in

the opposite direction, as illustrated in Figure 4.6. Each thread reads the key-value

pair corresponding to its own tId from the chunk. data threads with tIds equal to or

higher than k’s index atomically write their value into the entry to the left of their own

index, overwriting the removed key. As in the case of insertion the order of operations

matters: the writes must occur from k’s index up to the highest data tId so as not

to cause keys to temporarily disappear from the chunk, which could harm concurrent

traversals.

There are two cases that must be handled when deleting k that have no equivalent

in executeInsert: Firstly, if k was the last element in the chunk the next thread must

update the max field. This must occur before the deletion of the key so that concurrent

searches do not see a max value that does not exist in the chunk. Secondly, if the chunk

was full before the removal of k the next thread writes the empty key into the last

entry in the data array, as there is no data thread to the right of this entry to empty

it.

Delete With Merge If a merge operation is deemed necessary the team locks the

next non-zombie chunk in the level, redirecting the next pointer to unlink zombies if

they are found (Line 9). If the next chunk is too full to receive the values from the

current chunk it will be split by moving the top DSIZE/2 entries into a new chunk

(Lines 16-19). The split operation is identical to the one performed during insertions,

except that no key is inserted.

executeRemoveMerge is called to perform the merge operation by copying all values

but k into the next chunk as illustrated in Figurefig:merge. The order of operations

when copying keys to the next chunk is such that higher indexes are updated first, so

36©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Algorithm 4.12 RemoveFromChunk

1 void removeFromChunk(K k, CHK∗ pEnc, int level){
2 KV encKv = pEnc−>read(tId)
3 int count = numNonEmpty(encKv)
4 if (count > DSIZE/3) { // no merge required
5 executeRemoveNoMerge(encKv, pEnc, k)
6 unlockChunk(pEnc)
7 }
8 else { //merge is needed.
9 CHK∗ pNext = lockNextChunk(pEnc)

10 if(pNext == NULL) { // don’t merge last chunk in level
11 removeFromLastChunk(k, pEnc, encKv)
12 return
13 }
14
15 KV nextKv = pNext−>read(tId)
16 if (numNonEmpty(nextKv) + count − 1 > DSIZE) {
17 splitRemove(pNext, level)
18 incrementNumChunksAtLevel(level)
19 }
20
21 executeRemoveMerge(encKv, pEnc, nextKv, pNext, k)
22 markAsZombie(pEnc)
23
24 decrementChunksInLevel(level)
25 unlockChunk(pNext)
26 unlockChunk(pEnc)
27 updateDownPtrs(level, encKv, pNext)
28 }
29 return
30 }

13

37©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

13 17 21 … 21

17 21 … 21

𝑇0 𝑇1 𝑇2 𝑇𝑁𝐸𝑋𝑇𝑇3 …
Read value from
entry in chunk:

𝑇0 𝑇1 𝑇2 𝑇𝑁𝐸𝑋𝑇𝑇3 …If read 𝑘 > 13
write 𝑘 into entry
to the left.

𝑘=17 𝑘=21 𝑘=EMPTY

Order of operations

Figure 4.6: Deleting key 13 from a chunk. All keys greater than 13 are moved one entry to
the left.

38©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

that traversing teams (which give precedence to higher tIds) are not affected. Copying

the keys to the next chunk is performed by calling a series of shfl operations after

which each data thread holds the value that will appear in the next chunk after the

merge.

The general idea is that the keys from the merged chunk migrate to the lower indexes

of the next chunk, while the original entries in the next chunk are moved to the right to

make space. The next chunk is updated by atomically writing each of the new values

serially in descending order of tId. This may temporarily cause the next chunk to be

unsorted, or even to contain a mixture of empty and non-empty entries.

Consider the merge in Figure 4.5c: keys 17 and 21 are copied from Chunk E to

Chunk F. This causes the original keys from Chunk F, keys 24 and 26, to be moved

to make room for the new keys. The order of operations is from right to left, so key

26 is the first to be copied, and is placed in the last empty space in F. Once this move

has been completed, the second-to-last entry in F remains empty, and both the second

and last entries in F contain key 26. The traversal handles this as before by giving

precedence to true values computed by higher tIds. A concurrent team searching for

key 26 will see it in its new position at the end of the chunk, without considering the

empty entry at all. A team searching for keys smaller than 26 will compute false values

for the last three entries in the chunk (all of which are greater than the searched-for

key), thus ignoring the unsorted portion of the chunk. A team searching for keys smaller

than or equal to 21 are guaranteed to reach chunk E before chunk F as long as chunk E

has not yet been made a zombie, even if keys 17 and 21 have already been copied into

F. In fact, this remains true until the pointers to chunk E have been redirected.

Once the merge operation is completed, the team calls updateDownPtrs to redirect

down-pointers to the zombie. The number of chunks in the level is incremented and

decremented accordingly.

Deleting From Last Chunk in Level Care must be taken if k is in the last chunk

in a level. A merge operation pushes values into the next chunk, which is impossible

in this case. Thus, entries are simply removed, even if this causes the chunk to be

completely emptied. There can only be one such chunk in any level, and subsequent

inserts and merge operations can add new values to it as necessary. The last chunk

will never be marked a zombie, ensuring that all lateral traversals eventually reach a

non-zombie chunk. If the last chunk in a level contains only the −∞ key after the

deletion then the chunk counter for that level is decremented to show that the level is

empty.

The reader should note that all operations in GFSL were designed to be performed

by threads in a team in tandem, with only a few divergent tId-specific operations

scattered throughout. The memory layout is such that every global memory access by a

team is to memory-contingent locations. Thus we maximize memory coalescence and

reduce divergence.

39©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

4.3 Some Words on Correctness

In this section we briefly describe some of the major invariants used by our algorithm.

Our main concern is that a traversal will always reach the enclosing chunk of the key it

is searching for (k) by taking only down and right (lateral) steps. Thus we must ensure

when taking a step that we never read a chunk to the right of k’s enclosing chunk. The

following properties, along with the fact mentioned in Section 4.2 that traversals give

precedence to higher tIds during ballot operations, aid in ensuring this occurs.

The Max Field Always Decreases One important promise is that the max field

of a chunk can only decrease from the moment it is allocated. The max field is ∞ upon

allocation, and can be changed in only three places in the algorithm:

• During allocation: Chunks are allocated only during split operations, during which

the new chunk receives the max field of the chunk being split. This value is

obviously smaller or equal to ∞.

• When the chunk is split: The chunk being split (chs) has the top half of its

KV pairs moved to the newly allocated chunk. The max field of chs is updated

accordingly to the largest remaining key, which must be smaller than the max

fields former value.

• When the maximum key in a chunk is deleted: The max field will be updated to

hold the next-highest value in the chunk.

Insertion can never cause a change in the max field, as a key is only inserted into an

enclosing chunk, which by definition holds a max field higher than the inserted key.

This property is important in ensuring that teams taking lateral steps do not miss the

enclosing chunk of a key, as described next.

Lateral Ordering Between Chunks Once a key is placed in the data array of some

chunk ch a larger key will never be inserted into any chunk to the left of ch in the same

level. This continues to be true even if the key is later deleted from ch. This stems from

the previous statement: a key is only inserted into an enclosing chunk, and the max

field of a chunk only decreases. Thus if a key, k has been placed in ch the enclosing

chunk of any key larger than k can only be ch itself or a chunk to its right.

Furthermore, this means that a partial order exists between non-zombie chunks

in any level: a non-zombie chunk, chnz’s next pointer will always point to a chunk

containing only keys greater than or equal to the minimum key in chnz. If chnz is not

currently being split or merged then the minimum key in the next chunk must be greater

than the maximum in chnz. Only during split and merge operations is it possible that

chnz shares some keys with the next chunk.

This remains true even if a chunk becomes a zombie. We note that a chunk becomes

a zombie only as a result of a merge operation, and that the contents of a chunk are

40©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

never changed after it becomes a zombie. Thus the zombie, chz, continues to point to

the chunk that received its values during the merge that marked it as a zombie. The

chunk pointed to by the zombie must have had a higher max value at the time chz

became a zombie. Additionally, any chunks preceding chz in the level at that time must

have had a lower max value than chz. As the max value of a chunk can only decrease,

any key greater or equal to the keys chz contained when it became a zombie can only

be inserted into chunks reachable through the next pointer of chz. Thus the enclosing

chunks of all keys that once resided in chz, and those of all greater keys, are reachable

by taking lateral steps from chz.

Order Between Down Pointers Keys are inserted into the structure bottom-up.

When kin is inserted into a chunk in level i + 1, its entry is set to point to the chunk

in level i into which kin was inserted. kin’s enclosing chunk in level i is either that

chunk or a chunk reachable from it through lateral steps. A key can only be moved

to a different chunk as a result of a split or a merge operation. In both cases the key

will either remain in its original chunk or be moved to a chunk laterally reachable from

the original. As the bottom level chunk containing kin is locked kin cannot have been

concurrently deleted by another team at the point when kin is inserted into level i + 1.

Thus, after insertion kin and all keys greater than kin are reachable in level i from the

chunk reached by taking a down-step through a pointer ssociated with kin in level i + 1.

The Delete operation is performed from the top down with a lock on the containing

bottom level chunk. If a key kd is deleted from level i it follows that it does not exist in

level i + 1, either because it was never raised to that level or because the deleting team

already removed it. The lock on the bottom level enclosing chunk of kd ensures that no

concurrent Insert could have added kd to levels i + 1 or higher until the deleting team

has concluded its execution. A Delete operation does not change the value of entries

associated with keys other than kd. These points, along with the fact that a merge

operation can only move keys to a chunk reachable from their original containing chunk,

mean that Delete operation cannot cause down pointers to point to chunks from which

the associated keys cannot be reached laterally.

A call to updateDownPointers searches for the enclosing chunk of a moved key

(km), and sets the pointer in level i + 1 to point to the chunk it discovered. This chunk

must either still enclose km, or km’s enclosing chunk must still be reachable from it (if

a split/merge occurred). updateDownPointers takes a lock on the chunk in level i + 1

before updating pointers. This and the top-down order of termDelete operations mean

that any key in level i + 1 whose pointer is updated by updateDownPointers must also

exist in level i at that time. The key’s enclosing chunk must, if so, be reachable by

taking lateral steps from the chunk pointed to from level i + 1.

All these taken together help to ensure that a down-pointer associated with k in

level i + 1 always points to a chunk that either encloses k or from which k’s enclosing

chunk in level i is reachable by taking lateral steps. Down-steps, if so, can safely be

41©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

taken as part of a traversal.

Note that this remains true even in the edge case mentioned in Subsection 4.2.1.

In the edge case, a team took a down step associated with a key kds in level i + 1,

then found that the chunk (chi) reached in level i contained only keys greater than kds

(and the key searched for in the traversal, which must be greater than or equal to kds).

This was caused by a concurrent Delete operation which removed kds from both levels

between the time the team decided to take the down step in level i + 1 and the time

it read chi. At the time kds was read in level i + 1 it must still have existed in level i,

and have been reachable from chi. kds’s enclosing chunk must still be reachable from

chi. As chi contains only keys greater than kds, chi itself must be kds’s enclosing chunk.

Thus, the traversing team succeeded in reaching kds’s enclosing chunk in level i, albeit

without enough data to continue traversing, causing it to restart.

42©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5

Measurements/Results

We evaluated GFSL compared to the skiplist algorithm ported to the GPU by Misra

and Chaudhuri [MC12b]. The code for their implementation is available online [MC12a].

In the remainder of this section we refer to their implementation as “M&C”.

In this work we observed four aspects that impact performance. The first is the

structure size, which effects the traversal length and the amount of nodes that the GPU

can hold in cache. The second is the percentage of updates and searches performed, as

update operations are slower than searches. The third is GPU-specific configurations,

such as the number of threads launched, their division into blocks, the number of

operations performed by each team/thread, and, for GFSL, team/chunk size. The last

is the value of pkey for M&C and pchunk for GFSL. We choose to focus on the first two

as they are relatively universal to all GPUs, while we optimized the last two to fit our

current setup. The values of pkey and pchunk are also universal, however, a single best

option presented itself in all configurations checked, and so we show results only for

those values.

We present benchmarks for GFSL using teams of 32 threads. Chunks are of size

256B with 32 8B key-value pairs, a size which can be read in two transactions. We set

a limit on the number of threads that can run in parallel, thus ensuring each thread

receives more local resources, e.g. registers. Specifically, we launch 16 warps per block

(512 threads) out of a possible 32. Under this limit GFSL launches 2 blocks per SM

with 64 registers per thread and with an occupancy of around 48.8% out of a theoretical

50%. In this way we do not utilize the maximum possible parallelism supported by the

hardware, but reach better results as there is less local memory “spillover”.

M&C is configured to run 16 warps per block, with a single operation executed by

each thread. This correlates to the best configuration described in the original paper.

Under this configuration M&C supports two active blocks per SM, with an occupancy

of 41.6% out of a theoretical 50%, and 42 registers allocated per threads. We evaluated

M&C under several different configurations, varying the value of pkey, the number of

warps, and the number of operations per thread. For the Contains-only benchmark a

few configurations of M&C showed up to 24% better performance in the 10K range

43©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

than those shown in this work. However, Contains-only workloads under M&C in small

key ranges showed highly unstable performance and very large confidence intervals (up

to 50%) . Thus, we chose the configuration that yielded the best results on average.

5.1 Experimental Setup

Both GFSL and M&C were evaluated on a GM204 GeForce GTX 970 (Maxwell architec-

ture) GPU. We use the latest CUDA driver version 7.5 supporting compute capabilities

5.2. GTX 970 has 13 active streaming multiprocessors and a total of 1,664 cores. The

device memory capacity is 4 GB GDDR5. The L2 Cache size is 1.75 MB. The core and

memory clocks are 1050MHz and 1750MHz respectively. The operating system is 64-bit

Ubuntu Server 14.04 with Linux kernel version 3.13.0-88-generic.

We tested both skiplist implementations with several different operation mixtures.

Mixtures are represented as tuples [i, d, c] signifying a set of random operations with a

probability of i% Inserts, d% Deletes, and c% Contains. The mixtures presented are

[1,1,98], [5,5,90], [10,10,80] and [20,20,60], each evaluated by running 10M operations

in varying key ranges between 10K and 100M. We also present benchmarks for each

operation type (Insert, Delete, Contains) alone in the same key ranges. As above, the

Contains benchmark runs 10M operations. The number of operations in the Insert

and Delete benchmarks is equal to the key range, i.e. for a range of 100K keys, 100K

operations were performed. This is in order not to oversaturate small structures.

The input to the CUDA test kernels for both implementations is an array of

operations. Each entry in the array in GFSL consists of the operation type and a key.

The array in M&C consists of an operation indication, key, and a value indicating level

to which each key should be inserted (if the operation is not an insert this field is empty).

In both cases Insert operations use null as the value to be inserted. The operation type

and keys for each entry are generated using uniform random functions, according to the

configurations of the specific test. The initial structure on which the mixed-operation

tests are performed contains a random set of keys, exactly half the size of the key range.

Similarly, the initial structure for the Contains-only and Delete-only tests contains all

of the keys in each range, inserted in a random order. The initial structure for the

Inserts-only test is empty. Thus there is a direct correlation in our tests between the

size of the range and the structures overall size. We run each experiment ten times and

present the mean values along with 95% confidence intervals.

5.2 Static Configurations

In this section we dive down into the background behind some of our choices for static

configurations, e.g the number of warps launched per block, the chunk size in GFSL,

and the values of pkey and pchunk.

44©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Warps Per Block

We tested GFSL with a varying number of warps launched per block. Table 5.1 shows

the results of running a workload with 80% Contains operations on a 1M key range as

an example of the effects of these different block sizes on throughput and SM utilization.

The throughput presented in the table showcases the tradeoff between the amount of

concurrency (number of threads launched) and the available resources. We see that the

best throughput was achieved for 16 warps launched per block, despite not having the

best occupancy or the largest amount of registers per thread.

The Occupancy of an SM is the ratio of active warps in an SM to the maximum

number of active warps supported by the SM. Theoretical occupancy is the upper limit

for the number of active warps an SM can support given the demands of the kernel

and the launch configurations. An SM may not be able to achieve the theoretical

occupancy if there are many warps that are stalled at the same time (i.e. because of

memory transactions that have not completed), leaving no warps eligible for execution

by the scheduler. High occupancy may not be an indication of high throughput if other

bottlenecks exist, most commonly memory bandwidth.

We see that the achieved occupancy when launching 32 warps per block is very

high at around 95%. However, the number of registers allocated per thread is much

lower than required. This is evident from two lines in the table: Firstly, we see that

when more resources per thread are available, e.g. when fewer threads are launched, the

compiler allocates far more registers per thread than 32. Secondly, we see that 53% of

all memory bandwidth in this configuration is taken up with access to spillover memory,

described in Section 2.2.

On the other hand, allocating enough resources that there is no spillover also does

not give maximum throughput, as seen when launching 8 warps per block. In this case

there are 79 registers allocated per thread, and there is no spillover to global memory.

The low occupancy is the bottleneck in this configuration, as the SM does not have

enough active warps that are ready to run to hide the latency caused by warps stalled at

any given moment. A major reason for stalled warps is in-progress memory transactions

to and from global memory.

In summary, each SM has a finite number of resources, which it distributes equally

amongst all threads in all active blocks. Launching more threads naturally means that

there are fewer resources per thread. If a kernel requires more resources per thread

than available there occurs ”spillover” of local variables which are then stored in global

memory, causing more global accesses. On the other hand, reducing concurrency too

much in order to gain more local resources entails fewer possible concurrently active

teams, and reduced benefits from the SM’s latency-hiding capabilities. We see that the

best balance is reached between concurrency and resource allocation when launching 16

warps per block.

Table 5.2 shows the effects of changing the number of warps per block on M&C. We

45©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Table 5.1: Effects on GFSL of limiting warps launched per block

Warps per Block 8 161 24 32

Occupancy/Theoretical 36.7%/ 37.5% 48.8%/50% 73%/75% 95.8%/100%
Registers 79 64 40 32
Active Blocks 3 2 2 2

Local Memory Spillover 0% 10% 4̃3% 5̃3%

Throughput (MOPS)2 58.9 65.7 62.5 52.9
1 The configuration presented in this chapter 2 Throughput for operation mixture [10,10,80], range 1M

Table 5.2: Effects on M&C of limiting warps launched per block

Warps per Block 8 161 24 32

Occupancy/Theoretical 52.9%/62.5% 41.6%/50% 59%/75% 79.4%/100%
Registers 42 42 40 32
Active Blocks 5 2 2 2

Local Memory Spillover 2̃5% 2̃3% 2̃3% 2̃4%

Throughput (MOPS)2 20.7 21.3 20.6 20.2
1 The configuration presented in this chapter 2 Throughput for operation mixture [10,10,80], range

1M

see that the throughput varies very little, regardless of the number of warps launched

or the amount of resources available to each thread. Moreover we see that M&C suffer

from spillover even when using the maximum registers deemed sufficient by the compiler.

This is most likely because they use thread-local arrays to hold the traversal path. Local

arrays are often relegated to spillover memory in CUDA. Further profiling shows that

M&C suffers, as expected, from high divergence and inefficient memory alignment and

access patterns. Indeed, between 86% and 91% of the latency in M&C’s executions is

caused by memory dependencies. This indicates that M&C, unlike GFSL, are bound by

inefficient memory accesses to the point where they cannot properly utilize available

resources on the SM.

Chunk Size

Figure 5.1 illustrates the effects on throughput of executing GFSL with teams/chunks

with 32 or 16 threads/entries (GFSL-32 and GFSL-16, respectively). The benchmark

presented consists of a workload with 80% Contains operations on a range of 1M keys.

M&C’s results are included for comparison purposes, and are discussed in Subsection 5.3.

GFSL-32 and GFSL-16 show similar performance in small ranges, with GFSL-32

outperforming GFSL-16 in the higher ranges by up to 28%. In this work we only allow

a single team to run in each warp, regardless the team size.

GFSL-16 uses chunks of size 128B, the maximum size that can be read from global

memory in a single transaction. GFSL-32, on the other hand, uses chunks of size 256B

which require two transactions. Additionally, GFSL-16 contains 25% more levels on

average than GFSL-32. As traversal length is directly tied to structure height, traversals

in GFSL-16 theoretically require around 66% fewer memory reads than GFSL-32. Thus

46©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

0

30

60

90

120

150

Th
ro

u
gh

p
u

t
(M

o
p

s)

Key Range

M&C GFSL-16 GFSL-32

Figure 5.1: Throughput comparison of GFSL using chunks and teams of size 16
(GFSL-16), and of size 32 (GFSL-32), and M&C. The benchmark presented is

[i,d,c]=[10,10,80] on a 1M key range

we would expect GFSL-16 to outperform GFSL-32. However, the results presented in

Figure 5.1 show that this is not the case. Profiling shows that GFSL-16 uses around

half the memory bandwith as GFSL-32. We are unsure of the root cause of the disparity.

We believe that GFSL-16 would probably outperform GFSL-32 with proper support

for executing two teams within the same warp. However, synchronization between

threads in the same warp is a delicate task, as mentioned in Section 2.2. We found that

the complexity of the code needed in order to ensure teams within a warp could not

deadlock each other caused a significant degradation in performance. Thus this is left

for future work.

pkey and pchunk

The values of pkey and pchunk influence both the number of layers traversed and the

number of keys/nodes in each level. We examined the effects of various pkey values for

M&C between 0.2 and 0.8, and found that in all operation mixtures tested the best

results were received for pkey = 0.5.

Likewise, we found that using pchunk ≈ 1 in GFSL gave the best results in all

operation mixtures tested. This effectively results in pkey ≈ 0.05 for GFSL, as there are

20 entries per chunk on average. In this case the average number of chunks read in a

traversal is between structure− height + 1 and structure− height + 2, meaning that

there are between one and two lateral steps taken on average in a traversal. Lowering

pchunk causes more lateral steps to be taken, while not having a significant impact on

structure height. Thus the overall average traversal is lengthened, causing more global

47©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

-200%

0%

200%

400%

600%

800%

1000%

1200%

10K 30K 100K 300K 1M 3M 10M

Sp
ee

d
u

p
 O

ve
r

M
&

C

Key Range

[1,1,98]

[5,5,90]

[10,10,80]

[20,20,60]

Figure 5.2: Ratio between GFSL and M&C as a function of the key range.

memory accesses.

5.3 Performance Results

Figure 5.2 shows the speedup of GFSL over M&C. GFSL is slower than M&C by up to

46% in the 10K range, up to 10% in the 30K range, then outperforms them by 27% to

1064% in the higher ranges. In Figure 5.3 we present the actual average throughput

results and confidence intervals of the various benchmarks. The figure shows that

GFSL’s performance does not change drastically as the range increases, in contrast to

M&C which melts down quickly as the range, and so the structure size, grows. This is

the root cause of the rising ratio in the previous graph.

The main advantage of GFSL is the usage of coalesced reads, which optimizes

accesses to the global memory. In the smaller range (10K), the entire structure fits into

the L2 cache in both implementations, which significantly reduces the benefits of the

coalesced reads as L2 access is much faster than global memory access. However, in

larger key ranges, M&C requires frequent uncoalesced accesses to the global memory

that causes a sharp degradation in performance. GFSL does not suffer from this

fast degradation. For example, comparing the key ranges 1M and 10M (a 10x larger

structure) in the mixed-ops test, the performance of M&C is reduced by 69%-75%,

whilst the performance of GFSL is reduced by up to 8%.

In addition to the key range, the performance is also impacted by the operation

distribution. For the 10K range, M&C is faster than GFSL by 15%-46% when the

48©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

0

50

100

150

Th
ro

u
gh

p
u

t
(M

o
p

s)

Key Range

M&C

GFSL

(a) [i,d,c]=[1,1,98]

0

50

100

150

Th
ro

u
gh

p
u

t
(M

o
p

s)

Key Range

M&C

GFSL

(b) [i,d,c]=[5,5,90]

0

50

100

150

Th
ro

u
gh

p
u

t
(M

o
p

s)

Key Range

M&C

GFSL

(c) [i,d,c]=[10,10,80]

0

50

100

150

Th
ro

u
gh

p
u

t
(M

o
p

s)

Key Range

M&C

GFSL

(d) [i,d,c]=[20,20,60]

Figure 5.3: Throughput, in millions of operations per second, as a function of key range.

percentage of Contains operations is high (Figures 5.3a-5.3c), and slower by 8% when the

percentage of Inserts and Deletes grows (Figure 5.3d). The impact of the distribution

is less than the impact of the key range, as GFSL’s performance is closer to M&C’s

in the 30K range then quickly outperforms them in larger key ranges for all mixed

distributions.

Looking at GFSL we see a dip in performance in each of the mixed-ops tests. This

dip occurs in small ranges when the number of update operations is small, and in

larger ranges as the percentage of update operations grows (e.g. 300K in the [20,20,60]

benchmark). Smaller key ranges express a tradeoff between faster traversal and higher

contention. Small structures allow faster traversals, both because more of the structure

can reside in the cache and because fewer steps are required in traversals. However,

when operations are generated from a smaller range of keys there is more chance for

contention. The performance dip occurs when the benefit of small structure size cannot

cover the loss from contention. As more updates are performed the dip occurs in larger

key ranges, for which the structure is large enough not to benefit as much from faster

traversals, but is small enough to still suffer from contention. This trend is reinforced

49©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

0

50

100

150
Th

ro
u

gh
p

u
t

(M
o

p
s)

Key Range

M&C

GFSL

(a) 100% Contains

0

50

100

150

Th
ro

u
gh

p
u

t
(M

o
p

s)

Key Range

M&C

GFSL

(b) 100% Inserts

0

50

100

150

Th
ro

u
gh

p
u

t
(M

o
p

s)

Key Range

M&C

GFSL

(c) 100% Deletes

Figure 5.4: Throughput, in millions of operations per second, as a function of key range.
Each graph shows the throughput of a single operation type.

in Figure 5.4a, which shows the results of the Contains test. In this case there are no

updates, thus no contention and no dips in GFSL’s performance.

M&C’s implementation was measured up to the 10M range in the mixed-ops tests,

and up to the 3M range in the single-op-type tests, as it runs out of memory for larger

structures. In contrast, GFSL’s compact layout and partial reuse of chunks allow it to

run up to the range of 100M.

GFSL outperforms M&C for all single-op-type tests, as seen in Figure 5.4. GFSL’s

Contains operation is faster than M&C by up to 4.4x in the large key ranges, and up to

2.9x in the low key ranges (Figure 5.4a). M&C show surprisingly low performance in

small key ranges in the Contains test, especially when considering the trends in the

mixed-ops tests with few update operations; we were unable to determine the cause of

the low performance. Figure 5.4b and Figure 5.4c show the performance of Insert-only

and Delete only executions respectively. Both graphs show higher performance for

GFSL in all ranges, between 3.5x-9.1x for Insert operations and between 3.5x-12.6x for

Deletes.

50©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 6

Related Work

While relatively little research has gone into designing general purpose data structures

optimized for the GPU, some have been developed.

Hong et al. [HKOO11] showed that graph algorithms can be greatly accelerated on

the GPU by designing a structure that emphasizes memory coalescing and warp-level

cooperative execution. More recently, Zhang et al. [ZWY+15] used similar techniques in

their implementation of MegKV, an in-memory key-value storage system; in the context

of a a GPU-friendly cuckoo hash table. MegaKV provided a speedup of 1.4-2.8 over the

CPU implementation of the general algorithm.

Other hash tables have been designed and/or implemented on the GPU [AVS+11,

Bor14,KBGB15,BZG+16,GLHL11]. Bordawekar [Bor14] proposed multi-level bounded

linear probing, improving locality by using multiple levels of hash tables that reduce the

number of lookups. Alcantara et al. [AVS+11] developed a cuckoo hashing scheme that

achieves fast construction on the GPU and ensures lookup succeeds within at most 4

steps. Another cuckoo hashing scheme, [KBGB15], uses Collaborative Lanes, a method

enabling threads in a warp to take on new tasks and so battle warp under-utilization.

Misra and Chaudhuri [MC12b] tested the speedup of several known lock-free data

structure algorithms ported to the GPU, in comparison with the CPU. Their results

indicate that while a speedup is achieved on the GPU, increasing the dataset size and

number of operations significantly reduces the GPU’s advantage, especially in the case

of more complex data structures such as skiplists and priority queues. Cederman et

al. [CCT12] performed similar experimentation on a variety of known lock-based and

lock-free queue implementations, concluding that GPU-oriented optimization would

benefit performance. In this work we show that a GPU-friendly design can perform

significantly better.

Simpler data structures such as queues [SF15] and linked-lists [YHGT10] have been

developed for the GPU. Some graph-based algorithms have also been sped up using

GPU-optimized implementations [HN07,ZH14,MGG15].

Search trees geared towards graphics applications have also been GPU-optimized to

good effect [ZHWG08,LWL12,ZGHG08]. However, such structures typically distinguish

51©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

between a construction phase in which elements are inserted, and a use phase in which

elements are searched (but are never modified). They do not allow an intermix of these

phases and so are not a good fit for general purpose applications.

Condensing data into contiguous areas of memory is a well-known technique for

accelerating data structure operations in vector SIMD architectures. Several such

structures have been designed such as binary search trees [KCS+10], b+-trees [SCK+11,

ZHF14, ZR02], and hash tables [Ros07]. Sprenger et al. [SZL16] designed a cache

conscious skiplist with index levels in memory contiguous arrays and a linked list in the

bottom level. The index levels are rebuilt periodically.

Braginsky and Petrank developed a locality-conscious linked list [BP11] and B+tree [BP12]

for use in storage systems. A chunk based node design was proposed for the linked list

and later used in the B+ tree implementation. As the cache-alignment requirement

for efficient GPU programming can be compared to requirements for page-conscious

systems the possibility of developing such structures to GPU programs is an interesting

research question.

52©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 7

Conclusion

We presented GFSL, a GPU-friendly algorithm for the skiplist data structure. We

identified aspects of classic skiplist algorithms that correlate to known performance

drags on the GPU, most importantly lack of memory coalescence and high divergence

between threads in a warp. We focused on minimizing these performance drags in the

design of GFSL by utilizing chunked skiplist nodes and warp-cooperative functions to

improve performance on the GPU.

We demonstrated the importance of designing such specialized algorithms when

attempting to execute non-streaming applications on a GPU by presenting a skiplist

design that outperforms a straightforward porting of the CPU implementation to the

GPU. GFSL was implemented and evaluated on a GeForce GTX 970 Nvidia GPU

(Maxwell architecture). Evaluation shows a speedup of up to 11.6x over previous

implementations for large key ranges.

While current results show a significant improvement over the classic skiplist design,

further optimizations may help to widen the advantage. For example, some extra

concurrency can be gained by finding an efficient way to enable multiple teams in

a warp to concurrently handle different operations. This functionality would entail

some additional divergence, however the additional computational power may very well

overshadow its effects. This is challenging in as teams in the same warp may deadlock

while trying to take the lock for the same chunk, as explained in Section 2.2.

Additionally, we believe that similar design considerations can be used to aid

in efficient porting of other irregular-access concurrent data structures to the GPU

environment, further expanding the toolkit available to GPGPU programmers.

53©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

54©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Bibliography

[ALMS15] Dan Alistarh, William M. Leiserson, Alexander Matveev, and Nir

Shavit. ThreadScan: Automatic and Scalable Memory Reclamation.

In Proc. 27th ACM Symp. Parallelism Algorithms Archit. - SPAA ’15,

pages 123–132, New York, New York, USA, 2015. ACM Press.

[AVS+11] Dan A Alcantara, Vasily Volkov, Shubhabrata Sengupta, Michael

Mitzenmacher, John D Owens, and Nina Amenta. Building an efficient

hash table on the gpu. GPU Computing Gems, 2:39–53, 2011.

[BGHZ16] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi.

Fast and Robust Memory Reclamation for Concurrent Data Structures.

In Proc. 28th ACM Symp. Parallelism Algorithms Archit. - SPAA ’16,

pages 349–359, New York, New York, USA, 2016. ACM Press.

[BNP12] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A Quantitative

Study of Irregular Programs on GPUs. In 2012 IEEE International

Symposium on Workload Characterization (IISWC), pages 141–151.

IEEE, 2012.

[Bor14] Rajesh Bordawekar. Evaluation of parallel hashing techniques. GTC,

2014.

[BP11] Anastasia Braginsky and Erez Petrank. Locality-Conscious Lock-Free

Linked Lists. In International Conference on Distributed Computing

and Networking, pages 107–118. Springer, 2011.

[BP12] Anastasia Braginsky and Erez Petrank. A Lock-Free B+ Tree. In Pro-

ceedings of the twenty-fourth annual ACM symposium on Parallelism

in algorithms and architectures, pages 58–67. ACM, 2012.

[Bro15] Trevor Alexander Brown. Reclaiming Memory for Lock-Free Data

Structures. In Proc. 2015 ACM Symp. Princ. Distrib. Comput. - Pod.

’15, pages 261–270, New York, New York, USA, 2015. ACM Press.

[BS10] Peter Bakkum and Kevin Skadron. Accelerating SQL Database Oper-

ations on a GPU with CUDA. In Proceedings of the 3rd Workshop on

55©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

General-Purpose Computation on Graphics Processing Units, pages

94–103. ACM, 2010.

[BZG+16] Alex D Breslow, Dong Ping Zhang, Joseph L Greathouse, Nuwan

Jayasena, and Dean M Tullsen. Horton Tables: Fast Hash Tables for

In-Memory Data-Intensive Computing. In USENIX Annual Technical

Conference, pages 281–294, 2016.

[Car13] Josiah L Carlson. Redis in Action. Manning Publications Co., 2013.

[CCT12] Daniel Cederman, Bapi Chatterjee, and Philippas Tsigas. Under-

standing the Performance of Concurrent Data Structures on Graphics

Processors. In European Conference on Parallel Processing, pages

883–894. Springer, 2012.

[CP15a] Nachshon Cohen and Erez Petrank. Automatic Memory Reclamation

for Lock-Free Data Structures. In Proc. 2015 ACM SIGPLAN Int.

Conf. Object-Oriented Program. Syst. Lang. Appl. - OOPSLA 2015,

volume 50, pages 260–279, New York, New York, USA, 2015. ACM

Press.

[CP15b] Nachshon Cohen and Erez Petrank. Efficient Memory Management for

Lock-Free Data Structures with Optimistic Access. In Proc. 27th ACM

Symp. Parallelism Algorithms Archit. - SPAA ’15, pages 254–263, New

York, New York, USA, 2015. ACM Press.

[DHK16] Dave Dice, Maurice Herlihy, and Alex Kogan. Fast Non-Intrusive

Memory Reclamation for Highly-Concurrent Data Structures. In Proc.

2016 ACM SIGPLAN Int. Symp. Mem. Manag. - ISMM 2016, pages

36–45, New York, New York, USA, 2016. ACM Press.

[GLHL11] Ismael Garćıa, Sylvain Lefebvre, Samuel Hornus, and Anass Lasram.

Coherent parallel hashing. In ACM Transactions on Graphics (TOG),

volume 30, page 161. ACM, 2011.

[HKOO11] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Oluko-

tun. Accelerating CUDA Graph Algorithms at Maximum Warp. In

Proceedings of the 16th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, volume 46, pages 267–276. ACM,

2011.

[HLLS06] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A

Provably Correct Scalable Concurrent Skip List. In Conference On

Principles of Distributed Systems (OPODIS). Citeseer, 2006.

56©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

[HN07] Pawan Harish and PJ Narayanan. Accelerating Large Graph Algo-

rithms on the GPU Using CUDA. In International Conference on

High-Performance Computing, pages 197–208. Springer, 2007.

[HS12] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Program-

ming, Revised Reprint. Elsevier, 2012.

[KBGB15] Farzad Khorasani, Mehmet E Belviranli, Rajiv Gupta, and Laxmi N

Bhuyan. Stadium Hashing: Scalable and Flexible Hashing on GPUs.

In Parallel Architecture and Compilation (PACT), 2015 International

Conference on, pages 63–74. IEEE, 2015.

[KCS+10] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, An-

thony D Nguyen, Tim Kaldewey, Victor W Lee, Scott A Brandt,

and Pradeep Dubey. Fast: fast architecture sensitive tree search on

modern cpus and gpus. In Proceedings of the 2010 ACM SIGMOD In-

ternational Conference on Management of data, pages 339–350. ACM,

2010.

[LWL12] Lijuan Luo, Martin DF Wong, and Lance Leong. Parallel Implemen-

tation of R-Trees on the GPU. In 17th Asia and South Pacific Design

Automation Conference, pages 353–358. IEEE, 2012.

[MC12a] Prabhakar Misra and Mainak Chaudhuri.

http://www.cse.iitk.ac.in/users/mainakc/lockfree.html, 2012.

[MC12b] Prabhakar Misra and Mainak Chaudhuri. Performance Evaluation

of Concurrent Lock-Free Data Structures on GPUs. In 18th IEEE

International Conference on Parallel and Distributed Systems, pages

53–60. IEEE, 2012.

[MGG15] Duane Merrill, Michael Garland, and Andrew Grimshaw. High-

Performance and Scalable GPU Graph Traversal. ACM Transactions

on Parallel Computing, 1(2):14, 2015.

[Nvi15a] Nvidia. CUDA C Best Practice Guide v7.5, September 2015, NVIDIA

Developer Zone: website, 2015.

[Nvi15b] Nvidia. CUDA C Programming Guide v7.5, september 2015. NVIDIA

Developer Zone: website, 2015.

[Ope15] OpenCL. OpenCL 2.1 Reference Pages, The Khronos Group Inc.:

website, 2015.

[Pug90a] William Pugh. Concurrent Maintenance of Skip Lists. Technical

Report CS-TR-2222.1, Institute for Advanced Computer Science,

Department of Computer Science, University of Maryland, 1990.

57©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

[Pug90b] William Pugh. Skip Lists: a Probabilistic Alternative to Balanced

Trees. Communications of the ACM, 33(6):668–676, 1990.

[Roc14] RocksDB. A Persistent Key-Value Store for Fast Storage Environments.

http://rocksdb.org/, 2014.

[Ros07] Kenneth A Ross. Efficient hash probes on modern processors. In Data

Engineering, 2007. ICDE 2007. IEEE 23rd International Conference

on, pages 1297–1301. IEEE, 2007.

[SCK+11] Jason Sewall, Jatin Chhugani, Changkyu Kim, Nadathur Satish, and

Pradeep Dubey. Palm: Parallel architecture-friendly latch-free modifi-

cations to b+ trees on many-core processors. Proc. VLDB Endowment,

4(11):795–806, 2011.

[SF15] Thomas RW Scogland and Wu-chun Feng. Design and Evaluation of

Scalable Concurrent Queues for Many-Core Architectures. In Proceed-

ings of the 6th ACM/SPEC International Conference on Performance

Engineering, pages 63–74. ACM, 2015.

[SL00] Nir Shavit and Itay Lotan. Skiplist-Based Concurrent Priority Queues.

In Parallel and Distributed Processing Symposium, 2000. IPDPS 2000.

Proceedings. 14th International, pages 263–268. IEEE, 2000.

[SO11] Jeff A Stuart and John D Owens. Efficient Synchronization Primitives

for GPUs. arXiv preprint arXiv:1110.4623, 2011.

[SZL16] Stefan Sprenger, Steffen Zeuch, and Ulf Leser. Cache-sensitive skip list:

Efficient range queries on modern cpus. In International Workshop on

In-Memory Data Management and Analytics, pages 1–17. Springer,

2016.

[WYS+15] Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang

Sun. Deep Image: Scaling up Image Recognition. arXiv preprint

arXiv:1501.02876, 7(8), 2015.

[YHGT10] Jason C Yang, Justin Hensley, Holger Grün, and Nicolas Thibieroz.

Real-Time Concurrent Linked List Construction on the GPU. In

Computer Graphics Forum, volume 29, pages 1297–1304. Wiley Online

Library, 2010.

[ZGHG08] Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo. Highly

Parallel Surface Reconstruction. Microsoft Research Asia, 2008.

[ZH14] Jianlong Zhong and Bingsheng He. Medusa: Simplified Graph Pro-

cessing on GPUs. IEEE Transactions on Parallel and Distributed

Systems, 25(6):1543–1552, 2014.

58©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

http://rocksdb.org/

[ZHF14] Steffen Zeuch, Frank Huber, and Johann-christoph Freytag. Adapting

tree structures for processing with simd instructions. 2014.

[ZHWG08] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-Time

KD-tree Construction on Graphics Hardware. ACM Transactions on

Graphics (TOG), 27(5):126, 2008.

[ZR02] Jingren Zhou and Kenneth A Ross. Implementing database operations

using simd instructions. In Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, pages 145–156. ACM,

2002.

[ZWY+15] Kai Zhang, Kaibo Wang, Yuan Yuan, Lei Guo, Rubao Lee, and

Xiaodong Zhang. Mega-KV: A Case for GPUs to Maximize the

Throughput of In-Memory Key-Value Stores. Proceedings of the VLDB

Endowment, 8(11):1226–1237, 2015.

59©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

קטן. מפתחות טווח עבור הביצועים את מרע אך גדול לרשימה המוכנס המפתחות טווח כאשר ביצועים

כתלות 6.8-11.6 פי של בביצועים שיפור מציע GFSL מיליון, 10 בגודל הוא המפתחות טווח כאשר

עשרת של מפתחות בטווח GFSL של ביותר הגרוע במקרה זאת, לעומת הרשימה. על המבוצעות בפעולות

.0.46 פי של ביצועים הרעת ראינו עדכון לפעולות ביחס חיפושים של גדול אחוז מבצעים כאשר אלפים

טווח ובכל ,M&C ל ביחס משופרים או דומים ביצועים מראה GFSL מפתחות, אלף 30 של בטווח

.M&Cל־ ביחס שיפור מראה GFSL אלף 30 מ גדול יותר מפתחות

הראשי לזכרון יעילה גישה המאפשרות המידע, של המאוחדות בקריאות הוא GFSL של המרכזי היתרון

ולכן קטן הרשימה מבנה קטן מפתחות טווח עבור זאת, לעומת הגרפי. המעבד של לקריאה האיטי

(Memory המידע קריאות זה, במקרה .(L2 Cache) הגרפי המעבד של המטמון בזיכרון כולו נכנס

שהמבנה הקריאות מאיחוד מרוויחים פחות אנו ולכן הראשי, לזכרון מגיעות אינן לרוב Transactions)

כולה להיכנס מכדי גדולה הרשימה כאשר מופיע במחקרנו שעולה המשמעותי השיפור מאפשר. שלנו

הראשי. לזיכרון רבות וכתיבות קריאות מצריכה ולכן המטמון, לזיכרון

המפתחות שטווח ככל דרסטית בצורה יורדים M&C של הביצועים בעוד כי העובדה היא מעניינת תוצאה

מיליון 30) זה במחקר שנבדקו גדולים הכי בטווחים בלבד. בביצועים מתונה ירידה מראה GFSL גדל,

מגבלות בשל וקורס העומס עם להתמודד מצליח אינו M&C של המימוש כי ראינו מפתחות) מליון ו100

מתונה. ביצועים ירידת להראות וממשיכה להתמודד מצליחה GFSL ש בעוד זכרון,

iii©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

״רמה״ מהווה רשימה שכל כך המסודרות ממויינות, מקושרות רשימות של מאוסף מורכבת דילוגים רשימת

כל עולה. בסדר ממויינים במבנה המוכלים המפתחות כל את מכילה הרשימה של התחתונה הרמה במבנה.

מפתח חיפוש מתחתיה. ברמה ברשימה הנמצאים המפתחות של קבוצה תת מכילה לתחתונה, פרט רמה,

מסויימת ברמה ברשימה צעד כל כאשר העליונה, מהרמה החל רמה בכל חיפושו ידי על מתבצע במבנה

ברמה הנמצא מפתח לדוגמה, החיפוש. פעולת את מקצר ובכך התחתונה ברמה מפתחות מספר על ״מדלג״

להשתמש נהוג כאשר המשתמש, ידי על הנקבעת pkey בהסתברות i+ 1 ברמה גם יופיע במבנה כלשהי i

.1/4 <= pkey <= 1/2 המקיים: pkey בערך

שבו מרכזי חיסרון הגרפי. המעבד של בסביבה רבים חסרונות יש הקלאסית בצורתה דילוגים לרשימת

בכך מתאפיינת דילוגים שרשימת הוא גרפי מעבד על לריצה דילוגים רשימת של ישירה בהסבה נתקלים

ברמת סנכרון דורשת זו רשימה בנוסף, סדירה. אינה למידע והגישה הזכרון, ברכבי מפוזר בה שהמידע

רשימת של ישירה שהסבה לכך תורמים אלו חסרונות הגרפי. במעבד איטית מאוד פעולה הבודד, החוט

ביצועים. מבחינת יעילה אינה דילוגים

בגרעיניות נעילות ומבוססת הגרפי המעבד על לריצה המותאמת דילוגים רשימת ,GFSL את מציעים אנו

כל כאשר ממויינות, מקושרות רשימות של מאוסף מורכבת GFSL .(Fine-Grained Locking) נמוכה

עוקבים מפתחות מספר מכילה אסופה כל .(chunk) ״אסופה״ בשם ממדי חד מערך הוא ברשימה צומת

ברמה קיימים במבנה המוכלים המפתחות כל סטנדרטית, דילוגים לרשימת בדומה עולה. בסדר הממויינים

באסופה מפתח לכל בנוסף מתחתיה. ברמה המפתחות של קבוצה תת מכילה אחרת רמה וכל התחתונה,

מתחת, ברמה לאסופה מצביע הוא זה ערך הרשימה, של העליונות ברמות הנמצאות באסופות ערך. מוצמד

אסופה בכל ידו. על ומיוצג המפתח עם יחד לרשימה שהוכנס המידע הוא זה ערך ביותר התחתונה וברמה

שמצביע ושדה מנעול של שדה וערכים: מפתחות של הצמדים רשימת מלבד נוספים, שדות שני ישנם

רמה. באותה הבאה לאסופה

דילוגים רשימת של הסטנדרטי מהמימוש בשונה מפתחות, מספר מכיל GFSLב־ צומת כל אחרות, במילים

מתבצעת i+ 1 לרמה מפתח להוסיף אם ההחלטה GFSLב־ בנוסף, בלבד. אחד מפתח מכיל צומת כל בו

מחליטים סטנדרטית ברשימה זאת, לעומת .(pchunk (בהסתברות i ברמה חדשה אסופה נוצרת כאשר רק

הינה התוצאה .(pkey (בהסתברות i ברמה מפתח שמתווסף פעם בכל i + 1 לרמה מפתח להוסיף האם

מאשר רמות ופחות צמתים פחות מכילה GFSL ולכן i + 1 לרמה מפתחות פחות מעלים GFSLשב־

מספר אותו המכילה 1/4 <= pkey <= 1/2 הסתברות בעלת סטנדרטית דילוגים ברשימת קיימים

מפתחות.

בצוות החוטים מספר .(Teams) צוותים הנקראות לוגיות לקבוצות החוטים את מחלקים אנו זה במחקר

גישה מבצעים צוות באותו החוטים כל הגרפי. המעבד של warpב החוטים למספר שווה או קטן הינו

זו מאוחדת גישה בעזרת הדילוגים. רשימת על בודדת פעולה בביצוע פעולה ומשתפים לאסופות מאוחדת

גישה משיגים אנו זאת לעומת אך הרשימה, על במקביל לבצע שניתן הפעולות כמות את מצמצמים אנו

הדילוגים רשימת על זאת מעבר צורת התוכנית. של הזרימה בבקרת התבדרות ופחות לזכרון סדרתית

מידע כמות לעבד שניתן בכך הגרפי המעבד של לחוזקות מתאימה פעולה משתפים בקבוצה החוטים בה

בחישוב. צעד בכל גדולה

Misra and Chaud- ע״י נכתב אשר דילוגים רשימת למימוש אותה משווים אנו GFSL את לבדוק בכדי

נכנה להלן המרכזי. המעבד על מקביל למימוש בהשוואה ביצועים כמשפר הוכח אשר ,huri [MC12b]

משפרות שלנו והאופטימיזציות המימוש כי מראות הנוכחי במחקר התוצאות .M&Cכ שלהם המימוש את

ii©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

תקציר

גרפיים מעבדים היום מחשב. תוכניות להאצת פופולרי לכלי הפכו גרפיים מעבדים האחרונות בשנים

של דור בכל עולה החישוב ליבות ומספר נמוך, במחיר באנרגיה חסכוניות חישוב ליבות מאות מספקים

כמו גרפיות מעבדים גבי על מקבילי לתכנות מותאמות פיתוח סביבות של הוצאתן בנוסף, אלה. מוצרים

כלליים וחישוב עיבוד לצורכי גרפיים במעבדים לשימוש לאפשרות רבות תרמה OpenCL ו־ CUDA

גרפי. בתכנות ברקע צורך ללא ,(GPGPU)

לאפליקציות כמאיץ משמש הגרפי המעבד וכיום האחרונות, בשנים זינק GPGPU תוכנות בפיתוח העניין

עם נתונים. מסדי על בפעולות וכלה (Deep Learning) עמוקה מלמידה החל תחומים, של רחב במגוון

גרפיים. מעבדים עבור ויעילים כלליים אלגוריתמים של ובמימוש בתכנון משמעותי אתגר עדיין קיים זאת,

של המרכזי ההמעבד פעולת מאופן במהותו השונה פועלים, גרפיים מעבדים שבו מהאופן נובע זה אתגר

שעליו למידע ומסודרת) (סדרתית ״רגולרית״ גישה עבור יעילים מאוד גרפיים מעבדים .(CPU) המחשב

גרפיים מעבדים בנוסף, מטריצות. ו/או וקטורים של כאוסף מיוצג המידע כאשר בעיקר החישוב, מתבצע

זה דבר המרכזי. במעבד שנהוג כפי בודדים כחוטים ולא ,warps הנקראים במקבצים חוטים מריצים

גישה זאת, לעומת הגרפי. המעבד בסביבת הרצות בתוכניות הזרימה בקרת של לאחידות יתרון נותן

בביצועים. משמעותית לפגיעה להוביל יכולות בתוכניות הזרימה בקרת התבדרות או לזיכרון סדרתית לא

מבוססי נתונים במבני משתמשים אשר ואלגוריתמים אפליקציות בקרב נפוצות מאוד אלו התנהגות צורות

מבוססי במבנים שימוש שוטפים. בעדכונים תומכים אשר (pointer-based data structures) מצביעים

כלליים. באלגוריתמים נפוץ מאוד כאלו מצביעים

לשימוש המיועדים מצביעים מבוססי מקביליים נתונים מבני של רבים ומימושים אלגוריתמים קיימים

גרפיים מעבדים על לריצה אלו נתונים מבני של ישירה הסבה לבצע ניסיונות זאת, עם המרכזי. במעבד

ובכך הגרפי המעבד לסביבת אותם להתאים בכדי אופטימיזציות בעוד צורך יש המקרים ברוב כי הראו

ביצועיהם. את לשפר

במהלך הידור כגון, המרכזי, למעבד מורכבים שירותים לתת בעתיד יוכל הגרפי המעבד כי מאמינים אנו

תוכנה שמפתחי מנת על .(Garbage Collection) אוטומטי זכרון ושחרור (JIT compilation) הריצה

את המהווים הכלים את זו סביבה עבור לפתח תחילה יש כאלו, לצרכים הגרפי במעבד להשתמש יוכלו

.(skiplist) דילוגים רשימת כגון נתונים מבני כוללים אלו כלים תכנות. של הבסיסיות הבניין אבני

חלופה מספקות שהיא כיוון מקביליים, אלגוריתמים במימוש פופולרי נתונים מבנה הינה דילוגים רשימת

לביצוע ויקרות קשות אשר מסובכות, איזון בפעולות צורך ללא מאוזנים חיפוש עצי עבור הסתברותית

(Key- מפתח־ערך לאחסון אלגוריתמים הן אלו ברשימות נפוץ לשימוש דוגמאות מקבילית. בסביבה

.(Priority Queue) תור־קדמויות כגון אחרים מקביליים נתונים למבני ובסיס Value Stores)

i©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

המחשב. למדעי בפקולטה פטרנק, ארז פרופסור של בהנחייתו בוצע המחקר

ובכתבי־עת בכנסים למחקר ושותפיה המחברת מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

הינן: ביותר העדכניות גרסאותיהם אשר המחברת, של המגיסטר תואר תקופת במהלך

Nurit Moscovici, Nachshon Cohen, and Erez Petrank. A gpu-friendly skiplist algorithm. In
International Conference on Parallel Architecture and Compilation Techniques (PACT), 2017,
2017. (in press).

Nurit Moscovici, Nachshon Cohen, and Erez Petrank. Poster: A gpu-friendly skiplist
algorithm. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 449–450. ACM, 2017.

כתיבת בזמן התקיים לא עוד אשר ,PACT ב2017 ביותר הטוב המאמר לפרס כמועמד נבחר המאמר

זה. חיבור

השתלמותי במשך הנדיבה התמיכה על לטכניון מודה אני

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

המעבד לסביבת המותאמת דילוגים רשימת
הגרפי

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

מושקוביץ נורית

לישראל טכנולוגי מכון ־־־ הטכניון לסנט הוגש

2017 יולי חיפה התשע״ז תמוז

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

המעבד לסביבת המותאמת דילוגים רשימת
הגרפי

מושקוביץ נורית

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Preliminaries
	2.1 GPU And The CUDA Programming Model
	2.2 Considerations For Efficient GPU Programming
	2.3 Skiplists

	3 Algorithm Overview
	4 Algorithm Details
	4.1 Structure Details
	4.2 Data Structure Operations
	4.2.1 Contains
	4.2.2 Insert
	4.2.3 Delete

	4.3 Some Words on Correctness

	5 Measurements/Results
	5.1 Experimental Setup
	5.2 Static Configurations
	5.3 Performance Results

	6 Related Work
	7 Conclusion
	Bibliography
	Hebrew Abstract

