
Mirror: Making Lock-Free Data Structures Persistent

Michal Friedman
Technion, Israel

michal.f@cs.technion.ac.il

Erez Petrank
Technion, Israel

erez@cs.technion.ac.il

Pedro Ramalhete
Cisco Systems, Switzerland

pramalhe@gmail.com

Abstract

With the recent launch of the Intel Optane memory platform,

non-volatile main memory in the form of fast, dense, byte-

addressable non-volatile memory has now become available.

Nevertheless, designing crash-resilient algorithms and data

structures is complex and error-prone as caches and machine

registers are still volatile and the data residing in memory

after a crash might not reflect a consistent view of the pro-

gram state. This complex setting has often led to durable

data structures being inefficient or incorrect, especially in

the concurrent setting.

In this paper, we present MirrorÐa simple, general auto-

matic transformation that adds durability to lock-free data

structures, with a low performance overhead. Moreover, in

the current non-volatile main memory configuration, where

non-volatile memory operates side-by-side with a standard

fast DRAM, our mechanism exploits the hybrid system to

substantially improve performance. Evaluation shows a sig-

nificant performance advantage over NVTraverse, which is

the state-of-the-art general transformation technique, and

over Intel’s concurrent lock-based key-value datastore. Un-

like some previous transformations, Mirror does not require

any restriction on the lock-free data structure format.

CCS Concepts: ·Computingmethodologies→Concur-

rent algorithms; · Software and its engineering→ Soft-

ware libraries and repositories.

Keywords: Non-volatile memory, lock-free, concurrent data

structures

ACM Reference Format:

Michal Friedman, Erez Petrank, and Pedro Ramalhete. 2021. Mirror:

Making Lock-Free Data Structures Persistent. In Proceedings of

the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (PLDI ’21), June 20ś25, 2021,

Virtual, Canada. ACM, New York, NY, USA, 15 pages. https://doi.

org/10.1145/3453483.3454105

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454105

1 Introduction

With the recent introduction of the Intel Optane memory

platform, non-volatile random access memory has become

available. Such non-volatile memory offers both large byte-

addressable memory that does not lose its content upon a

crash and access speeds comparable to DRAM. This form

of memory, denoted non-volatile main memory (NVMM),

can serve as a very large main memory, allowing persistent

data structures to be manipulated by the program with no

need to save their content (in an augmented format) to a

secondary persistent drive. Optane DC Persistent Memory

by Intel currently comes with storage capacities that can go

up to 512 GB per NV-DIMM, and with read throughput that

is around 3x slower than conventional DRAM.

Numerous recent studies have proposed various schemes

to exploit the benefits of NVMM. A substantial fraction of

these research projects attempt to design persistent data

structures that in turn facilitate better storage systems,

databases, key-value stores, etc. Designing data structures

and algorithms for NVMM is hard because caches and regis-

ters are still volatile, and their content is lost upon a crash.

Thus, the state of main memory following a crash may be

inconsistent, missing recent data writes not yet flushed from

the cache into the main memory. To ensure that important

data is available in non-volatile memory after a crash, special

instructions that flush data to the (non-volatile) memory are

provided by the hardware. These instructions allow the pro-

grammer to make sure that certain data is written to memory,

securing the state of the execution even when a crash oc-

curs. Such flushing of data from cache to memory, however,

is costly, and good algorithms use these instructions spar-

ingly. The difficulty of the design increases in the presence of

concurrent data structures as correctness, efficiency, and scal-

ability become harder to achieve simultaneously, requiring

the involvement of experts on concurrency and durability.

Researchers have tried to reduce the difficulty of designing

durable data structures with an assortment of techniques

that fall into two broad categories: persistent transactions

and general transformations. Persistent transactions can take

a sequential implementation of a data structure and provide

a persistent and concurrent execution of the data structures’

methods (e.g., [3, 4, 9, 20, 28ś31, 37, 39]). The generality of

persistent transactions usually comes with a significant per-

formance price tag. Moreover, although some of these tech-

niques are capable of guaranteeing non-blocking progress,

they all serialize write operations, which severely limit scal-

ability in write-heavy workloads.

1218

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/3453483.3454105
https://doi.org/10.1145/3453483.3454105

PLDI ’21, June 20ś25, 2021, Virtual, Canada Michal Friedman, Erez Petrank, and Pedro Ramalhete

General transformations are applied on specific data struc-

tures, making them durable using an automatic transforma-

tion that any programmer may apply. Most existing trans-

formations (as well as the transformation presented in this

paper) are applied on concurrent lock-free data structures.

As indicated in previous work [13, 17, 18, 27, 41], a lock-free

algorithm is resilient to thread failures, implying that lock-

free data structures are a natural choice for being adapted

to persistence. Izraelevitz et al. [27] presented a mechanized

transformation that can be applied to any lock-free data

structure, making it persistent. Even though the transforma-

tion is simple, the resulting durable data structures are slow,

due to every atomic load or store needing to issue a flush

and fence instructions. Subsequent work [17] has improved

performance dramatically, albeit with increased complexity

and with the transformation restricted to a subclass of the

lock-free data structures.

In this paper we present Mirror, a simple automatic trans-

formation that is capable of converting any linearizable lock-

free data structure into a persistent and lock-free durably

linearizable [27] data structure. The first idea underlying

the Mirror transformation is to have two copies of the data.

At first sight, this may seem costly because each write to

the data structure needs to be executed twice, but there are

two points that make these two replicas worthwhile. First,

only the first write (to the first replica of the data) needs to

be persisted (with a flush and a fence), making the second

(non-persisted) write a great deal lighter. Second, using the

second replica for reading from the data structure eliminates

the need to ever persist read data, which is a great advantage

for a general transformation.

The second idea is to place the second (volatile) replica in

the volatile DRAM.While the first copy of the data is used for

persistence and must be placed in the non-volatile memory,

the second copy is only used to speed loads from the data

structure and is never persisted. Placing the second copy

in the volatile DRAM increases the access speed of loads

substantially, in current platforms by a factor of 3x. This idea

improves the performance of the durable data structures

obtained by the Mirror construction even further and we

get a significant throughput improvement over the state-

of-the-art transformation of NVTraverse [17]. The idea of

having one persistent replica with all the critical data and

one volatile replica (which might be located in DRAM) was

first presented in [41] for a specific construction of a set.

Extending their idea to a general construction presents a

challenge in preserving linearizability, which we solve in

this paper.

Given that many operations on lock-free data structures

spend a considerable amount of time traversing nodes,

effectively executing loads, the usage of DRAM for the

volatile replica significantly increases the throughput in read-

dominated workloads, and can yield a non-negligible advan-

tage even on write-intensive workloads due to traversals that

precedes the updates. For example, the persistent linked-list

data structure created by Mirror outperforms the persistent

linked-list created by NVTraverse by a factor higher than

4x (for a list of size 128, with 8 concurrent threads, and 20%

update operations). This factor goes higher than 10x for a

workload with read-only operations. Furthermore, Mirror

outperforms the persistent lock-based data structure Cmap

by pmemkv [38] by up to 3.95x for a hash-table of size 8M ,

with 8 concurrent threads. In fact, the evaluation shows that

the data structures created by Mirror sometimes beat even

hand-made specific data structures that were designed to

execute solely on the non-volatile main memory. Moreover,

because of the partial use of volatile DRAM, the persistent

data structures created by Mirror can often execute faster

than original (non-persistent) data structures that execute

on the slower non-volatile memory.

In Section 4 we explain the details of the construction and

argue why it works correctly. Loosely speaking, all read data

is guaranteed to be persisted (in the persistent replica) before

it is read (in the volatile replica), and, therefore, there is no

need to worry about persisting read data. An invariant of

the durable data structure obtained from the Mirror transfor-

mation is that the second volatile copy is at most one value

behind the first copy. A version number is added to each

shared data structure field to keep the modifications well

ordered, in an adjacent word, using a double-word-compare-

and-swap (DWCAS) on every modification. In Section 5, we

prove that the resulting data structure is durably linearizable.

To make the transformation easy for the programmer, we

built an implementation of the primitives that handle the

two copies, i.e., the modified load, store, and CAS operations

that should be called by the durable data structure. These

are implemented as overloading of these operations using

a modified std::atomic type. We also built an adequate

allocator that can work with the two copies. Given these

implementations, applying Mirror to a data structure is sim-

ple. It consists of type annotation to replace the usage of

std::atomic with patomic and replacing the calls to the

system allocator with the Mirror’s allocator. In addition, the

programmer needs to specify the roots of the data structure

from which all nodes of the data structure are reachable, and

provide a routine that, given the roots, traverses all nodes

reachable from the roots. In case of a crash, this traversal is

required by the recovery procedure. This can be easily im-

plemented for all existing data structures that we are aware

of. Mirror imposes no algorithmic change to the lock-free

data structure code in order to make it persistent.

The closest previous work is NVTraverse [17], which

translates a lock-free data structure in a traversal form into

a durable data structure automatically. NVTraverse avoids

flushes and fencees during the traversal part of a data struc-

ture operation, which obtains high efficiency. NVTraverse

requires that the transformed data structure is lock-free in a

specific traversal form, defined in the paper. Transforming a

1219

Mirror: Making Lock-Free Data Structures Persistent PLDI ’21, June 20ś25, 2021, Virtual, Canada

data structure into a traversal form requires some program-

mer expertise and may sometimes harm performance. Mirror

uses a very different transformation and it obtains significant

improvements on current platforms. Additional discussion

appears in Section 7.

The rest of this paper is organized as follows. Section 2

discusses the setting and presents correctness definitions.

Section 3 provides an overview of the Mirror library and

the detailed implementation and its correctness appears in

Section 4. The experimental evaluation for different data

structures is presented in Section 6. Section 7 discusses re-

lated work and Section 8 concludes.

2 Model and Preliminaries

The recent release of new non-volatile main memory tech-

nologies enables us to use this memory as we have never

before used it. These technologies guarantee durability, byte-

addressability, high density and larger capacity than DRAM.

In this section, we discuss assumptions regarding the under-

lying architecture and explain the related definitions.

2.1 Persistent Memory

We consider a system of asynchronous n processes

p1,p2, ...,pn with a shared memory system. This shared mem-

ory may be divided into three parts: (1) A volatile cache,

which is the fastest memory, but volatile, meaning that its

content will not survive a potential crash; (2) a volatile

DRAM, which is slower than the cache, but volatile as well

and is larger than the cache; and (3) an NVMM, which

is slower than the DRAM but faster than traditional non-

volatile memories. The NVMM is durable, and we assume

that only its content will remain after a crash, as opposed

to cache and DRAM. Each process may access the DRAM

and the NVMM with a byte-granularity load or store that

are first written/read from the cache. These values may be

written-back either implicitly by the mechanism that man-

ages the cache or explicitly by calling specific instructions

that write back data from cache to NVMM. A value that was

written-back to the NVMM at time t , either implicitly or

explicitly, is called persisted at time t .

2.2 Explicit Write-Backs

As mentioned above, explicit write-backs occur by calling

two specialized instructions. The first one is a flush, which

is not blocking and triggers a write-back for a specific mem-

ory location. The second one is a store fence, which orders

all preceding writes and flushes executed by that process

to become visible to other processes before any writes or

flushes executed after the fence. Intuitively, a fence following

a flush may be thought of as blocking until all previously

flushed locations have reached the memory. The specific ar-

chitecture instructions are presented in Intel, AMD and ARM

manuals [1, 2, 23, 24], and described thoroughly in [35, 36].

2.3 Durable Linearizability

Every operation on a data structure consists of an invocation

which is the first executed operation’s instruction, and a

response which happens after the execution of the last oper-

ation’s instruction. An execution of a concurrent program

is modeled by a history comprising a finite sequence of in-

vocation and response events of operations by processes.

Every operation’s invocation and response are considered

events which are related to the calling process. In our system,

we consider system-wide crashes as events, which are not

associated with a specific process, and resets all the volatile

memories. No persistent memory location is affected.

A history is said to be linearizable if every operation takes

effect instantaneously at some moment between its invoca-

tion and response [22]. Since this definition does not capture

system-wide crash events, Izraelevitz et al. [27] introduced

an extended definition of linearizability that also takes into

account system-wide crashes.

A history is said to be durably linearizable if the removal

of all crash events from the history still leaves the history

linearizable [27]. This means that all operations completed

before a crash must take effect, plus some of the overlapping

operations. If an operation survives a crash, all the opera-

tions it depends on, must also survive the crash. To satisfy

durable linearizability, the execution model allows a recov-

ery operation, which is called immediately after the crash,

before any other operation is made.

A property that naturally fits crash survival is lock-freedom.

An object is lock-free if there is progress always being made

by at least one process. In particular, even if some processes

pause, other processes will be able to continue executing

their operations on the object. Furthermore, even if some

process halts during an operation, other processes will con-

tinue executing, as no process may block another. It also

means that a lock-free object always keeps the memory in a

consistent state. We exploit this property in our algorithm

to guarantee that after a crash, a linearizable lock-free data

structure that uses our construction will be durably lineariz-

able.

3 The Mirror Library

The Mirror library is a general interface that provides dura-

bility in an automatic manner. The main concept consists

of having two copies of every variable, which allows sep-

aration between operations, such as read and write. Not

only does this separation enable a significant performance

improvement, but the actual memory type on which these

operations execute also affects the throughput, e.g., DRAM

vs NVMM, as presented in Section 6. The interface is simple

to use, and eliminates the need to understand all the com-

plexities that emerge when using non-volatile main memory.

The library uses all three components of current existing

1220

PLDI ’21, June 20ś25, 2021, Virtual, Canada Michal Friedman, Erez Petrank, and Pedro Ramalhete

hardware: volatile caches, non-volatile main memory and a

volatile DRAM.

3.1 Replica Location

Mirror keeps two replicas of each persistent variable. One

replica is used for persistence and the other one for reading.

This separation allows reading a consistent value only from

the fast volatile memory. To ensure persistence, however,

writes still have to be done on both the persistent and volatile

memories. A careful implementation is needed to guarantee

correctness, as shown in Section 4.

The first replica must be located in the NVMM, which pro-

vides durability. The second replica is located in the volatile

main memory, the DRAM, where reads are more efficient. If

a volatile main memory is not available, for example, when

there is insufficient space for a large database, the second

replica from which the reads are executed might be located

on the persistent memory as well, which still yields advan-

tages in read-heavy workloads, as presented in Section 6. For

simplicity, we call the first replica the persistent replica repp ,

and the second replica the volatile replica repv .

3.2 Interface

The Mirror library is simply an extension of the std::atomic

library [6] with added support for persistence on non-volatile

mainmemory, by overloading the existing operations. Its API

provides the exact API of std::atomic from the C++ standard,

and two additional operations for the allocator usage.

compare_exchange_strong (T& expected, T newVal):

Compares the current field’s value with the expected value

and, upon success, replaces the current value with the new

one. Otherwise, loads the current object’s value into the ex-

pected parameter. This is all done atomically on both replicas.

When successful, both memory locations will have the new

value. If the operation fails, neither of the memory locations

will have the new value.

fetch_add (T add): Replaces the current value with the

arithmetic’s addition result of the current value and the pa-

rameter, atomically. This operations always succeeds, and

guarantees that both memory locations will have the same

value.

load (): Returns the current value atomically.

store (T desired): Stores a new value atomically. The

same value is stored on both replicas.

There are two more operations made available to the pro-

grammer:

init(): Initializes the persistent and volatile memory re-

gions. This operation needs to be called once at the beginning

of the execution, and immediately after each system-failure.

This operation mmaps a persistent and volatile memory re-

gion and copies the relevant data from the persistent to the

volatile memory.

alloc(T value): A wrapper for allocating an object. This

operation needs to be called every time an object is allocated

to guarantee it will be adequately allocated on the volatile

and persistent regions.

Last, the user needs to provide a tracing operation which

is able to trace all data given the persistent roots, similar to

previous works [17, 27, 41].

To use this interface, a variable T needs to be converted

to patomic<T>. An example is shown in Figure 1. It shows

how to convert an object with all its fields so that it can use

this infrastructure. The example converts a node of Harris’s

linked list [21] into patomic<>. It calls the init() operation at

the beginning of the execution and the allocator’s wrapper

every time an object is dynamically allocated (instead of

the allocator itself), so that the variable is allocated on both

replicas.

In Section 4, we explain how using this library guarantees

atomicity and persistence.

1 class Node {

2 patomic <unsigned int > key;

3 patomic <T> value;

4 patomic <Node*> next;

5 }

Figure 1. Example of using the Mirror’s Library

4 Mirror Underlying Mechanism

If an object needs to be persistent, i.e., survive a crash, every

field T within this object needs to be converted to patomic<T>.

It must use Mirror’s allocator wrapper and provide a tracing

operation. Moreover, if a data structure is lock-free and lin-

earizable [22], using patomic version with all its fields will

automatically convert it to be durable linearizable [27]. In

what follows we explain the implementation of the Mirror

library. This implementation does not require any compiler

or operating system modification and it may be added to a

new platform by any programmer to obtain the benefits of

the Mirror transformation.

4.1 Implementation

To maintain consistency, every variable T that is converted

to patomic<T> has two fields: an std::atomic value and an

std::atomic sequence number, which is correlated to that

value. The template class is presented in Figure 2.

4.1.1 Sequence Number. The sequence number is cru-

cial for correctness, linearizability in the presence of two

object copies. Every variable has an associated sequence

number which is increased monotonically with every value

change. The sequence number is important because we need

to maintain two copies and avoidABA problems. A sequence

number, however, is needed only if the field changes so im-

mutable fields, such as immutable keys, do not require it.

The scenario shown in Figure 3 demonstrates why a value

1221

Mirror: Making Lock-Free Data Structures Persistent PLDI ’21, June 20ś25, 2021, Virtual, Canada

1 template <typename T>

2 class patomic {

3 atomic <T> value;

4 atomic <uint64_t> sequence;

5 }

Figure 2. Patomic Class

change requires an additional sequence number: Let variable

v start with holding the tuple {5, 2}, which represents a value

5 and a sequence number 2, both on its volatile and persis-

tent replicas. Let process p1 write the tuple {10, 3}, where

the sequence number is increased by one in the persistent

replica and pause before writing it to the volatile replica.

Now, let another process p2 write a new value, {5, 4}. Before

doing it, it needs to make sure that both replicas have the

same value. If this is not the case, p2 helps p1, meaning that

it finishes p1’s write to the volatile replica, and only then

changes the persistent value and the corresponding volatile

value to be {5, 4}. If the sequence number had not existed,

and the first process had continued its execution, it might

be able to change the volatile replica to be 10 again, even

though the sequence of the values 5 → 10 → 5 → 10 has

not ever occurred. Attaching an increasing sequence number

to it, however, guarantees this scenario can never happen.

Now, p1 will not be able to change the value v = {5, 4} to be

equal to {10, 3} and the volatile replica will stay {5, 4}.

repp (persistent)

v v v

value=5
seq=2

value=10
seq=3

value=5
seq=4

p1 p2

repv (volatile)

v v v

value=5
seq=2

value=10
seq=3

value=5
seq=4

p2

help

p2

Figure 3. A scenario that could cause problems if there was

no sequence number

4.1.2 CAS Instruction. As mentioned above, all reads are

made on one replica, called repv and writes are made on both

replicas to maintain consistency. The write is first made on

the persistent replica, called repp , and then on repv . Reads

are always wait-free and made on repv solely. The pseudo-

code for the CAS operation is presented in Figure 4. Let v

be a variable. v is located on both repv and repp . We start

by checking that the variable v in repp , vr epp , is equal to

the value of v in repv , vr epv , both in terms of the sequence

number and the value itself. We read v’s value and sequence

number from the persistent and the volatile replicas in lines 5-

16. Reading the value and its sequence number is not atomic,

and, therefore, there is a need to assure that they are re-

lated. Accordingly, there is a read of the sequence number,

followed by a read of the value, followed by another read of

the sequence number. Only when the values are equal (after

line 29), it is possible to write the new value to repp . The

new value will contain the new value itself and a sequence

number that is increased by 1 compared to the last written

sequence number. The write is done with a double-word-

compare-and-swap (DWCAS) instruction that swaps both the

value and the sequence number atomically (line 40). Upon

success, there is an attempt to write the same new value on

repv (line 44). If this succeeds, then the write is finished after

writing to the volatile replica. If there is a failure in writing

to volatile memory, it means that there was a concurrent

attempt to write the same value (or a more updated value)

to repv . Either way, we can finish the operation. Note that it

is not possible that the CAS fails due to an older value of v

in the volatile replica, because we previously made sure that

the volatile version had the expected value before updating

the value on both replicas.

On the other hand, if there is a failure in writing to per-

sistent memory, then we help the thread that succeeded by

attempting to write v’s value on repp to repv (line 47). Then

we can return false. To maintain consistency, the helping

is done only by changing the volatile replica from the value

the helping thread read from the volatile replica before its

failure, with the value that made its DWCAS operation in the

persistent replica in line 40 to fail. The value that made it fail

will be located in the before variable (the DWCAS updates

this value if it fails). In addition, there is a special case where

the concurrent thread might write the expected value to the

persistent replica, and the DWCAS in line 40 will fail due to

a different sequence number. In a regular CAS, the operation

needs to succeed and therefore, we restart the operation in

line 46.

The last remaining case is that the value read from repv is

different from the value read from repp . In this case, there is

an ongoing concurrent operation executing and we attempt

to help it (line 19), by copying the value and sequence number

from the persistent replica to the volatile replica. As we

first write to the persistent replica and then to the volatile

replica, the sequence number in the volatile memory and

its correlated value, vr epv , can be at most off by one, in

comparison to the persistent memory.

All other writing operations, e.g., store, fetch_add, are im-

plemented by calling the CAS operation, with slight changes.

As simple write and FAA instructions never fail, the imple-

mentation keeps on calling the CAS operation in a loop until

it succeeds.

The method as described here does not support data struc-

tures that use double-word fields with a wide CAS, as we

need to add a version to each field and modify the value and

version atomically. In all algorithms with double-word fields

that we are aware of, however, these fields contain a unique

1222

PLDI ’21, June 20ś25, 2021, Virtual, Canada Michal Friedman, Erez Petrank, and Pedro Ramalhete

value for each modification. In fact, most of these algorithms

use on of the words for versioning. In such cases, the Mirror

construction works well without adding an additional ver-

sion word and can be applied as is. An ABA problem cannot

occur in this case. The Mirror algorithm can be extended

to also handle all other algorithms than use double-word

CAS operations, but this extension is more involved and not

needed in practice.

4.2 Persistent Roots

Loads and stores are used to access the non-volatile memory,

which is mapped directly into the process address space. To

access the NVMM, it is possible to mmap a direct access file,

making all the data accessible through persistent roots [5, 8,

9, 39]. Persistent roots are simply known addresses from the

mmaped file, which is located on the NVMM.Making all data

accessible from these persistent roots and guaranteeing a

consistent state, will assure complete recovery upon a crash.

We assume that the NVMM mapping is always done to the

same base address. In this way, all the pointers within that

memory will remain in a consistent state.

4.3 Memory Reclamation

Every object may have two kinds of data: critical data and

auxiliary data. Auxiliary data refers to data that may be re-

covered from the critical one, but critical data must persist

for recovery. Therefore, there is a trade-off between run-time

overhead and recovery time. On the one hand, we can save all

data, both critical and auxiliary, and spend minimal time on

recovery, but it incurs a costly overhead on the run-time itself.

On the other hand, we may reduce the run-time overhead,

and let recovery reconstruct all the auxiliary missing data.

Exploiting the fact that there are two replicas of the data may

allow us to ensure that the auxiliary data are read/written

from the volatile replica, while the critical data are always

written to the persistent replica. A natural fit for this will be

all the metadata of the allocator. As we maintain two repli-

cas, all allocator metadata may reside on the volatile replica

due to the fact that the persistent replica behaves exactly the

same, with just an offset. Moreover, having persistent roots

allow us to reconstruct everything we need to continue exe-

cuting upon a crash, without the need to read the metadata.

Our technique guarantees that all reachable data from per-

sistent roots is persistent. Therefore, upon a crash, it is easy

to distinguish which data can be reclaimed. Moreover, if the

reachable data is duplicated (by having two replicas), there

is no need to manage the memory of both replicas. Thus,

we manage the memory in the volatile replica, which yields

more efficient reads and writes, and upon a crash, we need to

traverse the persistent roots, and copy all the reachable data

to the volatile memory. This, however, is possible only if a

tracing operation is provided, as expected in previous works

as well [13, 17, 27, 41]. For the volatile memory reclamation

scheme, we use ssmem, an epoch based garbage collector

(GC), and an object-based memory allocator [14].

Another possibility is to use a more costly technique,

which persists only the allocator’s core-data on the NVMM.

Upon a crash, it re-constructs all the auxiliary data, and ex-

ecutes an offline GC. This offline GC simply traverses the

persistent roots and reclaims all the data that is not reach-

able [5, 7].

4.3.1 Address Translation. To be able to manipulate

both replicas, repv and repp , we assume that both base ad-

dresses are always mapped to the same virtual address space.

As pointers are managed by the volatile memory, it is easy

to translate the volatile address to the persistent address by

simply adding the difference between the persistent base

address and the volatile base address to the pointer itself. In

other words, the delta between the two replicas is used to

translate the addresses of the volatile and persistent memo-

ries. This technique is simple and the translation is efficient.

If mapping to the same virtual address space is not possible

after a crash, then another way of implementing the address

translation might be to persist both the base address of the

persistent memory and the offset between the volatile and

persistent addresses from the persistent root so addresses

will be calculated by using these offsets.

4.3.2 Init and Allocation. When a program begins to

run, we mmap a direct access file to maintain the replica

on the NVMM. First, we allocate the roots of the data struc-

ture itself in the persistent roots’ region. Afterwards, for

every allocated location we perform the allocation on the

volatile space and then copy the variable with its sequence

number to its matching persistent memory location accord-

ing to the address translator. From that point, the memory

is updated in both replicas, but metadata are managed only

on the volatile replica.

Our underlying allocator’s wrapper operation is respon-

sible for constructing an object which is first constructed

on the DRAM. We use the object-based memory allocator

provided by David et al. [14], but any allocator can be used.

After that, the object is constructed on the NVMM as well,

without the metadata that are related to the allocator.

4.3.3 Recovery. After a crash, a recovery operation

should be invoked before re-executing the program. We re-

quire the data structure to supply a tracing operation, which

just traces all the reachable data from a set of roots. Once we

resurrect the roots, we can use this routine to trace all the

reachable objects on persistent space and re-allocate them.

Since data is allocated on the NVMM as a copy of the volatile

space, without persisting any metadata, it is not always easy

to re-allocate the objects back on the volatile memory in

the specific addresses dictated by the non-volatile locations.

Practically, if the volatile allocator allows specifying the al-

location addresses, then we can allocate the volatile objects

1223

Mirror: Making Lock-Free Data Structures Persistent PLDI ’21, June 20ś25, 2021, Virtual, Canada

in the adequate locations and we are done. Otherwise, we

can re-allocate all reachable objects on both memories from

scratch. First we mmap a new file on the NVMM. Once ob-

jects are traced, we allocate every node on the volatile and

also on the persistent memory with correlated addresses,

and then the original mmapped file (used before the crash)

can be deleted.

5 Correctness

We now describe briefly the correctness of our construction,

showing that any linearizable [22] and lock-free data struc-

ture that uses our construction is persistent and satisfies

durable linearizability [27], in particular.

A data structure is considered durably linearizable if all

the operations that completed, survive upon a crash, plus

some overlapping ones. The operations that were concur-

rent with the crash must survive if their effect has impacted

other operations. By reading only from the volatile region,

we make sure that any value read was already persisted,

meaning that if that process executed a durable change, it

already read the persisted values that influenced that change.

This occurs because the Mirror’s write persists the value

right before writing it to repv either by the writer itself or

by a helping one.

Theorem5.1. A linearizable and lock-free data structure that

uses the Mirror construction provides a durably linearizable

data structure.

To prove Theorem 5.1, we first need to claim that our

implementation for the load and store instructions yields the

expected behavior. As mentioned above, a load reads a copy

from the volatile memory, repv , and a store first writes the

value to the persistent memory, repp and only then to repv .

As all the store operations are implemented with the help of

our Mirror’ CAS implementation, presented in Figure 4, we

describe only the relation between loads and CASes.

We start by describing the linearization points which are

the actual moments where these operations take effect. Usu-

ally, these instructions are atomic, but in our implementa-

tion they are more complex. The load returns the value that

is located in the volatile memory, atomically, according to

Figure 5, even though the variable actually consists of an

atomic<T> value and an atomic<int64_t> sequence number.

Therefore, the linearization point of this operation is the

actual load of the value itself. According to Figure 4, the

linearization point of a successful CAS operation is the mo-

ment when the new value and the corresponding sequence

number is written by a DWCAS instruction to the volatile

memory, repv , after a successful write of the same value and

sequence number to the persistent memory in line 40. The

linearization happens between lines 40ś44. The linearization

point of an unsuccessful operation can occur in line 32 or in

line 47.

1 template <typename T>

2 bool patomic <T>:: compare_exchange_strong (T&

expected , T newVal) {

3 patomic <T>* rep_p_addr = REP_V_2_REP_P(this);

4 while (true) {

5 rep_p_seq = rep_p_addr ->seq; // Read rep_p

6 rep_p_val = rep_p_addr ->val;

7 rep_p_seq_again = rep_p_addr ->seq;

8

9 rep_v_seq = this ->seq; // Read rep_v

10 rep_v_val = this ->val;

11 rep_v_seq_again = this ->seq;

12

13 // Restart if seq and val inconsistent

14 if (rep_p_seq_again != rep_p_seq ||

15 rep_v_seq_again != rep_v_seq)

16 continue;

17

18 // Help to complete another ongoing write

19 if (rep_p_seq == rep_v_seq +1) {

20 FLUSH(rep_p_addr);

21 FENCE();

22 before = {rep_v_val , rep_v_seq };

23 after = {rep_p_val , rep_p_seq };

24 DWCAS(this , before , after);

25 continue;

26 }

27

28 // Make sure we have the same versions

29 if (rep_p_seq != rep_v_seq) continue;

30

31 // If value on rep_p is not expected , fail

32 if (rep_p_val != expected) {

33 expected = rep_p_val;

34 return false;

35 }

36

37 // Update rep_p

38 before = {rep_p_val , rep_p_seq };

39 after = {newVal , rep_p_seq +1};

40 bool res = DWCAS(rep_p_addr , before , after);

41 FLUSH(rep_p_addr);

42 FENCE();

43 if (res) {

44 DWCAS(this , before , after);

45 } else {

46 if (before.val == expected) continue;

47 DWCAS(this , {rep_v_val ,rep_v_seq}, before);

48 }

49 return res;

50 }

51 }

Figure 4. Patomic Compare_exchange_strong Implementa-

tion

1224

PLDI ’21, June 20ś25, 2021, Virtual, Canada Michal Friedman, Erez Petrank, and Pedro Ramalhete

1 template <typename T>

2 T patomic <T>:: load () {

3 return this ->value.load();

4 }

Figure 5. Patomic Load Implementation

Lemma 5.2. The implementation of the load and CAS opera-

tions is a linearizable implementation of an atomic variable.

Before we prove this lemma, we prove some helping ones.

Lemma 5.3. The persistent value can be changed at time t

only if the sequence numbers on persistent and volatile memo-

ries match right before t .

Proof. In line 29, a writing process checks whether the se-

quence numbers on the volatile and persistent memory are

the same. Only after it has done so, will it try to change the

persistent memory. As the change is done by a DWCAS and

first done to persistent memory, it will succeed only if the

current value on the persistent memory equals the expected

value, which was equal on both the persistent and volatile

memories. □

Lemma 5.4. The sequence number in volatile memory is al-

ways lower by one or equal to the sequence number in persistent

memory.

Proof. According to Lemma 5.3, only if both the sequences

on the persistent and volatile memories match, will there

first be an attempt to change the persistent memory. If this

attempt is successful, then after being equal, the sequences

are at a distance of one, as the DWCAS changes the per-

sistent memory to contain the current sequence raised by

one due to lines 39ś40. At this point, there is an attempt

either by the same thread in line 44 or by others in line 24 or

line 47 to make the sequence number on the volatile mem-

ory match the persistent memory. Moreover, to change the

volatile sequence, the expected sequence is always lower

by one than the current sequence in the persistent memory.

The first that succeeds, match the sequence in volatile and

persistent memories again. In addition, once the volatile se-

quence has changed, it might never get the same sequence

number again, as sequence numbers on persistent memory

are always monotonic, and as a consequence, on volatile

memory as well. □

Lemma 5.5. If the sequence numbers on volatile memory and

persistent memory match, then the values must also match.

Proof. DWCAS always updates the sequence number atom-

ically with a related value, and there is only one value at-

tached to a sequence number that is successfully written to

the persistent memory. If the DWCAS fails, the next attempt

will get a larger sequence number. Correspondingly, as val-

ues are first written to the persistent memory and only then

to volatile memory, the process that succeeded in writing to

the persistent memory will attempt to write the same value

and sequence number to the volatile memory. According to

lines 19ś26, other processes can write to the volatile memory

as well, but only the value that currently exists in the persis-

tent memory, and will succeed only if the current sequence

number of the volatile memory is lower by one than the cur-

rent sequence number of the persistent memory. Therefore,

there is always a match between the value and sequence

number on the volatile and persistent memories. □

Let us proceed to the proof of Lemma 5.2.

Sketch Proof. Let va be an atomic variable with the value

v , which currently exists in the persistent memory, imple-

mented by the Mirror’s load and CAS operations. Let us

assume, w.l.o.g. that the sequence number that is related

to the value v is s at time t . Let p1 be the first process that

attempts to change v to v ′ after t , and let p2 be a process

that loads the current value. We show that a load always

reads the last successful CAS. According to Lemma 5.4, the

sequence number of the volatile memory is distant from the

sequence number of the persistent memory by at most one.

Moreover, according to Lemma 5.5, the value corresponds to

the sequence number. Thus, we have two possible scenarios:

1. Both replicas of the value and the sequence number are

the same in the volatile and persistent memories at time

t . If p2 reads before p1’s attempt, i.e., when the values of

the persistent and volatile memories have not changed,

by the semantics of the std::atomic library, p2 will return

the value v as written in the volatile memory, as expected.

If, however, p2 reads after t , this means that p1 has already

attempted to change va . p1 first tries to change the persis-

tent memory, and succeeds (since it is the first one after t ,

no other process manages to change the persistent replica

before this and the values remain the same). Afterwards,

this process, and all the other concurrent processes that

try to CAS as well help (or fail) to change the value in

the volatile memory so that they match. In other words,

there was a point in time where both values on persistent

and volatile memories matched because if they did not, no

other process could have changed the persistent memory

again due to Lemma 5.3. This happens before line 44. If

p2 reads before that linearization point, it still reads the

valuev . Otherwise, it will read the valuev ′, which is after

the linearization point, which is the expected value. In

both cases, p2 reads the correct value. Any other process

that tries to change v as well will fail if p1 is the first one

that attempts to change va . A special case exists where

the expected value and the new value are the same. In this

case, a process might still fail in line 40 as the sequence

number might have changed but a regular CAS should

not fail. If the former case occurs, this process will try

1225

Mirror: Making Lock-Free Data Structures Persistent PLDI ’21, June 20ś25, 2021, Virtual, Canada

again (line 46). If another process fails due to p1’s suc-

cess, it helps to update the volatile memory to match both

replicas before its return.

2. The persistent replica is off by one from the volatile replica.

In this case, p1 will recognize this state in line 19 and

help to update the volatile value so that it is equal to the

persistent value. If p1 is the first process that manages to

update v to v ′, this means it reached line 40, i.e., it passed

line 29 where both replicas are the same, and then we go

back to the first case. If p2 reads before the values match,

i.e., beforev reaches the volatile memory, it means that the

operation that wrote value v was not linearized yet, and

p2 would return the current value of the volatile memory,

which is the previous one, as expected. If it reads after v

was written to repv , then the operation that wrote v was

linearized and p2 would return that value. If, however, p1
fails to change the value in the persistent memory, one

of the following might have happened: (1) the values did

not match, meaning that another process has managed to

change repp in contradiction to the fact that p1 was the

first one that attempted to change va or (2) the expected

value was different than v . In this case, we expect the

operation to fail, exactly as occurs in line 32.

□

We now outline the proof for Theorem 5.1.

Sketch Proof. To prove a data structure is durably lineariz-

able we need to show that if we remove all crash events, the

history remains linearizable. Let us consider a historyH with

one crash event c at the end (if there is more than one crash,

the theorem could be proved by induction). We construct an

equivalent history H ′ without a crash that contains all the

persisted writes. By showing that history H ′ is linearizable,

we prove that the original history H is durably linearizable.

As mentioned above, all linearization points were already

persisted before their occurrence, thus, all linearized oper-

ations survive a crash. Consider all running processes p1,

p2, ..., pi in H whose last instruction before the crash was a

successful CAS on the persistent memory. As there might be

only one successful CAS on a single location, there are dif-

ferent such locations. Our recovery operation simply copies

the content of the persistent memory to the volatile memory,

and linearizes those i successful CASes, as every location has

only one successful CAS instruction. All other processes are

paused and do not continue executing. The paused processes

have not written anything to persistent memory (otherwise

they would have been considered as among the mentioned

i processes). Therefore, these processes have not changed

the data structure, and have no effect. We get that H ′ is

equivalent to H and linearizable. Since our data structure is

lock-free, new processes will be able to continue executing

from that state. □

6 Evaluation

6.1 Experimental Setup

We ran our measurements on an an Intel machine with two

Xeon Gold 6234 processors, each with 8 cores, 3.3GHz max

frequency and 2-way hyper-threading, which were disabled

during the experiments to increase stability. The machine

has 366GB of DRAM and 1.5TB of NVMM (Intel OptaneTM

DC memory), organized as 12 × 128GB DIMMS (6 per pro-

cessor). Each core has an L1 cache of 32KB and an L2 cache

of 1MB. The L3 cache is 25MB per processor (8 cores). The

operating system is Ubuntu 18.04.1, and code was written

in c++ compiled using g++ (GCC) version 9.3.0. with -O3

optimization. We used an App-Direct Mode Interleaved in our

configuration. For persisting objects, we called the clwb and

sfence instructions for flush and fence, respectively. We use

the clwb(address) instruction followed by an sfence to allow

different write-backs to occur in parallel. To measure the

influence of different flush instructions on our construction,

we tried to use also clflush and clflushopt instead of clwb

and got the same results up to a statistical error. We believe

it happens due to the way our algorithm works, as there

is DWCAS right after every flush instruction, which acts

as a fence on Intel platform. In addition, current NVRAM

platforms invalidate cache lines after they are flushed (even

by clwb), which implies the same cache misses. Therefore,

if clwb does not invalidate cache-lines in future platforms,

it may reduce some of the advantage Mirror has today. To

implement Mirror on ARM, the analogue instructions are

DC CVAP and a full system DSB instruction for flush and

fence execution.

To fix the memory reclamation and make it similar in all

compared algorithms, we used the libvmmalloc implementa-

tion of the PMDK library [25] and the durable version of the

ssmemmemorymanager for all compared algorithms. ssmem

is the same allocation method used in related work [17, 41].

We work with key-value pairs, both of size 8B. Nodes are

cache-aligned to 128B. The reported results are averages of

10 repetitions, each ran for 5 seconds. We used a uniform ran-

dom key distribution from the range of [0, r − 1] for varying

r ’s. Every data structure was initialized with r/2 keys before

the run, and measured with varying percentages of reads

that cover the standard YCSB benchmark [11]: A (50% reads),

B (95% reads), and C (100% reads). In other experiments, we

also ran the frequently used workload of 10% inserts, 10%

deletes and 80% read operations.

We evaluated the performance of our construction on four

different linearizable and lock-free data structures: A Linked-

List [21], A Hash-Table, (based on Harris et al.’s [21] with

a linked-list in every bucket), a lock-free BST by Aravind

et al. [34] and a lock-free Skip-List [16]. We compared our

general construction with two other general constructions:

(1) Izraelevitz et al.’s [27] construction that adds a flush and

a fence for every shared read/write operation, and (2) the

1226

PLDI ’21, June 20ś25, 2021, Virtual, Canada Michal Friedman, Erez Petrank, and Pedro Ramalhete

NVTraverse [17] construction that can be applied to traver-

sal data structures (defined in [17]) and removes the need for

persisting traversals. Data structures generated by NVTra-

verse apply flushes and fences only to reads and writrs of

fields in the nodes around the "destination" of the opera-

tion, where operations actually take effect. We also added

the state-of-the-art ad hoc construction for sets: SOFT and

LinkFree by Zuriel et al.’s [41]. This allowed testing the per-

formance of data structures automatically output by Mirror

to highly optimized hand made data structures whose design

requires high expertise. In addition, we also tested our con-

struction against an Intel’s engine, Cmap in pmemkv [38],

which is a persistent lock-based key-value datastore.

6.2 One Replica on DRAM

We first checked the performance where the volatile replica

of the data structure output by the Mirror transformation

is placed in the volatile memory (DRAM), and the other

(persistent) replica is placed in the non-volatile memory.

This configuration enabled both advantages of the Mirror

transformation: no persisting of reads, and fast DRAM read

executions.

6.2.1 List Scalability. The results for the Linked-List’s

scalability are shown in Figure 6 (a). We ran 1 − 16 threads,

where above 8 threads, we cross the NUMA-node boundaries,

which leads to some threads reading from further and slower

memory. The list is initialized with 128 keys over a key

range of 0 − 255, and the workload executes randomized

80% look-ups, 10% inserts and 10% deletes. Since the list

is small, it resides on the cache, and therefore sometimes

the original non-persistent list ListOriginalDRAM from [21],

has the same throughput as its version ListOriginalNVMM

that executes on the NVMM, up until crossing the node

boundaries. (The non-persistent version executes no flushes

or fences). Crossing the NUMA-node boundaries makes data

go through the memory and then the use of DRAM implies

faster execution.

Looking at the three general techniques for durability, we

see that the persistent list output by the Mirror transfor-

mation outperforms the list output by NVTraverse [17] by

2.88x − 8.7x on 1 − 16 threads respectively. The list output

by NVTraverse outperforms the Izraelevitz et al. [27] list

by 29x for one thread, 7.7x for 8 threads and 5.6x for 16

threads. Throughout the experiments, this advantage of the

data structures’ output by Mirror over their competitors is

evident. It remains to compare to the hand made version of

the linked list of Zuriel et al. [41], we notice that our list

and Zuriel’s list are comparable up to 4 threads, but when

contention becomes higher, meaning that more writes oc-

cur because there are more running threads, Mirror’s list

outperforms Zuriel’s list by up to 35% on 8 running threads.

More threads means more writes, more write-backs, and

more cache misses that are served faster on DRAM for the

Mirror data structure. The NUMA effects are more chaotic,

making the Mirror list extremely successful, but we leave the

study of NUMA behavior on non-volatile memory to future

work.

6.2.2 List Varying Size. Next, we measured the through-

put for varying list sizes, with 8 running threads, and a work-

load of 80% reads, 10% inserts, and 10% deletes. The results

appear in Figure 6 (b). Notice that as lists become larger

with dominating traversal times, the differences between

the various implementations become less noticeable. When

traversals dominate performance, the different number of

flushes/fences become less crucial. Long lists are not used

in practice as it does not make sense to traverse a thousand

nodes in order to locate the desired key.

Wemostly see the same trends that we saw earlier. Up until

the range of 8192, we notice that the Mirror construction

outperforms NVTraverse by 3.6x − 1.25x on ranges of 256 −

2048 keys. For larger ranges of keys, we get comparable

performance.

6.2.3 List Updates. Figure 6 (c) studies the performance

of workloads with various percent of updates with 8 running

threads, and a list of size 128. On the read-onlyworkloadwith

0% updates, loads are obtained from the cache sowe expect all

algorithms that do not execute any flush/fence instructions to

perform excellently. This includes both original non-durable

versions (either executing on DRAM or on NVMM), the

Mirror list, and Zuriel’s hand-made Link-Free algorithm.

The 95% confidence intervals for all these algorithms overlap.

Zuriel’s SOFT behaves differently because it consumes more

space with its split nodes. As the update percentage grows,

the performances of all implementations decrease, as there

is more contention of writes on the data structure, but the

trend among the compared algorithms remains the same.

6.2.4 Hash-Table, BST and Skip-List Scalability. Mov-

ing to much larger data structures that do not fit into the

cache, we now examine the hash-table, the binary search

tree (BST) and the skip-list scalability, presented in Figures 6

(d), (g) and (j). We ran 80% − 10% − 10% look-ups-inserts-

deletes with a structure size of 8M nodes. Here, memory ac-

cesses (reads andwrites) from themainmemory, whether the

DRAM or the NVMM, dominate the performance. Accessing

the DRAM is much cheaper, and on a single thread execution

we seeMirror’s hash-table outperforming the hash-table gen-

erated by NVTraverse, and Zuriel’s hash-tables by a factor

of 1.8x. These three competitors behave similarly to each

others. With 8 threads the difference grows to 2x and with

16 threads to 2.5x. For the BST, we see Mirror’s BST out-

performing NVTraverse’s BST by a factor of 1.84x-2.33x on

1 − 16 threads. For the skip-list, the difference even grows to

a factor of 2.1x-2.65x on 1 − 16 threads. The fact that reads

are never persisted, in addition to the fact that reads access

1227

Mirror: Making Lock-Free Data Structures Persistent PLDI ’21, June 20ś25, 2021, Virtual, Canada

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 6. NVMM throughput results with one replica of Mirror placed on DRAM (a). Linked-List, varying number of threads, 80% lookups,

128 nodes. (b). Linked-List, varying size, 8 threads, 80% lookups. (c). Linked-List, varying update percentage, 8 threads, 128 nodes. (d).

Hash-Table, varying number of threads, 80% lookups, 8M nodes. (e). Hash-Table, varying size, 8 threads, 80% lookups. (f). Hash-Table, varying

update percentage, 8 threads, 8M nodes. (g). BST, varying number of threads, 80% lookups, 8M nodes. (h). BST, varying size, 8 threads, 80%

lookups. (i). BST, varying update percentage, 8 threads, 8M nodes. (j). Skip-List, varying number of threads, 80% lookups, 8M nodes. (k).

Skip-List, varying size, 8 threads, 80% lookups. (l). Skip-List, varying update percentage, 8 threads, 8M nodes. (m). Hash-Table, varying

number of threads, 80% lookups, 8M nodes. (n). Hash-Table, varying update percentage, 8 threads, 8M nodes. (o). Hash-Table, varying update

percentage, 8 threads, 32M nodes.

1228

PLDI ’21, June 20ś25, 2021, Virtual, Canada Michal Friedman, Erez Petrank, and Pedro Ramalhete

DRAM, benefits the Mirror BST and skip-list considerably,

especially with data structures that do not fit in the cache.

6.2.5 Hash-Table, BST and Skip-List Varying Sizes.

We now consider the effect of running varying sizes of hash-

tables BTSs and skip-lists with 8 threads, and 80%−10%−10%

look-ups-inserts-deletes. The results are depicted in Figures 6

(e), (h) and (k). Excluding the smallest 8K size, the data struc-

tures do not fit in the cache and need to be read from the

memory. Since Mirror’s data structures use two replicas

(and double the memory consumption) they suffer more

cache misses. This is why they do not perform as well as the

original (non-persistent) versions of the data structures and

Zuriel’s hand-made (persistent) data structure on 8K struc-

tures’ size. Nevertheless, the data structures generated by

the Mirror transformation always outperform the data struc-

tures output by NVTraverse and Izraelevitz’s et al. When the

size of the data structure grows to 256K keys, no implementa-

tion is small enough to fit in the Last Level Cache (LLC) and

we see the same trends as before: reading from the NVMM

and persisting the reads downgrades the performance. The

Mirror’s hash-table outperforms Zuriel et al.’s link-free hash-

table by a factor of 1.5xś3x, and it outperforms NVTraverse

by a factor of 2.8xś3.4x, for the larger (realistic) structure

sizes of 255Kś8M nodes.

6.2.6 Hash-Table, BST and Skip-List Updates. We also

evaluated the hash-tables, BST and skip-lists to examine the

impact of various update workloads. We ran 8 threads with

8M nodes. The related graphs are presented in Figures 6 (f),

(i) and (l). We also tested a larger data structure, a hash-table

with 8 threads and 32M nodes ,to see if it makes any differ-

ence. The results are depicted in Figure 6 (o). On a read-only

workload, the data structures generated by the Mirror trans-

formation perform similarly to the non-persistent original

data structure executing on the DRAM, simply because they

both access the DRAM only. But as the percentage of writes

increase, the throughput of the Mirror data structures de-

grades, as writes are executed on the non-volatile memory as

well. Nevertheless, Mirror’s structures beats all other persis-

tent data structure significantly, in both sizes. The only place

where SOFT and Link-Free results are better than Mirror’s

results are in 32M nodes and above 50% updates.

6.2.7 Lock-Based Key-Value Datastore. To compare

our construction with a lock-based data structure, we

used the concurrent key-value store from Intel’s pmemkv

library [38], which is optimized for persistent memory.

We tested Cmap, which was the only concurrent non-

experimental engine that was provided at the time we tested.

Since it was based on a hash-table, we ran it against Mirror’s

hash-table. We used the pmemkv-bench [26] which is a test-

ing framework based on db-bench from LevelDB [19] and

RocksDB [15].

We ran the tests with 8M keys of a size 8B. The value

size was 8B as well and the benchmark executes randomized

reads and writes. The scalability of both of those key-value

stores are shown in Figure 6 (m) with 80% reads and 20%

writes. We notice that the Mirror’s construction outperforms

Cmap significantly asMirror is lock-free and takes advantage

of its DRAM copy. Mirror’s hash-table outperforms Cmap

by 2.85x-3.65x on 1 − 16 threads.

The same trend is shown for various update workloads

with 8 running threads, depicted in Figure 6 (n). Mirror per-

forms better by 1.67x-3.95x on 0%− 100% writes respectively.

We conclude this part of the evaluation, where the volatile

replica is placed on the DRAM, that even though the Mirror

construction executes two writes, it still outperforms other

durable constructions due to its usage of DRAM. Next, we

check how Mirror’s data structures behave when both repli-

cas are placed on non-volatile memory. It may be important

for possible future architectures in which DRAM will not be

incorporated.

6.3 Mirror with Both Replicas on NVMM

Since volatile memory may not be available in some future

platforms, it is interesting to check how Mirror’s data struc-

tures performs when we allocate both of the replicas on the

persistent memory. We still expect to see benefits from never

persisting a read value, but we also expect reduced perfor-

mance due to slower read accesses to the volatile replica

(which is now on non-volatile memory), and also writing

twice is more costly. In the evaluation that follows, we see

that when the two replicas reside on non-volatile memory,

Mirror is competitive with NVTraverse, sometimes better

and sometimes worse, yet Mirror is somewhat easier to im-

plement.

6.3.1 The Linked List. Figures 7 (a) - (c) show the per-

formance of the linked list with the same workloads as in

Figure 6. As expected, writing to NVMM has a much higher

cost than writing to the DRAM, as we write twice to the

two replicas. Mirror’s data structures still perform better

than state-of-the-art general constructions (NVTraverse and

Izraelevitz). Nevertheless, Zuriel’s hand-made lists, the SOFT

and Link-Free, perform better on longer lists and on work-

loads with more than 20% writes. Link-Free and SOFT use

an optimization that eliminates repeated redundant persist-

ing operations. This optimization helps most with a low

percentage of updates and low contention. But managing

this optimization with more than 20% updates is costly and

not as useful. This is why Mirror’s data structures compete

well with the Zuriel’s manually optimized data structures in

workloads with higher update percentage. As before, when

the list grows, the traversals dominate the performance, and

the differences between implementations reduce.

1229

Mirror: Making Lock-Free Data Structures Persistent PLDI ’21, June 20ś25, 2021, Virtual, Canada

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7. NVMM throughput results. Both copies of Mirrors on NVMM (a). Linked-List, varying number of threads, 80% lookups, 128

nodes. (b). Linked-List, varying size, 8 threads, 80% lookups. (c). Linked-List, varying update percentage, 8 threads, 128 nodes. (d). Hash-Table,

varying number of threads, 80% lookups, 8M nodes. (e). Hash-Table, varying size, 8 threads, 80% lookups. (f). Hash-Table, varying update

percentage, 8 threads, 8M nodes. (g). BST, varying number of threads, 80% lookups, 8M nodes. (h). BST, varying size, 8 threads, 80% lookups.

(i). BST, varying update percentage, 8 threads, 8M nodes. (j). Skip-List, varying number of threads, 80% lookups, 8M nodes. (k). Skip-List,

varying size, 8 threads, 80% lookups. (l). Skip-List, varying update percentage, 8 threads, 8M nodes.

6.3.2 Hash-Table, BST and Skip-List. The Hash-Table,

the BST and the Skip-List results are shown in Figures 7 (d) -

(l). Interestingly, we see that the extra cost of writing to two

different memory locations has a significant impact in this

case, and Mirror does not come out best. In workloads of at

most 10% updates, Mirror’s data structures are comparable

to those of NVTraverse, because the extra writing cost is

not as significant as the benefit of eliminating the need to

persist the reads. In contrast, for workloads that require more

than 20% writes, NVTraverse becomes better. Moreover, the

1230

PLDI ’21, June 20ś25, 2021, Virtual, Canada Michal Friedman, Erez Petrank, and Pedro Ramalhete

optimization for the hand-made implementations, and the

fact that they do not persist pointers, avoids extra flushes

and fences, which gives such implementations an advantage

over the general techniques. In terms of data structure size,

for smaller data structures we see an advantage for Mirror,

but NVTraverse becomes faster as the size grows.

7 Related Work

There are several general techniques for obtaining durable

data structures from lock-free ones. Izraelevitz et al. [27]

presented a general technique that provides durable lineariz-

ability and can be applied to any lock-free data structure.

This generality comes at the cost of efficiency: a fence must

be inserted before every write operation followed by a flush,

while a flush and a fence must be issued after every read

operation. The second insertion is particularly inefficient,

given that most data structure operations perform multiple

loads on different memory locations and executing one flush

followed by a fence for each of them is costly. To address

this hight overhead, Zuriel et al. [41] presented SOFT and

Link-Free, a technique applicable to set-like data structures,

which eliminates the need to persist pointers.

Friedman et al. [17] introduced NVTraverse, which is a

general technique for constructing durable data structures.

NVTraverse reduces the cost of most of the loads for traversal

data structures, defined in [17]. Traversal data structures start

with a read-only phase, called traversal followed by a critical

phase that may perform updates. Using the NVTraverse

construction, most of the read values from the traversal phase

are not persisted, reducing the persistency cost. NVTraverse

provides an automatic way to insert flushes and fences but

it requires the lock-free data structure to be in a special

traversal form. Transforming a data structure into a traversal

form may require some efforts and proving that it satisfies

all the traversal conditions require some expertise. Moreover,

in some cases conversion to the traversal form may reduce

efficiency, e.g. trimming virtually deleted elements during a

traversal in a linked-list. In terms of applicability, we are not

aware of any known data structure that cannot be converted

to the traversal form. Unlike Mirror, NVTraverse does not

require underlying services such as a specific allocator and

it has a smaller footprint.

Many generic techniques exist that can take a sequential

implementation of a data structure and make it concurrent

and durable [20, 28ś32, 40]. Some of these constructions are

capable of generating durable data structures with lock-free

progress [4, 10, 12, 37]; however, these transformations seri-

alize update operations, putting them at a severe scalability

disadvantage when it comes to write-intensive workloads,

as shown in [17].

Pronto [33] is a recent technique that combined DRAM

with NVMM to yield high throughput for lock-based concur-

rency. In Pronto, two replicas of the data structure exist, one

in DRAM and the other in NVMM. The data structure code

must be modified using a set of specified rules.

8 Conclusions

In this paper we presented a simple and effective automatic

transformation from lock-free linearizable data structures

to persistent lock-free data structures that satisfy durable

linearizability. Our transformation can make use of a hy-

brid system where non-volatile main memory co-exists with

conventional DRAM and generate data structures that are ex-

tremely efficient in this environment. Evaluation of a linked-

list, a hash table, and a binary search tree demonstrates that

our method always beats state-of-the-art transformations

for lock-free data structures, sometimes by a factor of up

to 10x, depending on the percentage of read operation, the

size of the structure, and the number of executing threads.

Applying the transformation on a given lock-free data struc-

ture is easy, involving type annotation to replace the usage

of std::atomic with patomic, replacing the calls to the

system allocator with the Mirror allocator, and providing a

traversal function for the nodes in the data structure.

Acknowledgments

We thank Michael Bond for his helpful comments on this

paper. This work is supported by the United States - Israel

BSF grant No. 2018655, and by an Azrieli PhD Fellowship.

References
[1] AMD. [n.d.]. AMD64 Architecture Programmer’s Manual. https://www.

amd.com/system/files/TechDocs/24594.pdf

[2] ARM. 2018. ARM Architecture Reference Manual ARMv8. https://static.

docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf

[3] Hillel Avni and Trevor Brown. 2016. Persistent Hybrid Transactional

Memory for Databases. Proc. VLDB Endow. 10, 4 (Nov. 2016), 409ś420.

https://doi.org/10.14778/3025111.3025122

[4] H. Alan Beadle, Wentao Cai, Haosen Wen, and Michael L. Scott. 2020.

Nonblocking Persistent Software Transactional Memory. In Proceed-

ings of the 25th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming (San Diego, California) (PPoPP ’20). As-

sociation for Computing Machinery, New York, NY, USA, 429ś430.

https://doi.org/10.1145/3332466.3374506

[5] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. 2016.

Makalu: Fast Recoverable Allocation of Non-volatile Memory. In Pro-

ceedings of the 2016 ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applications (Amster-

dam, Netherlands) (OOPSLA 2016). ACM, New York, NY, USA, 677ś694.

https://doi.org/10.1145/2983990.2984019

[6] C++. [n.d.]. Std::atomic Library. https://en.cppreference.com/w/cpp/

atomic

[7] Wentao Cai, HaosenWen, H. Alan Beadle, Chris Kjellqvist, Mohammad

Hedayati, and Michael L. Scott. 2020. Understanding and Optimizing

PersistentMemoryAllocation. In Proceedings of the 2020 ACMSIGPLAN

International Symposium onMemory Management (London, UK) (ISMM

2020). 60ś73.

[8] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.

Atlas: Leveraging Locks for Non-volatile Memory Consistency. In

Proceedings of the 2014 ACM International Conference on Object Oriented

Programming Systems Languages & Applications (Portland, Oregon,

1231

https://www.amd.com/system/files/TechDocs/24594.pdf
https://www.amd.com/system/files/TechDocs/24594.pdf
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://doi.org/10.14778/3025111.3025122
https://doi.org/10.1145/3332466.3374506
https://doi.org/10.1145/2983990.2984019
https://en.cppreference.com/w/cpp/atomic
https://en.cppreference.com/w/cpp/atomic

Mirror: Making Lock-Free Data Structures Persistent PLDI ’21, June 20ś25, 2021, Virtual, Canada

USA) (OOPSLA ’14). ACM, New York, NY, USA, 433ś452. https://doi.

org/10.1145/2660193.2660224

[9] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-

jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:

Making Persistent Objects Fast and Safe with next-Generation, Non-

Volatile Memories. In Proceedings of the Sixteenth International Con-

ference on Architectural Support for Programming Languages and Op-

erating Systems (Newport Beach, California, USA) (ASPLOS XVI). As-

sociation for Computing Machinery, New York, NY, USA, 105ś118.

https://doi.org/10.1145/1950365.1950380

[10] Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. 2018. The

Inherent Cost of Remembering Consistently. In Proceedings of the

30th Symposium on Parallelism in Algorithms and Architectures. ACM,

259ś269.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking Cloud Serving Systems with

YCSB.

[12] Andreia Correia, Pascal Felber, and Pedro Ramalhete. 2020. Persistent

Memory and the Rise of Universal Constructions. In Proceedings of the

Fifteenth European Conference on Computer Systems (Heraklion, Greece)

(EuroSys ’20). Association for Computing Machinery, New York, NY,

USA, Article 5, 15 pages. https://doi.org/10.1145/3342195.3387515

[13] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor

Zablotchi. 2018. Log-Free Concurrent Data Structures. In Proceedings

of the 2018 USENIX Conference on Usenix Annual Technical Conference

(Boston, MA, USA) (USENIX ATC ’18). USENIX Association, USA.

[14] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asyn-

chronized Concurrency: The Secret to Scaling Concurrent Search Data

Structures.

[15] Facebook. [n.d.]. RocksDB. https://github.com/facebook/rocksdb

[16] Keir Fraser. 2003. Practical lock-freedom.

[17] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E. Blelloch,

and Erez Petrank. 2020. NVTraverse: In NVRAM Data Structures, the

Destination is More Important than the Journey. In Proceedings of the

41st ACM SIGPLAN Conference on Programming Language Design and

Implementation (London, UK) (PLDI 2020). Association for Computing

Machinery, New York, NY, USA, 377ś392. https://doi.org/10.1145/

3385412.3386031

[18] Michal Friedman, Maurice Herlihy, Virendra J. Marathe, and Erez

Petrank. 2018. A persistent lock-free queue for non-volatile memory.

In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP 2018, Vienna, Austria, February

24-28, 2018, Andreas Krall and Thomas R. Gross (Eds.). ACM, 28ś40.

https://doi.org/10.1145/3178487.3178490

[19] Google. [n.d.]. LevelDB. https://github.com/google/leveldb

[20] Jinyu Gu, Qianqian Yu, Xiayang Wang, Zhaoguo Wang, Binyu Zang,

Haibing Guan, and Haibo Chen. 2019. Pisces: A Scalable and Efficient

Persistent Transactional Memory. In Proceedings of the 2019 USENIX

Conference on Usenix Annual Technical Conference (Renton, WA, USA)

(USENIX ATC ’19). USENIX Association, USA, 913ś928.

[21] Timothy L Harris. 2001. A pragmatic implementation of non-blocking

linked-lists. Springer, 300ś314.

[22] Maurice P Herlihy and Jeannette M Wing. 1990. Linearizability: A

correctness condition for concurrent objects. 12, 3 (1990), 463ś492.

[23] Intel. [n.d.]. Developers Intel64 and IA-32 Architectures SoftwareManuals

Combined. https://software.intel.com/content/www/us/en/develop/

articles/intel-sdm.html

[24] Intel. [n.d.]. Intel Architecture Instruction Set Extensions Program-

ming Reference. https://software.intel.com/content/www/us/en/

develop/download/intel-architecture-instruction-set-extensions-

programming-reference.html

[25] Intel. [n.d.]. Persistent Memory Library. https://pmem.io.

[26] Intel. [n.d.]. pmemkv-bench. https://github.com/pmem/pmemkv-

bench

[27] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. 2016.

Linearizability of persistent memory objects under a full-system-crash

failure model. In International Symposium on Distributed Computing.

Springer, 313ś327.

[28] A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas. 2018. DHTM: Durable

Hardware Transactional Memory. In 2018 ACM/IEEE 45th Annual

International Symposium on Computer Architecture (ISCA). 452ś465.

https://doi.org/10.1109/ISCA.2018.00045

[29] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F.

Wenisch. 2016. High-Performance Transactions for Persistent Mem-

ories. In Proceedings of the Twenty-First International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems (Atlanta, Georgia, USA) (ASPLOS ’16). Association for Computing

Machinery, New York, NY, USA, 399ś411. https://doi.org/10.1145/

2872362.2872381

[30] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei

Wu, Weimin Zheng, and Jinglei Ren. 2017. DudeTM: Building durable

transactions with decoupling for persistent memory. In Proceedings of

the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems. ACM, 329ś343.

[31] Virendra J. Marathe, Achin Mishra, Amee Trivedi, Yihe Huang, Faisal

Zaghloul, Sanidhya Kashyap, Margo Seltzer, Tim Harris, Steve Byan,

Bill Bridge, and Dave Dice. 2018. Persistent Memory Transactions.

CoRR abs/1804.00701 (2018). arXiv:1804.00701 http://arxiv.org/abs/

1804.00701

[32] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi

Zhou, Ramnatthan Alagappan, Karin Strauss, and Steven Swanson.

2017. Atomic In-Place Updates for Non-Volatile Main Memories

with Kamino-Tx. In Proceedings of the Twelfth European Conference

on Computer Systems (Belgrade, Serbia) (EuroSys ’17). Association

for Computing Machinery, New York, NY, USA, 499ś512. https:

//doi.org/10.1145/3064176.3064215

[33] AmirsamanMemaripour, Joseph Izraelevitz, and Steven Swanson. 2020.

Pronto: Easy and Fast Persistence for Volatile Data Structures. In Pro-

ceedings of the Twenty-Fifth International Conference on Architectural

Support for Programming Languages and Operating Systems (Lausanne,

Switzerland) (ASPLOS ’20). Association for Computing Machinery,

New York, NY, USA, 789ś806. https://doi.org/10.1145/3373376.3378456

[34] Aravind Natarajan and Neeraj Mittal. 2014. Fast Concurrent Lock-free

Binary Search Trees. ACM.

[35] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2019.

Persistency Semantics of the Intel-X86 Architecture. Proc. ACM Pro-

gram. Lang. 4, POPL, Article 11 (2019), 31 pages.

[36] Azalea Raad, John Wickerson, and Viktor Vafeiadis. 2019. Weak Per-

sistency Semantics from the Ground up: Formalising the Persistency

Semantics of ARMv8 and Transactional Models. Proc. ACM Program.

Lang. 3, OOPSLA, Article 135 (2019).

[37] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen.

2019. OneFile: A Wait-Free Persistent Transactional Memory. In 2019

49th Annual IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN). IEEE, 151ś163.

[38] Steve Scargall. 2020. pmemkv: A Persistent In-Memory Key-Value Store.

Apress, Berkeley, CA, 141ś153. https://doi.org/10.1007/978-1-4842-

4932-1_9

[39] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.

Mnemosyne: Lightweight Persistent Memory. In Proceedings of the

Sixteenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems (Newport Beach, California,

USA) (ASPLOS XVI). Association for Computing Machinery, New York,

NY, USA, 91ś104. https://doi.org/10.1145/1950365.1950379

[40] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.

Mnemosyne: Lightweight Persistent Memory. SIGPLAN Not. 46, 3

(March 2011), 91ś104. https://doi.org/10.1145/1961296.1950379

[41] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez

Petrank. 2019. Efficient Lock-Free Durable Sets.

1232

https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.1145/1950365.1950380
https://doi.org/10.1145/3342195.3387515
https://github.com/facebook/rocksdb
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3385412.3386031
https://doi.org/10.1145/3178487.3178490
https://github.com/google/leveldb
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://pmem.io.
https://github.com/pmem/pmemkv-bench
https://github.com/pmem/pmemkv-bench
https://doi.org/10.1109/ISCA.2018.00045
https://doi.org/10.1145/2872362.2872381
https://doi.org/10.1145/2872362.2872381
https://arxiv.org/abs/1804.00701
http://arxiv.org/abs/1804.00701
http://arxiv.org/abs/1804.00701
https://doi.org/10.1145/3064176.3064215
https://doi.org/10.1145/3064176.3064215
https://doi.org/10.1145/3373376.3378456
https://doi.org/10.1007/978-1-4842-4932-1_9
https://doi.org/10.1007/978-1-4842-4932-1_9
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.1145/1961296.1950379

	Abstract
	1 Introduction
	2 Model and Preliminaries
	2.1 Persistent Memory
	2.2 Explicit Write-Backs
	2.3 Durable Linearizability

	3 The Mirror Library
	3.1 Replica Location
	3.2 Interface

	4 Mirror Underlying Mechanism
	4.1 Implementation
	4.2 Persistent Roots
	4.3 Memory Reclamation

	5 Correctness
	6 Evaluation
	6.1 Experimental Setup
	6.2 One Replica on DRAM
	6.3 Mirror with Both Replicas on NVMM

	7 Related Work
	8 Conclusions
	References

