
Efficient Concurrent Size

Hen Kas Sharir

Efficient Concurrent Size

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

Hen Kas Sharir

Submitted to the Senate
of the Technion — Israel Institute of Technology

Av 5784 Haifa September 2024

This research was carried out under the supervision of Prof. Erez Petrank, in the Faculty
of Computer Science.

The author of this thesis states that the research, including the collection, processing
and presentation of data, addressing and comparing to previous research, etc., was
done entirely in an honest way, as expected from scientific research that is conducted
according to the ethical standards of the academic world. Also, reporting the research
and its results in this thesis was done in an honest and complete manner, according to
the same standards.

Acknowledgements

I would like to thank, first and foremost, my advisor, Prof. Erez Petrank, whose
expertise, guidance, and encouragement have been invaluable throughout this journey.
I am also profoundly grateful to Gal Sela, with whom I worked closely throughout this
thesis. Your collaborative spirit, commitment, and insights have greatly enriched my
research. To my family, I am immensely thankful for your unwavering support and
belief in me. Your encouragement and patience have been the foundation that allowed
me to pursue this work.

The generous financial help of the Technion is gratefully acknowledged.

Contents

List of Figures

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Preliminaries 11

3 Previous size solutions 13

4 A Study of Synchronization Methods for size 15
4.1 Handshakes . 15

4.1.1 Overview . 15
4.1.2 A size design with handshakes 17
4.1.3 Data-structure transformation 17
4.1.4 Optimization: size operations join the previous handshake 22
4.1.5 Correctness of the handshake-based methodology 23

4.1.5.1 Two handshake rationale 23
4.1.5.2 Linearization points . 24
4.1.5.3 Linearizability proof . 25

4.2 Optimistic Approach . 35
4.2.1 Data-structure transformation 36

4.3 Locks . 41
4.3.1 Data-structure transformation 41

5 Evaluation 45
5.1 Implementation details . 47

5.1.1 Thread registration . 47
5.1.2 General Optimizations . 47

5.1.2.1 Avoid false sharing . 47
5.1.2.2 Partial array iteration 48
5.1.2.3 Usage of tailored opKinds 49

5.1.3 Memory Model . 49
5.2 Overhead of size . 49
5.3 Size Scalability . 54
5.4 MAX_TRIES measurements . 55
5.5 Progress Guarantees . 57

6 Discussion and Conclusion 59

Hebrew Abstract i

List of Figures

4.1 HandshakeSizeCalculator interface methods 19
4.2 HandshakeSizeCalculator auxiliary methods 20
4.3 A transformed data structure with handshakes 21
4.4 HandshakeCountersSnapshot methods . 21
4.5 size concurrent with an insert operation that ran concurrently with a

dependent delete operation . 23
4.6 An execution with a single handshake in which the size computation is

concurrent with a slow insert that ran concurrently with a fast dependent
delete . 24

4.7 An execution with a slow insert that takes part in a second handshake
with size and updates the metadata after a dependent fast delete executes 26

4.8 OptimisticSizeCalculator interface methods 39
4.9 OptimisticSizeCalculator auxiliary methods 40
4.10 A transformed data structure with an optimistic scheme 41
4.11 A transformed data structure with a readers-writer lock 43
4.12 LocksSizeCalculator methods . 44

5.1 ThreadID class methods . 48
5.2 Overhead on skip list operations . 51
5.3 Overhead on BST operations . 52
5.4 Overhead on hash table operations . 53
5.5 size scalability in skip list . 54
5.6 size scalability in BST . 54
5.7 size scalability in hash table . 54
5.8 MAX_TRIES overhead and scalability in skip list 55
5.9 MAX_TRIES overhead and scalability in BST 56
5.10 MAX_TRIES overhead and scalability in hash table 56

Abstract

The size of collections or maps, and data structures in general, constitutes a fundamen-
tal property that plays a crucial role in various programming paradigms. An accurate
and efficient implementation of the size method is required in most programming en-
vironments to ensure correct functionality and optimal performance. However, in a
concurrent environment, integrating a linearizable concurrent size operation introduces
a significant overhead on all operations of the data structure, even when the size method
is not explicitly invoked during execution. This overhead can impact the overall sys-
tem performance, making it a critical consideration in the design and implementation
of concurrent data structures. In this work, we present a comprehensive study of
synchronization methods aimed at improving the performance of data structures in
concurrent environments. Specifically, we analyze and compare the effectiveness of a
handshake technique commonly used in conjunction with concurrent garbage collection,
an optimistic technique, and a traditional lock-based technique. Our evaluation against
the state-of-the-art size methodology demonstrates that the overhead associated with
concurrent size operations can be significantly reduced by selecting the appropriate syn-
chronization approach. However, it is important to note that there is no one-size-fits-all
solution; different scenarios and levels of contention require different synchronization
strategies, as rigorously shown in this study. Our findings align with general trends in
concurrent computing, where in scenarios characterized by low contention, optimistic
and lock-based approaches tend to be the most effective, while in high contention envi-
ronments, the handshake approach and the original wait-free method prove to be more
efficient.

1

2

Abbreviations and Notations

CAS : Compare And Swap
BST : Binary Search Tree
YCSB : Yahoo! Cloud Serving Benchmark
op : Operation

3

4

Chapter 1

Introduction

With the proliferation of multicores in modern computing architectures, the significance
of concurrent programming has become acute. Concurrent data structures are a key
component of concurrent systems, making their correctness and performance crucial. A
fundamental property of data structures is their size, which is the number of elements
they contain. The size method is widely used and its implementation is required for
collections in many progranmming environments. For example, in Java, in order to
implement the elementary Collection and Map interface classes, one is required to
implement the size method.

In spite of the importance of the size method, until recently it was not known how to
compute the size of a data structure concurrently efficiently and correctly. Traditional
methods were either very slow or incorrect. For example, taking a concurrent snapshot
of the data structure and traversing it to count its elements is correct but infeasible
(for large data structures). In contrast, naively maintaining a global size variable and
updating it with each operation is not linearizable (i.e., it is incorrect). The latter is
currently in use in some Java libraries with an adequate warning that the result may be
inaccurate. See for example collections and maps within the java.util.concurrent
package, such as ConcurrentSkipListMap, and ConcurrentHashMap.

Recently, Sela and Petrank [SP22a] proposed a new mechanism for computing a
linearizable concurrent size for sets and dictionaries, significantly improving efficiency
compared to previous methods. While their algorithm represents the first relatively
efficient solution to the problem of concurrent size computation, improving upon earlier
non-linearizable or inefficient methods, it still incurs certain overheads. Specifically,
their mechanism incurs a performance cost of 1–20% on the standard operations of the
data structure (i.e., insert, delete, contains). This overhead comes from the requirement
that data structure operations take steps to cooperate with a potential concurrent size

method. The cooperation affects performance of the standard operations even when
the size operation is not used at all, albeit at a lower overhead. Such an overhead could
be problematic, especially for workloads that execute the size operation infrequently,
or not at all.

5

The goal of this thesis is to provide the first study of diverse synchronization meth-
ods aimed at mitigating the overhead required for supporting a linearizable concurrent
size. While following the general scheme presented by Sela and Petrank, our study
covers a variety of synchronization methods, including handshake synchronization—
that is often used with concurrent garbage collection, optimistic synchronization, and
lock-based synchronization. All examined methods provide a correct (linearizable) con-
current size, and our goal is to identify the best scheme for widespread scenarios (i.e.,
workload characteristics). We examine the overhead that a concurrent size places on
standard data structure operations (such as insert or contains), as well as the efficiency
of the concurrent size operation itself. These synchronization methods are compared
with the original wait-free synchronization proposed by Sela and Petrank [SP22a] (de-
noted SP), which is the most efficient linearizable size method existing in the literature.

Let us first clarify why the naive method described above, currently implemented
in Java and other languages, does not provide correctness. This method maintains a
global size variable, which is updated with each update of the data structure. The
primary issue with this approach in a concurrent environment is that the the data
structure and the size variable are updated separately and not atomically. Therefore,
after updating the data structure and before updating the size variable, there is a period
of time of inconsistency between the two that might be exposed by a concurrent size

operation. To illustrate this, consider a scenario in which four threads insert items into
an initially empty data structure (with a size variable initially set to zero). However,
they are temporarily preempted before updating the size variable. Then, three other
threads remove three objects and decrement the size variable three times. Calling the
size operation at this point will return a negative size of -3. This is one example of
a size operation yielding a value that fails to represent the data structure’s state at
any specific point in time. Other methods for computing the size (that are used in real
systems) may exhibit even more severe inaccuracies. We focus on using size metadata
to efficiently compute the size, while using appropriate synchronization methods to
solve the above issue and yield correct solutions.

Sela and Petrank introduced a (correct) mechanism for concurrent size, which solves
the above issue. For a more detailed overview of their method see Chapter 3. But in
short the mechanism works as follows. Each thread maintains two local size variables
representing the number of objects it has inserted into the data structure and the
number of the objects it has removed. This allows a swift local update of the appropriate
variable when an update is executed. When an insert or delete operation updates the
data structure, the thread updates its corresponding local size variable. A crucial
aspect of the mechanism is ensuring that the updates to the data structure and the
local size variables appear atomic to all other threads. Failure to achieve atomicity
may lead to inconsistencies, resulting in an incorrect concurrent size calculation. To
achieve atomicity in a lock-free manner, a helping mechanism is used. While this incurs
some overhead on all data structure accesses, it guarantees correctness in the form of

6

linearizability. Finally, when a size needs to be computed, a snapshotting mechanism
is applied to the local size variables of all threads, in order to obtain a consistent
(atomic) view of them all. The snapshot mechanism is crucial for correctness, but it
also introduces additional overhead on all data structure operations. This approach is
applicable to a variety of data structures and has been tested by Sela and Petrank on
three commonly used ones: a hash table, a skip list, and a binary search tree.

While the size mechanism of Sela and Petrank is correct and offers reasonable
efficiency for the size operation, it carries an overhead on the other data structure
operations that may discourage users from adopting it. Notably, an overhead of up to
more than 10% on data structure operations is observed even when the size() method
is not invoked. A natural question that arises is whether alternative synchronization
methods could offer a reduced overhead. The primary focus of this thesis is a study of
various alternative synchronization methods with the aim of minimizing this overhead.
Specifically, we investigate handshake synchronization, optimistic synchronization, and
lock-based synchronization techniques. For each of these methods, we present a correct
(linearizable) design for concurrent size, and we proceed to implement and evaluate
each algorithm in comparison to Sela and Petrank’s original method, which is the most
efficient linearizable option available before this research. We denote Sela and Petrank’s
original method as the wait-free method according to its synchronization method.

The first synchronization method that we study is handshakes, a concept initially
introduced in the context of concurrent and on-the-fly garbage collection [DG94, DL93,
DKL+00, LP01]. Handshakes allow threads to adapt their behavior to different exe-
cution phases. Originally, handshakes were devised to enable threads to cooperate
differently when a concurrent garbage collection was active or non-active. In a simi-
lar spirit, we harness the handshake mechanism to allow threads to operate (almost)
normally (on a fast path) when no size operation is active, while requiring them to co-
operate fully (on a slow path) when a size operation is invoked. This synchronization
method offers a tradeoff: It reduces the overhead on all other operations when no size

operation is in progress. However, the size operation itself suffers a reduced efficiency
due to the need to invoke the handshake mechanism and wait for the cooperation of all
threads before beginning an execution.

The second synchronization method we study is optimistic. In this approach mod-
ifications to the data structure are carried out with almost no cooperation, except for
announcing each modification. In tandem, the size operation optimistically assumes
that no updates of the data structure occur concurrently and attempts to optimisti-
cally collect the local size variables of all threads in order to sum them and compute the
overall size. If the collection is interrupted by a concurrent modification, the collection
is retried. After several attempts, the method transitions to a non-optimistic approach,
specially designed for this circumstance.

Finally, we investigate the utilization of lock synchronization. In this context, the
objective of the synchronization is to prevent the size method from executing con-

7

currently with data structure modifications. To improve performance, we employ a
reader-writer lock, with the size operation acquiring the write lock and updating op-
erations acquiring the read lock. This setup allows concurrency between the updating
operations, while preventing concurrent execution of the size operation, thereby ensur-
ing correctness.

The approaches we examine are primarily centered on linearizable data structures
implementing set or dictionary data types, but the underlying principles can potentially
be applied to various other data types. The optimistic approach and the lock-based
one may be applied to any linearizable set or dictionary, while the handshake-based ap-
proach imposes an additional requirement detailed in Chapter 2. All our methodologies
produce linearizable size-supporting data structures.

As for progress guarantees, the handshake-based methodology preserves the original
progress guarantees of insert, delete and contains. Namely, wait-free methods of the
original data structure remain wait-free in the transformed data structure, and the same
goes for lock-free or obstruction-free methods. The other methodologies preserve the
original progress guarantee of contains while making the insert and delete blocking. The
size operation itself is blocking in all our methodologies, unlike the wait-free guarantee
for size provided by the original method of [SP22a].

We have carefully designed and implemented a concurrent size method with each
of the aforementioned synchronization methods (along with additional methods that
did not perform well and have thus been omitted from this report). The results appear
in Section Chapter 5. It turns out that there is no one-size-fit-all solution. Different
scenarios call for different synchronization methods. The observed results vary by
the chosen data structure, the contention levels, the frequency of utilizing the size

operation, and by the workload (read intensive or update intensive). Nevertheless,
our findings align with general trends in concurrent computing. In low contention
scenarios, optimistic and lock-based approaches exhibit good performance, but their
efficacy diminishes when contention increases. In such cases, wait-free and handshake
approaches work best.

Hash table operations execute noticeably faster than the BST or skip list opera-
tions, resulting in a higher overhead when coordinating with the size() computation
for the hash table. Specifically, the average overhead of utilizing size with the BST
is 2.4% (with wait-free synchronization), while for the skip list it is 4.4% (with the
handshakes approach). For the hash function, on typical workloads of 5% updates and
95% read operations incur a similar overhead of 4% (with an optimistic approach).
However, in write-oriented workloads, this overhead increases to 10% (with wait-free
synchronization).

Additionally, we evaluated the scalability of the size operation when executed con-
currently with data structure updates. Similar trends emerge in this context as well.
For specific scenarios, synchronization methods that optimize the size scalability of the
size operation may differ from those that improve the performance of data structure

8

operations. We expect data structure performance to be a priority for users in the
majority of the cases, and thus its performance will probably guide the choice of the
adopted synchronization method.

In Chapter 2 we define the basic terms used in this work. Previous solutions are dis-
cussed in Chapter 3. A design of size with each of the three synchronization methods is
described in Chapter 4. The evaluation appears in Chapter 5 and we conclude in Chap-
ter 6. Moreover we bring a correctness proof for the involved handshake mechanism in
Section 4.1.5.

9

10

Chapter 2

Preliminaries

An execution is said to be linearizable when each of its operations appears to be com-
pleted in an instant, occurring between its invocation and response and termed its
linearization point, in accordance with the sequential specification of the data struc-
tures. A concurrent data structure is linearizable if all its executions meet this crite-
rion [HW90].

A concurrent object is said to be lock-free if, at any point in time, at least one of the
threads trying to access the object makes progress within a finite number of steps, even
if other threads are paused or delayed. Furthermore, a concurrent object framework is
wait-free when any operation by any thread can be completed within a finite number
of steps, without being influenced by the operational speed of other threads [Her91].

A set represents a unique assemblage of keys. This assemblage offers specific oper-
ational functions: the insert(k) function inserts the key k unless it is already present,
in which case it signals an error. Conversely, the delete(k) function removes k if found;
otherwise, it returns an error. The contains(k) function verifies the presence of k within
the set.

A dictionary, also known as a map or a key-value map, represents a distinctive
collection of keys, each paired with a corresponding value. Its operations parallel those
of a set, with the distinction of incorporating values. We will mainly discuss sets in
this thesis, yet the observations and assertions made here are also true for dictionaries.

All our methodologies may be applied to linearizable sets and dictionaries, while
the handshake-based methodology also imposes the following additional requirement
(which is the same requirement that the original wait-free mechanism imposes on the
data structures it may transform to size-supporting data structures [SP22a]): The
delete operation in the original data structure must perform a marking step before
physically unlinking. Crucially, the linearization point of the delete operation within
the original data structure must be at this marking step.

A snapshot of an object provides a captured state of that object at a specific point
in time. For a set, this is essentially an atomic view of all the elements currently in it.

A readers-writer lock is a synchronization primitive allowing multiple threads to

11

read or write to shared data without interfering with each other. It is made of two
locks: a read lock and an exclusive write lock. Multiple threads can hold the read lock
at the same time. If a thread has the read lock, no other thread can acquire the write
lock. Only one thread can hold the write lock at any given time. If a thread has the
write lock, no other thread can acquire either the read lock or the write lock.

The get-and-add operation is an atomic operation available in many concurrent
architectures. It atomically retrieves the current value of a variable and adds a specified
number to it (which can be negative).

Lastly, compare-and-swap (CAS) is an atomic operation available in concurrent ar-
chitectures. It checks an object’s current value against an expected value. If they
match, it updates the object with a new specified value. The outcome of this action
is given in two ways: its compareAndSet version yields a boolean value indicating the
success or failure of the operation, whereas its compareAndExchange version returns
the obtained current value.

12

Chapter 3

Previous size solutions

Traditional solutions for determining the size of data structures include solutions that
are either non-linearizable or highly inefficient. A simple solution that is occasionally
used in practical settings is to traverse the data structure and count its elements.
However, this approach can lead to significant errors and is highly inefficient for large
data structures. A second approach currently utilized in some systems is to let each
updating operation report the resulting number of elements in metadata accessible to
the size method for size computation. This solution is not linearizable. An extension
proposed in [AST12] also falls short of linearizability [SP22a]. Although linearizability
is the standard correctness model, other models can provide more relaxed guarantees,
such as offering upper and lower bounds on the size. For instance, this problem could
be addressed using other linearizability criterias such as the one proposed in [RK23],
which would allow the size method to return any value within a legitimate range of
linearizable values.

Finally, a solution that traverses a snapshot of a data structure using a linearizable
snapshot [PT13] does yield a linearizable solution but not an efficient one.

Recently, Sela and Petrank [SP22a] introduced a novel linearizable solution with
significant improvements upon efficiency compared to prior methods. This approach,
denoted SP in what follows, utilizes two local variables per thread, one of which tracks
the number of insertions and the other the number of deletions applied by the thread
to the data structure. Each update of the data structure begins by executing the actual
update, followed by an update to the associated count (of inserts or deletes). To obtain
linearizability, an operation does not take effect until the count is properly updated.
If a thread encounters an inserted node, for which the inserting thread has not yet
updated its count, it helps updating the count before using this node. A similar action
is taken with a node marked for deletion. The result of this helping mechanism is
that operations can be regarded as being linearized at the time when the thread’s local
count is updated. To ensure linearizability, the size method needs to take a linearizable
snapshot on all local counts to obtain a consistent view of them and compute the overall
size of the data structure. They utilize a specialized snapshot mechanism for that,

13

which requires adjustment of the insert, delete and contains operations to support size
snapshots. Further details appear in [SP22a].

An essential implementation component in the SP approach is the UpdateInfo class.
An object of this class is installed by insert and delete operations in the nodes on
which they operate, posting information about themselves, to enable other operations
to observe modifications being made to these nodes and detect whether they should
assist updating the associated metadata and how. Each inserted node and each node
marked for deletion is associated with an UpdateInfo object. Particularly, the installment
of an UpdateInfo object in a deleteInfo field in a node signifies its marking for deletion.

14

Chapter 4

A Study of Synchronization
Methods for size

This thesis studies three synchronization methods: handshakes, optimistic, and lock-
based for size. For each of these synchronization methods, we design a linearizable
size method focusing on improving efficiency. We then evaluate all of them against
the original wait-free method of [SP22a]. In this section, we describe the design of size
with each of these synchronization methods.

4.1 Handshakes

4.1.1 Overview

In this section, we propose a handshake-based approach for evaluating the size of a data
structure. The underlying idea is that many applications often perform data structure
operations without requiring the data structure’s size. Consequently, it appears inef-
ficient to impose an overhead continuously for a potential size operation, especially
when it is infrequently executed. To address this, we aim to segment the program into
distinct phases, ensuring that the overhead for the size operation is only incurred when
it is actually executed. When no size operation is triggered, the program should exe-
cute with minimal overhead. Essentially, our goal is to establish a fast path, resembling
normal data structure operations when no size operation is invoked, and a slow path
that manages concurrent size operations, incurring the necessary overhead.

Technically, the design involves creating both a fast path and a slow path and estab-
lishing a mechanism for transitioning between these execution phases. We have opted
for a straightforward approach: the fast path employs the original data structure opera-
tions without incurring overhead, while the slow path executes the implementation from
[SP22a]. However, transitioning between these phases is complex and involves some
overhead on both the slow and fast paths. The mechanism for phase transitions, par-
ticularly upon starting to execute a size operation, entails notifying all active threads

15

that a size operation is imminent, prompting them to shift to executing the slow path.
This can be done by halting all operations until all threads complete their currently
executing operations and switch to the slow path. After completing the size operation,
all threads halt again until they can collectively revert to the fast path. This strategy
ensures that either all threads are engaged in a fast path with no concurrent size, or all
threads execute the slow path while size concurrently executes. However, these phase
changes are costly, as threads pause and remain idle while waiting for all other threads
to complete their operations and switch to the required mode of operation. This cost
becomes acute if phase changes occur frequently.

In the realm of concurrent garbage collection, a similar synchronization issue arises
where threads must coordinate their actions during the execution of garbage collection,
yet can continue on a fast path when the collector is inactive. We adopt a method com-
monly employed in memory management known as handshakes [DG94, DL93, DKL+00,
LP01]. The concept involves an initiator prompting a phase change by incrementing
a global counter, thereby asking all other threads to acknowledge the phase changed.
Each thread periodically checks this variable and responds by setting its local thread
counter to match the global counter. Once all threads have responded, the handshake
concludes, enabling the initiator to proceed, assured that all threads are aware of the
phase change.

Notably, after responding to the handshake (by setting its local counter), a thread
can continue to execute operations (on the slow path), with no need to wait for other
threads, avoiding stalls required in the simple method. However, this setup introduces
a complication. As threads respond to the handshake individually and continue to
execute operations, concurrent threads operate in different modes (fast and slow paths)
simultaneously. Managing these concurrent thread executions in different modes re-
quires careful handling. In fact, it turns out that in order to guarantee correctness,
prior to initiating the execution of the size operation, we need to run two handshakes.
While the necessity for two handshakes might not be intuitively evident, we will demon-
strate that a single handshake does not guarantee correctness. Subsequently, we will
prove that executing two handshakes is sufficient for ensuring correctness1.

An important optimization in this context is to disregard idle threads that are not
engaged in operating on the data structure. These threads do not impact the size of
the data structure and as a consequence the size operation does not need to wait for
them to acknowledge a phase change that marks the beginning of a size execution. On
the one hand this is beneficial due to the time saved by not waiting for these threads.
On the other hand, this requires a thread that becomes active (i.e., starts an operation)
to notify all other threads that it is not idle anymore. Such notifications (including a
memory fence) incur a non-negligible cost on very fast operations such as operations on

1In the domain of garbage collection, a study in [DL93] initially used two handshakes, but subsequent
research in [DG94] identified the need for a third handshake in the presence of multithreading to
guarantee correctness.

16

the hash table. However, we cannot do without treating idle threads specially, because
threads cannot cooperate with a handshake when they are engaged in other activity,
unrelated to the data structure at hand.

4.1.2 A size design with handshakes

The process of implementing handshakes for concurrent size entails designing the fast
and slow paths, along with the mechanism to transition between different phases of
execution. We will run two handshakes before starting the size calculation. During the
first handshake, each thread will respond and start using the slow path. In the second
handshake threads will only respond, acknowledging the handshake, without taking
any further action. A thread that starts an operation after the first handshake was
initiated, leaving an idle state, will use the slow path, maintaining the invariant that
all threads execute only in the slow path after the first handshake completes. Once the
size calculation is completed, a corresponding announcement by the size suffices to let
the threads revert to using the fast path. In Section 4.1.5 we will explain why a single
handshake is insufficient at the beginning of a size execution and then argue that two
handshakes are enough.

4.1.3 Data-structure transformation

To implement the fast and slow paths we employ two metadata arrays: fastMetadataCounters

designated for fast path operations and metadataCounters for slow path operations. They
are both fields of a HandshakeSizeCalculator object we will later describe. When an op-
eration of a thread T executes the fast path, it is guaranteed that no size operation
can execute concurrently. Therefore, it is guaranteed that, during the fast path execu-
tion of the operation, the fast path metadata associated with the thread T is accessed
only by T . Consequently, no synchronization is required for updating this part of the
metadata, enhancing the efficiency of the fast path. Conversely, slow path operations
are executed in a manner similar to the wait-free design of [SP22a], denoted SP in what
follows. This design takes extra care to allow data structure operations and updates to
the slow path metadata to run concurrently with a size operation.

Our data structure transformation scheme, detailed next, is illustrated in Figure 4.3.
For each insert or delete operation performed on the data structure, we have it first
announce starting an operation (leaving the idle mode), then execute one of two new
operations—slow_op or fast_op, and eventually announce returning to idle mode. The
fast_op operation executes the original operation and then updates the metadata asso-
ciated with fast operations on a successful insert or delete. The slow_op executes the
code of the SP algorithm.

The slow path and fast path use different methods to mark an object as deleted.
The slow path (following the SP algorithm) installs an UpdateInfo object in a deleteInfo

field in order to mark the node, whereas the fast path, following the code of the original

17

data structure, uses a simpler mark (typically setting the value field to NULL or setting
the next field to point to a marker node). Since slow and fast operations might run
concurrently during the execution of the first handshake and at the end of executing
size, we further adjust both slow and fast operations of the data structure to treat a
node as marked when either the associated deleteInfo field is not NULL or when the node
is marked according to the original data structure’s marking scheme. This change allows
both slow and fast operations on the same key to execute concurrently. To complete
the adjustment, we need to address the following issue: in the SP methodology, the
data structure’s operations call this.sizeCalculator.updateMetadata to help concurrent
delete operations whenever they encounter marked nodes that they need to unlink.
Slow operations in our transformation follow the same behavior, but only for nodes
that slow operations marked (by installing an UpdateInfo object in a deleteInfo field in
the node).

We do not modify the contains operation to use two different paths; it always runs in
a “slow” mode, following the design of the SP algorithm. We did explore building slow
and fast paths for contains, but an evaluation indicated no performance enhancement.
By exclusively employing the slow path, threads executing contains can bypass the
necessity to engage in handshakes, which are typically utilized for transitioning between
fast and slow paths. Consequently, this eliminates the requirement to announce their
departure from the idle phase at the beginning of a contains operation. It turned out
that employing a slow path for contains did not exhibit a noticeable slowdown compared
to using a fast path that announces non-idle status at the beginning of the operation.

For the size calculation we employ the HandshakeSizeCalculator and HandshakeCountersSnapshot

objects, which include both methods from SizeCalculator and CountersSnapshot of the SP
methodology (_collect, updateMetadata and createUpdateInfo of SizeCalculator, and add

and forward of CountersSnapshot) which we do not repeat here, and new methods that
appear in Figures 4.1, 4.2 and 4.4.

In the SP methodology, a size operation calculates the size by calling SizeCalculator.com-

pute, which performs the calculation using a CountersSnapshot object. It first obtains a
CountersSnapshot instance that has the value true in its collecting field (because oth-
erwise the instance is associated with a size operation whose linearization point has
already passed). It then performs some collection process of the metadata values into
that CountersSnapshot instance. At this point it sets the collecting field of this in-
stance to false and then computes the size using this instance. The moment of setting
collecting to false is the linearization point of the size operation. Further details ap-
pear in [SP22a]. Our HandshakeSizeCalculator.compute adds transitioning from the slow
path to the fast path and back as well as handling the fast metadata, as follows.

After obtaining a HandshakeCountersSnapshot instance with collecting=true, if the size

operation was the one to install this instance in the HandshakeSizeCalculator, it proceeds
to initiate a sequence involving two handshakes with other threads concurrently ac-
cessing the data structure for insertion or deletion (Line 30). In practical terms, these

18

1 class HandshakeSizeCalculator:
2 HandshakeSizeCalculator():
3 this.sizePhase = 4
4 // The 3 following arrays are implicitly initialized to zeros
5 this.fastMetadataCounters = new long[n]
6 this.metadataCounters = new long[n][2]
7 this.opPhase = new int[n]
8 this.countersSnapshot = new HandshakeCountersSnapshot()
9 this.countersSnapshot.collecting.setVolatile(false)

10 fastUpdateMetadata(opKind):
11 tid = ThreadID.threadID.get()
12 if opKind == INSERT:
13 this.fastMetadataCounters[tid].setVolatile(1+this.

fastMetadataCounters[tid].getVolatile())
14 else:
15 this.fastMetadataCounters[tid].setVolatile(-1+this.

fastMetadataCounters[tid].getVolatile())
16 setOpPhase(opPhase):
17 tid = ThreadID.threadID.get()
18 this.opPhase[tid] = opPhase
19 setOpPhaseVolatile(opPhase):
20 tid = ThreadID.threadID.get()
21 this.opPhase[tid].setVolatile(opPhase)
22 getSizePhase():
23 return this.sizePhase.getVolatile()
24 compute():
25 currentCountersSnapshot = this.countersSnapshot.getVolatile()
26 if not currentCountersSnapshot.collecting.getVolatile():
27 newCountersSnapshot = new HandshakeCountersSnapshot()
28 witnessedCountersSnapshot = this.countersSnapshot.

compareAndExchange(currentCountersSnapshot,
newCountersSnapshot)

29 if witnessedCountersSnapshot == currentCountersSnapshot:
30 currentSizePhase = _doFirstAndSecondHandshakes()
31 _collect(newCountersSnapshot)
32 fastSize = this._computeFastSize()
33 newCountersSnapshot.collecting.setVolatile(false)
34 c = newCountersSnapshot.computeSize(fastSize)
35 this.sizePhase.setVolatile(currentSizePhase + 2)
36 return c
37 currentCountersSnapshot = witnessedCountersSnapshot
38 return _waitForComputing(currentCountersSnapshot)

Figure 4.1: HandshakeSizeCalculator interface methods

19

39 _performHandshake(sizePhase):
40 for each tid:
41 wait until this.opPhase[tid].getVolatile() == IDLE_PHASE or this.

opPhase[tid].getVolatile() ≥ sizePhase
42 _doFirstAndSecondHandshakes():
43 wait until (currentSizePhase = sizePhase.getVolatile()) % 4 == 0
44 this.sizePhase.setVolatile(currentSizePhase + 1)
45 _performHandshake(currentSizePhase + 1)
46 this.sizePhase.setVolatile(currentSizePhase + 2)
47 _performHandshake(currentSizePhase + 2)
48 return currentSizePhase + 2
49 _computeFastSize():
50 fastSize = 0
51 for each tid:
52 fastSize += this.fastMetadataCounters[tid].getVolatile()
53 return fastSize
54 _waitForComputing(currentCountersSnapshot):
55 while true:
56 currentSize = currentCountersSnapshot.size
57 if currentSize != INVALID_SIZE:
58 return currentSize

Figure 4.2: HandshakeSizeCalculator auxiliary methods

handshakes are facilitated through the use of two fundamental components: a sizePhase

field, to which size operations write the phase with which they wish the other threads
will synchronize, and an opPhase array field, sized to accommodate all running threads,
where they publish their current phase for size operations to inspect.

When a thread is not actively engaged in either an insert or a delete operation
on the data structure, it is in an IDLE_PHASE status. This state essentially informs the
size-performing threads that they can disregard the phase of the thread in question.
Conversely, during an insert or a delete operation, a thread indicates its activity to
the size-performing threads by setting its corresponding cell in the opPhase array to the
appropriate value: If it identifies no concurrent size operation (according to a sizePhase

value that reflects no ongoing size operations), it takes the fast path after setting its cell
to FAST_PHASE using a volatile write (to make sure size operations—which accordingly
perform volatile reads of the opPhase values—see it). Else (if it identifies a concurrent
size operation), it takes the slow path after setting its cell to the phase value that was
published by a concurrent size operation in the sizePhase field, in order to communicate
its acknowledgment of the sizePhase.

Back to the size-performing thread, to initiate a handshake it increments the
sizePhase field by 1. Subsequently, it awaits the synchronization of all other threads
with this sizePhase by inspecting their respective cells in the opPhase array. Synchro-
nization is achieved when the value in each thread’s cell is either equal to IDLE_PHASE or
it is greater than or equal to sizePhase.

The size-performing thread carries out two such handshakes one after another.
After all threads have successfully synchronized with it in the second handshake,

20

59 INSERT = 0, DELETE = 1
60 IDLE_PHASE = 0, FAST_PHASE = 1
61 class TransformedDataStructureWithHandshakes:
62 TransformedDataStructureWithHandshakes():
63 Initialize as originally.
64 this.sizeCalculator = new HandshakeSizeCalculator()
65 fast_op(k):
66 Perform the original operation∗. For an insert or a delete operation

that succeeded call this.sizeCalculator.fastUpdateMetadata with
the relevant opKind.

67 Return the result of the original operation.
68 slow_op(k):
69 Perform the transformed operation defined in [SP22a]∗∗ and return its

result.
70 op(k): // this transformation is for insert/delete operations
71 this.sizeCalculator.setOpPhaseVolatile(FAST_PHASE)
72 currentSizePhase = this.sizeCalculator.getSizePhase()
73 if currentSizePhase%4 == 0:
74 ret = fast_op(k)
75 else: // Some thread runs size()
76 this.sizeCalculator.setOpPhase(currentSizePhase)
77 ret = slow_op(k)
78 this.sizeCalculator.setOpPhase(IDLE_PHASE)
79 return ret
80 contains(k):
81 return slow_op(k)
82 size():
83 return this.sizeCalculator.compute()
84 ∗Consider also nodes with a non-NULL deleteInfo field as marked for deletion.
85 ∗∗Do not call this.sizeCalculator.updateMetadata before unlinking nodes

marked using the original data structure's marking scheme (call it only
for nodes marked using a non-NULL deleteInfo field).

Figure 4.3: A transformed data structure with handshakes

87 class HandshakeCountersSnapshot:
88 HandshakeCountersSnapshot():
89 this.snapshot = new long[n][2]
90 setVolatile all cells of this.snapshot to INVALID
91 this.collecting.setVolatile(true)
92 this.size.setVolatile(INVALID)
93 computeSize(fastSize):
94 computedSize = fastSize
95 for each tid:
96 computedSize += this.snapshot[tid][INSERT].getVolatile() -

this.snapshot[tid][DELETE].getVolatile()
97 this.size.setVolatile(computedSize)
98 return computedSize

Figure 4.4: HandshakeCountersSnapshot methods

the size-performing thread can safely perform the size computation: It first collects
slow metadata values into the obtained HandshakeCountersSnapshot instance according
to the SP scheme by calling _collect, then sums the fast metadata values by calling
_computeFastSize. At this point it sets the collecting field to false (which constitutes
the linearization point of the operation similarly to the SP method), and then completes

21

the size calculation—computes the size derived from slow operations (by summing slow
metadata snapshot values following the snapshot mechanism of the SP methodology)
and adds it to the previously-computed size derived from fast operations.

Upon completion of the computation process, the size-performing thread increments
the sizePhase field by 2, to inform the other threads that the size operation has finished,
and they can return to a fast path of execution in their following operations.2

When a size operation observes another ongoing size operation, it does not fol-
low the execution scheme described thus far for size operations; instead, it calls the
_waitForComputing method to wait for the other size to complete its computation and
adopt its computed size value once it becomes available.

The handshake-based methodology preserves the original progress guarantees of
insert, delete and contains, as it adds a constant number of non-blocking instructions
to each of them.

4.1.4 Optimization: size operations join the previous handshake

We could further improve the performance of size operations in this methodology by
allowing concurrent size operations to join the previous handshake when possible. This
improvement is possible when the previous size operation has already set the collecting
field of its HandshakeCountersSnapshot object to false in Line 33 and has yet to exit the
second handshake by incrementing the sizePhase value by 2 in Line 35. In that case, a
later concurrent size that has successfully installed its HandshakeCountersSnapshot object
in Line 28 and has observed a sizePhase value ≡4 2 in Line 43 can attempt to increase
the sizePhase by 4 using a compareAndSet operation. This modification to the sizePhase

value together with the altering of the write in Line 35 to use a compareAndSet operation
with an expected value of currentSizePhase ensures that if the size that wants to join
the previous handshake successfully modifies the sizePhase then the previous size (who
was yet to execute Line 35) will not modify sizePhase’s value again. By successfully
adding 4 to the sizePhase value, the size that wants to join the previous handshake
maintains a sizePhase ≡4 2, thus maintaining correctness as the only insert and delete

operations that may run are ones on the slow path which did not run concurrently with
fast operations. This optimization will be implemented such that instead of executing
Line 43, a size operation will obtain sizePhase only once and then check if the obtained
value is ≡4 2. If the condition is not met, it will proceed as before, performing two
handshakes one after the other. Otherwise, it will try to write sizePhase+4 to sizePhase

using a compareAndSet call with an expected value of sizePhase. If successful, there is now
no need for two handshakes and it can proceed directly to Line 31. If the compareAndSet

call fails, then the previous size managed to execute Line 35 and once again, size has to
2 The decision to increment the sizePhase by 2 is a straightforward yet practical optimization. It

allows the determination of the size operation phase using (sizePhase mod 4), instead of (sizePhase

mod 3). Computing the remainder of a number after division by 4 is highly efficient in hardware,
involving a bitwise and operation with the constant 3.

22

perform two handshakes from the beginning as before. Along with these modifications,
the value of the variable currentSizePhase in the _doFirstAndSecondHandshakes function
should be maintained to uphold the current value of the sizePhase field.

4.1.5 Correctness of the handshake-based methodology

4.1.5.1 Two handshake rationale

In the SP approach, dependent operations help the update operation they depend on
to update the metadata before carrying out their own operations. In our handshake-
based methodology that involves a fast path, on the other hand, we have fast operations
which do not verify that the metadata is updated on behalf of operations they depend
on before operating on the data structure. Thus, if a size operation executes the
size calculation concurrently with an update operation that in turn ran concurrently
with a fast operation that depends on that update operation, the fast operation might
update the metadata before the update operation it depends on updates the metadata,
and the size calculation might run between those metadata updates thus taking into
account only the fast operation and not the operation it depends on, which could hinder
linearizability. An example for such non-linearizable execution is given in Figure 4.5.

size():

delete(1):

insert(1):

-1

compute size

delete 1 from the
data structure

update
metadata

insert 1 to the
data structure

update
metadata

Figure 4.5: size concurrent with an insert operation that ran concurrently with a
dependent delete operation

To ensure linearizability we must prevent size operations from calculating the size
from the metadata concurrently with an update operation that in turn ran concurrently
with a fast operation that depends on that update operation. We will have size opera-
tions calculate the size only when slow operations that have not run concurrently with
fast operations are the only ones to run, as is the case in the SP approach. Therefore,
our size calculation will be correct like the SP approach.

To this end, a thread executing a size operation initiates a handshake with the other
threads, to wait for them to complete their ongoing operations (if any) and guarantee
that their following operations will be slow. But the size calculation can still not be

23

performed after completing this handshake, as there could be threads that acknowledge
the handshake and start running slow operations before other threads complete their
fast operations that were unaware of the handshake. This scenario is demonstrated in
Figure 4.6, where an insert operation acknowledges the handshake initiated by the size

operation and starts running in slow mode, while a concurrent delete operation that
started operating in fast mode before the beginning of the handshake is still running.
The size operation must wait until such slow operations complete. The first handshake
initiated by a size operation guarantees that no fast operations run once it is finished,
but slow operations that ran concurrently with fast operations may still be running.
A second handshake then waits until all ongoing operations complete and guarantees
that once finished, no more operations that ran concurrently with fast operations are
executed (but rather only slow operations that have not run concurrently with fast
operations).

size():

fast delete(1):

slow insert(1):

-1

increment sizePhase to 1 compute size

read
sizePhase==0

delete 1 from the
data structure

update
fast metadata

insert 1 to the
data structure

update
slow metadata

read
sizePhase==1

Figure 4.6: An execution with a single handshake in which the size computation is
concurrent with a slow insert that ran concurrently with a fast dependent delete

4.1.5.2 Linearization points

Our handshake-based methodology is linearizable. We detail the methods’ linearization
points next, and bring the linearizability proof in Section 4.1.5.3.

A size operation that has managed to successfully install its HandshakeCountersSnapshot

object in Line 28 is linearized as in [SP22a]. Otherwise, a size operation which had to
wait on another size’s HandshakeCountersSnapshot object (i.e., called _waitForComputing) is
linearized at the linearization point of the size which installed the HandshakeCountersSnapshot

object it obtained in Line 25.
Fast operations are always linearized according to the original linearization point.

Any successful slow insert or delete operation that has seen the phase number of the first
handshake (i.e., has read size_phase ≡4 1 in Line 72) is linearized according to its original
linearization point. Otherwise, a successful slow insert or delete operation that has seen

24

the number of the second handshake phase (size_phase ≡4 2 in Line 72) is linearized
according to the linearization point defined in [SP22a] unless a depending concurrent
fast operation is linearized between its original linearization point and the linearization
point in [SP22a] in which case it is linearized at the latter of the original linearization
point and right after the linearization point of the last concurrent size operation that
does not take the operation into account (due to a scenario we elaborate on in the
next paragraph). Note that two slow operations can be linearized at the same time
(immediately after a size operation), in which case we order them according to the order
of the linearization points defined in [SP22a]. The linearization points of contains and
failing slow insert or delete operations follow a methodology similar to that presented
[SP22a] with the slight modification that we now linearize them based on the new
linearization points of insert or delete operations. In detail, an operation op which is a
contains or a failing slow insert or delete is linearized at the original linearization point
unless the operation it depends on (namely, the last successful update operation on k

whose original linearization point precedes op’s original linearization point) is a slow
operation that has yet to be linearized (according to the new linearization point defined
above) at op’s original linearization point, in which case we linearize op immediately
after that operation is linearized.

The scenario in which the metadata related to a successful slow insert or delete

operation, is updated later than the linearization point of a dependent fast operation,
requires special handling of the slow operation’s linearization point. It cannot be lin-
earized like in [SP22a] at its metadata update as it occurs after the linearization point
of the dependent fast operation. Instead, we linearize it beforehand as we demonstrate
on the scenario illustrated in Figure 4.7, where a slow insert(1) updates the metadata
only after a dependent fast delete(1) is linearized. The size operation in the figure is
the one that set sizePhase to the value obtained by the insert. This is the last size

operation that does not take the insert into account (this size operation does not take
the insert into account since it must have completed before the fast delete ran which
happened in turn before the insert updated the size metadata; following size operations
perform handshakes before computing the size and may hence compute the size from
the metadata only after the insert completes including its metadata update). This size

operation may be linearized either before the insert inserts 1 to the data structure or
afterwards. If it is linearized first, then we linearize the insert when it inserts 1 to the
data structure. Else, we linearize the insert right after the linearization point of the
size. In both cases, the chosen linearization guarantees that the insert is linearized
after the size which did not take it into account and before any dependent operation.

4.1.5.3 Linearizability proof

In this section we prove the linearizability of the handshake-based methodology pre-
sented in Section 4.1, using the linearization points stated in Section 4.1.5. We will

25

size():

fast delete(1):

slow insert(1):

— or —
announce collection completion

= linearization point

delete 1 from the data structure
= linearization point

read
sizePhase==2

insert 1 to the data structure
= original linearization point

update
metadata

Figure 4.7: An execution with a slow insert that takes part in a second handshake with
size and updates the metadata after a dependent fast delete executes

prove linearizability in a manner similar to [SP22a]. This requires us to show (1) each
linearization point occurs within the operation’s execution time, and (2) ordering an
execution’s operations (with their results) according to their linearization points forms
a legal sequential history. We prove Property (1) in Claim 4.1.1 and Property (2) in
Claim 4.1.7.

Compared to the proof presented in [SP22a], the main distinction in this context
lies in having to consider new linearization points as well as to closely examine the
handshake mechanism. It is essential to establish and prove significant observations
related to this mechanism. These observations are important to determining which
types of operations (fast path operations and slow path operations) can be executed
concurrently to a size operation and which can not. Our linearizability proof will rely
closely on these observations.

Linearization points occur within operations’ intervals

Claim 4.1.1. The linearization point of each operation occurs within its execution
time.

Proof. For fast insert, fast delete, slow insert, slow delete and contains operations that
are linearized according to the original linearization point, the claim follows from the
linearizability of the original data structure.3 For size operations, they are linearized
in the same manner as in [SP22a]. As the CountersSnapshot object each size operation
holds is obtained in the same way as in [SP22a] and the operation is linearized ac-
cording to [SP22a], the same arguments in Claim 8.1 in [SP22a] can be applied and
the claim is valid. For successful slow insert or slow delete that are not linearized at

3There is a selection of linearization points for every linearizable data structure such that each of
them is placed within the execution period of the relevant operation. We only use linearization points
that meet this criterion when we discuss linearization points of the original data structure.

26

the original linearization point, from Lemma 4.1.4 and Lemma 4.1.8 we conclude that
the linearization point of such an operation occurs within its execution time. It is left
to show the claim that for contains and failing slow insert or slow delete operations
that are not linearized according to the original linearization point. Let op be such an
operation. Since op was not linearized at its original linearization point and from the
way we defined our linearization points we know that there must exist some slow oper-
ation op2 that op depends on and has yet to be linearized at op’s original linearization
point. In this case, op is linearized immediately after the linearization point op2. Since
op2 was yet to be linearized at the time of op’s original linearization, we know that
op2’s linearization must occur after op’s original linearization point. Moreover, because
op2 is a successful slow operation by Lemma 4.1.4 we conclude that op observes op2’s
metadata and calls updateMetadata on behalf of op2. By Corollary 4.1.3, op2 must be
linearized by the time updateMetadata returns and thus op is linearized by that time as
well. Therefore, op is linearized within its execution time.

When proving Claim 4.1.1 we rely on the validity of Claim 8.1 from [SP22a], this
validity holds only if Lemma 8.2 in [SP22a] still holds. We next show in Corollary 4.1.3
that this is indeed the case. To show this we recall the following lemma from [SP22a],
the correctness of these lemma follows from the proof of Lemma 8.2 in [SP22a]:

Lemma 4.1.2. When a call to updateMetadata returns, the operation whose updateInfo

was passed to the call is guaranteed to have reached the linearization point defined in
[SP22a].

Now, as a direct conclusion from Lemmas 4.1.2 and 4.1.4:

Corollary 4.1.3. When a call to updateMetadata returns, the operation whose updateInfo

was passed to the call is guaranteed to be linearized.

The following lemmas are also used as part of Claim 4.1.1’s proof.

Lemma 4.1.4. The linearization point of any successful slow insert or delete operation
occurs no later than the linearization point of that operation as defined in [SP22a].

Proof. Denote by op some successful slow insert or delete operation. If op is linearized
at its original linearization point or at the linearization point as defined in [SP22a] then
by Lemma 4.1.6 the lemma holds.

Otherwise, op is linearized immediately after a concurrent size operation that does
not take it into account and that is linearized after op’s original linearization point:
If the size operation is collecting when op is performing its metadata update, then
by definition op’s linearization point as defined in [SP22a] is immediately after that
size and we are done 4. Otherwise, if the size operation is not collecting when op is

4Note that because we order successful update operations that are linearized at the same time in
the same manner as in [SP22a] then our linearization point will be the same as the one in [SP22a].

27

performing its metadata update, then the op’ linearization point as in [SP22a] will be at
the metadata update. This metadata update must occur after size finished collecting;
otherwise, by Lemma 4.1.5 size should have seen the update. Thus, because size is
linearized when the collecting field is set to false, then the size operation must be
linearized before op’s linearization point as in [SP22a], and consequently op will be
linearized before its linearization point as in [SP22a].

Lemma 4.1.5. Consider a call to updateMetadata on behalf of op, which is the c-th
successful slow insert or delete operation by a thread T . After this call executes Lines
78-79 in [SP22a], the relevant metadata counter’s value is ≥ c.

Lemma 4.1.6. The linearization point of each successful insert or delete operation as
defined in [SP22a] occurs after its original linearization point.

Lemma 4.1.5 correlates to Lemma 8.3 in [SP22a] and Lemma 4.1.6 is shown as part
of Lemma B.3 in [SP22a], the proofs of both of these Lemmas remain the same.

The linearization is legal In what follows, we denote the set’s i-th successful
insert(k) operation (by i-th we refer to the linearization order, namely, to the i-th
successful insert(k) to be linearized) by inserti(k), its linearization time by tinserti(k),
the time of its original linearization by orig_tinserti(k) and the time of its lineariza-
tion point defined in [SP22a] by g_tinserti(k) (this is defined only for slow operations).
We further denote the analogous delete operation and its related times by deletei(k),
tdeletei(k), orig_tdeletei(k), and g_tdeletei(k).

Claim 4.1.7. Consider a sequential history formed by ordering an execution’s opera-
tions (with their results) according to their linearization points defined in Section 4.1.5.
Then operation results in this history comply with the sequential specification of a set.

Proof. The correctness of the results of successful update operations follows from Corol-
lary 4.1.11. Now, let us examine the results of contains operations and failing update
operations. Let op be such an operation on a key k, and let the operation it depends
on be inserti(k) for some i ≥ 1, a similar proof can be made for a delete operation.
Because inserti(k) is an insertion then op must be a failing insertion or a contains re-
turning true. Our goal is to show that inserti(k) is indeed the last successful operation
on key k to be linearized before op. Let orig_top be the original linearization moment
of op and top its actual linearization point according to Section 4.1.5. If op is a slow
operation that is linearized immediately after tinserti(k) then we are done. Otherwise,
op must be linearized according to its original linearization point. We begin by show-
ing that tinserti(k) < top. If inserti(k) is linearized according to its original lineariza-

tion point then tinserti(k) = orig_tinserti(k)
the way we chose i

< orig_top = top. Otherwise,
tinserti(k) must be a slow operation and because op is linearized at its original lineariza-
tion point we know that by time top it must be that inserti(k) is already linearized

28

(this is due to the way we defined our linearization points in Section 4.1.5). Therefore,
tinserti(k) < top. We are left to show that if there is a successful delete operation lin-
earized after inserti(k) then top < tdeletei(k). If there is no such operation then we are
done, otherwise, from the way we chose i and due to the linearizability of the origi-
nal data structure it holds that top = orig_top < orig_tdeletei(k)

Lemma 4.1.8
≤ tdeletei(k).

=⇒ In all cases it holds that tinserti(k) < top < tdeletei(k) and we are done.

Finally, we analyze the linearization of a size operation. Denote such an opera-
tion by op. From Corollary 4.1.21 we know there are no concurrent fast operations
when fastCompute() is executing thus the fast counter array values stay untouched when
fastCompute() is performed. Therefore, any fast operation that op has seen must be
linearized before op and any fast operation that op didn’t see must be linearized after
op.

Moreover, from Corollary 4.1.21 all slow operations executed during compute() have
seen the second handshake phase and thus are linearized accordingly. Let j be the
value that determiningSize obtained from the insertion counter of some thread T in
countersSnapshot.snapshot. We will prove that T ’s j-th successful slow insert is lin-
earized before op and T ’s (j + 1)-st successful slow insert (if such operation occurs) is
linearized after it (the proof for delete is the same). We will denote T ’s j-th success-
ful slow insert by insertT,j , its linearization time as tinsertT,j , its original linearization
time as orig_tinsertT,j and its linearization point according to [SP22a] as g_tinsertT,j .
The same notations are used accordingly for T ’s (j + 1)-st successful slow insert as
insertT,j+1, tinsertT,j+1 , orig_tinsertT,j+1 , g_tinsertT,j+1 .

According to the linearizability proof in Claim B.1 in [SP22a] we know that g_tinsertT,j <

top and together with Lemma 4.1.4 we get that tinsertT,j < top.
If T ’s (j + 1)-st successful slow insert has not seen a second handshake then it

is linearized according to the original linearization point and from the linearizabil-
ity proof in Claim B.1 in [SP22a] we know that top < g_tinsertT,j+1 . Therefore, us-
ing Corollary 4.1.21 and since g_tinsertT,j+1 happens during insertT,j+1’s execution of
slow_op(k) we conclude that top < tinsertT,j+1 .

In the case where insertT,j+1 had a concurrent fast operation which was linearized
between orig_tinsertT,j+1 and g_tinsertT,j+1 then insertT,j+1 is linearized at the latter
of orig_tinsertT,j+1 and sz_t where sz_t is immediately after the linearization of the
last concurrent size operation that did not see insertT,j+1. From the linearizability
proof in Claim B.1 in [SP22a] we know that top < g_tinsertT,j+1 .

If insertT,j+1 and op are not concurrent then from Claim 4.1.1 and Claim 8.1
in [SP22a] which states that g_tinsertT,j+1 happens within insertT,j+1’s execution we
conclude that top < tinsertT,j+1 .

If insertT,j+1 and op are concurrent then because we know op does not see insertT,j+1

and because insertT,j+1 is linearized at the latter of 2 points one of which being im-

29

mediately after the linearization of the last concurrent size operation that did not
see insertT,j+1 we conclude that insertT,j+1 must be linearized after op thus top <

tinsertT,j+1 .

The proof of Claim 4.1.7 uses the following:

Lemma 4.1.8. The linearization point of a successful inserti(k) or deletei(k) happens
in its original linearization point or after it.

Proof. For fast and slow operations which are linearized according to their original
linearization point the lemma holds immediately. Otherwise, the operation is either
linearized at the linearization point from [SP22a] which is shown to occur after the
original linearization point as part of Lemma B.3 in [SP22a], or it is linearized at the
latter of two options one of which being the original linearization point.

⇒ For each key k and each i ≥ 1 : orig_tinserti(k) ≤ tinserti(k) and orig_tdeletei(k) ≤
tdeletei(k).

Observation 4.1.9. The original linearization points of successful insertions and dele-
tions of each key k are alternating.

This follows from the linearizability of the original data structure and the sequential
specification of a set.

Lemma 4.1.10. For each key k and each i ≥ 1:

orig_tinserti(k) ≤ tinserti(k) < orig_tdeletei(k) ≤ tdeletei(k) < orig_tinserti+1(k)

Proof. From Lemma 4.1.8 we know that orig_tinserti(k) ≤ tinserti(k) and orig_tdeletei(k) ≤
tdeletei(k). Thus it is only left to show that tinserti(k) < orig_tdeletei(k) and tdelete(k) <

orig_tinserti+1(k).
tinserti(k) < orig_tdeletei(k):

If inserti(k) is a fast operation or a slow operation that has seen a 1st handshake,
then it is linearized according to its original linearization point. Therefore, tinserti(k) =
orig_tinserti(k) and since orig_tinserti(k) < orig_tdeletei(k) by Observation 4.1.9, then
tinserti(k) < orig_tdeletei(k). Otherwise, inserti(k) is a slow operation that has seen a
second handshake and there are 2 cases:

• deletei(k) is a slow operation - from Lemma B.3 in [SP22a] we know g_tinserti(k) <

orig_tdeletei(k) and together with Lemma 4.1.4 we get that tinserti(k) < g_tdeletei(k).
Therefore, tinserti(k) < orig_tdeletei(k).

• deletei(k) is a fast operation - from Lemma 4.1.13 and observation 4.1.9 we con-
clude that tinserti(k) < orig_tdeletei(k).

The proof for tdelete(k) < orig_tinserti+1(k) is similar with minor changes.

30

Corollary 4.1.11. The linearization points of successful insertions and deletions of
each key k are alternating.

Lemma 4.1.12. Let countersSnapshot be a HandshakeCountersSnapshot instance. Any
non-INVALID value written to a counter in the countersSnapshot.snapshot array must
have been written to the corresponding counter in the metadataCounters array (of the
SizeCalculator instance held by the set) before the countersSnapshot.collecting field is
set to false.

The proof of Lemma 4.1.12 remains the same as in [SP22a].

Lemma 4.1.13. For any successful insert or delete operation ops that has obtained
sizePhase ≡4 2 in Line 72 and for any depending fast operation opf it holds that: If
orig_tops < orig_topf then tops < orig_topf

Proof. Let ops be some successful insert or delete operation that has obtained sizePhase

≡4 2 in Line 72 and let opf be some fast operation such that orig_tops < orig_topf .
If ops was linearized according to its original linearization point then we are done.
Otherwise, from the definition of our linearization points we know there are 2 cases:

• ops was linearized as in [SP22a]. In this case, since we know that there is no
depending fast operation whose original linearization point is between orig_tops

and tops and because every fast operation is linearized at its original linearization
point. Then, orig_tops ≤ tops < orig_topf .

• ops is linearized at sz_t where sz_t is immediately after the linearization of
the last concurrent size operation does not take ops into account and whose
linearization point comes after orig_tops . ops has obtained sizePhase ≡4 2 in
Line 72. Therefore, it must have executed Line 72 after some size operation has
executed Line 46 and because orig_tops happens during Line 77 then orig_tops

happened after that size operation executed Line 46. By definition, sz_t must
have happened before that size executed Line 35 (because size is linearized at
compute()). Finally, because orig_tops < sz_t then both orig_tops and sz_t

happened when some size has finished executing Line 44 and has yet to execute
Line 35. Therefore, from Lemma 4.1.22 we conclude that opf could not have been
linearized between orig_tops and sz_t = tops and orig_tops ≤ tops < orig_topf .

In the next following lemmas and observations we will undertake a detailed analysis
of the handshake mechanism which is essential for some of the lemmas and claims part
of the linearization proof above.

Observation 4.1.14. Every HandshakeCountersSnapshot object is initialized in Line 27
and is installed onto the HandshakeSizeCalculator.countersSnapshot field exactly once in
Line 28.

31

Lemma 4.1.15. For any size operation denoted as opsize that had a successful compareAndExchange

in Line 28: no successful writes to the HandshakeSizeCalculator.countersSnapshot field by
other size operations were performed when opsize’s next line to execute pointed to one
of Lines 26–28.

Proof. If any successful writes to the HandshakeSizeCalculator.countersSnapshot field by
other size operations were performed when opsize’s next line to execute pointed to one
of Lines 26–28 then from Observation 4.1.14 the value of the
HandshakeSizeCalculator.countersSnapshot field would have changed from the time opsize

has read it in Line 25 and therefore opsize’s invocation of the compareAndExchange opera-
tion in Line 28 would fail in contradiction to the way we defined opsize.

Corollary 4.1.16. From Lemma 4.1.15 we conclude that no two size operations that
had a successful compareAndExchange in Line 28 (i.e successfully wrote to
HandshakeSizeCalculator.countersSnapshot) can have their next line to execute point to
Lines 26–28 simultaneously. In other words, at a given moment there is at most one
size operation whose compareAndExchange is about to succeed and whose next line to
execute points to one of Lines 26–28.

Lemma 4.1.17. At any given moment, at most one size operation has their next line
to execute point to one of Lines 30–33.

Proof. We prove by contradiction. Let op1, op2 be two size operations whose next
operation to execute points to one of Lines 30–33 at the same time. w.l.o.g assume op1

got to Line 26 before op2 (i.e op1’s next line to execute pointed to Line 26 before op2’s
next line to execute pointed to it) and we choose op2 to be the first operation whose
next line to execute reaches Lines 30–33 after op1.

For a size operation to reach Lines 30–33 it must enter the if clause in Line 29.
Therefore, its compareAndExchange operation in Line 28 must have succeeded. Therefore,
from Corollary 4.1.16 when op1’s next line to execute pointed to one of Lines 26–28
then op2’s next line to execute did not point to any of Lines 26–28.

Therefore op2’s next line to execute reached Line 26 only after op1’s next operation
to execute has pointed to Line 29 which is after op1 executed its compareAndExchange

operation in Line 28 and successfully wrote to HandshakeSizeCalculator.countersSnapshot.
Therefore, op2 must have read in Line 25 the object op1 wrote to
HandshakeSizeCalculator.countersSnapshot. Because we chose op2 to be the first operation
after op1 to reach Lines 30–33 and since op1 could not have reached Line 33 (because
its next line to execute needs to be one of Lines 30–33 when op2 reaches Line 30) then
the value of the countersSnapshot.collecting of the object op2 read in Line 25 must be
true until op2 reaches Line 30. Therefore, op2 does enter the if clause in Line 26 which
is in contradiction to the fact that op2 reaches Lines 30–33 during its execution.

Lemma 4.1.18. At any given moment, at most one size operation has their next line
to execute point to one of Lines 44–48, 31-35 .

32

Proof. We prove by contradiction. Let op1, op2 be two size operations whose next line
to execute points to one of Lines 44–48, 31-35 at the same time. w.l.o.g assume op1

got to Line 30 before op2 (i.e op1’s next line to execute pointed to Line 30 before op2’s
next line to execute pointed to it) and we choose op2 to be the first operation whose
next line to execute reaches Line 30 after op1.

From Lemma 4.1.17 we determine that when op2’s next line to execute points to
Lines 43–35 then op1’s next line to execute must point to one of Lines 34–35. From
Lemma 4.1.17 and because we chose op2 to be the first operation whose next line to
execute reaches Line 30 after op1 we conclude that from the moment op1’s next line
to execute reached Line 34 and until op2’s next to line to execute reached Line 43 no
writes to sizePhase were made. Therefore, the first value read by op2 in Line 43 must
be the value written by op1 in Line 46. Now, from Line 43 we know that the value of
currentSizePhase in op1’s execution of Line 46 must be ≡4 0 therefore the value written
in Line 46 by op1 must be ≡4 2. Therefore, op2 has read in Line 43 a value ≡4 2 and
from Lemma 4.1.17 we know that no size operation other then op1 and op2 can write
to sizePhase until op2’s next line to execute reaches Line 34. Therefore, since op1’s next
line to execute must point to one of Lines 34–35 until op2’s next line to execute reaches
Line 44 then no writes at all can be made to sizePhase when op2’s next line to execute
points to Line 43 making it so that the value of sizePhase will stay ≡4 2 and op2 will
never reach Line 44 in contradiction to the assumption that op1’s and op2’s next line
to execute points to one of Lines 44–48, 31-35 at the same time.

Lemma 4.1.19. While there is some size operation whose next line to execute points
to Line 46 then all concurrent insert and delete operations whose next line to execute
is one of Lines 73–78 must have obtained sizePhase ≡4 1 in Line 72.

Proof. Denote opsize some size operation whose next line to execute points to Line 46.
Let size_ph be the sizePhase set by opsize in Line 44. From Line 43 we know we could only
reach Line 44 if currentSizePhase ≡4 0, therefore, size_ph ≡4 1. From Lemma 4.1.18 we
know that there can not be any other size operation whose next line to execute points
to one of Lines 44–48, 31-35 . Therefore, opsize is the only operation that can write to
sizePhase.

Let op be some insert or delete operation whose next line to execute points to
Lines 73–78 while opsize’s next line to execute points to Line 46.

• If op’s next line to execute has reached Line 72 before opsize’s has executed the
iteration for op’s thread ID in Line 41 when executing Line 45 then op has changed
its relevant opPhase entry to FAST_PHASE. Unless this opPhase entry is changed again
then when opsize executes the iteration for op’s thread ID in Line 41 it will read
FAST_PHASE forever making it so that it never continues to the next iteration and so
that opsize never reaches Line 46 in contradiction to opsize’s definition. Therefore,
op must have changed its thread ID’s entry in opPhase to IDLE_PHASE or to some

33

other value x such that x ≥ size_ph. If op changed its op_phase to IDLE_PHASE then
its next line to execute must have reached Line 79 before opsize’s next line to
execute reached Line 46 in contradiction to the way we defined op. Otherwise,
op must have changed its op_phase to some value x such that x ≥ size_ph. Then,
because opsize is the only operation that can write to sizePhase while opsize’s next
line to execute points to one of Lines 44–48 we conclude that op must have read
size_ph ≡4 1 in Line 72.

• Otherwise, if op’s next line to execute has reached Line 72 after opsize’s has
executed the iteration for op’s thread ID in Line 41 when executing Line 45 then
opsize’s next line to execute must have reached Line 45 before op’s next line to
execute reached Line 73. Therefore, because opsize has executed the write in
Line 44 before op’s next line to execute has reached Line 73 then op’s read in
Line 72 must have obtained size_ph ≡4 1.

Lemma 4.1.20. While there is some size operation whose next line to execute points
to any of Line 48, Lines 31–35 then all concurrent insert and delete operations whose
next line to execute is one of Lines 73–78 must have obtained sizePhase ≡4 2 in Line 72.

Proof. Denote opsize some size whose next line to execute points to any of Line 48,
Lines 31–35. Let size_ph be the sizePhase set by opsize in Line 46. From Line 43 we
know we could only reach Line 46 if currentSizePhase ≡4 0, therefore, size_ph ≡4 2.
From Lemma 4.1.18 we know that there can not be any other size operation whose
next line to execute points to one of Lines 44–48, 31-35 . Therefore, opsize is the only
operation that can write to sizePhase.

Let op be some insert or delete operation whose next line to execute points to
Lines 73–78 while opsize’s next line to execute points to any of Line 48, Lines 31–35.

• If op’s next line to execute has reached Line 72 before opsize’s has executed the
iteration for op’s thread ID in Line 41 when executing Line 47 then op has changed
its relevant opPhase entry to FAST_PHASE. Unless this opPhase entry is changed again
then when opsize executes the iteration for op’s thread ID in Line 41 it will read
FAST_PHASE forever making it so that it never continues to the next iteration and so
that opsize never reaches Line 48 in contradiction to opsize’s definition. Therefore,
op must have changed its thread ID’s entry in opPhase to IDLE_PHASE or to some
other value x such that x ≥ size_ph. If op changed its op_phase to IDLE_PHASE then
its next line to execute must have reached Line 79 before opsize’s next line to
execute reached Line 48 in contradiction to the way we defined op. Otherwise,
op must have changed its op_phase to some value x such that x ≥ size_ph. Then,
because opsize is the only operation that can write to sizePhase while opsize’s next
line to execute points to one of Lines 44–48 we conclude that op must have read
size_ph ≡4 2 in Line 72.

34

• Otherwise, if op’s next line to execute has reached Line 72 after opsize’s has
executed the iteration for op’s thread ID in Line 41 when executing Line 47 then
opsize’s next line to execute must have reached Line 47 before op’s next line to
execute reached Line 73. Therefore, because opsize has executed the write in
Line 46 before op’s next line to execute has reached Line 73 and because opsize

does not execute any other writes to sizePhase until its next line to execute reaches
Line 36 then op’s read in Line 72 must have obtained size_ph ≡4 2.

Corollary 4.1.21. From Lemma 4.1.20 we conclude that when some size operation’s
next line to execute points to any of Line 48, Lines 31–35, then only slow operations that
have seen the second handshake and are linearized accordingly can reach their operation
execution (namely, execute slow_op).

Lemma 4.1.22. While there is some size operation whose next line to execute points
to one of Lines 46–48, 31-35 then all concurrent insert and delete operations whose
next line to execute is one of Lines 73–78 must have obtained sizePhase ̸≡4 0 in Line 72.

Proof. The only case that is not covered by Lemma 4.1.19 and Lemma 4.1.20 is that
in which some insert or delete operation op’s next line to execute points to Line 73
and to Line 78 while there is some size operation (denote as opsize) whose next line to
execute points to Line 47. For this to happen, it must be that op starts and finishes
executing Lines 72–78 while opsize’s next line to execute points to Line 47. Therefore,
from Lemma 4.1.18 and because opsize has already executed Line 44 by the time op

executed Line 72 we conclude that op must have read the value written by opsize in
Line 44. From Line 43 we know we could only reach Line 44 if currentSizePhase ≡4 0,
therefore, the value written by opsize in Line 44 must be ≡4 1 ̸≡4 0.

4.2 Optimistic Approach

In this section, we present in detail an optimistic scheme for evaluating the size of
a data structure. The main idea of this approach is to allow the size operations to
execute optimistically, with no locks and minimal interference on other operations.
In this scheme, each thread maintains a local metadata counter that represents the
number of inserts it has executed minus the number of deletes. This metadata counter
effectively captures the impact of this thread on the size of the data structure. Although
a local metadata counter could potentially be negative (indicating more removals than
insertions by that thread), the aggregate sum of all local metadata counters depicts the
current size of the data structure and is always non-negative when no update operation
is running. The objective of the optimistic synchronization is to read all these local
metadata counters and collectively sum them up at a time when no concurrent update
is executing. Achieving this enables the computation of a linearizable size.

35

To support the optimistic size operation the other threads cooperate in order to
allow detecting whether the size operation executes without any concurrent update
operations. To this end, each thread maintains a local flag indicating whether it is
presently involved in updating the data structure, and a local counter that keeps track
of the overall number of update operations the thread has executed. This information
is compactly stored within a single word, denoted the activity counter, wherein the
least significant bit represents the flag, while the remaining bits represent the updates
counter. When a thread initiates an update operation, it increments its activity counter.
Upon completion of the update operation, the thread increments its activity counter
again. Therefore, an odd number in the activity counter indicates that the thread
is currently performing an update operation, while the value of the activity counter
divided by 2 reveals the count of overall number of updates executed by that thread.

A size operation first reads the activity counters of all threads (non-atomically) to
ensure none of them are currently engaged in updating the data structure, i.e., verifying
that all activity counters are even. If any read activity counter is odd, signifying that
a thread was actively modifying the data structure during the read, the size operation
waits until it becomes even. After all activity counters are read as even, indicating
no ongoing updates, the size operation proceeds by reading the metadata counters
of all threads (non-atomically), sums them, and then re-reads the activity counters
(non-atomically) and confirms that they remained unchanged (otherwise it restarts).
The fact that the activity counters were even and were not changed, ensures that
no concurrent update operation occurred during the reads of the metadata counters.
Consequently, the sum of the metadata counters provides a linearizable size of the data
structure (the size operation may be linearized at any moment during summing the
metadata counters—between the completion of the first read of the activity counters
and the start of their second read).

The issue with the method described above in its raw form is its potential to end-
lessly restart due to a second read that does not match the first read. To address
this, after multiple restarts from the size operation, it signals a flag to cease updat-
ing operations temporarily and request the updating operations to assist in calculating
the size. Once the size computation is finished, all operations can resume. While this
approach effectively handles exceptional cases, it may impact performance adversely,
especially during high contention periods when data structure update operations occur
frequently.

4.2.1 Data-structure transformation

The data structure transformation for the optimistic approach uses an OptimisticSizeCalculator

object whose methods appear in Figures 4.8 and 4.9 to calculate the size. Next we bring
the transformation details (the full pseudocode appears in Figure 4.10). Like in the
other methodologies, an array named metadataCounters with per-thread size metadata

36

is maintained and updated upon a successful insert or delete operation. The time gap
between updating the data structure and updating the size metadata in insert or delete

operations can lead to non-linearizable size results for size operations that observe the
size metadata during this period. To prevent this, we maintain an activity counter
per thread in an array named activityCounters. Each thread performing an insert or
delete increments its cell in the activityCounters array before making any changes to
the data structure, and increments it again after updating the size metadata regardless
of whether the operation was successful or not. Using this activity counter array, a
size operation can determine whether the metadata was updated during its execution,
and if so, it can retry the operation, as follows.

To calculate the size, a size operation calls the _tryComputeSize method, which starts
by making a copy named status of the activityCounters array (Line 156). It is important
to note that this copy is not obtained using a snapshot mechanism. For any obtained
odd value, which means that the corresponding thread is executing an insert or a delete

operation, the cell in the status array is re-read until obtaining an even activity counter
value. Once obtaining a status array with no odd values, the size operation proceeds to
calculating the size by summing up the values in the metadataCounters array (Lines 157
and 159). Then the size operation accesses the activityCounters array again and com-
pares its values with the values previously obtained in the status array (Line 160). If
they do not match, it restarts. Otherwise, the size operation finishes and returns the
computed size.

To prevent the size operation from restarting indefinitely, we set a limit named
MAX_TRIES on its number of retries, which determines the maximal number of attempts
the size will go through before making concurrent insert and delete operations assist it.
Once this limit is reached, the size operation increments a counter called awaitingSizes

(Line 135), which it will later decrement before it returns (Line 143). The insert and
delete operations check this counter before they start operating. In case its value is
positive, they help the size operation by trying to compute the size themselves in a
similar fashion to size operations—by obtaining activityCounters values before and after
the computation (see the helpSize method in Figure 4.8). The MAX_TRIES variable has
a big effect on the transformed data structure’s performance. If it is too small, insert

and delete operations may be interrupted frequently by size operations requiring them
to help before performing their operation and therefore harming their performance.
If it is too big, size operations may take a long time to complete, deteriorating the
performance of size operations.

Helping a size operation compute the size (both by insert and delete operations and
by other size operations) is coordinated using a shared object named SizeInfo, which has
a single field named size initialized to INVALID_SIZE and intended to hold the result of a
size operation. size operations install such an instance in OptimisticSizeCalculator.sizeInfo,
and concurrent size, insert and delete operations that observe an installed instance with
INVALID_SIZE size value attempt to compute the size and write the obtained size onto

37

the size field. The reason a size operation needs to obtain a SizeInfo instance, installed
in OptimisticSizeCalculator.sizeInfo by itself or by a concurrent size, is to be able to
retrieve from it a size value computed by another thread, as the size operation might
keep failing to obtain two identical copies of even activity counters and compute a
correct size on its own. After obtaining a SizeInfo instance, the size operation keeps
attempting to obtain two such activity counters copies and compute the size in be-
tween. On a successful attempt, it returns the computed value while also writing it
to the obtained SizeInfo instance for helping others. On a failing attempt, if another
thread succeeded and wrote its computed size to the SizeInfo instance, it returns this
computed size. However, a size written by another thread to the first SizeInfo instance
obtained by size may not be returned, since it might have been computed (by summing
the countersMetadata values) before this size’s interval (and so the size operation would
have been linearized outside its interval). Once observing that the size field in the first
obtained SizeInfo instance is set, a new instance should be installed and obtained, and
the size value—that will be later computed and written to it—may be legally returned.

The optimistic methodology does not maintain the progress guarantees of insert

and delete due to the blocking wait in Line 148. It does maintain them for the contains

operation as it does not modify it.

38

99 class OptimisticSizeCalculator:
100 OptimisticSizeCalculator():
101 MAX_TRIES = 3
102 this.metadataCounters = new long[n]
103 this.activityCounters = new long[n]
104 this.awaitingSizes = 0
105 this.sizeInfo = new SizeInfo()
106 incrementActivityCounter():
107 tid = ThreadID.threadID.get()
108 this.activityCounters[tid].setVolatile(1+this.activityCounters[tid].

getVolatile())
109 helpSize():
110 if this.awaitingSizes.getVolatile() == 0: return
111 currentSizeInfo = this.sizeInfo.getVolatile()
112 while true:
113 if currentSizeInfo.size.getVolatile() != INVALID_SIZE:
114 break
115 size = _tryComputeSize()
116 if size != INVALID_SIZE:
117 activeSizeInfo.size.compareAndSet(INVALID_SIZE, size)
118 break
119 updateMetadata(opKind):
120 tid = ThreadID.threadID.get()
121 if opKind == INSERT:
122 this.metadataCounters[tid].setVolatile(1+this.metadataCounters[tid

].getVolatile())
123 else:
124 this.metadataCounters[tid].setVolatile(-1+this.metadataCounters[

tid].getVolatile())
125 computeSize():
126 count = 0
127 <activeSizeInfo, isReturnableSizeInfo> = _obtainActiveSizeInfo()
128 while true:
129 if (size = activeSizeInfo.size.getVolatile()) != INVALID_SIZE:
130 if isReturnableSizeInfo: break
131 else:
132 <activeSizeInfo, _> = _obtainActiveSizeInfo()
133 isReturnableSizeInfo = true
134 if count == MAX_TRIES:
135 this.awaitingSizes.getAndAdd(1)
136 if count <= MAX_TRIES:
137 count++
138 size = _tryComputeSize()
139 if size != INVALID_SIZE:
140 activeSizeInfo.size.compareAndSet(INVALID_SIZE, size)
141 break
142 if count == MAX_TRIES + 1:
143 this.awaitingSizes.getAndAdd(-1)
144 return size

Figure 4.8: OptimisticSizeCalculator interface methods

39

145 _readActivityCounters():
146 status = new long[n]
147 for each tid:
148 wait until ((status[tid] = this.activityCounters[tid].

getVolatile())%2 == 0)
149 return status
150 _retryActivityCounters(status):
151 for each tid:
152 if status[tid] != this.activityCounters[tid].getVolatile():
153 return false
154 return true
155 _tryComputeSize():
156 status = _readActivityCounters()
157 sum = 0
158 for each tid:
159 sum += this.metadataCounters[tid].getVolatile()
160 if _retryActivityCounters(status):
161 return sum
162 return INVALID_SIZE
163 _obtainActiveSizeInfo():
164 currentSizeInfo = this.sizeInfo.getVolatile()
165 if currentSizeInfo.size.getVolatile() == INVALID_SIZE:
166 activeSizeInfo = currentSizeInfo
167 isNewlyInstalledSizeInfo = false
168 else:
169 isNewlyInstalledSizeInfo = true
170 newSizeInfo = new SizeInfo()
171 witnessedSizeInfo = this.sizeInfo.compareAndExchange(

currentSizeInfo, newSizeInfo)
172 if witnessedSizeInfo == currentSizeInfo:
173 activeSizeInfo = newSizeInfo
174 else:
175 activeSizeInfo = witnessedSizeInfo
176 return <activeSizeInfo, isNewlyInstalledSizeInfo>

Figure 4.9: OptimisticSizeCalculator auxiliary methods

40

177 class TransformedDataStructureOptimistic:
178 TransformedDataStructureOptimistic():
179 Initialize as originally
180 this.sizeCalculator = new OptimisticSizeCalculator()
181 contains(k):
182 Perform the original contains operation
183 insert / delete(k):
184 this.sizeCalculator.helpSize()
185 Search as originally for the place to insert k in case of insert /

for a node with key k in case of delete
186 Return on failure (if k is present in an unmarked node in case of

insert / not present in case of delete)
187 this.sizeCalculator.incrementActivityCounter()
188 Perform the original modification attempt, if successful perform

this.sizeCalculator.updateMetadata(INSERT / DELETE)
189 this.sizeCalculator.incrementActivityCounter()
190 Return the result of the original modification attempt
191 size():
192 return this.sizeCalculator.computeSize()

Figure 4.10: A transformed data structure with an optimistic scheme

4.3 Locks

In this section, we describe the final synchronization method studied: lock-based syn-
chronization. As detailed in Section 2, locks provide mutual exclusion by allowing only
one thread to hold the lock at any given time. However, simply blocking all update
operations to let only one execute at a time could be detrimental to scalability and
performance. To address this, we employ advanced locks known as read-write locks,
which enable multiple reader threads to execute concurrently, whereas a writer thread
executes alone, preventing any other thread (reader or writer) from acquiring the lock
concurrently with a writer thread that holds the writer lock.

Using these locks, all update operations acquire the reader lock, enabling them to
execute concurrently. The size operation acquires the writer lock, ensuring it executes
alone without concurrent updates. To facilitate quick execution of size and clear the
path quickly for other operations, the updating threads maintain their local metadata
counters. The metadata allows the size operation to quickly execute, as it only needs
to read the metadata counters of all threads (rather than traversing the whole data
structure to count elements), and it can then release the write lock, allowing all threads
to resume execution. The size operation returns the sum of all metadata counters.
Moreover, concurrent size executions cooperate, allowing one execution to perform the
size computation and others to utilize the result of this computation.

4.3.1 Data-structure transformation

Next we detail the data structure transformation to make it support our lock-based
size mechanism (the full transformation pseudocode appears in Figure 4.11). We add
a readers-writer lock to the data structure in the form of a field named readWriteLock

41

placed in a LocksSizeCalculator object (see Figure 4.12 for its full method pseudocode).
Different implementations of such a lock can be used; we used Java’s StampedLock
class from the java.util.concurrent.locks package in our evaluation as it provided
the best results out of the tested lock implementations. Additionally, we add an array
named metadataCounters to the LocksSizeCalculator object, with a cell per thread to keep
track of the size metadata for each thread.

An insert operation starts with a search to find the insertion point. If an unmarked
node with the required key is already found, it returns a failure. Otherwise, the read
lock is acquired by invoking the readLock() method on the readWriteLock object. Follow-
ing this, an insertion attempt is executed as in the original data structure. If it concludes
successfully, the current thread’s cell in the metadataCounters array is incremented by 1.
To wrap up the process, the read lock is released by calling the readUnlock() method on
the readWriteLock object, and the result of the insertion attempt is returned.

Similarly, a delete operation begins by searching for a node with the key it wishes
to delete. If such a node is not located, the operation promptly returns a failure.
However, if found, the read lock is acquired by invoking the readLock() method on the
readWriteLock object. The operation then advances to execute a deletion attempt like
in the original data structure. If successfully completed, the current thread’s cell in the
metadataCounters array is decremented by 1. Finally, the read lock is unlocked by calling
the readUnlock() method on the readWriteLock object, and the outcome of the deletion
attempt is returned.

The contains operation remains as in the original data structure. Lastly, the size

operation sums the values of all the cells in the metadataCounters array. To do so, the
write lock is acquired by invoking the writeLock() method on the readWriteLock object.
The operation then iterates over the array and sums the values of all the cells. Once
the summation is complete, the write lock is released using the writeUnlock() method on
the readWriteLock object and the result of the summation is returned. The acquisition
of the write lock ensures that no insert or delete operation is in an inconsistent state
while the summation is executed.

The updates and summation of the metadataCounters array are not executed using
a special snapshot algorithm. This is because due to the mutual exclusion guaranteed
by the acquisition of the write lock, when the size operation is accessing the array,
no other thread can update it. This makes a simple pass over the array sufficient to
correctly compute the size.

To allow multiple size operations to be performed concurrently in an efficient man-
ner, we place a field holding a shared object of type SizeInfo in the LocksSizeCalculator

object, which has a single field for holding the computed size. At the start of a size

operation, it checks if the SizeInfo instance currently installed in that field has a valid
size value written to it. If not, the operation waits until a valid size value is written to
the SizeInfo instance and then returns that value. Otherwise, the operation attempts
to replace the existing SizeInfo instance with a new one with a size field initialized

42

to INVALID_SIZE using compareAndExchange. If the compareAndExchange fails, the operation
waits until a valid size value is written to the SizeInfo instance and then returns it. If
the compareAndExchange succeeds, the size operation is responsible for computing the size
by acquiring the write lock, summing the metadata array, releasing the write lock and
writing the computed size value into the SizeInfo instance; it then returns the computed
size.

193 class TransformedDataStructureWithRWLock:
194 TransformedDataStructureWithRWLock():
195 Initialize as originally
196 this.sizeCalculator = new LocksSizeCalculator()
197 contains(k):
198 Perform the original contains operation
199 insert / delete(k):
200 Search as originally for the place to insert k in case of insert /

for a node with key k in case of delete
201 Return on failure (if k is present in an unmarked node in case of

insert / not present in case of delete)
202 this.sizeCalculator.readWriteLock.readLock()∗

203 Perform the original modification attempt, if successful call
this.sizeCalculator.updateMetadata(INSERT / DELETE)

204 this.sizeCalculator.readWriteLock.readUnlock()∗

205 Return the result of the original modification attempt
206 size():
207 return this.sizeCalculator.computeSize()
208 ∗The locking and unlocking scheme depends on the implementation of the

lock used and may look different (e.g. when using a StampedLock).

Figure 4.11: A transformed data structure with a readers-writer lock

43

209 class LocksSizeCalculator:
210 LocksSizeCalculator():
211 this.metadataCounters = new long[n]
212 this.readWriteLock = new ReadWriteLock()
213 this.sizeInfo = new SizeInfo()
214 updateMetadata(opKind):
215 tid = ThreadID.threadID.get()
216 if opKind == INSERT:
217 this.metadataCounters[tid].setVolatile(1+this.metadataCounters[tid

].getVolatile())
218 else:
219 this.metadataCounters[tid].setVolatile(-1+this.metadataCounters[

tid].getVolatile())
220 computeSize():
221 currentSizeInfo = this.sizeInfo.getVolatile()
222 if currentSizeInfo.size.getVolatile() != INVALID_SIZE:
223 newSizeInfo = new SizeInfo()
224 witnessedSizeInfo = this.sizeInfo.compareAndExchange(

currentSizeInfo, newSizeInfo)
225 if witnessedSizeInfo == currentSizeInfo:
226 size = _computeSize()
227 newSizeInfo.size.setVolatile(size)
228 return size
229 currentSizeInfo = witnessedSizeInfo
230 return _waitForComputing(currentSizeInfo)
231 _computeSize():
232 sum = 0
233 this.readWriteLock.writeLock()∗

234 for each tid:
235 sum += this.metadataCounters[tid].getVolatile()
236 this.readWriteLock.writeUnlock()∗

237 return sum
238 _waitForComputing(currentSizeInfo):
239 while true:
240 currentSize = currentSizeInfo.size
241 if currentSize != INVALID_SIZE:
242 return currentSize

Figure 4.12: LocksSizeCalculator methods

44

Chapter 5

Evaluation

We implemented all of the presented methodologies for computing size in Java, closely
corresponding to the algorithms and pseudocode described across Sections 4.1–4.3. This
implementation includes all described optimizations in Sections 4.1.4 and 5.1.2. In this
section, we present the evaluation of all methodologies compared to the methodology
from [SP22a]. Two primary aspects were chosen for testing: (1) the additional overhead
each methodology incurs on the operations of the original data structure and (2) the
performance of the size operation, evaluated by testing its scalability. Finally, we try
to give recommendations on which methodology should be used in each scenario.

Platform. All experiments were executed on a system operating on Linux (Ubuntu
20.04.5 LTS), powered by two Intel(R) Xeon(R) Gold 6338 CPUs @2.00GHz, each
with 64 threads, summing up to a total of 128 threads. The system is equipped with
32GB of RAM. The methodologies were implemented using Java, employing OpenJDK
version 21. As in [SP22a], the G1 garbage collector was deployed and the flags -server,
-Xms31G, and -Xmx31G were utilized to improve performance and minimize disruption
of Java’s garbage collection.

Data structures. We evaluated the methodologies on three different data struc-
tures: SkipList, Binary Search Tree (BST) and HashTable. The implementations for
the baseline data structurse are taken from the public implementation of [SP22a],
available in [SP22b]. These implementations in turn are based on prior work. The
SkipList builds on Java’s ConcurrentSkipListMap from the java.util.concurrent
package in Java SE 18. The BST builds on Brown’s implementation [Bro18] of the
lock-free binary search tree of [EFRvB10] that places elements in leaf nodes. The
HashTable was implemented in [SP22a] based on the linked list in the base level of
Java’s ConcurrentSkipListMap. Since the BST implementation in [Bro18] does not
linearize the delete operation at the marking step, to comply with the restrictions of the
handshake-based methodology, we used a variant of BST that linearizes the deletion at
the marking step as in [SP22a]. Since the lock-based and optimistic methodologies do

45

not pose that restriction, we used the unmodified BST implementation from [Bro18]
for these transformations.

Methodology. For the most part, we use the same testing methodology as in [SP22a].
This methodology involves initializing the data structure with 1M items prior to each
experiment. Subsequently, two distinct workloads are executed: an update-heavy work-
load, comprising 30% insert operations, 20% delete operations, and 50% contains op-
erations; and a read-heavy workload, consisting of 3% insert operations, 2% delete op-
erations, and 95% contains operations. These workloads align with the recommended
read rates outlined in the Yahoo! Cloud Serving Benchmark (YCSB) [CST+10]. YCSB
also proposes a 100%-read workload; however, this scenario is less pertinent to our case
as the likelihood of size calls on a data structure that remains unchanged is negligible.
The results that correspond to the read-heavy workload are displayed on the left side
of Figures 5.2–5.10, while those related to the update-heavy workload are presented on
the right side.

The keys utilized for operations during the experiment as well as for the initial-
ization of the data structure, are selected uniformly at random from a specified range
[1, r] like in [SP22a]. The value of r is determined to ensure the target size of the data
structure is maintained. Furthermore, in all experiments, the type of the subsequent
operation is determined iteratively based on the specified update-heavy or read-heavy
workload proportions. Each experiment involves the concurrent execution of w work-
load threads, which engage in insert, delete, and contains operations according to the
characteristics of the workload, alongside s size threads, which repeatedly invoke the
size operation with a delay between each two invocations. We set the delay time be-
tween size operations in overhead measurements to either 0 or 700µs (microseconds) to
represent continuous or occasional invocations of size. In the rest of the measurements
we kept the delay at 0. We chose 700µs to represent an execution of size at about 10%
of the clock time, depending on the methodology used. For baseline algorithms, only w

workload threads are employed. The values of w and s vary across experiments, with
the constraint that w+s is predominantly chosen as a power of 2. Experiments are run
for 5 seconds. Each reported data point in the graphical representations is the average
outcome of 10 runs, following an initial warm-up phase consisting of 5 preliminary runs
to stabilize the Java virtual machine. To reduce the variance between experiments, we
disabled hyper-threading, leaving us with 64 threads to utilize. Additionally, in exper-
iments involving up to 32 threads, we employed the ”taskset –cpu-list 0-31” command
to ensure that the entire experiment was executed on a single CPU node to reduce
variability.

46

5.1 Implementation details

5.1.1 Thread registration

Each methodology we study utilizes a metadata array to effectively track the count
of insertions and deletions on a per-thread basis. Within this metadata array, every
thread is allocated a distinct cell. To allocate a cell to each thread, we incorporate a
registration mechanism, assigning a unique ID to each thread that aligns with a cell
in the array. To facilitate this thread identification and management in a concurrent
environment, we introduce the ThreadID class presented in Figure 5.1, in which we
have implemented a mechanism to manage thread registration. Within this class, an
AtomicInteger variable is utilized to keep track of the next thread ID that has not yet
been used. A pool is maintained to store the thread IDs that have been released by
other threads, ensuring reuse of these IDs for subsequent thread registrations. Before
performing any operation on the data structure a thread must call ThreadID.register().
When it is done using the data structure it should call ThreadID.deregister() to release
its thread ID allowing other threads to use it.

It is important to note that the reassignment of a thread ID from one thread to
another does not compromise the correctness of the size operation. A thread should
perform deregistration only after it is done operating on the data structure, and each
operation on the data structure returns only after it has been finalized. Consequently,
a specific thread ID is allocated to one operating thread only at any given time, and if
a new thread is allocated a previously used ID, the data structure continues to reflect
the cumulative effects of all operations conducted under that ID. Therefore, the data
structure maintains its integrity and correctness even as thread IDs are dynamically
allocated and deallocated among different threads.

We used Java’s PriorityBlockingQueue class from the java.util.concurrent pack-
age to serve as our concurrent pool, ensuring the management of concurrent accesses.
This class implements the poll() method to allow extraction of an element from the
pool and the add() method to allow insertion of a new element into the pool. In ad-
dition, we utilized Java’s AtomicInteger from the java.util.concurrent package to
keep track of the next available thread ID in an atomic manner.

5.1.2 General Optimizations

5.1.2.1 Avoid false sharing

To prevent false sharing among threads while accessing arrays that hold per-thread
data, for each array of this kind utilized in the different methodologies (meatadataCounters,
fastMeatadataCounters, opPhase and activityCounters), we pad its cells so that the data of
each thread occupies a full cacheline.

47

244 class ThreadID:
245 MAX_THREADS = 128
246 this.threadID = ThreadLocal<Integer>()
247 this.pool = PriorityBlockingQueue<Integer>(MAX_THREADS)
248 this.nextId = AtomicInteger(0)
249 register():
250 if this.threadID.get() is not null:
251 throw new RuntimeException("Thread already registered")
252 tid = this.pool.poll()
253 if tid is null:
254 tid = this.nextId.getAndIncrement()
255 if tid >= MAX_THREADS:
256 throw new RuntimeException("Too many threads")
257 this.threadID.set(tid)
258 deregister():
259 tid = this.threadID.get()
260 if tid is null:
261 throw new RuntimeException("Thread not registered")
262 this.pool.add(tid)
263 this.threadID.set(null)

Figure 5.1: ThreadID class methods

5.1.2.2 Partial array iteration

The usage of the registration scheme described in Section 5.1.1 enables the determina-
tion of the maximum number of threads that have been operating concurrently on the
data structure. This number is represented as the value of the nextId variable. Conse-
quently, when going over any metadata array sized to the number of threads in each
methodology (for example, the activityCounters array in the optimistic methodology),
it is possible to go over only the first nextId cells and not iterate over the entire array.
This can improve performance in cases where the maximal number of concurrent ac-
tive threads is fewer than the maximal number of threads (which determines the size of
the size metadata array). To implement this, in places where we iterate over the size

metadata array (not including the initialization of this array), we first read the value
of the nextId variable. Then, we iterate over only the first few cells of the array based
on the value we read from nextId. In order to address the race condition in which a
new thread has registered causing nextId to increment after we have read the value of
the nextId variable allowing that new registered thread to modify a cell which we are
not aware exists, we read this value again when we have finished iterating. If the value
has changed (which would only be an increase), we repeat the process by reading the
nextId variable again. We will only finish once we reach an iteration where this value
has not changed. This verification loop is not necessary in all cases, for example, in
the optimistic methodology when executing the _readActivityCounters function there is
no need to verify the value of nextId as if we missed a thread’s registration - in the
case that thread has modified the activityCounters array we will find out about it in
the _retryActivityCounters function, causing the size attempt to retry.

48

5.1.2.3 Usage of tailored opKinds

In situations where it is not necessary to differentiate between the size metadata for
insert and delete operations (such differentiation is needed only for the slow operations’
metadata in the handshakes methodology), we can make usage of specific opKind values
to allow us eliminate some conditional statements from the implementation. This
approach enables us to eliminate the if condition when updating the size metadata,
as appears in Lines 12, 121 and 216. To achieve this, we define new, different opKind

values to be INSERT=1 and DELETE=-1 (where previously INSERT was 0 and DELETE was 1

to allow access to the size metadata array while separating the insert metadata from
the delete metadata). When updating the metadata, rather than checking whether
the opKind indicates an insert or a delete operation to decide whether to increase or
decrease the counter, we simply add the opKind value directly to the corresponding cell
in the size metadata array.

5.1.3 Memory Model

In our Java implementation, volatile semantics are consistently used in read, write,
and CAS operations on non-final fields of shared objects. This approach is carried out
through the usage of volatile variables, VarHandles and AtomicReferenceFieldUpdaters.

Under the Java memory model, any access that utilizes volatile semantics is treated
as a synchronization action. The model, in turn, commits to a synchronization order
for these actions. This allows for a total order that seamlessly aligns with each thread’s
program order. Moreover, any read operation executed on a volatile variable is promised
to fetch its most recently written value, in accordance with the synchronization order.

5.2 Overhead of size

The graphs in Figures 5.2–5.4 present throughput measurements of the various synchro-
nization methods with the skip list (Figure 5.2), the BST (Figure 5.3), and the hash
table (Figure 5.4). Specifically, for each data structure we execute the original version
of the data structure, the SP method of [SP22a] (denoted SP), the optimistic method
(denoted optimistic), the handshake method (denoted handshake), and the lock-based
method (denoted stampedLock). Each figure contains three rows. The first row presents
an execution with no concurrent size execution, representing just the overhead for hav-
ing size available. The second row presents an execution with a continuous execution
of size by a concurrent thread, representing the overhead for always cooperating with
the execution of size. Lastly the third row presents an execution of operations when
the size operation occasionally runs concurrently. As stated above, we let the thread
running size execute a delay of 700µs after each size execution, to represent a coopera-
tion with a size method at approximately 10% of the time, depending on the efficiency
of size with the specific synchronization method.

49

The X-axis represents the number of threads running operations concurrently (1,
4, 8, 16, 32, and 64 when no concurrent size executes, and 1, 3, 7, 15, 31, 63 when
one concurrent thread executes size on a separate thread). Each graph has an upper
part and a lower part. The throughput is depicted in the upper part, with the Y-axis
showing the number of million operations executed per second. On the lower part of
each graph we depict the overhead percents compared to the throughput of the original
data structure (that does not support a size execution). The Y-axis shows 100% when
no throughput loss is demonstrated, and lower percentage when overhead is witnessed.
To prevent long bars interfering with small ones, we cut long overhead bar at 80% and
write the lost percentage below the specific bar.

It turns out that there is no one-size-fit-all method. Different scenarios call for differ-
ent synchronization methods. The observed results vary by the chosen data structure,
the contention levels, the frequency of utilizing the size operation, and the workload
(read intensive or update intensive). Notably, the hash function exhibits exceptionally
fast operations, making the relative overhead on cooperation with size much higher
when compared to both the skip list and the BST. In scenarios characterized by a
write-heavy workload, the original SP approach emerges as the recommended strat-
egy for the hash table. Its overhead averages around 10%, and generally within the
range of 0 − 20%. Conversely, for read-intensive workloads, the optimistic approach
proves optimal, showcasing an average overhead of around 4% and fluctuating between
0− 14%.

The skip list and BST perform comparably, demonstrating commendable perfor-
mance with both the lock-based and optimistic methods, particularly in read-heavy
workloads. However, their efficacy diminishes significantly under write-heavy work-
loads, especially during heightened contention and when the size operation is actively
employed. The optimistic approach is somewhat less harmful in this scenario due to
its more gradual degradation. Consequently, when anticipating write-heavy workloads
or when usage patterns are uncertain, both the SP and handshake approaches exhibit
superior performance. Notably, the handshake approach on the skip list maintains an
average overhead of approximately 4.4%, surpassing the SP approach by about 1%, and
ranging between 0− 12.9%. On the other hand, for the BST, the SP approach consis-
tently outperforms the other approaches, showcasing an average overhead of 2.4% and
ranging between 0− 7.1% across all scenarios.

50

Read heavy Update heavy

Without a concurrent size thread

With a concurrent size thread and no delay

With another concurrent size thread and 700 µs delay

Figure 5.2: Overhead on skip list operations

51

Read heavy Update heavy

Without a concurrent size thread

With a concurrent size thread and no delay

With another concurrent size thread and 700 µs delay

Figure 5.3: Overhead on BST operations

52

Read heavy Update heavy

Without a concurrent size thread

With a concurrent size thread and no delay

With another concurrent size thread and 700 µs delay

Figure 5.4: Overhead on hash table operations

53

5.3 Size Scalability

Next, we study the scalability of the size operation across the studied synchronization
methods. We measured the total throughput of threads executing the size operation
in each data structure, both in a read-oriented and a write-oriented workload. We ran
32 workload threads concurrently with size-executing threads, whose number varies
between 1 to 32 (so the overall number of running threads was bounded by 64). The
results are depicted in Figures 5.5–5.7.

Read heavy Update
heavy

Figure 5.5: size scalability in skip list

Figure 5.6: size scalability in BST

Figure 5.7: size scalability in hash table

Again the results differ between the hash table and the other two data structures.
For the BST and the skip list on a read-oriented workload, the lock-based method does
significantly better. A size operation that grabs the write lock can execute very fast
with no interference from the data structure operations. In contrast, when the data

54

structure is updated frequently, the wait for acquiring the lock becomes dominant and
the handshake synchronization wins, albeit not with such a significant advantage as
locks have on a read-heavy workload. So if the scalability of the size is of high im-
portance then the lock-based method should be favored with read-oriented workloads,
and for write-heavy workloads the handshake synchronization does somewhat better
than the lock-based synchronization. Normally, we expect the overhead on the opera-
tions themselves to be the more important consideration, as they typically occur more
frequently.

Similarly to the investigation of overheads, the hash table behaves completely dif-
ferent. The handshakes synchronization wins on the read-heavy workload and the lock-
based synchronization wins on the write-heavy workload. Lock-based synchronization
is not recommended for hash table as the size operations take over the lock and allow
almost no data structure operations to execute, as can be seen in the middle row, right
side, of Figure 5.4. The handshake approach or SP approach synchronization methods
may thus be the best overall choice for this case.

5.4 MAX_TRIES measurements

To determine the effect of the MAX_TRIES variable on the optimistic method, we performed
additional measurements that compared the overhead on the original data structure and
the scalability of the size operation with MAX_TRIES values ranging from 2 to 16. Graphs
presenting the effect of different MAX_TRIES values on the performance of the optimistic
method appear in Figures 5.8–5.10.

Read heavy Update heavy

Figure 5.8: MAX_TRIES overhead and scalability in skip list

55

Read heavy Update heavy

Figure 5.9: MAX_TRIES overhead and scalability in BST

Figure 5.10: MAX_TRIES overhead and scalability in hash table

56

5.5 Progress Guarantees

Table 5.1 presents a comparison of the progress guarantees for the synchronization
methods researched and presented in this thesis for concurrent size computation. The
”Size progress guarantees” column indicates whether each method provides strong
progress guarantees, such as wait-freedom. The remaining columns evaluate whether
each size computation methodology preserves the progress guarantees and asymptotic
complexities of the set operations in the original data structures

As shown in the table, the handshakes approach preserves the original progress
guarantees and complexity but does not offer specific guarantees for size computation.
The optimistic and locks based methodologies, on the other hand, compromise both
progress guarantees and complexity. In contrast, the SP algorithm [SP22a] provides
a wait-free guarantee for the size computation while maintaining both the original
progress guarantees and asymptotic complexity of the data structure.

Size progress guarantees Maintaining
original
progress guar-
antees

Maintaining
original
asymptotic
complexity

Handshakes − ✓ ✓
Optimistic − − −
Locks − − −
SP [SP22a] Wait-Free O(n)∗ ✓ ✓

* Where n is the maximal number of threads in the system.

Table 5.1: Progress guarantees comparison of synchronization methods for concurrent
size computation.

57

58

Chapter 6

Discussion and Conclusion

This thesis investigated the challenge of accurately and efficiently determining the size
of a concurrent data structure. We proposed three new approaches to incorporate
a linearizable size operation into concurrent data structures that implement sets or
dictionaries. These approaches were tested and compared to existing methods, with
our findings highlighting the complexity of selecting the optimal synchronization tech-
nique. As demonstrated, there is no single scheme that provides the best performance
across all scenarios, reinforcing the notion that different conditions necessitate different
synchronization methods.

Our evaluation revealed that the effectiveness of synchronization techniques depends
on several factors, including the data structure in use, contention levels, the frequency of
size operations, and the workload distribution between read and update operations. In
low contention environments, both optimistic and lock-based synchronization methods
perform well, but their efficiency declines as contention rises. In such high-contention
scenarios, the handshakes method and the SP approach emerged as the most effective
solutions.

Notably, the performance differences between data structures were significant. Hash
table operations, being faster overall, presented higher overhead when integrated with
the size method.

We also evaluated the scalability of the size operation when executed concurrently
with data structure updates, observing that synchronization methods optimizing size

scalability may differ from those enhancing data structure operation performance.
Given that users are likely to prioritize overall data structure performance, this factor
should guide the selection of synchronization techniques.

In conclusion, this study aligns with general trends in concurrent computing, illus-
trating that no single approach provides universally superior performance. The choice
of synchronization method for the size operation should be considerate of the specific
requirements of the workload and data structure characteristics, balancing the trade-
offs between size computation efficiency and overall data structure performance.

59

60

Bibliography

[AST12] Yehuda Afek, Nir Shavit, and Moran Tzafrir. Interrupting snapshots and
the javatm size method. Journal of Parallel and Distributed Computing,
72(7):880–888, 2012. https://doi.org/10.1016/j.jpdc.2012.03.007.

[Bro18] Trevor Brown. Java lock-free data structure library, 2018.

[CST+10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with ycsb. In SoCC,
2010.

[DG94] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’94, page 70–83, New York, NY, USA, 1994. Association for Com-
puting Machinery. https://doi.org/10.1145/174675.174673.

[DKL+00] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Eliot E. Salant, Kather-
ine Barabash, Itai Lahan, Yossi Levanoni, Erez Petrank, and Igor Yanorer.
Implementing an on-the-fly garbage collector for java. SIGPLAN Not.,
36(1):155–166, oct 2000.

[DL93] Damien Doligez and Xavier Leroy. A concurrent, generational garbage col-
lector for a multithreaded implementation of ml. In Proceedings of the 20th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’93, page 113–123, New York, NY, USA, 1993. Association
for Computing Machinery. https://doi.org/10.1145/158511.158611.

[EFRvB10] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
Non-blocking binary search trees. In PODC, 2010.

[Her91] Maurice Herlihy. Wait-free synchronization. TOPLAS, 13(1), 1991.

[HW90] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness
condition for concurrent objects. TOPLAS, 12(3), 1990.

[LP01] Yossi Levanoni and Erez Petrank. An on-the-fly reference counting garbage
collector for java. In Proceedings of the 16th ACM SIGPLAN Conference

61

https://doi.org/10.1016/j.jpdc.2012.03.007
https://doi.org/10.1145/174675.174673
https://doi.org/10.1145/158511.158611

on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA ’01, page 367–380, New York, NY, USA, 2001. Association for
Computing Machinery.

[PT13] Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In
DISC, 2013.

[RK23] Arik Rinberg and Idit Keidar. Intermediate value linearizability: A quan-
titative correctness criterion. J. ACM, 70(2), April 2023.

[SP22a] Gal Sela and Erez Petrank. Concurrent size. PACMPL, 6(OOPSLA2),
2022.

[SP22b] Gal Sela and Erez Petrank. Concurrent size - artifact for oopsla’22, 2022.

62

למתודולוגיות אותן ומשווים הללו הסנכרון שיטות של מקיפה הערכה מבצעים אנו שלנו, במחקר

הכרוך העומס את משמעותי באופן להפחית ניתן כי מראים שלנו הממצאים עדכניות. גודל חישוב

חשוב זאת, עם הספציפית. לסביבה ביותר המתאימה הסנכרון שיטת בחירת ידי על גודל בחישוב

סנכרון אסטרטגיות דורשות שונות סביבות המקרים; לכל שמתאים אוניברסלי פתרון שאין לציין

זה. במחקר בבירור שמודגם כפי שונות,

מעטות התנגשויות בעלות בסביבות מקבילי. בתכנות הכלליות המגמות את תואמים שלנו הממצאים

זאת, לעומת ביותר. כיעילות מתגלות נעילה והמבוססות האופטימיסטיות השיטות למשאבים, בגישה

נעילה חסרות קיימות ושיטות היד לחיצת שיטת למשאבים, בגישה רבות התנגשויות בעלות בסביבות

שיפור להשיג ניתן הסנכרון שיטת של נכונה בחירה באמצעות יותר. כמתאימות עצמן את מוכיחות

הביצועים את למקסם ובכך המקביליים, הנתונים מבני תקינות על שמירה תוך בביצועים משמעותי

הגודל. מחישוב שנובעים העומסים צמצום תוך המערכת של הכוללים

ii

תקציר

מהותי תפקיד משחק אשר בסיסי מאפיין מהווה כללי, באופן נתונים ומבני מפות אוספים, של גודלם

משום התכנות, סביבות ברוב נדרש גודל חישוב של מדויק יישום תכנות. פרדיגמות של רחב במגוון

של ואופטימיזציה עומסים חלוקת זיכרון, ניהול לדוגמה, זה. מידע על מתבססות רבות שפעולות

פועלים תהליכים מספר שבה מקבילית בסביבה זאת, עם יחד זה. מידע על מתבססים אלגוריתמים

הפעולות כל על משמעותי עומס להוסיף עשוי ונכונה מקבילית גודל חישוב שיטת של שילוב זמנית, בו

לפגוע עלול זה עומס ההרצה. במהלך כלל מנוצל אינה הגודל חישוב כאשר גם הנתונים, במבנה

של ויישום בעיצוב קריטי לשיקול הגודל חישוב שיטת את שהופך מה המערכת, של הכוללים בביצועים

מקביליים. נתונים מבני

הנתונים מבני ביצועי את לשפר שנועדו שונות סנכרון שיטות על מקיף מחקר מציגים אנו זה, במחקר

גודל מחישוב שנובע העומס את לצמצם ניתן כיצד להבין היא המחקר מטרת מקביליות. בסביבות

אנו ספציפי, באופן הסביבה. למאפייני בהתאם ביותר היעילה הסנכרון בשיטת ולבחור במקביל,

איסוף במנגנוני קרובות לעיתים משתמשים בה יד" "לחיצת שיטת של היעילות את ומשווים מנתחים

מנעולים. מבוססת מסורתית ושיטה אופטימיסטית שיטה מקביליים, זבל

מבנה על הפעולות שכל להבטיח כדי שונים תהליכים בין תיאום על מבוססת היד לחיצת שיטת

היא זו שיטה הריצה. במהלך מנוצל הגודל חישוב כאשר במיוחד מתואמת, בצורה מתבצעות הנתונים

ניגשים רבים תהליכים שבהן למשאבים, בגישה רבות התנגשויות בעלות בסביבות במיוחד אפקטיבית

יהיה המחושב שהגודל ומבטיחה לקונפליקטים הסיכון את מפחיתה השיטה זמנית. בו הנתונים למבנה

אחרות, לפעולות המתנה זמן להוסיף עלולה היא חסרון: גם יש זו לשיטה זאת, עם יחד ונכון. עקבי

הפעולה. בביצוע להמשיך שניתן לפני התהליכים כל בין בתיאום צורך שיש כיוון

זו גישה נדירים. הם תהליכים בין שקונפליקטים הנחה מנקודת יוצאת האופטימיסטית השיטה

אימות מנגנוני על הסתמכות תוך נעילות, ללא הנתונים מבנה על פעולות לבצע לתהליכים מאפשרת

התנגשויות מעט עם לסביבות במיוחד מתאימה זו שיטה הצורך. במידת קונפליקטים ופתרון לזיהוי

ישנם בהם במקרים מספקת. שהיא מהתועלת יותר גבוהה נעילה של העלות שבהן למשאבים, בגישה

מה ולעיכובים, ונשנים חוזרים לניסיונות להוביל עלולה האופטימיסטית השיטה רבים, קונפליקטים

שלה. הכוללת היעילות את שמקטין

מתבצעת הנתונים מבנה על פעולה כל שבה יותר, מסורתית גישה מהווה נעילה על המבוססת השיטה

לצווארי להוביל עלולה אך עקביות, מבטיחה זו שיטה בלעדית. גישה שמבטיח נעילה מנגנון תחת

עשויה הנעילה כאלו, במקרים במקביל. הנתונים למבנה לגשת מנסים רבים תהליכים כאשר בקבוק

שלה. הכוללת ביעילות ולפגוע המערכת ביצועי את להאט

i

המחשב. למדעי בפקולטה פטרנק, ארז פרופסור של בהנחייתו בוצע המחקר

והשוואה התייחסות והצגתם, עיבודם הנתונים, איסוף כולל המחקר, כי מצהיר/ה זה חיבור מחבר/ת

המידה אמות לפי המבוצע מדעי ממחקר כמצופה ישרה, בצורה כולו נעשה וכו', קודמים למחקרים

ישרה בצורה נעשה זה בחיבור ותוצאותיו המחקר על הדיווח כן, כמו האקדמי. העולם של האתיות

מידה. אמות אותן לפי ומלאה,

תודות

עבורי היוו שלו והתמיכה הכוונתו שמומחיותו, פטרנק, ארז פרופ' שלי, למנחה תחילה להודות ברצוני

המחויבות הפעולה, שיתוף על סלע לגל גם להודות ארצה הדרך. לאורך עצומה ותרומה השראה מקור

להודות ארצה לבסוף, משמעותי. באופן שלי המחקר את העשירו אשר הנהדרות והתובנות העצות ועל

הדרך. כל לאורך בי והאמונה מתפשרת הבלתי התמיכה על למשפחתי

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

עדכונים לנוכח נתונים מבני של גודל חישוב
יעיל באופן מקביליים

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

שריר קאס חן

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2024 ספטמבר חיפה תשפ״ד אב

עדכונים לנוכח נתונים מבני של גודל חישוב
יעיל באופן מקביליים

שריר קאס חן

	List of Figures
	Abstract
	Abbreviations and Notations
	Introduction
	Preliminaries
	Previous size solutions
	A Study of Synchronization Methods for size
	Handshakes
	Overview
	A size design with handshakes
	Data-structure transformation
	Optimization: size operations join the previous handshake
	Correctness of the handshake-based methodology
	Two handshake rationale
	Linearization points
	Linearizability proof

	Optimistic Approach
	Data-structure transformation

	Locks
	Data-structure transformation

	Evaluation
	Implementation details
	Thread registration
	General Optimizations
	Avoid false sharing
	Partial array iteration
	Usage of tailored opKinds

	Memory Model

	Overhead of size
	Size Scalability
	MAX_TRIES measurements
	Progress Guarantees

	Discussion and Conclusion
	Bibliography
	Hebrew Abstract

