X7 2171150 DR - [1M>0N
Technion — Israel Institute of Technology

[1'120N NI"190
The Technion Libraries

024j7'"a [XI'AI ['"NX WY D'DNROIN "TIN'77 1900 N2
Irwin and Joan Jacobs Graduate School

o /

©
All rights reserved

This work, in whole or in part, may not be copied (in any media), printed,
translated, stored in a retrieval system, transmitted via the internet or other
electronic means, except for "fair use"” of brief quotations for academic
instruction, criticism, or research purposes only.

Commercial use of this material is completely prohibited.

©
nmy nrdT 7o

IX DT 712N 017022 Y'ON7 . UTA 1NN JONN7 ,0AIN7 ,0'9TN7 ,('"NW7d N TN1) 7'Nun7 'K
IX D72, AXIN , TINTZ NNVAY 12NN (3 0NY7 Do "I wim'w" oyn? ,nnn 7mn 7
.07NN2 YOX AT 12N 71750 1AIN2 NoN WIn'Y 7NN



2ONWS Y 17990 By

D bR



2ONND DI 3197 9T

PR DY M2

RN AR MRTT Dw ok e o

TIDIDTPDR YT

D BN

PRI ROV 119% — PIoun weh Wi

2006 ©OIN =R T'on YN



AP 90 T KW ™I pIUD 1K 1T NTRIT WYl NP
|

2Wman ¥ qupea

,PPTIT1DTTDIIN . PIIVD TR MOPIT 5w AMmnY 7277 PN5WR AR 207 MIXN INWRA2 WX
SINF? 100 WO, 10 TN TR TR 90 AR IR DR MW POM TN PN 22WY N YR
I, 7917 1XYW N1 TR DY TOYR 29N 03 MO 03 1 AR hw 197 0201 M5 nns
SNV WD WD NP

QYW DIIRA N2 INNIN DX WY PINW 23 IR DR NPT 0w PIT M nsa
YSRIX TN .DNMY 7¥ NTIN DX $°20% DR AT N 59 1R 129,072 "N nmay Rphten!
21 'Y ,AMOIR AN OY NI DY DM 0ON0MI TR NYANA DUMYY 01975 05 1Y
%y 70y nUan oMY MR M1EN2 TR Y 10N U IR TP 0N LN 1 NPT 2N
IR TRV NAEA NDNR DR DY 0 MW, ATaY (OW DT 1003) Y 0PPYI RTeRe T Rnes
N27 M7150 720N 5¥ 709RER YW MMan MOwab T29nnn 1P 0°0pRS1 90°K 195 111N T'0R
Ralili

7 17 ,0°000 M T ToR2 . TRy ToRma RN DNOR BY 0°RIY AITEY S11NAa 012
,ATNR AT .0V DY 7Y 125007 °7 1Y 11 0 ar-07 0m . Ten WM 0y 10 pind Miwh
.ONIR 9¥1 BNNYI0 YY ,an57n YY NnownY 9p1R MY ,MWR ANINR KO (wnn) > ox

29 PITIY IPnNA PIVA DY NTIUI 0 AR YW 01919 199 T7 IR

MMYNWN2 727737 MO0 1MN0 By DYV TTM! AN



10
11
12
12
13
13
14

251991y 1970 :
QATIWPY 2D *
QTTIM T

xuan.l1

................................................................. Darmoox 1.1
..................................................................... omnw 1.2

.................................................... D N2 Sar MoR 1.3
....................................... "rapn Yar ox 1.3.1

....................................................... N7 1.3.2
........................................................ arapnna wnn 1.4
....... AIR->12-7N 7207 MY NP0 YW Lar o 1.5

............................................. 2R57 71191 Har oW 1.6

0°¥72¥1 N7O0 *D0121 D27 *DOIR2 *11-13 B MoK 1.7

.............................. WX ORI NWY2 0928 DYoo 1.8

............................................................. DIy R 1.9
...................................................... T ATavaTon 1.10

TR MTey .2
.................................................. YR-772-T MoK 2.1

......................................................... DY 28N NHo 2.2

............................................. N7 00120 D31 b0k 2.3

....................................................... 231 9939 MoK 2.4

............................................................... NURDY 10D 2.5

............. PIUDY 127 2w 0°P*3X17 NPH0 DO ODP9MNA DoWANT ANLOKR 2.6

........................................ 2317 A0 2 2.6.1



24 DIWR-T-TIN TAWT T NP0 MU DY DOUa Do1K bar nweR.3

24 e X12n 3.1
25 e, QNMEERA W oy nurya 3.1.1

27 e, PIIUDY 213R YW anoRS axnwn 3.1.2

2T e, mRun v 3.1.3

2 e 5217 oW NP 3.2
29 e, PI2-0%3N DY PIwR 112 3.2.1

3 e, DR D203 WY 3.2.2

33 e 22177 A0 01D 3.3
3 e, W™ ¥ 3.3.1

34 e, n"I5IN7 0N oY Awen I 3.3.2

30 e o°KR7 2% 3.3.3

3 e e, 2217 QoW TP 3.3.4

3 e won N neapy 3.4
A3 e, AR M3y wn 3.5
AA e e mm™m3.6
A5 e, nenwn T 3.6.1

A5 e, nw %2 3.6.2

50 e, .. DA aow mIdn 3.6.3

3 e mponx 3.6.4

S e nupon 3.7
55 BORYO3 IO TAT-12 2T nOR 4
S e e, X2 4.1
57 e, TR0Y P22 (0N N0 DAt MoR 4.2
S e, D°R27 10M Har Ao 4.3
O e nmdn4.3.1

62 et NN 2En4.3.2

B3 e DA QoW WD 4.4
03 e, W™ 3 axn 4.4.1

64 e, a™IP Y o1n1"1an 4.4.2



66 o, 110 0N Ay AwWeR MY 4.4.3

09 e, qI0°R7 25 4.4.4
Tl e e 231 oW Tp 4.4.5
TO e MR MY wIn 4.5
TT e e e T P 4.5.1
TT e DY¥INIMD 4.5.2
T8 e, qORT Ny 4.5.3
T8 e, DWwMwn N3P 4.5.4
T e, mmmn 4.6
7O i, MYR-"72-T1N D*72WT DVINT1 231 bR RN 4.6.1
83 e, Q¥ DR XN Y1 A0S RN 4.6.2
BA e 1nwn It 4.6.3
B e 22177 O 5w 9015 NN 4.6.4
B0 it mp> °,x" 4.6.5
BT e et nupon 4.7
89 OWR-5T2-TIN B9 papm AR .S
B e X12n 5.1
B e nRn S
90 e R S5.1.2
O e 7L T v 5.1.3
D3 e QTP 231 B0 NP0 5.2
O3 e, T 1290 5y 09N QoK 5.2.1
94 e ¥R 712 TN Q73 MoK 5.2.2
DS e 0°23977 A0 NP0 5.3
O (P°7nn van ) Pra-o173n nawn 5.3.1
T e D>TaYVAn N nawn 5.3.2
101 .............. MIN->T3-TIN T2WA 717 0P DR W 521 A0 N0 5.3.3
101 e DOR2% M 921 A0IR oY 1 wa mang 5.3.4
102 e, 0’7017 0¥ 9901 Nnnon 5.3.5

LO e 5217 A0 "D 5.4



L0 e oW yhaxn 5.4.1

LOS e, o°%%0 oRwN 5.4.2

107 e, QY7211 D0 Y217 AT oY 77WH MW 5.4.3

L0O e 273977 0N TP 5.4.4

LIS e, INR' MY W 5.5
L0 e, M nNpn 5.5.1

Ll e, DYy NIMS 5.5.2

FL7 e e, MO Ny 5.5.3

LI e e, x¥In wwn 5.5.4

LIO e, DWMWR N¥\p 5.5.5

120 o e, DAY NN 5.5.6

L20 e nmm 5.6
L2 e, 2'M¥a 5.6.1

123 e, nwn 1 5.6.2

123 e 0930 A0 NIDN 5.6.3

L2 e, NN nTay 5.6.4

L2 e, nupon 5.7
130 WR™ IR2T NIV DUWORNN NTUBO 3707 VAT O TSI NNMNT 1B .6
B30 e, X12n 6.1
132 e, 0°¥°2¥1 NH0 NYwa K31 oW 6.2
L34 e, TP-17200 6.2.1

137 e, MTID1 MAWIPR DWW DY IRYP 6.2.2

138 e, D°¥°2¥1 N"H0 BN ™MIAPRI YT NRAT 6.3
138 e, ™Y PN MW 25w 6.3.1

140 i AT MNNDIT YR T2y 2w 6.3.2

141 DYTIDW NWIPH NNWI N1 250 6.3.3

LA et MK MY wtn 6.4
LA3 e, QXY nNIM> 6.4.1

LA3 e, WX DXY NR3T 6.4.2

LA e M 6.5



144 e, WRIM AOR2T0 MW 6.5.1

147 i, D°Y°2%1 N'O0 VW2 D3YY N 6.5.2

IST o, YR XTI NIBUIVOR Y%7 /1D 6.5.3

LS e AN 1M NI 6.5.4

LS e nMTP Ay 6.6
L7 e nupon 6.7
158 DT 012 2w wye nvaan L7
LS e NXan 7.1
160 e WO 0% P17 nan 7.2
LOL Lo e DXy waNn 7.2.1

LOL Lo, 257 DMXY RN 7.2.2

163 o, (M2 MIREPR MY T 0%Y) A"y 7.2.3

LO4 . e X7 7.2.4

LO6 ..o DM AN2 7.3
167 oo, SPECjbb2000 -5»m5 nmn7 7.3.1

168 e, D X7 NPT NN PW 21D A vos 7.4
L71 e mmm 7.5
L7 e MIREPI M?°yo 7.5.1

173 e, nmRxin 7.5.2

L75 e, SPECjbb2000 13y n11>110 7.5.3

IT76 oo 9217 oW 7Y nyswn 7.5.4

L77 e MHTP Nmay 7.6
L78 e NYTNY MTAY? nMwex 7.7

L7 e nupon 7.8



QIR NS

AN 11-12 A0 ,223pM (O, DR LY NV TWT O T X7 1.1
D e [ Wn-"15-TN

19....... P1TU51 127 YW A0IRT DY AWM (@°v22%n *1dW NDT¥) 120N AXEA RANT 2.1

21 el 0'D1XN D°DI0N W DRI NYOM MY RHNT 2.2
21 [t1,t2] 51 0rKa p2omm van Y t o1 NP1 pra 0N 2.3
21 e, PO VNI NEAMA Z DEY MPY° 72 RHT 2.4
31 i, [A2™9 NP0 nwwa o 5man owann anMIERA] NYwsm N7V NYws 3.1
34 [n™y NP0 N w2 oo 0w anERA) NOTY NYws 3.2
36 i, (7279 nR*I0 NYwa D°pPonnn 0°0ana DRMBYRA] ARYRT YWD 3.3
37 o, {73 NP>I0 N w2 0°PonnT 0°wana aNTBYRA) FRPI0T aNMER 3.4
38 i, [271¥ NP*0 nYwa DP7nna 2Rt aNERRA] MO MMM YAt n9ws 3.5
39 e, [77279 np*I0 NV w2 D°RoNnA 0NN ONMILRRA] DWW WA N9WD 3.6
40 ..o [ NP0 NY w2 R onna 0°want onERRA) AP P10 NYWD 3.7
41 [72>% PP*0 NYWA D 5MNa 0°wINA DN*IERRA] DY NP0 NYWD 3.8
42 (727 NP0 NV w2 0vP*onnn ovInn oNMBYRA] RIWRY 1YW 3.9
43 ... [2°7¥ NP™0 NYwa o NnR 0°Wann onTERRA] XA MORY Mona N 3.10

YW 0%R*5mna 0N ANPIRR NPBN 1073 N NOWD 9 SPEC;bb2000 3.11
A7 oo, Jikes @ *3m1-1271 72171 QOIS N0 Y NP0
DNBIR YT AT :0°TAA N2 NOYR DY 1w Navw _227_mtrt-1 SPECjvm98 3.12
47 o, Jikes 2w *1m1-1271 22177 AOINY NP0 7MY NP0 DY D°PY9RNA DWANT
LW 05N 0PweR DNERR NPIBN [DTATH N NOYE 5y SPEC;jbb2000 3.13
49 oo, Jikes 2w 09197 nX 1919A 93 A0S N0 7MY NP0
nYWw2 0P HMNI 0°VINT ANTNAIR NEM T 10T N NOWH By SPECjvm98 3.14



49 Jikes 2w 021971 Nk 90w 2217 AOXY N°0N° MY NP0
PMY NP0 DY 0P 7m0 QW7 anvOR MR 7R T3y %y SPECjvm9s 3.15
S e Jikes 5w *11-1371 921 o noom

TRMY NP0 NV 2ORONNT 000N ONTILHR MR (M 7Tavn 9y SPECjvm98 3.16

S e Jikes 5w 02w nx "xwn 937 A0S nom

59 e, O°D1¥N @°DIWVR 1WA DEXMA NOM Iy XaxT 4.1
60 .o [DoR37 1Mo a1 AOX Mav] MooRA Mnn 4.2
60 ..o, [0°7°2rma 0*6an DY 0°9°2%1 NPDD N0 721 DI MAY] (ORI NMH 4.3
64 .o e [2RD7 110w o aYRa) 1197V nYwo 4.4
65 e, [R50 1115 DR RSP N9 4.5
06 . [2oX%230 51 onoRa) AE°KRT R NP 4.6
67 e [2°X%°30 1o AR HRA] MO MR Srnn nYwo 4.7
08 e [@oRD37 oM anHRa] 997 "1°0 Pl NwD 4.8
69 o [2oX%230 1om aneRRa] P M PR NSWD 4.9
TO e, [2°K%>30 oM opaoRa) oW R0 N 4.10
TL o, [2oXR%*37 1151 oPARRA] DR N PYaEn I 1Ty NYwo 4.11
T2 e, [@X7730 10w an R3] pPoman vann 0"y o Y nws 4.12
T3 e, [2oRD2:0 DM on™PRI] oY P10 NwD 4.13
T3 e [2eR7%7 oM o EhRa] DY N nYwo 4.14
Th e [2oK%2m M5 apoRa] 0P nw N 4.15
TS e [0°R?X7 1151 DnHRA] QK YD 4.16
TS el [2oRD*27 oM anMEhRa) 20N MNw N 4.17
TO oo, [DoX%37 15m D APXRA] K20 HI0°RY 000 N9 4.18
T e, DR 1101 ONTMBOR2 D%y Y71M 4.19

MIM MMTT 00121 2217 AR NPI1N :2°Tayn N1 Nws 99 SPECjbb2000 4.20

80........ (P07 D°Y°2EMAN NTPHD DNTINOR? IRNWTA) 0°100K 1-8 MY o0 DR
XMW QK275 110N 2217 A0 DX 1T 10729 NAMM NOYR 9 SPECjvm98 4.21

B3 () NTTR 00AN ADIRDY (FRAW) TP qOINRY
T 129 5y SPECjvm98-1 (7%aw) 0*137 N3 m noyn %y SPECjbb2000 4.22

84 ., Jikes 2w *2°2pnn M2y NP0 ADIR 91 ORDT PI0M AOIRT (PR°)



2217 QOWY ARNWTI DR AT MW YT A0 NEM 1T PR 190 by SPECjvm98 4.23

BT e P17 1% Sw

99 e, 7292 0P M DMETA 2277 931 DI NI XN 5.1
100 oo, D THINA MND YW NTN? 0DORI 2217 *259n H3 70 XM KT 5.2
106 ..o, [0°P°%mn o7uan by 0¥*28n N0 oM DNPEHRA] NOTY NYWD 5.3
107 ... [o°R°%nn 0°02n 09 0°9728n NPD0 20N DAMBYRA) 0*23971 0K SH1R MO NND 5.4
108 Lo [@23907 AoW an*EHRA] TP A0 NPWD 5.5
109 e, [2°%39m7 qow onroRa) 0*93yn 129 N9WS 5.6
L10 (e, [2°23377 A0 an*aoRa] D* TN 10 NYWD 5.7
LD e [0°23970 qow anhRa) 10 nPws 5.8
L12 e, [D°9392277 HOW anPMoRA] P79 van R RYWD 5.9
112 e [D°93997 Ao ANEYRA) MW 00 10 N 5.10
113 e, [0°2:3377 A0 DRXORA] MMwa 1o pwb 511
I3 e [2°2397 A0 BA*YA9RA] @* TP 2170 NS 5.12
L1 e [2°%2917 A0 an*BYRA] P10 NS 5.13
LIS e [D°239m7 AoW anroRa] 012 oK nws 5.14
116 oo [2°%392277 A0 aN*™9X) Y N9wD 5.15
LI7 e [2°229227 Ao aNEYNA] 2¥EIN T2V NS 5.16
118 o, DP°2mn D03 OY D°FPAZM NHD 20N ANTMILHRI 0XYA YT 5.17

2317 A0 N3Y 293wn PR MDY O 019 N N Y SPECjbb2000 5.18

L e e P170D7 N1 Hw
2317 AOW MY D*93wn MR MY oM :0*7AWH NN NWH by SPECjbb2000 5.19

D22 e e DR M
122 0°73927 AOI Y XM T O :0°729 NAMM N2 % SPECjvmos 5.20
2w DNPNEOR? AR 0*TRYIAN 100N TR0 NTIAYA NADT (093 10K 5.21

L24 e 15 PP
PR 11D DN™EIRI 0 1Y 100NN P00 NP TANDT 093P Q0K 5.22

124 e PITVDY "N1% Yw A oY none
124 i NNOW D>TAINR TNR :D939N 10K QTN PO 5.23



134 e, [2°¥>23n n00 Nom anHRA] o7y WD 6.1

I35 e, [2°¥°287 nED M0 BNMLRI) ARIPA NPWD 6.2
135 e, [D°¥"2%7 N7DD 2101 aNMHRA] MoK MmN 6.3
136 e [2°972¥n N7 201 BNMLORA] DWW PR TIY NYWD 6.4
136 o, [D°¥°237 n9°50 2101 AN EHRI] AW NN PN MY NSWD 6.5
137 e, [2°7°23%n NPDD 10K DNPILHRI] R MO°KRYD 11NN DYWL 6.6
139.......... [@°9°237 NDD 2101 DN™MA7RI] WRIA NI NP2 2™WH PN TPV NYWD 6.7

140 [2oy>2%n N0 207 DREHRI] WRIM IR AP NI MDD TXIN MY RYWD 6.8
141 [2°¥°2% N7°5D 3107 AN AIRA] NITOW MAWPH MWW NP1 N9WD 6.9

aioiolpilola) Dﬂ"ﬂl‘?&ﬂ] WRA ARIT DT NITIOW NP DWW N2 1w 6.10

L2 e e [oo3rasn

43 e 0°9°2%71 NH0 M0M N eoRa Jikes-2 oy YT 6.11
162 el 207 OMXY RMY 2N A3 NN XnaT 7.1
LS e N3N NI DX W RNT 7.2

D°0YY IXD NPI1ONT (XW) XY RH NPwN o -1.2.2 5w jdk-n1 5y SPECjbb2000 7.3
LTS e, (y2°) 257m
207 O°PRY 3RA NP (7R0W) DMXY 3RA NPwn one -Jikes Yy SPECjbb2000 7.4



NINDAY M.

46. (71w NYDORI) 1Y NP0 DY 0°PMn B3R DO NOWT YW M ArAwn ot 3.1
0N NP Y NP0 NYW2 0°p7hnn 0*van 0012 a1 oW S 72°no7 DRy 3.2

50 e, (FE122) TIIRA 9002 DMWY 72007

51 . 9 5737 03 0P VPN MY NP0 N 0RYSma O°an bovn YA nowR 3.3

52 ... MORA *22W 5w TR PINA 1 KPP0 DU DM DU DO™R HAra now 3.4

83 MNPRT ADIRM DORNT W A0 P2 ATAVA AT 0N M0RA NTIAY o 4.1
84 i, (771w NTHRI) TRHT O 23N AW YW 2 17w o1 4.2
B e ?170DY N13% Hw A0IRA 21D 4.3
B0 e e DIRPAT MM A0 915 4.4
123 (1w NHHXRI) BPRATN O BNPIPD 2 AW T 5.1

NYW2 A0W Y XRNNE TN 2°939n 0 "y 27720 NPIOND QORIV *2avn Har 5.2
125 e DR9% 1NN A0 D°Y*2¥N NTDD
NVW2 A0IR OY XRNNX2 72W 275900 ADIR WX D TR ¥¥IN OW 23 T 5.3

125 e 0P %M 0°02an OY B°¥°2%H N0

128 TPIN PTM0N NARY (223917 A0 °"Y) P01 DMIYN 1000 5.4
145 WNTM IR DAY 22NN 0°F°3%50 NTD0 ANTIBYR NTPN DR 6.1
T46 e, D°P2XN7 NH0 AN IR %W 201 6.2
148 MORT MARA (A3 NNR) NINAT MW 10K 6.3
149 QMW PN TI2°Y NP (3D MIAR) NN DWW 1N 6.4
150 AMAWY MNNDAT YN TIY NWH2 (75D TINR) NMNNT DWW 1NR 6.5

152 ... o™»wn p3in T2°% NP2 NINPAN APAIVORT W5 URIM IR MW NTI07 6.6
MANSAT PN T2Y 17O M2NPAT NPAUIVORT WY WKW IXITR 10 1700 6.7

L e Rinlsial

154 e DPIWR YN TP NNWHa MW 5010 6.8



155 QMW TRIN Y DWIRMI DNV MNIAY DNNT MY TNR 6.9

TI2Y NI OOR DOYO2XNT I DR 229YHY DMEYT MY NN NS 1nR 6.10

L0 e v
LS T e I M T 6.11
LT e e 5517977 1172 15D Sw xaxT 7.1

M2°¥D NARY NPNPRT 77730 NPISN " WPTIW DY QN7 NI ARIPA N9 7.2

173 e e VIZD DMARY TIRM NV DD IRYPT
180 ..o, NN NP2RIVIM MRS NIIDA MY NPIANT NHYOT NIV DR MW 7.3
181 e WIIW NN DWANYAYS Yarn MOR nmng 7.4

L8 e TP9nY nNn RNt 100% 7.5



“xPn

215221 KPI 1IMW 1R B3 IR N WRY DEY W KDY 10 D15V KT 519Ea nXPMR P
1172 W 2192 IMINw N5 B 21w MM 1 nmve 19 (PDdNM) A TN AT P

731 MO NIRPT AN IR PO DW S0 MM RIT 37 Q10K TN NG O
J0NAW NPT IR NIDY TN 191 I SuIn NIDNNE AR Nwn

MPOW? 1357 0°7292-N21 MW .8°TA¥R-MI1T NIDIWHI 91 POR2 2219 1R T ATV
MWNNW 217 IO NMEIRD T°27 DWW DA 19OS N AN AN AR 00D N
=NR-TXY NN TNPT 03T A0 .LOWT-N- TI¥Y NIRRT DTN T TI0 0N 0AWnD 13y
TR 27 DWHNW 02K 921 00 7217 A10°K 112 1IN 0N 50 X (Tywn) V8w 0w
N37Y12 D9WH-NR-NYY NN T 22°K1 31 A0 0I5 .0°TWA-MM NDWAI 0 TITHAD
IRWD DX T3 T DKM T AW .2°TWN DN Y0 93 TP TR 198 Y 7,07 Tavs-namn
Y0 DR AT N VXY PN NAINAY 137 na (931 MOR 113 Sys TR Tavn P7) no>wnn
DP29RP0 PR W AW 1% AN TR 1T pash nP1oinn

MY VIO .29 HIT DO PIONY R MPOOH MPITH NI NIWANYHT D7 TIVH-N11) AW
-12 2NMBIR D OWY 531 M0RD IRXIND WORA 933 TP 1T 2D AN AW 5Y T3 1NN
VN 93 IWRD P 915 9217 A0 12 ,099A-NR-MNEY MW T2 1Y 1A BE Lo
221-A0IR2 D WINWR WK 102 MPIING W0 NEMG DR Y30 MInk-1 9321-00K , 2w NYIINT
231 QO Sw AN YAt PMYRYA T8RP NURLIND DV NN VI 12 I 7D Ir-12
DDWI-NR-T1EY NMXNA TR

W 2°1NA% N1-58 995 T172) NAR-N22 NAI9NA 93 DR DR 1T OTIA-107 9 SO0 29 ,NNT OY
D ,790-TATW PNID TR TP KT NARVMD NPI9INT VI 99 Ny (MK NX 070>

NP1 552 010 NXY? 101 RD M) MM M7 NMOBT 1IN MTIP P IR YL ahaon
DX MION1 N°151N2 DMEYA 2w MR 73 72 200 2307 2317 A0IR 798 mmpR (RN
NN VI R ,°21-12 D21 ORI DWANWAwD ,NIMYI MTPI Y0 NwawnR . amu TE2 30
(193¥) AMU2 AR WX DINRA VI YW T NNBa 5% MonY 03N (MoK owY) XN
I50RW 233 1DW 0*111-137 221 DO YW NYPARRPOM ANTON M 730N PN 210Y 1997w 2159
MMO’R N¥I (AMR-NI3 VIR 22 NEY aWY WINTA) N2I9NR Nwn 25w TR 273 NI S0
N3¥K3 07202 TR P7,0°IWI NN PN P1Aw M7 ,°90P0 11K YA O 40112 OX 93t
i aha)

AIW2-"12-TIN 221 AOW . 29wn->73- i YAt AIORA wanws 1% At NR XY nan by [ pb
2217 A0 Y AWD ANWA VI D NPIRLIMD NN UM P9 AR X WRY *I91-12 931 ADIR R
D™ T-NPN? AT NI NMYXARI 19w 23pa (9w M9d)

1 9Y N7apn TR HarT 10K IR Y¥39 K7 0¥7AYH-NN N5 BY MO*R? NHOII NMWHR
72101 AMPN 71213) INT AN PN Pwn 222 anEHR . 2apna 0129 Y31 0K Y0 500
(773970 PNDR3 TR, 595 77T2) N TR ATAWT P DD R 09K LI1-12 RNORL (N
2P0 ar MoRa K’ (MYR->13-7N0 MR ,07521) O™ 11-12 QAN NAPR2 1IN T ITAY2

.0°¥"3¥7 NI°D0 DTIOR 200127 721 D0 (P71 XY IR) NPV NTPANA 1T TRV .BMrmEs nmo
DY 731 DY 19K 0'Y°2XM7 1001 DR D0 A1 DEY 53 MY MW X1 7T OATINOR 003 I ah!
DR TARD 0°N°NOMY Y2 750N YR DEYT 3N DR TR 09T ,¥O08n 1w nya .1 77w D2 A
LMW PP 7T DXY WY 101,008 0101 DY YW 710 OR Y3 70T 100 0%y a0
DY Q*P2XMT NI 21 DR AR D NN07 ,IMWn DRYIY 155 901 12 UHNYR XS 1N
(270011 2°3Y W *20MPY MY 2137 "I n) A1 DYy Y

.22axa Concurrent!
I On-the-fly?



™

P 2122 NIPN,AMIEA 7PN (DR 0PI MI0ATA 1530 DOYIA%A NTPD0 HATNEIR 0PN

MIT0M 221 223922 AIOX? N1 0 (NAX 1230 NYWD MDY AWIT ¥°38) 10TV NYD) ANy MY

PN 199 MY NP0 M0M DMANTIAIRI Y2 TRRNY NPIN0N NN 0PN 8 19R

Y23 M1 77 RY,(MP11-12 079287 D0 BI92Y) O°FPIXMT NP0 NUAW 001 23T DO WY

WA W 12 DY 1w YW pnm WD 181 Y121, 7Y NP0 DY 5y 000100 19K

PURTY WYX NPINTIM 1127302 B°97287 NTP00 SANIOR R MIAART 00103 WY opnn

NR NI5°1 M8 PURR? MHER P1w01 21127 ,v752 .5"37 0°13%7 NUII0NAN PON 1Y% NN

2w 21217 NN 217 WSAY 1N X W 07 A0 .0°YIEN NTH0 ANMLORY NYTIT Ty

(72307 DTV N2WHA NI0I0 WIIT IR WIAW ONMILIRT) D°Y A% N0 DY 001207 23T Ao

NP2 WHNY® 173 M*TNY MO 221 MOKRY AMYIn NORII 292807 N0 DO 10 MO

1971,(MO°X 933) ™17 DMEFR 9D PR PI0Y 02N 7PY NP0 0012n OMMILHR AN M9

N0 ¥ 00121 93T RO NTIAY 0% T2 DT 0NN OMEYT 00N 995 79T 931 BOR NIy

W 1°2) N7I2INA MY NUWYIN ITAYY NAIPETOTO KOR OPRT DMEYI 99012 TM0N SR DN

AOR? W 112717 NI (2°010°K

,0°°2%57 NPD0 MANMOR NP XMW PN W AR NONDAY RIA W 7783 1Y 1T WM

M27¥13 231 AI0°K? D MPUIR DRI D°F*IXA NPDO *0011 Y21 PR MPIIRY 11790 T3

N127YR 7Y 091207 NP0 MY DTN 921 DO MYY® ID°Wwa YOINN 1R UI932 ANy

DNH 2T IR DWW DI AMNTLOR WM 1ION MY 0Tavn-nahn

:DORIN QORI DY 1TV P Tonma

AWN-572-TIN TIWT IAW AP0 anvbR .1
DU2M7 DNPIOR 7Y 0012 M¥A-"12-TIN 7AW WIN 7Y NP0 ONMMYR 0778 1R
DPIPMAT NIRWIT ANR'ST NIOR 9P DM DRBRRE DR Qe P10 hnk Y akrdbistah]
*2°2P07 BNEORDY 1T-137 BATIBHRY N MNP WIDYI 1Y 223 5Y N 1817 Jikes
NPINN QY T 2R A 1t Jikes DY 0PN WK (07WA-NR-MLY NYWA T2W5)
W2 0P P R? T TAWAN YT, T TAM 792 I AR 2 NP 2b 1 0omean npTa
DWW YA 0P O3 RIR ,0RWI-NR-EY NUWwa TWR DRMNORT SW 318 9T 110
60%-2 T¥2 M2 P1N WA WY anDRA ,IP1T Nrnan Jikes 9w 1-137 OR9KT
(@2W-NR-T¥Y NNIEN2 TAW) AR ontoRT e Jikes YW anr-10 A0 YW M
10%-7y2 (M¥2-279-7I0 T97) WOw aNNAIRTA N I3 P10 PW
212° Y17 7217 A0, MIY 2192 TP (MIR-"T2-TIN) 1Y NP0 aNMIEHR 1NR By Aoua
NPHO NV 1WA PINUDY 1127 Hw AT MY (231 *239n ADIRA) M2 NOWD WHYY
QMR ,712°T X2 1NN D @ANTH 3w N1°D 7O 2MRNN D30 25N I9RT YW . 0TYIN)
ST IOORIVIN TR DNON PURm 22002 2130

ZORY-BTOM BaT WOW .2
YA YT DR 2P A0 MI0R M0 IR 20w 79RID 0OIT PN 001mn 93t HoR
DPT21¥7 221 *DOW 0¥ NIMT 270Y INTA AFT T M WIPA W T2 930 Q0w A0
A3, 231 MOPR? AWM AW DPYOXH 12K 21712 521 MOOR 9Y WAT2 079 %A NP00 N
ORI NTPF2 MW NXR DY TN NTNTT AT NN AP QRS- 931 NOOR
T NR NIOXRY NI HY D3P0 NDD ANEHRI DWANYH WK TIPNI DMWY T w0
W NYEIW NITIAN TN DY 0 23pNAW 211-137 DIRDR- 1M D1 A0 0NN
O 51 79 73 9Y 0°Y2%M NTO0 NYWR TP Y31 O 9Y PIISAI A9 1 91 nOWRY
0°2307 IR .DPNNT NT IR MORY 2°¥°28757 NPO0 BNMIRI WHnwnd M7 00120 9t

."axa Generational collectors >



TR DNMIOR AP 23T MORY AT TP T DRPAI-MOM 92T QoW Y A8Hna
.0°¥3%2 N°B0 NYWA

QIR NTDD MWD YIaT-12 At Yo R 3
WNCD QW DIRY D230 0°2°D7 AIOR? 73107 WK 2°F3% N0 NYW TN 931 QO
NP™MO BNMVBYR NPT D NPY7 957 09281 N0 MW TP 937 (O 199 .N°15In0
AOIR D7Y°¥M X .D725M B°12 MOK? Y™ 0°239 ADIND Wanwn W (M7 whwni) anvy
TN 1aT-12 oYan
DPVINT DNPMILOR DY 1571 PP 9w NI51°00 07 A0 NX 2500 WINT 09397 N0IR
N'MOH AT MWW R PRI NN .MING IW 2wn 31 19 p1ws "nb 5w oopnmn
MDR? NWITIT AMAYA 197 531 Lagnn phn nTAY orTaYIan DY 9500 DR N7 SN
2"I7 22w NI NMYRTH T2 NI5NWH 0293977 ADIR MY KA AR ANMD Y17 3w
D*9F NIAN "XIN 13,75 P02 9 nar-127 0°239nn A0 S NPAMRAR D103 N™YA DK A
90w mwan ,ovpPRman orvana B YYD, WINT anIhRT AXI Y3t 9wn YW 10K IR N
AOR W IPRY 05yn 11
MTIHR N P2 Jikes NPT NPRRWIT ANRST NN MY I ANEORT DR DR
N50 NUW3 1AW 3 ADIRG) M12730 YYDMN MY NP0 DNTINOR P2 UMW, NYRIW
AR™Y NP0 QNPIEIR PI 1D XMW INT T 20°hY 1Y 09T AOW 11 (0°97IED
2Y2 (AMT) Rpa XY 000390 0IX P 270 Hyomna

‘enms mean nws pwmsn nmo 4
M2 M3 72 2pY 273 T2 072900 MR 11 P9 0N AR AT PR A9en
DWRNWR ,2"37 957 NR NNOAY NI Y NTIIN NEM SW P1ap3 IRNE M2 2MYD NN
NN MM KD NIIWR 21207 N0 M7 NPEPHOR PUTY IR 0D 7T Y0 1Pt
2297 NPAWAT NX 03 nnoah nxon (prefetching) WM YT DRI Pnun 1212 RIRUAAY
231 AOW YXW YWY MRIAT NI DR WRIN DAY 307 0772 0°38H 2% UK W 37aY2
DWW T2 A0RY YR IR NIRT 120107 ,10% .0V NPD0 W MDYy Suwa Ty
D°Y72¥M7 N0 NLWW 12n07 Jikes NN nHRIWINT INR'ST D110 YW D9OIXH N0
TN 73T AOWW T ARV NPPIDA TR YT Q0 WRA WK AR NIRTD T D
AW QMY W 0YIEN NIDD NYPWA TNPA HOW AR a¥D XY Y59 WRI My N0
M3 NI N AMPINI 8.7%-5 YRWN WD WRI ARITT MR AR b 2w
Xm0 2.2%-2 177727 NTIDN NI NERT

TS Hamen Tt wvated nrmn S
7713 3N 22w WRwD 0°377 UYEM PITA 9na Y KD WN MY 780 una T 3Tay
WP N2 190 INRY 27592 KD NMIREP AR NINRHDT NM2PUPOR NYA UYET A9AN N0
MIREPR N2V 700 0XY) 2"79°F WORND 1277 WRD |70 0Mpna NS M0wH nrIan
RN D@ NIMPA IR DT 2070 DHEY TERD 207N D°HEY R DY IR (Mann
NPYITIVO NPIDMNW IR .12 WHNWI? IN°1 WK N15°1 771E2 MY I5WH ,"0TI00 D73y
M%P2 NN W TP 2T S 2y KD 19 0°Wnanwnt TP YUR MA1 0D 199D
DY T PP 1IN 0167 NIv Y UYL NMIANT NI IS 1001 AW noawen My
MWANTHT NPHRIV INKR' MDA I50M 77712 NTINN V0N ¥ 19X NPINT W
N MY ,0792 .10 NYNA Hw 72T 113 22.8% 19 HY MWY 073 ,0°nw YT 00N
D°3Y R N°1an2 wmwn 72 ,SPECibb2000 n1o1n2 "2 »1%% 7R3 2070 0°a8Y R
20 D W 237 0MY XD NN YR MY 0PI MO DN 3w RY U100
.3.0-9.3%

.nwoaxa Prefetch *



/ Efficient Memory Management for
} Servers

UUUUUU l ClCll ClC[lth'u Z;mLNZ
el Paz

SR




Elul, 5766

Efficient Memory Management for Servers

‘k .
& 4

[
2 3
g
qu

~
- »
45

Research Thesis
Submitted in Partial Fulfillment of the
Requirements for the
Degree of Doctor of Philosophy
MONYAS NY

Harel Paz
2Ly 301

Submitted to the Senate of

the Technion — Israe] Institute of Technology

Haifa, August 2006

-w))bN yny NG mIven
'on
nowyn






The research thesis was done under the supervision of Dr. Erez Petrank
and the consultation of Dr. Hillel Kolodner

in the department of Computer Science.

First and foremost, I would like to express my most deep appreciation feelings to my
supervisor, Dr. Erez Petrank. Erez, in his gentle way, has exposed me to the academic
research world and shared his vast knowledge with me. Erez was always available and
accessible, willing to assist, although having many other obligations. It was both a great
pleasure and a privilege to work with Erez. It is sad to say good-bye, but I hope that our

paths would cross in the future.

I would like to thank my advisor, Dr. Hillel Kolodner, for sharing his wisdom in the long

discussions we had.

During the work on this thesis, I have been assisted by many, besides Erez and Hillel,
and this is an appropriate place to express my gratitude for their help. Hezi Azatchi helped
me getting into business in the early stages of my graduate studies. In addition, I have
remarkably benefited from many helpful and fruitful discussions I had with Yoav Ossia,
Prof. Mooly Sagiv, Dr. Ran Shaham, Haim Kermany, and Uri Silbershtein. I would like to
thank Prof. Hagit Attiya for her useful comments on this manuscript that greatly imprbved
its quality. I am also grateful to Eran Issler and Maxim Kovgan from the faculty’s distributed

systems laboratory for long years of technical assistance.

In addition to the help of the above, I would also like to thank the followings for their
moral support. During my graduate studies, I had the pleasure of sharing an office with
Roie Melamed. Daily interaction with Roie helped me overcome bad moments. Last but not

least, I thank my family for the support, patience and love throughout my studies.

I would like to thank the Miriam and Aaron Gutwirth Memorial Fellowship for their

financial help.

The generous financial help of the Technion is gratefully acknowledged.



Contents

Notations and Abbreviations 2
Glossary 3
1 Introduction 5
1.1 Garbage collection . . . . ... ... ... .. 5

L2 Servers . . . . . ... 6

1.3 Garbage collection for servers . . . . ... ... ... ... 6
1.3.1 Parallel garbage collection . . . . .. ... ... ... .. .. ... . . 7

1.3.2 Anexample . . . . ... 8

1.4 Researchmotto . . . . . ... ... ... ... 10

1.5 An on-the-fly tracing collector . . . . . . ... ... ... .. .. ... ... . 11
1.6 Age-oriented collectors . . . . . . . ... ... 12
1.7 Concurrent cycle collection in reference-counting collectors . . . . . . . . . . 12
1.8 Reference Counting using Prefetch . . . . . . ... ... .. .. .. .. ... 13
1.9 Object pooling . . .. .. ... ... ... 13
1.10 Organization . . . .. .. ... ... ... ... 14

2 Related Work 15
2.1 On-the-fly collectors . . . . . .. .. ... ... .. ... 15
2.2 Reference counting . . . . ... ... ..., 16
2.3 Generational garbage collectors . . . .. .. .. ... ... ... .. .. ... 16
2.4 Reclaiming garbage cycles . . . . . .. ... ... ... ... ... 18
25 Markandsweep . . . . .. ... 18
2.6 The sliding-views reference-counting collector . . . . . .. ... ... . ... 19
2.6.1 The collector phases . . . . ... ... ... ... ... . ... .. . 22

3 An On-the-Fly Mark-and-Sweep Garbage Collector Based on Sliding Views 24
3.1 Imtroduction . . . . .. ... ... 24
3.1.1 The main algorithmicideas . . . ... ... ... .. ... ... . .. 25



3.1.2  Comparison with the Levanoni-Petrank collector . . . . . .. . . . . . 27

3.1.3 Implementation and results . . ... ... ... ... ... ... . 27
3.2 Collector Overview . . . . .. .. .. ... ... ... ... ... 29
3.2.1 Snapshot based algorithm . . ... ... ... . . ... ... . . . .. 29
3.2.2 Usingsliding views . . . . ... ... ... ... ... 32
3.3 The Garbage Collector Details . . . . .. ... ... ... . ... .. . . 33
3.3.1 The LogPointer . . . . ... ... ... ... ... .. .. ... . ... 33
3.3.2  Mutator cooperation . . . .. ... .. ... ... .. .. ... 34
3.3.3 Phases of the collection . . . . . .. .. ... .. . ... . ... . . 36
3.34 Collectorcode . . . . . .. .. ... 37
3.4 Weak memory consistency . . . . . ... .. ... . .. ... ... . 39
3.5 An Implementation for Java . . . . . ... ... ... . ... ... .. ... 43
3.6 Measurements . . . .. .. ... 44
3.6.1 Pausetimes . . .. ... ... ... 45
3.6.2 Server performance . . .. . ... ... ... .. ... ... ... ... 45
3.6.3 Collector characteristics . . . ... . ... ... ... .. . .. . . 50
3.6.4 Client performance . . . . . ... ... ... .. . .. .. ... . ... 53
3.7 Conclusions . . . .. ... ... 54
Age-Oriented Concurrent Garbage Collection 55
4.1 Introduction . . . . .. ... ... 55
4.2 Age-Oriented Collection: Motivation and Overview . . .. ... . ... ... 57
4.3 The Age-oriented collector . . . . . ... ... ... ... ... . ... ... 58
4.3.1 Properties . . . . ... ... 61
4.3.2 Aracecondition . ... ... ... ... 62
4.4 The Garbage Collector Details . . . . . . . ... ... .. ... .. .. . . . 63
4.4.1 The LogPointer . . . . . . s 63
4.4.2 Main data structures . . . ... ... ... 64
4.4.3 Mutator cooperation . . . . .. .. ... ... .. ... ... ... 66
4.4.4 Phasesof thecollection. . . . ... ... ... .. . ... . .. . . . 69
445 Collectorcode . . . . . .. ... 71
4.5 Implementation for Java . . . . ... ... ... ... .. .. ... 76
4.5.1 Memory Allocator . . . . ... ... ... ... ... ... 77
4.5.2 Object-Headers . . . ... .. ... ... ... ... ... ... 77
4.5.3 Triggering . . . . . ... 78
454 Rootset . . . ... ... ... 78
4.6 Measurements . . . .. ... 79
4.6.1 Comparison with Related On-the-Fly Collectors . . . . . . . ... .. 79
4.6.2 Comparison to a Stop-the-World Collector . . . . . ... ... . ... 83

4.6.3 Pausetimes . . .. ... .. ... 84



4.6.4 Profiling measurements . . . . .. .. ... 85

4.6.5 Client performance . . . . .. .. .. ... ... ... ... ... ... 86
4.7 Conclusions . . . . . ... 87
An Efficient On-the-Fly Cycle Collection 89
5.1 Imtroduction . . . . . .. .. ... 89
9.1.1 Thechallenge . . . . ... ... ... ... ..., 89
9.1.2 Thesolution . . . . . . ... .. 90
9.1.3 Implementation, measurements, discussion . . . . . ... ... .. .. 92
5.2 Review of previous cycle collectors . . . . . .. ... ... ... ... .. 93
5.2.1 Collecting cycles on a uniprocessor . . . . . .. .. ... .. ... . 93
5.2.2 Collecting cycles on-the-fly . . . . . ... ... .. .. ... .. .. .. 94
5.3 Cycle collector overview . . . . . .. .. ... ... 95
5.3.1  Obtaining a snapshot (or a sliding view) . . .. .. ... .. .. .. 95
5.3.2 Obtaining the list of candidates . . . . . . ... ... ... .. ... . 97
5.3.3 Making a stop-the-world collector on-the-fly . ... .. ... ... .. 101
5.3.4 Behavior with the age-oriented collector . . . . .. ... ... .. .. 101
5.3.5 Reducing the number of traced objects . . . . . .. ... ... .. .. 102
9.4 The Garbage Collector Details . . . . .. .. ... ... .. ... .. .. ... 104
5.4.1 The LogPointer . . . . . .. .. ... ... ... ... ... 104
54.2 Generalissues . . . .. ... ... 105
5.4.3 Cooperation with the reference-counting collector . . . . ... . ... 107
54.4 Cyclealgorithmcode . . . . . .. .. ... .. ... ... ... ... . 109
3.5 An Implementation for Java . . . . . .. .. ... 115
5.5.1 Memory Allocator . . . . ... ... ... .. ... ... 115
5.5.2 Object Headers . . . .. .. ... . ... . ... .. ... ... 115
9.9.3 Triggering . . . . . . ... 117
9.0.4 Buffer implementation . . . ... ... ... ... 118
5.5.5 Rootset . . .. ... ... 119
5.5.6 Candidate buffers . . . . . .. ... ... ... ... ... 120
9.6 Measurements . . . . . ... .. 120
5.6.1 Performance . . . . ... ... ... 121
5.6.2 Pausetimes . ... ... .. ... ... . ... . o 123
5.6.3 Collector characteristics . . . . .. .. ... .. ... ... ... . . . 123
9.6.4 Wasted work . . . ... ... ... 127
0.7 Conclusions . . . ... ... ... 128
Improving the Memory Behavior of a Reference-Counting Garbage Col-
lector via Prefetching 130
6.1 Introduction . . . . ... ... ... ... . ... ... 130



Contents (continued)

6.2.1 Pseudocode . . ... ... 134
6.2.2 Allocation using segregated free lists . . . . .. ... . ... .. ... 137

6.3 Prefetching for Reference Counting . . . . . ... .. ... .. ... ... .. 138
6.3.1 Process-ModBuffer stage . . . .. .. ... ... ... . .. . ... . . 138
6.3.2 Process-DecBuffer-and-Release stage . . . . ... .. ... ... .. . 140
6.3.3 Build-Block-Free-List stage . . . ... ... ... ... .. ... ... 141

6.4 An Implementation for Java . . . . ... ... ... .. ... ... .. . . 142
6.4.1 Object layout . . . .. .. ... ... ... 143
6.4.2 Object prefetching . . .. ... ... ... .. .. .. ... ... . 143

6.5 Measurements . . . . . .. ... ... 144
6.5.1 Prefetch improvements . . . . ... ... .. .. ... ... .. .. 144
6.5.2 Reference-counting objects’ access behavior . . . ... .. ... . .. 147
6.5.3 Prefetch strategy profiling . . . ... ... . ... ... .. .. .. . 151
6.5.4 Hardware counters measurements . . . . . ... ... . ... ... . 153

6.6 Related work . . ... ... ... .. ... 155
6.7 Conclusions . . ... ... ... ... 157
7 Patterns for the Efficient Use of Managed Memory 158
7.1 Introduction . . . . ... ... 158
7.2 Explicit object management patterns . . . . . ... .. ... ... ... . . 160
7.2.1 Object pooling . . . ... ... ... ... 161
7.2.2  Compound object pooling . . . ... ... ... ... .. .. ... . 161
7.2.3 Single object for multiple allocations . . . ... ... ... ..... . 163
724 Example . . . ... 164

73 Theprofiler . . .. ... ... ... 166
7.3.1 Profiler example- SPECjbb2000 . . . . . . . ... ... ... ... . 167

7.4 Profiler’s output and benchmarks modifications . . . . ... ... . ... . 168
7.5 Measurements . . . .. ... 171
7.5.1 Allocation activity . . .. ... ... ... ... ... 172
752 Results. . ... ..o 173
7.5.3 SPECjbb2000 measurements . . . . . . . .. ... ... ... ... .. 175
7.5.4 Garbage collection impact . . . ... ... ... ... .. . ... . . 176

7.6 Related work . . .. ... ... 177
7.7 Future work . . ... 178
7.8 Conclusions . . ... ... ... 179



List of Figures

1.1

21

2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

3.12
3.13
3.14
3.15
3.16

4.1
4.2

Example of a stop-the-world collector, a parallel collector, a concurrent col-
lector and an on-the-fly collector. . . . . . . . . ... ... ... ... .. .. 9

Example of reference-count processing savings when using the Levanoni-Petrank

collector . . . . . . ... 19
An example: heap and buffers view in 2 subsequent collections . . . . . . . . 21
A snapshot view at time t vs. a sliding view at interval [t1,t2] . . .. .. . 21

An example in which the reachability of object Z is missed by a sliding view 21

SVMS mutator code: A simplified update operation . . . . . ... ... ... 31
SVMS mutator code: Update operation . . . . . . . ... ... ... ... .. 34
SVMS mutator code: Allocation operation . . . . . . .. ... ... .. . .. 36
SVMS collector code: Tracing algorithm . . . . . ... ... . ... . . . .. 37
SVMS collector code: Initiate-Collection-Cycle Procedure . . . . . . . . . .. 38
SVMS collector code: Get-Roots Procedure . . . . . .. ... ... ... .. 39
SVMS collector code: Trace-Heap Procedure . . . . . ... . ... .. ... . 40
SVMS collector code: Trace Procedure . . . . . ... ... . . . ... . .. 41
SVMS collector code: Sweep Procedure . . . . . . . ... .. . ... ... .. 42
SVMS collector code: Prepare-Next-Collection Procedure . . . . . . . . . . . 43
SPEC;jbb2000 on a multiprocessor: SVMS throughput ratio compared to Jikes

concurrent collector . . . . . . ... ... 47
SPECjvm98 and modified -227_mtrt on a multiprocessor: SVMS run-time

ratio compared to Jikes concurrent collector . . . . . . .. ... ... ... . 47
SPECjbb2000 on a multiprocessor: SVMS throughput ratio compared to Jikes

STWcollector . . . . . . ... ... .. ... . .. 49
SPECjvm98 on a multiprocessor: SVMS run-time ratio compared to Jikes

STWcollector . . . . .. ... ... .. ... . .. ... 49
SPECjvm98 SVMS results on a uniprocessor compared to Jikes concurrent

collector . . . . .. ... 53

SPECjvm98 SVMS results on a uniprocessor compared to Jikes STW collector 53

An example: heap and buffers view in 2 subsequent collections. . . . . . . . 59
Age-Oriented: Collection Cycle . . . . ... ... ... ... .. . ... ... 60



4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

4.21

5.1
9.2

5.3
5.4
5.5
3.6
9.7
5.8
5.9
5.10
5.11
5.12

Sliding views: Collection Cycle . . .. ... ... ... .. . . ... .. . . 60
Mutator code: Update Operation . . . ... ... ... ... . ... .. . . 64
Mutator code: Allocation Operation . . . ... .. ... ... ... .. 65
Age-oriented collector code- Collection Cycle . . . . . . . . . . ... .. .| 66
Age-oriented collector code- Initiate-Collection-Cycle . . . . ... ... . .. 67
Age-oriented collector code- Clear-Dirty-Marks . . . . . . . ... .. ... . . 68
Age-oriented collector code- Reinforce-Clearing-Conflict-Set . . . . . . . . . . 69
Age-oriented collector code- Mark-Roots . . . . . .. ... ... ... . . . 70
Age-oriented collector code- Update-Old-Reference-Counters . . . . . . . . . 71
Age-oriented collector code- Increment sliding-view values . . . . . ... . . 72
Age-oriented collector code- Trace-Young . . . . . . . ... . ... .. .. .. 73
Age-oriented collector code- Reclaim-Young-Garbage . . . . ... ... ... 73
Age-oriented collector code- Reclaim-Old-Garbage . . .. . ... ... ... 74
Age-oriented collector code- Collect . . . . . ... . ... ... ... .. . 75
Age-oriented collector code- Recursive deletion . . . . . . . . ... ... . .. 75
Age-oriented collector code- Prepare-Next-Collection . . . . .. ... .. . 76
The age-oriented object model . . . . . . .. ... ... . ... .. .. . 77
SPECjbb2000 on a multiprocessor: throughput ratio of the generational and

the age-oriented collector for 1-8 warehouses (compared to the original reference-
counting collector) . . . . .. .. ... 80

SPECjvm98 on a multiprocessor: run-time ratio of the age-oriented collector
compared to the original collector (left) and compared to the generational
collector (right) . . .. ... ... ... ... 83

SPECjbb2000 on a multiprocessor (left) and SPECjvm98 on a uniprocessor
(right): age-oriented comparison against Jikes parallel mark-and-sweep collector 84

SPECjvm98 on a uniprocessor: age-oriented run-time ratio compared to the
Levanoni-Petrank collector . . . .. .. ... ... .. .. .. .. . . 87

An example: The creation of a garbage cycle composed solely of old objects. 99

Example showing that all garbage cycles are collected even though recording

considerably fewer candidates. . . .. ... ... .. ... .. . " .. " 100
SVRC mutator code: Update Operation . . ... ... ... . ... .. .. . 106
SVRC: Sliding views reference counting with cycle collection . . . . . . . . . 107
Cycle collector: Add-Candidate Procedure . . . ... ... ... . ... . . 108
Cycle collector: Process-Cycles Procedure . . . .. . .. .. ... ... . . 109
Cycle collector: Mark-Candidates Procedure . . . . . . ... ... .. | 110
Cycle collector: Mark Procedure . . . . . .. ... . .. ... .. .. . . 111
Cycle collector: Read-Sliding-View Procedure . . . . ... .. ... .. .. . 112
Cycle collector: Mark-Live-Black Procedure . . ... ... ... ... . . 112
Cycle collector: Mark-Black Procedure . . . ... .. ... ... .. .. .. 113
Cycle collector: Scan-Candidates Procedure . . .. ... .. ... ... . . 113



5.13
5.14
5.15
5.16
5.17
5.18

5.19

5.20
5.21

5.22

5.23

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3

7.4

Cycle collector: Reclaim Procedure . . . . . .. ... . ... .. .. . .. ..
Cycle collector: Process-Buffers Procedure . . . . . ... ... ... ... . .
SVRC: The object model . . . . . .. .. .. ... ... .. ... ... ...

SPECjbb2000 on a multiprocessor: Cycle collection throughput ratio for the
Levanoni-Petrank collector . . . . . . . . ... ... ... ... .. .. ... .

SPECjbb2000 on a multiprocessor: Cycle collection throughput ratio for the
age-oriented collector . . . . . . .. ...,

SPECjvm98 on a multiprocessor: Run-time ratio with cycle collection . . . .

Cycle collection: Reduction in the tracing work and in the number of candi-
dates compared to the collector of Bacon and Rajan . . . . .. ... . .. ..

Cycle collection: Reduction in the tracing work and in the number of can-
didates when the age-oriented collector is used compared to the reference-
counting collector . . . . . . . ...

Cycle collection candidate filtering: Percentage of candidates filtered out

Reference counting: Update Operation . . . . . ... ... .. ... . ... .
Reference counting: Allocation Operation. . . . . .. ... .. ... .. .. .
Reference counting- Collection Cycle . . . . .. .. ... ... .. .. . ...
Reference counting- Process-ModBuffer . . . . . ... ... . ... .. . .. .
Reference counting- Process-DecBuffer-and-Release . . . . . . . ... .. ..
Reference counting- Prepare-Next-Collection . . . . . . .. ... ... ... .
Reference counting- Process-ModBuffer with prefetch . . . . ... .. .. ..
Reference counting- Process-DecBuffer-and-Release with prefetch . . . . . .
Reference counting- Build-Block-Free-List . . . . .. . ... ... ... . . .
Reference counting- Build-Block-Free-List with prefetch . . . . .. .. .. . .
Jikes object model for reference counting . . . . .. .. ... ... . ... ..

A compound pool sub-graph example . . . . ... ... ... ... . ... ..
Example of where the patterns are necessary . . . . .. ... ... ... .. .

SPECjbb2000 on IBM’s JDK- naive pooling throughput ratio (left) and com-
pound pooling throughput ratio (right).. . . . ... ... ... .. . . ... .

SPECjbb2000 on Jikes- naive pooling throughput ratio (left) and compound
pooling throughput ratio (right). . . ... . ... ... ... . ... .. .. .



List of Tables

3.1
3.2

3.3
3.4

4.1

4.2
4.3
4.4

5.1
5.2

2.3

5.4
6.1
6.2
6.3
6.4

6.5

6.6

6.7

6.8
6.9

SVMS maximum pause time in milliseconds . . . . .. ... . ... ... .. 46
SVMS Write barrier: Fraction of write-barrier executions that take the long

path (on average) . . . .. ... ... ... ... 50
SVMS: Space overhead as a percentage of heap size . . . . . ... ... ... 51
SVMS: Percent time spent on each collection phase . . ... .. ... .. .. 52
Collector work ratio: work time ratio between the age-oriented collector and

the original collector. . . . . . . ... ... ... .. 83
Age-oriented maximum pause time in milliseconds . . . . . . . . .. ... .. 84
Profiling of the Levanoni-Petrank collector. . . . . . . . ... . ... .. . . . 85
Profiling of the age-oriented collector. . . . . . . .. .. ... . ... ... . . 86
Cycle collection maximum pause time in milliseconds . . . . . ... ... .. 123
Cyclic garbage collected for each benchmark by our cycle collector, when

incorporated with the reference counting and the age-oriented collectors . . . 125
Candidate buffers maximal size (in KB) with the reference-counting sliding-

view collector (employing the cycle collector) . . . . . . ... . .. ... ... 125

Number of traced objects (by cycle collection), and the percent of futile tracing128

Reduction in reference-counting overheads obtained by prefetching . . . . . . 145
Reference-counting profiling . . . . . . ... ... ... ... .. ... ... . 146
Percentage of repeated object accesses (hit ratios) for the entire collection . . 148
Percentage of repeated object accesses (hit ratios) for the Procedure Process-
ModBuffer . . . . .. ... ... 149
Percentage of repeated object accesses (hit ratios) for the Procedure Process-
DecBuffer-and-Release . . . . . ... ... ... ... ... ... ... ... 150
A break of the prefetching improvement due to the two strategies involved in
the Process-ModBuffer stage . . . . . . .. ... ... .. .. ... . .. .. 152
A break of the prefetching improvement, due to the two strategies involved in
the Process-DecBuffer-and-Release stage . . . . . .. ... ... . .. ... . 153
Profile of the objects accessed during the Process-ModBuffer stage . . . . .. 154

Already accessed objects’ percentages for the modified objects logged in Mod-
Buffer . . . ... 155



6.10 Already accessed objects’ percentages for the objects whose reference count
was incremented during the Procedure Process-ModBuffer . . . .. .. . . .

6.11 Hardware counters measurements . . . . ... ... .. .. ... ... .. .

7.1 An example of the profiler output . . . . ... ... .. ... ... ..

7.2 Allocation activity: How many bytes and how many objects were allocated
by the original benchmark and the percent of this allocation activity reduced
with naive pooling. . . . .. ... ...

7.3 Speed-up improvement with different JVMs when applying the suggested pat-
terns. . . ..o T

7.4 Garbage collection behavior when applying the suggested patterns . . . . . .
7.5 100% death correlation per class . . . . . ... .. ... ... ... ...



Abstract

Modern SMP servers with large heaps provide new challenges for the design of suitable
garbage collectors. Garbage collectors designed for client machines usually work in the so
called stop-the-world (STW) manner. A STW collector stops all program threads while
executing. Naive collectors employ only one of the available CPUs on an SMP. Naive STW
collectors may lead to inefficient running times on servers, long pause times and poor CPU
utilization. These problems can be solved by either executing the collector in a separate
thread (or process) concurrently with the program threads, or by parallelizing the execution

of the collection.

We have designed and implemented several alternative collectors for server platforms.
These collectors attempt to improve the garbage collection process in SMP platforms. In

particular, we have focused on concurrent collectors and reference-counting collectors.

We started by designing a mark-and-sweep on-the-fly algorithm based on the sliding-views
mechanism of Levanoni and Petrank. This algorithm can also be used to infrequently collect
garbage cycles in the reference-counting sliding-views collector. Next, we introduced the age-
oriented collector, which exploits the generational hypothesis best when used with reference
counting, to obtain highly efficient collection. In our third project, we proposed a new on-
the-fly cycle collection algorithm to accompany the reference-counting sliding-views collector.
In the fourth, we have inserted prefetch instructions into the reference-counting collector in
order to hide (or decrease) cache miss stalls, and hence reduce the overhead imposed by a
reference-counting collector. Finally, we studied ways to identify and eliminate wasteful use

of the memory management subsystem by employing three patterns, when possible.
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A Glossary !

Copying garbage collection. A tracing garbage collection method that operates by re-
locating reachable objects and then reclaiming objects that are left behind, which must be

unreachable and therefore dead.

Floating garbage. Garbage objects which are not being collected promptly after turning
garbage. This subjective term usually denotes garbage that is generated during a collection
cycle or garbage that a collection fails to reclaim even though eligible for collection.

Garbage; garbage objects; dead objects. Objects that are not reachable.

Generational garbage collection. A garbage collection method that makes use of the
generational hypothesis that “most objects die young”. Objects are gathered together in
generations (set of objects of similar age). New objects are allocated in the youngest gen-
eration, and promoted to older generations if they survive long enough. Objects in older

generations are collected less frequently, saving CPU time.

Incremental garbage collection. Garbage collection methods which perform garbage
collection work in parts and not continuously (i.e., the collector may pause in the middle of

a collection cycle while mutators continue). Hence, the collector work is done incrementally.

Mark and sweep garbage collection. A tracing garbage collection method that recur-
sively traces and marks objects starting from the roots, then frees all non-marked objects.

Mutators, mutator threads. Threads that perform application work.

Pause time, maximal. The maximal duration a mutator has ever been stopped for by the
collector.

Reachable. An object is reachable if a root refers to it, or another reachable object has a

slot referencing it.

Reference-counting collection. A garbage collection method that determines reachability

by counting the number of references to each object.

Taken from [88, 63).



Roots. A collection of variables that may contain references which are immediately accessi-
ble to at least one mutator. Typical roots are the control stack, global variables, other static

data, registers, intern tables, etc.

Stop-the-world garbage collection. Garbage collection methods in which the collector
and mutators seldom operate concurrently. These methods are usually characterized by long
interruptions to user processing, yet are simple to implement and often exert lower overheads

for the collection.
Throughput. For a given benchmark, the number of operations completed per time unit.

Tracing garbage collection. A garbage collection method based on the fact that if an
object is not reachable, mutators could never access it, and therefore it cannot be alive.
In a collection cycle, a part or the entire objects graph is traced to find which objects are

reachable. Those that were not reachable may be reclaimed.

Write barrier. Operations performed when a mutator stores an object reference from its

local state into an object slot, if such operations are required.



Chapter 1

Introduction

1.1 Garbage collection

Garbage collection (GC) is the automatic recycling of dynamically allocated memory. It
automatically determines what memory a program is no longer using, and recycles it for other
use. Manual memory management is (programmer-) time consuming and error prone. GC
avoids the need for the programmer to deallocate memory blocks explicitly, thus avoiding (or
ameliorating) the following problems. First, the problem of premature frees where memory
is released too early (while it is still reachable), causing a problem when this memory is
accessed later. Memory leak is another (manual memory management) problem in which
allocated memory is not released when no longer needed. This problem may cause shortage
of memory in further stages of the application. An additional problem is erroneous attempts

to release memory chunks that were already freed (double free problem).

By using GC, the burden on the programmer is reduced by not having to investigate
such problems, thereby increasing productivity. GC can also dramatically simplify programs,
chiefly by allowing modules to present cleaner interfaces to each other: the management of
object storage between modules is unnecessary. Additionally, GC can reduce the amount
of memory used because the interface problems of manual memory management are often

solved by creating extra copies of data.



1.2 Servers

One of the urging needs that the Internet age has necessitated is the one for high-end,
scalable, responsive, portable and rapidly developable servers. Nowadays, virtually every
firm has to deploy Internet servers capable of serving anytime, any number—from a handful
to millions—of customers and supply them with a prompt response, regardless of the current
load the server has to handle. Thus, servers are required to be scalable and in particular, the
response time of the server should be as independent as possible from the load on the server.
In addition, due to rapidly emerging technologies and the users’ demand for constantly
increasing functionality, servers should be programmed using a portable language that allows
code reuse and rapid development. In view of these factors, many server suppliers choose

symmetric multiprocessor as their hardware platform and Java as their software platform.

A symmetric multiprocessor is a computer system possessing multiple CPUs and a shared
memory. This allows maintaining performance as the number of users grows (up to a certain
bound), by adding more processors to the system. This solution is usually cost-effective and

it requires no alteration of existing code.

Java is a shared-memory, multi-threaded, portable, object-oriented and garbage collected
language. By virtue of being a shared-memory and multi-threaded, Java lets the program-
mer exploit the resources of the symmetric multiprocessor efficiently. Multi-threading also
simplifies the design of servers that have to handle independent requests and it improves
response latency. Being portable, object-oriented and garbage-collected, Java facilitates the

development process, shortens it and guarantees a more reliable result.

The implementation of the garbage collection, however, must be designed specifically
for servers with short response and service times, which are the ultimate goals of server

scalability.

1.3 Garbage collection for servers

The general problem of garbage collection has drawn attention virtually from the first days
of the general-purpose computer. However, most techniques were developed for uniprocessor
client memory-constrained systems that executed non time-critical missions, such as text
editing. The dominant characteristic of such garbage collection techniques was the favoring
of space over speed. In particular, it is acceptable in such systems to suspend all execution

threads while a centralized garbage collection process is compacting the heap. Since the



number of objects and threads is small relative to server applications, the pause is tolerable,

in most cases, by the end user.

Modern SMP servers with large heaps provide new challenges for the design of suitable
garbage collectors. Garbage collectors designed for client machines may lead to inefficient
running times on servers and non-incremental collectors may lead to unacceptable pauses.
A server application running on a symmetric multiprocessor should preferably never come
to a complete halt due to gafbége collection. Since the collector is usually single-threaded,
when all user threads are stopped for garbage collection only a single processor is utilized,
compromising the effectiveness of the multiprocessor system. In addition, as the number of
threads increases, the time required to stop all threads simultaneously is increasing and the
system becomes less responsive and non-scalable. This is especially the case when a thread

can be stopped only at special safe-points in the code it is executing.

Thus, garbage collectors for server systems should be concurrent meaning that the
garbage collector is executing concurrently with the user threads (also called mutator threads).
It is preferable that synchronization between the garbage collector thread and the mutators
be kept as low as possible. Concurrent garbage collectors are often extensions of sequen-
tial garbage collector algorithms. As such, they can be roughly categorized as concurrent
mark and sweep (for example [32, 33]), concurrent copying collectors (see [17, 76, 52]) and

concurrent reference counting (see [30]).

An on-the-fly garbage collector is a delicate concurrent collector that does not stop the
program threads simultaneously to perform the collection, i.e., there is never more than a
single mutator stopped (while a concurrent collector might halt program threads simultane-
ously for a short while). Instead, the collector executes on a separate thread (or process)
concurrently with the mutator threads. On-the-fly collectors are useful for multithreaded
applications running on multiprocessor servers, where it is important to fully utilize all pro-
cessors and provide even response time, especially for systems in which stopping the threads
Is a costly operation. By avoiding the need of stopping all mutator threads simultaneously,
on-the-fly collectors provide extremely short pauses.

1.3.1 Parallel garbage collection

A parallel collector could also be a suitable choice for collecting garbage in server systems.
A parallel collector is a collector which executes the collection work in parallel by more than
one collector thread, and hence achieves full CPUs utilization. Several parallel collectors
have already been suggested [40, 57, 39, 75).



The advantage of a concurrent collector over a parallel collector is that a concurrent
collector stops all the program threads only for a short period (to apply a short cooperation
with the collector). A parallel collector executes the entire collection while the program
threads are halted, thus incurring a longer pause time of 1-2 orders of magnitude. However,
the scalability of concurrent collectors is limited: a single collector thread may not be able
to supply enough free memory needed by mutators’ allocations. If the collector falls behind
the space requests of the mutators, the mutators would halt waiting for a collection cycle to
terminate (and supply free space). In these cases the superiority of a parallel collector (over
a concurrent collector) is expressed: the parallel collector always exploits all CPUs, while a
program employing a concurrent collector uses only one until free space is supplied. Another
advantage of the parallel collector is that it is invoked less frequently than a concurrent
collector (and thus causes less overhead). A parallel collection should only be invoked when
we ran out of memory, while a concurrent collection should be invoked sooner, as it tries to

avoid an out of memory situation.

In order to gain both a better throughput and a short response time, a collector could
be designed to be both parallel and concurrent (such as in [75]). In this work, however, we

focus solely on concurrent garbage collectors.

1.3.2 An example

Figure 1.1 illustrates the difference between four different collector kinds: stop-the-world,
parallel, concurrent and on-the-fly. The basic scenario refers to a symmetric multiprocessor
with four processors. Collector threads are colored yellow and mutator threads are colored
blue. All four scenarios are initiated similarly, where mutator threads run over all four
processors. The difference between the collectors is introduced when a garbage collection

cycle is invoked.

The stop-the-world garbage collector, in our example, is a naive stop-the-world collector,
which stops all the mutator threads during a collection and operates over a single CPU.
This collector inefficiently employs the hardware, as all but one CPU are left idle during the

collection.

The parallel garbage collector introduced in Figure 1.1, is also a stop-the-world one, as
mutators are halted during garbage collection work. However, garbage collection, in this
case, is done simultaneously by multiple collector threads over all processors. Hence, it
introduces a parallel stop-the-world collector. Since the collection work in done in parallel

(and the four processors are exploited) the mutators are paused (interrupted) for a shorter
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Figure 1.1: Example of a stop-the-world collector, a parallel collector, a concurrent collector

and an on-the-fly collector.

period than with the naive stop-the-world. In addition, all processors are kept active during

the application run.

The concurrent collector presented in the example initiates a collection cycle by simulta-
neously halting all mutators for a short period (for some synchronization). Then, it proceeds
by resuming the mutator threads on three CPUs and running a dedicated collector thread
on the fourth CPU. Hence, the collector thread runs concurrently with the mutator threads.
When the collection cycle terminates, a mutator is resumed also on the fourth processor.
With the concurrent collector, mutators are halted simultaneously only for a short period
(at the beginning of the collection), yielding shorter pause times than the parallel garbage
collector does.

Like the concurrent collector, the on-the-fly collector presented in Figure 1.1, works on the
fourth processor concurrently with the program threads. However, instead of simultaneously

halting all mutators threads in the collection beginning, each mutator is halted on its own



paste, and only then a collector thread is executed on the fourth processor. This yields an
even shorter pause time (than the concurrent collector yields), as mutators are resumed after

a short synchronization with the collector, independently of other mutators.

1.4 Research motto

Our work heavily relates to the field of reference-counting algorithms for server systems.
Reference counting is one of the most intuitive methods for automatic storage reclamation.
As such, systems using reference counting were implemented starting from the sixties [26].
The main idea is that we keep for each object a count of the number of references to the

object. When this number becomes zero for an object o, we know that o can be reclaimed.

"Iraditional reference-counting algorithms suffer from several flaws. First, when using
a reference-counting collector, pointer manipulations impose a substantial computational
overhead (in order to maintain the reference count of the involved objects). In addition,
reference-counting collectors suffer from costly parallelism: the transformation of sequential
reference counting into concurrent reference counting need cope with keeping the reference
counting invariant (the number of references to an object equals the value of the reference
count field of the object) in environments were arithmetic manipulation of memory locations
is not atomic. Another major drawback is reference-counting inability to reclaim cyclic

data-structures (strongly connected components in the objects graph).

These drawbacks have directed researchers and commercial systems to focus on tracing
collectors. Hence, historically, the study of reference counting (and in particular concurrent
reference counting) has not been as extensive and thorough as the study of tracing collectors,
forming an approximate two decades research gap. Recent studies of reference-counting
algorithms on modern platforms [82, 6, 62, 63] were able to mask some of these drawbacks.
In particular, Levanoni and Petrank [62, 63] have drastically reduced the work required by a
reference-counting collector and eliminated much of the parallelism overhead (by completely

eliminating the need for synchronization operations in the write barrier).

In addition to these recent studies, reference counting seems appealing for future garbage
collected systems, where very large heaps are used. Tracing collectors must traverse all live
objects, and thus, the larger the usage of the heap (ie., the amount of live objects in the
heap), the more work the collector must perform. The amount of reference-counting work,
however, is proportional to the amount of work done by the user program between collections
plus the amount of space that is actually reclaimed. But it does not depend on the space

10



consumed by live objects in the heap.

In order to reduce reference-counting research gap and since reference counting seems
appealing for future platforms, our central motto in this work was to try to advance re-
search on reference counting to close the said gap. In particular, we focus on improving
reference-counting collectors on SMP machines, by designing and implementing new and
better algorithms for memory management on servers. During this work, we have focused

on the following projects:

* Basing a mark-and-sweep on-the-fly algorithm on the sliding-views mechanism of Lev-
anoni and Petrank [61, 63]. This algorithm can also be used to infrequently collect

garbage cycles in the reference-counting sliding-views collector.

¢ Designing and implementing the age-oriented collector, which exploits the generational
hypothesis (that “most objects die young”) together with reference counting, to obtain
highly efficient collection. We believe that the age-oriented collector forms the optimal

manner of reference-counting use.

¢ Designing and implementing a new on-the-fly cycle collection algorithm. The new algo-

rithm improves the efficiency and theoretical properties of concurrent cycle collection.

o Inserting prefetch instructions into the reference-counting collector in order to hide (or
decrease) cache miss stalls, and hence reduce the overhead imposed by a reference-

counting collector.

¢ Studying ways to identify and eliminate wasteful use of the memory management sub-
system by employing three patterns, when possible: SOfMA (single object for multiple
allocations), object pooling and compound object pooling.

Next, we elaborate on each one of these projects.

1.5 An on-the-fly tracing collector

We propose a novel mark-and-sweep on-the-fly algorithm based on the sliding-views mech-
anism of Levanoni and Petrank (which was originally proposed for a reference-counting
collector). We have implemented our collector on Jikes RVM running on a Netfinity mul-

tiprocessor and compared it to the concurrent algorithm and to the parallel stop-the-world
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collector supplied with Jikes. The maximum pause time that we measured with our bench-
marks over all runs was 2ms. In all runs, the pause times were smaller than these of the
parallel stop-the-world collector by two orders of magnitude and they were also always shorter
than the pauses of Jikes concurrent collector. Throughput measurements of the new garbage
collector show that it outperforms Jikes’ concurrent collector by up to 60%. As expected,
the stop-the-world collector does better than the on-the-fly collectors with results showing
about 10% difference.

On top of being an effective mark-and-sweep on-the-fly collector standing on its own, our
collector may also be used as a backup collector (collecting cyclic data structures) for the
Levanoni-Petrank reference-counting collector. These two algorithms perfectly fit sharing

the same allocator, a similar data structure, and a similar JVM interface.

1.6 Age-oriented collectors

Generational collectors are well known as a tool for shortening pause times incurred by
garbage collection and for improving garbage collection efficiency. In this work, we inves-
tigate how to best use generations with reference-counting collectors with an emphasis on
concurrent collection. We propose a new collection approach, denoted age-oriented collection,
for exploiting the generational hypothesis to obtain better efficiency. This approach is par-
ticularly useful when reference counting is used to collect the old generation. The resulting
concurrent collector is highly efficient and non-obtrusive. Finally, an implementation is pro-
vided demonstrating how the age-oriented collector outperforms both the non-generational
and the generational collectors’ efficiency. We conclude by advocating the age-oriented ap-
proach as the best known state-of-the-art method to obtain the highest efficiency with a

reference-counting collector.

1.7 Concurrent cycle collection in reference-counting

collectors

A reference-counting garbage collector cannot reclaim unreachable cyclic structures of ob-
Jects. Therefore, reference-counting collectors either use a backup tracing collector infre-
quently, or employ a cycle collector to reclaim cyclic structures. We propose a new con-

current cycle collector, i.e., one that runs concurrently with the program threads, imposing
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negligible pauses (of around 1ms) on a multiprocessor.

Our new collector combines the state-of-the-art cycle collector [7] with the sliding-views
collectors [62, 63, 4]. The use of sliding views for cycle collection yields two advantages. First,
it drastically reduces the number of cycle candidates, which in turn, drastically reduces the
work required to record and trace these candidates. Therefore, a large improvement in cycle
collection efficiency is obtained. Second, it eliminates the theoretical termination problem
that appeared in the previous concurrent cycle collector. There, a rare race may delay the
reclamation of an unreachable cyclic structure forever. The sliding-views cycle collector

guarantees reclamation of all unreachable cyclic structures.

The proposed collector was implemented on the Jikes RVM and we provide measurements
including a comparison between the use of backup tracing and the use of cycle collection
with reference counting. To the best of our knowledge, such a comparison has not been
reported before.

1.8 Reference Counting using Prefetch

The performance gap between memory latency and processors’ speed is increasing, making
memory accesses a major performance bottleneck. Although cache hierarchies are used to
reduce this gap, applications still tend to suffer considerable memory stall time due to cache
misses. In this work we identify opportunities to prefetch predictable data accesses in advance
in a modern reference-counting garbage collector. The proposed prefetch instructions were
inserted into the Jikes reference-counting collector. Interestingly, reference counting turns
out less susceptible to prefetching improvements than tracing collectors. Whereas tracing
collectors touch each object once, reference-counting collectors touch objects repeatedly.
Nevertheless, the inserted prefetch instructions reduce, on average, an 8.7% of the memory

management overheads yielding a 2.2% overall application speedup.

1.9 Object pooling

In this project, we study ways to identify and eliminate wasteful use of the memory manage-
ment subsystem. First, an effective profiler is proposed to spot inefficient use of allocations.

Then, three patterns are studied to improve efficiency for these cases, when possible: SOfMA
(single object for multiple allocations), object pooling and compound object pooling. The latter
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is an interesting tweak on standard object pooling, which improves performance significantly,
when applicable. It turns out that various standard benchmarks include code that causes
such extremely inefficient use of the memory manager. This code can be easily identified by
our profiler and modified via the patterns that we propose to make the program run faster.
Measuring the proposed modifications on various standard benchmarks with a couple of
Java Virtual Machines (JVMs) and using various (standard) garbage collection algorithms,
an improved application performance of up to 22.8% is achieved. The importance of the
novel compound object pooling pattern, in particular, is highlighted by the SPECjbb2000
benchmark where naive object pooling yields no performance improvement. Nevertheless,
compound object pooling is applicable and yields an overall throughput improvement of 3.0-
9.3%.

1.10 Organization

The rest of the thesis is organized as follows. Section 2 presents related work on on-the-
fly collectors, tracing collectors, generational collectors, reference-counting collectors and
in particular the sliding-view reference-counting collector. Section 3 presents the mark-and-
sweep sliding-views collector. Section 4 introduces the age-oriented collector. Our concurrent
cycle collection algorithm is discussed in Section 5. Section 6 exhibits how using prefetch
instructions can improve the efficiency of a reference-counting collector. In Section 7, we
study ways to identify and eliminate wasteful use of the memory management subsystem by

employing patterns.
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Chapter 2

Related Work

2.1 On-the-fly collectors

Modern SMP servers with large heaps provide new challenges for the design of suitable
garbage collectors, the so-called stop the world setting, that work while program threads are
stopped. On multiprocessor platforms, it is not desirable to stop the program and perform
the collection in a single thread on one processor, as this leads both to long pause times and
poor processor utilization. A concurrent collector is a collector which runs concurrently with
the program threads. The program threads may be stopped for a short time to initiate and Jor
finish the collection. An on-the-fly collector is a concurrent collector that does not need to
stop the program threads simultaneously, not even for the initialization or the completion of
the collection cycle. Hence on-the-fly collectors provide extremely short response time and

are especially useful for systems in which stopping the threads is a costly operation.

The study of on-the-fly garbage collectors was initiated by Steele [91, 92] and Dijkstra, et
al. [32] and continued in a series of papers (44, 10, 11, 59, 60, 34, 33, 62, 63, 35, 36, 6, 52, 4].
The advantage of an on-the-fly collector over a parallel collector and other types of concurrent
collectors (8, 37, 71, 17, 38, 39, 75, 86, 58, 56], is that it avoids the operation of stopping all
the program threads'. Such an operation can be costly, and it usually increases the pause
times. Today, on-the-fly collectors achieve pauses as short as a couple of milliseconds, and
even less [52]. On-the-fly collectors were mostly based on the mark-and-sweep algorithm,
yet, an on-the-fly copying collector has appeared in [52] and on-the-fly reference-counting

1The collector of Nilsen et al. [72] incrementally scans the stack contents of each thread, but involves

other overheads.
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collectors were proposed in [6, 62, 63].

2.2 Reference counting

The traditional method of reference counting applicable in the realm of uniprocessing was
first developed for Lisp by Collins [26]. In its simplest form, it allowed immediate reclamation
of garbage in a localized manner, yet with a notable overhead for maintaining the space and
semantics of the counters. Weizenbaum [100] showed how the delay introduced by recursive
deletion (which is the only non-constant delay caused by classic reference counting) can be
ameliorated for fixed sized objects, by distributing deletion over object creation operations.
Deutsch and Bobrow [31] eliminated most of the computational overhead required to adjust
reference counters in their method of deferred reference counting. According to the method,
local references are not counted and thus it is unnecessary to track fetches, local pointer
duplications and cancellations. Only stores into the heap need be tracked. However, the
immediacy of reference counting is lost in a certain extent, since garbage may be reclaimed
only after the mutator state is scanned and accounted for. Bacon et al. [6] and Levanoni
and Petrank [62, 63] have extended the reference-counting algorithm to run concurrently
with the program threads. Both achieve extremely low pause times (of around 2ms). The
on-the-fly algorithm of Bacon et al. [6] employs a novel on-the-fly cycle detector, avoids the
need of Deutsch and Bobrow’s zero count tables, and shows how pointer updates could be
done using a single compare-and-swap (instead of a central lock over all pointer updates).
The on-the-fly algorithm of Levanoni and Petrank [62, 63] is described in Section 2.6.

2.3 Generational garbage collectors

Previous researchers have gathered considerable evidence to support the weak generational
hypothesis that “most objects die young”. The insight behind generational garbage collection
is that storage reclamation can be made more efficient and less obtrusive by concentrating
effort on reclaiming those objects most likely to be garbage, i.e., young objects. The gener-
ational strategy is to segregate objects by age into two or more regions of the heap called
generations. Different generations can then be collected at different frequencies, with the

youngest generation being collected frequently and older generations much less often.

Generational garbage collection was introduced by Lieberman and Hewitt [64], and the
first published implementation was by Ungar [97]. Both algorithms were aimed to reduce
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the running time of most collections by focusing on the young objects. Appel [2] presented
a two-generation collector with variable young generation size: all its free space is devoted
to the young generation. When the young generation becomes full (and thus both gen-
erations consume all usable memory), it collects the young generation, copying surviving
objects to the older generation, and reducing the young generation size by this space. Major
collections are executed only when the old generation occupies the entire heap. Demers, et
al. [28] presented an algorithm for using generational collector without moving the objects.
Their motivation was to adapt generations for conservative garbage collection. Instead of
partitioning the heap physically and keeping fhe young objects in a separate place, it is
suggested to partition the heap logically, and to keep a bit per object, indicating whether
the object is young or old. Other interesting variants of generational collection include the
Train algorithm [51], the older first collector [94], and Beltways [13).

Incorporations of generational collectors into on-the-fly collectors were done by Domani
et al. [35], and by Azatchi and Petrank [5]2. Both works employed fixed-sized young gener-
ation and both showed that combining generations with on-the-fly collectors may be useful.
Domani, Kolodner and Petrank adopt the idea of Demers, et al. [28] to partition the young
and the old objects logically (as objects cannot be moved). The Doligez-Leroy-Gonthier
mark-and-sweep collector [34, 33] is used both for the collection of the young generation and
the collection of the full heap. Azatchi and Petrank [5] showed how generational collection
could interact with reference counting, by using reference counting for the old generation and
mark and sweep for the young generation. They built on the reference-counting collector of
Levanoni and Petrank [62] and on the mark-and-sweep collector of Azatchi et al. [4].

Blackburn and McKinley [14] implemented a uniprocessor stop-the-world generational
collector with reference counting for the old generation and copying for the young. Using
copying for the young generation is a natural choice for stop-the-world collection, as it makes
better use of the high death rate (of objects belonging to the young generation). Adopting
copying for an on-the-fly collector is rather difficult (the only known such construction ap-
pears in [52]). The goal in [14] was to use the generational collector to shorten the pauses a
stop-the-world reference counting may incur, while obtaining good throughput. They used a
clever mechanism to run part of the old generation collection together with the young collec-

tion in order to avoid the need for a full collection that requires a long pause. Indeed, their

2A partial incorporation of generations with an on-the-fly collector was used by Doligez, Leroy, and
Gonthier [34, 33]. The whole scheme depends on the fact that many objects in ML are immutable. This is
not true for Java and other imperative languages. Furthermore, the collection of the young generation is not

concurrent.

17



collector demonstrated controlled pause times with good throughput. These pause times are

larger than those obtained by on-the-fly collectors.

2.4 Reclaiming garbage cycles

Cyclic data structures (strongly connected components in the objects graph) are common,
both in the application level and at the operating system level. The inability to reclaim
garbage cyclic data structures is one of the severest disadvantage of reference counting. This
inability was first noticed by McBeth [69]. Christopher [25] developed an algorithm whose
primary method is reference counting, yet a tracing collector is called periodically to reclaim
nodes in the heap that have a non-zero reference counts but are not externally reachable.
The algorithm of Martinez et al. [68] reclaims cells, which were uniquely referenced when
their count drops to zero, while when a pointer to a shared object is deleted, a local depth-
first search is applied on it. This search subtracts reference counts due to internal pointers.
If a collection of objects with zero reference counts is found, then a garbage cycle has been
found, and is collected. Lins [65] extended this algorithm by postponing the above traversals
while saving the values of the deleted pointer in a buffer (each such value is a candidate
to be a root of a garbage cycle), and traverse the buffer at a suitable point. Delaying the
traversal will decrease the number of over all candidates traversals since most buffer’s values
will be irrelevant by the time the buffer would be traversed (because their reference count
would drop to zero or would be incremented). Bacon et al. [7] extended Lins algorithm to a
concurrent cycle collection algorithm. They also improved Lins’ algorithm by performing the
tracing of all candidates and only then checking whether there are garbage cycles, instead
of trace and check each candidate individually. However, due to race conditions there is
no bound on the collection time of a garbage cycle, i.e., the algorithm does not guarantee
that a garbage cycle would be collected until the i-th collection (from the time it became
garbage). Lins [66] showed the algorithm can employ two graph traversals (instead of three)
per candidate by using an extra data structure.

2.5 Mark and sweep

‘The mark-and-sweep garbage collector was first presented by [70]. A mark-and-sweep col-
lector first marks any object which is directly reachable (either from a local or a global
reference) and then recursively marks any object which is pointed to by a marked object.
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Then, any object, which is not marked is swept, i.e., reclaimed. Much research and engineer-
ing effort has been put into this algorithm since. Mark-and-sweep algorithms that perform
garbage collection using a snapshot of the heap appear in [103, 40]. Many mark-and-sweep
concurrent collectors have been proposed, such as [17, 86, 75).

The study of mark-and-sweep on-the-fly garbage collectors was as initiated by Steele [91,
92] and Dijkstra., et al. [32] and continued in a series of papers [60, 59, 44, 10, 11] culminating
in the Doligez-Leroy-Gonthier (DLG) collector [34, 33]. The DLG collector is considered the
most advanced on-the-fly mark-and-sweep collector. It uses fine-grained synchronization,

and it was used in a production JVM of IBM (see [35, 36]).

2.6 The sliding-views reference-counting collector

Some of our projects heavily rely on the Levanoni-Petrank sliding-views reference-counting
collector [62, 63]. Hence, for completeness, we provide a review of the sliding-views reference-
counting collector.

The Levanoni-Petrank collector [63] is an on-the-fly reference-counting collector that elim-
inates many of the reference-count updates by the following coalescing strategy. Consider a
pointer slot p that is assigned the values 09, 01, 0o, . .., 0,, between two garbage collections.
Figure 2.1 introduces such scenario, where right after a collection (stage a) p references
0o. Then at stage b it is modified to reference o;; next (at stage c) it is modified to ref-
erence o,. Further modifications of o are skipped until the last modification (before the
next garbage collection invocation) at stage d where p is modified to reference o,. In such
case, all previous reference-counting collectors execute 2n reference-count updates for these
assignments: RC(op)——, RC(01)++ (both for step b); RC(0,)——, RC(0s)++ (both for step
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¢); .., RC(on)++ (for step d). However, only two updates are required: RC(0p)—— and
RC(0n)++.

Suppose the reference counts we have represent the heap view at the previous collection
time, and we would like to update them for the current collection time. In light of the
observation above, it suffices to do the following updates. For each pointer p that was
modified between the two collections:

1. find p’s referent in the previous collection time (corresponding to o above) and decre-

ment its reference count, and

2. find p’s referent in the current collection time (corresponding to o, above) and incre-

ment its reference count.

It remains to devise a mechanism that records all pointers that were modified after the
previous collection. Furthermore, this mechanism should provide, for each such pointer, its
referent at the previous collection time and its referent at the current collection time. To
achieve this we employ a write barrier, a piece of code activated on each pointer assignment.
Each program thread maintains a local buffer, denoted Updates buffer, in which all updated
pointers are logged together with their pre-modification values. For efficiency (as explained
by Levanoni and Petrank [63]), all pointers of an updated object are logged rather than
each single updated pointer. To make sure that each object is logged only once, a dirty
bit per object is employed to signify whether the object has already been logged. During
a collection, all objects are marked not dirty. Then, at the first time a thread modifies
an object, it marks the object dirty, it logs the modified object’s address and it logs all its
pointers’ previous referents in the Updates buffer. Further modifications to the (dirty) object
are not recorded. To deal with multithreaded programs, a carefully designed write barrier is
presented in [63] allowing the above write barrier to operate on concurrent threads without
requiring synchronized operations. When a new collection begins, the Updates buffer provides
all the information required to update the reference counts: it lists all modified ob jects, and
keeps a record of their referents before the first modification (these are the objects’ referents
in the previous collection time). In the current collection, the collector finds the current

referents of these object’s pointers.

A special case of modified objects are newly created objects. Such objects do not have
referents at the previous collection time as they did not exist then. Newly created objects
are created dirty (to prevent logging in the Updates buffer) and are logged (upon creation)

in a special buffer, denoted the YoungObjects buffer. The collector increments the reference
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Figure 2.4: An example in which the reachability of object Z is missed by a sliding view

counts of their referents at the current collection time, but does not need to do any related

decrements.

An example appears in Figure 2.2. It depicts the heap and the buffers in two subsequent
collections, where the view of the former collection appears on the left side. The YoungObjects
buffer contains the six objects that were created after the last collection. Between the two
collections a pointer in A was modified to reference C. Hence, 4 was logged in the Updates
buffer, together with its previous referent B (which appears next to A4 in a smaller font). The
collector uses this information in the following way. It iterates over the objects logged in the
Updates buffer and finds A. It decrements the reference count of B, which is A’s descendant
in the previous collection, and it increments the reference count of C, A’s descendant at
the current collection time. It then iterates over the six objects in the YoungObjects buffer.
It increments the reference counts of their descendants at the current collection time. For

example, for the object F' the reference count of H is incremented.

The above algorithm uses an implicit snapshot of the heap. A snapshot at time ¢ is a copy
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of the content of each heap object at time ¢. The implicit snapshot is obtained by stopping
all program threads simultaneously to read their local buffers, their roots, and un-dirty all
the objects. However, stopping all threads simultaneously increases the pause time. To get
an on-the-fly collector, program threads are not stopped simultaneously, and thus a snapshot
cannot be used. Instead, a collection works with a sliding view of the heap. A sliding view
of the heap is associated with a time interval [t),t,] (rather than a single point in time). It
provides the content of each heap object at some arbitrary time ¢, satisfying ¢, < t < to.
In contrast to a snapshot, objects are not all viewed at the same time. Figure 2.3 depicts
the difference between a sliding view and a snapshot. Using a sliding view for collection
introduces a correctness danger: the view may not reflect correctly objects reachability.
Figure 2.4 shows such example, where the reachability of Z is missed in the sliding view,
although it is reachable. The example takes place during the time interval [t1,t2]. During step
(a), the collector samples (the descendants of) object Y. In step (b) object Y is modified
to reference object Z. As the collector has already sampled object Y, it is not aware of
this modification. In stage (c) object X is modified to stop referencing object Z, and then
at stage (d) object X is sampled. Although object Z was reachable throughout the entire
duration of the example, the sliding-view misses the references to object Z and hence it
may be reclaimed (if it is not referenced by another object). A solution to this problem is
a snooping mechanism. The snooping mechanism records (via write barrier) any object to
which a new reference is created in the heap during the time interval [t1,t2]. Snooped objects
are considered (as referenced by) roots, and are not reclaimed in the current collection cycle.
Returning to the example presented in Figure 2.4, as the reference from object Y to object
Z is created during the time interval [t;,t5], object Z would be snooped and hence would not
be collected.

2.6.1 The collector phases

A collection begins by taking a sliding view of the heap. To achieve cooperation between the
collector and the program threads, handshakes are used. During a handshake, each thread
is halted (separately, not simultaneously) for a short pause to cooperate with the collector.
During a halt, data may be exchanged between the collector and the program threads. The
Levanoni-Petrank collector employs four handshakes during the collection cycle.

The collection starts with the collector raising the thread local Snoop; flag, signaling to
the mutators that it is about to start computing a sliding view. During the first handshake,

the mutators are given new empty local buffers and the old buffers are transferred to the

22



collector. There are two such buffers for each mutator. YoungObjects; contains all objects
created since the last collection by Mutator 4 and Updates; contains all objects modified by
Mutator i since the last collection together with their previous sliding-view non-null pointer
slot values. Next, the dirty flags of the objects listed in the buffers (both the YoungObjects
and the Updates buffer) are cleared while the mutators are running. Most of the clearing
operations in this stage, clear dirty bits created during the previous collection cycle, as
intended. But some clearing is done to (a small number of) objects that have been dirtied
and logged in the buffers (by the running program threads) concurrently with the collector
clearing process. Such dirty bits should not have been cleared and hence the collector
proceeds by reinforcing these bits, i.e., by fixing these dirty bits. It reads the new local
buffers from all mutators in a second handshake and sets the dirty bits for the relevant
objects. A third handshake with no specific operation is executed to make sure that the
reinforced dirty bits are visible to all mutators. A fourth handshake is used to reset the
thread local Snoop; flag, to scan threads’ local states and to mark objects directly reachable
from the roots as Roots.

After the fourth handshake the collector adjusts rc fields due to differences between the
sliding views of the previous and current cycle. Each object which is logged to one of the
mutator’s local buffers has been modified since the previous collection cycle, thus we need
to decrement the 7c of its children (as reflected by its pointer slot values) as appearing in
the previous sliding view and increment the 7¢ of its slots values in the current sliding view.
The rc decrement operation of each modified object is done using the objects’ information
obtained from the retrieved local buffers. This information contains the object non-null

ointer slots’ value at the previous sliding view.
p g

In order to decide which objects’ r¢ to increment, one should determine what are the
children of an object O in the current sliding view. If O has not been modified since the
beginning of this collection then its pointer slots values may be read from the heap. If it has
been modified, the values of its pointer slots in the current sliding view must be obtained
from the new Updates buffers currently being written by the threads.

A collection cycle ends with reclamation which recursively frees any object with zero rc
field which is not marked as Roots and is not snooped.
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Chapter 3

An On-the-Fly Mark-and-Sweep
Garbage Collector Based on Sliding

Views

3.1 Introduction

In this chapter, we present the design and implementation of a new efficient and non-intrusive
garbage collector suitable for Java and C# running on modern SMP’s and using large heaps!.
Our algorithm is a non-moving mark-and-sweep collector based on a “relaxed” snapshot of
the heap (the sliding views). It is suitable for modern SMP’s running concurrent programs.
It is fully concurrent (on-the-fly) allowing short pause times. Namely, each thread is stopped
for a short while to cooperate with the collector, but the threads never need to be stopped

at the same time. Finally, our collector may be used with conservative JVM’s.

The algorithm presented in this work is inter-operable with the reference-counting sliding-
views algorithm of Levanoni-Petrank meaning that they share the same allocator, and their
data structure may be united so that it is possible to decide on a (collection) cycle by
(collection) cycle basis which algorithm should be invoked. Hence, our sliding-views mark-
and-sweep (SVMS) collector may also be used as a backup tracing algorithm for the sliding-
views reference-counting collector of Levanoni and Petrank (62, 63]. Any reference-counting

collector may need to use a tracing collector to reclaim cyclic garbage. It is advantageous for

'This work was presented in [4].
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the reference-counting collector to have a tracing collector that may use a similar allocator
and a similar JVM interface. A preliminary version of this mark-and-sweep algorithm was
implemented for that purpose and was used to produce the results of the reference-counting
collector reported in [62, 63]. However, the tracing sliding-view algorithm has not been
reported previously and its properties have not yet been investigated. In this work, we present

a mature version of this collector accompanied by an implementation and measurements.

3.1.1 The main algorithmic ideas

The basic mark-and-sweep algorithm operates by stopping all program threads, marking
any object which is directly reachable (either from a local or a global reference) and then
recursively marking any object which is pointed to by a marked object. Then, any object,

which is not marked is swept, i.e., reclaimed. Finally, program threads are resumed.

To simplify the presentation of our new collector, we start with a simple concurrent mark
and sweep that uses a snapshot. Concurrent mark-and-sweep collectors perform some, or all,
of the above steps concurrently with the program threads (the mutators). Snapshot at the
beginning [101, 40} mark-and-sweep collectors exploit the fact that a garbage object remains
garbage until the collector recycles it, i.e., being garbage is a stable property. Thus, (naive)

snapshot at the beginning operates by:

1. stopping the mutators,

2. taking a snapshot (replica) of the heap and roots,
3. resuming the mutators,

4. tracing the replica,

5. sweeping all objects in the original heap whose replicated counterparts are unmarked.
These reclaimed objects must have been unreachable at the time the snapshot was

taken and hence they remain unreachable until the collector eventually frees them.

The problem with this approach is that making a snapshot of the heap is not realistic. It
requires too much space and time. However, a useful property of today’s benchmarks is that
even if they employ a large heap, only a small part of it is modified at a time.

Loosely speaking, our algorithm works as follows. Assume first that the heap does not

change at all (which is not correct) and traverse the heap concurrently with the program
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activity. However, the heap is modified by the program threads and we cannot ignore it.
Our solution is to record objects states before they are first modified by a mutator. Later,
we trace according to the recorded state. A mechanism that remembers the object state
before it is first modified by a mutator has been developed in [62, 63] for monitoring changes

in reference counts. We employ that mechanism for our algorithm.

In turns out that a substantial portion of this mechanism’s overhead could be saved when
incorporated into a mark-and-sweep collector. The first saving is obtained by the fact that
recording is necessary only when the collector is active. The second saving is due to the
fact that we need to record an object A4 only if the object A is modified after the collector
started and before A is traced. This seldom happens. In particular, during a collection we
create new objects as marked. Thus, updates to new objects, which are most frequent, do
not require recording the values of the new object. Finally, and similarly to the reference-
counting saving, we need to record objects only once: the first time they get modified after
the collection starts. All these savings make the write barrier very efficient. Usually, it
only employs a fast path running only a couple of if statements. The long path of actually
recording the object’s state is taken infrequently (see the measured statistics in Section 3.6
below). The modified write barrier ,that we propose, maintains the good properties of
the original write barrier of Levanoni and Petrank [63]. In particular, it allows concurrent
threads to collect the information with no extra synchronization. More details appear in
Section 3.2.1.

Finally, the algorithm described so far needs to stop all threads at the same time in
order to determine the snapshot time. This is a must with a multiprocessor since we need to
determine one specific time at which no thread is in the middle of an update operation or in
the middle of creating a new object and at which all threads “know” that a snapshot time
has been set. Such wide mutator synchronization increases the pause time, as all mutator
threads must come to a halt together. In order to eliminate this synchronization, we let the
collector determine the snapshot time for each mutator asynchronously at its own pace. This
reduces the pause time to the level reported in this work but requires some care to assure
correctness. In particular, we get a fuzzy snapshot, called a “sliding view” of the heap. This
view is not an accurate snapshot, but we can use it for collection with an additional aiding
mechanism called “snooping”. During the (short) time that the sliding view is determined,
the write barrier records all pointer assignments. When marking the roots is over, snooping is
stopped and all pointer slots recorded by the snooping mechanism are traced as if they were
roots. This may lead to a small amount of floating garbage but it is required for correctness.
Details appear in Section 3.2.2.
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In our implementation, we employ state-of-the-art engineering tricks such as block ori-
ented allocator [17, 36] and color toggle {60, 50, 30, 53, 35], allowing a simple coloring of

allocated objects, and saving some of the sweep work.

3.1.2 Comparison with the Levanoni-Petrank collector

This work is based on the sliding-views concept from [62, 63]. The collector presented
here is a different collector by nature since it is a mark-and-sweep collector. For today’s
benchmarks, the tracing collector runs faster. Our contribution here is in presenting the
tracing collector, implementing it on Jikes RVM and measuring its performance against two
collectors supplied with Jikes: the on-the-fly reference-counting collector and the stop-the-
world tracing collector.

The algorithmic contribution in this work is in the composition of several algorithmic
ideas into one optimized collector. We start with the snapshot mark-and-sweep collector
employing ideas from [40, 103]. We then modify this collector to make it suitable for stock
hardware: instead of using the operating system copy-on-write feature, we let the mutators
record modified objects via a write barrier. But now, we may borrow the mechanism of (62,
63] for keeping track of modified objects and obtain a fast and non-intrusively collector.
Once we make this connection, we note that optimization may be used on the combined
modified collector. The write barrier must record a modified object only if the collector is
tracing (rather than always as in [62, 63]). Furthermore, recording is only required if the
object being modified has not yet been traced. These two restrictions allow frequent use of
a fast path for the write barrier and only infrequent actual recording of an object state.

3.1.3 Implementation and results

The sliding-views mark-and-sweep collector is implemented in Jikes RVM [1], a JVM system
written entirely in Java (with some primitives for manipulating raw memory). The system
was run on a 4-way IBM Netfinity server. We used the SPECjbb2000 benchmark and the
SPECjvm98 benchmark suites. These benchmarks are described in detail in SPEC’s web
site [90].

It turns out that our algorithm is non-intrusive. The maximum pause time measured for
all the run benchmarks was 2 ms, which is two orders of magnitude shorter than the pauses
of the stop-the-world collector, but is even shorter than the concurrent Jikes collector. This

pause time is the time it takes to scan the roots of a single thread. The rest of our handshakes
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are much faster. In Jikes concurrent collector, the pause time is larger since (in addition to
scanning the roots in each collection) it sometimes runs some allocator maintenance while

threads wait. This is not required by our collector.

As for efficiency, our on-the-fly collector is slower than the stop-the-world collector by
around 5-10%, which is “normal” for concurrent collectors. Comparing with the concurrent
collector supplied with Jikes RVM (see [6]), we obtained a throughput improvement of up
to 60% (for the SPECjbb2000 benchmark).

Memory consistency. We start by describing our collector for a sequentially consistent
memory. In Section 3.4 below, we provide modifications that allow the algorithm to run on
platforms, which are not sequentially consistent. From our experience with the Netfinity
(running the Pentium III Xeon processor), the modifications were not required for all the

benchmarks that we used.

The DLG collector. Although our collector comes from an advanced synergy of [103,
40] with [62, 63], the outcome collector should be also compared to the collector of Doligez-
Leroy-Gonthier [34, 33|, which is the most advanced on-the-fly mark-and-sweep collector.
The DLG collector also uses fine-grained synchronization, and it was used in a production
JVM of IBM (see [35, 36]). Unfortunately, we are not aware of an implementation of that
algorithm that is available for academic research (and in particular, it is not implemented
on Jikes). Therefore, it is not possible to show a direct comparison of throughput and
latency. We expect the pause times to be similar as in both algorithms the longest pause
emanates from marking the roots. In terms of efficiency, although the tracing algorithms
are somewhat different, we do not see any theoretical comparison factors that may be stated
without actually running the collectors. With respect to the write barrier more may be
said. Ignoring the short interval in which the roots are marked and both collectors use an
extended write barrier, the DLG collector marks gray the ex-target of any modified pointer.
This means that the write barrier forces the mutator to touch a different object, whereas
our write barrier touches only the modified object, copying the non-null pointers at the
first time the object is modified and only before it is traced. Thus, our write barrier may
take the short path more frequently and it may impose a better cache behavior. However,
the actual answer must be done by a comparison of our collector with a serious and well-
thought implementation of the DLG collector (which is not available for us). In any case, we
believe that it is important to propose a (good) alternative to the state-of-the-art on-the-fly

mark-and-sweep collector.

Chapter organization. We start with an overview of the collector algorithm in Section

3.2 below. We provide the algorithmic details and pseudo-code in Section 3.3. In Section
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3.4 we explain how to adapt the algorithm to platforms that do not provide sequentially
consistent memory. We say a few words on the implementation for Java in Section 3.5 and

in Section 3.6 we present performance results. We conclude in Section 3.7.

3.2 Collector Overview

In this section we describe our new collector. For clarity of presentation, we start with an
intermediate concurrent algorithm called the snapshot algorithm. In Section 3.2.2, we extend
this intermediate algorithm making it on-the-fly.

3.2.1 Snapshot based algorithm

We start with an intermediate algorithm called the snapshot algorithm. This is a concurrent
collector that requires a synchronization point in which all mutators are halted together to
determine a snapshot time in which no mutator is in the middle of an update operation or in
the middle of creating a new object. Most of the ideas presented with this simpler collector
apply to our on-the-fly collector. Note that the length of the pause for this algorithm is
short, but it requires synchronizing all application threads, which might mean longer pauses,
especially for operating systems that do not support an efficient suspension of all application

threads.

The idea, as presented in Section 3.1.1, is to perform the marking phase after taking a
snapshot of the heap. Once the heap is frozen in a snapshot, the marking phase may proceed
on the snapshot view while the mutators go on modifying the real heap. At the end of the
trace, unmarked objects may be safely reclaimed since dead objects can not be touched or
modified by the mutators.

Since taking a real snapshot is too costly, our algorithm takes the following approach. In
the beginning of the collection all mutators are stopped and implicitly agree on a snapshot
time. At the same stop, their roots are being marked and all threads resume. From that
moment on, the mutators use the following write barrier for each pointer modification. If
the collector is still tracing, and if the modified object has not been traced yet, and if the
modified object is not dirty, then the object becomes dirty and the values of its pointers
are saved (copied) to a local buffer. The write barrier does the logging (and dirtying) only
for non-dirty objects. Thus, actual logging of the object state is only required infrequently:
when the collector has started, but has not yet traced the modified object, and when the
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object is modified for the first time. In that case, the saved values are the values of non-null
pointers as existed during the snapshot time. Mostly, the write barrier runs the short path
(i.e., performs the pointer assignment without any logging) and finishes quickly. As an object
1s only saved once during a collection cycle, the number of objects that need to be saved is
the number of objects that get modified during the collection. We ignore for a moment the
possibility that mutators modify the same object concurrently. We will show later that the

write barrier works well also in this case without requiring explicit synchronization.

Given the operations described above, the collector may trace the objects as if it has
a heap snapshot. Non-dirty objects may be read from the heap, because they were not
modified. The state of dirty objects at the time of the snapshot may be obtained from the
local buffers. To finish the collection cycle, the mutators are notified that the write barrier is
not required anymore, and sweep is run to reclaim unmarked objects. Finally, all the dirty
marks on the objects that appear in the buffers are cleared so that they become ready for

the next collection.

We now return to the race issue raised above. What happens if two mutators modify
the same object concurrently? Are the recorded values correct? OQur write barrier is taken
from the Levanoni-Petrank reference-counting collector and is especially designed to handle
such races without employing costly synchronization operations. A simplified version of the
write barrier pseudo-code appears in Figure 3.1. (We study this simplified version since it
clarifies all the relevant points. The actual write barrier is more efficient and it appears in
Section 3.3 below.)

Two mutators that invoke the update barrier concurrently to modify the same location
do not fool the collection. We remark that in normal benchmarks (and programs) mutators
do not race over writing to the same location without synchronization. Such races rarely
appear in programs (they do appear in programs that try to implement a lock, or programs
that trust the various threads to write the same value, etc.). Such races usually appear when
the program contains a bug. Either way (and even if the program contains a bug) we would
like our collector to handle the situation properly and not fail during program execution.
Our first analysis of this write barrier is based on sequential consistency. However, simple
modifications may settle this issue and make the collector run correctly on weakly consistent
platforms at a negligible throughput penalty. This issue is discussed in Section 3.4 below.

Looking at the write barrier pseudo-code we split the analysis into two cases. First,
suppose one of the updating threads sets the dirty flag of an object before any other thread
reads the dirty flag. In this case, only one thread records this object and the records properly
reflect the pointer values at the snapshot time. The other case is when more than one thread
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Procedure Update(o: Object, s: Slot, new: Object)
begin
it TraceOn and o.color=white then
local old := read(o)
// was o written to since the snapshot time ?

if = Dirty(o) then

1
2
3
4
5. // ... no;.keep a record of the old values.
6 Buffer[CurrPos] := (o, old)

7 CurrPos := CurrPos + length(o)

8 Dirty(o) := true

9.  write(s, new)

end

Figure 3.1: SVMS mutator code: A simplified update operation

finds the dirty bit clear. We will show that in this (rare) case, more than one mutator may
log the value of an object, but it is guaranteed that all logs will reflect the same (correct)

value corresponding to the object’s state during the snapshot time.

Looking at the code, each thread starts by recording the old value of the object, and
only then it checks the dirty bit. On the other hand, the actual update of o occurs after
the dirty bit is set. Thus, if a thread detects a clear dirty bit, then it is guaranteed, since
sequential consistency is assumed, that the value it records is the value of o before any of the
threads has modified it. So while several threads may record the object o in their buffers, all
of them must record the same (correct) information. To summarize, in case a race occurs,
it is possible that several threads record the object o in their local buffers. However, all of
them record the same correct value of o at the snapshot time. When using the information
for the tracing, each of these records may be used. We conclude that even when races occur,
the content of any heap pointer during the snapshot time can be obtained. The value of this
pointer has either not been modified since the snapshot or it appears in the records taken
by the mutators.
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3.2.2 Using sliding views

The snapshot-based algorithm manages to execute a major part of the collection while the
mutators run concurrently with the collector. The main disadvantage of this algorithm is
the halting of the mutators in the beginning of the collection. During this halt all threads
are stopped while the local roots are marked. This halt hinders both efficiency, since only
one processor executes the work and the rest are idle, and scalability, since more threads
will cause more delays. While efficiency can be enhanced by parallelizing the local marking
phase, scalability calls for eliminating complete halts from the algorithm. This is indeed the
case with our sliding-views algorithm, which avoids grinding halts completely.

A handshake [34, 33] is a synchronization mechanism in which each thread stops at a
time to perform some transaction with the collector. Our algorithm uses four handshakes
and avoids using stronger synchronization mechanism between threads. Thus, mutators are
only suspended one at a time. The suspension duration is short and depends on the size of

the mutator’s local state.

In the snapshot algorithm we had a fixed point of time at which we perform the trace. It
was the time when all mutators were stopped. Namely, the snapshot algorithm is guaranteed
to trace the same objects as if it had done the trace while keeping the mutators suspended.
By dispensing with the complete halting of threads we no longer have this fixed point of
time. Rather, we have a fuzzier picture of the system, formalized by the notion of a sliding
view, which is essentially a non-atomic picture of the heap. We show how sliding views can
be used instead of atomic snapshots in order to devise a collection algorithm. This approach
has been taken from the reference-counting collector of Levanoni and Petrank [62, 63] and
is similar to the way snapshots are taken in a distributed setting. Each mutator at a time
will provide its view of (the modifications in) the heap, and special care will be taken by the
system to make sure that while the information is gathered, concurrent modifications of the

heap do not fool the collection.

Instead of stopping all mutators together for initiating a collection and marking their
local roots, we stop one mutator at a time. The problem with such a relaxation is that the
various threads start using the write barrier at different times. Furthermore, the scanning
of the stacks is not done simultaneously and thus, a reference may be missed because it is

moved from one location to another during the time we mark the threads’ local roots.

Therefore we take a rather extreme, yet required, measure. Before we start marking
the roots, we raise a snoop flag for each mutator. The local snoop flag is cleared when the
local roots of the mutator are marked. Thus, throughout the time we mark local roots, the
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threads use a snooping mechanism via their write barrier. During this interval of time, all
pointer updates are monitored. For each pointer update p = O we add the object O to a
local snooping buffer. All objects recorded in this manner will later be traced during the
mark phase as if they were roots.

The snooping mechanism may lead to some floating garbage as we conservatively do not
collect objects which have been recorded by the snooping mechanism (have been snooped),
although such objects may become garbage before the cycle ends. However, if a snooped
object becomes unreachable, it is guaranteed to be collected in the next cycle.

3.3 The Garbage Collector Details

3.3.1 The LogPointer

One important choice that we made in our implementation affects the algorithmic details
concerning the dirty bit. Each object must have a dirty bit signifying whether a pointer in
the object has been modified since the sliding view started. Instead of using a single dirty
bit per object we chose to dedicate a full word for the task. Indeed, this consumes space, but
it allows keeping information about the dirty object. In particular, we use this word to keep
a pointer to the location in the thread’s local buffer where the object’s pointers have been
logged. A zero value (a null pointer) signifies that the object is not dirty (and not logged).
We call this word the LogPointer.

Paying the extra price of allotting a whole word for the flag and transforming it into
a pointer that identifies the logged contents of an object, rather than using a boolean bit-
sized flag, enables an efficient tracing mechanism. Our tracing procedure does not need to
“search” all local buffers to find out the recorded information about the object’s state as
recorded in the local buffers. Instead, it follows the pointer in the ob ject header. Thus, the
tracing procedure can always proceeds immediately after accessing the object’s LogPointer
field, either as dictated by the current objects’ contents or according to the previous state
of the object, as recorded in the log entry (pointed by the LogPointer field). Which of the

two routes is taken is determined by the value of LogPointer (whether it is null or not).
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Procedure Update(o: Object, offset: int , new: Object)
begin
if TraceOn and o.color=white then
if 0.LogPointer=NULL then // object not dirty
TempPos := CurrPos
foreach field ptr of o which is not NULL

1

2

3

4

5. Buffer[++TempPos] := ptr
6 // is it still not dirty?

7 if 0.LogPointer=NULL then

8 // add pointer to object

9 Buffer[++TempPos] := address of o
10. //committing values in buffer

11. CurrPos := TempPos

12. // set dirty

13. o.LogPointer =

14. address of Buffer/CurrPos]

15. write( o, offset ,new)

16. if Snoop and new '= NULL then

17. Snooped := Snooped U { new }

end

Figure 3.2: SVMS mutator code: Update operation

3.3.2 Mutator cooperation

The mutators need to execute garbage-collection related code on three occasions: when
updating an object (accomplished by the Update Procedure presented in Figure 3.2), when
allocating a new object (accomplished by the New Procedure introduced in Figure 3.3) and
during handshakes (accomplished by the handshake mechanism). The Update and New
operations never interleave with a handshake. Namely, cooperation with a handshake waits

until a currently executed Update or New operation finish.

In what follows we sometimes use the standard terminology of denoting a marked object
black and an unmarked object white.
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Write barrier. Procedure Update (Figure 3.2) is activated at pointer assignment and
its main task is to record the object whose pointer is modified. We stress that the write
barrier (the Update protocol) is only used with heap pointer modification. Modifications of
local pointers in the registers or stack are not monitored. The logging should be done for a
limited period: from the time local roots are marked till the tracing is done. The variable
TraceOn is local to the mutator but is controlled by the collector. It tells the mutator
whether the logging should be done. Thus, the first check is whether executing the write
barrier is at all required. Next, we check whether the object is colored black. If it is the case,
then the object is either new (i.e., this object was created during the current collection), or
has already been traced during the current collection. In both cases, there is no need to
log its old values (since this object won’t be traced). Going through the pseudo-code, we
see that each object’s LogPointer is optimistically probed twice (lines 2 and 7) so that if
the object is dirty (which is often the case), then the write barrier is extremely fast. If the
object was not logged (i.e., the LogPointer of an object is NULL) then after the first probe,
the objects values are recorded into the local Buffer (lines 3-5). The second probe at line
7 ensures that the object has not yet been logged (by another thread). If LogPointer is
still NULL (in the second probe), then the recorded values are committed (line 9) and the
buffer pointer is modified (line 11). In order to be able to distinguish later between objects
and logged values, in line 9 we actually log the object’s address with the least significant
bit set on (while values are logged with least significant bit turned off). Then, the object’s
LogPointer field is set to point to these values (lines 13-14). After logging has occurred, the
actual pointer modification happens. Finally, while marking the roots of the mutators, the
snoop flag is on. At that time, the new target of the pointer assignment is recorded in the
local snooped buffer. This happens in lines 16-17. The variables Buffer, CurrPos, Snoop
and Snooped are local to the thread.

In our prototype we did not treat large objects in a special manner. However, buffering
objects of substantial size, that contain a large amount of pointers, may exceed the 2ms
pause time reported. To make sure this does not happen, one may associate dirty bits with
areas smaller than object sizes. For example, the heap may be partitioned into cards of
fixed size and each of them may be associated with a dirty bit (or a log pointer). Another
possibility is to modify the write barrier and collector treatment of only large objects, so
that they, only, are split into cards.

Creating a new object. Procedure New (Figure 3.3) is used when allocating an object.
After the object is allocated, it is given a color (dictated by the collector), according to the

allocation color. The allocation color is set by the collector during the various collection
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Procedure New(size: Integer, 0:Object)

begin

1. Obtain an object o of size size from the allocator.

2. o.color := AllocColor

3. return o

end

Figure 3.3: SVMS mutator code: Allocation operation

steps.

The handshake mechanism. Our handshake mechanism is the same as the one em-
ployed by the Doligez-Leroy-Gonthier collector [34, 33]. The mutator threads are never
stopped together for cooperating with the collector. Instead, threads are suspended one at
a time for the handshake. The stopping of the thread is not allowed while it is executing the
write barrier or while it is creating a new object. While a thread is suspended, the collector
executes the relevant actions for the handshake and then the thread is resumed. The collec-
tor repeats this process until all threads have cooperated. At that time, the handshake is
completed.

3.3.3 Phases of the collection

The collector algorithm runs in phases as follows.

¢ First handshake: during this handshake each mutator is stopped and the Snoop local

flag, which activates the snooping mechanism, is set.

e Second handshake: during this handshake each mutator is stopped and the TraceOn

local flag, which activates the logging mechanism, is set.

¢ Third handshake: during this handshake each mutator is stopped and the local roots
of each mutator are marked. Also, the Snoop local flag is cleared.

e Tracing: after the third handshake is done, the collector traces the heap from the
marked objects and from all snooped objects.

Fourth handshake: during this handshake each mutator is stopped and the local
flag TraceOn is cleared, so that the mutators stop recording updates in the buffers.
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Procedure Tracing-Collection-Cycle
begin

1. Initiate-Collection-Cycle // 15% and 229 handshake
2. Get-Roots // 3'd handshake

3.  Trace-Heap

4.  Sweep // 4 handshake

5 Prepare-Next-Collection

end

Figure 3.4: SVMS collector code: Tracing algorithm

e Sweep: the collector sweeps the heap and reclaims allocated unmarked ob jects.

e Clear dirty marks: The collector clears the dirty marks of all objects previously

recorded in the buffers.

3.3.4 Collector code

Collector’s code for cycle k is presented in Procedure Tracing-Collection-Cycle (Fig-
ure 3.4). Let us briefly describe each of the collector’s procedures.

Procedure Initiate-Collection-Cycle (Figure 3.5) runs the first two handshakes. During
the first handshake the Snoop flag is raised, signaling to the mutators that they should
start snooping all stores into heap slots. During the second handshake the TraceOn flag is
raised, signaling to the mutators that they should start logging old pointer values of objects
modified for the first time. For correctness, it is important to separate the two handshakes.
When any mutator starts logging values in its local buffer, all mutators should be already
snooping. The modifications are done via handshake to make sure that on a multiprocessor

each mutator sees its value properly.

Procedure Get-Roots (Figure 3.6) carries out the third handshake during which the Snoop
flag is turned off and the thread local roots are accumulated into the Roots (global) buffer.
Next, the Snooped buffer of each thread (containing snooped objects), is accumulated into
Roots, and then cleared (for the next collection). In this procedure a color toggle is executed
switching the values of black and white. The color toggle mechanism avoids races between the
Sweep and the New procedures, and it avoids some redundant work of the Sweep Procedure
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Procedure Initiate-Collection-Cycle
begin

1 // first handshake

2 for each thread T do
3 suspend thread T
4 Snoop := true

5. resume T

6.  // second handshake
7 for each thread T do
8 suspend thread T
9 TraceOn := true
10. resume T

end

Figure 3.5: SVMS collector code: Initiate-Collection-Cycle Procedure

(see [60, 50, 30, 53, 35]). Note that it is correct to mark new objects black during the
collection, since they are alive and have no children at the time of creation. The AllocColor

variable of each thread is then set so that new objects are created black.

Procedure Trace-Heap (Figure 3.7) implements marking the roots and tracing the heap.
(The threads are not stopped for this stage.)

Procedure Trace (Figure 3.8) traces a single object. It gets an object as input. This
object is traced only if its color is white. If it is white, the collector tries to determine the
object content (in particular, its children) as reflected in the sliding view of the cycle. If
the object has changed since the sliding view was taken (line 9), then its sliding-view value
is obtained from the relevant Buffer by checking the location pointed by LogPointer (line
10). Otherwise, the object has not changed since the sliding view was taken. In this case,
we make a copy of the object and trace the copy so that tracing will not be affected by
further concurrent execution of the program. Note, that the object is marked black only
after determining the object’s sliding-view content (recall that the update Procedure does
not log black objects).

Procedure Sweep (Figure 3.9) starts with the fourth handshake, which turns off the

TraceOn flag. As of this time, pointer values will not be recorded anymore. This is fine
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Procedure Get-Roots

black := 1-black
white 1= 1-white
// third handshake

for each thread T do

1

2

3

4

5. suspend thread T
6 AllocColor := black

7 Snoop := false

8 Roots := Roots U State // copy thread local state.
9 resume thread T

10. for each thread T do

11. // copy and clear snooped objects set

12. Roots := Roots U Snooped

13. Snooped ;== @

end

Figure 3.6: SVMS collector code: Get-Roots Procedure

since tracing has completed. Next, all white objects are returned to the allocator and made
blue, to signify that they have been reclaimed. Note that by the end of the sweep all objects
are black or blue. The color toggle makes use of this fact. One may think of black as white
and continue to use the same color for allocation. During the next mark, the meaning of

black is switched with white and the next collection starts.

Procedure Prepare-Next-Collection (Figure 3.10) clears all dirty marks (i.e., all 0. LogPointers)
that were set by mutators during this collection cycle. Clearing runs concurrently with pro-
gram run. The global Roots buffer and the local Buffer of each thread are also cleaned.

3.4 Weak memory consistency

Modern SMP’s do not always guarantee sequential consistency. Thus, it is important to check
which modifications are required by our collector to make it work on a weakly consistent

platform. In this section we provide the required modifications and discuss their cost.
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Procedure Trace-Heap
begin
for each object 0 € Roots do

push o to MarkStack

obj = pop(MarkStack)

1
2
3.  while MarkStack is not empty
4
5 Trace(oby)

end

Figure 3.7: SVMS collector code: Trace-Heap Procedure

Before going through the required modifications, we would like to stress that suspending
a thread implies a synchronization barrier. Thus, a handshake serves implicitly as a syn-
chronization barrier among all threads, guaranteeing, for example, that the setting of the

snoop flag is visible to all processors before the second handshake.

Dependency 1: in the write barrier, the reads and writes of the LogPointer (serving as the
dirty flag) and the pointer slot must be executed in the order stated in the algorithm, so
that several mutators do not race and write inconsistent data into the local buffers. To solve
this dependency, we note that the write barrier begins with a check whether the collector
is on and whether the object is not dirty. We need to add a synchronization barrier after
setting the LogPointer and before modifying the pointer. This is done only if both checks

are validated, i.e., the collector is on and the object is not dirty.

Cost: The measures in 3.6 show that the write barrier rarely needs to actually log an
object. Thus, the vast majority of the pointer updates require no cost for handling the first
dependency with weakly consistent platform.

Dependency 2: Another interaction that relies on the order of operations is the interaction
between the mutators running the write barrier and the tracing collector. There are two

problems here.

The first problem occurs when the collector discovers that the object is dirty and it then
reads the buffer entry associated with the object. However, if sequential consistency is not
guaranteed, the buffers may not yet contain the updated values (even though the LogPointer
has already been set). The second problem occurs when the collector copies the object
contents and then reads the LogPointer to find it null. The collector assumes that it has an

unmodified copy of the object, as it was when the sliding view was taken. However, when
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Procedure Trace(o: Object)

begin

1.  if o.color = ﬁ;hite then

2 if 0.LogPointer = NULL then // if not dirty
3 temp = o // getting a replica

4 // is still not dirty?

5. if 0.LogPointer = NULL then

6 for each slot s of temp do

7 v := read(s)

8 push v onto MarkStack

9 else // object is dirty

10. BufferPtr := getOldObject (0. LogPointer)
11. for each slot s of BufferPtr do

12. v := read(s)

13. push v onto MarkStack

14. o.color := black

end

Figure 3.8: SVMS collector code: Trace Procedure

sequential consistency is not guaranteed, it is possible that the collector read the contents
of the object after it was modified, but because of memory access reordering the setting of
the LogPointer flag has not yet become visible to the collector.

The idea for solving the first problem is to run the tracing in phases. First trace all
objects that have not been modified and keep a list of all those objects that have been
modified and still need to be traced. After this phase is done, the collector runs a handshake
with the mutators to obtain their local buffers and provide them with new buffers. Now,
a new phase begins in which we may trace through objects whose contents are recorded in
the obtained buffers and through all objects that have not yet been modified. We run such
phases again and again until the tracing is done. Checking the conditions that trigger the
run of a new phase, one may check that one or two phases normally suffice for a typical
benchmark. In particular, an object cannot be traced after the first handshake if it is not
modified before the handshake, it is not traced before the handshake, and it is modified just
after the first handshake (before it is traced). Such an event is rare in practice.
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Procedure Sweep

begin

1 // fourth handshake

2 for each thread T do

3 suspend thread T

4 TraceOn := false

5. resume T

6 Let swept point to the first object in the heap
7 while swept does not point pass the heap do
8 if swept.color = white then

9 swept.color := blue

10. return swept to the allocator

11. advance swept to the next object

end

Figure 3.9: SVMS collector code: Sweep Procedure

To solve the second problem, we use a “buffering” solution. Recall that because of the first
dependency the mutators are running a synchronization barrier after setting the LogPointer
and before modifying the pointer. Depending on some parameter m, the collector starts by
making copies of m objects that appear to be not dirty. Next, it performs a synchronization
barrier. Then, the LogPointer of each of the m copied objects is probed. If it is still null,
then the copy of the object may be traced. Otherwise, the object is dirty and its content
should be obtained from local buffers. The parameter m determines the frequency of running
the synchronization barrier, and in this sense the larger m the better. However, a large m
implies a large buffer for copying objects, and also a somewhat increased probability that
the copied object has been modified during the (longer) time interval between the time it

was copied and the time its LogPointer was checked.

Cost: Running a couple of additional handshakes for each collection cycle is of negligible
cost compared to the overall running time of the collection cycle (and to the running time
of the program). Running a synchronization barrier once for every m collector operations is
negligible for m large enough.

We remark that we have not implemented these modifications, but we have not witnessed

any problem caused by reordering instructions on the Intel platform.
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Procedure Prepare-Next-Collection
begin

1.  Roots:= @

2 for each thread T do

3 // clear all LogPointers
4. foreach object o in Buffer
5 o.LogPointer := NULL
6 // clear objects buffer

7 Buffer .= @

end

Figure 3.10: SVMS collector code: Prepare-Next-Collection Procedure

3.5 An Implementation for Java

We have implemented our algorithm in Jikes RVM [1] (running on Linux Red-Hat 7.2).
The entire system, including the collector itself, is written in Java (extended with unsafe
primitives available only to the Java Virtual Machine implementation to access raw mem-
ory). Jikes uses safe-points: rather than interrupting threads with asynchronous signals,
each thread periodically checks a bit in a condition register that indicates that the runtime
system wishes to gain control. This design significantly simplifies implementing the hand-
shakes of the garbage collection. In addition, rather than implementing Java threads as
operating system threads, Jikes multiplexes Java threads on virtual-processors, implemented
as operating-system threads. Jikes establishes one virtual processor for each physical pro-

cessor.

Memory allocator. Our implementation employs the non-copying allocator of Jikes,
which is based on the allocator of Boehm, Demers, and Shenker [17]. This allocator is well
suited for collectors that do not move objects. Small objects are allocated from per-processor
segregated free-lists build from 16KB pages divided into fixed-size blocks. Large objects are
allocated out of 4KB blocks with first-fit strategy. This allocator keeps the fragmentation

low and allows efficient reclamation of objects.
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3.6 Measurements

Platform and benchmarks. We have taken measurements on a 4-way IBM Netfinity
8500R server with 550MHz Intel Pentium III Xeon processors and 2GB of physical memory.
The benchmarks we used were the SPECjvin98 benchmark suite and the SPECjbb2000
benchmark. These benchmarks are described in detail in SPEC’s web site [90]. We feel
that the multithreaded SPECjbb2000 benchmark is more interesting, as the SPECjvm98 are

more appropriate for clients and our algorithm is targeted at servers.

Testing procedure. We used the benchmark suite using the test harness, performing
standard automated runs of all the benchmarks in the suite. Our standard automated
run runs each benchmark five times for each of the JVM’s involved (each implementing a
different collector). To get additional multithreaded benchmarks, we have also modified the
-227_mtrt benchmark from the SPECjvm98 suite to run on a varying number of threads. We
measured its run with 2, 4, 6, 8 and 10 threads. Finally, to understand better the behavior
of our collector under tight and relaxed conditions, we tested it on varying heap sizes. For
the SPECjvm98 suite, we started with a 24MB heap size and extended the sizes by 8MB
increments until a final large size of 96MB. For SPECjbb2000 we used larger heaps, starting
from 256MB heap size and extending by 64MB increments until a final large size of 704MB.

The compared collectors. We tested our concurrent collector against 2 collectors: Jikes
concurrent collector and Jikes parallel load-balancing non-copying mark-and-sweep collector.
Both collectors are distributed with Jikes RVM.

The concurrent collector is a modern on-the-fly pure reference-counting collector devel-
oped at IBM and reported in Bacon et al. [6]. It has similar characteristics to our collector,
namely, the mutators are only very loosely synchronized with the collector, allowing very
low pause times. This collector is denoted hereafter Jikes concurrent collector. We chose

this collector, as it is the only on-the-fly collector that is available for comparison.

The stop-the-world collector associates a collector thread for each processor. This is a
modern stop-the-world mark-and-sweep parallel collector initiated when an allocation fails.
We refer to this collector later as Jikes STW (stop-the-world) collector. We chose this

collector as a representative efficient stop-the-world collector.
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3.6.1 Pause times

The maximum pause times for the runs of the SPECjvm98 benchmarks and the SPECjbb2000
benchmark are reported in table 3.1. The SPECjvm98 benchmarks were run with a 64MB
heap size and the SPECjbb2000 (with 1,2,3 warehouses) were run with a 256MB heap size.
In these measurements, the number of program threads is smaller than the number of CPU’s.
Note that if the number of threads exceeds the number of processors, then large pause times
appear because threads lose the CPU to other mutators or the collector. The length of such
pauses depends on the operating system scheduler and is not relevant to the collector. Hence

we report only settings in which the collector runs on a separate spare processor.

Our maximum pause time measured for all the run benchmarks was 2.04 ms. Qur pause
times are smaller than these of Jikes concurrent collector for all tested benchmarks. One
may wonder why these pause times are shorter than the ones reported for Jikes concurrent
collector. Usually, the longest pause time for an on-the-fly collector is the time required for
scanning the roots of a single thread, which is the same for both collectors. We discovered
that the longest pauses in Jikes concurrent collector are due to freeing blocks for the allocator
that is sometimes executed in addition to scanning the roots. For our collector the operation
of scanning the roots is the longest pause. Other pauses are an order of magnitude shorter
than the root-scanning handshake. Thus, our collector obtains shorter pauses than Jikes

concurrent collector.

As expected the maximum pause times measured for our collector were much smaller
than these of Jikes STW collector. In fact, the measurements show that the maximum

pause times of Jikes STW collector are larger by a factor of at least 200!

Note that pause measurement for the _222_mpegaudio benchmark is not included for the
STW collector, since it has low allocation activity and no collection is executed during its
run (using the STW collector).

3.6.2 Server performance

Comparison against Jikes concurrent collector. Our major benchmark is the SPECjbb2000
benchmark. SPECjbb2000 requires multi-phased run with increasing number of warehouses.
Each phase lasts for two minutes with a ramp-up period of half a minute before each phase.
The benchmark provides a measure of the throughput and we report the throughput ratio
improvement. Note that a larger number is better, and we report the ratio between our

collector and the compared collector. Thus, the higher the ratio, the better our collector
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Benchmarks Maximum pause time
(milliseconds)
Sliding Jikes Jikes
Views | concurrent | STW
jess 1.3 2.77 261
db 0.66 1.84 193
javac 2.04 2.81 645
mpegaudio 0.54 0.8 -
jack 0.91 1.66 226
mtrt 0.91 1.80 376
jbb-1 0.6 1.79 324
jbb-2 0.73 2.6 422
jbb-3 0.93 3.15 517

Table 3.1: SVMS maximum pause time in milliseconds

behaves, and any ratio larger than 1 implies that our collector outperforms the compared

collector.

The design point for Jikes concurrent collector was for one collector CPU to be able to
handle 3 mutator CPU’s, so that for four-processor chip multiprocessors one CPU would
be dedicated to collection. Thus, when comparing to Jikes concurrent collector in this
subsection, we also let the collector run on a separate spare processor and the results show
mainly the ability of the concurrent collector to run concurrently without interfering with

mutators work.

The measurements are reported for a varying number of warehouses and varying heap
sizes in Figure 3.11. We can see that with small number of warehouses, both collectors act
similarly with our collector doing a little better. When the number of warehouses is three
and up, all 3 mutators’ CPUs are in use, and the efficiency of the collector becomes more
important. We can see that in this case, our collector outperforms Jikes concurrent collector

and obtains a performance improvement of up to 60%.

The SPECjvm98 benchmarks and the modified _227_mtrt benchmark provide a measure
of the elapsed running time, which we report. Here, the smaller the better. In Figure 3.12

we report the running time ratio of our collector and the compared collector. For clarity of
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presentation, we report the inverse ratio, so that higher ratios still show better performance
of our collector, and ratios larger than 1 imply our collector outperforming the compared

collector.

As before, when running the SPECjvm98 benchmarks on a multiprocessor, we allow a
designated processor to run the collector thread. Results are reported in Figure 3.12. Here
again the collector runs concurrently with the program thread and good concurrency is the
main factor in the comparison. Mostly, the collectors perform similarly with our collector
usually slightly winning. The picture changes for _213_javac and -202_jess with which our
collector does much better. Indeed the compared collector is known to perform badly on
these benchmarks (see [6]).

Note that the cases in which Jikes concurrent collector wins with SPECjvm98 as well as
with the modified _227_mtrt measurements presented below, is when the heap is tight. The

reason for worse results on small heaps is that during these runs, we get short in memory
(on both collectors), and so mutators are sometimes halted waiting for a collection cycle
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to terminate (and supply free space). These measurements demonstrate the superiority of
reference counting (employed by Jikes concurrent collector) for such settings. When frequent
collections are performed, the tracing collector still has to trace the whole heap and sweep
it, whereas the reference-counting collector only needs to run over the latest modifications
(in order to update the reference counts) and free the unreachable space. Note however, that
this phenomena occurs only in highly stressful conditions. Normally, mutators are halted
only in order to perform handshakes.

We do not include results for the _201_compress benchmark since its allocation activity

is not significant.

Next, we report the measurements for the modified _227_mtrt benchmark. We modified it
to work with a varying number of threads (4, 6, 8, 10 threads) and the resulting throughput
measures are reported in (the right picture of) Figure 3.12. Note that a run with two
threads appear with the SPECjvm98 measurements (reported as mtrt2 at the left picture of
Figure 3.12). Once more we allow a designated processor to run the collector thread, however
since all 3 mutator CPU’s are in use, the collector’s efficiency plays the major factor in these
measurements. Here, again, we can see that with small heaps the compared collector wins.
As before, this happens because of the superiority of reference counting in a setting where

frequent collections are required.

Comparison against Jikes STW collector. We have compared our collector perfor-
mance over the SPECjbb2000 benchmark and SPECjvm98 benchmarks also against Jikes
STW collector. However, when comparing against Jikes STW collector with four and up
mutators (on our 4-way machine), our collector did not run on a spare processor but rather
shared a processor with the program threads. Note, nevertheless, that we gave the collector
(in this case) the highest priority, so that when a collection is triggered the collector would
always get enough CPU.

The measurements of the SPECjbb2000 benchmark are reported for a varying number
of warehouses and varying heap sizes in Figure 3.13. We can see that with a small (1-3)
number of warehouses (when our collector runs on a dedicated processor), both collectors
have similar throughput, except for 3 warehouses for small heap sizes, where Jikes STW

collector is slightly better.

When running 4-8 warehouses over small heap, Jikes STW collector outperforms our
collector. This is the expected cost of running concurrently with program threads and using
a write barrier. However, on large enough heap sizes, the compared collector is only slightly
(3%-10%) better than our collector. The reason for the bad results over small heap sizes

is that on these sizes our collector sometimes get short in memory, and so mutators are
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collector

sometimes halted waiting for a collection cycle to terminate (and supply free space). In
these cases the superiority of a parallel collector (over a concurrent collector) is expressed:
the parallel collector always exploits all 4 CPUs, while our on-the-fly collector uses only one
until free space is supplied.

The measurements of the SPECjvm98 benchmark are reported in Figure 3.14. Here, our
collector thread runs on a designated processor (i.e., the number of virtual processors is one
more than the number of threads used by the benchmarks). Jikes STW collector runs on
the same number of CPU’s (gaining efficiency from running the collector in parallel on them
all). It can be seen that usually the collectors perform similarly. When running _213_javac
and _227_mtrt with smaller heap sizes, our collector performs worst, for the same reasons
described above: utilizing only one of two CPUs (three in case of -227_mtrt) when mutators
are stucked due to lack of free space.
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Benchmarks | percent | percent | percent | fraction
trace not not of
ison | traced | dirty logging

compress 2.9 86.4 4.5 1/894

jess 5.9 3.3 3.8 1/13210

db 1.92 0.56 4.24 | 1/219354

javac 17.1 11.0 33.3 1/160

mpegaudio 0.04 86.0 4.6 1/64099

jack 4.2 10.6 14 1/16572

mtrt2 13.2 3.4 5.4 1/4116

jbb-1 2 7 8.6 1/8336

jbb-2 6.1 17.8 8.8 1/1033

jbb-3 23.3 17 8.5 1/299

Table 3.2: SVMS Write barrier: Fraction of write-barrier executions that take the long path

(on average)

3.6.3 Collector characteristics

Write-barrier measurements. The write barrier (Figure 3.2) minimizes the number of
object logging by using 3 filters. Table 3.2 shows the effect of each of these filters. Only
write barrier executions that pass these 3 filters would actually log non-null pointers of the
modified object. The measurements were taken while the collector ran on a separate spare
processor. The SPECjvm98 benchmarks were run with a 64MB heap size and SPECjbb2000

(with 1,2,3 warehouses) was run with a 256MB heap size.

Recall that logging should be done only from the time local roots are marked till the
tracing is done. The second column shows the percentage of write-barrier executions that
occur during this time. These executions would pass the first filter (TraceOn flag was on).
One can see that usually, as the number of mutators increases, the percentage of write-barrier
executions that occur during this time increases, since memory is consumed faster making

the collector run on a larger fraction of the overall time.

As objects that were already traced during the collection should not be logged, the third
column shows the percentage of write-barrier executions in which the object (to be modified)
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Benchmarks | Heap | update | mark | snoop | overall
size | buffers | stack | buffers | overhead
jess 64 026 | 0.05 ] 0.12 0.43
db 64 0.28 | 0.15 | 0.07 0.5
javac 64 0.73 | 022 | 0.11 1.06
jack 64 0.13 | 0.55 | 0.07 0.75
mtrt 64 0.15 | 0.55 | 0.14 0.84
jbb-1 256 0.07 | 0.02 | 0.02 0.11
jbb-2 256 | 0.17 | 002 | 005 | 024
jbb-3 256 0.34 0.02 0.12 0.48
jbb-4-8 256 0.36 | 0.02 | 0.13 0.51

Table 3.3: SVMS: Space overhead as a percentage of heap size

was not yet traced, thus, this percentage of write barrier executions pass the second filter
(given that it passed the first filter). Normally, a large fraction of pointer updated are
initializations of newly allocated objects. As can be seen, for most benchmarks a vast
majority of the objects (on which the write barrier is executed) were already traced. This

can be explained by the fact that new objects are created black.

Since any object is logged at most once per collection, the fourth column shows the
percentage of write-barrier executions in which the object was actually logged, given that
it was not traced yet and the collector is currently tracing. This is the fraction of objects
that pass the third filter (out of these which passed the first and second filter). The low
percentage indicates that objects are usually modified many times. The write barrier makes

sure that only one of these modifications take the long path of the write barrier.

The fifth column shows the fraction of write barriers that run the long path out of the
number of all write barriers executed during the run. The measurements show that each one

of the 3 filters is essential for making the long path write-barriers executions rare.

Write-barrier buffers’ size. The space overhead consumed by the thread local buffers
depends on the behavior of the application. In this section we provide some measurements
providing some insight on this overhead for the benchmarks we ran. In table 3.3 we present
the space consumed by these size-varying structures for each of the benchmarks. The num-

bers reported are the maximum sizes required throughout the execution. The second column
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Benchmarks | percent | percent percent | percent
get prepare
roots trace sweep next
jess 0.97 39.7 97.39 1.91
db 0.53 40.48 56.73 1.94
javac 0.77 57.71 39.13 2.36
mpegaudio 2.19 84.38 12.76 0.66
jack 0.9 34.85 63.02 1.22
mtrt2 0.7 04.28 43.89 1.1
jbb-1 0.29 25.03 74.13 0.55
jbb-2 0.26 28.45 70.21 1.08
jbb-3 0.37 49.55 47.62 2.45

Table 3.4: SVMS: Percent time spent on each collection phase

presents the maximum overhead of the write-barrier buffers, the third column presents the
maximum overhead of the markStack used for the traversal of the heap and the forth
columns presents the maximum overhead of the snoop buffer. The last column summaries

the total buffers’ overhead.

The size of the buffers depends on application behavior. Specifically, the write-barrier
buffers’ size depends on the time consumed by the tracing phase (since the write barrier is
active only during the tracing phase), and on the number of processors used to run mutators
during the tracing phase (if more processors are used to run mutators, then more objects
are logged). For multithreaded benchmarks we report the overall space used for all buffers
by all mutators. The measurements show that the space overhead is negligible compared to
the heap size. Note that with SPECjbb2000, when the number of warehouses (mutators)
go up, the volume of activity goes up and so does the space overhead of the buffers. Since
we use a 4-way machine, only 3 mutators may run concurrently with the tracing operation,

thus, above 3 warehouses, this overhead remains steady.

Profiling measurements. Our collector comprises of 4 phases: getting roots, tracing,
sweeping and preparing for the next collection. Table 3.4 shows the percentage of time that
the collector spends at each one of these phases. As can be seen, at least 97% of the collector
work is spent on tracing and sweeping, while the other 2 phases are minor. The distribution
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between the tracing and the sweeping phases differs among the different benchmarks. It
depends on the size of the live objects’ graph and the amount of objects’ freeing.

The measurements were taken while the collector ran on a separate spare processor. The
SPECjvm98 benchmarks were run with a 64MB heap size and the SPECjbb2000 benchmark

(with 1,2,3 warehouses) was run with a 256MB heap size.

3.6.4 Client performance

Although our collector is targeted at servers running on SMP platforms, as a sanity check,
we also measured its performance against Jikes concurrent collector and Jikes STW collector
on a uniprocessor. The behavior of the collector on a uniprocessor may demonstrate its
efficiency. We measured our collector on a uniprocessor with the SPECjvm98 benchmark
suite and the results appear in Figures 3.15 and 3.16. It turns out that our algorithm is
better than Jikes concurrent collector in almost all tests, and that its throughput does not
fall below 80% of Jikes STW collector’s on most of the tests. These measurements do not
serve much more than a sanity check since the compared collectors are also not targeted at

running on a client machine.
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3.7 Conclusions

We presented a novel on-the-fly mark-and-sweep garbage collector with low latency and
high throughput. We have implemented our collector on Jikes Research JVM running on
a 4-way IBM Netfinity server and compared the behavior of our collector with Jikes stop-
the-world collector and Jikes concurrent collector (both supplied with Jikes JVM package).
Comparisons to Jikes stop-the-world collector show that the pauses have been reduced by a
factor of at least 200. The longest pause measured between all runs of our collector was 2ms.
When comparing the throughput with the stop-the-world collector, we see an anticipated
reduction of throughput of around 10%. Comparing to Jikes concurrent collector, we see
that the pauses became shorter and the throughput has improved in almost all cases.
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Chapter 4

Age-Oriented Concurrent Garbage

Collection

4.1 Introduction

Dynamic memory management and garbage collection is arguably a key factor in support-
ing fast and reliable large software products. However, naive garbage collection algorithms
may have undesirable effects on program behavior, most notably long pauses and reduced
throughput. Generational garbage collection [64, 97] ameliorates both problems by reduc-
ing the average pause times and increasing efficiency. The basic assumption underlying
generational collectors design is the weak generational hypothesis: “most objects have short
lifetimes”. Given this hypothesis, it was suggested to concentrate the effort on young objects
which are most likely to be unreachable. Generational collectors segregate objects according
to their age into two or more groups called generations, and run frequent collections of the
young generation. Keeping the young generation small yields frequent short collections that
make room for further allocations. The older generation (or the entire heap) is collected
infrequently when space is exhausted. Full heap collections require long pauses, but are

infrequent.

If the generational hypothesis is indeed correct, we get several advantages. First, reducing
pauses is achieved for most collections because the collections are short. Second, collections
are more efficient since they concentrate on the young part of the heap where a high per-

centage of garbage is found. Finally, the working set size is smaller both for the program (as
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it repeatedly reuses the young area) and for the collector (as most of the collections trace

over a smaller portion of the heap).

In this work, we propose a new way, called age-oriented collection, to better exploit the
generational hypothesis with concurrent and on-the-fly garbage collectors, especially when a
reference-counting collector is employed!. Concurrent collectors already achieve short pause
times and therefore the main interest in using the generational hypothesis is to try and

improve the application throughput. An age-oriented collector is defined as follows.

Definition 1: An age-oriented collector is a collector that

1. always collects the entire heap (unlike generational collectors),

2. during a collection it treats each generation differently (like generational collectors).

Age-oriented collectors differ from generational collectors because the entire heap is al-
ways collected (infrequently). Like the generational framework, an age-oriented collector
may be instantiated in various ways, depending on the choice of collector for the young
generation and the choice of collector for the old generation. Assuming that the genera-
tional hypothesis holds, reasonable instantiations should handle the young generation with
a collector that is efficient with a high death rate, and handle the old generation with a
collector that is efficient with lower death rates. In particular, our flagship instantiation of
the generic age-oriented collector employs reference counting for the old generation and mark
and sweep for the young generation. The complexity of reference counting is proportional
to the number of pointer updates and the amount of unreachable space. Therefore, it can
handle huge live spaces efficiently. Mark-and-sweep benefits from a high death rate since
its complexity bottleneck is the scanning of the live objects. Avoiding the sweep by using
copying collectors may be even better for the young generation, but concurrent versions of
copying collectors are not easy to obtain. Hence our collector is a non-moving one, in which
generation membership is logical (not physical), i.e., we keep a bit per object, indicating
whether the object is young or old.

One other instantiation that we have tried (and is now included in JMTk) is a parallel
age-oriented collector denoted copyMS, employing mark and sweep for the old generation,
and copying for the young generation. In this work, we focus on the use of concurrent

reference-counting age-oriented collectors, which was most successful in practice.

We build on three previous on-the-fly collectors.

1This work was presented in [81].
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1. The on-the-fly reference-counting collector of Levanoni and Petrank [62, 63].
2. The on-the-fly mark-and-sweep collector of Azatchi et al. [4].

3. The generational on-the-fly collector of Azatchi and Petrank [5] that uses collector (2)
for the young generation and collector (1) for full heap collections.

The third (generational) collector incorporated the first two collectors in a generational
manner, and it outperformed the original collectors. In this work, we also employ the first

and second collectors, but we combine them in an age-oriented manner.

The measurements (in Section 4.6) show that the age-oriented collector significantly
outperforms not only the original Levanoni-Petrank collector, but also the more efficient
generational collector [5]. This indicates that an age-oriented collector is the most efficient

way known today to employ reference counting.

Chapter organization. In Section 4.2, we introduce the age-oriented framework and our
proposed instantiation. An overview of the age-oriented collector algorithm is introduced in
Section 4.3. The pseudo-code of the age-oriented collector appears in Section 4.4. Imple-
mentation and results are given in Sections 4.5 and 4.6. We conclude in Section 4.7.

4.2 Age-Oriented Collection: Motivation and Overview

Generational collectors reduce pauses and improve efficiency by frequently invoking young
generation collections. Frequent initiation of young generation collections also lmposes some
overhead, as it repeatedly involves synchronization with the program threads, marking of
all the objects referenced by roots, etc. Using a large young generation implies less frequent
collections and better throughput, but also longer pauses (for young generation collections).
In particular, as noted Blackburn et al. [13] the generational collector presented by Ap-
pel [2], where all the free space is devoted to the young generation, is the best performing
generational configuration. Hence, the size of the young generation determines the trade-off
between the collector’s efficiency and the length of its pause time.

Previous concurrent generational collectors [35, 5] have used a fixed sized young genera-
tion. Using a small fixed sized young generation is useful for the stop-the-world framework as
it shortens most pause times. However, the size of the young generation does not determine

the pause times with concurrent collectors?. Concurrent collectors run concurrently with

2We normally measure pauses induced by concurrent collectors when the number of program threads is
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the program threads and induce very short pauses. Thus, the motivation for mcorporating
generations is focused at improving the throughput. Hence, we would like to use the largest

possible young generation in order to achieve best throughput.

An observation regarding reference counting follows. There is a difference between using
tracing and using reference counting to collect the old generation. Tracing collection work
is proportional to the number of reachable objects, hence there is a (relatively) fixed cost
for each full collection. Delaying a tracing collection of an old generation as far as possible
is desirable as it decreases the accumulated garbage collection work. However, reference-
counting work is proportional to the mutators’ work and to the number of dead objects.
This work is accumulative. Thus, delaying a reference-counting collection does not decrease

the overall garbage collection work (it only delays and accumulates it).

Putting the above together, we get that a good way to use reference counting with the
old generation is via an age-oriented collector. First, when running a collection on-the-
fly we look for improving efficiency, and thus for the largest young generation. Second,
whereas a generational collector collects the young generation repeatedly in order to defer
as much as possible the collection of the old generation, an age-oriented collector does not
make such a deferring attempt. Therefore, the largest young generation is obtained. When
reference counting is used, not delaying the collection of the old generation does not hurt

the throughput.

To summarize this motivational discussion with an overview, we instantiate the age-
oriented generic collector by choosing reference counting for the old generation and mark
and sweep for the young generation. We build on the previous generational collector of [5].
The underlying techniques come from [62, 63].

4.3 The Age-oriented collector

This section presents our instantiation of the age-oriented collector. The pseudo-code is
provided in Section 4.4. Our age-oriented collector extends the reference-counting collector
of [62, 63] (reviewed on Chapter 2.6) by using it for the old generation and adding the

sliding-views tracing collection (presented in Chapter 3) for the young generation.

The original reference-counting collector of [63] iterates over all the young objects recorded

smaller than the number of CPU’s. If the number of threads exceeds the number of processors, then large
pauses are induced by threads losing the CPU to one another. The lengths of such pauses depend on the

operating system scheduler and are not attributable to the garbage collector.
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Figure 4.1: An example: heap and buffers view in 2 subsequent collections.

in the YoungObjects buffer, incrementing the reference counts of their descendants, only to
find out later that most of them are dead (assuming the weak generational hypothesis). Thus,
it then decrements the reference counts of all their descendants (before deleting them). The
source of this inefficiency is that the collector does not know in advance which of the young
objects are dead, and which are reachable. The age-oriented collector avoids this problem by
detecting the roots of the young generation and tracing only the small number of reachable
young objects, updating the reference counts of reachable young objects and their descen-

dants during the trace. The surviving young objects are promoted to the old generation.

The main phases of the age-oriented collector (ignoring on-the-fly issues, such as the fact
that the objects graph is modified during the collector’s work) are presented in Figure 4.2,
while these of the original reference-counting collector are presented in Figure 4.3. The
difference between the two collectors is reflected from theses figures. As with generational
collectors, one needs to identify all young objects directly referenced by the program roots and
by old objects. We denote these objects youngGenerationRoots. The age-oriented collector

obtains these roots from the information collected by the original collector:

1. Young objects referenced by the program roots and young snooped objects are obtained
when iterating through the roots and through the snooped buffer at the beginning of

each collection.

2. An old object that references a young object must have been modified after the previous
collection, as the young object did not exist earlier. All modified objects are logged
in the Updates buffer. Hence, young objects directly referenced by old objects are
detected while adjusting reference counts that are due to the Updates buffers: each

young object whose rc is incremented is added to the youngGenerationRoots.

After locating the roots, the tracing of the young generation uses the current sliding views
as explained in Chapter 3: the descendants of a traced object are determined according to

the current sliding view. If the object is not dirty, then we may read the heap to find its
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Roots := programRoots U SnoopedObjects
youngGenerationRoots := Y oungObjects N Roots
for each object logged in Updates do

- decrement rc of its previous sliding-view descendants

A A

- Increment ¢ of its current sliding-view descendants, while adding
young objects whose r¢ is incremented into youngGenerationRoots

trace young objects reachable from youngGenerationRoots, while
incrementing the rc of each object traced

reclaim young objects with zero r¢ which do not belong to Roots

© ® N o

reclaim old objects with zero ¢ which do not belong to Roots recursively

Figure 4.2: Age-Oriented: Collection Cycle

Roots := programRoots U SnoopedObjects
for each object logged in Updates do
- decrement rc of its previous sliding-view descendants
- increment rc of its current sliding-view descendants
for each object logged in Y oungObjects do

increment rc of its current sliding-view descendants

A SR A I A o

reclaim objects with zero r¢ which do not belong to Roots recursively

Figure 4.3: Sliding views: Collection Cycle

old descendants. However, if it was modified since the beginning of the current collection
(and is dirty) we use its recorded slots in the update buffers, representing its state in the
current sliding view. For each traced object, the rc of its descendants is incremented, and
each descendant that is young and not yet traced, is traced recursively. When the trace
terminates, each object marked as Roots or having a non-zero rc is considered live, and we
can safely reclaim each (young or old) object which does not fulfill either of these conditions.
Dead young objects are freed via sweep on the YoungObjects buffer and dead old objects

are freed as usual by recursive freeing of the reference-counting algorithm.

Example. We use Figure 4.1 to present the principles of the age-oriented collector. The
previous sliding view is depicted on the left side, and the current sliding view is depicted on

the right. The roots are depicted above the heap and the old generation (containing A and B)
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is visibly separated on the left side of the heap from the young generation, which is depicted
on the right side of the heap. When the age-oriented collector scans the objects logged
in the Updates buffer (line 3 in the pseudo-code of Figure 4.2), it finds A. It decrements
the reference count of B, its descendant in the previous sliding view (line 4 in the pseudo-
code), and increments the reference count of C, its current sliding-view values (line 5).
The incremented values that belong to the young generation (C) are considered roots for
the young generation tracing (line 5). An additional young generation root is D which is
directly referenced by the program roots (line 2). Hence, the age-oriented collector traces
the young generation from C and D (line 6). In comparison, the original reference-counting
collector would have iterated over the six young objects incrementing the reference counts
of their current sliding view, only to find out later that the work spent on F', G, and H was

wasted.

4.3.1 Properties

The age-oriented collector employs the original algorithm’s write barrier with no modifica-
tions, as it fits naturally to the new age-oriented collector. No extra treatment of inter-
generational pointers is required during the program run. The roots for the collection (of
the young generation) are young objects that are referenced by old objects (as reflected by

the Updates buffer) and young objects which are marked Roots.

As with any reference-counting collector, this age-oriented algorithm cannot reclaim cyclic
data structures in the old generation (cyclic structures in the young generation are collected
immediately). To reclaim such structures, the tracing sliding-view algorithm of [4] is run
infrequently on the full heap. Its use is rare since cyclic structures in the young generation
are collected immediately. An alternative approach is presented by Paz et al. (80].

Since the collectors we build on [62, 63, 4] do not move objects, the partitioning to young
and old generations is logical (as in [28, 35, 5]). A bit per object indicates whether the object
is young or old. Our promotion policy is naive: any young object that survives a collection

is considered old in the next collection.

The new collector retains the characteristics of the original collector. In particular, it
is adequate for a multithreaded environment and a multiprocessor platform, and it retains
the short pauses of the original collectors. The measurements (in Section 4.6) show that
the age-oriented collector outperforms the original Levanoni-Petrank collector. Comparison
against a similar generational collector [5] demonstrates superiority in this case too. This

provides a good indication that the age-oriented framework is effective.
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4.3.2 A race condition

The use of the above strategy in the Levanoni-Petrank on-the-fly collector is susceptible to
a race condition. To form the sliding views without stopping the mutators simultaneously,
the collector reads the mutators’ buffers ( YoungObjects buffers and Updates buffers) while
the mutators run. Thus, while the buffers are being read by the collector from one thread,
objects are being created and modified by other (program) threads. The problem happens
during the first handshake, when a new object is created by a mutator during the time the
collector is collecting the local buffers from the mutators one by one.

Here is the problematic scenario. Suppose a collection is started and the collector reads
the YoungObjects (and Updates) buffers of mutator T;. After that, any new object created by
T} is considered young for the next collection, and not for the current one. There is no danger
in erroneously reclaiming this object; however, a specific race may cause its descendants to be
erroneously reclaimed in the nezt collection. Suppose that T3, after delivering its buffers to
the collector in the first handshake, creates a new object O; and logs it in its YoungObjects
buffer. This log will be read only in the next garbage collection. Suppose also that another
thread T3, whose buffers were not yet read by the collector, modifies an old object O, to
reference O;. The record of this modification is logged into Ty’s Updates buffer and is read
(processed) in the current collection (this record will not appear in the next collection). Note
the source of confusion: because Ty’s buffers are read after T}’s buffers are read, O; is new
in the next collection but the creation of a pointer to it from an old object is processed by
the collector in the current collection. During the current collection, the reference count
of O; will be incremented and it will not be collected until this reference count is properly
decremented. However, we expect newly created objects that are referenced from the old
generation to be traced. Tracing is normally triggered by the appearance of a created object
which is referenced by an object logged in the Updates buffer, signifying an inter-generational
pointer. But with the race described, the record that was created in the Updates buffer is
already processed in the current collection and will not appear again in the Updates buffer
when the next collection starts and the object O; will be processed as a new object. Due
to this race the descendants of object O; will not be traced in the next collection, which
may lead to a premature reclamation of objects. Consider, for example, a scenario where
an object Oj is created after the current collection is over (and before the next collection
begins), and then O, is modified to reference Os. Since O is dirty (new objects are created
dirty), it will not be logged onto the Updates buffer. The current collection does not deal
with O3 as it does not exist during the collection. In addition, the next collection will not

reach O3 during the young generation tracing (assuming it is solely referenced by 0,), since
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due to the described race condition O, will not be traced in the next collection. Hence O3
would be improperly reclaimed in the next collection.

To ensure that all necessary tracing is executed properly (so that no live object is col-
lected), we add a specific treatment for objects with the above properties. These objects
are identified by being young objects with a non-zero reference count in the beginning of a
collection (due to a race in the previous collection). Note that this can only happen because
of this race. Normally, a young object has a zero reference count as its reference count was
not updated in previous collections. Thus, during the traversal of the YoungObjects buffer,
which clears the dirty bits of the young objects (during the Clear-Dirty-Marks procedure pre-
sented in Section 4.4.5), we check if a young object has a non-zero reference count and if S0,
it will be traced later during the collection. From correctness perspective this check may be
run at any time after the race is no longer possible (i.e., after the second handshake of the

previous cycle) and before updating rc’s of young objects in the current collection cycle.
Y J

4.4 The Garbage Collector Details

In this section, pseudo-code and explanations regarding the new age-oriented collector are
provided. In order to stress the additions to the original reference-counting collector, we
add an asterisk to any line in the age-oriented algorithm code that differs from the original
Levanoni-Petrank collector {62, 63].

4.4.1 The LogPointer

The original reference-counting algorithm, as well as the new age-oriented collector, requires
maintaining a dirty bit signifying whether an object has been modified since the most recent
collection started. During the first modification of an object in a cycle, its pointers are
recorded in the updates buffer and its dirty bit is set. As detailed in Chapter 3.3.1, we chose
to dedicate a full word to keep the dirty bit. This word serves as a pointer into the thread’s
local buffer where this object’s pointers have been logged. We call this word the LogPointer.
A zero value (a null pointer) signifies that the object is not dirty (and not logged). A
non-zero LogPointer’s value signifies that the object is dirty; in this case, the LogPointer’s
value references to the log entry of this object (containing the ob ject’s sliding-view pointers’
values). That way, when the collector needs to know the sliding-view slot values of a dirty

object, it does not have to perform a sequential search of this object in the updates buffer:
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Procedure Update(obj: Object, offset: int, new: Object)
begin
if obj.LogPointer = NULL then  // OBJECT NOT DIRTY
TempPos := CurrPosU;
// TAKE A TEMPORARY REPLICA OF THE OBJECT
foreach field ptr of 0bj which is not NULL
Updates; [TempPos++] := ptr
if obj.LogPointer = NULL then  // IS IT STILL NOT DIRTY?
// ADD POINTER TO OBJECT AND AN IDENTIFYING BIT

Updates; [TempPos++] := address of 0bj | 0x1

e R R A

CurrPosU; := TempPos  // COMMITTING THE REPLICA

10. obj.LogPointer := address of Updates;[CurrPosU;] /] SET DIRTY
11.  write( obj, offset ,new)

12. if Snoop; and new !'= NULL then

13. Snooped; := Snooped; U { new }

end

Figure 4.4: Mutator code: Update Operation

it simply follows the LogPointer reference (see for example Figure 4.12, which is described
later).

4.4.2 Main data structures
The following pseudo-code employs the following buffers:

* The threads’ local Updates; buffers holding all the (non-young) objects which have been
modified for the first time (since the previous collection) by a thread. The modified
objects are logged together with their previous sliding-view pointers’ values (i.e., the
values before the object’s first modification). During a collection, all the local Updates;
buffers are accumulated into the collector’s Updates buffer.

® The threads’ local YoungObjects; buffers holding all the objects which have been cre-
ated been by a thread since the previous collection. During a collection, all the local

YoungObjects; buffers are accumulated into the collector’s YoungObjects buffer.
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Procedure New(size: Integer, obj: Object)
begin

1.

Obtain an object 0bj of size size from the allocator.
YoungObjects; [CurrPosY;++] := address of obj
obj. LogPointer = address of Y oungObjects; [Curr PosY;]

return obj

Figure 4.5: Mutator code: Allocation Operation

The threads’ local Snooped; buffers holding all the objects snooped by a thread.
The threads’ local State; buffers holding the objects referenced by a thread’s roots.
The collector’s Roots buffer holding the objects referenced by a collection’s roots.

The collector’s ClearConflictSet buffer holding objects whose LogPointer may have

cleared by mistake (due to race conditions). We’ll elaborate on this buffer later.
The collector’s markStack buffer used for the tracing of the young generation.

The collector’s ZCT (zero-count table) buffer holding the objects whose reference count
field reached zero during the collection. After all reference-count adjustments are
made, the collector traverses this buffer, reclaiming all objects which still have a zero

reference-count field (and are not referenced by the program roots).

In addition, each object posses the following fields:

The LogPointer field, described in Section 4.4.1.
The rc field, holding the object’s reference count.

The boolean live field, which indicates whether an object is currently considered by
the collector as live.

Other than that, some other variables are used in the following pseudo-code:

The thread’s local boolean Snoop; flag, indicating whether the write barrier should log
objects, to which a new reference is added, into the Snooped; buffer.

65



Procedure Collection-Cycle

begin

1. Initiate-Collection-Cycle ~ // 15T HANDSHAKE

2 Clear-Dirty-Marks

3.  Reinforce-Clearing-Conflict-Set // 2NP anD 3RD yANDSHAKE
4.  Mark-Roots // 4TH HANDSHAKE

5 Update-Old-Reference-Counters

*6. Trace-Young

*7.  Reclaim-Young-Garbage

8.  Reclaim-Old-Garbage

9. Prepare-Next-Collection

Figure 4.6: Age-oriented collector code- Collection Cycle

e Each Updates; buffer maintains a CurrPosU; counter and each YoungObjects; buffer
maintains a CurrPosY; counter. These counters indicate the number of addresses

already logged into the buffer.

o A temporary variable, TempPos, used by the write barrier.

4.4.3 Mutator cooperation

The mutators need to execute garbage-collection related code on three occasions: when up-
dating an object, when allocating a new object and during handshakes. This is accomplished
by the Update (Figure 4.4) procedure, the New (Figure 4.5) procedure and the handshake
mechanism, respectively. The Update and New operations never interleave with a handshake.
Namely, cooperation with a handshake waits until a currently executed Update or New oper-
ation finishes. The Update and New operations are exactly equal to those used in the original
sliding-views reference-counting algorithm [63].

Procedure Update (Figure 4.4) is activated at pointer assignment and its main task
is to record the object whose pointer is modified (i.e., log objects’ values at the sliding
views). We stress that the write barrier (the Update protocol) is only used with heap pointer
modification. Modifications of local pointers in the registers or stack are not monitored.

Going through the pseudo-code, we see that each object’s LogPointer is optimistically probed
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Procedure Initiate-Collection-Cycle

begin

1.  for each thread T} do

2 Snoop; := true

3 for each thread T; do // FIRST HANDSHAKE

4 suspend thread T;

5. Updates := Updates U Updates;  // COPY (WITHOUT DUPLICATES).
6 Updates; := @ // CLEAR BUFFER. .
7 YoungObjects := YoungObjects UY oungObjects;
8 YoungObjects; = @ // CLEAR BUFFER.

9 resume thread T;

end

Figure 4.7: Age-oriented collector code- Initiate-Collection-Cycle

twice (lines 1 and 6) so that if the object is dirty (which is often the case), the write barrier
is extremely fast. If the object was not logged (i.e., the LogPointer of an object is NULL)
then after the first probe, the objects’ values are recorded into the local U pdates; (lines 3-5).
The second probe at line 6 ensures that the object has not yet been logged (by another
thread). If LogPointer is still NULL (in the second probe), then the recorded values are
committed as the buffer pointer is modified (line 9). In order to be able to distinguish later
between objects and logged values, in line 8 we actually log the object’s address with the
least significant bit set on (while values are logged with least significant bit turned off).
Then, the object’s LogPointer field is set to point to these values (line 10). After logging
has occurred, the actual pointer modification happens. Finally, from the time a collection
begins until marking the roots of the mutators, the snoop flag is on. At that time, the new
target of the pointer assignment is recorded in the local Snooped; buffer (lines 12-13). The
variables Updates;, Curr PosU,, Snoop; and Snooped; are local to the thread.

The Update protocol described above may cause a noticeable pause when applied to ob-
jects containing a large number of pointers. To bound the length of such pauses, a large
object could be divided into fixed-size cards, so that each card would posses its own Log-
Pointer. Upon write-barrier activation over such a large object, only the pointers related to
the relevant card should be copied into the relevant Updates; buffer. That way the write-

barrier length could be controlled. However, we have not implemented such solution.
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Procedure Clear-Dirty-Marks

begin

1. for each object obj € Updates do

2. obj.LogPointer := NULL

3.  for each object obj € YoungObjects do

4. obj.LogPointer := NULL
*5. if obj.rc > 0 then

*6. obj live := true

*7. push obj onto markStack
end

Figure 4.8: Age-oriented collector code- Clear-Dirty-Marks

We do not further elaborate on the properties of the write barrier, on why it works in
a multithreaded environment, etc. We focus on the modifications required to obtain an

age-oriented collector. A thorough discussion of the write barrier appears in [63].

Procedure New (Figure 4.5) is used when allocating an object. After Thread T} creates
an object, the object’s address is logged into Y oungObjects;, a (mutator) local buffer. This
buffer contains the addresses of the objects which would be considered as young objects in
the next collection cycle. This logging will tell us which objects are young. For the reference
counting this means that reference counts of descendants of these objects (if they survive
the next collection) must be updated. There is no need to record their children slot values
as they are all null at creation time. The LogPointer of a newly allocated object is modified
to record its log address (so that future assignments to this object won't activate the write

barrier and log it again in the updates buffer).

Our handshake mechanism is the same as the one employed by the Doligez-Leroy-
Gonthier collector [34, 33]. The mutator threads are never stopped simultaneously for coop-
erating with the collector. Instead, threads are suspended one at a time for the handshake.
The stopping of the thread is not allowed while it is executing the write barrier or while it
is creating a new object. While a thread is suspended, the collector executes the relevant
actions for the handshake and then the thread is resumed. The collector repeats this process
until all threads have cooperated. At that time, the handshake is completed.
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Procedure Reinforce-Clearing-Conflict-Set

begin

1 ClearConflictSet := @

2 for each thread T; do // SECOND HANDSHAKE

3 suspend thread T;

4 ClearConflictSet := ClearConflictSet U Updates;[1 . . . CurrPosU;)
5. resume thread T

6 for each object obj € ClearConflictSet do

7 if obj.LogPointer = NULL then // NEED TO REINFORCE

8 obj.LogPointer := address of 0bj’s replica in Updates;

9 for each thread T; do // THIRD HANDSHAKE- EMPTY HANDSHAKE
10. suspend thread T;

11. resume thread T;

end

Figure 4.9: Age-oriented collector code- Reinforce-Clearing-Conflict-Set

4.4.4 Phases of the collection

The collector algorithm runs in phases as follows.

e Start snooping: raising the Snoop; local flag of each mutator, which activates the
snooping mechanism.

e First handshake: during this handshake each mutator is stopped and its log buffers
(YoungObjects; and Updates;), are accumulated by the collector.

¢ Clear dirty marks: The collector clears the dirty marks of all objects previously
recorded in the buffers.

e Second handshake: during this handshake each mutator is stopped in order to re-
inforce logs (to its current Updates; buffers) which were cleared during the clear dirty

marks phase.

¢ Third handshake: no operation (empty) handshake to make sure that the proper
dirty marks are visible by all mutators.
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Procedure Mark-Roots

begin

1
2
3
4
5.
6
7
8
9

*10.
*11.
*12.
*13.

end

for each thread T; do // FOURTH HANDSHAKE
suspend thread T;
Snoop; := false
Roots :== Roots U State; // COPY THREAD LOCAL STATE.
resume thread T
for each thread T; do
// COPY AND CLEAR SNOOPED OBJECTS SET
Roots := Roots U Snooped;
Snooped; == @
for each object obj € Roots do
if obj.live = false then
obj.live := true

push obj onto markStack

Figure 4.10: Age-oriented collector code- Mark-Roots

Fourth handshake: during this handshake each mutator is stopped and the ob jects
reachable from the local roots of each mutator are marked. Also, the Snoop; flag is

cleared.

Update reference counts of old objects: the collector adjusts the rc fields of old
objects’ descendants.

Trace young objects: the collector traces the live young objects (while incrementing
their rc).

Reclaim young garbage: the collector reclaims dead young objects. Reclamation
in this phase is more efficient than a reference-counting reclamation, as no recursive

deletion is required.

Reclaim old garbage: the collector reclaims old objects (and their descendants using
recursive deletion) which have a zero 7¢ and which are not referenced by the system

roots.
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Procedure Update-Old-Reference-Counters
begin
for each object obj whose replica rep in Updates do
// DECREMENT PREVIOUS REFERENT OF THE OBJECT obj
for each slot s in the replica of rep do

previous-value = read(s)

1.

2.

3

4

5. previous-value.rc——
6 if previous-value.rc = 0 then

7 add previous-value to ZCT

8 // INCREMENT REFERENCE COUNT OF SLIDING-VIEW DESCENDANTS
9 Increment-Descendants-RC(0bj)

end

Figure 4.11: Age-oriented collector code- Update-Old-Reference-Counters

e Prepare next collection: prepares the buffers for the next collection.

4.4.5 Collector code

Collector’s code for cycle k is presented in Procedure Collection-Cycle (Figure 4.6). Let

us briefly describe each of the collector’s procedures.

Procedure Initiate-Collection-Cycle (Figure 4.7) raises first the (local to mutator)
Snoop; flag, signaling the mutators that they should start snooping all stores into heap
slots. Then the first handshake is carried out to gather the local buffers of the threads.

Procedure Clear-Dirty-Marks (Figure 4.8) clears all dirty marks set by mutators prior
to responding to the first handshake. This stage takes place while the mutators are running.
When handling the Y oungObjects buffer, each object with a non-zero ¢ is also pushed onto
markStack. Objects pushed onto markStack would be traced later. A young object can
have a non-zero rc due to a race condition (as explained in 4.3.2). Other young objects
(which have a zero rc) are optimistically considered dead (and thus are not marked). Lines
5-7 (marked with asterisk) are relevant only to the age-oriented collector, as the original
algorithm treats young objects similarly to old objects.

Procedure Reinforce-Clearing-Conflict-Set (Figure 4.9) implements the reinforcement

71



Procedure Increment-Descendants-RC(obj: Object)

begin

1 if obj.LogPointer = NULL then  // IF OBJECT HAS BEEN MODIFIED
2 // NO - READ ITS DESCENDANTS FROM HEAP.
3 replica := copy(oby)

4 // CHECK AGAIN IF COPIED REPLICA IS VALID.

5. if obj.LogPointer != NULL then

6 // OBIJECT HAS BEEN MODIFIED WHILE BEING READ.

7 // GET REPLICA FROM BUFFERS.

8 replica := getOldObject(obj. LogPointer)

9 else // OBJECT WAS MODIFIED. USE BUFFERS TO OBTAIN REPLICA.
10. replica := getOldObject(obj. LogPointer)

11. for each slot s in replica of obj do  // INCREMENT DESCENDANTS’ RC
12. curr := read(s)

13. curT.re++

*14.  // IF DESCENDANT IS YOUNG, IT SHOULD BE TRACED.

*15.  if curr.live = false then

*16. curr.live ;= true
*17. push curr onto markStack
end

Figure 4.12: Age-oriented collector code- Increment sliding-view values

step and assures that it is visible to all mutators. A second handshake takes place, during
which thread buffers are read into ClearCon flictSet. Then, LogPointers of objects logged
into ClearCon flictSet are reinforced to point to their current position in U pdates;. Finally,
the third handshake of the cycle takes place with no action in it. The reason for that
handshake is that a thread can fall behind another thread by at most one handshake?. Thus,
threads that have responded to the fourth handshake will not be interfered by operation

carried out by threads during the clearing or reinforcement stages.

Procedure Mark-Roots (Figure 4.10) carries out the fourth and last handshake during

3In real implementation on Jikes this scenario cannot happen as explained in [5], and thus, we do not

have this empty handshake in our Jikes implementation.
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Procedure Trace-Young

begin

*1. while markStack is not empty
*2. obj := pop(markStack)

*3. Increment-Descendants-RC(obj)

end

Figure 4.13: Age-oriented collector code- Trace-Young

Procedure Reclaim-Young-Garbage

begin

*1. for each object obj € YoungObjects do

*2. if obj.live = false then

*3. return obj to the general purpose allocator.
end

Figure 4.14: Age-oriented collector code- Reclaim-Young-Garbage

which the local Snoop; flag is turned off and the objects referenced by thread local roots
are accumulated into the Roots (global) buffer (the set of objects directly reachable from
thread T; is denoted State;). Next, the Snooped; buffer of each thread (containing snooped
objects), is accumulated into Roots, and then cleared (for the next collection). Thus, during

this procedure, the true root set of this collection cycle is being marked.

Lines 10-13 present a code for marking roots of the young generation. It is relevant only
to the age-oriented collector: each young object belonging to Roots, which was considered
until now as dead (i.e., has a zero r¢, and thus was not marked live in procedure Clear-Dirty-
Marks), is marked live (as it belongs to the roots set and thus should be treated as live) and
is pushed onto the markStack (so it would be traced later). The live mark also indicates

that the object has been promoted into the old generation.

Procedure Update-Old-Reference-Counters and procedure Increment-Descendants-

RC (Figures 4.11-4.12) adjust reference counts corresponding to the modified objects. It
examines the Updates buffer’s objects which are all objects modified since the previous collec-
tion cycle. The rc of their children slot values in the previous sliding view are decremented,
whereas the rc of their current children slot values are incremented. During rc adjustments,
every object’s whose r¢ is decremented to 0, is inserted into the ZCT (zero-count table).
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Procedure Reclaim-Old-Garbage
begin
1. for each object obj € ZCT do

2. if obj.rc > 0V obj € Roots then
3. ZCT = ZCT — {obj}

4.  for each object obj € ZCT do

*5. obj live := false

6. Collect(oby)

7. ZCT:=0©

end

Figure 4.15: Age-oriented collector code- Reclaim-Old-Garbage

The procedure Increment-Descendants-RC (Figure 4.12) performs rc increments of cur-
rent sliding-view children slot values of a given object. An object may be modified by
mutators while the replica is taken. In such case, its children slots at the current sliding
view can be found by looking at the current collection cycle log entry which is pointed by
the dirty flag (the LogPointer points to the logging location of this object). In lines 14-17
(related only to the age-oriented algorithm), each object (whose rc was just incremented)
which is not marked live, is marked live and pushed onto markStack. These are young

object for which we have found evidence of being live only now.

Procedure Trace-Young (Figure 4.13) traces the live young objects. The roots of this
tracing are the young objects, located in markStack, for which we have found evidence of
being live. These objects are traced, while we also increment the r¢ of their current sliding-
view slots values (using the procedure Increment-Descendants-RC presented in Figure 4.12).

No decrement is needed as these objects were created since the last collection.

This procedure is related only to the age-oriented algorithm, as the original algorithm
processes the increments related to all the young objects.

Procedure Reclaim-Young-Garbage (Figure 4.14) releases the young objects not marked
live. Note that releasing these objects is more efficient than a reference-counting reclamation,
since there is no need to decrement the rc of theirs descendant as done in traditional reference-

counting systems (and thus no recursive deletion is needed).

Procedure Reclaim-Old-Garbage (Figure 4.15) releases unreachable old objects (and
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Procedure Collect(obj : Object)
begin
if obj.LogPointer != NULL then
// 0bj WAS MODIFIED WHILE THE SLIDING-VIEW WAS TAKEN
replica := obj.LogPointer

Recursive-Deletion(replica)

1.

2.

3

4

5. Invalidate-Log-Entry(obj.LogPointer)

6 // SO IT WILL BE IGNORED IN THE NEXT COLLECTION
7 else

8 Recursive-Deletion(oby)

9 return obj to the general purpose allocator.

end

Figure 4.16: Age-oriented collector code- Collect

their descendants if needed). At first, each ZCT object which has a positive rc field or
is marked as Roots is deleted from the ZCT. Otherwise, its live flag is turned-off and
it is collected by the Collect procedure and the Recursive-Deletion procedure (Fig-
ures 4.16-4.17), which decrement the 7c of an object’s sliding-view values before releasing
it (and performs recursive releases if necessary). After reclaiming the garbage, the ZCT is
cleared.

Both line 3 in Figure 4.14 and line 9 in Figure 4.16 return an ob ject to the general purpose

Procedure Recursive-Deletion(obj : Object)

begin

1 for each slot s of obj do

2 curr := read(s)

3. curr.rc——

4 if curr.rc = 0 A curr ¢ Roots then
5 Collect(curr)

end

Figure 4.17: Age-oriented collector code- Recursive deletion
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Procedure Prepare-Next-Collection
begin
for each object obj in Roots
if obj.rc = 0 then

add obj to ZCT

1
2
3
4.  // CLEAR BUFFERS FOR NEXT COLLECTION
5 Roots := @

6 Updates := @

7 YoungObjects := @

end

Figure 4.18: Age-oriented collector code- Prepare-Next-Collection

allocator (upon an object’s reclamation). The meaning of this action is implementation
dependant. In particular, it may include the zeroing of the space returned (as requested for
Java) and/or zeroing a certain bitmap bit signifying to the allocator that the relevant chunk

is now available for allocation.

Procedure Prepare-Next-Collection (Figure 4.18) inserts objects referenced solely by
Roots (and thus having a zero rc), into the ZCT. In the next collection, these objects would
be examined while iterating through the ZCT. Next, the procedure cleans the global Roots,
YoungObjects and Updates buffers.

4.5 Implementation for Java

The age-oriented collector was implemented in Jikes RVM (research virtual machine) [1],
a research Java virtual machine. The entire system, including the collector itself is writ-
ten in Java (extended with unsafe primitives available only to the Java Virtual Machine
implementation to access raw memory). In this section, we would like to point out some

implementation choices that we made.
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LogPointer

Status
TIB

Object’s header Object’s fields

Figure 4.19: The age-oriented object model

4.5.1 Memory Allocator

Our implementation employs the non-copying non-coalescing allocator of Jikes, which is
based on the allocator of Boehm, Demers, and Shenker [17]. This allocator is well suited
for collectors that do not move objects. Small objects are allocated from Per-processor
segregated free-lists build from 16KB pages divided into fixed-size blocks. Large objects are
allocated out of 4KB blocks with first-fit strategy. This allocator keeps the fragmentation
low and allows efficient reclamation of objects.

4.5.2 Object-Headers

The object layout of our memory manager, within the Jikes RVM version we’ve used, is
displayed in Figure 4.19. Jikes’ basic object header contains two words?. One word of the
header is a status word supporting memory management, synchronization, and hashing.
The second word of the header holds a reference to the Type Information Block ( TIB) for
the object’s class (which serves as Jikes’ virtual method table).

In order to support reference-counting collection, our implementation employs an ad-
ditional word in an object’s header, which holds the LogPointer of an object (detailed in
Section 4.4.1). In addition, we employ an additional bitmap table holding the objects’ refer-
ence counts. This bitmap uses two bits to hold the reference count of an object. In case of
overflow, i.e., when the reference count of an object reaches three, the reference count gets
stuck so it would not be incremented or decremented until the next mark-and-sweep collec-
tion. A mark-and-sweep collection resets this bitmap, and while tracing the objects’ graph

it increments the reference counts of all objects encountered during the graph traversal.

4An array object’s header includes an additional length field.
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4.5.3 Triggering

In a stop-the-world garbage collector setting, mutators halt during a garbage collection.
However, with concurrent collectors, mutators run during a collection and hence also consume
memory. Therefore, when triggering a concurrent collection, our goal is on one hand to trigger
a collection as late as possible so that we get as few collections as possible (to avoid garbage
collection overheads). On the other hand, we would like to trigger early to ensure that
the collections will complete their work before the mutators consume all available memory
(otherwise, the mutators would halt waiting for the collector thread to free memory). Our
triggering mechanism keeps an estimation of the work the next collection would have to deal
with and an estimation of the amount of free memory available. This work estimation is
based on the number of objects created since the last collection and the number of (old)
objects modified since the last collection. Whenever the ratio between the amount of work

and the estimated available memory goes below a certain threshold, a collection is triggered.

4.5.4 Root set

The root set of our collector includes the object referenced from global variables, the object
referenced from static variables, the object referenced from each thread’s run-time stack and
the snooped objects. The pseudo-code presented in Section 4.4 refers explicitly only to the
object referenced from the threads stack and to the snooped objects. In practice, we give a
special treatment to global roots (the global variables and the static variables) by using a
designated write barrier with them. The write barrier presented in Figure 4.4 is not invoked
upon global roots modification because they are scanned on each cycle regardless of whether
they have been modified or not. Therefore the designated write barrier does not mark slots
dirty when they change. However, it does invoke the snooping mechanism. Thus, each new
reference, written into to a global root while the snoop flag is set, makes the referent snooped.
Such an object cannot be collected during the current cycle. Finally, when local states are
checked during the fourth handshake, objects reachable from global roots are also marked
as Roots.

Note that in practice our implementation does not mark the roots explicitly. Instead, in a
beginning of a collection, when determining the root set (and adding the addresses of ob jects
referenced by the roots into the Roots buffer), the collector incremented the reference-count
field of each root object, so that it would not be reclaimed in the current collection. At
the end of a collection, the collector re-traversed the root set (i.e., objects referenced by the
Roots buffer) decrementing the reference-count field of each root object.
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4.6 Measurements

Platform and benchmarks. We have taken measurements on a 4-way IBM Netfinity
8500R multiprocessor with a 550MHz Intel Pentium III Xeon processors and 2GB of physical
memory. The benchmarks used were the SPECjvm98 benchmark suite and the SPECjbb2000
benchmark (described in [90]). The multithreaded SPECjbb2000 benchmark is more impor-
tant, as SPECjvm98 benchmarks are mostly single-threaded and our algorithm, being on-
the-fly, is targeted at multithreaded programs running on multiprocessors®. In this work, as
well as in other recent work (see for example [6, 35]) SPECjbb2000 is the only representative
of large multithreaded applications.

Testing procedure. We used the benchmark suite using the test harness, performing
standard automated runs of all the benchmarks in the suite. Our standard automated run
runs each benchmark five times for each of the JVM’s involved (each implementing a different
collector). Finally, to understand better the behavior of our collector under tight and relaxed
conditions, we tested it on varying heap sizes. For the SPECjvm98 suite, we started with a
24MB heap size and extended the sizes by 8MB increments until a final large size of 96MB.
For SPECjbb2000 we used larger heaps, starting from 256 MB heap size and extending by
64MB increments until a final large size of 704MB.

The compared collectors. The age-oriented collector was tested against 3 collec-
tors. First, against the original reference-counting collector (62, 63], denoted the original
collector. Second, against the generational collector of [5], denoted the generational collec-
tor. And finally, against the Jikes parallel stop-the-world mark-and-sweep collector. Recall
that the second (generational) collector of [5] is a collector that builds on exactly the same
two collectors of [62, 63, 4], but it combines them in the standard generational manner: it
performs minor concurrent collections frequently while major concurrent collections are run
infrequently (whereas the age-oriented collector always collects the entire heap at each collec-
tion). Note that we have included the original collector in our measurements, to demonstrate
that the age-oriented outperforms the generational collector, which is already a substantial

improvement over the original collector.

4.6.1 Comparison with Related On-the-Fly Collectors

We start with the SPECjbb2000 benchmark, which requires multi-phased run with increasing

number of warehouses (threads). We report two throughput ratios improvements: the first

>We also feel that there is a dire need in academic research for more multithreaded benchmarks.
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Figure 4.20: SPECjbb2000 on a multiprocessor: throughput ratio of the generational and
the age-oriented collector for 1-8 warehouses (compared to the original reference-counting

collector)
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is the ratio of the age-oriented collector and the original Levanoni-Petrank collector, while
the second is the ratio between the generational collector and the original collector. The
measurements are reported for a varying number of warehouses and varying heap sizes in
Figure 4.20. In each figure, we report the measurement for a specific number of warehouses,
where jbbi stands for running with ¢ terminals, i.e., 4 program threads. In each figure,
the higher the ratio, the better the measured collector performs compared to the original
reference-counting collector. The behavior of the collectors should be separated into two

cases.

The first case is with 1-3 warehouses. In this case, since our machine has four processors,
any of the three on-the-fly collectors runs on a spare processor. In this setting, the collectors
do not differ much. If the collectors could handle all their work while mutators are running
(except for handshakes), all 3 collectors would have achieved the same throughput (as they
share similar allocator and write barrier). This is indeed what we get with 1-2 warehouses.
A throughput improvement (of usually 5%) begins only with 3 warehouses and especially
on tight heaps, where both the generational and the age-oriented collectors outperform the
original collector. The age-oriented does a little better. The reason for this improvement is
that the original collector must deal now with work supplied by 3 mutators (i.e., more work
for the collector), and thus mutators sometimes halt waiting for the collector to terminate
its work.

The second case refers to 4-8 warehouses, where collectors do not run on a spare processor
but rather share a processor with the program threads. Note nevertheless, that we gave the
collector (in this case) the highest priority, so that when a collection is triggered the collector
would always get a dedicated processor. Thus, when the number of warehouses is four and
up, the efficiency of the collector becomes more important: a collector should not only be
able to handle all its work while mutators are running, but also as the collector becomes
more efficient, a collection would consume less time, thus letting mutators use a larger
fraction of the fourth processor (and therefore increasing the throughput). The results show
that the age-oriented collector substantially outperforms the generational collector, which
already performs better than the original collector. It can be seen that the age-oriented
collector usually obtains a performance improvement of 25%-40% over the original collector.
As with 3 warehouses, the superiority of the age-oriented collector is usually higher with
(relatively) small heaps where the collector efficiency is more significant, as more garbage
collections are required. The generational collector is noticeably less efficient on tight heap,
since full collections cannot be postponed much. The improvements of the age-oriented are

less visible with larger heaps simply because there are fewer collections, and less time spent
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on collections.

SPECjvm98 measurements. Figure 4.21 presents comparison of the age-oriented collector
with the original collector and with the generational collector over the suite’s benchmarks®.
Here again, the higher the ratio, the better the measured collector performs compared to the
original reference-counting collector. When running SPECjvm98 benchmarks on a multipro-
cessor, we allow a designated processor to run the collector thread. Here again the collector
runs concurrently with the program thread and good concurrency is the main factor in the
comparison. Results show that age-oriented collector performs slightly better (usually wins
by few percentages) than both the original collector and the generational collector. How-
ever, we would like to stress that such measurements are in favor of the original collector,
since it does not show that our collector consumes much less resources of the spare processor
than the original collector. As the age-oriented collector is much more efficient the original
collector, it collects the garbage much faster, and hence employs the dedicated processor less
than the original collector. Similar measurements on a uniprocessor look much different (as

will be discussed below).

Table 4.1 addresses this exact issue. We have measured for both original and age-oriented
collectors the time each one actually works, i.e., the amount of time in which the spare
processor is in use. Our results demonstrate that the original collector works 2.41-18.67 times
more than the age-oriented collector. Since SPECjvm98 runs use a designated processor,
these numbers influence the throughput mainly if the original collector could not perform
all its work concurrently with the mutators (causing the mutators to stop while waiting
for memory space). That is why when running SPECjbb2000 with 4 warehouses or more,
our graphs show a much substantial throughput superiority: in these cases more CPU time
for collector means less CPU time for mutators (on the CPU in which the collector is ran).
Results of SPECjvm98, where the collector does not have a dedicated processor, are provided
in subsection 4.6.5, where SPECjvm98 benchmarks are run on a uniprocessor. These results

support our claim, as it shows that our collector performs much better than the original.
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Figure 4.21: SPECjvm98 on a multiprocessor: run-time ratio of the age-oriented collector

compared to the original collector (left) and compared to the generational collector (right)

Maximum pause time(ms) | jess | db | javac | mtrt | jack

Age-oriented 18.67 | 547 | 2.41 | 8.26| 13.84

Table 4.1: Collector work ratio: work time ratio between the age-oriented collector and the

original collector.

4.6.2 Comparison to a Stop-the-World Collector

Using an on-the-fly collector leads to extremely short pause times, but has a throughput
cost. To measure this cost, we have compared the performance of the age-oriented collector
against the Jikes parallel stop-the-world mark-and-sweep collector. In this comparison, the
multithreaded SPECjbb2000 was run on a 4-way platform, and SPECjvm98 benchmarks
were run on a uniprocessor. The results, appearing in Figure 4.22, show that unless the heap
is tight (and then the mutators exhaust the heap before the concurrent collector is done) the
overhead incurred by running the collector concurrently is up to 10%. Obtaining short pauses
normally require a pay in the throughput. A 10% throughput reduction is considered a small
cost for a two orders of magnitude reduction in the pause times (see pause time measurements
in Section 4.6.3 below). The tight conditions highlight the advantage of parallel collectors in
this setting. Parallel collectors always exploit all CPUs, while our on-the-fly collector uses
only one processor while all program threads wait for free space to allocate. An exception
is seen with the _213_javac benchmark. This benchmark creates cycles that are promoted to

SMeasurements of -222_mpegaudio and 201_compress are not presented. -222_mpegaudio does not per-
form meaningful allocation activity. .201_compress heavily depends on a tracing collector as it creates
substantial garbage cycles, so its measurements are not relevant for a comparison to a reference-counting

collector.
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(right): age-oriented comparison against Jikes parallel mark-and-sweep collector

Maximum

pause time compress | jess | db | javac | mtrt | jack | jbb-1 | jbb-2 [ jbb-3

Age-oriented 1.0 1.7] 1.1 2.1 141 1.2 1.1 14 1.9
Jikes Parallel 195 [ 261 | 188 | 643 | 225| 376 | 322| 417| 511

Table 4.2: Age-oriented maximum pause time in milliseconds

the old generation and die there. Since the age-oriented collector employs reference counting
with the old generation, it does not collect these garbage cycles (until the backup tracing

collector is used), causing frequent garbage collection invocations.

4.6.3 Pause times

Table 4.2 presents the maximum pause times of the age-oriented collector and Jikes parallel
collector. Pauses were measured with a 64MB heap for SPECjvm98 benchmarks, and a
256MB heap for SPECjbb2000 with 1, 2, and 3 warehouses. For this number of threads, no
thread gets swapped out, and so pauses are due to the garbage collection only. If we run
more program threads, large pause times (whose lengths depend on the operating system

scheduler) appear because threads lose the CPU to other threads.

The maximum pause time of 2.1ms, measured for the age-oriented collector, is two orders
of magnitude shorter than that of Jikes parallel collector. The length of the age-oriented
pause time is dominated by the time it takes to scan the roots of a single thread (occurring
in one of the handshakes). This operation also dominates the pause time of the previous

on-the-fly collectors [62, 5], and thus their pause times are similar. Hence, the age-oriented
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Collector phases-

Levanoni-Petrank jess db javac | mtrt | jack jbb

Clear-Dirty-Marks and 31% | 42% | 5.1% | 65% | 41% | 4.3%
Reinforce-Clearing-Conflict-Set
Mark-Roots 09% | 0.9% | 2.9% | 1.6% | 3.8% | 1.2%
Update-Reference-Counters-Young | 42.3% | 46.0% | 40.2% | 41.6% | 37.4% | 40.5%
Update-Reference-Counters-Old 04% | 0.9% | 82% | 0.7% | 0.4% | 1.5%

Reclaim-Garbage- Young 51.9% | 47.1% | 38.4% | 48.0% | 48.7% | 49.6%
Reclaim-Garbage-Old 0.9% | 0.4% | 3.5% | 0.9% | 3.4% | 2.2%
Prepare-Next-Collection 05% | 0.5% | 1.7% | 0.7% | 2.2% | 0.7%

Table 4.3: Profiling of the Levanoni-Petrank collector.

collector achieves a significant throughput improvement over the original reference-counting

collector and over the generational collectors, while retaining the short pause times.

It is important to note that the pauses induced by the collector do not happen frequently.
If pauses of 2ms occurred once every 3ms, then pause times would loose their meaning and
we should look at mutator’s minimum utilization (MMU). However, in our case, the pauses

form a negligible part of the collection cycle, and are split far apart from each other.

4.6.4 Profiling measurements

We have profiled the different phases of both the original Levanoni-Petrank algorithm and the
age-oriented algorithm. The measurements were taken while the SPECjvm98 benchmarks
were run with a 64MB heap size and the SPECjbb2000 benchmark (with 1,2,3 warehouses)
was run with a 256MB heap size. Table 4.3 presents the profiling measurements of the

original Levanoni-Petrank algorithm. These measurements indicate that:

* a very large portion of the collector work (usually around 90%) is dedicated to the
handling of the YoungObjects buffer, which includes incrementing the 7¢ of the sliding-
view values of this buffer’s objects and the release of the objects included in this
buffer which turned out to be garbage (i.e., had a zero rc) after all reference-counting

adjustments were made.
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Collector phases-

Age-Oriented jess db javac | mtrt | jack jbb
Clear-Dirty-Marks and 53.0% | 27.7% | 11.5% | 37.9% | 57.6% | 41.3%
Reinforce-Clearing-Conflict-Set

Mark-Roots 151% | 7.0% | 7.1% | 5.7% | 9.8% | 11.4%
Trace-Young 13.8% | 51.3% | 42.9% | 47.8% | 17.6% | 22.0%
Update-Reference-Counters-Old | 6.6% | 4.3% | 19.1% | 4.2% | 5.2% | 7.5%
Reclaim-Garbage-Young 1.3% | 5.9% | 1.3% | 0.5% | 1.4% | 0.5%
Reclaim-Garbage-Old 2.3% | 04% | 13.7% | 0.6% | 1.5% | 10.3%
Prepare-Next-Collection 79% | 34% | 4.4% | 3.3% | 6.9% | 7.0%

Table 4.4: Profiling of the age-oriented collector.

e the Updates buffer handling (rc adjustments of objects logged in the Updates buffer,

and the release of such objects) usually consumes negligible resources.

The clear throughput superiority of the age-oriented collector is better understood after
seeing these profiling measurements: our age-oriented collector has focused on reducing the
overhead of the 2 major collector phases (adjusting rc of young objects’ sliding-view slots
and releasing young objects). Table 4.4 summarizes the profiling measurements of the age-
oriented algorithm. Since the two major phases (which comprise 78%-95% of the original
collector work) were dramatically improved, the other phases, which comprise 5%-22% of
the original collector work, now comprise of 42%-85% of the original collector work. That

actually shows how well the age-oriented collector does.

Note also that applying the reference-counts updates of the old generation in each collec-
tion of the age-oriented collector usually consumes a small percentage of the entire collection
(less than 8% in 5 of out the 6 benchmarks).

4.6.5 Client performance

Although the age-oriented collector is targeted at multiprocessors running on SMP platforms,
we also measured its performance against the original algorithm on a uniprocessor. These

measurements were also run on the Netfinity multiprocessor, as with Jikes one can control the
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Figure 4.23: SPECjvm98 on a uniprocessor: age-oriented run-time ratio compared to the

Levanoni-Petrank collector

number of CPUs the benchmark may use (including the collector thread). The behavior of
the collector on a uniprocessor may demonstrate its efficiency. We measured the age-oriented
collector on a uniprocessor with the SPECjvm98 benchmark suite and the results appear in
Figure 4.23. Our measurements show that the age-oriented algorithm is substantially better
than the original one in all tests as throughput ratios are shows improvement of 10% to 50%.
Note that on uniprocessor, the age-oriented collector achieves a better throughput ratio than
on multiprocessor (Figure 4.21), because runs on uniprocessor measure also the collections

time, where the age-oriented collector is substantially more efficient than the original one.

4.7 Conclusions

We have proposed a framework of garbage collectors called age-oriented collectors, which we
advocate as a state-of-the-art method of using reference counting. These collectors exploit the
generational hypothesis in a different manner than standard generational collectors. Instead
of running frequent young generation collections, the entire heap is collected infrequently,
but young objects are treated differently from old objects. An age-oriented collector allows
using the largest possible young generation, and thus obtains high efficiency. The most fitting
use of age-oriented collectors is with concurrent collectors where pauses do not matter and
particularly when the old generation is collected via reference counting, and thus deferring
its collection is not beneficial.

We have designed and implemented an instantiation of an age-oriented collector, based on
the reference-counting collector of [62, 63] for the old generation, and the tracing collector

of [4] for the young objects. This age-oriented collector was implemented on the Jikes
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RVM. Our measurements show that this collector maintains the short pauses of the original
collectors and significantly outperforms both the original reference-counting collector as well
as the generational variant. We conclude by advocating the use of an age-oriented collector

for best exploiting the advantages of reference counting today.
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Chapter 5

An Efficient On-the-Fly Cycle

Collection

5.1 Introduction

Reference counting is a classical garbage collection algorithm. Systems using reference count-
ing were implemented starting from the 1960s [26]. However, reference-counting garbage col-
lectors cannot reclaim cyclic structures of objects. Thus, reference-counting collectors must
be accompanied either by a backup mark-and-sweep collector (run infrequently to collect
unreachable cyclic structures) or by a cycle collector.

Attempts to avoid developing and maintaining an additional mark-and-sweep collector
on the reference-counting collected system led to design of a cycle collector [15, 25, 68]. This
effort culminated in the state-of-the-art on-the-fly cycle collector of Bacon and Rajan [7].

9.1.1 The challenge

Bacon and Rajan [7] propose two cycle collectors. The simpler synchronous collector is the
most efficient cycle collector known today. It runs in a stop-the-world context. Their more
involved asynchronous collector is the only on-the-fly cycle collector known today. However,
the asynchronous collector requires a lot of overhead in order to make the collection safe in

the presence of concurrent program threads.

To understand why this happens, one should note that a typical cycle collector traces cycle
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candidates repeatedly to discover which cycles are unreachable. (Typically, each candidate
structure is traced two or three times.) A crucial problem with repeated scanning arises
when concurrent program threads modify the objects graph during the scan. This means
that the collector cannot trust a scan to repeat the very same structure that a previous scan
has traversed. Furthermore, as modifications occur concurrently with the scan, each specific
one scan cannot be guaranteed to view a consistent snapshot of the objects graph at any
specific point in time. Such problems are the source of the two drawbacks of Bacon and
Rajan’s on-the-fly cycle collector: a practical drawback and a theoretical one.

The practical problem is that in order to achieve safety, the algorithm in [7] makes many
repeated scans over the candidates. This reduces the overall efficiency of the reference-
counting collector. The theoretical drawback is that completeness cannot be guaranteed!. A

rare race condition may prevent an unreachable cyclic structure from ever being reclaimed.

5.1.2 The solution

In this work, we propose an algorithm for on-the-fly cycle collection that solves these draw-
backs 2. We do this by employing the sliding-views techniques recently developed for con-
current garbage collection in [62, 63, 4] and using them with the cycle collector of [7]. The
main idea is to virtually fix the graph processed by the cycle collector. Suppose first that
we stopped the threads and took a replica of the heap snapshot. Running the synchronous
(more efficient) algorithm of [7] on this snapshot efficiently detects any cyclic structure. Of
course, taking a replica of the heap is not realistic. However, a virtual snapshot of the heap
may be taken using the ideas in [63]. Furthermore, if we use a sliding view instead of a
snapshot (as in [63]) and make the appropriate adjustment to use a sliding view to scan the
objects graph (as described in Chapter 3), then we obtain an on-the-fly cycle collector with
the same short pauses of recent on-the-fly collectors ([6, 62, 63, 4]).

The theoretical liveness problem is immediately solved. If an unreachable cyclic structure
is generated by the program before the snapshot, or before the start of the interval in which
the sliding view is read, then the garbage cycle may be easily identified in this view. When
a cycle collection is executed on top of this sliding view, this cycle is guaranteed to be

reclaimed.

Unfortunately, the solution described above does not work. Oddly, the problem stems

1 Completeness of a concurrent garbage collector is equivalent to the standard liveness property in dis-

tributed computing. A collector is complete if all unreachable objects are eventually reclaimed.
2This work was presented in (80].
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from the celebrated efficiency of the sliding-views reference-counting collector. All previous
cycle collectors required as input a list of all decrements of reference counts in order to
work correctly. Missing decrements may lead to missed garbage cycles that will never be
reclaimed. However, the sliding-views reference-counting collector does not keep track of all
decrements. A large fraction of all reference-count updates are ignored by the sliding-views
reference-counting collector and it is shown in [63] that objects may be correctly reclaimed
even when only a small fraction of the reference-count updates are recorded and executed.
To solve this mismatch, we extend the analysis of the sliding-views collector to show that
the cycle collector may base its candidates on the decrements that are being recorded plus
a special treatment of newly created objects. This is an interesting new property of the

sliding-views collector, which is magically applicable to cycle collection.

From the practical point of view, the use of the simpler synchronous algorithm implies
more efficient execution. Furthermore, making only a small fraction of the decrements (be-
cause of using the sliding-views reference-counting collector) implies recording fewer candi-
dates for cyclic structures, which, in turn, means less work on traversing these candidates.
This yields a substantial reduction in the cycle collector work. In addition, we suggest fur-
ther improvements to the synchronous algorithm in [7], making it run even faster. This is
done via a better scheduling strategy and new filtering techniques that further reduce the
number of traced objects.

The behavior of the cycle collector was measured on two different configurations. The
first configuration was the standard reference counting setting, which uses reference counting
and cycle collection on the entire heap. As observed in previous work [5, 14, 81], reference
counting is not effective on new objects (that tend to die fast). Previous work recommends
using generations and employing reference counting to collect the old generation only. One
such effective collector is the age-oriented collector presented in Chapter 4. So, if reference
counting should be used on the old generation only, an interesting question that arises is
how effective the cycle collector is when used on the old generation only. We resolve this
quandary by also incorporating the new cycle collector into the age-oriented collector and
examining its effectiveness when run on the old generation only.

Cycle collectors spend a large fraction of their time working on cycle candidates among
newly allocated objects. By concentrating on the old objects, the age-oriented collector
eliminates a large part of the cycles as well as a large fraction of the cycle collector’s work,

while tracing the young objects.
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5.1.3 Implementation, measurements, discussion

We implemented the new cycle collector with the Levanoni-Petrank reference-counting col-
lector [63] and with the (more efficient) age-oriented collector (presented in Chapter 4). The
implementation was done on the Jikes research virtual machine [1] and compared against
the original cycle collector of Bacon and Rajan [7]. We measured various features of these
collectors showing that the amount of work decreased significantly with the new cycle col-
lector. We also got good results on the entire program run, but felt that comparing the
throughput is irrelevant in this case, since the two cycle collectors are built on two different

reference-counting collectors (see [6, 63]).

We used the SPECjbb2000 benchmark and the SPECjvm98 benchmark suites. These
benchmarks are described in detail in SPEC’s web site [90).

One of the more interesting measurements we provide is the first comparison of cycle
collection to backup tracing collection. This comparison is important since these are the two
main options provided to an implementer of a reference-counting algorithm. Unfortunately,
there is no prior report comparing these two alternatives. We measure the throughput of a
JVM that uses the cycle collector with a JVM that uses a backup tracing collector to collect

unreachable cyclic structures.

It turns out that backup tracing is more effective than the proposed cycle collector when
reference counting is used to collect the entire heap. However, in the more relevant approach,
when reference counting is used on the old generation only (which is the reference counting
use that we advocate), the new cycle collector is more effective as its performance equals
to the backup tracing solution and even outperforms it on tight heaps. Note that in both
cases we compared apples to apples: the same scenario was run once with a backup tracing
collector and once with a cycle collector. Detailed measurements are provided in Section 5.6.
We conclude with an even stronger recommendation to use reference counting with cycle

collection on the old generation only.

Discussion. The best way to use reference counting today is to run it on the old
generation only, as discussed in [5, 14, 81]. In such a case, running cycle collection with
reference counting is the right choice. Tracing collectors need to trace the live objects in
the heap and their complexity relates to the size of this set. Reference counting needs only
to account for reference-count updates and reclaiming dead objects. In a sense, tracing
collectors pay a type of property tax whereas reference-counting collectors pay an income
tax. Future applications may employ larger heaps in which they will maintain large areas of

long-lived seldom-modified objects residing in an old generation. If this happens, reference
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counting may become the best collector for the old generation. In fact, the work of [14]
has already demonstrated the superiority of an appropriate generational reference-counting
collector over tracing collectors. If generational reference counting becomes the collector of
choice, than a companion cycle collector will be required. In this case, the cycle collector
proposed here is an efficient companion and we expect it to outperform a backup tracing

collector.

Chapter organization. We start by providing an overview of the existing collectors in
Section 5.2. A synopsis of the new cycle collector, stressing the main new ideas, is provided in
Section 5.3. The details of the cycle collector including pseudo-code are given in Section 5.4.
Implementation and results are given in Sections 5.5 and 5.6. We conclude in Section 5.7.

5.2 Review of previous cycle collectors

In this section, we review previous cycle collectors. We use the term cycle or cyclic structure
when referring to a strongly connected component in the objects graph. A strongly connected
component is a maximal subgraph of a directed graph such that for every pair of vertices u,

v in the subgraph, there exists a directed path from u to v and a directed path from v to u.

3.2.1 Collecting cycles on a uniprocessor

We start with the synchronous cycle collector of [7] (building on [68, 65]) that runs in a stop-
the-world manner on a uniprocessor. Garbage cycles can only be created when a reference
count is decremented to a non-zero value ([68, 65]). The reference-counting collector records
all objects whose reference count is decremented to a non-zero value. The cycle collector
uses this list as a set of candidates that may belong to a garbage cycle. Three colors are used
to mark the state of objects. The initial color of all objects is black. A possible member
of a garbage cycle is marked gray. White signifies an object that is identified as part of an
unreachable cycle. The cycle collector runs up to three traversals on all objects reachable
from the candidate set as follows.

e The mark stage: traces the graph of objects reachable from the candidates, sub-
tracting counts due to internal references and marking traversed nodes gray. At the
end of this traversal, all nodes of each unreachable cyclic structure have zero reference
counts, whereas each reachable cyclic structure has at least one node with a positive
reference count.
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¢ The scan stage: scans the subgraph of (gray) objects reachable from the candidates.
All objects reachable from external pointers (those with positive reference counts) and
all their descendants are marked black. Also, reference counts are restored to reflect
all outgoing pointers from black objects. All other nodes in the subgraph are colored

white (these objects are identified as forming a garbage cycle).

¢ The collect stage: scans the subgraph again and reclaims all white objects.

5.2.2 Collecting cycles on-the-fly

The first concurrent cycle collection algorithm was proposed in [7]. Their algorithm consists
of two phases, each running several scans on the sub-graph reachable from the candidates. In
the first phase, a variant of the above synchronous algorithm is used, but instead of reclaiming
the white nodes these nodes are recorded as potential unreachable cyclic structures. However,
due to concurrent mutator activity, some of the white objects may have been incorrectly
identified and may actually be reachable. The second phase is executed in the next (reference-
counting) collection and it then re-examines the potential cycles, identifying which are indeed

unreachable and reclaiming their objects.

Restoring the reference counts. In a concurrent setting the subgraph of the candidate
objects cannot be re-traversed, because pointers may have been modified since a previous
traversal. Thus, temporarily modifying reference counts and then restoring them correctly
becomes impossible. Therefore, the algorithm uses an additional reference-counting field
denoted CRC (cyclic reference count). Temporary calculations are executed in this additional
field and the main reference-count field is used only by the reference-counting collector. We

will also use the CRC additional count in our algorithm.

Two disadvantages. The above concurrent garbage collector has a theoretical drawback
and a practicai drawback. A garbage collector is called complete if it eventually collects
all unreachable objects. The first problem of this cycle collector is that it is not complete.
Rare race conditions may prevent it from collecting garbage cycles. An example appears
in [7]. The second problem is practical. The algorithm traces the candidate cycles a couple
of times in the second phase to ensure that no false garbage cycle is reclaimed. These extra
scannings reduce efficiency, especially for (typical) benchmarks that contain many garbage
cycles or many false cycle candidates. Moreover, the concurrent cycle collection algorithm
enforces additional overhead on the execution of the reference-counting algorithm as it must

fix sub-graphs that were left gray or white due to improper re-traversals.
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5.3 Cycle collector overview

In this section we provide an overview of the new collector, emphasizing its main ideas. A

full description including the pseudo-code is provided in Section 5.4.

Both drawbacks of the asynchronous collector in [7] stem from the fact that the concurrent
cycle collector cannot rely on being able to re-trace the same graph. In this work, we propose
a new concurrent cycle collector that eliminates the disadvantages of the previous cycle
collector yielding a non-intrusive, efficient cycle collector that guarantees completeness. The
idea is to use a snapshot of the heap or a sliding view of the heap ([63]). Given a fixed
view of the heap (as reflected by a snapshot'or the sliding-view mechanism), it is possible to
eliminate much of the redundant tracing and to guarantee completeness. Hence, we employ
the reference-counting system of [63] (an overview appears in Chapter 2.6) to reclaim the
acyclic garbage; and in order to trace the sub-graph reachable from the candidates, we use
the sliding-views tracing mechanism proposed in Chapter 3.

We start by describing the new cycle collection algorithm assuming two inputs: a snapshot
of the heap, and a list of all objects whose reference count has been decremented to a positive
value since the last cycle collection. A first observation is that given these two inputs, we
may apply the synchronous algorithm of [7] on the given snapshot and correctly identify
the garbage cycles in the heap as viewed in the snapshot. Now, combining the fact that
the synchronous algorithm is efficient and the fact that being a garbage cycle is a stable
property, i.e., program activity cannot make an unreachable object reachable, we get an
efficient identification of garbage cycles. After explaining how to use a snapshot (which
achieves a concurrent collector), we will move to using a sliding view. A sliding view is a bit
harder to use, but provides an on-the-fly collector.

Next, we need to specify how to obtain the inputs efficiently. We first concentrate on the
first input: the snapshot. The second input cannot be obtained efficiently, but we will find

ways to use a restricted version of it.

5.3.1 Obtaining a snapshot (or a sliding view)

The cycle collector uses the snapshot by repeatedly traversing several subgraphs of the
snapshot heap. To obtain a snapshot that can be traversed, we may use the sliding-view
mark-and-sweep mechanism described in Chapter 3 above. We also employ the write barrier
of [63]. Then, to traverse an object according to its pointer values as existed at snapshot time,

we scan each object in the following manner. First, the dirty bit of the object is examined.
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If the object is not dirty (no pointer in the object has been modified since the snapshot was
taken), then its current state in the heap is equal to its state during the snapshot and the
collector may trace it by reading its pointers from the heap. Otherwise, the object has been
modified since the snapshot time and it is marked dirty. In this case, the collector traces
its snapshot values as recorded in the threads’ local buffers. This way, objects are traced
according to their state at the snapshot time, and as a consequence, repeated traces are
bound to trace the same graph each time.

In terms of completeness, this means that once a, garbage cycle is created, it must exist in
the next snapshot, and thus is bound to be collected by the next execution of the synchronous
cycle collection. In terms of efficiency, this means that we may use the efficient synchronous
algorithm and get rid of inefficiencies originating from the need to insure correctness in
spite of program-collector races. For example, the entire second phase of the asynchronous
algorithm of [7] is redundant: there is no need to store identified garbage cycles and validate
them during the next garbage collection.

We now proceed to explain how sliding views are used instead of snapshots. The goal is
to eliminate the need for a simultaneous halt of all program threads and to obtain extremely
short pauses. A sliding view is a distorted snapshot. It may yield a fuzzy picture of the heap,
but it is still one that may be obtained without stopping all mutators simultaneously. The
cycle collector remains the same, except that it uses a sliding view of the graph rather than
a snapshot. As in the previous sliding-views collectors, a sliding view may find an object
unreachable because the view does not represent the heap at a consistent point in time.
However, the snooping mechanism (see Section 2.6) makes sure that these objects are not
reclaimed, guaranteeing the safeness of the procedure. For the cycle collector, this means
that a set of objects may be incorrectly identified as being an unreachable cyclic structure.
How can this happen? Inaccuracies of reference counts due to the sliding view are discussed
in [61, 63]. Intuitively, if no pointer is written to the heap at the beginning of the collection
(when all mutators are halted one by one), then the sliding view represents a snapshot of
the heap taken at the time the first mutator is stopped; denote this time by t;. However, as
pointers are being written in the heap, this snapshot gets distorted. In particular, the view
may contain values of pointers that were updated after ¢;. If such a modified pointer creates
a false unreachable garbage cycle in the view, then a pointer must have been added to this
cycle during the interval in which the sliding view is taken. In this case, 1t is guaranteed that
the object that falsely seems unreachable in the sliding view will be snooped and therefore,
we will not reclaim the cyclic structure that contains it. Thus, the safety of the cycle collector

may be reduced to the safety of the sliding-view mark-and-sweep collector.

96



With respect to completeness, it holds that any unreachable cyclic structure that is
formed before the collection begins, must be collected. The reason is that these objects are
not modified during the time the sliding view is taken, and in particular, no new pointers
are being written to objects in this cycle. Thus, none of the objects in the cyclic structure is
snooped and the view of all pointers into and in between these objects appears in the sliding
view exactly as it would have appeared had we taken a real snapshot at time ¢;. Thus, such

an unreachable cyclic structure will be reclaimed.

5.3.2 Obtaining the list of candidates

It remains to obtain the second input to the synchronized cycle collector of [7]. This collector
described above and all previous collectors used a candidate set consisting of all newly
created objects plus all objects whose reference count is reduced to a positive value by any
pointer modification since the previous cycle collection. However, the sliding-views reference-
counting collector of [63] does not maintain such a list. In fact, it is oblivious to most of
the pointer updates and this is what guarantees its efficiency. A naive solution is to add
the recording of such a list to the reference-counting collector of [63]. This is not acceptable
as it would undermine the efficiency of the reference counting. Instead, we analyze what is
really required to collect cycles and find out that the reduced set of candidates suffices. This
preserves the efficiency of the reference-counting collector and also significantly improves
the efficiency of the cycle collector as fewer candidates need to be recorded and less work is

required to traverse their descendants.

Newly created objects. Let us review one technicality that also exists in prior lit-
erature. The assertion that it is enough to consider only reference-count decrements as
candidates is accurate but not applicable to modern collectors. The reason is that refer-
ence counts are not updated for root pointer modifications (as suggested by [31]). Thus,
all known cycle collectors use, as candidates, more than the set of objects whose reference
count was decremented to a positive value. The set of candidates also includes all objects
created since the last collection and all objects referenced directly from the roots during the

previous collection.

Consider, for example, two new objects that point to one another (forming a cycle) and a
root pointer that points to one of them. If the root pointer is modified, then a cycle of garbage
is formed, but it is not noted by reference-count decrements. The extended candidate set
as above is enough to detect any such garbage cycle. We do not elaborate on this, as this

solution is used by all previous collectors.
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Obtaining the candidates. The sliding-views collector can yield almost for free a
list of newly created objects and a list of objects that were referenced by the roots during
the previous collection. We now concentrate on the more problematic set of objects whose

reference count was decremented.

The Levanoni-Petrank reference-counting collector [63] uses a shortcut to reduce a large
fraction of the reference-count updates. The idea is that when a pointer p takes the values
0p, 01, O3, - .., O between two sliding views, the only required reference-count updates are a
decrement to rc{op) and an increment to rc(o0,). However, the fact that not all increments
and decrements of the objects 0y, 09, ..., 0,_; are executed might prevent noting that one

of the decrements creates a new unreachable cycle.

We now claim that we are able to collect all garbage cycles, even though we record and
consider many fewer objects as candidates, i.e., those supplied by the Levanoni-Petrank
reference-counting collector. To be more precise, when a pointer p takes the values 0p, 01, O2,
..., 0p between two collections, only o is considered as a candidate (if its reference count
is decremented to a non-zero value) by the new cycle collector. The ob jects 01, 0a, ..., Op_1
that may have been considered by previous collectors as candidates are ignored. Additional
relevant decrements are decrements that are executed by the reference-counting collector
itself. When an object is reclaimed, the collector decrements the reference counts of all its
descendants. These decrements may also produce candidates (if the descendant’s reference

count is not decremented to zero).

To show that the collector does not miss a garbage cycle, we divide the argument into
two cases: garbage cycles composed solely of old objects and garbage cycles containing at
least one young object, where a young object is an object that has been created after the
previous sliding view (or snapshot) has been taken. We show that each of these two cases

are properly handled.

The easy case is when a garbage cycle includes a young object. As mentioned earlier in
this section, all young objects (surviving the reference-counting collection) are considered

candidates. Thus, this cycle will not be missed.

The more interesting part is to note that garbage cycles containing only old ob jects (these
created before the previous sliding view) are not missed. If this cycle was reachable during
the previous sliding view and is unreachable in the current sliding view, then there exists a
pointer to one of the cycle’s objects in the previous sliding view, but this pointer does not
exist in the current sliding view. If this was a root pointer, then the cycle is considered by
the fact that all root pointers from previous collection are candidates. Otherwise, this is a

heap pointer that has been modified during the time interval between the two sliding views.
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Figure 5.1: An example: The creation of a garbage cycle composed solely of old objects

This scenario is depicted in Figure 5.1 (and is explained below). The pointer modification
results either from the application modification of the pointer (as in Figure 5.1), or because
the object containing this pointer was reclaimed and then the memory manager deleted the
pointer. In the first case, the change of this pointer is logged in a local buffer, causing a
decrement to the reference count of the object previously referenced. In the latter case, the
delete operation of the collector implies a similar reference-count decrement. In each of these
cases, this object becomes a candidate for cycle collection. Hence, cycles containing only old

objects are accounted for properly.

Figure 5.1 introduces an example of a garbage cycle composed solely of old objects is
created between the K*" and the K + 1% sliding views. In this example, the cycle was
reachable from old( and it became unreachable because 0ld0 was modified. Since 0ld0 is
modified between the sliding views, 0ld0 (and in particular, the pointer to old! in it) must
be logged to a local buffer that is later used by the reference-counting collector. Therefore,
the reference count of 0ld1 gets decremented in the K +1° collection, and it is then considered
as a candidate.

As explained above, when a pointer p takes the values 0g, 01, O9, ..., O, between two
collections, only og is considered as a candidate (if its reference count is decremented to a
non-zero value) by the new cycle collector. Note, however, that the reference deletion from
objects 01, 09, ..., 0, — 1 could create a garbage cycle. Figure 5.2 shows an example that
demonstrates how we are able to collect all garbage cycles even though we record considerably
fewer candidates. The example is divided into six steps (numbered 1 through 6). At Step
1 of Figure 5.2, the sliding-view picture of the last collection is shown. At Step 2, object P
is modified to reference object 02. Since P is modified for the first time since the previous
sliding view, it is set as dirty and logged to the Updates buffer together with its previous
value O1. Next, in Step 3 object O2 is set to reference object B. At Step 4, object B is set
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Figure 5.2: Example showing that all garbage cycles are collected even though recording
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considerably fewer candidates.

to reference object 02. At Step 5, object A is modified to stop referencing object B. As A
is modified for the first time since the previous sliding view, it is set as dirty and logged
to the Updates buffer together with its previous values B. At Step 6, object P is modified
to reference object O3. Since P is already dirty, P will not be logged again to the Updates
buffer. Note that the deletion of the reference from P to O2 creates a garbage cycle composed
of objects B and 02 However, 02 did not became a candidate in this stage, as the write
barrier did not log it in the Updates buffer and hence the collector would not decrement its
reference-count value®. The garbage cycle would be collected since object B was logged as
the previous value of A in Step 5. Hence the collector would decrement its reference count
later, and since the reference count of B would not reach 0 (as it is referenced by 02), it

would considered as a candidate. Hence the above garbage cycle is bound to be collected.

To summarize, we may employ the efficient write barrier of Levanoni-Petrank and collect
cycles correctly using as candidates all objects whose reference count is decremented to a
non-zero value, as well as all young objects and all objects that were referenced by the roots

during the previous collection.

3 As described earlier in this section, if O21is a newly created object, it would be considered as a candidate.

Here, we assume that 02 is not a newly created object.
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5.3.3 Making a stop-the-world collector on-the-fly

We now explain in brief how we made it possible to run the stop-the-world collector of [7] on-
the-fly. The main purpose of stopping the threads is to make the ob ject graph fixed for the
collector. This fixing lets the collector examine the reachability graph without experiencing
pointer modifications during the examination. A standard way to let the collector examine a
fixed graph while the mutators go on modifying it is to let the collector work on a snapshot
of the heap. Creating a real snapshot is too costly, but snapshots can be implicitly created
using specialized write barriers. Letting a stop-the-world collector work on a snapshot (with
the necessary modifications required to let the collector work on the created snapshot view)
only achieves a concurrent collector. Namely, the obtained collector must stop all mutators

simultaneously for a single point in time that will create the snapshot time.

In order to make the collector on-the-fly, sliding views must be used. To create sliding
views, the mutators are not required to stop simultaneously. It is enough that each cooperate
with the collector at will. Sliding views do not provide a real snapshot, but a distorted
approximation of it. However, a properly adjusted stop-the-world collector may use a sliding
view in a similar way to a snapshot in order to reclaim the unreachable objects appearing
in the sliding view. The correctness is based on a snooping mechanism. The snooping
mechanism makes sure that we do not reclaim objects to which a new pointer is installed
while the mutators are cooperating with the collector. Given this mechanism, the stop-the-
world collector may work on the sliding view to reclaim all unreachable objects. Note that
the obtained collector is on-the-fly. The mutators only cooperate non-simultaneously with
the collector to create the sliding view. The collector then goes on running concurrently with
program run, while using the obtained sliding view. Since the sliding view is a static picture

of the heap, the stop-the-world collector may work on it according to its original algorithm.

9.3.4 Behavior with the age-oriented collector

The cycle collector was incorporated into the full heap reference-counting collector of [63].
However, previous work shows that reference counting is most effective when used with
the old generation only [5, 14, 81]. It is, therefore, crucial to examine the behavior of
the cycle collector in such a setting, when reference counting is employed on old objects
only. Furthermore, from the description above, it seems that newly created objects add
a substantial burden on the cycle collector. Our measurements show that this is indeed
correct. Hence, we also applied the proposed cycle collector with a collector that runs

concurrent reference counting and cycle collection on the old generation only. We chose the
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age-oriented collector (described in Chapter 4), which is an altered generational collection
that is specially targeted at reference counting for the old generation.

It is important to note that the age-oriented collector is an efficient collector. In partic-
ular, it is more efficient than the reference-counting algorithm as a stand-alone. Therefore,
it is more relevant to check its performance with a cycle collector. Using the age-oriented
collector it was possible to eliminate a large fraction of the cycles as well as a, large fraction of
the cycle collector’s work since it does not need to consider the young objects as candidates.

Indeed, cycle collection was more effective in this setting.

5.3.5 Reducing the number of traced objects

Next, several methods are proposed to further reduce both the number of candidates and the
number of objects traced during a candidate traversal. First, we make use of the strategy of
Bacon and Rajan [7] to reduce tracing. They proposed to ignore acyclic objects (objects that
cannot be a part of a cycle, e.g., an array of scalars). Such objects are statically determined
and are never considered as candidates. Any acyclic object reached during the algorithm
traversals is ignored. We adopt the schema of Bacon and Rajan, which considers as acyclic
each object whose class contains only scalars, references to classes that are both acyclic and

final, and arrays of the previous classes. Additional elimination strategies are proposed next.

Examining only mature candidates. The new collector runs cycle collection with
each garbage collection. However, it lets the candidates “mature” before actually testing
them for membership in an unreachable cyclic structure. While candidates “wait” to be
examined, many of them are removed from the candidate list (as explained below). The col-
lector examines only the candidates that were accumulated k collections ago and not filtered
out of the list. Technically, instead of having one large candidate buffer, we employ k + 1
smaller candidate buffers, each containing candidates accumulated in different collections.
In the current cycle collection we use the oldest buffer. One reason for removal from the
candidate list is that objects are simply reclaimed by the reference-counting collector before
reaching the oldest buffer. A second filtering technique employed is to remove any object
that is added to the most recent candidate buffer, from any older buffer in which it appears.
This means that an object appears only in one buffer and that if its reference count is decre-
mented several times, it will be examined only once (if not reclaimed earlier). (The removal

from older lists is executed in a short processing of the buffers at the end of each collection.)

The k£ + 1 buffers method allows structured control over candidates maturity and allows
tracing only candidates that have not been filtered out (and have not died) throughout
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the last & collections. Previous collectors run the cycle collector each k collections on all
candidates. Thus, they handle candidates that were recently discovered and have not yet

matured.

Ignoring identified live objects. Next, we try to reduce the number of candidates and
also the amount of executed tracing. Several objects are known to be alive at the beginning
of a collection. These include objects that were directly reachable from the roots, objects
that were snooped and objects that were marked dirty because they were modified after
the sliding view was taken. Many such objects are traced by previous cycle collectors. The
proposed collector treats these objects differently. First, if the cycle collector reaches one of
these objects during the first (mark) stage, it ignores it. It does not decrement its reference
count, nor does it trace its subgraph. By avoiding the explorations of these objects, we do
not lose any garbage cycles, since if an object is known (or assumed) to be alive, so are all

the objects reachable from it.

To see that this modification does not foil correctness, we first note that avoiding the trace
of such objects affects only their descendants, which are alive and should not be reclaimed
during the current collection. Thus, we do not mind not handling these objects during
the cycle collection. If they remain black, they will not be reclaimed. The only remaining
concern is that this modification will prevent identifying live descendant objects within some
candidate cyclic structure. However, this cannot happen, since such descendants have an
outer reference (their ancestor) and so their CRC cannot decrease to zero and they cannot

be reclaimed.

Saving the double scan stage. To save more scanning time, we add an additional
stage, the mark live black stage, between the mark stage and the scan stage. In this stage
we preprocess the list of objects that are known to be alive and trace them to mark their
subgraph black. If we do not do this, the scan stage may sometimes color an object white
together with its subgraph, only to find out later that this ob Ject was referenced from another
(gray) externally referenced object. In this situation, the object (and subgraph) would be re-
traversed and colored black during a second traversal of the same subgraph. Such repeated
traversals are eliminated by the new stage.

Not all objects that are known to be alive can be identified when collection commences.
In particular, an object may be modified (and thus become dirty) by a mutator after being
traced during the mark stage of the cycle collector. The subgraph of such an object may be
traced and colored gray (during the mark stage) and only later will it become evident that
the tracing was redundant. Thus, we also add a simple check to the second (scan) stage.
When reaching a gray object in the scan stage, we check whether it is dirty. If it is, its
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subgraph is colored black immediately in order to save further scans. This modification is

safe since this object was alive when the sliding view was taken.

One disadvantage of using dirty objects for the above filtering methods is that we must
use the additional CRC (cyclic reference-count) field, as in the asynchronous cycle collector
of Bacon and Rajan, in order to correctly restore the ”real” reference counts. The reason
that the CRC field is needed is that the set of identified live objects (actually, only the
subset of dirty objects) is not fixed during the collection. Recall that we do not scan dirty
objects, implying that we also do not decrement their descendants’ reference counts for
internal references. However, since objects become dirty concurrently, we may decrement
their reference counts several times before noting that they are alive. It is not possible later
to tell how many times decrements were applied on dirty objects (before they became dirty)
and thus it is not possible to restore the original reference counts. This necessitates the use
of the CRC field. The choice is whether to use the dirty bit to identify reachable objects or
to avoid using the CRC field. We chose to consider dirty objects and use the CRC field.

5.4 The Garbage Collector Details

In this section, pseudo-code and details of the new cycle collection algorithm are provided.

5.4.1 The LogPointer

The original reference-counting algorithm requires maintaining a dirty bit signifying whether
an object has been modified since the most recent collection started?. During the first
modification of an object in a cycle, its pointers are recorded in the Updates buffer and its
dirty bit is set. We follow [62, 63, 4] by choosing to dedicate a full word to keep the dirty
bit. Indeed, this consumes space, but it allows keeping information about the dirty object.
In particular, this word is used to keep a pointer into the thread’s local buffer where this
object’s pointers have been logged. A zero value (a null pointer) signifies that the object is

not dirty (and not logged). We call this word the LogPointer.

Tracing of a sliding view exploits the LogPointer field extensively. When an object is
scanned, the LogPointer is checked. If it is null, then the current state of the object may be

4To simplify the presentation, the original collector in [62] is described as using a dirty bit per slot.
However, as discussed in the full paper [61, 63] and as implemented in subsequent work [4, 5, 81], a bit per

object was already used.
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used. Otherwise, it provides a pointer to the log entry where the state of the object in the

sliding view is recorded.

Procedure Update (Figure 5.3) describes the write barrier that is activated at pointer
assignment. Its main task is to record the object whose pointer is modified (i.e., log objects’
values at the sliding views). We stress that the write barrier (the Update protocol) is only
used with heap pointer modification. Modifications of local pointers in the registers or stack
are not monitored. Going through the pseudo-code, we see that each object’s LogPointer
is optimistically probed twice (lines 1 and 5) so that if the object is dirty (which is often
the case), then the write barrier is extremely fast. If the object was not logged (i.e., the
LogPointer of an object is NULL), then after the first probe, the object’s values are recorded
into the local Updates; (lines 2-4). The second probe at line 5 ensures that the object has
not yet been logged (by another thread). If LogPointer is still NULL (in the second probe),
then the recorded values are committed as the buffer pointer is modified (line 7). In order to
be able to distinguish later between objects and logged values, in line 6 we actually log the
object’s address with the least significant bit set “on” (while values are logged with the least
significant bit turned off). Then, the object’s LogPointer field is set to point to these values
(line 8). After logging has occurred, the actual pointer modification happens. Finally, from
the time a collection begins until marking the roots of the mutators, the snoop flag is on. At
that time, the new target of the pointer assignment is recorded in the local Snooped; buffer.
This happens in lines 10-11. The variables Updates;, Curr Pos;, Snoop; and Snooped; are
local to the thread.

The write barrier works safely with a multithreaded application without requiring explicit
synchronization, as thoroughly discussed in [63].

5.4.2 General issues

Candidate objects status. In order to process the candidate buffers, we keep a state with
each object. An object is allocated in a non-buffered state. When it is first bﬁf'fered, it is
marked newly-buffered. During each collection, all buffers are processed. Each newly-buffered
object is removed from all older buffers. An object that is a member of the oldest buffer (the
buffer that is currently being checked for cycles) is marked old-buffered. All other buffered
objects (in buffers that are not the youngest or oldest buffers) are marked mid-buffered.
The candidate buffers are denoted, in a corresponding manner, newCandidatesBuffer, mid-
CandidatesBuffer and oldCandidatesBuffer. Note that there may be several buffers of type
midCandidates Buffer.
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Procedure Update(obj: Object, offset: int, new: Object)

begin

1 if obj.LogPointer = NULL then  // OBJECT NOT DIRTY

2 TmpPos := CurrPos;

3 foreach field ptr of obj which is not NULL

4 Updates; [TmpPos++] := ptr

5. if obj.LogPointer = NULL then ~ // IS IT STILL NOT DIRTY?

6 Updates; [I'mpPos++] := tag(address of 0) // ADD A TAGGED POINTER TO OBJECT
7 CurrPos; := TmpPos  // COMMITTING THE REPLICA

8 obj.LogPointer := address of Updates;[CurrPos;]  // SET DIRTY
9 write( obj, offset ,new)

10. if Snoop; and new != NULL then

11. Snooped; := Snooped; U { new }

end

Figure 5.3: SVRC mutator code: Update Operation

Assumed procedures. In the pseudo code we assume the existence of some simple

methods. These include:

e is-Acyclic: checks whether an object is inherently acyclic. This check is executed ac-

cording to the rules set in Section 5.3.5.
o is-Buffered-Not-Old: checks whether an object is buffered but not in the oldest buffer.

o is-Released: checks whether an object has been reclaimed in the current collection (by
either the reference-counting collector or the cycle collector)®. As this procedure is

called by the collector, the current collection is well defined®.

®Our original reference-counting collector implementation employs Jikes segregated-free-list alloca-
tor [102]. This allocator divides the heap into blocks, where each block is partitioned into equal-sized
slots. In addition, a “used” bit is associated with each such slot. This bit indicates whether the correspond-
ing slot is in use (i.e., contains an object) or not. Whenever a slot is allocated its bit is marked as taken,
and whenever an object is freed its bit is marked as free. The is-Released method returns the opposite of

this bit.
6In our implementation we did not allocate a released object’s memory until after the cycle collector is
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Roots := programRoots U SnoopedObjects
increment the rc of all Roots  // SO IT WON’T BE COLLECTED THIS COLLECTION
for each object logged in Updates do
- decrement rc of its previous sliding-view descendants
- increment 7c of its current sliding-view descendants
for each object logged in Y oungObjects do
increment rc of its current sliding-view descendants

reclaim objects with zero rc recursively

© ® 3 S AN

Process-Cycles  // COLLECT GARBAGE CYCLES

—
e

decrement the rc of all Roots // AS IT WAS INCREMENTED IN LINE 2

Figure 5.4: SVRC: Sliding views reference counting with cycle collection

5.4.3 Cooperation with the reference-counting collector

Next we elaborate on the cooperation between the reference counting collector and the
cycle collector. Full pseudo-code of the sliding-view reference-counting collector and the

age-oriented collector are in [79].

The cycle collection algorithm is activated on each collection cycle after the reference-
- counting collector has finished collecting the acyclic garbage. The entire collection including
cycle collection is described in Figure 5.4.

During the reference-counting collector run, it detects the objects that become candidates.
These candidates are accumulated into the newest candidate buffer. The candidates are

accumulated in the following collector stages:

¢ During the traversal of the Roots buffer, each object is accumulated to the newest
candidate buffer (it is not considered as a candidate in this cycle collection as it is
obviously not garbage).

e During the traversal of the Updates buffer, each object whose reference count is decre-
mented but does not reach zero is added to the candidate buffer.

entirely done. We could have instead used a bitmap for marking the released objects (which the is-Released

method could probe), so that a released object could be immediately allocated. Such a bitmap should be

cleared at the end of each collection.
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Procedure Add-Candidate(cand: object)
begin
1. if cand.status != newly-buffered A lis-Acyclic(cand) then

2. cand.status := newly-buffered
3. push cand into newCandidatesBuffer
end

Figure 5.5: Cycle collector: Add-Candidate Procedure

o The YoungObjects buffer keeps a list of all young objects for use by the reference-
counting collector. After the reference-counting collector reclaims all dead objects, a
special traversal of this buffer puts all live objects (with non-zero reference count) into
the candidate buffer.

These three kinds of candidates are accumulated into the (same) candidate buffer. The ac-
cumulation of candidates is done by Procedure Add-Candidate (Figure 5.5). This procedure
is called by the reference-counting collector in order to insert an object into the newCan-
didatesBuffer. If this object is not already buffered in the newCandidatesBuffer, and it
is not acyclic, it is buffered into the newCandidatesBuffer after its state is modified into
newly-buffered. Note that by modifying the object’s status to newly-buffered, this proce-
dure actually invalidates the object appearance in an older candidate buffer if it existed (as

explained in Section 5.3.5).

An interface in the opposite direction is the one allowing the cycle collector to call Pro-
cedure RC-Free, which performs the recursive deletion of an object. RC-Free is invoked by
Procedure Reclaim of the cycle collector, described in Figure 5.15.

Objects’ colors. Note that before invoking Procedure Process-Cycles (line 9 of Fig-
ure 5.4), all objects are black. The cycle collector relies on this property. This property is
achieved by the following:

e Objects are allocated black.

e The cycle collector is the only one to color objects in gray or white. In addition,
the cycle collector maintains the property that all objects surviving the previous cycle

collections are black by the end of a cycle collection.

The LogPointer. Independently of the cycle collection, the reference counting must
clear all dirty bits (i.e., nullifies the LogPointers) at the beginning of a collection cycle.
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Procedure Process-Cycles
begin

1 Mark-Candidates
2 Mark-Live-Black
3.  Scan-Candidates
4 Collect-White

5 Process-Buffers

end

Figure 5.6: Cycle collector: Process-Cycles Procedure

Actually, this task is non-trivial for the on-the-fly collectors (see [63]). The cycle collector
relies on this property, and considers each non-dirty object as an object that was modified
after the current collection has began. This is used to trace objects as in the trace of the
sliding-view mark-and-sweep collector.

5.4.4 Cycle algorithm code

The cycle algorithm’s code for cycle k is presented in Procedure Process-Cycles (Fig-
ure 5.6). This procedure is applied in every cycle collection after the reference-counting

collector is done collecting the non-cyclic garbage. It consists of the following stages:

¢ Mark-Candidates stage: traces the graph of relevant candidates, subtracting counts
(of the CRC field) due to internal references and marking nodes as potentially re-

claimable (by coloring them gray).

e Mark-Live-Black stage: colors black the objects that the Mark-Candidates stage
has identified as alive. Its purpose is to save redundant traversals as described in
Section 5.3.5.

* Scan-Candidates stage: scans the subgraph of relevant candidates, and re-colors
black objects that are reachable from external pointers. All other nodes in the subgraph

are colored white.

¢ Collect-White stage: scans the (white) subgraphs again and reclaims all garbage
(white) objects.
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Procedure Mark-Candidates
begin

1 for each cand in oldCandidatesBuffer do

2 if is-Released(cand) V cand.status = newly-buffered then

3 remove cand from oldCandidatesBuffer

4 else if cand.color = black then // NOT PREVIOUSLY TRAVERSED
5. ~ Mark(cand,true)

6 else // GRAY OBJECTS, 1.E., PREVIOUSLY TRAVERSED

7 cand.status := non-buffered

8 remove cand from oldCandidatesBuffer

end

Figure 5.7: Cycle collector: Mark-Candidates Procedure

e Process-Buffers stage: iterates over the new and middle buffers, while filtering non-
relevant candidates. In addition, it performs a cyclic swapping of buffer roles.

Procedure Mark-Candidates and Procedure Mark (Figures 5.7-5.8) perform the mark
stage. This stage is performed on the oldCandidatesBuffer’s objects that have survived all
filters of the previous collections. Procedure Mark-Candidates first filters more candidates:
those that were released during this collection” and those that were re-added to the candidate
buffer in this collection (and thus are newly-buffered). Note that it also pops out of the buffer
(and clears buffer statuses of) gray objects: those ob jects are reachable from other candidates
that have already been traced during this stage, and thus they could only belong to a garbage
cycle rooted from an already traced candidate. Procedure Mark is applied to all the other

candidates.

Procedure Mark performs a depth-first traversal over the candidates’ sliding-view sub-
graphs. An object reached for the first time is colored gray, its CRC is initialized and if
it is not identified as alive (was not modified, is not local and is not buffered in a younger
candidate buffer), its sliding-view descendants (which are not acyclic) are traced using the
Read-Sliding-View procedure. A parameter to the function is a flag signifying whether the
current object is scanned due to a reference found in the heap (and therefore, an inner
reference is found and the CRC should be decremented) or it is scanned because it is a

"The deletion of the last pointer to a shared cell will recycle it immediately, regardless of whether there

is a reference to it in a candidate buffer.
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Procedure Mark (obj: object, isTopLevel: Boolean)

begin

1 if obj.color != gray then // FIRST TIME REACHED IN THIS MARK STAGE
2 obj.color := gray

3 0bj.CRC := RC

4. if lisTopLevel then // REACHED AS A DESCENDANT

5 0bj.CRC—-

6 if obj.LogPointer != NULL V obj € Roots

// CHECK WHETHER OBJECT WAS WITNESSED LIVING

7. V is-Buffered-Not-Old( 0bj) then

8. push obj into LiveStack // IT WAS IDENTIFIED ALIVE
9. else

10. replica := Read-Sliding-View(obj)

11. for each o in replica do

12. if lis-Acyclic(o) then

13. Mark(o,false)

14. else // PREVIOUSLY MARKED

15. 0bj.CRC——

end

Figure 5.8: Cycle collector: Mark Procedure

candidate in the buffer (and therefore, its CRC value should not be decremented). If the
object has been reached before, its CRC is not initialized (as it was initialized before), but
is decremented. Objects that are alive are pushed onto the LiveStack, and their descendants

are later colored black (these objects are not traced at this stage).

Procedure Read-Sliding-View (Figure 5.9) serves for getting the sliding-view values of a
given object. If the object has not been modified since the sliding view was taken, its current
values are also its sliding-view values. Otherwise, its pointer slots at the recent sliding view
can be found by looking at the log entry that is pointed at by the LogPointer®. Note that
an object may be modified by mutators while the replica is taken (lines 3-5).

8Procedure getOldObject actually returns only the non-null pointers saved by Procedure Update. This

information suffices for tracing an object correctly.
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Procedure Read-Sliding-View(obj: object)
begin
if obj.LogPointer = NULL then // CHECK IF OBJECT HAS BEEN MODIFIED
replica := copy(oby) // READ ITS DESCENDANTS FROM HEAP
if obj.LogPointer != NULL then // CHECK AGAIN IF COPIED REPLICA IS VALID

// OBJECT HAS BEEN MODIFIED WHILE BEING READ.

1
2
3
4
5. replica := getOldObject(obj.LogPointer) // GET REPLICA FROM BUFFERS
6. else // OBJECT HAS BEEN MODIFIED; USE BUFFERS TO OBTAIN REPLICA

7 replica := getOldObject(obj.LogPointer)

8 return replica

end

Figure 5.9: Cycle collector: Read-Sliding-View Procedure

Procedure Mark-Live-Black

begin

1. while LiveStack is not empty
2. obj := pop(LiveStack)

3. Mark-Black(oby)

end

Figure 5.10: Cycle collector: Mark-Live-Black Procedure

Procedure Mark-Live-Black (Figure 5.10) colors black the non-black objects in LiveStack

and their non-black sliding-view descendants. The objects in LiveStack were all pushed

during the mark stage.

Procedure Mark-Black (Figure 5.11) is the actual procedure that colors the sliding-view

subgraph of an object as black.

Procedure Scan-Candidates and Procedure Scan (Figures 5.12-5.13) perform the scan

stage. Each gray candidate in the oldCandidatesBuffer with a non-zero CRC is considered

live (and so are all its sliding-view descendants), and thus the object and its descendants are

colored black. Else, it is colored white, and Procedure Scan is invoked on its children. Note

that although we use Procedure Mark-Live-Black as the second stage of the algorithm, still

an object may be colored white and then re-colored black.
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Procedure Mark-Black(obj: object)
begin

1. if obj.color != black then

2 obj.color = black

3. replica := Read-Sliding-View(obj)
4 for each o in replica do

5 Mark-Black(o)

end

Figure 5.11: Cycle collector: Mark-Black Procedure

Procedure Scan-Candidates

begin

1.  for each cand in oldCandidatesBuffer do
2. Scan(cand)

end

Figure 5.12: Cycle collector: Scan-Candidates Procedure

Procedure Collect-White and Procedure Reclaim (Figures 5.14-5.15) perform the
collect stage. Each white candidate is a root of a garbage cycle, and thus these cycles’ objects
(this candidate and all white objects reachable from it) are colored black and reclaimed. Since
we are dealing with a garbage cycle whose objects are reclaimed one by one, one object may
still reference another object in the cycle that was just released. Thus, when iterating over
the object’s descendants, one should check if the descendant is already released (line 4 in
Procedure Reclaim). For a similar reason, we also mark any cycle object as released (line 1

in Procedure Reclaim), before iterating over its descendant and actually freeing it.

While reclaiming a garbage cycle, the reference counts of objects referenced by this cycle
are decremented. At first, it seems that the reference count of such an object could not reach
zero since if it does, then its CRC should have reached zero (during the cycle collection),
and it would have been colored white (and reclaimed as part of the cycle). However, there
are objects that our algorithm does not trace, such as inherently acyclic objects and objects
buffered in newer candidate buffers. Such objects could be solely referenced by garbage
cycles, and thus when releasing a garbage cycle, their reference count reaches zero. Hence,

such objects are released using the reference-counting recursive deletion (line 11 in Procedure
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Procedure Scan (obj: object)
begin

1. if obj.color = gray then
2. if 0j.CRC = 0 then

// CURRENTLY NO EVIDENCE OF 0bj BEING EXTERNALLY REACHABLE

3. obj.color := white

4. replica := Read-Sliding-View(obj)

5. for each o in replica do

6. Scan(o)

7. else

8. Mark-Black(obj) // MARK ITS RELEVANT SUBGRAPH AS ALIVE
end

Figure 5.13: Cycle collector: Scan Procedure

Reclaim)®. Such recursive deletions can end-up reclaiming black candidate buffered in the
oldCandidatesBuffer (which motivates line 3 in Procedure Collect-White).

Procedure Process-Buffers (Figure 5.16) prepares the next invocation of the cycle col-
lection algorithm by filtering non-relevant candidates and preparing the buffers for the next
collection. It first iterates over all the middle buffers, while rejecting candidates which have
either died during current collection or were newly buffered during it. In addition, since the
oldest buffer of this buffer set would be the oldest buffer in the next collection, the status
of its candidates is modified (from mid-buffered) to old-buffered. Next, it traverses the new
buffer, while rejecting candidates that have died in the last (current) collection and changing
the status of the remaining candidates to mid-buffered (as newCandidatesBuffer would be
considered as a middle buffer in the next collection). Finally, it performs a cyclic swapping

between the buffers’ roles.

9Note that the recursive deletion, i.e., Procedure RC-Free, modifies the released object status to non-

buffered.
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Procedure Collect-White

begin

1.  for each cand in oldCandidatesBuffer do
2. remove cand from oldCandidatesBuffer
3. if lis-Released(cand) then

// TF NOT RELEASED DURING PREVIOUS CYCLES RELEASES

4. cand.status := non-buffered

5. if cand.color = white then // GARBAGE CYCLE ROOT
6. Reclaim(cand)

end

Figure 5.14: Cycle collector: Collect-White Procedure

5.5 An Implementation for Java

We implemented the proposed collector on the Jikes RVM (research virtual machine) [1].
The entire system, including the collector itself is written in Java (extended with unsafe
primitives available only to the Java Virtual Machine implementation in order to access raw

memory). In this section, we would like to point out some of our implementation choices.

5.5.1 Memory Allocator

Our implementation employs the non-copying non-coalescing allocator of Jikes, which is
based on the allocator of Boehm, Demers, and Shenker [17]. This allocator is well suited
for collectors that do not move objects. Small objects are allocated from per-processor
segregated free-lists built from 16KB pages divided into fixed-size blocks. Large objects are
allocated out of 4KB blocks with a first-fit strategy. This allocator keeps the fragmentation

low and allows efficient reclamation of objects.

5.5.2 Object Headers

The object layout of our memory manager within the Jikes RVM version that we used is
displayed in Figure 5.17. Jikes’ basic object header contains two words!®. One word of

Y0An array object’s header includes an additional length field.
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Procedure Reclaim (obj: object)
begin
1. mark obj as released // SO THAT THE is-Released PROCEDURE DESCRIBED IN
// SECTION 5.4.2 WOULD IDENTIFY IT AS RECLAIMED
// NO NEED TO CHECK LOGPOINTER: 0bj IS A CYCLIC GARBAGE OBJECT
for each child child of 0bj do
if lis-Released(child) then
if child.color = white then
Reclaim(child)
else

child RC——

S A ol S

if child RC = 0 then // child 1S NOT PART OF THE CYCLE
10. // THE RC COLLECTOR SHOULD FREE IT

11. RC-Free(child) // RECURSIVE DELETION

12. obj.color := black

13. return obj to the general purpose allocator.

end

Figure 5.15: Cycle collector: Reclaim Procedure

the header is a status word supporting memory management, synchronization, and hashing.
The second word of the header holds a reference to the Type Information Block (TIB) for
the object’s class (which serves as Jikes’ virtual method table).

In order to support reference counting and cycle collection, our implementation employs
an additional two words in an object’s header. The first word is used to hold the LogPointer
of an object (detailed in Section 5.4.1). Similarly to the mechanism of Bacon et al. [6], the
second word holds the reference counts, the color, and the buffer status. As we use three
colors, two bits are necessary for color representation. Two bits are also needed to represent
the four buffered states (discussed in Section 5.4). The rest is devoted to representing the
RC and CRC. Each count includes an overflow bit. When the overflow bit is set, the excess
count is stored in a hash table. In practice, this hash table never contains more than a few

entries.
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Procedure Process-Buffers

begin

1. // FILTER CANDIDATES AND CHANGE STATUSES

2 for each buff which is midCandidatesBuffer do

3 for each cand in buff do

4 if is-Released(cand) V cand.status = newly-buffered then
5. remove cand from buff

6 else if buff is the oldest midCandidatesBuffer buffer then
7 cand.status := old-buffered

8 for each cand in newCandidatesBuffer do

9 if is-Released(cand) then

10. remove cand from newCandidatesBuffer

11. else

12. cand.status := mid-buffered

13. // SwaP-BUFFERS-ROLES

14.  tempBuffer := oldCandidatesBuffer

15. oldCandidatesBuffer := oldest midCandidatesBuffer buffer
16. make newCandidatesBuffer a midCandidatesBuffer

17.  newCandidatesBuffer := tempBuffer

end

Figure 5.16: Cycle collector: Process-Buffers Procedure

5.5.3 Triggering

In a stop-the-world garbage collector setting, mutators halt during a garbage collection.
However, with concurrent collectors, mutators run during a collection and hence also consume
memory. Therefore, when triggering a concurrent collection, our goal is, on one hand, to
trigger a collection as late as possible so that we get as few collections as possible (to avoid
garbage collection overheads). On the other hand, we would like to trigger collections early to
ensure that they will complete their work before the mutators consume all available memory
(otherwise, the mutators would have to halt, waiting for the collector thread to free memory).
Our triggering mechanism keeps an estimation of the work the next collection will have to

deal with and an estimation of the amount of free memory available. This work estimation
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LogPointer
RCfields
Status

TIB

Object’s header Object’s fields
Figure 5.17: SVRC: The object model

is based on the number of objects created since the last collection and the number of (old)
objects modified since the last collection. Whenever the ratio between the amount of work

and the estimated available memory goes below a certain threshold, a collection is triggered.

The triggering of a reference-counting collection is similar when comparing the backup
mark-and-sweep algorithm and the cycle collection algorithm. The backup mark-and-sweep
collection is triggered instead of a reference-counting collection every fixed number of reference-
counting collections whereas the cycle collector is run with each collection. The two alterna-
tives differ in their floating garbage creation. The backup mark-and-sweep collector collects
a garbage cycle in the first mark and sweep run after its formation. Hence, the average
time required to collect a garbage cycle depends on (and is bounded by) the frequency of
the mark-and-sweep activation. On the other hand, the cycle collection algorithm collects a
garbage cycle when the corresponding candidate is processed. Since the cycle collector exam-
ines only the candidates that were accumulated k collections ago, a garbage cycle is collected
k reference-counting collections after it was formed. Consequently, with both the cycle col-
lector and the backup tracing collector, one can bound the number of reference-counting
collections required for a garbage cycle’s reclamation. The difference between the pace of
collecting garbage cycles does not make a noticeable difference in the floating garbage accu-
mulation for most benchmarks, because the fraction of garbage cycles is usually negligible;
see Table 5.2 in Section 5.6.3.

5.5.4 Buffer implementation

"The reference-counting collector and its cycle collection extension use several kinds of buffers,
such as the Roots buffer, the Updates buffer, the YoungObjects buffer, the candidate buffers,
and the LiveStack buffer. Although these buffers represent different kinds of information,
all of them contain addresses of objects (and in case of the Updates buffer, also tagged
addresses), and thus they all have the same basic buffer implementation. As common for

garbage collectors implemented in Jikes, the memory of these buffers is set aside permanently.
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These buffers are implemented by fixed-sized blocks in memory that contain addresses.
We maintain a pool of such blocks that could be used for each one of the above buffers. If a
block becomes full, another block is taken from the pool (in case the pool becomes empty,
another block is allocated), and the newly taken block is connected to the previously used
block (and vice versa). Whenever a block is no longer is use, it is returned to the block pool.

The Roots buffer, the Updates buffer and the YoungObjects buffer were all employed
originally by the reference-counting sliding-view collector. The candidate buffers and the
LiveStack buffer are buffers added in order to support cycle collection. The LiveStack buffer
1s maintained only during the cycle collection algorithm, but the candidate buffers are kept
throughout the program. Each collection acquires a new candidate buffer at the beginning
of the reference-counting collection, and releases the oldest candidate buffer at the end of

the cycle collector collection.

5.9.5 Root set

The root set of the sliding-views reference-counting collector includes its global variables,
its static variables, the contents of each thread’s run-time stack and the snooped objects.
The original implementation of the sliding-view reference-counting collector did not mark
the roots explicitly. Instead, in the beginning of a collection, when determining the root
set (and adding the addresses of objects referenced by the roots into the Roots buffer), the
collector incremented the reference-count field of each root object, so that it would not be
reclaimed in the current collection. At the end of a collection, the collector re-traversed the
root set (i.e., objects referenced by the Roots buffer) decrementing the reference-count field
of each root object.

During Procedure Mark (introduced in Figure 5.8), the cycle collection algorithm needs
to know whether a traversed object belongs to the root set, in order to perform two of the
optimizations described in Section 5.3.5 for the root set. To do this efficiently we mark all root
objects (at the beginning of the collection) as root objects using a designated bitmap. Hence,
checking whether an object belongs to the root set, involves only the relevant bit probation.
When implementing these optimizations, one has to take this extra, space overhead into
account.

Note that the objects belonging to the root set, which have a zero reference count,
are checked in the next collection to see whether they have become garbage. The objects
belonging to this set, which have a non-zero reference count and are not referenced by the

system roots in the next collection, are pushed into the candidate buffer of the next collection:
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the number of pointers to these objects have been decreased between the two collections.

5.5.6 Candidate buffers

The candidate buffers are implemented using our standard buffer implementation described
in Section 5.5.4. Inserting a candidate into this buffer (as described in Figure 5.5) requires
only putting its address in the buffer, and modifying its status bit. Removing an object
from the candidate buffers is done at various occasions by several procedures as presented
in Figures 5.7, 5.14 and 5.16. Note that all of these instances occur while traversing
a candidate buffer. Consequently, removing a candidate from the buffer never involves a
sequential search for this candidate. While removing candidates we usually pack the valid
entries in the buffer at the head of the buffer, thus, reducing overall buffer usage.

5.6 Measurements

Platform and benchmarks. We ran our measurements on a 4-way IBM Netfinity 8500R
server with 550MHz Intel Pentium III Xeon processors and 2GB of physical memory. We
used the SPECjvm98 benchmark suite and the SPECjbb2000 benchmark (both described
in SPEC’s web site [90]). We feel that the multithreaded SPECjbb2000 benchmark is more
interesting, as the SPECjvm98 benchmarks are mostly single-threaded.

Testing procedure. We used the benchmark suite using the test harness, performing
standard automated runs of all the benchmarks in the suite. Our standard automated run
runs each benchmark five times for each of the JVM involved (each implementing a different
collector). Finally, to understand the behavior of our collector better under tight (in Jikes)
and relaxed conditions, we tested it on varying heap sizes. For the SPECjvm98 suite, we
started with a 32MB heap size and extended it by SMB increments until reaching a final
large size of 96MB. For SPECjbb2000 we used larger heaps, starting from a 256MB heap
size and extending it by 64MB increments until reaching a final large size of 704MB.

The compared collectors. We incorporated the cycle collection algorithm into two collec-
tors: the Levanoni-Petrank reference-counting collector, and the more efficient age-oriented
collector. Both collectors are also implemented in Jikes and are accompanied by a backup
mark-and-sweep collector that is run infrequently to collect garbage cycles. For performance
measurements, we ran both collectors accompanied by our cycle collection algorithm against

both collectors when using the backup mark-and-sweep algorithm. In addition, we com-
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pared characteristics of our cycle collection algorithm (with both collectors), against the
characteristics of the previous on-the-fly cycle collector of Bacon and Rajan [6].

5.6.1 Performance

Our main benchmark is SPECjbb2000. SPECjbb2000 requires a multi-phased run with an
increasing number of warehouses. The benchmark provides a measure of the throughput and
we report the throughput ratio improvement when applied with the proposed cycle collection
algorithm (compared to the same collector with a backup mark-and-sweep algorithm). Thus,
the higher the ratio, the better our algorithm behaves, and in particular, any ratio larger

than 1 implies that the cycle collector outperforms the tracing auxiliary collector.

The SPECjbb2000 benchmark reports the throughput achieved, and hence Figure 5.18
depicts the throughput ratio between using the cycle collector and a backup tracing collector
when both are used with the Levanoni-Petrank collector on a varying number of warehouses
and heap sizes. Note that with 1-3 warehouses the collector has a spare processor to run
on, since the platform has four processors. In this case, throughput differences occur only
when the collector is not efficient enough to free enough space for program threads on-going
allocations. This is more noticeable with tight heaps. With 4-8 warehouses, the collector
does not have a spare processor and its use of CPU directly affects the throughput. The
tracing backup collector outperforms the cycle collector usually by 5%-10%.

The same measurements were run when the cycle collector and the backup tracing col-
lector were used with the age-oriented collector; see Figure 5.19. Here, only old objects are
collected with reference counting, and thus the cycle collector runs only on old candidates.
In this case, there is not much difference between the two options for collecting cycles, ex-
cept for tight heaps. Here cycle collection is preferable on backup tracing (as an add-on to
reference counting) when the heap is tight.

When running the SPECjvm98 benchmarks on a multiprocessor, the collector runs con-
currently with the program thread(s) on a spare processor. Figure 5.20 depicts the results
both with the Levanoni-Petrank reference-counting collector as well as with the age-oriented
collector''. The results do not point to a clear winner. Each application behaves somewhat

differently and most of the differences are below 5%. The only clear noticeable difference is

UThe SPECjvm98 benchmarks provide a measure of the elapsed running time. Here, the smaller the better.
Thus, when reporting SPECjvm98 results we report the running time ratios. For clarity of presentation, we

report the inverse ratio, so that higher ratios still show better performance of the cycle collector algorithm.
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Figure 5.18: SPECjbb2000 on a multiprocessor: Cycle collection throughput ratio for the

Levanoni-Petrank collector
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Figure 5.19: SPECjbb2000 on a multiprocessor: Cycle collection throughput ratio for the

age-oriented collector
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Benchmarks compress | jess | db | javac | jack | mtrt | jbb-1 | jbb-2 | jbb-3

Max. pause time 1.0} 1.3]0.7 1.71 1.0] 0.9 0.8 0.6 1.1

Table 5.1: Cycle collection maximum pause time in milliseconds

with the _227_mtrt benchmark. The reason for this difference is that, for this benchmark,
there exists an initial phase in which many objects are created and kept alive till the end
of the run. These newly created objects induce a large amount of work on the cycle col-
lector. During the (single) long collection, the mutators halt waiting for free space. The
performance difference is noticeable only with the reference-counting collector, and not with
the age-oriented collector. There, the cycle collector is not run on this pack of live young
objects.

5.6.2 Pause times

We measured the maximum pause times of the Levanoni-Petrank reference-counting collector
accompanied by our cycle collection algorithm. The maximum pause times for the runs of the
SPECjvm98 benchmarks and the SPECjbb2000 benchmark are reported in Table 5.1. The
SPECjvm98 benchmarks were run with a 64MB-sized heap and the SPEC;jbb2000 (with 1,2,3
warehouses) were run with a 256MB-sized heap size. In these measurements, the number
of program threads is smaller than the number of CPU. Note that if the number of threads
exceeds the number of processors, then large pause times appear because threads lose the
CPU to other mutators or the collector. The length of such pauses depends on the operating
system scheduler and is not relevant to the garbage or cycle collector. Hence we report only

settings in which the collector runs on a separate spare processor.

The maximum pause time measured for all benchmarks was 1.7 ms. The maximum pause
time of the Levanoni-Petrank reference-counting collector does not depend on whether it is
accompanied by a tracing backup or by a cycle collector. The operation that determines the
length of the pause time is the scanning of the roots of a single thread, which occurs in one
of the handshakes.

5.6.3 Collector characteristics

Amount of cyclic garbage. Table 5.2 provides, for each benchmark, the number of garbage
cycle objects reclaimed, the space they consume and the (space) fraction they consume
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RC AO

cyclic cyclic cyclic cyclic cyclic cyclic

objects bytes bytes objects bytes bytes
Benchmarks || reclaimed | (in MB) | fraction | reclaimed | (in MB) | fraction
compress 108 84.08 | 40.4% 0 0 0%
jess 24 0.15 0% 0 0 0%
db 16 0.09 0% 0 0 0%
javac IM| 6764 347% | 057M| 37.02| 19.0%
mtrt 66052 5.78 1.5% 66042 5.66 1.5%
jack 8976 1.72 0.3% 3360 0.62 0.1%
ibb 146 088 | 01% 0 0 0%

Table 5.2: Cyclic garbage collected for each benchmark by our cycle collector, when incor-

porated with the reference counting and the age-oriented collectors

Benchmarks compress | jess db | javac | mtrt | jack | jbb

Candidate buffers maximal size 45.3 | 70.3 | 260.2 | 1136.7 { 250.6 | 46.1 | 9549

Table 5.3: Candidate buffers maximal size (in KB) with the reference-counting sliding-view

collector (employing the cycle collector)

compared to the overall garbage size (i.e., including non-cyclic garbage). As the age-oriented
collector only employs a cycle collection on old objects, it sometimes reclaims a smaller set

of garbage cycles than the reference-counting collector.

The only benchmarks that produce a substantial amount of space in garbage cycles are
-213.javac and _201_compress. In _201_compress, there are some dozens of garbage cycles
composed of huge objects, and it, therefore, requires only a small amount of tracing. The
-213_javac benchmark on the other part, contains thousands of garbage cycles, thus requiring

a large amount of work of the cycle collector.

Candidate buffers space overhead. Table 5.3 provides, for each benchmark, the
maximal space consumed by the candidate buffers while the benchmark was run with the
reference-counting sliding-view collector. We measured the space consumed by the candi-
date buffer in each collection, and we report the maximal space recorded. These measure-

ments were taken while SPECjvm98 benchmarks were run with a 64MB-sized heap and
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SPECjbb2000 was run with a 256MB-sized heap.

Amount of tracing. To check that the proposed collector indeed traces much fewer
objects than previous collectors, we compared it to the previous cycle collector of Bacon
and Rajan [7]. To make the comparison fair, the new collector was measured only with the
reference-counting collector. We did not compare the cycle collector of Bacon and Rajan
incorporated into the age-oriented collector, as the original implementation of Bacon and
Rajan does not include an age-oriented version. We report the ratios of the candidates
ezamined and the ratio of objects traced when compared to those of [7]. To be extremely
conservative we did not include the objects scanned during the additional verification phase
of the algorithm in [7]. Thus, the actual advantage of the new collector is even higher than
reported. The reason that we did not count the additional phase is that, in this additional
phase, some of the objects were not actually traced. For these objects the actual operation

only included work on their colors.

In the graphs presented in Figure 5.21, the lower the ratio, the better the behavior of
the new algorithm, and any ratio smaller than 1 implies that it traced fewer candidates and
objects. The collector characteristics were measured with two and three candidate buffers.
In the first case, the implication is that candidates gathered until the current collection
will be considered only at the next collection, i.e., there is a delay of one collection before
handling the collected candidates. In the latter case, there is a delay of two collections. We
thus denote these two cases delay! and delay?.

Both configurations traced fewer candidates compared to the previous cycle collector
(of [7]) over all benchmarks. Also, when checking how many objects were traced, the new
cycle collector traced substantially fewer objects except for one case: the _227_mtrt bench-

mark.

Comparing a delay of one collection (two buffers) and delay of two collections (three
buffers), we see that the algorithm traces less with three buffers. This means that by delaying
the handling of a candidate, its traversal may sometimes be spared. However, when measur-
ing the benchmarks’ throughput in these two cases, there was mostly no clear throughput
superiority. This is due to the fact that the handling of candidate buffers (filtering candi-
dates each collection) also consumes time. Hence, one should tune the number of candidate
buffers used to its collector and its collection triggering policy. For our collectors, using two
candidate buffers was usually enough, but for collectors that run frequent collections, we

believe that using more buffers would improve efficiency.

In Figure 5.22, we report the additional saving when the cycle collector is used with

the age-oriented collector (on the old generation only). The same cycle collector is used.
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As can be seen, the further reduction in tracing is substantial for most benchmarks. This

demonstrates the effectiveness of the age-oriented approach when cycle collection is used.

Candidates filtering. We measured the effect of each candidate filtering strategy we
added, by measuring the fraction of candidates filtered out of all candidates identified. In
Figure 5.23, the fraction of candidates that were filtered out is presented for delays of one and
two cycles with the base reference-counting collector (of [63]). The blue portion represents
the objects that were re-buffered during the delay (and were thus filtered out). The turquoise
portion represents the objects that were reclaimed during the delay (and were thus filtered
out). For each benchmark, the left bar represents a delay of one collection cycle, while
the right bar represents a delay of two collection cycles. We distinguish between filtering
by reclamation and filtering by re-buffering. The latter means that the object will be re-
considered after k£ cycles. We stress that these filtering techniques are executed on the
candidates that have survived the filtering of acyclic objects used by Bacon and Rajan
(in [7]), which is reported to be highly effective to start with. The fraction we present is the

additional benefit obtained by the new filtering methods.

The new filtering techniques usually filter between 40%-80% of the surviving candidates.
The only benchmark for which these techniques are not effective is the _227_mtrt benchmark,
where only 7.26% of the candidates were eliminated. This may explain why _227_mtrt is the
only benchmark for which the number of candidates traced is similar to that of [7]. It can be
seen in Figure 5.23 that candidates are effectively eliminated by both methods. Finally, the
first cycle delay is far more effective in delaying the check than the second cycle. Nevertheless,
for some benchmarks (such as .213_javac and the SPECjbb2000 benchmarks) the filtering
benefit obtained at the second cycle delay is non-negligible.

5.6.4 Wasted work

The cycle collector traces candidates. Some of the tracing ends up reclaiming cyclic struc-
tures, but others identify reachable structures. The latter may be thought as a “waste” of
the collector’s work. We measured the overall number objects that the cycle collector traced
and the number of objects that were traced but not reclaimed. The fraction of wasted work

1s reported in Table 5.4.

In order to appreciate the amount of redundant work executed, one must also check the
overall amount of tracing the collector has executed. For example, -201_compress, _202_jess
and .209.db required above 90% percent of wasted work, but the cycle collector traced
(sometimes substantially) fewer then 50,000 objects in each of these benchmarks. In fact, the
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Levanoni-Petrank Age-Oriented

wasted | number of || wasted | number of
Benchmarks | work traced work traced

percent | objects percent | objects
COMPress 91.2% 3674 100% 792
jess 99.8% 46830 100% 2128
db 99.9% 38548 100% 1122
javac 43.9% | 5347924 55.1% | 3808987
mtrt 82.4% | 1127601 63.6% 544145
jack 26.3% 36554 5% 10607
jbb 100% | 11917616 || 100% | 11127115

Table 5.4: Number of traced objects (by cycle collection), and the percent of futile tracing

amount of tracing is substantial only for the _213_javac, the _227_mtrt and the SPECjbb2000
benchmarks, out of which only _213_javac indeed contains many cycles. SPECjbb2000 is a
long running program, requiring many garbage collections, which is the reason for the large
amount of object tracing (although it hardly contains any cycles). Reasons for extra object

tracings in _227_mtrt were discussed above.

5.7 Conclusions

We presented a new non-intrusive, complete, and efficient cycle collector adequate for use
with a reference-counting garbage collector. The new cycle collector runs concurrently with
the program threads, achieving negligibly short pauses of less than 2ms. It uses the sliding-
views reference-counting collector of Levanoni and Petrank (62, 63] together with the syn-
chronous cycle collector of Bacon and Rajan [7]. These algorithms do not naturally fit
together since the original cycle collector requires a list of all reference-count decrements,
whereas the original reference-counting collector is oblivious to most of these decrements.
However, we provide a finer analysis of cycle collection, showing that the information gath-
ered by the reference-counting collector is enough to guarantee reclamation of all unreachable

cycles.

Building on the sliding-views mechanism yields a drastic improvement in efficiency. Much
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of the work required to ensure concurrent correctness may be eliminated. We also add fil-
tering techniques to further optimize the collector’s performance. An additional theoretical
contribution is the completeness of the collector. The resulting cycle collector is guaranteed
to reclaim all garbage cycles, whereas the only available previously known concurrent col-
lector [7] had a (rare) sequence of events that prevented it from collecting an unreachable

cyclic structure forever.

We implemented the proposed cycle collector and provide the first direct comparison of
running reference counting with a cycle collector against running reference counting with a
backup tracing collector. Our results show that when reference counting is used to collect
the entire heap, the backup tracing collector outperforms the cycle collector. However,
when using the recommended setting in which reference counting is used for old ob jects and
tracing is used for young objects, the cycle collector performed equally to the backup tracing
collector, and even better on tight heaps.
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Chapter 6

Improving the Memory Behavior of a
Retference-Counting Garbage

Collector via Prefetching

6.1 Introduction

The performance gap between memory latency and processors’ speed is increasing, causing
memory accesses to become a performance bottleneck. Cache hierarchies are used to reduce
this gap, by keeping the currently used data close to the processor. Although the cache
memory is faster to access than main memory, caches are of limited size and usually cannot
hold the application’s entire working set. This may cause a significant number of cache
misses, yielding a considerable memory stall time (waiting for the data to be fetched onto
the cache). Moreover, cache misses are expected to become even more significant in the

future.

Data prefetching is a technique for reducing or hiding the memory stalls caused by cache
misses. Using prefetching, data could be brought onto the cache in advance, thus hiding the
latency of loads that miss the cache, and improving the overall program execution time (as
prefetch is a non-blocking memory operation). On the negative side, prefetching suffers from
several disadvantages such as an increase in memory traffic, cache pollution, and increase
in the number of executed instructions. In addition, to achieve performance improvement,

prefetch scheduling should be done with care. Data prefetched too early may be evicted
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from the cache before used, while a late prefetch will not mask the system latency.

Compiler-inserted data prefetching have been proposed for predictable access patterns
such as accesses to arrays, linked list and other pointer applications (e.g., [18, 67, 99]).
Boehm [16] noticed that memory stalls, caused due to cache misses, consume a large fraction
of a mark-sweep garbage collection running time, causing the collector to spend considerable
time waiting for memory. In particular, tracing collectors traverse the application’s live
objects, where each live object is likely to be read exactly once, in a random order, during each
garbage collection. As a considerable fraction of the heap is accessed during the collection,
and since the heap is appreciably larger than the cache, most accesses yield a cache miss.
However, since the addresses of the next objects to be traversed can usually be determined
in advance, prefetch can be used to prevent these cache misses.

Previous work [16, 18, 22, 98] showed that prefetching is able to reduce the cost of a
tracing garbage collection by improving memory performance. In this work we show that,
similarly to a tracing collector, the data accessed by a reference-counting collector [26] can
be anticipated. Thus, prefetching can be used to reduce the cache misses’ overhead incurred

by a reference-counting collector and improve the collector efficiency.

The representative reference-counting collector studied in this work employs the coalesc-
ing write-barrier introduced by [62, 63]. The coalescing write-barrier strategy eliminates a
large fraction of the reference-count updates and drastically improves over the overall ef-
ficiency of the traditional reference-counting collector. This write barrier records the first
pointer update of each object after a garbage collection cycle. A dirty flag indicates if an
object has already been modified. If not, then before executing the pointer modification,
all pointers in the object (i.e., all its current descendants) are written to a buffer. During
the next collection, the reference counts of all these descendants are decremented and the
reference counts of all new descendants of the object are incremented. Note that the count

updates are not executed in the write barrier, but in the next collection.

We consider three main parts of the memory manager:

1. The reference-count increments stage,
2. the reference-count decrements and object deletion stage, and

3. the objects’ allocation stage.

In accordance with these stages, we have identified five major opportunities where data

accesses can be predicted in advance, and prefetch instructions may be inserted to improve
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performance. These opportunities are spread across the three different reference-counting
stages. We study each of these opportunities and measure the improved performance for each
of the stages independently, and the overall garbage collection performance improvement as

well.

Implementation and measurements. We have implemented the proposed prefetching
insertions with a slightly modified version of the reference-counting collector supplied with
the Jikes RVM [1]. We used the SPECjbb2000 benchmark, the SPECjvm98 benchmarks
suite (both described in SPEC’s web site [90]) and the DaCapo benchmarks suite [27].
Measurements were carried out on a dual Intel’s Xeon 1.8GHz processors workstation. As
reported in Section 6.5 below, it turns out that unlike tracing collectors, for which each live
object is accessed a single time during the mark phase, most objects are accessed multiple
times by the reference-counting collector. Moreover, repetitive accesses tend to be close
in time. This reduces the potential benefits obtainable by prefetching. Nevertheless, our
proposed prefetch insertions were able to reduce garbage collection overhead by as much
as 14.9%, ultimately enabling an overall application speedup of 4.6%. On average, a 8.7%
reduction in memory management overheads and a 2.2% overall application speedup were

measured across all benchmarks.

Chapter organization. We start with reviewing the reference-counting collector in
Section 6.2. The prefetch insertion opportunities of the reference-counting collector are
presented in Section 6.3. Implementation and results are reported in Sections 6.4 and 6.5.

Related work is discussed in Section 6.6 and we conclude in Section 6.7.

6.2 The reference-counting collector

In this work, we propose inserting prefetch instructions into a reference-counting collector
in order to improve its efficiency. Section 6.3 describes the prefetch insertion opportunities.
We start with a review of the reference-counting collector and a pseudo code that will be

used to explain the possible insertions.

The basic idea underlying any reference-counting collector is to keep a reference count
field for each object telling how many references exist to the ob ject. Using the naive approach,
whenever a pointer is updated the system invokes a write barrier that updates the reference
counts. In particular, if the pointer is modified from pointing to O, into pointing to O,
then the write barrier decrements the count of O; and increments the count of Oy. When

the counter of an object is decremented to zero, it is reclaimed. The reference counts of all
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its children are then decremented as well possibly causing more reclamations recursively.

Deutsch and Bobrow [31] eliminated most of the computational overhead required to
adjust reference counters in their method of deferred reference counting. According to the
method, local references are not counted: thus the need to track fetches, local pointer dupli-
cation and cancellation are deemed unnecessary. Only stores into the heap need be tracked.
However, the immediacy of reference counting is lost to a certain extent, since garbage may

be reclaimed only after the mutator state is scanned and accounted for.

Even with deferred reference counting, traditional use of reference counts requires fre-
quent count updates. Whenever a heap reference is destroyed or overwritten, the reference
count of the object it references is decremented, and whenever one is created or copied, the
reference count of the object it references is incremented. The Levanoni-Petrank coalescing
write barrier (presented in [63]) eliminates the vast majority of the reference-count updates
by recording information on modified objects and using it to update the reference counts
during garbage collection time. Consider a pointer slot that, between two garbage collections
is assigned the values 0g, 01,09, ..., 0,. Reference-counting collectors execute 2n reference-
count updates for these assignments: RC(0p)——, RC(01)++, RC(0;)——, RC(02)++, ...,
RC(0,)++. However, it is observed that only two are required: RC(09)—— and RC(o, )++.

In order to be able to use this observation, the coalescing write barrier was proposed.
Each object is associated with a dirty flag which is cleared during the collection. Then,
during program run, whenever a pointer is modified, the dirty bit of the object holding this
reference is probed. If the object is dirty (i.e., has been modified since the last collection),
then the pointer assignment may proceed with no further action. Otherwise, the pointer slots
of the object are copied to a thread-local buffer before the assignment is executed. That
way, the “0p” value of a modified slot (the value of the slot in the previous collection) is
exactly the value recorded by the write barrier when the slot is modified. The “op,” value of
a modified slot is the value of the slot in the current garbage collection time. For a detailed
description and motivation see [63]

To simplify this work and the interpretation of the results, we haven’t used the full power
of the collector described in [63]. In particular, the collector we have used works in & stop-
the-world manner. An involved mechanism is developed in the original paper [63] to support
collector concurrency and application parallelism.
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Procedure Update(o: object, offset: int , new: object)
begin

1 if not o.dirty then // OBJECT NOT DIRTY

2 add o to ModBuffer

3 o.dirty :==true  // SET DIRTY

4. foreach field ptr of o which is not NULL

5 add ptr to DecBuffer

6 write( o, offset ,new)

end

Figure 6.1: Reference counting: Update Operation

6.2.1 Pseudo code

Next, we present a general pseudo code of a reference-counting collector which employs the

coalescing write barrier. In the below pseudo code we assume the existence of two buffers:

e ModBuffer: contains the addresses of the objects which were created or modified since

the previous collection.

o DecBuffer: contains the addresses of the objects which were referenced in the previous
collection by objects in the ModBuffer, i.e., referenced by objects that were modified

since the previous collection.

Mutator cooperation

The mutators need to execute garbage-collection related code on two occasions: when
updating an object and when allocating a new object. This is accomplished by the Update
(Figure 6.1) Procedure and the New (Figure 6.2) Procedure, respectively.

Procedure Update (Figure 6.1) describes the write barrier which is activated at each
(heap’s) pointer assignment (ignoring synchronization details). During the first modification
of an object after a collection, the write barrier records the modified object in ModBuffer
and it sets its dirty bit. Next, the modified object’s pointers are recorded in the DecBuffer.

After the logging has occurred, the actual pointer modification happens.

Procedure New (Figure 6.2) is used when allocating an object. Upon the creation of
an object, its address is logged onto ModBuffer, and the derty bit of the new object is set.
There is no need to record its children slot values as they are all null at creation time.
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begin
- 1.  Obtain an object obj of size size from the allocator.
2. insert the address of obj into ModBuffer
- 3. obj.dirty .= true
4.  return obj
end

Procedure New(size: Integer, obj: Object)

Figure 6.2: Reference counting: Allocation Operation

Procedure Collection-Cycle

begin

1.  accumulate all object directly reference by the program roots onto Roots
2. Process-ModBuffer

3.  Process-DecBuffer-and-Release

4.  Prepare-Next-Collection

end

Figure 6.3: Reference counting- Collection Cycle

Phases of the collection

The collector’s algorithm runs in phases as follows.

Mark roots: the objects directly reachable from the program roots are marked.

Process ModBuffer: The collector increments the reference count of the current
descendants of objects logged in ModBuffer, while clearing the dirty marks of these
objects.

Reclaim garbage: the collector decrements the reference counts of the ob jects logged
in DecBuffer while reclaiming objects (and their descendants using recursive deletion)
which have a zero reference count and which are not referenced by the system roots.

Prepare next collection: un-marks the objects referenced from the program roots

and prepares the buffers for the next collection.

Collector code
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Procedure Process-ModBuffer

begin

1.  for each object obj whose address is in ModBuffer do

2 obj.dirty := false

3 // INCREMENT CURRENT REFERENT OF THE OBJECT obj
4. for each pointer ptr of obj do
5

increment ¢ of object referenced by ptr

Figure 6.4: Reference counting- Process-ModBuffer

Procedure Process-DecBuffer-and-Release

begin

1. for each object obj whose address is in DecBuffer do
2 obj.rc——

3 if obj.rc = 0 A obj € Roots then

4. for each pointer ptr of obj do

5 push ptr onto DecBuffer

6 return obj to the general purpose allocator.
end

Figure 6.5: Reference counting- Process-DecBuffer-and-Release

The reference-counting collector’s code for collection cycle k is presented in Procedure
Collection-Cycle (Figure 6.3). The collector’s procedures follow.

Procedure Process-ModBuffer (Figure 6.4) handles the objects logged in ModBuffer.
These are all the objects that were modified or created since the previous collection cycle.
This procedure first clears the dirty bit of an object logged in M. odBuffer, and then increments
the reference count of the objects it references.

Procedure Process-DecBuffer (Figure 6.5) decrements the reference counts of objects

logged in DecBuffer, and performs the recursive deletion if necessary.

Procedure Prepare-Next-Collection (Figure 6.6) cleans the Roots, ModBuffer and DecBuffer
buffers.
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Procedure Prepare-Next-Collection
begin

1. Roots :=0Q

2. ModBuffer :=Q

3. DecBuffer =@

end

Figure 6.6: Reference counting- Prepare-Next-Collection

6.2.2 Allocation using segregated free lists

A garbage collector is accompanied by a memory allocator that serves the application’s al-
locations requests and the collector’s reclamations requests. The collector’s job is to find
unreachable objects and tell the allocator that these objects may be reclaimed and subse-
quently reallocated. A standard allocator that is used with our reference-counting collector
(and other non-moving collectors) is the segregated free lists allocator. A couple of prefetch
insertion opportunities that we propose relate to this allocator. We review this allocator
below.

Conceptually, a segregated free lists allocator [102] employs multiple linked lists of avail-
able memory. Each free list holds chunks of a particular size. Upon an allocation request, a
chunk is taken from the free list of the appropriate size. When a chunk of memory is freed,

1t is returned to the appropriate free list according to its size.

The implementation we use (the one delivered with Jikes RVM) uses a block-oriented
segregated free lists [17] that works as follows. The heap is divided into blocks, and each
block only holds objects of a single size. Thus, a block with an associated size is partitioned
to chunks of that size. The free list of any given size consists of a chain of blocks. Each block
has an associated bit-per-chunk mark array (bitmap), which records the occupancy status
of each chunk. When a chunk is allocated the relevant bit is marked. The bit is un-marked
when the object held in this chuck is reclaimed.

To avoid an excessive number of lists, the allocator does not maintain a separate free list
for each possible object’s size. An allocation request of a certain size is rounded up, so that
the chuck returned is the first available chunk of the free list of the closest larger or equal
size. If the relevant free list is empty, a block is taken from the blocks pool, the block is
divided to the appropriate size, and the first chunk of this block is returned.

When an object is reclaimed, the bit corresponding to the corresponding chunk is un-
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marked. An empty block (whose all chunks are free) may be returned to the blocks pool,
and used later with a different size. In order to return empty blocks to the blocks pool, at

the end of a collection cycle the blocks’ bitmaps are scanned.

6.3 Prefetching for Reference Counting

We now proceed to describing the prefetch opportunities existing for a reference-counting
collector (accompanied by a segregated free lists allocator), and the prefetch insertions that
we have applied. Recall that the work of the reference-counting based memory manager is
divided into three stages.

1. The reference-count increments stage (done during the Process-ModBuffer Procedure
presented in Figure 6.4).

2. The reference-count deletions stage (done during the Process-DecBuffer-and-Release

Procedure presented in Figure 6.5).

3. The objects’ allocation stage.

We propose five prefetch opportunities for the three stages.

6.3.1 Process-ModBuffer stage

Consider the pseudo code of the Process-ModBuffer Procedure presented in Figure 6.4. In
this procedure, the collector clears the dirty marks of the objects logged in ModBuffer,
while incrementing the reference count of their descendants. For this phase we propose two
prefetch opportunities. The modified Process-ModBuffer Procedure, including the prefetch
instructions, is presented in Figure 6.7. An explanation follows.

The first prefetch opportunity appears during the traversal of ModBuffer. The scan of
each object referenced by ModBuffer imposes a potential cache miss. Since ModBuffer is
traversed sequentially, this cache miss can be anticipated and avoided. A prefetching of
the object that should be scanned in the next iteration is inserted just before scanning the
current object. One can imagine prefetching further ahead and one can easily modify the
presented mechanism to achieve that, but we have obtained the most significant improve-
ments by prefetching a single address ahead. This follows a standard prefetch strategy used

in loops handling predictable array referencing patterns (e.g., [99]). The general strategy is
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Procedure Process-ModBuffer

begin

1 prefetch the first object whose address is in ModBuffer

2 previous := dummyObject

3 for each object obj whose address is in ModBuffer do

4 prefetch the next object whose address is in ModBuffer
5. obj .dirty := false

6 // INCREMENT CURRENT REFERENT OF THE OBJECT 0bj
7 for each pointer ptr of obj do

8 prefetch the rc field of the object referenced by ptr
9 increment rc of object referenced by previous

10. previous := ptr

11. increment rc of object referenced by previous

end

Figure 6.7: Reference counting- Process-ModBuffer with prefetch

to place fetch instructions inside the loop body so that data for the future loop iteration(s)
is prefetched during the current iteration. Lines 1 and 4 in Figure 6.7 execute the proposed
prefetch. We will later refer to this strategy as the ModBuffer-traversal strategy.

The second prefetch opportunity exploited during this stage appears during the reference-
count increments. Each such increment incurs a cache miss if corresponding reference-count
field is not present in the cache. To handle this potential cache miss, we slightly delay the
increment of an object’s reference count. When an increment to a count is required, the
count of the object is prefetched. In the implementation we use, the reference count of each
object is located in the object header; however, the same technique applies also when the
count is stored in an auxiliary table. The location of the count is stored in a temporary
variable named previous. Next, the procedure handles the next object before returning to
the (hopefully cached) count and incrementing it. To avoid a special treatment to the first
iteration and the implied ‘if* statement, we use a dummy object whose reference count is
incremented when the first count is prefetched. This delaying strategy is presented in lines
2 and 8-11 of Figure 6.7. We will later refer to this strategy as the delay-increment strategy.
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Procedure Process-DecBuffer-and-Release

begin

1 prefetch the rc field of the first object whose address is in DecBuffer
2 for each object obj whose address is in DecBuffer do

3 prefetch the rc field of the next object whose address is in DecBuffer
4 obj.rc——

5. if obj.rc = 0 A obj ¢ Roots then

6 prefetch the word containing the mark-bit relevant to obj

7 for each pointer ptr of obj do

8 push ptr onto DecBuffer

9 return obj to the general purpose allocator.

10. //UNMARK THE MARK-BIT RELEVANT TO 0bj

end

Figure 6.8: Reference counting- Process-DecBuffer-and-Release with prefetch

6.3.2 Process-DecBuffer-and-Release stage

Figure 6.5 describes the Process-DecBuffer-and-Release Procedure, in which the collector
decrements the reference counts of the objects logged in DecBuffer, and recursively reclaims
the dead objects. This phase also includes two prefetch opportunities. The modified Process-
DecBuffer-and-Release Procedure, which includes these prefetch modifications, is presented

in Figure 6.8. A description follows.

Similarly to the Process-ModBuffer stage, the first prefetch opportunity for the Process-
DecBuffer-and-Release stage occurs with the traversal of DecBuffer. The reference-count
decrement of an object referenced by DecBuffer can lead to a cache miss if the reference-
count field is not present in the cache. We exploit the loop prefetch strategy described in the
previous stage and prefetch the reference count field of the next object in the buffer before
handling the current one. Lines 1 and 3 of Figure 6.8 present this prefetch strategy. We will
later refer to this strategy as the DecBuffer-traversal strategy.

The second prefetch opportunity of this stage occurs during the reclamation of an ob ject.
Once an unreachable object is discovered (line 3 of Figure 6.5), the object is first scanned
and all its descendants are recorded in the DecBuffer; only then the object is reclaimed. As
described in Section 6.2.2, the reclamation of an object sums up to un-marking the mark-bit
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Procedure Build-Block-Free-List

begin

1. markWordAddress := address of the first word in the block’s bitmap
2 markWordEnd := address of the last word in the block’s bitmap
3 previousFree := cursor address

4 while markWordAddress < markW ordEnd

5. markWord := word referenced by markWordAddress

6 foreach bit in markWord

7 if bit is not set then

8 objectRef := address of chunk relevant to bit

9 write objectRef into previousFree

10. previousFree := objectRef

11. markWordAddress += size of word

12. write null into previousFree

end

Figure 6.9: Reference counting- Build-Block-Free-List

corresponding to this object. As the word containing this mark-bit may not be present in
cache, we get another potential cache miss. This potential miss is handled by prefetching the
relevant mark-bit word as soon as we realize that the object should be reclaimed. Namely,
the prefetch is performed right after line 3 of Figure 6.5. This way, the miss penalty for
unsetting the relevant bit later is reduced or even eliminated. Line 6 in Figure 6.8 present

this prefetch modification. We will later refer to this strategy as the object-release strategy.

6.3.3 Build-Block-Free-List stage

The fifth prefetch opportunity occurs with the segregated free lists allocator. Each free list
employs a cursor pointing to the next available chunk for allocation in the corresponding
size. After allocating using the chunk referenced by the cursor, the cursor is advanced to the
next available chunk. To save scanning the bitmap during each allocation, a linked list of
free chunks is created for each block after each collection. In fact, this list is created lazily.
When a block is exhausted and a new block is selected, all its free chunks are linked for

future allocations. The pseudo-code of the Procedure Build-Block-Free-List which builds the
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Procedure Build-Block-Free-List

begin

1. markWordAddress := address of the first word in the block’s bitmap
2.  markWordEnd := address of the last word in the block’s bitmap
3.  previousFree := cursor address

4. while markWordAddress < markWordEnd

5. markWord := word referenced by markW ordAddress

6. markWordAddress += size of word

7. prefetch markWordAddress

8. foreach bit in markWord

9. if bit is not set then

10. objectRef := address of chunk relevant to bit

11. write objectRef into previousFree

12. previousFree := objectRef

13. write null into previousFree

end

Figure 6.10: Reference counting- Build-Block-Free-List with prefetch

described free list for a given block is presented in Figure 6.9.

Interestingly, it turned out that it is useful to prefetch the next mark-bit word while
processing the current one. Initially, we expected the hardware to do this prefetching au-
tomatically, since the address space of the block’s bitmap is traversed sequentially; but our
experiments reveal that this is not the case. Maybe the reason is that the bitmap traver-
sal is interrupted by writing data into the free chunks (line 9 of Figure 6.9). To sum up,
the Build-Block-Free-List Procedure was modified to exploit this loop prefetching strategy as
presented in lines 6-7 of Figure 6.10.

6.4 An Implementation for Java

We have implemented the proposed collector in the Jikes RVM (research virtual machine) [1].
The entire system, including the collector itself is written in Java (extended with unsafe

primitives available only to the Java Virtual Machine implementation to access raw memory).
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Figure 6.11: Jikes object model for reference counting

6.4.1 Object layout

The object layout of our memory manager within the Jikes RVM version we used is displayed
in Figure 6.11. Jikes RVM’ basic object model uses a two word header. One word holds
a TIB Type Information Block pointer for the object’s class (which serves as Jikes’ virtual
method table). The other word (“status word”) contains a thin lock, and a few unallocated
bits that can be used for other purposes. An array object’s header includes an additional
length field. In order to support reference-counting collection, Jikes employs an additional
third word in the object’s header to keep the reference count of an object (and other related
reference-counting information). Note that for both arrays and scalar objects all elements

of the header are available at the same offset from the reference to the object/array.

6.4.2 Object prefetching

As presented in section 6.3, an object is prefetched either in order to manipulate its reference-
count field or in order to scan it (i.e., determine its descendants). According to the object
layout presented in Figure 6.11, when prefetching the reference count of an ob ject we prefetch
16 bytes a head of the object reference, and when prefetching the object’s fields we prefetch
12 bytes a head of the object reference (as the scan should look at the ob ject’s TIB).

Note that when prefetching an object for scanning purposes, we have only prefetched
one word of the object (the one starting from the TIB). A large object (or a large references
array) may obviously contain many reference slots which are not included in this word, and
should arrive to the cache during the object scan. Moreover, the reference slots may not
even be presented in the beginning of the object (as the first fields of the object may include
non-reference fields). However, probing each object’s TIB reference, in order to check which
exact object’s parts should be prefetched, is costly: it involves more overhead and it could
only be done after the object header is available in the cache. In addition, if references are
present in adjacent object’s words (such as in a large references array), hardware prefetch is
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the best prefetching solution anyway. Due to these reasons and since most objects are small,
we assume that most of the references are contained in the objects’ beginning, and hence we
chose only prefetching the object’s first word. An alternative approach, to prefetch the first

two words before scan, was less successful.

6.5 Measurements

Platform and benchmarks. We have run our measurements on a dual Intel’s Xeon 1.8GHz
processors workstation. This processors have a 16KB sized L1 cache and a 512KB sized L2
cache. We have used the SPECjvm98 benchmark suite, the SPECjbb2000 benchmark? (both
described in SPEC’s web site [90]), and the DaCapo benchmarks [27).

The collector. We have inserted the prefetch instructions suggested in Section 6.3 into
the reference-counting collector of Jikes [1]. Next, we have compared the original reference-
counting collector of Jikes, against the collector modified to include these prefetch instruc-
tions. The reference-counting collector is accompanied by a dedicated cycle collection algo-
rithm. Since we are interested solely in the effects of prefetch over the reference-counting
collector, and since the cycle collection algorithm has a characteristic behavior that resembles
tracing collectors, we have disabled this cycle collection algorithm. For most applications
this means a negligible increase in the heap size. We stress that both collectors (i.e., the one
that employs prefetching and the one that doesn’t) run without cycle collection.

Testing procedure. We have performed standard automated runs of the detailed bench-
marks. Our standard automated runs run each benchmark ten times for both the original
reference-counting collector and the modified reference-counting collector. We report the
average of these runs. To guaranty a fair comparison of the garbage collection characteris-
tics, we included only runs in which each benchmark performs the same amount of garbage

collections on both collectors.

6.5.1 Prefetch improvements

Table 6.1 presents the improvements achieved by using prefetching. A negative percentage

represents a performance improvement, while a positive percentage represents a deteriora-

'We have slightly modified SPECjbb2000, to run a fixed number of transactions instead of running during

a fixed time period.
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overhead reduction overall
Process | Process DecBuffer | Sweep | overall benchmark

Benchmarks | ModBuffer and Release Blocks gc improvement
jess -0.1% -0.9% -11.9% | -1.8% | -0.9% (45.5%)
db -11.2% -6.7% -8.0% | -8.5% | -0.9% (10.0%)
javac -12.2% -8.4% -18.4% | -12.3% | -3.4% (27.3%)
mtrt -12.3% -3.3% -12.3% | -8.0% | -1.5% (19.2%)
jack -16.3% -5.9% -23.2% | -10.8% || -3.1% (28.3%)
jbb -8.3% -6.5% -26.5% | -14.9% | -4.6% (31.0%)
fop -12.5% -8.1% -11.3% | -10.5% | -2.1% (19.7%)
antlr -16.1% -8.4% -24.3% | -14.6% || -1.3% ( 8.4%)
pmd -8.7% -8.4% -12.3% | -9.6% | -3.3% (34.7%)
ps 3.0% -3.7% -13.0% | -1.7% | -0.6% (37.5%)
hsqldb -18.8% -11.0% -17.6% | -14.9% | -4.6% (30.4%)
jython -9.4% -0.5% -6.6% | -4.4% | -1.7% (38.1%)
xalan 2.4% -1.2% -24.4% | -0.6% [ -0.6% (91.6%)
average -9.3% -5.6% -16.1% | -8.7% -2.2%

Table 6.1: Reduction in reference-counting overheads obtained by prefetching

tion in performance. Columns 2-4 present the improvements achieved for each one of the
reference-counting collector stages implemented by the Process-ModBuffer Procedure (pre-
sented in Figure 6.4), by the Process-DecBuffer-and-Release Procedure (presented in Fig-
ure 6.5), and by the Build-Block-Free-List Procedure (presented in Figure 6.9). These pre-
sented improvements are calculated relatively to the corresponding reference-count stages.
Hence, for example, a -10.0% appearing on the second column indicates a 10.0% perfor-
mance improvement of the Process-ModBuffer stage. The fifth column presents the over-
all reference-counting’s performance improvement achieved. The sixth column introduces the
overall throughput improvement achieved for the benchmark (i.e., reduction in the overall
benchmark runtime). As this improvement depends on the garbage collection fraction out
of the entire benchmark, we have also included this fraction in parenthesis. Note that this
fraction contains, in addition to the collection overhead, also allocation overhead introduced
by the Build-Block-Free-List Procedure.
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Process | Process DecBuffer | Sweep

ModBuffer and Release Blocks

Benchmarks || fraction fraction fraction
jess 36.6% 51.5% 11.0%
db 39.2% 50.5% 8.9%
javac 31.6% 38.6% 28.4%
mtrt 26.8% 46.4% 25.2%
jack 31.3% 54.5% 11.6%
jbb 24.9% 34.0% 40.1%
fop 38.7% 39.5% 20.8%
antlr 30.6% 42.4% 25.6%
pmd 30.8% 43.8% 25.3%
ps 38.2% 52.5% 7.3%
hsqldb 30.1% 41.0% 26.9%
jython 32.4% 50.8% 15.7%
xalan 43.6% 51.8% 4.4%

. Table 6.2: Reference-counting profiling

Normally, Jikes runs the Build-Block-Free-List Procedure lazily when a new block is se-
lected for allocations. Therefore, while the Process-DecBuffer-and-Release and the Process-
DecBuffer-and-Release Procedures are activated once per a garbage collection cycle, the Build-
Block-Free-List Procedure is activated numerous times during the benchmark run (i.e., be-
tween the collections). In order to accurately measure the time overhead of this procedure,
we have slightly modified Jikes reference-counting collector to activate the Build-Block-Free-
List Procedure continuously (non-lazily), for all non-empty blocks, once at the end of each

collection.

To make the picture complete, Table 6.2 presents the distribution of the reference-
counting collector overhead within the three different stages. These three stages together
impose almost a 100% of the reference-counting collector overhead (as stages such as scanning
threads’ stack are not included). The presented distribution combined with the prefetch im-
provement achieved in each stage (appearing in columns 2-4 in Table 6.1), creates the overall
garbage collection improvement introduced in column five of Table 6.1.
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One can see that the employed prefetch strategies reduce the overall overhead of reference-
counting for all benchmarks. This is emphasized by the last line of Table 6.1, which presents
the average improvement of each column. For most benchmarks, prefetching is able to reduce
the overhead imposed by each one of the three stages. Note, however, that the improvements
are not steady among the different benchmarks and among the different stages. We study
this issue in Section 6.5.2 below.

6.5.2 Reference-counting objects’ access behavior

In this section we study the memory access patterns of a reference-counting collector in order
to understand the potential of prefetch instruction insertions. Recall that tracing collectors
traverse the application’s live objects in an arbitrary order (depending on the objects graph).
If a mark table is used by a tracing collector, each live object is likely to be read exactly
once during a collection, since if it was already traversed, its corresponding mark bit in the

mark table would indicate that it should not be traversed again.

To analyze the way reference counting accesses objects, we ran the following measure-
ment. We consider each object scan and each reference-count update as a single memory
access?, as each such operation may cause a cache miss. We started by recording the address
of each such access into ge-log files, one log file per collection. Next, each gc-log file was
analyzed in the following manner. For a given window size w, we have checked for each
access, if the same address was accessed during the last w (distinct) accesses®. For each
benchmark, we outputted the fraction of hits, in which an access has repeated itself within

the window size, as a function of the window size.

The results appear in Table 6.3. We ran the above measurements with five window sizes:
100, 1000, 10000, 100000, and 1000000. The different window sizes demonstrate access
behavior for various cache sizes. The smaller windows are more representative of L1 cache-
miss behavior, whereas the larger window sizes represent behavior with L2 cache sizes. In
addition, we have also separated the measurements into the Process-ModBuffer phase
and the Process-DecBuffer-and-Release phase to see if the patterns are different for the

various stages. These measurements appear in Tables 6.4 and 6.5.

The measurement should be read as follows. If a 40% percentage appears under the

100 column of the slot referring to a certain benchmark, it means that 40% of the accesses

2In this approximate measure, we count an object’s scan as a single access, although it may be involve

multiple accesses, e.g., because and object may be large and may contain several slots.
$We always consider a first access of an ob ject in a collection as a miss.
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window size
Benchmarks 100 1000 | 10000 | 100000 | 1000000
jess 58.2% 64.1% | 66.9% | 68.0% | 72.7%
db 15.1% | 15.8% | 16.8% | 68.3% | 80.2%
javac 31.3% | 37.5% | 40.5% | 42.8% | 50.9%
mtrt 13.6% | 17.0% | 185% | 19.8% | 22.1%
jack 25.9% | 27.9% | 29.0% | 30.5% | 36.3%
jbb 23.5% | 30.5% | 34.7% | 38.2% | 46.2%
fop 28.5% | 33.4% | 35.1% | 37.0% | 42.0%
antlr 23.2% | 26.2% | 28.1% | 29.1% | 33.3%
pmd 28.9% | 32.0% | 35.4% | 39.9% | 47.3%
ps 782% | 79.5% | 79.8% | 80.2% | 90.7%
hsqldb 26.0% | 27.9% | 29.5% | 31.7% | 40.0%
jython 54.5% | 55.4% | 56.1% | 56.5% | 57.1%
xalan 04% | 0.6% | 2.8% | 99.0% | 99.5%
average 31.3% | 34.4% | 36.4% | 49.3% | 55.3%

Table 6.3: Percentage of repeated object accesses (hit ratios) for the entire collection

were to memory locations that have been previously accessed during the last 100 accessed
(distinct) addresses. A higher percentage is highly correlated to low cache-miss ratio and to

a reduced potential for effective prefetching.

It turns out that unlike tracing collectors, the repeated access with reference counting is
quite high and the repeated accesses have temporal proximity. Hence, many memory accesses
hit the L1 cache, making the prefetch a burden, or hit the L2 cache, making the prefetch less
effective. Another interesting property is that the probability of a hit is (sometimes much)
higher during the Process-ModBuffer stage than during the Process-DecBuffer-and-
Release stage. To better understand this phenomenon, we have also measured for each of
these stages the fraction of hits, in which an access has repeated itself within an infinite
window size (i.e., the fraction of accesses which deal with an object which was already
accessed in this stage). This measurement, introduced in the seventh column of Tables 6.4

and 6.5, exhibits two reasons for the hit ratio difference of the two stages.
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window size

Benchmarks 100 1000 | 10000 | 100000 | 1000000 00

jess 62.4% | 69.4% | 73.3% | 74.0% | 74.5% | 74.6%
db 17.7% | 18.5% | 19.7% | 70.1% | 70.6% | 70.6%
javac 42.6% | 50.0% | 53.7% | 55.6% | 58.8% | 60.0%
mtrt 19.5% | 24.7% | 26.4% | 27.6% | 27.9% | 27.9%
jack 372% | 39.9% | 41.2% | 42.3% | 42.7% | 42.7%
jbb 33.6% | 42.0% | 48.2% | 51.1% | 55.1% | 55.4%
fop 38.5% | 45.2% | 47.5% | 49.7% | 51.8% | 51.9%
antlr 36.0% | 39.8% | 42.5% | 43.8% | 44.1% | 44.1%
pmd 42.7% | 46.8% | 51.3% | 56.7% | 58.4% | 58.4%
ps 82.1% | 83.8% | 84.2% | 84.4% | 84.4% | 84.4%
hsqldb 41.5% | 43.9% | 45.8% | 47.6% | 48.2% | 48.2%
jython 55.5% | 56.9% | 57.8% | 58.3% | 58.4% | 58.4%
xalan 0.7% 0.9% 31% | 99.1% | 99.1% | 99.1%
average 39.3% | 43.2% | 45.8% | 58.5% | 59.5 % | 59.7%

Table 6.4: Percentage of repeated object accesses (hit ratios) for the Procedure Process-

ModBuffer

First, the infinity hit ratio of both stages demonstrates that there is an inherent better
hit ratio for the Process-ModBuffer stage. This means that the per-object number of
accesses during the Process-ModBuffer stage is higher than the per-object number of
accesses during the Process-DecBuffer-and-Release stage. The reason is that during
the Process-DecBuffer-and-Release stage, an object is accessed only when its reference
count is decremented. We do not count the possible following object’s scan (if it should be
reclaimed) as an access, as this access is tied to its previous access. However, during the
Process-ModBuffer stage an object is considered accessed when it is scanned (if it was
logged in the ModBuffer) and when its reference-count field is incremented. Thus, consider
for example a newly created object which is referenced by a single object. This object would
be accessed twice during the Process-ModBuffer stage: when it is reached during the
ModBuffer traversal and when its reference count is incremented. However, if its reference

count is later decremented during the Process-DecBuffer-and-Release stage, it would
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window size
Benchmarks || 100 1000 | 10000 | 100000 | 1000000 | oo
jess 53.8% | 58.9% | 60.3% | 61.2% | 66.6% | 67.8%
db 12.4% | 13.0% | 13.9% | 66.1% | 67.5% | 67.5%
javac 17.2% | 21.9% | 24.1% | 26.4% | 40.4% | 50.2%
mtrt 7.0% | 82% | 9.6% | 10.5% | 15.0% | 19.0%
jack 13.9% | 15.1% | 16.1% | 17.7% | 29.1% | 39.0%
jbb 12.5% | 18.0% | 20.1% | 24.3% | 36.6% | 51.8%
fop 15.4% | 18.0% | 18.8% | 20.4% | 29.0% | 38.6%
antlr 7.6% | 9.7% | 10.5% | 11.3% | 20.2% | 32.0%
pmd 12.7% | 14.6% | 16.6% | 20.1% | 34.2% | 51.1%
ps 742% | 75.2% | 75.3% | 75.9% | 83.7% | 84.0%
hsqldb 7.5% | 87% | 10.1% | 12.6% | 25.9% | 37.7%
jython 53.4% | 54.0% | 54.3% | 54.7% | 55.7% | 58.8%
xalan 02% | 03% | 2.6% | 98.8% | 99.1% | 99.1%
average 22.1% | 24.3% | 25.6% | 38.5% | 46.4% | 53.4%

Table 6.5: Percentage of repeated object accesses (hit ratios) for the Procedure Process-

DecBuffer-and-Release

only be accessed once.

The second reason for the higher hit ratio for the Process-ModBuffer stage is high-
lighted by the difference between the 1000000 column and the infinity column of Tables 6.4
and 6.5. It could be seen that for the Process-ModBuffer stage there is hardly any differ-
ence between these two columns, while there is some gap (for some of the benchmarks) for
the Process-DecBuffer-and-Release stage. The reason is that adjacent objects logged in
the ModBuffer were, very probably, created or modified also adjacently in time, sometimes
by the same method. Thus, such objects tend to reference similar ob jects or even each other.
For example, newly created objects are often being referenced by other objects, immediately
after being created. Hence, the newly created object’s log would be adjacent to the log of the
object which was modified to reference it (and hence was also logged). Therefore, program
dictates high locality, which is seen during the Process-ModBuffer stage which orderly
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process the ModBuffer. An interesting future work could examine several alternatives of
processing the DecBuffer during the Process-DecBuffer-and-Release stage, to see which
one yields the best locality.

6.5.3 Prefetch strategy profiling

Table 6.1 introduced in Section 6.5.1 presents the prefetch improvements achieved for the dif-
ferent reference-counting stages. However, two different prefetch strategies were implemented
in both the Process-ModBuffer stagé and the Process-DecBuffer-and-Release stage.
Tables 6.6-6.7 break the overall improvement into the shares of each particular strategy.

Table 6.6 relates to the Process-ModBuffer stage, displaying the effect of the ModBuffer-
traversal strategy and the effect delay-increment strategy presented in Section 6.3.1. As can
be seen, the ModBuffer-traversal strategy is the major cause for the prefetch improvement
of the Process-ModBuffer stage.

To understand why, we have further analyzed the objects’ access behavior of the Process-
ModBuffer stage. This stage includes two access types:

e The scan of objects logged in the ModBuffer. These objects were either created or mod-
ified since the last garbage collection. These objects are prefetched by the ModBuffer-

traversal strategy.

e The reference-count increment of objects referenced by the above objects. These ob-

Jects are prefetched by the delay-increment strategy.

Table 6.8 presents the fraction of accessed objects of each type. As can be seen, if
there is any advantage to one of these stages, it is to the one using the delay-increment
strategy, failing to explain why it is less beneficial. However, we have also compared the
repeated access patterns for various sized windows as above. These results are presented in
Tables 6.9 and 6.10. It can be clearly seen that the percentage of hits for the traversal of
the ModBuffer was substantially lower. This is what makes it more susceptible to prefetch

insertion improvements.

The pattern of accesses to objects whose reference-count is incremented shows that most
of the increments are done after the object was lately accessed (and hence are probably
available either in the L1 cache or in the L2 cache). On the other hand, most of the ob jects
logged in ModBuffer are objects created since the last collection (i.e., not old objects which
were logged because they were modified since the last collection). According to Table 6.9,
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ModBuffer delay Process
traversal | increment | ModBuffer

Benchmarks share share improvement
jess -5.5% 5.3% -0.1%
db -7.4% -3.8% -11.2%
javac -9.2% -3.0% -12.2%
mtrt -9.5% -2.9% -12.3%
jack -13.8% -2.5% -16.3%
jbb -7.9% -0.3% -8.2%
fop -10.7% -1.8% -12.5%
antlr -13.2% -2.8% -16.1%
pmd -6.6% -2.1% -8.7%
ps -4.0% 7.1% 3.0%
hsqldb -12.5% -6.3% -18.8%
jython -10.8% 1.4% -9.4%
xalan 0.2% 2.1% 2.4%
average -8.5% -0.7%

Table 6.6: A break of the prefetching improvement due to the two strategies involved in the

Process-ModBuffer stage

many of these newly created objects are encountered for the first time during the collection
when they are encountered during the traversal of the ModBuffer. Therefore, the ModBuffer-
traversal strategy has more potential of hiding (or reducing) cache miss’ stalls, which explains

the different contribution of each of the two strategies.

Another possible reason for the delay-increment strategy being less beneficial is that it
does not only add the prefetch instruction overhead. It also stores the ob ject whose reference-
count should be incremented into a temporary variable for each reference-count increment

(line 10 of Figure 6.7), thus increasing the register pressure, causing an additional overhead.

Table 6.7 relates to the Process-DecBuffer-and-Release stage, displaying the effect
of the DecBuffer-traversal strategy and the effect of the object-release strategy (presented
in Section 6.3.2). Here, the strategy responsible for most of the benefit is the DecBuffer-
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DecBuffer | object | Process DecBuffer

traversal | release and Release
Benchmarks- share share improvement
jess -0.9% -0.1% -0.9%
db -6.4% -0.2% -6.7%
javac -6.8% -1.6% -8.4%
mtrt -2.0% -1.4% -3.3%
jack -4.3% -1.7% -5.9%
jbb -5.6% -0.9% -6.5%
fop -6.7% -1.3% -8.1%
antlr -6.9% -1.4% -8.4%
pmd -6.6% -1.8% -8.4%
ps -3.4% -0.1% -3.7%
hsqldb -10.0% | -1.0% -11.0%
jython -0.1% -0.4% -0.5%
xalan -0.8% -0.4% -1.2%
average -4.7% | -0.9%

Table 6.7: A break of the prefetching improvement due to the two strategies involved in the

Process-DecBuffer-and-Release stage

traversal strategy. We have not further analyzed the objects’ access behavior of the Process-
DecBuffer-and-Release stage, since as opposed to the Process-ModBuffer stage, it does
not access two types of objects (it accesses objects and bitmap’s words).

6.5.4 Hardware counters measurements

To understand better the effect of the inserted prefetch instructions, we have measured sev-
eral relevant hardware counters using PAPI (the Performance API [77]). These counters
were measured during the garbage collection work of both versions of the reference-counting
collector: with and without prefetching. Table 6.11 presents the difference of these counters

between the versions for the entire garbage collection work. Columns 2-4 present the differ-
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scanned | rc-update
Benchmarks || object object
jess 25.7% 74.3%
db 28.4% 71.6%
javac 39.8% 60.2%
mtrt 71.8% | 28.2%
jack 57.1% 42.9%
ibb 431% | 58.9%
fop 48.1% | 51.9%%
antlr 55.8% 44.2%
pmd 41.0% 59.0%
ps 15.6% 84.4%
hsqldb 51.6% | 48.4%
jython 41.5% 58.5%
xalan 0.8% 99.8%
average 40.0% | 60.0%

Table 6.8: Profile of the objects accessed during the Process-ModBuffer stage

ence in the number of cycles stalled on any resource, the L2 load misses difference and the
data translation look aside buffer (TLB) misses difference. Column 5 presents the overall
garbage collection improvement (which has been presented in Table 6.1 and is repeated here

for easier evaluation).

It can be seen that the number of 1.2 cache misses does not vary much, although it does
decrease on average. However, there is usually a noticeable decrease in the number of TLB
misses and in the number of cycle stalls. Qur belief is that the prefetch was issued a bit
too late to completely eliminate the L2 cache miss. But since the data has started moving
towards the cache, we see a decrease of the stalls and the TLB misses. The option of running
the prefetch instructions earlier has a cost in temporary variables and was not beneficial in

practice.
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window size
Benchmarks 100 1000 | 10000 | 100000 [ 1000000
jess 23% | 25% | 2.7% | 2.9% 4.8%
db 29% | 32% | 3.6% | 4.1% 4.4%
javac 24.3% | 26.2% | 26.9% | 27.5% | 29.3%
mtrt 39% | 42% | 44% | 46% | 4.6%
jack 10.7% | 11.1% | 11.3% | 11.6% | 11.8%
jbb 22.7% | 29.5% | 29.9% | 30.3% | 30.4%
fop 23.3% | 24.1% | 24.6% | 25.0% | 25.7%
antlr 14.4% | 15.0% | 15.5% | 15.8% | 15.8%
pmd 19.0% | 19.7% | 21.0% | 23.5% | 24.3%
ps 54% | 5.6% | 5.8% | 6.0% 6.0%
hsqldb 25.8% | 26.4% | 26.7% | 27.1% | 27.2%
jython 31% | 33% | 3.5% | 3.6% 3.6%
xalan 28.0% | 29.4% | 30.9% | 33.5% | 34.9%
average 14.3% [ 15.4% | 15.9% | 16.6% | 17.1%

Table 6.9: Already accessed objects’ percentages for the modified objects logged in Mod-
Buffer

6.6 Related work

VanderWiel and Lilja [99] provide a detailed survey examining diverse prefetching strategies,

such as hardware prefetching, array prefetching and other software prefetching.

Similarly to our approach, several previous studies proposed adding, by hand, prefetch
instructions to specific locations in garbage collectors algorithm. However, they all studied
tracing collectors. Boehm [16] proposed prefetching nodes that are pushed to the mark stack
during the mark phase of a mark-sweep collector, in order to make it later available when
popped from stack to be scanned. This prefetching strategy yields improvements in execution
time, although suffering from prefetch timing problems: too early prefetches and too late
prefetches. These timing problems were addresses by [22, 98]. Both suggested improved
prefetching strategies to the mark phase by imposing some sort of FIFO processing over the
mark stack, in order to control the time between the data prefetch and its actual access. In
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window size
Benchmarks 100 1000 | 10000 { 100000 | 1000000
jess 83.2% | 92.5% | 97.8% | 98.6% | 98.7%
db 23.5% | 24.6% | 26.0% | 96.2% | 96.8%
javac 54.7% | 65.8% | 71.4% | 74.1% | 78.4%
mtrt 59.5% | 77.2% | 82.5% | 86.4% | 87.3%
jack 72.5% | 78.2% | 81.1% | 83.2% | 84.0%
jbb 42.0% | 51.5% | 62.2% | 66.9% | 73.8%
fop 52.5% | 64.7% | 68.8% | 72.5% | 76.0%
antlr 63.4% | 71.2% | 76.6% | 791% | 79.8%
pmd 59.2% | 65.6% | 72.4% | 79.8% | 82.2%
ps 96.3% | 98.3% | 98.7% | 98.9% | 98.9%
hsqldb 58.2% | 62.6% | 66.0% | 69.5% | 70.5%
jython 92.8% | 94.9% | 96.4% | 97.1% | 97.2%
xalan 0.5% 0.7% | 2.9% | 99.6% | 99.6%
average 58.3% | 65.2% | 69.4% | 84.8% | 86.4%

Table 6.10: Already accessed objects’ percentages for the objects whose reference count was

incremented during the Procedure Process-ModBuffer

another related work, Cahoon [18] employs prefetching to improve the memory performarnce

of a generational copying garbage collector.

Another prefetch strategy to improve the memory management sub-system locality was
suggested by Appel [3]. Appel emulates a write-allocate policy on a no-write-allocate machine
by prefetching garbage before it is written (during its space allocation). Hence, this relevant
cache line will be allocated and the write (occurring during the object allocation) will hit

the cache.

Our approach tries to hide the latency caused by data cache misses by prefetching data
ahead of reference. Several other studies try to improve the locality of programs by moving
objects wisely in the heap. Chilimbi and Larus [23] place objects with high temporal affinity
next to each other, so they are likely to reside in the same cache block. Calder et .al. [19]
employ data placement algorithms to find a placement that decreases inter-objects conflict.
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Cycles | L2 cache | TLB || overall
Benchmarks || stalled | misses | misses gc
jess 88% | -11% |-17.3% || -1.8%
db -4.3% | -0.7% | 10.1% | -8.5%
javac -174% | -1.8% | -6.6% || -12.3%
mtrt -15.8% | -0.6% |-20.1% | -8.0%
jack -20.0% | -32% |-21.1% || -10.8%
jbb -14.8% | 2.5% -9.4% | -14.9%
fop -6.6% 01% |-14.0% || -10.5%
antlr -6.3% 01% |[-151% || -14.6%
pmd -9.6% 0.2% |[-11.2% || -9.6%
ps -2.0% 0% -21.6% || -1.7%
hsqldb -14.1% | -0.8% | -21.8% | -14.9%
jython -4.8% 0.4% -1.6% || -4.4%
xalan -0.7% 0.2% 37.6% || -0.6%
average -9.6% | -0.4% | -8.6%
Table 6.11: Hardware counters measurements

6.7 Conclusions

We have studied prefetch opportunities for a modern reference-counting garbage collector.
It turns out that several such opportunities typically exist for reference counting. We have
implemented such prefetch insertions on the Jikes Research JVM and it turns out that

prefetching is effective in reducing stall times and improving garbage collection efficiency. In

particular, the average garbage collection times were reduced by 8.7%.

We have also measured the memory access patterns of the collector and found out that,
unlike tracing collectors, objects are accessed repeatedly, reducing the potential benefit due
to prefetching. These measurements were able to explain the effectiveness of the various

strategies at the various stages. Wherever objects are repeatedly accessed and hits are

expected, prefetch insertions are less effective.
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Chapter 7

Patterns for the Efficient Use of

Managed Memory

7.1 Introduction

An especially intriguing issue in Programming Languages is the tension between the desire
to use a high level object oriented language such as Java or C#, which provides software
engineering benefits allowing fast construction of reliable and maintainable software, and
the popular choice of a lower level language that may yield more efficient programs. We
project this issue onto the memory management subsystem and try to deal with the issue of
using garbage collection versus a possibly more efficient manual allocation and de-allocation

technique.

Automatic memory management is an important feature of Java and C#, relieving pro-
grammers of the worry of a timely de-allocation of allocated memory objects. It is well
acknowledged for solving two most notorious bugs: memory leaks and dangling pointers. In
addition, the fact that developers can "forget about memory” imparts a more relaxed devel-
opment environment, which may yield faster development of better code. Although garbage
collection is a powerful software engineering construct and programmers are encouraged to
use it, it incurs an overhead on the runtime system and it may significantly slow down the
execution of a program. Consequently, researchers have spent a vast amount of time on

trying to improve garbage collector performance [55].

However, and in spite of modern garbage collector efficiency, a naive use of the memory
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manager abstraction in a user code may impose a high cost on performance. One extremely
inefficient use that often occurs in typical benchmarks is a user method that is invoked a huge
number of times during the run of the program and allocates an object each time it is called,
referencing it with another object’s instance variables. If each such allocation renders the
previously allocated object unreachable, then to ease the load, it is enough to allocate this
object once and use it repeatedly. Such a solution reduces the number (and overall overhead)
of allocations and it reduces the number (and overall overhead) of garbage collections. It
also improves program locality, as the same memory location is used repeatedly throughout

the run.

In many programs, excessive allocation is executed in a small number of specific allocation
sites (and for a small number of classes). In this work we! first propose a profiler that
can identify allocation sites that allocate excessively. Second, we propose two patterns to
modify these allocations when the modification can be easily carried out in a local manner:
compound object pooling and SOfMA (single object for multiple allocations). We study
these patterns in comparison to the standard object pooling pattern (see for example [95]).
These patterns, described in Section 7.2, drastically reduce the number of objects that are
allocated; instead, objects are reused, with three benefits. First, the time spent on allocation
significantly decreases. Second, the number of garbage collections is reduced, implying an
overall reduction in garbage collection overhead. Finally, a space reuse for a frequently
touched object improves program locality.

‘This work provides patterns that deal with the tension between the abstraction and the
efficiency of the memory management subsystem. We stress that we do not recommend
employing wide-scale explicit memory management. We strongly believe that automatic
memory management is important and should be used throughout the development process.
Automatic memory management cannot be beaten by our patterns; rather, they should ac-
company one another. A good way to enjoy the best of both worlds is to develop applications
using the garbage collector in order to speed up the development process and obtain more
reliable and maintainable code. When development is completed, the proposed mechanisms
should be invoked to help improve the efficiency of the application via small local modifica-
tions of a few (or even a single) allocation site. The rest of the allocations still use automatic

nmemory management.

We have explored the SPECjvim98 benchmark suite [90], the SPECjbb2000 benchmark [90],
and the DaCapo benchmark suite [27]. The profiler identified many of these benchmarks as

candidates for improvement and we have upgraded the performance of these benchmarks us-

'This project is a joined work with Yoav Ossia, from IBM Haifa Research Lab.
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ing simple local modifications via the two proposed patterns. The modifications were applied
to a small number of allocation sites (typically to a single allocation site in each benchmark).
Since small local modifications made a significant efficiency improvement for many standard
benchmarks, we expect a similar phenomenon with actual commercial applications. The

patterns proposed in this work may also be used with legacy code previously developed.

Our profiler extends the Merlin trace generator [46]. The profiler collects information
during the program run and its output highlights the candidate allocation sites. It also
indicates which pattern may be used to improve performance. Making these profiler-driven
modifications fully automate is an interesting future work. Full automatization can add the
safety guaranty. In this work we concentrate on very simple and local modifications, for
which safety can be easily checked.

Measurements. We ran measurements comparing the performance of the original ver-
sions of the applications and the modified versions. These were all run on different JVMs
and various memory managers to verify the universal effectiveness of the patterns. The re-
sults show substantial improvements in performance, depending on the JVM, the garbage
collector, and the benchmark. For example, with compound pooling SPECjbb2000 can
be improved by 3.0-9.3%. The SOfMA pattern improves the _227_mtrt benchmark of the
SPECjvm98 suite by 6.9-14.3%. Breaking down the improvement measured between the
reduction in garbage collection work and the reduction in application overheads, we see that
almost always both improve substantially. One exception is the naive object pooling that,
although it consistently reduces garbage collection work, also unfailingly impacts badly on

the application throughput.

Chapter organization. The patterns used to reduce memory management overheads
are introduced in Section 7.2. Section 7.3 introduces our profiler. Section 7.4 describes,
for each benchmark, the profiler’s output and the techniques chosen to be applied over it.
Measurements are presented in Section 7.5. Related work is discussed in Section 7.6 and

future work possibilities are presented in Section 7.7. We conclude in Section 7.8.

7.2 Explicit object management patterns

An allocation site is a line of code that allocates an object. When an allocation site is
frequently called, but the allocated object becomes unreachable soon thereafter, we say
that the allocation at that site is excessive. We propose three patterns dealing with the

implied inefficiencies of excessive allocation sites: object pooling, compound object pooling
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and SOfMA. We first review the (standard) object pooling pattern.

7.2.1 Object pooling

Object pooling is a mechanism that explicitly allocates and de-allocates objects within the
program. A “pool” of objects is initially allocated and kept as a free list. Instead of using
the memory manager, the program takes an object from the pool when it needs one, and
returns it to the pool when it is no longer needed. When the required number of objects
exceeds the number of pool objects, more objects are allocated to the pool on-the-fly. Object
allocation and deallocation are replaced with pool operations (get-from-pool and return-to-
pool). Traditionally, object pooling is recommended only for objects whose allocation is
dependant on invoking a costly system resource (such as setting up a communication port),
which can be eliminated by pooling.

Object pooling has other advantages. As it reuses the same objects instead of allocating
new ones, it reduces garbage collection work and improves locality. In addition, the user’s
knowledge about when an object is no longer needed is likely to be more accurate than the
object’s un-reachability property that is used by the garbage collector [89]. Exploiting more
accurate information can reduce the space usage and increase efficiency. Finally, reusing an
object saves some of the system overhead on allocation of new objects, e.g., Java always

resets all fields of a new object.

Nevertheless, object pooling has also drawbacks. First, the loss of automatic reclamation
benefits for software engineering, security, and ease of debugging. Second, the memory
manager usually allocates memory much faster than the pool yields an object. In addition,
in a multi-threaded application the pool operations must either use synchronization (during
allocation and de-allocation) or one pool per thread must be used, requiring more cycles to
identify the adequate pool and more space overhead. Finally, pooled objects are reachable
and thus create work for a tracing garbage collector on the lookout for them. This may

become significant if large pools are used.

To sum up, we expect object pooling to reduce the overall garbage collection overhead,

while (usually) decreasing the program threads’ performance.

7.2.2 Compound object pooling

Compound object pooling is an improvement over traditional object pooling. In compound
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Figure 7.1: A compound pool sub-graph example

pooling, an object is implicitly pooled together with some (or all) of its descendants. We
denote the object and its descendants that are pooled together with it the object’s sub-graph.
Compound pooling is applicable when the program allocates such a sub-graph frequently and
consistently. Namely, the parent object is allocated, its descendants are allocated thereafter,
and references are set in the parent to reference its descendants. A Compound pool keeps
a parent object that also has its sub-graph descendant objects allocated and referenced by
it. When the program needs to allocate a sub-graph, its root is taken from the pool by a
get-from-pool operation, and a return-to-pool operation returns the root to the pool when

the sub-graph is no longer needed.

Note the improvement over pooling all objects. The root obtained from the pool already
references to allocated descendant objects. So further allocations and (reference) assignments
are not required; only field initializations are executed. For a sub-graph that contains n
objects, we do not need to allocate n objects from the system or obtain n objects from a
pool. We execute exactly one pool operation. Reclaiming of a subgraph has similar savings.
This saving is even more effective if pool operations require synchronization by the program
threads. However, compound pooling is not as widely applicable as traditional pooling. It
can be effectively used only with sub-graphs, all of whose objects are allocated at the same

time and become un-reachable at the same time.

Figure 7.1 depicts an example of an object graph with six objects. If C, D and F are
always allocated together with A and become unreachable whenever A becomes unreachable,
then A can be pooled (implicitly) together with C, D and F. The next time A, C, D and
F are needed, the program will obtain them from the pool in single get-from-pool operation
(and later return them in a single return-to-pool operation). Therefore, each such sub-graph
reuse exchanges one pool operation for four object allocations and three assignments (C to
A, D to A, F to D). When the sub-graph becomes unreachable, a single pool operation
replaces four naive pool operations or a portion of the garbage collection work needed to

reclaim four objects. Note that objects B and E still require treatment by the program. They
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are either allocated anew or just become referenced by A and C, respectively (depending on

the existing program code).

7.2.3 Single object for multiple allocations

The last pattern proposed is relevant when many instances of a class are allocated, but only
one instance is reachable at each specific point in time. In such cases object pooling is not
required, as even a single object can host all such allocations. More specifically, suppose a
reference slot p references an object of class C and there is a frequently-called method that
allocates an object of class C to p. Further, suppose that an object that is allocated to p
is tightly dependant on p in the sense that it is created with p being the first reference to
it and it becomes unreachable exactly when p stops referencing it (upon assignment of a
newly allocated object to p). In this case, we may allocate a single object to host all the
transient objects to which p references throughout the execution. Usually, we allocate this
object as a referent of p if p is an instance variable, or we allocate it to an additional instance
variable that is added to the object containing the method in which p is local. The single
fixed instance of this object is allocated once and is modified whenever an allocation to p
appears in the original code. We denote this approach SOfMA, single object for multiple
allocations.

We found that, in several benchmarks, a large percentage of the overall allocated objects
are allocated in this manner. In these extreme cases, SOfMA provided substantial improve-
ment in performance. As with the object pooling patterns, SOfMA improves locality and
reduces allocations and garbage collection overhead by employing object reuse. However,
using SOfMA, the pool operations are no longer required. Thus, SOfMA does not reduce
the program threads’ performance as object pooling may do.

In the benchmarks that we explored we found two different types of locations in which

such a reference p appears. A description of these types follows.

An instance variable. In two of the benchmarks with which we worked (-201_compress
and _209_db), newly allocated objects were repeatedly being assigned to a single instance
variable during the program run (in a single allocation site). To deal with this case, we
assigned a fixed single object to this instance variable at the beginning of the program, and

modified it to have the relevant values whenever a new allocation of object is executed to it.

A temporary variable. The second location in which the reference D appears is in a

local method. In this case, we substitute the allocation to p by using an object that is
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allocated once when the object holding the method is created. Then, instead of allocating
to p, we reuse the single allocated object. In this case, a multithreaded program requires
more care. The modification can be applied if the object in which the method is a member is
thread-local. Otherwise, two threads may execute the method at the same time and create a
race condition. An alternative modification that avoids such race is to allocate the ob ject on
the stack. This requires compiler cooperation, or a placement of local variables representing

the fields of the object on the stack and making the implied code modifications.

Comparison with escape analysis and stack allocation. Escape analysis 78, 24,
42] is a static analysis used to find references to objects that do not escape a method.
These objects may be allocated on the stack to eliminate overhead of their allocation and
reclamation. The first SOfMA type is not identified by escape analysis as the ob ject allocated
to p escapes its allocating method. The second type is more related to escape analysis and
may allow stack allocation. However, escape analysis will not necessarily identify the cases
that we found in our benchmarks. This is because p is passed to methods that assign it to
a heap referent. While it is easy to see that this referent is removed, it is not clear whether
the conservative analysis is smart enough to catch it. Refinements of escape analysis may

be considered (as a future work) to identify such cases.

7.2.4 Example

Figure 7.2 introduces a simple example that demonstrates where applying the presented
patterns is advised. The example’s main class is the DATA class, which holds a variable
sized array of POINTS. The SETDATA method creates a new array of POINTS and randomly
initializes the POINT values. The method DOESEXISTS checks whether a certain POINT
exists in the DATA’s POINT array.

Note that each allocated POINT array is tightly dependant on the ARRAY instance variable
of a DATA object: it is created (in SETDATA) with ARRAY being the first reference to it,
and when a newly allocated POINT array is assigned to ARRAY, it becomes unreachable.
Second, each such assignment to ARRAY makes all POINT objects (which were until now
referenced by ARRAY) unreachable. Later the SETDATA method allocates 7 new PoinTs,
to be referenced by the newly allocated POINT array. Frequent invocations of SETDATA, or
dealing with large n parameters could create a heavy load for the memory manager. In this
example, allocations of the POINT array can be reduced by using the SOfMA pattern, and
allocations of POINTS can be reduced by using the pooling pattern. A POINT array must be

allocated only if the current POINT array is smaller than the required allocated array size. If
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import java.util. Random;

public class Data {

class Point {
private int x;
private int y;
Point(int x, int _y) {
X = X;
y=.y;

}

public boolean equals(Point p) {
return ( x == px && y ==p.y );

}
}

private Point[] array;

private int size;

public void setData(int n) {
array = new Point|[n);
size = n;
for (int i=0 ; i<n ; i++ ) {
int x = generator.nextInt();
int y = generator.nextInt();
array[i] = new Point(x,y);
}
}

public boolean doesExists(int x,
int y) {
Point search = new Point(x,y);
for ( int i=0 ; i<size ; i++ )
if ( search.equals(arrayli]) )
return true;

return false;;

static private Random generator = }

new Random(); }

Figure 7.2: Example of where the patterns are necessary

the current POINT array suffices for the allocation, then it can be re-used: one should only
be able to distinguish between the array’s real size and its size as viewed by the application
(which may be smaller). In addition, one can reduce the number of POINT allocations by
re-using the existing ones. If the “new” array is smaller or equal in size to the previous one,
one should only set the values of the relevant POINTS, while moving the extra POINTS into
a POINT pool. If the “new” array is larger than the previous one, POINTS should be taken
from the POINT pool (note that before a POINT array replaces an existing one, the POINTS
of the “old” array should be pushed into the pool).

The DOESEXISTS method includes another case of a referent tightly dependant on its
reference slot: the SEARCH variable, which is assigned a newly allocated POINT object upon
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each invocation of DOESEXISTS. As before, if DOESEXISTS is frequently executed, it abuses
the memory manager. However, unlike the above SOfMA case, here the tightly dependant
referenced object is method local. Hence, the SOfMA pattern for an ob Jject that is local to a
method may be used. One adds a POINT instance variable to the DATA object, and allocates
this POINT when the DATA object is created. Each DOESEXISTS invocation should set the
value of this POINT (instead of allocating a new POINT).

7.3 The profiler

In order to effectively apply the above three patterns, we propose a profiler that identifies
candidate allocation sites. A main criterion for being a candidate is being an allocation site
that heavily allocates objects that die fast. In addition, classes whose objects are extremely
large should also be considered as candidates, since even saving relatively few allocations of

large objects may have a large impact on garbage collector work.

Our profiler outputs information regarding the behavior of each allocation site’s ob jects
during the examined application run. For each allocation site, the profiler outputs the class of
allocation, the number of objects allocated, the number of objects that became unreachable,
the amount of space its objects have consumed, and the death rate of objects allocated in
this site. We chose to measure the death rate of a site by calculating the percentage of the
site’s objects that die in each collection. A death rate of 100% means that none of the site’s
allocated objects has ever survived a collection, while a death rate of 0 means that all of
them survived. For each allocation site and in each collection, our profiler counts the number
of objects (of that site) that are allocated in the heap before and after the collection. The
death rate is computed per collection, and for the entire run of the application as a geometric
mean of the collections’ death rate. We usually search for sites with high death rates, as
pooling such objects is expected to be the most beneficial (an exception are classes whose

objects are large).

Profiling by site yields several advantages. First, the code modifications that we propose
are relevant per allocation site. Second, even for frequently allocated instances of a. class,
various benchmarks usually employ only a few major allocation sites (sometimes only one) to
allocate most of the objects. To yield a substantial benefit, we focus on the major allocation
sites. Third, different allocation sites may create objects (of the same type) that behave
differently (for example, different death rates for different allocation sites). Hence, profiling

per site filters out other sites’ “noise”.
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Objects | Dead | Death | Bytes Avg. Object

allocated | objects | rate | allocated | size type
39098 | 38045 | 86.44 | 3753408 | 96.00 | Lspec/jbb/Order
Correlation | Dead | Null Field
0.0 0 0 | Lspec.jbb.infra.Factory.Container
0.0 0 0 Lspec.jbb.Company
0.0 0 0 Lspec.jbb.Customer
100.0 | 38045 0 [Ljava.lang.Object
100.0 | 38045 0 Ljava.util.Date

Table 7.1: An example of the profiler output

Being interested in compound pooling, we would like to find classes whose ob jects could
be the roots of a compound pool (i.e., could be pooled with its sub-graph). Thus, we
search for classes whose objects have a perfect death correlation with one or several of
their descendants, i.e., one or more of their descendants always become unreachable when
they become unreachable. For that purpose, our profiler, implemented on Jikes [1], extends
the Merlin trace generator [46] which determines the exact death time of an object. If
an object and its descendant die at the same time, then a single event (such as reference
modification) made the “top” object unreachable together with its descendants. Our profiler
runs after a garbage collection cycle terminates, checking for each unreachable ob ject whether
its descendants are also unreachable and have the same death time. For each allocation site
and for each descendant, the profiler details the percent of death correlation. If an object
has a death correlation of, for example, 80% with its first descendant, it means that in 80%
of the cases the parent object allocated in a specific site became unreachable, its first child
became unreachable along with it. A 100% death correlation of an allocation site’s objects
with one or more of their descendants may imply that it would be beneficial to use compound

pooling (if this allocation site is frequently called).

7.3.1 Profiler example- SPECjbb2000

Table 7.1 shows an example of the profiler output for a certain SPECjbb2000 allocation site.
The class name is provided in the last column of the first sub-table. This first sub-table
provides the number of objects allocated at that site, the number of objects that become
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unreachable, the death rate, the total size of the allocated objects and the average size of
an object. The second sub-table of Table 7.1 (the correlation table) is produced for any
allocation site whose associate class has reference instance variables. For each reference
instance variable (whose name is provided in the last column), the correlation table reveals
the death correlation percent between the allocated object in this allocated site and the
said reference instance variable (in column 1). Column 2 provides the number of times
this referent became unreachable when the object became unreachable. Column 3 provides
the number of times this reference was null when the object became unreachable. For the
calculation of correlation percentage, we considered both numbers of unreachable and null
reference fields. If there is a 100% correlation overall and the percentage of NULL references
is small, then compound pooling could also be considered. Specifically in our example,
Table 7.1 shows that ORDER has a high death rate: on average in each collection more
than 86 out of 100 allocated instances of this object are reclaimed. The correlation table
shows that while three reference instance variables have no correlation at all with the parent
object ORDER, the other two reference instance variables [OBJECT and DATE both have
100% correlation to it (with no null values). Hence, ORDER is a candidate as the root of a
compound pool’s sub-graph with these two descendant objects. However, one should not stop
here, but continue examining the death correlation of the two descendants. For example, if
[OBJECT also has a 100% correlation with its children, then the sub-graph of ORDER, which
should be put in the compound pool, should be larger (yielding more allocation reduction,
and less GC overhead).

Overall, for SPECjbb2000 the profiler indicated that the ORDER ob ject serves adequately
as a sub-graph’s root of a compound pool. It has a high death rate (86.4%), and a 100%
correlation with both its OBJECT array and its DATE fields. Moreover, the OBJECT array
field has a 100% death correlation with its ORDERLINE elements.

7.4 Profiler’s output and benchmarks modifications

The effectiveness of the proposed techniques was measured on the SPECjvm98 benchmark
suite, the SPECjbb2000 benchmark, and the DaCapo benchmark suite. The profiler was
run on each one of these benchmarks to determine which allocation sites were adequate

candidates for the patterns’ application®. This section describes, for each benchmark, the

2 Although Merlin is currently unable to produce exact death times for multithreaded applications, it was

also used for profiling our multithreaded applications on a uniprocessor.
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profiler’s findings, and the patterns chosen to use as a consequence.

-201.compress. The profiler revealed that _201_compress allocates, in two adjacent
allocation sites, some dozens of large byte array instances with a high death rate (93.0%).
These two allocation sites allocate a substantial fraction of the overall allocation of the
application. These byte arrays are tightly associated, as explained in Section 7.2.3, with
two reference member fields of the HARNESS class.  Thus, we chose to use the SOfMA
technique and assign a single array to each of the two member fields at the beginning of the
program, and modify this array to have the relevant values whenever a new allocation of a
byte array is assigned to this reference. If, during the application run, a larger array than
currently exists is allocated, then an array of the larger size is allocated and assigned to
the appropriate member field. In order to compare the different implications of SOfMA and
naive pooling, we extended _201_compress into two different versions one for each method.
Naturally, the pool version required only two pooled arrays that were repeatedly assigned to

the two reference member fields.

-202_jess. For _202_jess, the profiler indicated that the TOKEN objects are vastly allo-
cated, and have a 100% death correlation with their VALUEVECTORS descendant array. The
array of VALUEVECTORS is the most heavily allocated class (by number of objects and by
overall consumed space). 99.9% of the TOKEN objects are allocated in a single site, which
has a high death rate (87.9%). Hence, a compound pool of TOKEN objects would seem ap-
propriate. The compound pool’s sub-graph contains only two nodes (a TOKEN object and its
VALUEVECTOR array), as the array has a 0% death correlation with its elements. Hence,
two extensions were made for _202_jess: the first employs the above compound pool, and the
second uses two naive pools: one of TOKEN and one of VALUEVECTOR arrays.

-209_db. The profiler revealed that _209_db allocates, in a single allocation site, a few
hundreds instances of large arrays of class ENTRY, which require large memory and have
a high death rate (95.7%). These ENTRY arrays are tightly associated with a DATABASE’s
class member field. Thus, two extensions were made: the SOfMA extension, which is the
most appropriate technique in this case (assigning a single array to the member field at the
beginning of the program), and the naive pool extension.

-227_mtrt. The profiler showed that _227_mtrt allocates over 3.5 million VECTOR ob jects
in three allocation sites, which had high death rates (99.99%). These objects did not escape
their allocating methods and were tightly associated with a method local reference. In
addition, the object holding the reference was thread-local. Thus, it was possible to apply
the SOfMA technique, by replacing the allocation in these methods’ local variable with a
VECTOR object allocated once when the object holding the method is created. The relevant
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methods’ allocations are replaced to reuse this single allocated VECTOR. In addition to the
SOfMA extension, a naive pool extension was also written. To avoid synchronizing on the

pools, the multithreaded _227_mtrt employs two local pools, one for each thread.

-213_javac, _222_mpegaudio and _228_jack. We did not apply the proposed tech-
niques on _222_mpegaudio, _213_javac, and _228_jack. _222_mpegaudio’s allocation activity
is very small, and thus it contains no class that is appropriate for allocation improvements.
We could not apply any technique on _213_javac and -228_jack since our techniques require
modifications of the code, which was not available to us. However, for both _213_javac and
-228_jack the profiler indicated that there are some potential allocation sites for improvement:
a single allocation site of the INSTRUCTION class in _213_javac, and a single allocation site
of the LIAVA.UTIL. VECTOR class in _228_jack could be modified to host compound pooling

with their descendant object arrays.

SPECjbb2000. The profiler’s output for SPECjbb2000 indicated that SPECjbb2000 is
appropriate for compound pooling of the ORDER class (as detailed in Section 7.3.1). Hence,
two extensions were made for SPECjbb2000: the first employs the above compound pool,
and the second uses four naive pools: ORDERS pool, DATES pool, OBJECT array pool and
ORDERLINES pool. As with _227_mtrt, each SPECjbb2000 warehouse (thread) employs its

own local pool.

Since the size of the ORDERLINE array is not fixed (its size randomly varies between
5 and 15 elements), the compound pooling version allocated 15 ORDERLINES per ORDER, .
which is the maximal number of ORDERLINES used per ORDER. Hence, the compound pool
version of SPECjbb2000 deals with an 18 node sub-graph. In contrast, the naive pool version
allocates the exact number of ORDERLINES.

ps. According to the profiler, the ps benchmark contains a two node sub-graph that may
be used with compound pooling. This sub-graph’s root is LJAVA.UTIL.STACK, which has
a 99.97% death rate and is vastly allocated in a single allocation site. LJAVA.UTIL.STACK
has a 100% death correlation with its LIAVA.LANG.OBJECT array field. Hence, a compound
pool extension was made for ps. Since LJAVA.UTIL.STACK is a built-in Java class, making
a naive pool extension for ps requires modifying Java’s LJAVA.UTIL.STACK, and so we did
not create a naive pool version for ps. Any pooling of the LJIAVA.UTIL.STACK (that does
not modify LJAVA.UTIL.STACK) is an implicit compound pool.

In the single allocation site in ps of LIAVA.UTIL.STACK with which we dealt, LIAVA.UTIL.STACK -
did not escape the method in which it was allocated. However, since it is a recursive method,
more than one LJAVA.UTIL.STACK can be reachable at a time, and thus a SOfMA technique
is not appropriate. Upon the method termination, the LJAVA.UTIL.STACK is empty, and
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thus no code that empties the LIAVA.UTIL.STACK had to be inserted.

Other DaCapo benchmarks. We have also profiled the other DaCapo benchmarks
which are available for run on Jikes. Two benchmarks in this suite (antlr, fop) do not
have a major allocation site, and so modifying a couple of allocation sites cannot improve
performance significantly. The other four benchmarks in the suite (bloat, hsqldb, jython
and xalan) do contain one or two major allocation sites, but they cannot be modified using
the proposed patterns. None of them fitted the SOfMA pattern. For compound pooling, we
needed a 100% correlation between the object and at least one of its children. There was no

fit excessive allocation site.

7.5 Measurements

Implementation. We have implemented a standard object pool using Java’s ARRAYLIST
class, an unsynchronized resizable-array implementation of Java’s LIST interface. We've
employed ARRAYLIST in a stack-like manner, i.e., the last object inserted into the pool,
would be the first to be drawn.

Platform. Measurements were run on a 4-way IBM Netfinity 8500R server with a 550MHz
Intel Pentium III Xeon processors and 2GB of physical memory.

The modifications. For each benchmark, we selected (according to the profiler’s output)
one class whose objects were found to be the most appropriate for applying our techniques.
Next, the benchmarks were modified to use a pool of these classes’ objects. For benchmarks
where the profiler’s output indicated that the chosen class is also appropriate for compound
pooling, we also modified the benchmark to use a compound pool. Hence, for these bench-
marks a pool version and a compound pool version are both available3. While the compound
pooling version employs a pool (or pools) only for the “root” object, the (naive) pooling ver-
sion also contains a pool (or pools) for each descendant class that dies together with the
“root” object. In addition, for relevant benchmarks, a SOfMA version of the benchmark was
also created.

The comparison. The overall running time (or throughput) of the original benchmark

was compared with each one of its available modifications (pooling, compound pooling, or

SOfMA).

JVMs. In order to examine the effects of the three techniques, we ran our measurements

SExcept for ps, as detailed in 7.4.
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on different JVMs employing different memory managers. The different constellations used

were:

e Jikes RVM [1] with the parallel mark and sweep collector.

o Jikes RVM [1] with the parallel Appel-style ([2]) collector employing a flexible sized
young generation which consumes all the usable heap space. This Appel-style collector
employs a copying collector in minor collections and a mark and sweep collector during

full heap collections.

e IBM’s 1.4.1 jdk with the default parallel mark and sweep collector, which infrequently

employs compaction.

o IBM’s 1.4.1 jdk with the concurrent collector (reported in [9]). This is an incremental
mark and sweep collector, as the program threads execute some of the collection work
in each allocation. It is also a concurrent collector as most of the collection is done

while mutators are running.

The heap size for the measurements was set to enable a standard maximal heap occupancy
of 60%, i.e., the live objects did not occupy more than 60% of the heap right after a full

collection.

7.5.1 Allocation activity

Table 7.2 describes the allocation activity of each benchmark and the difference between
the original and modified versions. The number of allocated bytes and objects are shown in
columns 2 and 3, respectively. Columns 4 and 5 provide the fraction of reduced allocation (of
bytes and objects) in the (naive) pool version of these benchmarks. Column 6 presents the
number of allocation sites that were modified in the benchmark to obtain the improvement.
The measurements were taken with naive pooling (except for the ps benchmark), but the
other methods yield similar numbers as the reuse of objects is almost the same.

As one can see, there is substantial reduced allocation activity in most benchmarks, even
though we have focused on only a couple of allocation sites. This demonstrates that even
focusing on only one popular allocation site can significantly affect the application behavior.
Usually there is a correlation between the reduction in space allocated and the reduction
in the number of objects allocated. This is not the case for _201_compress and -209_db,
because for these benchmarks extremely large objects were pooled. Hence the reduction
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Benchmarks || original allocation | reduced allocation | sites
bytes objects || bytes | objects
compress 105.4MB | 10230 || 79.4% 4.8% 2
jess 283.5MB | 7.94M || 58.2% 47.4% 1
db 74.7TMB | 3.21M || 26.8% - 1
mtrt 159.4MB | 6.64M | 54.4% 57.0% 3
jbb 4 1995MB | 59.37M || 18.6% 9.0% 1
ps 440.3MB | 72T || 8.2% 13.0% 1

Table 7.2: Allocation activity: How many bytes and how many objects were allocated by the

original benchmark and the percent of this allocation activity reduced with naive pooling.

in space allocated is much larger than the reduction in the number of objects allocated
(especially in -209.db, where the reduction in the number of objects allocated is negligible).

7.5.2 Results

The overall improvement in the application throughput was compared for each modified
benchmark and for each of the JVMs described above. The separate effects on the program
threads (mutators) and on the collector were also measured. The results appear in Table 7.3.
Table 7.3 also details, for each (original version of the) benchmark at each configuration, the
fraction of time used by garbage collection. The only exception was the concurrent collector,
which does not produce this data. Note that all the numbers included in the Table represent
percentages. In the second column, the letter 'J’ stands for Jikes and the letter ’I’ stands
for IBM.

As expected since applying the patterns heavily reduces the benchmarks’ allocations on
the heap, all three approaches always reduced the amount of work needed by the garbage
collector. However, while compound pooling and SOfMA also improve the mutators’
throughput, object pooling decreases their performance. Our measurements of the mutators’
improvement (for the naive object pooling) accounts for two pool operations in the modified
version for each allocation in the original version. Hence, the results indicate that creating
an object is usually faster than applying the two pool operations on it (even though pooling
should improve locality) . On the other hand, SOfMA eliminates many allocations, and

>Our measurements did not include objects that require heavy resource initialization, such as setting up
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compound pooling replaces a full sub-graph allocation (rather than a single object allocation)

and their assignments with two pool operations.
compound pooling vs. object pooling.

Compound pooling was used for benchmarks _202_jess, SPECjbb2000 and ps. The sub-
graphs of .202_jess and ps contain only two nodes, while that of SPECjbb2000 contains 8-18
nodes (as the OBJECT array includes 5-15 ORDERLINE elements).

In all pooling and compound pooling versions of these benchmarks, a reduction in garbage
collection work was obtained. Nevertheless, compound pooling performs much better when
the efficiency of the mutators is compared. Naive pooling actually degrades the performance
of _202_jess and SPECjbb2000, since it executes many more pooling operations than com-
pound pooling. The results of _202_jess and ps show that even compound pooling a sub-graph
of only two nodes is beneficial in most cases. However, since the sub-graph is much larger
in SPECjbb2000, the efficiency improvement (of the mutators) there is higher.

'To conclude, compound pooling improves the overall performance of all three benchmarks.

It outperforms naive pooling, which sometimes slightly degrades performance.
SOfMA vs. object pooling

-227_mtrt. _227_mtrt allocates millions of objects, which do not escape their allocating
method, in three allocation sites. The garbage collection work was reduced in both the
SOfMA and object pooling versions. However, while the SOfMA version also improves
the mutators’ work, the pool version usually degrades their performance. The reason is
that the SOfMA version really saves millions of allocations, while the pool version replaces
the allocations with pool operations. As a result, the SOfMA version improves the overall

application run, while the (naive) pool version degrades the overall performance. ©

-201_compress and _209_db. In both benchmarks, large arrays tightly dependant
on a class instance variable were present. Although in both benchmarks, at most a few
hundred object allocations are saved using the patterns, saving these allocations introduces a
significant reduction on garbage collection work, since these ob jects are large ones. Note that
since not many instances of these “problematic” objects were allocated, there were not many
allocations to save or to trade with pool operation. Thus, our measurement showed that

both traditional pooling and SOfMA usually had minor impact on the mutators’ performance

a communication port.
6Note that escape analysis identified the stack allocation opportunities in .227_mtrt (on both JVM’s)

only when we performed some method inlining. This demonstrates that SOfMA may improve application

performance, even when escape analysis opportunities are available.
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Figure 7.3: SPECjbb2000 on IBM’s JDK- naive pooling throughput ratio (left) and com-
pound pooling throughput ratio (right).
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Figure 7.4: SPECjbb2000 on Jikes- naive pooling throughput ratio (left) and compound
pooling throughput ratio (right).

(with a small advantage to the SOfMA approach). As a consequence, the overall performance
of both benchmarks was usually improved.

7.5.3 SPECjbb2000 measurements

To show the effect of pooling over various heap sizes, we have run SPECjbb2000, the largest
benchmark we’ve used, over different heap sizes (ranging from the minimal heap needed, to
4X the minimal heap needed). Measurements were taken using Jikes Appel-style parallel
collector, and IBM’s 1.4.1 jdk default collector. Figures 7.3-7.4 introduce the measured
throughput ratios. These measurements show that compound object pooling consistently
outperforms the original program, while naive pooling does usually worse. The relaxed
heaps measurements show that compound object pooling remains superior even when the
garbage collection fraction decreases, thus indicating that compound object pooling indeed

improves the mutators throughput. Naive object pooling, however, gets less efficient as heap
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grows, since the garbage collection impact (advantage) gets weaker, and the overhead it

imposes over the mutators becomes the substantial factor.

7.5.4 Garbage collection impact

Table 7.3 shows a large reduction in the garbage collection work for all patterns and for
all benchmarks. Table 7.4 shows the number of garbage collection cycles and their average
amount of work (i.e., collection lengths) per collection after applying the three suggested pat-
terns, compared to their original behavior. The cells referring to Jikes’ Appel style collector
contain two numbers (separated by a semicolon): the first represents the full collections, and

the second represent the minor collections.

One should note that the Jikes mark and sweep collector consistently performed (some-
times much) fewer collections than IBM’s mark and sweep collector. The reason for this is
that Jikes has a larger heap space to allocate the objects. Jikes is self-hosted, therefore, it
allocates objects in the same heap in which the application allocates. Thus, when sticking to
the 60% occupancy, it also takes Jikes objects into account and seems to effectively provide
a larger heap to the objects allocated by the benchmark. When running the application,
Jikes’ effectively larger heap translated into less garbage collection cycles.

As can be seen, the number of collections was reduced with all patterns and all JVMs.
Another effect of our modifications is that when a collection takes place, the percentage of
reachable objects grows. Since dealing here only with tracing collectors, we expect each
collection to do more work. When analyzing the collections’ relative amount of work, one
can see that each collector was affected differently. The amount of work of Jikes’ mark and
sweep collections was hardly affected, while that of the IBM’s collector usually increased.
We suspect that Jikes” mark and sweep collector was less sensitive to the increased percent
of reachable objects, since it already includes a larger set of reachable objects (being self
hosted), and so the increased percentage of reachable objects was less significant in its case.
With Jikes’ Appel style collector, the amount of work of the minor collections increased
(while major collections were usually not performed). Since the fraction of surviving objects
In the nursery area is larger, more objects should be copied to the mature space, increasing

the amount of work of the minor collection.
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7.6 Related work

Berger et al. ([12]) examined applications, written in the C language, that use custom alloca-
tors to achieve performance improvements. They found that for most of these applications,
and in particular for those using object pooling, a general purpose allocator performs as well
as or better than the custom allocators. Our results, focusing on Java written applications,
indicate that indeed traditional pooling usually degrades mutators’ performance, but since it
also reduces garbage collection work, it sometimes improves the overall performance. How-
ever, compound pooling was very effective in improving the overall performance, and usually

also improved the mutators’ performance.

Much research has been devoted to reducing the burden on the garbage collector. Escape
analysis is discussed in Section 7.2.3. Region-based memory management ([96]) allocates
each object into a specific region. Memory is reclaimed by reclaiming a region as a whole,
hence freeing all the objects allocated in it efficiently. This reduces garbage collection work.
Regions could be automatically inferred during compile time, or explicitly annotated by the
programmer ([41]). Region inference could also be combined with garbage collection ([45]).
Run-time maintained regions have also been proposed and explored in [20, 87].

Hirzel et al. [48, 47] have attempted reducing the garbage collection overhead by taking
into account the connectivity of objects. Connectivity strongly correlates with object life-
times and death times, and thus can be used to improve garbage collector’s performance.
Such garbage collectors use connectivity information to partition ob jects and to decide which
objects to collect.

In [43], Gheorghioiu et al. have presented a static program analysis which finds all pairs
of allocation sites, where an object allocated at one site may be live at the same time as
any object allocated at the other site. Their algorithm infers from this result the unitary
sites: the allocation sites from whom at most one object allocated is live at any given point
in the execution of the program. It then statically preallocates (a fixed amount of) memory
space for objects allocated in unitary sites. This approach resembles our SOfMA technique,
however SOfMA also handles unitary sites whose objects escape into the heap (which is the
case in -201_compress and _209.db), while the algorithm presented in [43], automatically
assumes that such sites are non-unitary.
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7.7 Future work

The interest in compound pooling stems from the ubiquitous use of objects whose reachability
is determined by one single parent. To check how wide this phenomena is, we used the
profiler to look for ”popular” classes that had this property. To make the test realistic,
we only measured popular classes, whose objects consume at least 100 kbytes of allocated
space throughout the run. We looked for classes whose objects satisfy a full (100%) death
correlation with at least one of their descendants. Only classes which contain references
were considered relevant. Table 7.5 presents for each benchmark the number of relevant
popular classes that satisfy the 100% death correlation property with at least one of their
descendants (first row), and the number of relevant popular classes which do not satisty this
property (second row). Classes (or primitives) which do not contain references were not
considered, but array of references were taken into account. It can be seen that the 100%
death correlation property is ubiquitous among the different benchmarks. Note that these
measurements are conservative in the sense that they count properties of classes rather than
of allocation sites. For a class which does not have the 100% death correlation property,
there could be allocation sites for which the property does exist. Furthermore, having more

than one correlated descendant is useful in practice, but is not highlighted here.

Compound object pooling is one manner in which a 100% death correlation knowledge can
be used. However, we used it via profiling and only to a single major allocation site. Higher
effectiveness (and over many allocation sites) can be obtained if 100% death correlation
could be statically determined. A static analysis applied on a certain class A could check
whether a certain descendant B is always created with the A ob ject being the first reference
to it, and whether B is never assigned to another object. In such cases, static analysis can

conservatively infer that when an A object dies, its B descendant dies together with it.

Such static analysis can be used, for example, to save allocations. Instead of allocating A
and B separately by two different allocation requests, they could be both allocated sequen-
tially by a single allocation request. Such joint allocation reduces the number of allocations
and it also reduces fragmentation in allocators, such as allocation caches and segregated free

lists. When A and B die together a larger sequential free space becomes available.
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7.8 Conclusions

In this work we have proposed a profiler to identify and patterns to improve inefficient use
of the memory management subsystem. Often, applications that are written in a garbage
collected environment make naive and inefficient use of the garbage collector. Our solution
started by proposing a profiler that identifies crucial allocation sites. These are (highly)
prolific allocation sites whose allocated objects die young. We then proposed two patterns
to modify these allocation sites (in a local manner) to improve efficiency: compound object
pooling, and SOfMA (single object for multiple allocations). We studied these patterns and
compared them to the standard object pooling pattern.

We used our profiler and applied the proposed modifications on various standard bench-
marks. We then measured the improvement in efficiency for two JVMs and various garbage
collection algorithms. In many of the benchmarks it was possible to make small modifications
in a small number of allocation sites and obtain a substantial improvement in the overall ap-
plication throughput. The effectiveness of the compound pooling pattern was demonstrated
on the SPECjbb benchmark, for which naive object pooling deteriorates performance whereas
compound object pooling obtains a 3.0-9.3% improvement depending on the specific JVM
and garbage collector used. SOfMA was always at least as good as naive object pooling,
and its effectiveness was demonstrated on the _227_mtrt benchmark for which ob ject pooling
deteriorated performance but SOfMA obtained an improvement of 6.9-14.3%.
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Bench || collector overall % gc || reduction in mutator reduction in gc
marks Improvement activity activity
pool | comp’ [ SO- pool | comp’ | SO- || pool | comp’ | SO- |
pool | fIMA ? pool | fMA pool | fMA
comp- J- ms 11.7 11.6 || 13.0 2.4 26| 73.1 72.4
ress | J- Appel || 11.3 11.3 || 13.0 0.4 0.5 || 84.4 84.4
I- par’ 0.9 1.6 1.7 -0.6 0.1 87.7 90.5
I- conc’ 2.0 2.1
jess J- ms 19.5 | 22.8 38.0] -1.0 4.2 3.0 53.1
J- Appel | 1.7 7.3 72 -1.8 3.9 46.1 | 51.3
I- par’ || -0.2 5.5 9.8 -59 -0.1 93.3| 57.0
I- conc’ 7.6 13.5
db J- ms 2.9 3.2 | 106} -0.1 0.1 284 28.9
J- Appel | 2.2 2.2 3.4 -0.1 0] 66.9 67.0
I- par’ 0.1 0.3 1.8 -0.3 0| 20.1 19.3
I- conc’ 0.2 0.7
mtrt J- ms 3.8 14.3 )| 214 | -8.2 0.4 | 47.2 47.2
J- Appel || -5.0 7.5 94 1| -85 4.8 || 28.7 32.0
I- par’ ~5.2. 6.9 | 13.7| -11.6 3.2 | 35.1 30.4
I- conc’ || -7.7 11.9
jbb J- ms -0.8 9.3 79| -2.8 7.4 24.9 21.4
J- Appel || -1.0{ 8.2 126 -61| 52 37.71 202
I- par’ || -0.8 3.0 6.2 -1.9 2.7 15.7 4.5
I- conc’ || -0.7 3.7 |
ps J- ms 4.7 44.1 -0.6 11.5
J- Appel 2.1 13.4 0.2 14.6
I- par’ 2.5 4.4 1.3 294
I- conc’ 5.5
Table 7.3: Speed-up improvement with different JVMs when applying the suggested patterns.
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Bench |[ collector number of collections increase of work per collection
original { pool comp’ | SOfMA pool comp’ | SOfMA
pool (%) pool (%) | (%)
comp- J- ms 7.6 2 2 0.8 0.9
ress | J- Appel 7,3.6 1;3.2 1,3.2 0.2;0 0;0
I- par’ 20 3 3 -16.9 -36.4
jess J- ms 15 7 7 0.7% 0.5%
J- Appel 0;92 0;39.8 0;39.8 n-a;24.8 | n-a;15.5
I- par’ 108.6 46 43.6 9.3 8.1
db J- ms 7 5 5 0.1 0.2
J- Appel |[ 1.2;32.4 0;12.2 0;12.2 || n-a;101.4 n-a;96.7
I- par’ 13 10 10 3.7 5.0
mtrt J- ms 11 6 6 0.2 0.2
J- Appel 0;28 0;15.6 0;15.6 | n-a;29.0 n-a;31.4
Lpar | 15 6 7 62.0 49.5
jbb J- ms 78.6 60 58.4 -1.6 5.8
J- Appel || 110;691 | 46.4;512 | 63.4;639 -0.1,0.1 | -0.5;2.4
I- par’ 169.6 136.4 142.8 4.8 13.4
ps J- ms 93 48 -2.3
J- Appel || 1,511.6 0.4:466.4 0.71;0.85
I- par’ 119 73 15.0
Table 7.4: Garbage collection behavior when applying the suggested patterns
Benchmarks compress | jess [ db | javac | mtrt | jack { jbb
correlated 0 2 2 22 9 ) 9
non-correlated 0 9 | 7 49 4 8 10
Benchmarks compress | antlr | bloat | fop | hsqldb | jython | ps | xalan
correlated 9 16 21 16 3 1 9 5
non-correlated 10 12 23 | 13 10 10 8 8

Table 7.5: 100% death correlation per class
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