
Correctness, Efficiency and Durability
of Concurrent and Distributed Systems

Gal Sela

Correctness, Efficiency and Durability
of Concurrent and Distributed Systems

Research Thesis

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Gal Sela

Submitted to the Senate
of the Technion — Israel Institute of Technology

Tammuz 5784 Haifa July 2024

This research was carried out under the supervision of Prof. Erez Petrank, in the Faculty of
Computer Science.

The author of this thesis states that the research, including the collection, processing and
presentation of data, addressing and comparing to previous research, etc., was done entirely
in an honest way, as expected from scientific research that is conducted according to the
ethical standards of the academic world. Also, reporting the research and its results in this
thesis was done in an honest and complete manner, according to the same standards.

The results in this thesis have been published as articles by the author and research collabo-
rators in conferences and journals during the course of the author’s doctoral research period:

Gal Sela and Erez Petrank. Concurrent size. PACMPL, 6(OOPSLA2), 2022.

Gal Sela, Maurice Herlihy, and Erez Petrank. Brief announcement: linearizability: a typo. In PODC,
2021.

Naama Ben-David, Gal Sela, and Adriana Szekeres. The FIDS theorems: tensions between multinode
and multicore performance in transactional systems. In DISC, 2023.

Gal Sela and Erez Petrank. Durable queues: the second amendment. In SPAA, 2021.

Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed computations in fully-defective
networks. In PODC, 2022.

Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed computations in fully-defective
networks. DC, 2023.

Acknowledgements

I cannot thank my advisor, Prof. Erez Petrank, enough. Erez is one of the nicest people I
have had the pleasure of meeting, as anyone who has met him will attest, and every meeting
with Erez is not only educational but also enjoyable. I enjoyed learning about concurrency
from him and working together on fascinating problems. Erez guided me both academically
and professionally, and beyond the knowledge I gained and the development I underwent as
a researcher through our joint work, he also introduced me to many people in the field. But
Erez was much more than an advisor; he also cared for me personally, considered my needs,
and helped me beyond anything I could have asked for. This is even before mentioning the
joint trip with Erez and Yael after the conference in New Zealand, and the conference where
my suitcase did not arrive, and without Erez, I would not have even had pajamas…

I thank my research partners, Keren Censor-Hillel, Ran Gelles, Shir Cohen, Naama Ben-
David, Adriana Szekeres, Maurice Herlihy, SamuelThomas, Tali Moreshet, Iris Bahar, andHen
Kas-Sharir, for hours of fascinating and enriching meetings and fruitful collaborative work.
I especially want to thank Naama, who hosted me for an internship at VMWare. I enjoyed
every meeting we had at the campus, but beyond that, she invited me to her lovely apartment,
and more than all made me feel at home during the internship.

I thank my candidacy and final exam committees—Yehuda Afek, Keren Censor-Hillel, Roy
Friedman, Maurice Herlihy and Idit Keidar—for their time and insights.

And finally, thank you to Orr, my beloved, and to my marvelous family.

The generous financial help of the Technion, the Jacobs Fellowship, the Kenneth and Gloria
Levy Graduate Fellowship and the Israel Science Foundation is gratefully acknowledged.

Contents

List of Figures

Abstract 1

Notation and Abbreviations 3

1 Introduction 5
1.1 Correctness . 6

1.1.1 Correct and efficient concurrent size 7
1.1.2 Linearizability typo fix . 7

1.2 Performance . 8
1.2.1 Performance in Parallel Distributed Transactional Systems 8

1.3 Fault Tolerance . 9
1.3.1 Durable Concurrent Queues . 9
1.3.2 Fully-Defective Distributed Networks 10

2 Preliminaries 13

3 Concurrent Size 17
3.1 Introduction . 17
3.2 Terminology . 21
3.3 Related Work . 21

3.3.1 Inaccuracies of the Algorithm in Afek et al. 22
3.4 Data-Structure Transformation . 23

3.4.1 Specific Examples and the SizeCalculator Object 25
3.4.2 Applicability . 25

3.5 The Size Metadata . 27
3.6 Mechanism for Wait-Free Size . 28

3.6.1 SizeCalculator Details . 29
3.6.2 CountersSnapshot Details . 32
3.6.3 Memory Model . 33

3.7 Optimizations . 33
3.7.1 Eliminate Metadata Update on Behalf of Completed Insertions 33

3.7.2 Size Backoff . 34
3.7.3 Check for an Already-Set Size . 34

3.8 Methodology Properties . 34
3.8.1 Linearizability . 34
3.8.2 Wait-Freedom and Asymptotic Time Complexity 41

3.9 Evaluation . 42
3.9.1 Overhead Breakdown by Operation Type 49

3.10 Conclusion . 49

4 Linearizability: A Typo 51
4.1 Introduction . 51
4.2 System Model and Linearizability Definition 53
4.3 Issues with the Definition with the Typo . 53

4.3.1 Executions Counter-Intuitively Classified As Linearizable 54
4.3.2 Linearizability With The Typo Is Not Local 55
4.3.3 Linearizability With The Typo Is Not Nonblocking 56

4.4 Amended Linearizability . 56
4.5 Issues Revisited . 57

4.5.1 Executions Become Non-Linearizable As Expected 57
4.5.2 Linearizability Becomes Local . 57
4.5.3 Linearizability Becomes Nonblocking 59

4.6 An Alternative Interpretation . 60
4.7 An Equivalent Definition . 61
4.8 Comparison of all Definition Versions . 63

5 The FIDSTheorems: Tensions betweenMultinode andMulticore Performance
in Transactional Systems 65
5.1 Introduction . 65
5.2 Model and Preliminaries . 68

5.2.1 Multicore Scalability Properties . 70
5.3 Multinode Performance Properties . 72

5.3.1 Distributed Disjoint-Access Parallelism 72
5.3.2 Fast Decision . 72
5.3.3 Seamless Fault Tolerance . 76

5.4 Impossibility Results . 77
5.4.1 The FIDS Theorems . 77
5.4.2 Proof Overview . 78
5.4.3 Full Proofs . 81

5.5 Possibility Results . 87
5.5.1 Sacrificing Fast Decision . 89
5.5.2 Sacrificing Invisible Reads . 91

5.5.3 Sacrificing Seamless Fault Tolerance 91
5.5.4 Sacrificing Distributed Disjoint-Access Parallelism 92

5.6 Related Work . 92
5.7 Discussion . 94

6 DurableQueues: The Second Amendment 95
6.1 Introduction . 95
6.2 Model . 98

6.2.1 Upper Bound on Accesses after a Flush 99
6.3 Preliminaries for the Durable Queues . 100

6.3.1 MS-Queue . 100
6.3.2 Linearizability and Durable Linearizability 101
6.3.3 Lock-Freedom . 101

6.4 Related Work . 101
6.5 First Amendment: Queues with Minimum Fences 102

6.5.1 UnlinkedQ . 102
6.5.2 LinkedQ . 106

6.6 Second Amendment: Queues with No Post-Flush Access 112
6.6.1 OptUnlinkedQ . 112
6.6.2 OptLinkedQ . 113
6.6.3 Direct Write-Backs to Memory . 119

6.7 Durable Linearizability . 120
6.7.1 Linearization Points . 120
6.7.2 The Abstract State of the Queue . 123

6.8 Lock-Freedom . 124
6.9 Memory Management . 126
6.10 Evaluation . 126
6.11 Conclusion . 129

7 Distributed Computations in Fully-Defective Networks 131
7.1 Introduction . 131

7.1.1 Our Contribution and Techniques . 132
7.1.2 Related Work . 137

7.2 Preliminaries . 139
7.3 Simulating Computations over a Fully-Defective Simple Cycle 140

7.3.1 Formal Description . 142
7.3.2 Analysis . 143
7.3.3 Reducing the Communication via Binary Encoding 151

7.4 Simulating Computations over Fully-Defective 2-Edge Connected Networks . 153
7.4.1 Formal Description . 155
7.4.2 Analysis . 156

7.5 Constructing a Robbins Cycle in a Fully-Defective 2-Edge Connected Network 161
7.5.1 Formal Description . 163
7.5.2 Analysis . 165
7.5.3 The Length of the Obtained Robbins Cycle 173

7.6 Impossibility of Resilient Communication in Fully-Defective Networks which
are not 2-Edge Connected . 175

7.7 Conclusion and Open Questions . 176

8 Conclusion 179

Bibliography 183

Hebrew Abstract i

List of Figures

3.1 An execution with conflicting contains and size results due to the separation
between updating the data structure and the size metadata 18

3.2 An execution that yields a negative size due to the separation between updat-
ing the data structure and the size metadata 19

3.3 A transformed data structure . 26
3.4 Classes fields . 29
3.5 SizeCalculator methods . 30
3.6 CountersSnapshot methods . 32
3.7 Overhead on hash table operations . 45
3.8 Overhead on BST operations . 46
3.9 Overhead on skip list operations . 47
3.10 Size throughput as a function of data-structure size 48
3.11 Snapshot-based size throughput as a function of data-structure size 48
3.12 Size scalability . 49
3.13 Overhead breakdown by operation type . 50

4.3 H , a non-linearizable execution on two registers, although the object subhis-
tory for each register is linearizable . 55

4.4 S, a sequential history that might be constructed in the proof of Theorem 4.1
as a linearization of H . 59

4.5 Hs, an execution on a stack with a second pop that cannot be completed . . . 61
4.6 The relationship between histories categorized as linearizable by the different

versions of linearizability . 64

5.1 Communicationmediums between the different types of processes considered
in our model. 68

5.2 Visual representation of execution Econcur in the proof of Theorem 5.3. The
numbers in the table represent the order of writing on each node; on node N1,
X2 is written first, followed by X3, and so on. 86

5.3 Client code in the base algorithm. 88
5.4 Process code in the base algorithm. 90

6.1 UnlinkedQ implementation . 103

6.2 LinkedQ implementation . 108
6.3 OptUnlinkedQ implementation . 114
6.4 OptLinkedQ implementation – Objects and Dequeue 117
6.5 OptLinkedQ implementation – Enqueue . 118
6.6 Measurement results . 128

7.1 (a) A 2-edge-connected graph G with a Robbins orientation and (b) the result-
ing Robbins cycle with multiple occurrences per node. The arrows denote the
clockwise direction of the cycle. 135

7.2 The segments of the rotation of C that starts with the token segment, as seen
by a specific node u. The token resides in one of the node-occurrences or links
of the token segment. 156

7.3 Constructing a simple cycle by Algorithm 4(a) and extending an ear by Algo-
rithm 4(b). 164

Abstract

Over the past two decades, the development of multicore processors has been a key avenue
for enhancing computer performance. These processors enable multiple processes to execute
concurrently, thereby boosting overall performance. To fully exploit this hardware, new al-
gorithms are required to synchronize data access across multiple cores. A central focus of
this thesis is on concurrent data structures, a fundamental building block of concurrent algo-
rithms. This thesis also focuses on distributed systems, which incorporate multiple computers
that communicate via message-passing across network channels and cooperate to perform
shared tasks. Contemporary computing infrastructure relies on these systems since modern
applications often demand computing power and reliability that a single computer cannot of-
fer. Beyond high performance, concurrent and distributed systems must ensure correctness
and durability in the face of failures. We explore fundamental concurrent and distributed
algorithms that provide these essential properties.

We start this journey in the setting of concurrent data structures, wherewe study their size
property. We present the first methodology for supporting a fast and correct size operation
to a wide group of concurrent data structures. Next, we design efficient durable concurrent
FIFO queues for computers with non-volatile memory, a new type of memory employing new
semiconductor technologies developed by Intel and other companies. Our queues do not only
demonstrate high performance, but are also provably optimal in minimizing interaction with
the memory, and adhere to a general guideline we present for an efficient design of algorithms
for non-volatile memory. When analyzing the correctness of concurrent data structures, lin-
earizability is the most frequently used criterion. In another study, we point out a typo in the
definition presented in its original paper and provide an amendment to make the definition
complete.

Within the context of distributed systems, we focus on the fundamental challenge of fault
tolerance, and consider asynchronous networks with unbounded channel noise which may
completely corrupt all messages on all channels, thus requiring content-oblivious communica-
tion. We show how 2-edge connected networks may surprisingly tolerate unbounded channel
noise, while any other network cannot. Finally, we explore distributed systems combining
concurrency, namely, comprising multiple nodes where each node is a multicore machine.
We formalize properties crucial to fast and robust distributed systems, and show inherent
tradeoffs between them and properties desirable for multicore efficiency. This serves as a
guideline in designing future combined systems with improved performance.

1

2

Notation and Abbreviations

BST binary search tree 42
CAS compare-and-swap 13
CLFLUSH Flush Cache Line 98
CLFLUSHOPT Flush Cache Line Optimized 98
CLWB Cache Line Write Back 96
DAP disjoint-access parallelism 71
DDAP distributed disjoint-access parallelism 79
DRAM dynamic RAM 9
DurableMSQ durable MSQ 126
FIDS Fast decision, Invisible reads, distributed Disjoint-access paral-

lelism, and Serializability
67

FIFO first in first out 6
GST global stabilization time 15
HDDs hard disk drives 9
MOVNTI Store Doubleword Using Non-Temporal Hint 99
MSQ Michael-Scott queue 96
NICs network interface controllers 8
NVRAM non-volatile RAM 9
ONLL Order Now, Linearize Later 100
PDTSs parallel distributed transactional systems 66
R-FIDS Robust Fast decision, Invisible reads, Disjoint-access parallelism,

and Serializability
67

RDMA remote direct memory access 8
SFENCE Store Fence 96
SizeBST size-supporting binary search tree 43
SSDs solid-state drives 9

3

4

Chapter 1

Introduction

Since the invention of the computer, one of the main goals of the computer industry has been
to improve computer performance, turning it into an essential tool in modern society. At
first computers contained a single core in which programs were executed, and continuous
hardware upgrades of the core led to newer computers that ran the same software faster.
However, in the early 2000s, further improvements using the same methodology were not
possible anymore due to physical limitations (specifically, overheating). As a substitute, a
main way to improve performance of computer processors in the last two decades has been
producing processors with multiple cores, on which tasks may execute concurrently.

This, in turn, required new algorithms for programs that run on multiple cores, which will
correctly synchronize their accesses to data in shared memory. The design of such concurrent
algorithms to exploit multicore computers is a major challenge in modern computer science.
There has been substantial work on the design of efficient correct concurrent data structures,
which are fundamental building blocks of concurrent programming [e.g., MS96; Har01; Fra04;
EFRvB10; BP12; MA13; NM14; YM16; BCP16; SKL+18; SGP18], in order to benefit concurrent
algorithms at large. A significant part of this thesis focuses on this area.

However, a single computer is inadequate for modern applications. In our interconnected
world, high-speed networks link computers, making nearly everything accessible via the In-
ternet reliant on multiple machines. Distributed systems leverage multiple computers com-
municating through message-passing across a network of channels to perform mutual tasks.
These systems are pivotal in contemporary computing infrastructure, bolstering large-scale
applications by enhancing performance and reliability. Specifically, they boost system effi-
ciency by improving its scalability (i.e., utilizing multiple servers to increase the overall sys-
tem’s throughput) and ensure continuous client service even amidst server failures or network
disruptions. This thesis explores the area of distributed systems, and also addresses combined
systems, made of multiple nodes where each node is a multicore machine.

Multiprocess systems, whether concurrent, distributed, or a combination of both (sys-
tems with multiple computers, each running multiple processes), involve multiple entities
operating simultaneously, requiring correct and efficient synchronization and cooperation to
achieve their mutual goal. In the realm of multiprocess systems, we have explored the limits

5

of computation to determine what is and is not achievable. This thesis outlines the space of
possible solutions for various problems, characterizes what cannot be solved, and formulates
guidelines within the feasible domain for efficient future implementations. Additionally, we
push the boundaries of what is possible and introduce novel algorithms that improve upon
previous literature, as we prove both theoretically and by measurements.

This thesis focuses on several elementary desirable properties of multiprocess systems,
striving to achieve them all. One of them is maintaining correctness, namely, guaranteeing
that their executions ”make sense”, meaning they are equivalent to legal sequential execu-
tions. Linearizability is the standard correctness property for concurrent implementations.
In our research on concurrent algorithms, we have worked to achieve linearizability, and also
identified a typo in its definition and corrected it.

As a fundamental goal of multiprocess systems is to enhance efficiency, mere correctness
is insufficient if performance is poor, since a system that is correct but slow is of little use
in practice. Thus, alongside correctness, we have focused on optimizing performance. In
particular, our research includes improving performance tailored to specific hardware, such
as high-performance first in first out (FIFO) queues for non-volatilemainmemory and efficient
concurrent distributed transactional systems for modern high-bandwidth networks.

Correctness and performance are challenging both to define and to achieve, and our work
has extensively addressed both these aspects. In addition to consistency and efficiency, fault
tolerance is a critical aspect of multiprocess systems. Real-world systems inevitably face node
failures and network issues, necessitating the design of algorithms that can handle such faults.
Concurrent and distributed systems shouldmaintain functionality despite these failures while
preserving benefits like scalability and high availability. Our work addresses different fault
types and strategies to mitigate them.

Our research detailed in this thesis has focused on ensuring correctness, optimizing per-
formance, and enhancing fault tolerance in multiprocess systems. By addressing these key
properties, we strive to develop robust systems that can operate effectively in real-world en-
vironments.

1.1 Correctness

In the realm of concurrent data structure algorithms, a vital foundational requirement is
the ability to determine if a particular algorithm is correct. This is a simple task for non-
concurrent data structures; for example, it is easy to determine for a FIFO queue whether an
operation that removes an item from the queue returns a correct return value, which is the
item in the head of the queue. However, in executions of concurrent data structures, sev-
eral processes may perform operations on the data structure simultaneously, and the overlap-
ping intervals of the operations make their desirable results unclear. For instance, if multiple
processes concurrently add items to a concurrent FIFO queue, then it is not obvious which
inserted item should be considered the first in the queue, thus, it is unclear what item a sub-
sequent remove operation should return.

6

Correctness criteria for concurrent data structures are introduced to solve these unclari-
ties and define what is legal in concurrent environments. Linearizability [HW90] is a widely
accepted criterion for determining whether a concurrent execution is correct. It is the de
facto correctness condition for concurrent data structures, widely used in theory and prac-
tice. Loosely speaking, linearizability classifies concurrent executions as correct if operations
on shared objects appear to take effect instantaneously during the operation execution time.
We have worked to achieve linearizability in our concurrent algorithms, and also further ex-
plored the linearizability definition itself. We found a typo in the definition which we explain
and suggest a fix for.

1.1.1 Correct and efficient concurrent size

We bring an example of a very important problem which did not have a solution both cor-
rect and efficient until we designed one. The problem concerns computing the size of a data
structure (i.e., the number of elements in it), which is a widely used property of a data set.
However, for concurrent programs, obtaining a correct size efficiently is non-trivial. In fact,
the literature does not offer a mechanism to obtain a correct size of a concurrent data set with-
out resorting to inefficient solutions, such as taking a full snapshot of the data structure to
count the elements, or acquiring one global lock in all update and size operations. To obtain
the size efficiently, concurrent libraries like the concurrent library of Java return an estimate
of the size and not the accurate value. We stretched the limits of existing size solutions and
designed the first methodology for size which is correct and efficient, both theoretically and
practically.

In Chapter 3 we present a methodology for adding a concurrent linearizable size operation
to sets and dictionaries with a relatively low performance overhead. Ourmethod incorporates
metadata into the data structure, which the size operation uses to calculate its size. This meta-
data is updated atomically alongside the data structuremodifications to keep it up-to-date. We
choose appropriate metadata that enables the size as well as the other operations to efficiently
operate on it. Theoretically, the proposed size operation has asymptotic complexity linear in
the number of threads (independently of data-structure size). Practically, we evaluated the
performance overhead by adding size to various concurrent data structures in Java—a skip
list, a hash table and a tree. The proposed linearizable size operation executes faster by orders
of magnitude compared to the existing option of taking a snapshot and counting elements in
the snapshot, while incurring a throughput loss of 1%− 20% on the original data structure’s
operations.

1.1.2 Linearizability typo fix

A somewhat-neglected aspect of linearizability is restrictions on how pending invocations are
handled, an issue that has become increasingly important for software running on systems
with non-volatile main memory. Interestingly, the original published definition of lineariz-
ability includes a typo (a symbol is missing a prime) that concerns exactly this issue. In

7

Chapter 4, we point out the typo and provide an amendment to make the definition complete.
We believe that pointing this typo out rigorously and proposing a fix is important and timely.

1.2 Performance

One of the main goals of multiprocess systems is to improve the system efficiency. The
methodology for adding a concurrent efficient size operation described in Section 1.1.1 ex-
emplifies our efforts to enhance performance. Another example is the efficient queues for
non-volatile memory we discuss below in Section 1.3.1, which demonstrate our work on high
performance targeted at a certain hardware. Next (in Section 1.2.1), we elaborate on another
work focused on improved performance inspired by hardware advances.

1.2.1 Performance in Parallel Distributed Transactional Systems

Chapter 5 studies distributed transactional systems leveraging node parallelism, making them
suitable for networks with enhanced throughput. Transactions are operation sequences atom-
ically performed on a database. Distributed transactional systems run transactions employing
multiple nodes, while parallel (or concurrent) transactional systems run transactions using
multiple cores in a node. Traditionally, distributed and parallel transactional systems have
been studied in isolation (see for instance the works [CDE+12; ZXS+21; LM10] on distributed
transactional systems and [AHM11; AH12; AF15; BHG86; BDFG14; Pap79; PPR+15; AS08] on
parallel ones), as they targeted different applications and experienced different bottlenecks.
Distributed transactional systems did not incorporate multiple processes per node since in the
past, the network was the main bottleneck—network throughput was relatively low, making
a single process in each node sufficient to handle the message delivery rate. However, with
high-bandwidth network links, multicore network interface controllers (NICs), remote direct
memory access (RDMA) and kernel bypassing all contributing to increased network through-
put, sequential processing within each node becomes a bottleneck and is no longer enough to
handle the high throughput. Hence, distributed transactional systems must make use of the
parallelism available on each server that they use. This led us to study systems that are both
distributed and parallel.

We study the performance of these combined systems and show that there are inherent
tradeoffs between a system’s ability to have fast and robust distributed communication and its
ability to scale to multiple cores. We start with formalizing properties of distributed transac-
tional systems aimed at improved performance. These properties have all appeared in various
forms intuitively in the literature [ZSS+15; KPF+13; SWL+20] and apply to many existing sys-
tems, yet they have never been formalized until now, as formalizing such properties is a deli-
cate task and reaching a simple definition that also applies to a wide variety of applications is
not easy. We then present impossibility results, demonstrating that it is impossible to achieve
these properties while also attaining desirable multicore performance properties. There is an
inherent tension between the natural distributed properties we present and well-known mul-

8

ticore performance properties in transactional systems, making it impossible for any system
to satisfy all of these properties simultaneously. This serves as a guideline advising what is
not achievable when designing transactional systems. Finally, we show positive results; it is
possible to construct a parallel distributed transactional system if any one of the properties
we study is removed.

1.3 Fault Tolerance

Fault tolerance is a system’s ability to continue operating in the presence of faults and still
meet its specification even when individual hardware or software components fail. Its impor-
tance stems from the fact that building a flawless system is practically unattainable. Various
faults can occur in multiprocess systems; we specifically focus on node crashes and channel
noise.

In the setting of distributed transactional systems described above (in Section 1.2.1), we
address challenges posed by node crashes in distributed systems, examining how the system
can overcome these failures and continue functioning with the remaining servers. Identify-
ing failures poses a significant difficulty for asynchronous distributed systems, as it can be
impossible to distinguish between a node crash and a network delay. Despite this, systems
must still provide guarantees even in the event of crashes occur. Specifically in distributed
transactional systems, we aim to complete transactions within a few round trips even if some
servers crash, a property we formalize in our work (see seamless fault tolerance in Chapter 5).
In the setting of distributed transactional systems described above (in Section 1.2.1), we ad-
dress challenges posed by node crashes in distributed systems, examining how the system
can overcome these failures and continue functioning with the remaining servers. Identify-
ing failures poses a significant difficulty for asynchronous distributed systems, as it can be
impossible to distinguish between a node crash and a network delay. Despite this, systems
must still provide guarantees even in the event of crashes. Specifically in distributed transac-
tional systems, we aim to complete transactions within a few round trips even if some servers
crash, a property we formalize in our work (see seamless fault tolerance in Chapter 5).

In other works, detailed below, we investigate other types of faults: crash failures of mul-
ticore systems with non-volatile RAM (NVRAM), and channel noise in distributed systems.

1.3.1 Durable ConcurrentQueues

We consider multicore systems with NVRAM, such as the Intel Optane memory architecture
[Int19]. NVRAM is a new memory technology that provides persistence, namely, preserving
data after a power loss. It offers large storage capacity similar to hard disk drives (HDDs) and
solid-state drives (SSDs), while also providing rapid access and byte-addressability—features
that make it comparable to dynamic RAM (DRAM). Hence, NVRAM facilitates the develop-
ment of persistent data structures that are significantly faster than those relying on HDDs and
SSDs, as extensively explored in recent years [e.g., CJ15; LLS+17; OLN+16; YWC+15; FHMP18;

9

DDGZ18; ZFS+19; MIS20; CCA+11; CFR18; KPS+16; MMT+18; RCFC19; tea; VTS11; WRL19;
ZZLS19; IMS16; FBW+20; FPR21]. In these data structures, data retained after a power loss
is utilized during system recovery following a crash. However, caution is necessary because
cache and register contents are lost during a crash, potentially leaving the data in main mem-
ory incomplete. Special attention is required when recovering a concurrent algorithm due
to interactions between different threads and their dependencies. Persist instructions (i.e.,
flushes and fences) may be used to ensure that certain data reaches the memory before pro-
ceeding to the next step of the program. For lock-free concurrent data structures, it suffices
to persist any memory location right after accessing it [IMS16]. This would result in a correct
implementation, but a highly inefficient one since persist instructions are extremely expen-
sive.

A known guideline for making data structures durable while incurring low overhead ad-
vises incorporating the fewest possible number of blocking persist operations [CGZ18]. In
Chapter 6 we show that focusing on minimizing the number of persist instructions is impor-
tant, but not enough. We find that access to flushed content is of high cost due to cache in-
validation in existing architectures. We accordingly formulate a guideline for future efficient
durable algorithms for NVRAM, dictating they should reduce access to recently flushed cache
lines. We target concurrent FIFO queues as an example, and given this finding, we present
durable queues that minimize blocking persist operations as well as access to flushed content.
Theoretically, our design is optimal in the sense that it incurs a single blocking persist instruc-
tion per update operation (which is the minimum possible) and performs no access to flushed
data. We also point out that any object with a deterministic sequential specification can be
implemented with a single blocking persist instruction per update operation and no access to
flushed data. This may guide algorithm designers in tailoring efficient implementations for
durable data structures. Practically, our evaluation shows that the proposed design outper-
forms state-of-the-art durable queues, demonstrating the importance of reduced accesses to
flushed content.

1.3.2 Fully-Defective Distributed Networks

Another type of fault thatwe investigate is channel noise corruptingmessages in asynchronous
distributed systems. Some assumptions restricting the noise are necessary; unlimited noise
could prevent any meaningful communication. Previous work has limited either the num-
ber of noisy channels [Dol82; SW90; Pel92; SAA95; HP21a; HP21b] or the total amount of
corruption [HS16; CGH19; GKR19; ADHS20].

We focus in Chapter 7 on alteration noise, where message content can be changed but
messages cannot be deleted or injected, without bounding the number of noisy channels or
the amount of noise. Equivalently, the network could be envisioned as one where nodes com-
municate by sending pulses to their neighbors, which could be the case if the nodes possess
very basic communication hardware. This model of unbounded alteration noise, which may
corrupt the content of all messages, might seem too harsh for any reliable communication.

10

However, we show that this is not the case, and provide a full characterization identifying
which network topologies enable non-trivial computations in this model and on which net-
work topologies non-trivial computations are impossible (by non trivial we refer to computa-
tions that give output or terminate).

The graph family that enables non-trivial computations under unbounded alteration noise
is 2-edge-connected graphs (i.e., graphs that remain connected upon the removal of any edge).
The key structural property of these graphs that we leverage is the existence of a directed
(non-simple) cycle that goes through all nodes where each edge that appears multiple times
in the cycle has the same direction in all its occurrences, as shown by Robbins [Rob39]. The
core of our technical contribution is presenting a construction of such a Robbins cycle in
fully-defective networks, and showing how to communicate over it despite total message
corruption. These are obtained in a content-oblivious manner, since nodes must ignore the
content of received messages.

11

12

Chapter 2

Preliminaries

Concurrent System Model

We consider a standard shared memory setting [DHW97], with a set of asynchronous threads
communicating by accessing shared memory using the atomic primitives read, write and
read-modify-write, specifically compare-and-swap (CAS). A CAS instruction on an object
takes an expected value and a new value. It atomically obtains the object’s current value
and swaps it with the new value if the current one equals the expected value. The return
value indicates whether the substitution was performed: its compareAndSet variant returns a
corresponding boolean value; its compareAndExchange variant returns the obtained current
value. If the substitution was performed we say that the CAS is successful. A single-word
CAS is supported on nearly all platforms (possibly using the equivalent LL/SC instructions).
Some platforms also support a double-width CAS, which applies to data residing on two
adjacent words.

Concurrent Executions

We follow the terminology of the paper on linearizability [HW90]. An execution of a con-
current system is modeled by a history. A history is a finite sequence of operation invocation

and response events. Each invocation or response event is associated with some object and
some process. An invocation includes also an operation name and argument values, and a
response includes a termination condition and results. A response matches an invocation if
it is associated with the same object and process. An invocation is pending in a history if
no matching response follows the invocation. An extension of H is a history constructed by
appending to the end of H responses to zero or more pending invocations of H . A subhistory

of a history H is a subsequence of the events of H . complete(H) is the maximal subhistory of
H consisting only of invocations and matching responses, without any pending invocations.
For a process P , the process subhistory H|P is the subsequence of all events in H associated
with the process P . For an object x, the object subhistory H|x is the subsequence of all events
in H associated with the object x. Two histories H and H ′ are equivalent if for every process
P , H|P = H ′|P .

13

A history H is sequential if it comprises a sequence of pairs of an invocation and a match-
ing response, except possibly the last invocation, which might be the last event in the history,
not accompanied by a matching response. A history that is not sequential is concurrent. A
history is well-formed if each of its process subhistories is sequential. A single-object history
is one in which all events are associated with the same object. A sequential specification for an
object is a prefix-closed set of single-object sequential histories for that object. A sequential
history H is legal if each object subhistory H|x belongs to the sequential specification for x.

An operation in a history is a pair consisting of an invocation and the next matching re-
sponse. An operation e0 precedes (synonymously happens before) an operation e1 in a history
H if e0 ends before e1 begins, namely, e1’s invocation event occurs after e0’s response event
in H . Precedence in H induces a partial order on operations of H , denoted <H . Informally,
<H captures the ”real-time” precedence order of operations in H . We stress that only invoca-
tions that have matching responses are considered operations and the order <H applies only
to them.

Linearizability

A history is considered linearizable [HW90; SHP21a] if each completed (i.e., non-pending)
operation appears to take effect at once, between its invocation and its response events, in
a way that satisfies the sequential specification of the objects. Each pending operation is
required to either take effect at once after its invocation in a way that satisfies the sequential
specification of the objects, or not take effect at all. The point in time in which an operation
takes effect is denoted its linearization point. A concurrent data-structure is linearizable if all
its executions are linearizable.

Progress Properties

A concurrent object implementation is lock-free [Her91] if each time a thread executes an
operation on the object, some thread (not necessarily the same one) completes an operation
on the object within a finite number of steps. Thus, lock-freedom guarantees system-wide
progress.

A concurrent object implementation is wait-free [Her91] if any thread can complete any
operation in a finite number of steps, regardless of the execution speeds of other threads.
Thus, wait-freedom guarantees individual thread progress.

Distributed System Model

To explore fully-defective networks, we consider a standard asynchronous message-passing
system [see, e.g., AW04] in which the network is modeled as an undirected graph G = (V, E),
where the nodes V represent computing devices and the edges E are bi-directional commu-
nication channels between them. To conduct a computation the nodes run a protocol, which
is an asynchronous event-driven distributed algorithm. Initially, each node begins with a pri-
vate input and generates messages to send to zero or more of its neighbors according to the

14

protocol. Afterwards, the protocol behaves in an event-driven manner, and upon receiving a
message, a node performs some local computation and produces messages designated to zero
or more of its neighbors. Communicating a message over some link of the network takes
arbitrary positive finite time. In the fully-defective network model we consider, alteration
noise can corrupt the content of any message communicated over any channel. However, the
noise cannot completely delete a message nor can it inject a message on a link in which no
message was sent.

Parallel Distributed System Model

To investigate parallel distributed transactional systems, we formalize a model that combines
both shared memory and message passing systems. We consider a message-passing model
that includes server nodes and client processes. Each server node runs multiple processes,
such that node processes within a single node communicate with each other via shared mem-
ory. That is, they access shared base objects through primitive atomic operations, such as
read, write, read-modify-write (compare-and-swap, test-and-set, fetch-and-increment, etc.).
Messages are sent either between two nodes or between clients and nodes0. We consider
partial synchrony [DLS88]; messages can be arbitrarily delayed until an a priori unknown
global stabilization time (GST), after which all messages reach their target within a known
delay. Nodes can fail by crashing; if a node crashes then all processes on the node crash as
well. We do not consider failures where individual processes crash and we assume clients do
not fail. In this setting we assume message losses are handled by the networking layer, and
do not consider them further. The protocols according to which processes run transactions,
handle messages and access shared memory are detailed in Section 5.2 in Chapter 5.

15

16

Chapter 3

Concurrent Size

This chapter is based on the work presented at [SP22b] and [SP22a] (and the code is available
at [SP22c]).

3.1 Introduction

A fundamental, widely used, property of a data structure is its size (i.e., the number of ele-
ments it contains). In Java, for example, any collection or map class that implements one of
the elementary interfaces java.util.Collection or java.util.Map [22] must implement a size
method. Interestingly, implementing an efficient and correct size operation for a concurrent
data structure is non-trivial. For a formal treatment, we use linearizability as the correctness
criterion of concurrent executions [HW90; SHP21a], but the discussion below also applies to
other intuitive correctness criteria.

The literature does not offer an acceptable solution to implementing a correct size opera-
tion, and existing implementations give up correctness in order to avoid a significant perfor-
mance deterioration. For example, the non-blocking collections andmaps in the java.util.con-
current package [Lea04] implement a non-linearizable size method that returns an estimate
of the size. The returned estimate may be inaccurate when the object is concurrently mod-
ified during the execution of size. In contrast, a linearizable size operation would tolerate
concurrent update operations and retrieve the exact number of elements in the data structure
at some point during the execution of the size operation.

Existing solutions are incorrect or inefficient. Ignoring concurrency, one can determine
the size of a data structure simply by traversing it and counting the number of encountered
items. This is the approach taken by the size method of Java’s ConcurrentLinkedQueue
and ConcurrentLinkedDeque. This approach is fine for a sequential execution, but for a
concurrent execution this implementation is not linearizable. The following is a worst-case
scenario for this implementation. Consider an execution on a linked list with the single item
1. Assume a thread T , running this size implementation, starts the traversal from the node
containing 1 and then gets preempted. At this point, the following stepsmay occur repeatedly:
some thread appends a node with the item 2 to the end of the list, increasing the list’s size

17

to 2; next, T gets scheduled, resumes its traversal and proceeds to this new node; then, some
thread deletes the node containing 1, so the list’s size is 1 again. Next, some thread inserts
3 and deletes 2, letting T see a third element, etc.; until eventually—after some item s is
appended—the thread T gets to the end of the list before another thread gets the chance to
insert an additional item. In this scenario, T will erroneously return a possibly large s as the
list size, while in practice the list size never exceeded 2. While this is a worst-case scenario,
one can envision many other scenarios in which the returned value would be incorrect.

Alternatively, it is possible to obtain a correct size implementation by obtaining a lineariz-
able snapshot of the data structure (e.g., using any of the methods in [WBB+21; PT13; NHP22;
AB18]) and then iterate over the returned snapshot to count the number of elements in the
snapshot. While correct, this solution is inefficient, yielding a time complexity linear in the
number of elements in the data structure.

If we want to avoid such a high cost for the size operation, then we need to keep some
metadata that allows computing the size of the data structure efficiently when needed, and
let the data-structure operations maintain this metadata. Naively, the metadata would just
be the current size value. A natural attempt to implement such a size operation would be to
keep the size in a designated field of the data structure and let the operating threads update it
with each operation that affects the size. An insert operation would execute a size increment
after inserting its item, and a delete operation would execute a decrement of the size field
after performing the deletion. Java’sConcurrentSkipListMap andConcurrentHashMap use
such an implementation. However, the separation between the data-structure update and the
metadata update foils linearizability. As an example, consider n threads that are preempted
exactly after inserting an element to the data structure and before updating the size field. At
this point the size field would be off by n and thus inconsistent with a view of another thread
that actually reads the data structure.

A simplified execution for one updating thread is depicted in Figure 3.1. There, only one
update operation is ever executed on the data structure: one thread inserts 1 into an empty
structure. Another thread that starts by calling contains(1), sees that the data structure al-
ready contains the single element in it, but then it calls size() and receives 0. We executed this
simple program on Java’s ConcurrentSkipListMap several times, and we actually witnessed
executions that reproduced the contradicting result as depicted in Figure 3.1. This demon-
strates that the size method of ConcurrentSkipListMap is not linearizable. The core issue
is the separation between the actual data structure update and the subsequent update of the
metadata.

Tins:

T :

insert(1) ✓
insert 1 to the
data structure

update
metadata

contains(1) true size() 0

Figure 3.1: An execution with conflicting contains and size results due to the separation be-
tween updating the data structure and the size metadata

18

Tins:

Tdel:

Tsize:

✓insert(1)
insert 1 to the
data structure

update
metadata

✓delete(1)
delete 1 from the
data structure

update
metadata

-1size()

Figure 3.2: An execution that yields a negative size due to the separation between updating
the data structure and the size metadata

Furthermore, updating the metadata separately from updating the data structure may
yield a size execution that returns a negative number. This means that the size operation
is not only non-linearizable, but it can also not satisfy any correctness criterion that requires
method calls to appear to happen in a one-at-a-time sequential order, e.g., it is not quiescently
consistent [AHS94; SZ96; HS08] nor sequentially consistent [Lam79; HS08]. Consider the
following execution (depicted in Figure 3.2). Thread Tins inserts an item to the data structure,
and before it updates the metadata, thread Tdel deletes that item and updates the metadata,
registering its decrement. At this point, thread Tsize calls size() that returns −1 based on the
metadata, which currently reflects only the deletion and not yet the insertion. The separation
between the data-structure and metadata updates results here in updating the metadata in a
reversed order, which is impossible since the deletion cannot succeed if it happens before the
insertion. The returned size exposes this impossible operation order. The method calls in this
execution do not appear to happen in a one-at-a-time sequential order since size would never
return a negative result in a legal sequential execution.

A more complex metadata maintenance is proposed by Afek et al. for computing the size
more efficiently [AST12]. But they, too, update the metadata after the data-structure update,
and so their implementation suffers from the same problems. (We elaborate on issues in
[AST12] in Section 3.3.1.)

A third alternative for implementing the size operation is to use locks to prevent a size
operation from exposing a temporary inconsistency between the data structure’s state and the
metadata. This too would create a severe bottleneck and deteriorate performance significantly.

In this work we propose an efficient linearizable size implementation. To the best of
our knowledge, this is the first size solution that provides both linearizability and efficiency
(namely, not iterating over all elements of the data structure or using coarse-grained lock-
ing). We present a methodology for adding a linearizable size operation to concurrent data
structures that implement a set or a dictionary. Our methodology yields data structures that
satisfy the following attractive theoretical properties:

1. The time complexity of the size operation is linear in the number of threads.

2. The size operation is wait-free, namely, a thread running a size operation completes the
operation within a finite number of steps, regardless of the activity of other threads.

3. The (asymptotic) time complexity of the original data-structure operations is preserved.

19

4. The progress guarantees of the original data structure are preserved. Namely, wait-
free methods of the original data structure remain wait-free in the transformed data
structure, and the same goes for lock-free or obstruction-free methods.

To achieve Property (1), we keep always-consistent metadata, from which the size can
be correctly computed. To prevent operations from exposing inconsistencies similar to the
examples of Figures 3.1 and 3.2, we work hard to achieve a single linearization point in which
the data structure is modified and the metadata gets updated simultaneously. This is obtained
by letting an operation appear as completed to other operations only when the metadata
update occurs. Formally, the update of the metadata becomes the single linearization point
of the entire data structure operation. Dependent data-structure operations are adapted to
comply with the new linearization point, and help completing concurrent operations when
necessary. For instance, a delete(k) by thread T2 that encounters an ongoing delete(k) by
another thread T1 which has already deleted the key from the data structure, must help T1 to
update the metadata in order to complete the obstructing delete(k) before returning a failure.
It cannot block and wait for T1 to update the metadata, since that might change the progress
guarantees of the delete operation and foil Property (4).

Helping another operation implies updating the metadata on its behalf. As always with
multiple threads helping to execute a single operation, care has to be taken for the operation
to be executed only once. We keep per-thread counters as the size metadata, and use a corre-
sponding mechanism that enables helpers to determine whether the metadata already reflects
the helped operation, to prevent a wrong double update of the metadata on behalf of the same
operation. This mechanism enables helpers to efficiently make a determination and update
the metadata if necessary, thus achieving Property (3).

The size of a data structure is a fundamental property of a data set and having a method-
ology for obtaining an efficient accurate solution for it seems like an important point in the
design space, which is currently missing in the literature. Using inaccurate solutions may
yield unexpected results, e.g., sizes that the data structure never had and even a negative size.
Such results may in turn yield unexpected bugs that may put the reliability of an entire sys-
tem at risk. A reliable solution is especially desirable in dynamic programming languages
that favor correctness over performance, such as Python and Ruby, which use a global inter-
preter lock in their reference implementations and are expected to behave reliably even in
optimized implementations that shed the global interpreter lock to obtain parallelism. This
follows the line of previous works [e.g., DTM+18; MRG16] that present solutions for reliable
efficient parallelism.

In order to evaluate the performance overhead of the linearizable size operation, we added
the size operation using the methodology described in this work to various concurrent data
structures in Java: a skip list, a hash table and a tree [SP22c]. The proposed linearizable size
operation executes faster by orders of magnitude compared to counting the elements of a
linearizable snapshot. It also demonstrates scalability and insensitivity to the data-structure
size. However, obtaining a linearizable size operation does come with some cost, incurring a

20

throughput loss of 1%− 20% on the original data structure’s operations.
The rest of this chapter is organized as follows. Section 3.2 introduces some basic termi-

nology. Section 3.3 surveys relevant work on snapshots. We then describe our methodology,
starting with the transformation of a linearizable data structure into one that uses our size
mechanism in Section 3.4, and proceedingwith the sizemechanism itself: themetadata design
is covered in Section 3.5, and Section 3.6 describes how the size is obtained in a wait-free form.
We describe possible optimizations to our methodology’s implementation in Section 3.7. In
Section 3.8 we argue about the properties the methodology satisfies. Section 3.9 presents an
evaluation of the methodology applied to different data structures in a variety of workloads.
We conclude in Section 3.10.

3.2 Terminology

A set is a collection of keys without duplicates, supplying the following interface operations:
an insert(k) operation which inserts the key k if it does not exist or else returns a failure;
a delete(k) operation which deletes k if it exists or else returns a failure; and a contains(k)
operation which returns true if and only if k exists in the set.

A dictionary (synonymously map or key-value map) is a collection of distinct keys with
associated values, with operations similar to the ones of a set but with values integrated in
them. Throughout the chapter we will refer only to sets for brevity, but all our claims apply
to dictionaries as well.

3.3 Related Work

A snapshot object [AAD+93] is an abstraction of shared memory made of an array of m cells,
supporting two operations: update(i, v) that writes v to the i-th cell of the array, and scan()
that returns the current values of all m locations (i.e., a snapshot of the array). The atomic

snapshot problem is to implement such an object such that its two operations are linearizable
and wait-free. Jayanti [Jay05] presents algorithms that solve the problem with optimal time
complexity. We build on the fundamental ideas of Jayanti [Jay05] in this work to design a
wait-free size operation.

However, this scheme is not suited for multiple concurrent scan operations and does not
allow other operations (such as reading a specific cell) to occur concurrently. Petrank and
Timnat [PT13] extend Jayanti’s idea and introduce a technique for adding a linearizable wait-
free snapshot operation to a concurrent set data structure. In supporting concurrent size
operations, we use their method to support multiple concurrent snapshot operations.

An alternative approach byWei, Ben-David, Blelloch, Fatourou, Ruppert, and Sun [WBB+21]
and Nelson-Slivon, Hassan, and Palmieri [NHP22] obtains snapshots of concurrent data struc-
tures more efficiently, at the cost of higher space overhead. They keep copies of modified
nodes and let the snapshot operation advance a timestamp. This timestamp is then used to
read the content of the data structure at the time the snapshot was taken. To support such

21

a read of old values, operations on the data structure are responsible to maintaining lists of
previous values of mutable fields. Specifically for obtaining the size, one may take a snapshot
and use the returned timestamp to traverse the data structure at that time and count elements.

Literature on range queries may be also utilized to take a full snapshot of a data structure.
For instance, Arbel-Raviv and Brown [AB18] propose to implement range queries using epoch-
based memory reclamation.

The above snapshot algorithms can be used to obtain a linearizable size, but using them
for this purpose is an overkill. The comparison we make in Section 3.9 to the algorithms of Pe-
trank and Timnat [PT13] andWei, Ben-David, Blelloch, Fatourou, Ruppert, and Sun [WBB+21]
demonstrates the clear benefit of using our algorithm which is tailored for obtaining the size.

3.3.1 Inaccuracies of the algorithm in [AST12]

We showed in Section 3.1 that updating the data structure and the size-related metadata sep-
arately, as is done in the algorithm for data-structure size presented in [AST12], makes the
algorithm non-linearizable and also not satisfying the weakest correctness principle defined
in [HS08] which requires method calls to appear to happen in a one-at-a-time sequential
order. But even if update operations somehow update the data structure and the metadata
atomically, the algorithm of Afek, Shavit, and Tzafrir [AST12] will still not satisfy the above-
mentioned correctness principle, due to another issue we elaborate on next. We start with a
demonstrating execution, which produces an impossible negative size, hence, no reordering
of its method calls forms a legal sequential execution.

Consider an execution with 3 threads executing their operations concurrently: thread T0

executes an insertion of an item to the data structure, thread T1 executes a deletion of the same
item from the data structure, and thread T2 executes a size call. First, T0 and T1 start executing
their operations. T0 inserts the item to the data structure and then T1 successfully removes
it. After operating on the data structure, they both call the algorithm’s wait_free_update

method to update their values in the array g_mem. During these method calls, they obtain
g_seq when its value is 0, and before they proceed to updating g_mem, T2 starts its size exe-
cution. It performs scan_seq := FAI(g_seq) which results in scan_seq = 1, and later starts
collecting g_mem’s values. It obtains [0, 0] from g_mem[0]._recent and adds 0 to size. At
this point, T0 resumes its execution, and writes [1, 0] to g_mem[0]._recent (this value was al-
ready missed by T2). Then T1 resumes its execution, and writes [−1, 0] to g_mem[1]._recent.
Now T2 continues scanning the array. It obtains [−1, 0] from g_mem[1]._recent and accord-
ingly adds−1 to size, and then [0, 0] from g_mem[2]._recent and adds 0 to size. Subsequently,
it returns the incorrect size −1.

To analyze how this happened, we examine the linearization points of the operations
on the array g_mem. The linearization point of the size operation by T2 is when it incre-
ments g_seq using FAI ; the linearization point of the insertion by T0 is when it writes to
g_mem[0]._recent. The problem stems from the linearization point of the deletion by T1. It
cannot be placed (like erroneouslymentioned in [AST12])whenT1 writes to g_mem[1]._recent,

22

because it must occur before the linearization point of the size operation that observed the
deletion. Instead, it is placed in retrospect right before the linearization point of the size op-
eration. This linearization scheme of possibly placing in retrospect linearization points of up-
dates that the size operation observes in its scan long before they write their value, is adopted
from the single-scanner algorithm of Riany et al. [RST01], on which the size algorithm in
[AST12] is based. The scheme was intended for the atomic snapshot problem, where there
are no dependencies between the update operations. However, when handling dependent
data-structure operations, they cannot be freely reordered when the size observes them in its
scan. In the execution described above, reversing the order of an insertion and a following
deletion of the same item is unacceptable, since the deletion cannot succeed if it happens be-
fore the insertion, and thus cannot legally decrement the size before the insertion increments
it. In conclusion, the correctness problem of the suggested size algorithm stems from the
linearization order the size operation dictates: if a size operation S observes during its scan
a value, written after S’s linearization point by a delayed update U , it dictates in retrospect
to place U ’s linearization point before S’s linearization point – which might occur before
linearization points of update operations that U depends on.

3.4 Data-Structure Transformation

In this section we specify how the fields and methods of a linearizable data structure can
be modified in order to transform it into a data structure that uses our size mechanism. To
efficiently obtain a linearizable size, we keep metadata from which the size may be computed.
But unlike previous work, we make the data structure and the metadata change (linearize)
simultaneously. The data-structure operations are responsible to maintain the metadata. The
main idea is to make sure that updates are not visible to other operations until their metadata
is updated. The way to enforce that, is to let each operation complete work for previous
related operations, so that it does not view any intermediate states. The details follow.

Successful operations update metadata The first modification is to let each successful
insert or delete operation (i.e., an operation that succeeds to insert a new key or delete an
existing key respectively) update the metadata to reflect the operation’s effect on the size.

Operations help concurrent operations on the samekey updatemetadata To prevent
operations from exposing inconsistencies similar to the examples of Figures 3.1 and 3.2, we
linearize data-structure operations that alter the size at the time the metadata is updated to
reflect them (informally, linearizing means logically considering them as applied). Dependent
data-structure operations are adapted to comply with the new linearization point: if they
observe that successful insert or delete operations that they depend on have accomplished
their original linearization point, they help them update the metadata so that they reach their
new linearization point. For example, a contains(k) that encounters a node with the key

23

k inserted by a concurrent insert(k) cannot return true before ensuring that the insert is
reflected in the metadata.

We focus on data structures implementing a set (i.e., a collection of distinct keys) or a
dictionary (i.e., a collection of distinct keys with associated values) that provide standard
insert, delete and contains operations. In such data structures, an operation on some key
logically depends only on operations on the same key. Accordingly, when an operation on
some key encounters a node with that key, it acts as follows: if the node is unmarked, it
updates the metadata on behalf of the insert operation that inserted the node, to guarantee it
is complete (in case the metadata is not yet updated with this insert); if the node is marked
as deleted, it ensures the metadata reflects the delete operation that marked the node before
proceeding with its own execution.

Successful operations leave a trace for helpers For operations to help unfinished opera-
tions on the same key to update the metadata, they must observe these unfinished operations.
To facilitate this, successful insert and delete operations prepare an UpdateInfo object with
the information required by helpers for updating the metadata on their behalf, and reference
it from the node on which they operate. An insert creates an UpdateInfo object and places a
reference to it in the node it is about to link, in a new insertInfo field we add to node objects.
A delete also creates an UpdateInfo object, and needs to reference it from the node it deletes.
To this end, we rely on a deletion pattern introduced by Harris [Har01] and commonly used in
concurrent data structures [e.g., Har01; HHL+05; HLLS07; Fra04; ST05], where a node is first
marked as deleted and then physically unlinked. We install the delete information together
with the marking, as demonstrated in the following examples.

When the original marking step already marks the node as deleted by installing an object
with information about the delete operation (this is true, for instance, for the binary search
tree of Ellen, Fatourou, Ruppert, and van Breugel [EFRvB10]), then a deleteInfo field refer-
encing the delete’s UpdateInfo object may be simply placed inside that object. When the
original marking step nullifies the node’s value field (as in Java’s ConcurrentSkipListMap),
in the transformed data structure instead of setting the value field to NULL, it may be set to
a reference to the UpdateInfo object. When the original marking step sets a bit in the node’s
next field (like in Harris’s linked list [Har01]), a new deleteInfo field in the node may be set
to reference the UpdateInfo object before the marking step.

Metadata is updated before unlinking a marked node The metadata must be updated
on behalf of a delete before the relevant node is unlinked. To see why, assume the metadata
is updated to reflect a delete(k) only after it completes to operate on the data structure, in-
cluding unlinking the node with the key k. In this circumstance, a dependent operation like
contains(k) might run in between, and then it will not observe the relevant node and will thus
not assist the delete operation update the metadata. Such a contains(k) would return false
though delete(k) has not yet updated the metadata, hence, is not yet linearized. Therefore,
the metadata is updated before any unlinking attempt: the delete(k) operation itself updates

24

the metadata after marking the node and before unlinking it; and any other operation that
attempts to help unlinking the marked node is also required to update the metadata on behalf
of delete(k) beforehand.

Adding size functionality An instance of a SizeCalculator object (described in detail in
Section 3.6.1), responsible for keeping themetadata and computing the size, is referenced from
the transformed data structure, and a size method that uses it to retrieve the size is added to
the data structure.

3.4.1 Specific Examples and the SizeCalculator Object

Figure 3.3 demonstrates how the transformation described above may be applied to standard
linearizable linked list, skip list and hash table that implement a set. A similar transformation
with minor adaptations will apply to implementations of a dictionary. The transformation
may also be applied to search trees with some adaptations.

At the core of our size mechanism stands the SizeCalculator object. We elaborate on this
object, responsible for the size calculation, in Section 3.6.1. For nowwe just need to be familiar
with its interface methods: updateMetadata is called with an UpdateInfo object associated
with an insert or delete operation for updating the metadata stored in the SizeCalculator to
reflect that operation. This method may be called by both the operation initiator and helpers.
We explain in Section 3.5 how SizeCalculator prevents double update of the metadata on
behalf of the same operation. createUpdateInfo is called by insert and delete operations to
produce an object that will be published to helpers, with the information required for updating
the metadata on their behalf. compute is the method used to retrieve the size of the data
structure efficiently (using the metadata).

A SizeCalculator reference field named sizeCalculator is placed in the data structure, and
initialized to hold a SizeCalculator instance. Its methods are called in the appropriate places
in the data-structure operations, as can be seen in Figure 3.3. In addition, an insertInfo field
referencing an UpdateInfo object is placed in the data structure’s node objects. A similar
deleteInfo field is placed in the appropriate place, as described above. Since the UpdateInfo
record contains the information required for updating the metadata to reflect the associated
operation, its content is coupled with the size metadata, so its description is deferred to Sec-
tion 3.5.

3.4.2 Applicability

We focus on a transformation for linearizable data structures that implement the highly preva-
lent set or dictionary data types. However, the presented ideas may be adapted to other data
types. Our transformation recipe requires that the delete operation of the original data struc-
ture be linearized at a marking step and not at an unlinking step, to ensure consistency with
the size metadata. Otherwise, if operations on k that encounter a marked node with the key
k ignore the mark, and consider k as deleted only when its node is unlinked, that might be

25

26

1 INSERT = 0, DELETE = 1
2 class TransformedDataStructure:
3 TransformedDataStructure():
4 initialize as originally
5 sizeCalculator = new SizeCalculator()
6 contains(k):
7 search∗ for a node with k as originally
8 if not found: return false
9 else if found unmarked node:

10 sizeCalculator.updateMetadata(node.insertInfo, INSERT)
11 return true
12 else: // found marked node
13 sizeCalculator.updateMetadata(node’s deleteInfo, DELETE)
14 return false
15 insert(k):
16 search∗ for the place to insert k as originally
17 if k is already present in an unmarked node:
18 sizeCalculator.updateMetadata(node.insertInfo, INSERT)
19 return failure
20 if k is present in a marked node:
21 sizeCalculator.updateMetadata(node’s deleteInfo, DELETE)
22 insertInfo = sizeCalculator.createUpdateInfo(INSERT)
23 allocate newNode as originally with k and the other relevant data, and additionally with

insertInfo
24 insert newNode as originally (in case of failure proceed as originally)
25 sizeCalculator.updateMetadata(insertInfo, INSERT)
26 return success
27 delete(k):
28 search∗ for a node with k as originally
29 if not found: return failure
30 if found a marked node:
31 sizeCalculator.updateMetadata(node’s deleteInfo, DELETE)
32 return failure
33 sizeCalculator.updateMetadata(node.insertInfo, INSERT)
34 deleteInfo = sizeCalculator.createUpdateInfo(DELETE)
35 mark node with deleteInfo (in case of failure proceed as originally)
36 sizeCalculator.updateMetadata(deleteInfo, DELETE)
37 unlink node
38 return success
39 size():
40 return sizeCalculator.compute()
41 ∗For each encountered marked node along the search, in case of unlinking it in the original algorithm,

call sizeCalculator.updateMetadata(node’s deleteInfo, DELETE) before unlinking it.

Figure 3.3: A transformed data structure

inconsistent with the size metadata which is updated to reflect the deletion before the unlink-
ing. Instead, by our requirement, operations on k in the original data structure consider the
node as removed when it is marked, and in the transformed data structure they help update
the metadata on behalf of the delete(k) that marked the node and only then treat the key k

as deleted.
In case of a data structure that linearizes the delete operation at an unlinking step and

not in the prior marking step, it is usually not difficult to adjust it to have the marking as
the linearization point of delete. We made this adjustment to the binary search tree of Ellen,
Fatourou, Ruppert, and van Breugel [EFRvB10] in order to apply the transformation to it and
evaluate its performance.

3.5 The Size Metadata

In our transformation, operations may help other operations update the metadata. Hence, we
must prevent a double update of the metadata on behalf of the same operation. We use meta-
data which enables threads that operate on the data structure to determine whether the meta-
data already reflects a certain operation, and update it otherwise. The SizeCalculator object
holds the array metadataCounters as the metadata, containing two counters per thread: an
insertion counter and a deletion counter, which indicate the number of successful insertions
and deletions the thread has performed so far on the data structure. Separating the insertion
from the deletion counter allows determining whether an insert (or a delete) operation has
been reflected in the counters. If an insert follows a delete, a single counter (incremented
on each insertion and decremented on each deletion) cannot indicate if the two operations
completed or none of them. Two separate counters allow a simple concise indication of which
one of the two operations is reflected in the counters. Next we describe how insertions are
handled; deletions are handled similarly.

The per-thread monotonic insertion counters enable to immediately detect whether a cer-
tain insert operation by a certain thread is reflected in the metadata, and otherwise ensure
that it is reflected via a single CAS: When updateMetadata is called on behalf of a thread
T ’s i-th successful insert operation by either T or helpers, if T ’s insertion counter is ≥ i, it
leaves the counter as is since the operation is already reflected in the metadata; else, it uses
a CAS to increment it from i − 1 to i. There is no need to repeat the CAS in case of failure,
since that might happen only when another thread succeeds to perform the same update.

To help another operation update the metadata, a helper needs to know on which counter
in metadataCounters it should operate and its target value. This dictates the information that
the i-th insert operation by thread T leaves for helpers in an UpdateInfo object: T ’s thread ID,
which will be used as an index to the metadataCounters array, and i, which is the counter’s
target value (which is simply the current value of T ’s insertion counter in metadataCounters
plus 1).

The size may be calculated from metadataCounters as the difference between the sum of
insertion counters and the sum of deletion counters. But naively reading the values one by

27

one may result in an inconsistent (non-linearizable) size, because we may obtain a collection
of values that never existed simultaneously in the array. We need to obtain a snapshot of
values the array counters had at some point in time, but we cannot use locks to achieve this
atomicity as we aim for a wait-free size. Next we explain how we manage to achieve that.

3.6 Mechanism for Wait-Free Size

The size operation needs to obtain a linearizable snapshot of the metadataCounters array,
from which it will be able to compute a consistent size. As the size of this array is twice
the number of threads, our solution is the most beneficial (in comparison to computing the
size by iterating over a snapshot of the data structure) for applications that usually use data
structures with much more elements than the number of threads. If size naively read meta-
dataCounters cell by cell, it could obtain an inconsistent view of the array. For example,
consider an execution in which a size operation starts scanning the array, but after it reads
the insertion counter of some thread T , this thread inserts an item and then removes it. Now
both T ’s insertion and deletion counters equal 1, and when the size operation resumes it reads
the new value of T ’s deletion counter and returns −1 as the size. The problem here is that
the size operation captured the delete’s update of the array but missed the preceding insert’s
update.

To overcome this problem and obtain a linearizable snapshot of the counters array in a
wait-free form, we adopt the basic idea of [Jay05]’s single-scanner single-writer snapshot al-
gorithm, which is as follows. After an update operation writes to the main array, it checks
if a concurrent scan operation is in the process of collecting the main array’s values. If so,
the scan has maybe already read the relevant cell and missed the new value, thus the update
forwards the new value from the main array to a designated second array. The scan operation
begins with a collection phase to collect the main array values; before starting the collection
it announces it to other operations, and after the collection it announces its completion. In
a second phase, the scan retrieves a linearizable view of the array by combining the values
it collected with newer values, forwarded to the designated second array by concurrent up-
date operations (namely, each forwarded value is adopted in place of the value that the scan
collected from the corresponding cell in the main array). A scan is linearized at the point it
announces completing the collection. It might miss values that were written to the main array
by some update operations while it was collecting, thus, such operations are retrospectively
linearized immediately after the scan’s linearization point. We bring the linearization details
of update adapted to our context in Section 3.8.1.

Our size operation acts in the spirit of Jayanti’s scan to obtain a view of the metadata
array, and data-structure operations that update the metadata array (on behalf of their own
operation or to help another operation) act in the spirit of Jayanti’s update to inform a con-
current size of a new value it might have missed. However, Jayanti’s basic idea supports
a single scanner. When multiple size operations execute concurrently, we cannot let each
size take an independent snapshot of the metadata array, because the linearization point of a

28

size operation determines the linearization points of updating operations it missed, and con-
current independent size operations might determine contradicting linearization points for
concurrent updates. Thus, we need to make sure that concurrent size operations yield the
same consistent snapshot of the metadata array.

To this end, we introduce a CountersSnapshot object (on which we detail in Section 3.6.2).
Concurrent size operations coordinate with each other through a CountersSnapshot instance,
similarly to concurrent snapshot operations in [PT13] that use a shared object to orchestrate
taking a snapshot concurrently. A size operation needs to first obtain a CountersSnapshot
instance to operate on. At any given point in time, at most one collecting CountersSnapshot
instance (in which the collection has not yet completed) is announced. If a size operation
observes such an instance, it operates on it, so that it returns the same size as the size that
announced this instance. Otherwise, the size operation produces a new instance, announces
it and operates on it.

The CountersSnapshot holds a snapshot array for taking a snapshot of the metadata ar-
ray. size operations that operate on a certain CountersSnapshot instance collect values into
its snapshot array (using a CAS from an initial INVALID value to the value obtained from the
metadata array), and operations that concurrently update the metadata array forward their
values into the snapshot array. After a collection phase, a size operation needs to compute
the size based on the counters in the snapshot array. But the array is not stable—updating
operations might be still forwarding values. For all size operations that operate on the same
CountersSnapshot instance to agree on the same size, we place a size field in CountersS-
napshot, initialized to INVALID. The first size operation to compute a size by traversing the
snapshot array and then perform a CAS of the size field from INVALID to its computed size,
determines the size value. Concurrent size operations will adopt this value. Any value for-
warded to a counter in the snapshot array after the thread that determined the size read this
counter is ignored (and its related operation is linearized after the size).

3.6.1 SizeCalculator Details

Each transformed data structure holds a SizeCalculator instance associated with it, respon-
sible for calculating the size by holding the metadata and operating on it. The fields of Size-

42 class UpdateInfo:
43 int tid
44 long counter
45 class SizeCalculator:
46 long[][] metadataCounters
47 CountersSnapshot countersSnapshot
48 class CountersSnapshot:
49 long[][] snapshot
50 boolean collecting
51 long size

Figure 3.4: Classes fields

29

Calculator (as well as the other classes we use) are detailed in Figure 3.4, and its pseudocode
appears in Figure 3.5.

The SizeCalculator object contains two fields: The first is metadataCounters, holding
the size metadata—an array with an insertion counter and a deletion counter per thread, with
padding between the cells of each thread and the next one so that the counters of the dif-
ferent threads are placed in separate cache lines to avoid false sharing. The second field is
countersSnapshot, that holds the most recent CountersSnapshot instance. In its constructor
method (appearing in Line 53), SizeCalculator initializes metadataCounters with zeros, and
countersSnapshot with a dummy instance with its collecting flag set to false, to signal that
it is not collecting and future size operations should use a new instance.

52 class SizeCalculator:
53 SizeCalculator():
54 this.metadataCounters = new long[n][PADDING] // implicitly initialized to zeros
55 this.countersSnapshot = new CountersSnapshot()
56 this.countersSnapshot.collecting.setVolatile(false)
57 compute():
58 activeCountersSnapshot = _obtainCollectingCountersSnapshot()
59 _collect(activeCountersSnapshot)
60 activeCountersSnapshot.collecting.setVolatile(false)
61 return activeCountersSnapshot.computeSize()
62 _obtainCollectingCountersSnapshot():
63 currentCountersSnapshot = this.countersSnapshot.getVolatile()
64 if currentCountersSnapshot.collecting.getVolatile():
65 return currentCountersSnapshot
66 newCountersSnapshot = new CountersSnapshot()
67 witnessedCountersSnapshot = this.countersSnapshot.compareAndExchange(

↪→ currentCountersSnapshot, newCountersSnapshot):
68 if witnessedCountersSnapshot == currentCountersSnapshot:
69 return newCountersSnapshot
70 return witnessedCountersSnapshot // our exchange failed, adopt the value written by a

↪→ concurrent thread
71 _collect(targetCountersSnapshot):
72 for each tid:
73 for opKind in (INSERT, DELETE):
74 targetCountersSnapshot.add(tid, opKind, this.metadataCounters[tid][opKind].

↪→ getVolatile())
75 updateMetadata(updateInfo, opKind):
76 tid = updateInfo.tid
77 newCounter = updateInfo.counter
78 if this.metadataCounters[tid][opKind].getVolatile() == newCounter - 1:
79 this.metadataCounters[tid][opKind].compareAndSet(newCounter - 1, newCounter)
80 currentCountersSnapshot = this.countersSnapshot.getVolatile()
81 if currentCountersSnapshot.collecting.getVolatile() and
82 this.metadataCounters[tid][opKind].getVolatile() == newCounter:
83 currentCountersSnapshot.forward(tid, opKind, newCounter)
84 createUpdateInfo(opKind):
85 return new UpdateInfo(threadID, this.metadataCounters[threadID][opKind].getVolatile() + 1)

Figure 3.5: SizeCalculator methods

30

The compute method is called by the size operation of a transformed data structure. It
starts with a collection phase in Lines 58–60. First it needs to announce a new collection if
there is no ongoing collection. To this end it calls the privatemethod_obtainCollectingCoun-
tersSnapshot. The latter returns the most recent CountersSnapshot if this instance is still
collecting (Lines 63–65), so that the current compute would cooperate with ongoing com-
pute calls. Otherwise, _obtainCollectingCountersSnapshot tries to place a new CountersS-
napshot instance in countersSnapshot using a CAS, and returns the new countersSnapshot
value, whether it is an instance placed by itself or an instance placed by another compute call
(Lines 66–70). With an activeCountersSnapshot instance in a collecting mode, compute calls
the private method _collect (Line 59), to add all metadataCounters values to activeCounters-
Snapshot. Then, it unsets activeCountersSnapshot’s collecting flag. Now that its collection
phase is complete, compute computes the size according to the CountersSnapshot instance
maintained in activeCountersSnapshot. This is done using the computeSizemethod ofCoun-
tersSnapshot, on which we detail in Section 3.6.2.

updateMetadata(UpdateInfo(tid, c), INSERT) is called on behalf of the c-th successful
insert operation by thread tid. We describe how the method handles insertions for conve-
nience; the same applies for deletions by passing opKind=DELETE. The method first up-
dates the relevant counter in the metadata array, i.e., metadataCounters[tid][INSERT], to
be c (Lines 78–79), using a CAS to avoid overriding concurrent updates. At this point, the
metadata reflects the discussed insertion. Then, according to the described-above scheme,
updateMetadata should also forward the counter value c to concurrent size operations that
take a snapshot of the metadataCounters array and might have missed this value. For that,
it performs the following steps: (1) obtain the current collecting CountersSnpashot instance
(Line 80); (2) verify it is still collecting (Line 81); (3) obtain the relevant counter from the
metadata array and verify it still holds the value c (Line 82); and then finally, if these checks
pass, (4) call the forward method of the CountersSnpashot instance obtained in the first step
(Line 83). This series of steps is intended to prevent redundant forwarding. Though it is not
yet clear now, it guarantees a constant time complexity for the forward method, as we prove
in Section 3.8.2.

The last method of SizeCalculator is createUpdateInfo, which is called by insert and
delete operations to obtain an UpdateInfo instance for publication to helpers. createUpdate-
Info creates an UpdateInfo instance with tid=threadID and counter=c, where threadID is
the ID of the calling thread (threadID values are assumed to start from 0, and could be ob-
tained e.g. from a thread-local variable), and c is the current value of the relevant counter
(that indicates how many successful operations of the requested kind have been executed by
the calling thread so far) plus 1—as the calling thread is about to attempt its c-th operation of
this kind.

31

3.6.2 CountersSnapshot Details

A new CountersSnapshot instance is announced in SizeCalculator.countersSnapshot each
time a new collection phase starts (which happens every time a size operation starts and
observes that the last announced CountersSnapshot instance is already not collecting). This
instance coordinates the current size calculation among all concurrent size calls that use it to
compute the size. Its methods appear in Figure 3.6 and its fields appear in Figure 3.4.

The CountersSnapshot object holds a snapshot array called snapshot for taking a snap-
shot of the metadata array, from which the size will be computed. It also holds a collecting
field that indicates whether the collection of values into snapshot is still ongoing, and a size
field that will eventually hold the computed size. In its constructor method (appearing in
Line 87), CountersSnapshot initializes all its fields. The cells of snapshot are set to INVALID
(which may have the value Long.MAX_VALUE for instance), the collecting flag is set to
true and size is set to INVALID.

The add method is called by size operations to collect values into the snapshot array. It
performs a CAS on the requested cell to the requested value only if the current value is
INVALID. Otherwise, another operation has already collected a value to this cell and there is
no need to perform another CAS. Indeed, the value that this size operation fails to add might
be missed during the size calculation if it is not forwarded on time by the updating operation

86 class CountersSnapshot:
87 CountersSnapshot():
88 this.snapshot = new long[n][2]
89 setVolatile all cells of this.snapshot to INVALID
90 this.collecting.setVolatile(true)
91 this.size.setVolatile(INVALID)
92 add(tid, opKind, counter):
93 if this.snapshot[tid][opKind].getVolatile() == INVALID:
94 this.snapshot[tid][opKind].compareAndSet(INVALID, counter)
95 forward(tid, opKind, counter):
96 snapshotCounter = this.snapshot[tid][opKind].getVolatile()
97 while (snapshotCounter == INVALID or

counter ⟩snapshotCounter): // will execute at most two iterations
98 witnessedSnapshotCounter = this.snapshot[tid][opKind].compareAndExchange(

↪→ snapshotCounter, counter):
99 if witnessedSnapshotCounter == snapshotCounter:

100 break
101 snapshotCounter = witnessedSnapshotCounter
102 computeSize():
103 computedSize = 0
104 for each tid:
105 computedSize += this.snapshot[tid][INSERT].getVolatile() -

this.snapshot[tid][DELETE].getVolatile()
106 witnessedSize = this.size.compareAndExchange(INVALID, computedSize)
107 if witnessedSize == INVALID:
108 return computedSize
109 return witnessedSize // our exchange failed, adopt the size written by a concurrent thread

Figure 3.6: CountersSnapshot methods

32

associated with it, but this does not foil linearizability, as the updating operation associated
with this value is retrospectively linearized after the size.

forward(tid,INSERT,c) is called by updateMetadata that was called on behalf of the c-
th successful insert operation by thread tid. It is called after the insertion counter of thread
tid in the metadata array is set to c, to ensure that the insertion counter of that thread in the
snapshot array contains a value≥ c. We prove in Section 3.8.2 that the forward method shall
execute at most two CAS attempts before reaching this goal. forward operates similarly for
deletions when called with an opKind=DELETE argument.

The computeSize method is called by the compute method of SizeCalculator (which is
called by the data structure’s size method), after obtaining a CountersSnapshot instance and
completing the collection to this instance, so that its snapshot array is filled with meaningful
values (rather than INVALID values). The size is computed as the difference between the sum
of insertion counters and the sum of deletion counters in the snapshot array (Lines 103–105).
But computeSize may be called by multiple concurrent size operations that operate on the
same CountersSnapshot instance, and each of them might compute a different size because
values may be concurrently forwarded to the array. Only the first computeSize call to fix
the size it computed in the size field (in Line 106), determines the size value that they will all
adopt. The rest of them will fail to CAS and will adopt its value.

3.6.3 Memory Model

The pseudocode brought in this section aligns with our Java implementation [SP22c] (eval-
uated in Section 3.9) and accesses variables using volatile memory semantics to ensure the
visibility required for correctness in accordance with the Java memory model. Read, write
and CAS operations on non-final fields of shared objects are performed with volatile seman-
tics (in our Java implementation this is achieved using volatile variables, VarHandles and
AtomicReferenceFieldUpdaters). These volatile-semantics accesses are considered synchro-
nization actions, over which the Java memory model guarantees a synchronization order (a
total order which is consistent with the program order of each thread, and where a read from
a volatile variable returns the last value written to it by the synchronization order). A sim-
ilar implementation could be designed in C++ according to its memory model guarantees,
utilizing the std::atomic library to order accesses to shared memory.

3.7 Optimizations

The following optimizations may be applied in our methodology, and we apply them in our
implementation [SP22c] measured in Section 3.9.

3.7.1 Eliminate Metadata Update on Behalf of Completed Insertions

When an insertion is complete, there is no need that future operations on the inserted node
update the metadata on behalf of that insertion. To this end, after a thread calls updateMeta-

33

data to update the metadata on behalf of some insert operation that inserted a node N , it may
set N .insertInfo to NULL, to signal that the metadata already reflects the insertion and there
is no need to call updateMetadata. Before calling updateMetadata, threads will perform a
NULL check to the node’s insertInfo to rule if the call is necessary.

We do not propose a similar modification for deletions since deleted nodes are unlinked
from the data structure when the deletion completes and cause nomore update activity, unlike
inserted nodes which, without the optimization, cause a redundant updateMetadata call on
each operation on the node.

3.7.2 Size Backoff

Each size operation operates on a CountersSnapshot instance it obtains as follows. It collects
values into its snapshot array using CAS operations, uses the collected counters to compute
the size, and finally sets its size field to the computed size using a CAS, unless another size
operation has done that beforehand.

Exponential backoff may be used to reduce contention among concurrent size operations
caused by their CAS operations on the snapshot and size fields. Each time a size operation
obtains an existing CountersSnapshot instance that was announced by another size opera-
tion, it may wait a while to let another size operation complete the size calculation. After
waiting, if the calculation is not yet complete (which may be detected by an INVALID value
in the size field), it shall collect, compute the size and try to set it on its own.

3.7.3 Check for an Already-Set Size

There are occasions where we may avoid contention and redundant work by obtaining the
size field of CountersSnapshot and returning it in case it does not equal INVALID. This
may be done when SizeCalculator’s _obtainCollectingCountersSnapshot method observes
a concurrent size operation in Lines 65 and 70; at the beginning of CountersSnapshot’s com-
puteSize method; and right before computeSize performs a CAS attempt.

3.8 Methodology Properties

3.8.1 Linearizability

A linearizable data structure transformed according to our methodology to support a size
operation, remains linearizable. Recall that an operation has its original linearization point,
when its linearization is defined in the original set data structure, but we linearize operations
in the transformed data structure only when the metadata is updated. Next, we detail the
linearization points of a transformed set’s operations, and use them to prove linearizability.

34

Linearization Points

A size operation is linearized at the announcement of the collection completion. For a suc-
cessful insert or delete operation, the associated metadata counter is updated to reflect the
operation (by either the operation initiator or helpers), and if this update happens when no
size is collecting, then the operation is simply linearized at the update. However, if the up-
date is performed while some size is collecting, then the operation is linearized according to
that size to comply with its linearization point: if the size takes the operation into account
then the operation is simply linearized at the metadata counter update; otherwise, it is retro-
spectively linearized immediately after the linearization point of that size. Finally, a contains
operation and a failing insert or delete operation (namely, one that fails to insert a new key
or delete an existing key respectively, and returns a failure), are linearized like in the original
data structure, unless the operation they “depend on”, namely, the last successful update oper-
ation on the same key whose original linearization point precedes their original linearization
point (a concurrent successful insert of the same key in case of contains returning true and
a failing insert; and a concurrent successful delete in case of contains returning false and a
failing delete) is not yet linearized at their original linearization point, in which case they are
linearized immediately after this operation is linearized.

In more detail, a size operation is linearized when the collecting field of the Counter-
sSnapshot instance it operates on is set to false for the first time (in Line 60). Regarding a
successful insert operation, the associated metadata counter is updated as follows: a CAS of
sizeCalculator.metadataCounters[tid][INSERT] to c is performed on behalf of the c-th suc-
cessful insert operation of thread tid (in Line 79), where sizeCalculator is the SizeCalculator
instance held by the transformed data structure. For a successful delete operation, the only
difference is that DELETE is used as the array index. As for the linearization point of such
an insert or delete operation—if a CountersSnapshot instance with a collecting field set to
true is not announced in sizeCalculator.countersSnapshot when the metadata counter up-
date is performed, then the operation is linearized at the metadata counter update (namely,
at the CAS in Line 79). Else, the operation is linearized according to this CountersSnapshot
instance: if the size operation that sets its size field read a value≥ c from the relevant counter
(in Line 105), then the operation is linearized at the metadata counter update (as in the pre-
vious case); otherwise, it is linearized immediately after the linearization point of that size
operation.

In the above specification, several operations might be linearized at the same moment—
either operations defined to be linearized immediately after each other, or operations lin-
earized at the exact same moment (e.g., several size operations operating on the same Coun-
tersSnapshot instance). We order operations that are linearized at the same moment one
after the other as follows: size operations (if any) are placed first; the order among them is
arbitrary. Successful update operations (if any) are placed after the size operations according
to their metadata-counter update order. Each contains or failing insert or delete call that
is not linearized at its original linearization point (if any) is placed right after the successful

35

update operation it depends on; the order among such operations which are placed after the
same successful update is arbitrary.

Linearizability Proof

We prove that our transformation is linearizable using the equivalent definition of linearizabil-
ity that is based on linearization points (see [SHP21b, Section 7] and the atomicity definition
in [Lyn96]). We need to show that (1) each linearization point occurs within the operation’s
execution time, and that (2) ordering an execution’s operations (with their results) according
to their linearization points forms a legal sequential history.

We prove Property (1) in Claim 3.8.1 and Property (2) in Claim 3.8.4.

Claim 3.8.1. The linearization point of each operation occurs within its execution time.

Proof We begin with the linearization point of a size operation. size calls sizeCalculator.com-
pute, which starts with calling _obtainCollectingCountersSnapshot to obtain a collecting
CountersSnapshot instance. _obtainCollectingCountersSnapshot returns an instance after
its collecting field has had the value true at some point during this _obtainCollectingCoun-
tersSnapshot call: If this call observes that the current announced instance is collecting (in
Line 64), it returns this instance. Otherwise, this instance cannot be used by the current size
because its linearization point has passed and has possibly occurred before the current size
started. Thus, it creates an instance with collecting set to true, and if it succeeds to announce
it using a CAS (in Line 67), it returns this instance. Else, the failure of its CAS indicates that
another thread has in the meanwhile announced a new instance, with collecting set to true,
and the discussed _obtainCollectingCountersSnapshot call returns such an instance. We
showed that in any of the above cases, the collecting field of the obtained CountersSnapshot
instance was still true at some point during the _obtainCollectingCountersSnapshot call,
hence the size’s linearization point does not occur before the compute call starts. It does oc-
cur before it ends, as the collecting field is set to false either when this call executes Line 60,
or before if another compute call has executed this line earlier.

Next, we prove that successful update operations are linearized within their execution
time. A successful insert or delete operation calls updateMetadata with its UpdateInfo in-
stance before returning. As we prove in Lemma 3.8.2 below, by the time updateMetadata
returns, the operation is guaranteed to be linearized. Additionally, it is not linearized before
the operation’s execution starts, since it is linearized either at its metadata counter update or
at a later point in time, and the update on behalf of a certain operation can only happen after
it started and published its UpdateInfo instance.

Lastly, we show that a contains, a failing insert and a failing delete operations are lin-
earized within their execution time. If an operation op of this kind is linearized at its original
linearization point, we are done1. Otherwise, op is linearized immediately after the lineariza-
tion point of an operation op2 it depends on. This happens only in case op observes op2 and

1For every linearizable data structure, there exists a selection of linearization points such that each of them is
placed during the execution time of the corresponding operation (see the equivalent definition of linearizability

36

calls updateMetadata on behalf of op2. By Lemma 3.8.2, op2 is linearized by the time this
updateMetadata call returns. Hence, op is linearized by that time as well.

In the proof of Claim 3.8.1 we use the following lemmas:

Lemma 3.8.2. When a call to updateMetadata returns, the operation whose updateInfo was

passed to the call is guaranteed to be linearized.

Proof Consider a call to updateMetadata on behalf of op, being the c-th successful insert
operation by a thread T (a similar proof applies for delete). Denote this call by updateMeta-

dataForOp. We need to show that op has been linearized by the time updateMetadataForOp

returns. By Lemma 3.8.3, after executing Lines 78–79, the relevant metadata counter’s value
is ≥ c. If op is linearized when its related metadata counter is set to c, we are done. Other-
wise, the following hold: (1) the counter is set to c when a CountersSnapshot instance with a
collecting field set to true is announced in the countersSnapshot field of sizeCalculator (de-
note this instance by snapshotAtUpdate); (2) the size operation that sets snapshotAtUpdate’s
size field reads, during its size computation, a value < c from the corresponding snapshot
counter; and (3) op is linearized immediately after the linearization point of that size opera-
tion, namely, immediately after the collecting field of snapshotAtUpdate is set to false for the
first time. So we need to prove that this collecting field is set to false before the updateMeta-

dataForOp call returns. Next, we prove this holds in the various possible scenarios.
If updateMetadataForOp obtains a newer CountersSnapshot instance than snapshotAtUp-

date in Line 80, then we are done, as CountersSnapshot instances announced in SizeCalcu-
lator are replaced only after their collecting field is set to false.

Else, if updateMetadataForOp observes in Line 81 that snapshotAtUpdate’s collecting field
value is false, we are done.

Else, if the checks in Lines 81 and 82 pass, updateMetadataForOp forwards the value c

to the snapshot counter in Line 83. When its forwarding completes, the snapshot counter
contains a value ≥ c. Since we analyze here a case in which the size operation, which sets
snapshotAtUpdate’s size field, reads a value < c from the snapshot counter, this size must
have read the snapshot counter before the forwarding completes, and this read during the
size computation occurs only after the snapshotAtUpdate’s collecting field is set to false.

The remaining scenario is that updateMetadataForOp observes in Line 82 that the meta-
data counter’s value is ≥ c + 1. We will show that snapshotAtUpdate’s collecting field value
has been earlier set to false. For the metadata counter to reach the value c + 1, the thread T

must have already started its (c + 1)-st successful insertion. Prior to that, T has completed
op (which is its c-th successful insertion), during which it has called updateMetadata, in a
call we denote updateMetadataByT. We will next show that by the time updateMetadataByT

returns, the value of snapshotAtUpdate’s collecting field is already false. After updateMeta-

dataByT executes Lines 78–79, the metadata counter’s value is≥ c by Lemma 3.8.3. Denote by

based on linearization points in Section 7 in [SHP21b]). Each time we refer to the linearization points of the
original data structure, we refer to points that satisfy this requirement.

37

currSnap the value that updateMetadataByT obtains in currentCountersSnapshot in Line 80.
currSnap must be snapshotAtUpdate, because otherwise, if it were an earlier CountersSnap-
shot instance, then when snapshotAtUpdate is later announced in the countersSnapshot field
of sizeCalculator, the metadata counter’s value would already be ≥ c as mentioned above,
but this contradicts Attribute (2) above which implies that a value < c is collected in snap-

shotAtUpdate. Thus, currSnap is snapshotAtUpdate. When updateMetadataByT checks the
value of snapshotAtUpdate’s collecting field in Line 81, if it is false then we are done. Other-
wise, updateMetadataByT calls the forward method to ensure that the value c is forwarded
to the snapshot counter. Like in the previous scenario, we analyze here a case in which the
size operation, which sets snapshotAtUpdate’s size field, reads a value < c from the snapshot
counter, hence, this size must have read the snapshot counter before the forwarding com-
pletes, and this read during the size computation occurs only after the snapshotAtUpdate’s
collecting field is set to false. This concludes the proof.

Lemma 3.8.3. Consider a call to updateMetadata on behalf of op, being the c-th successful in-
sert or delete operation by a thread T . After this call executes Lines 78–79, the relevant metadata

counter’s value is ≥ c.

Proof We prove by induction. Assume the lemma holds for c− 1. The metadata counters are
modified only in Line 79 by increments using CAS. Hence, it is enough to prove that when the
updateMetadata call starts, the relevant metadata counter’s value is ≥ c − 1. updateMeta-
data is called with an UpdateInfo instance associated with op after this instance has been
published in the relevant node. This publication is done by the thread T when it executes op,
and as each thread executes its operations sequentially, T has completed its (c−1)-st success-
ful operation of the same kind (insertion or deletion) by this time. During that operation, T

called updateMetadata on its behalf, so by the induction hypothesis, the relevant metadata
counter’s value is ≥ c− 1 when T completes that previous operation. Since the counters are
monotonically increasing, we are done. ■

To complete the linearizability proof, it remains to prove Claim 3.8.4. In what follows, we
denote the set’s i-th successful insert(k) operation (by i-th we refer to the linearization order,
namely, to the i-th successful insert(k) to be linearized) by inserti(k), its linearization time by
tinserti(k), and the time of its original linearization by orig_tinserti(k). We further denote the
analogous delete operation and its related times by deletei(k), tdeletei(k) and orig_tdeletei(k).

Claim 3.8.4. Consider a sequential history formed by ordering an execution’s operations (with

their results) according to their linearization points defined in Section 3.8.1. Then operation results

in this history comply with the sequential specification of a set.

Proof As for the results of successful update operations, their correctness follows directly
from Corollary 3.1: The last successful update operation on k to be linearized before the lin-
earization point of a successful insert(k) operation is a deletion, thus, the key k is logically not

38

in the set at the moment of the insertion’s linearization and the insertion correctly succeeds.
Similarly, the last successful update operation on k to be linearized before the linearization
point of a successful delete(k) operation is an insertion, thus, the key k is logically in the set
at the moment of the deletion’s linearization and the deletion correctly succeeds.

Now, let us examine the results of contains operations and failing update operations. Let
op be such an operation on a key k, and let the operation it depends on (namely, the last
successful update operation on k whose original linearization point precedes op’s original
linearization point) be inserti(k) for some i ≥ 1 (the proof for a delete operation is simi-
lar). As inserti(k) is an insertion, op must be a contains operation returning true or a failing
insert operation. To show that op’s result—which reflects that the last operation on the set
was an insertion—is legal, we will prove that the linearization point of op occurs when the
last linearized successful update operation on k is the insertion inserti(k). Let orig_top be
the original linearization moment of op. There are two possibilities with regards to op’s lin-
earization point: either op is linearized immediately after tinserti(k), and we are done, or it
is linearized at orig_top. In the latter case, according to the linearization point definition,
inserti(k) must be linearized by op’s original linearization moment, namely, tinserti(k) <

orig_top. If no successful delete(k) operation is linearized after tinserti(k), then we are done.
Else, orig_top < orig_tdeletei(k), as inserti(k) is the last successful update operation on k

whose original linearization point precedes orig_top. Since orig_tdeletei(k) < tdeletei(k) (by
Lemma 3.8.6), then orig_top < tdeletei(k), and we are done.

Finally, we analyze the linearization of a size operation. Denote such an operation by
op, the CountersSnapshot instance it obtains and operates on by countersSnapshot, and the
size call that sets the countersSnapshot.size field by determiningSize. op returns the difference
between the sum of insertion counters and the sum of deletion counters that were observed
in the countersSnapshot.snapshot array by determiningSize. Let j be the value that determin-

ingSize obtained from the insertion counter of some thread T in countersSnapshot.snapshot.
We will prove that T ’s j-th successful insert is linearized before op’s linearization point, and
T ’s (j + 1)-st successful insert (if such an operation occurs) is linearized after it. We refer to
insertions for convenience, but the exact same proof applies to the deletion counters as well.

We start with T ’s j-th successful insert. Since determiningSize obtained the value j from
the relevant snapshot counter, then by Lemma 3.8.7, the metadata counter update on behalf of
T ’s j-th successful insert happens before op’s linearization point. If T ’s j-th successful insert
is linearized in its metadata counter update, we are done. Else, it is linearized immediately
after the linearization point of a size operation, whose collecting CountersSnapshot instance
is announced when the metadata counter is updated, and which reads a value < j from the
relevant snapshot counter. This size operation cannot be op (which reads the value j), but
rather a preceding size operation whose CountersSnapshot instance is announced prior to
countersSnapshot (because it is already announced when the metadata counter is updated on
behalf of T ’s j-th successful insert, which by Lemma 3.8.7 happens before countersSnapshot’s
collecting field is set to false), so its linearization point precedes op’s linearization point.

We proceed to T ’s (j + 1)-st successful insert (in case such an operation occurs). If in its

39

metadata counter update, countersSnapshot is announced in the SizeCalculator instance held
by the set and its collecting field’s value is true, then this insertion is linearized immediately
after op’s linearization point, because determiningSize obtained the value j (which is smaller
than j + 1) from the corresponding countersSnapshot.snapshot’s counter. Else, this metadata
counter update must have occurred after op’s linearization point, since the alternative is that
countersSnapshot is announced after that metadata counter update, in which case a value
≥ j + 1 must be collected in countersSnapshot.snapshot. The insertion is linearized either at
its metadata counter update or later, thus, linearized after op’s linearization point in this case
as well. ■

The proof of Claim 3.8.4 uses the following:

Observation 3.8.5. The original linearization points of successful insertions and deletions of
each key k are alternating.

This follows from the linearizability of the original data structure and the sequential specifi-
cation of a set.

Lemma 3.8.6. For each key k and each i ≥ 1:

orig_tinserti(k) < tinserti(k) < orig_tdeletei(k) < tdeletei(k) < orig_tinserti+1(k)

Proof The linearization point of each successful insert or delete operation happens after its
original linearization point because the linearization point occurs at the metadata counter up-
date or later, and this update is performed in our transformation after the original linearization
point.

In addition, before deletei(k) carries out its own original linearization point, i.e., marking
the node it is deleting, it calls updateMetadata on behalf of the insert operation that inserted
that node. By Observation 3.8.5, the last original linearization point of a successful update
operation on k before the one of deletei(k) is that of inserti(k). Thus, the node that deletei(k)
deleted was inserted by inserti(k), and deletei(k) calls updateMetadata with the insertInfo
associated with inserti(k). By Lemma 3.8.2, inserti(k) will have been linearized by the time
this updateMetadata call returns. Hence, tinserti(k) < orig_tdeletei(k).

It remains to prove that tdeletei(k) < orig_tinserti+1(k). ByObservation 3.8.5, inserti+1(k)’s
original linearization point occurs after deletei(k)’s original linearization point. If the node
deleted by deletei(k) has been already unlinked prior to orig_tinserti+1(k), then prior to the
unlinking, updateMetadata has been called on behalf of deletei(k). Else, we note that in
all set implementations we are aware of, if at the original linearization moment of a success-
ful insert(k) there exists a node with the key k reachable from the data structure’s roots,
then the insert operation must have observed this node earlier, during its search for k. Thus,
inserti+1(k) observes the node deleted by deletei(k), and calls updateMetadata on its be-
half before carrying out its own original linearization point. In both cases, by Lemma 3.8.2,
deletei(k) is linearized by the time the updateMetadata call returns, thus, linearized before
orig_tinserti+1(k). ■

40

Corollary 3.1. The linearization points of successful insertions and deletions of each key k are

alternating.

Lemma 3.8.7. Let countersSnapshot be a CountersSnapshot instance. Any non-INVALID
value written to a counter in the countersSnapshot.snapshot array must have been written to the

corresponding counter in the metadataCounters array (of the SizeCalculator instance held by

the set) before the countersSnapshot.collecting field is set to false.

Intuitively, this implies that a size operation cannot witness future update operations (namely,
ones that are linearized after it).

Proof Consider some countersSnapshot.snapshot’s cell C of either an insertion or a deletion
counter of some thread T . We will analyze all possible writes of non-INVALID values to
C , and show that they write values that have been written to T ’s corresponding metadata
counter before countersSnapshot.collecting is set to false. Non-INVALID values are written to
countersSnapshot.snapshot in the CountersSnapshot’s add and forward methods, in Lines 94
and 98 respectively. Starting with add, only the first execution of the CAS in Line 94 on C

succeeds, and it occurs within a call to SizeCalculator’s _collect method, before the first time
countersSnapshot.collecting is set to false in Line 60. As for forward, it is called by SizeCal-
culator’s updateMetadata method for forwarding some value val to countersSnapshot after
(1) val is written to the relevant T ’s metadata counter—as guaranteed by Lemma 3.8.3, and
then (2) countersSnapshot.collecting is verified to bear the value true in Line 81. Hence, val

has been written to the relevant metadata counter before countersSnapshot.collecting is set to
false. ■

3.8.2 Wait-Freedom and Asymptotic Time Complexity

The size operation in our methodology is wait-free as it completes within a constant number
of steps, regardless of other threads’ progress. Its time complexity is linear in the number
of threads due to its two passes on arrays with per-thread counters: during the collection
process (in the _collect method) and the size computation (in the computeSize method).

Our transformation preserves the time complexity and progress guarantees of the data-
structure operations, as each call to the udpateMetadata method adds a constant number of
steps. This follows from the following claim.

Claim 3.8.8. Each call to the forward method of CountersSnapshot (by updateMetadata)
executes at most two iterations of its while loop.

Before forwarding, updateMetadata performs several checks in a certain order. With-
out this careful procedure, delayed threads that run updateMetadata to help old operations
could forward stale values to the snapshot array, causing an updateMetadata on behalf of a
recent operation to repeatedly fail forwarding. Next, we show how this procedure prevents
forwarding stale values.

41

Proof Consider a call to updateMetadata that calls forward and operates on behalf of op,
being the c-th successful insert operation by a thread T (a similar proof applies for delete).
Denote by currSnap the value this call obtains in currentCountersSnapshot (in Line 80) at
time denoted tobt. As the snapshot counters are monotonically increasing, it is enough to
prove that from tobt and on, only values ≥ c − 1 may be written to the snapshot counter of
currSnap that is associated with op.

Note that after obtaining currSnap at time tobt and before calling forward, updateMeta-
data observes that currSnap is in a collecting mode (in Line 81), thus, it has been in this mode
at tobt. Now, let tc−1 be the time in which the metadata counter associated with op is set to
c− 1. If currSnap has been announced in sizeCalculator.countersSnapshot before time tc−1,
then it keeps being announced and in collecting mode at least until time tobt. Thus, the value
c−1 is forwarded to the snapshot counter associated with op before time tobt, as otherwise the
thread T would not have proceeded from its (c− 1)-st successful insert to its c-th successful
insert, and we are done since the snapshot counter is monotonically increasing.

Otherwise, currSnap is announced in sizeCalculator.countersSnapshot after time tc−1.
Two methods write to the snapshot array: add and forward. add is called (in Line 74) with
a counter value that is obtained from the metadata array after currSnap is announced, hence,
after time tc−1, so it writes a value ≥ c− 1. As for forward, a thread that calls it (in Line 83)
to forward a value to the snapshot counter associated with op, performs the following steps
in this order: (1) obtain currSnap in Line 80—which must happen after currSnap is announced
and hence after time tc−1; (2) obtain the value of the metadata counter associated with op

in Line 82; and then (3) forward this value to currSnap’s snapshot array. Since the value is
obtained after time tc−1, it must be ≥ c− 1. ■

3.9 Evaluation

In this section, we present the evaluation of our methodology on several data structures. The
code for the data structures and the measurements is available at [SP22c]. We first measure
the overhead that the addition of the size mechanism introduces to operations of transformed
data structures (in Section 3.9.1 we break down the overhead by operation type). Then, we
demonstrate the benefits of computing a linearizable size in our methodology. We show that
it yields a performance better in orders of magnitude than the alternative of taking a lineariz-
able snapshot of the data structure and counting its elements. We further demonstrate the
scalability of our methodology and its performance insensitivity to the data-structure size.

Evaluated data structures We start with three baseline data structures that do not sup-
port a linearizable size: a skip list, a hash table and a binary search tree, denoted SkipList,
HashTable and binary search tree (BST) respectively. The implementation of SkipList is
taken from the ConcurrentSkipListMap class of the java.util.concurrent package of Java
SE 18. We eliminated methods irrelevant to our measurements and kept the main insert,
delete and contains functionality. As for a hash table, we implemented HashTable as a table

42

of linked lists whose implementation is based on the linked list in the base level of SkipList.
We use a table of a static size (chosen in a way similar to Java’s ConcurrentHashMap to be
a power of 2 between 1× and 2× the number of elements; we detail below how we keep the
number of elements stable during the measurements). We do not use Java’s lock-based Con-
currentHashMap as our hash-table baseline because it deletes items by unlinking without
marking (as it does not use a delicate synchronization mechanism but rather coarse-grained
locking), thus, our transformation is not applicable to it as is. For BST we use Trevor Brown’s
implementation [Bro18] of the lock-free binary search tree of [EFRvB10] that places elements
in leaf nodes.

We applied our methodology to each of the baseline algorithms, to produce the trans-
formed data structures SizeSkipList, SizeHashTable and size-supporting binary search tree
(SizeBST) that support a linearizable size. In the case of the tree, BST linearizes the delete
operation at the unlinking and not in the prior marking of the deleted node’s parent. Hence,
we formed a variant of BST that linearizes delete at the marking step, and then applied our
methodology to this variant.

We compare performance of the size operation in the data structures produced using our
methodology with a snapshot-based size operation in two data structures supporting snap-
shots. The first one is SnapshotSkipList—[PT13]’s implementation of a skip list with a snap-
shot mechanism, which we obtained from the paper’s authors. Like our skip list implementa-
tions (SkipList and SizeSkipList), it builds on Java’s ConcurrentSkipListMap. It uses code
from an older version of Java, but the performance degradation incurred by the older version
is negligible and irrelevant to our measurements, due to the immense performance difference
between obtaining the size using their snapshot and using our methodology. The size oper-
ation is implemented in SnapshotSkipList by taking a snapshot, which produces a snapshot
copy of the base level of the skip list, and then iterating it and counting its elements.

The second competitor we compare to is VcasBST-64 [WBB+21]—a binary search tree
with a snapshot mechanism taken from the paper’s published implementation [Wei21]. It is
based on the same implementation by Brown that BST and SizeBST are based on, but uses
a modified version of it which batches multiple keys in leaves and stores up to 64 key-value
pairs in each tree leaf. To compute the size, we did not use their implementation as a black
box, as their interface supplies a snapshot copy of the tree’s elements, but such copying is
redundant for retrieving the size. Instead, to compute the size we call their snapshot operation
that advances the timestamp, and then traverse the tree and sum the number of elements in
leaves with a timestamp no bigger than the snapshot timestamp. By this, we save copying
all tree elements, and even save iterating the elements one by one—as we simply read the
leaf’s number of elements (each batched leaf node keeps the number of contained elements).
Even though we use this improved size implementation for VcasBST-64, and even though
VcasBST-64 uses batched leaves which enables it to perform faster than without them, we
will show that our size computation method still outperforms it.

43

Platform Weconducted our experiments on amachine running Linux (Ubuntu 20.04) equipped
with 4 AMD Opteron(TM) 6376 2.3 GHz processors. Each processor has 16 cores, resulting
in 64 threads overall. The machine used 64 GB RAM, an L1 data cache of 16 KB per core, an
L2 cache of 2 MB for every two cores, and an L3 cache of 6 MB for every 8 cores.

The implementations were written in Java. We used OpenJDK 17.0.2 with the flags -
server, -Xms15G and -Xmx15G. The latter two flags reduce interference from Java’s garbage
collection. We used the G1 garbage collector (using ParallelGC yields similar results).

Methodology Before each experiment, we fill the data structure with 1M items, except for
the experiments that check dependence on the data-structure size, in which we fill the data
structure with a varying number of items—1M, 10M or 100M. We chose these sizes in order
to measure the performance of the data-structure when it does not fit into the L3 cache.

We run two workloads: an update-heavy workload, with 30% insert operations, 20%
delete operations and 50% contains operations, and a read-heavy workload, with 3% insert
operations, 2% delete operations and 95% contains operations. These workloads match the
read rates suggested by Yahoo! Cloud Serving Benchmark (YCSB) [CST+10]—update-heavy
workloads with 50% reads and read-heavy workloads with 95% reads (YCSB also suggests a
100%-read workload, but this is less relevant to our case, since it is less likely to have size
calls on a data structure that never changes). The left part of Figures 3.7–3.13 shows results
for the read-heavy workload, and the right part shows results for the update-heavy workload.

Similarly to [WBB+21], keys for operations during the experiment and for the initial filling
are drawn uniformly at random from a range [1, r], where r is chosen to maintain the initial
size of the data structure. For example, for n = 1M initial keys and a workload with 30%
inserts and 20% deletes, we use r = n · (30 + 20)/30 ≈ 1.67M .

In all experiments except for the experiments that check how overhead is split by oper-
ation type, we repeatedly choose (by the update-heavy or read-heavy proportion) the type
of the next operation. However, in the overhead-split measurements (that appear in Sec-
tion 3.9.1), we repeatedly choose a uniform type for the next 100 operations, because in these
measurements we need to obtain the time it took to execute operations of each type, and
obtaining the time it took to execute too few consecutive operations of the same type would
impair the time measurement accuracy.

In each experiment, we run w workload threads, performing insert, delete and contains
calls according to the update-heavy or read-heavy workloads, and s size threads, repeatedly
calling size, except for executions of the baseline algorithms (HashTable, SkipList and BST—
evaluated in the overhead and overhead breakdownmeasurements), for whichwe runw work-
load threads only. w and s vary across experiments, and we took w + s to be a power of 2
in most experiments. In each experiment, the threads perform operations concurrently for 5
seconds. Each data point in the graphs represents the average result of 10 runs, after execut-
ing 5 preliminary runs to warm up the Java virtual machine. The coefficient of variation was
up to 11% in the experiments we present next, and up to 21% in the experiments presented
in Section 3.9.1.

44

Read heavy Update heavy

Without a concurrent size thread

With a concurrent size thread

Figure 3.7: Overhead on hash table operations

Overhead We measure the overhead of our methodology on the original data-structure op-
erations by measuring the performance of workload threads—executing insert, delete and
contains operations. We compare the total throughput of w workload threads, where w

varies from 1 to 64, for the transformed data structures versus the baseline data structures.
The results appear in the top part of Figures 3.7–3.9: the results for SizeHashTable versus
HashTable appear in Figure 3.7, for SizeBST versus BST in Figure 3.8, and for SizeSkipList
versus SkipList in Figure 3.9. They show the overhead when no concurrent size operations
are executed. To measure the overhead in the presence of size calls as well, we similarly run
w workload threads, where w varies from 1 to 63, while also running—for the transformed
algorithms only—a concurrent size thread (that executes size calls), and measure the total
throughput of the workload threads. The results of these experiments appear in the bottom
part of Figures 3.7–3.9.

45

Read heavy Update heavy

Without a concurrent size thread

With a concurrent size thread

Figure 3.8: Overhead on BST operations

For each experiment, the top graph depicts the number of operations (insert, delete and
contains) applied to the data structure per second by the workload threads altogether, mea-
sured in million operations per second. The curve of the baseline data structure appears along
with the curve of its transformed version with size support. The bottom bar graph shows the
throughput of the transformed data structure divided by that of the baseline data structure
(in percentages), to demonstrate the throughput loss of the transformed data structure’s op-
erations. For instance, 90% signify that the transformed workload threads reach 90% of the
throughput of the baseline workload threads. The throughput loss is worse for an update-
heavy workload than for a read-heavy workload, and worse when a concurrent size is exe-
cuted. Still, the relative throughput in all experiments varies in the range of 80% to 99%, i.e.,
a throughput loss of 1% to 20%. We bring a breakdown of the overhead by operation type in
Section 3.9.1.

46

Read heavy Update heavy

Without a concurrent size thread

With a concurrent size thread

Figure 3.9: Overhead on skip list operations

Varying data-structure size To measure the effect of the number of elements in the data
structure on the size throughput, we run experiments on different data-structure sizes, vary-
ing between 1M and 100M, with 32 concurrent threads—one size thread and 31 workload
threads. Figure 3.10 presents the throughput of the size thread, measured in thousand size op-
erations per second. Each curve shows the size throughput for another transformed data struc-
ture, per different initial sizes. The results demonstrate that our size-computation methodol-
ogy is not sensitive to the data-structure size. This is due to the metadata array, on which the
size operates instead of traversing the data structure itself. In contrast, obtaining the size us-
ing a snapshot-based method causes performance degradation as the size increases, as shown
for VcasBST-64 in Figure 3.11 which presents the corresponding graphs for the competitors.
SnapshotSkipList demonstrates a very low size throughput: for a data-structure size of 1M
it executes 1.4 size operations per second in average for the read-heavy workload and 1 size

47

Read heavy Update heavy

Figure 3.10: Size throughput as a function of data-structure size

Read heavy Update heavy

Figure 3.11: Snapshot-based size throughput as a function of data-structure size

operation per second for the update-heavy workload; and for bigger data-structure sizes it
executes less than 1 size operation per second.

Scalability To assess the scalability of the size operation, we run s size threads, where
s varies between 1 and 16, concurrently with 32 workload threads. Figure 3.12 presents the
total throughput of all size threads, measured in thousand size operations per second. It shows
results for both our transformed data structures, and the snapshot-supporting data structures
which demonstrate inferior performance. For each of our transformed data structures, the
throughput improves as number of size threads increases. This demonstrates the scalability
of our methodology.

Comparison to snapshot-based size Our transformed data structures yield a much bet-
ter throughput than the competitors, as demonstrated in Figures 3.10–3.12: SizeSkipList
demonstrates in these experiments a throughput at least 54806× the throughput of Snap-
shotSkipList (in some experiments, not even a single size operation on SnapshotSkipList
completed within 5 seconds). The throughput of SizeBST in these experiments is between
83−60423× the throughput of VcasBST-64. The performance gap between our transformed
data structures and VcasBST-64 is not as large as the gap from SnapshotSkipList, because

48

Read heavy Update heavy

Figure 3.12: Size scalability

VcasBST-64 succeeds to improve snapshot performance in comparison to SnapshotSkipList,
but not without a cost—it pays with higher space overhead.

3.9.1 Overhead Breakdown by Operation Type

We performed measurements to assess the overhead breakdown by operation type (insert
/ delete / contains). Similarly to the above overhead measurements, we compare the per-
formance of workload threads for the transformed data structures versus the baseline data
structures. But here, in addition to comparing the combined throughput of all three types of
operations by all workload threads (i.e., the total number of all operations divided by the total
time they ran), we compare also the total throughput of all workload threads per operation

type (namely, the total number of insertions by all threads divided by the total time the inser-
tions ran, and the same for deletions and for contains calls). The results appear in Figure 3.13.
In most measurements, the throughput loss is highest for insert operations and lowest for
contains operations.

3.10 Conclusion

In this work we addressed the problem of obtaining a correct size of a concurrent data struc-
ture. We showed that existing solutions in the literature are either inefficient or incorrect
(even in a very liberal sense). We then presented a methodology for adding a linearizable size
operation to concurrent data structures that implement sets or dictionaries. Our methodol-
ogy was shown to yield attractive theoretical properties in terms of progress guarantees and
asymptotic complexity. Evaluation demonstrated that while incurring some overhead on the
data-structure’s original operations, the methodology yields a size operation that provides
an orders-of-magnitude performance improvement over existing solutions. We additionally
illustrated that the size operation is scalable and insensitive to the data-structure size.

49

50

Read heavy Update heavy

SizeHashTable vs HashTable without a concurrent size thread

SizeHashTable vs HashTable with a concurrent size thread

SizeBST vs BST without a concurrent size thread

SizeBST vs BST with a concurrent size thread

SizeSkipList vs SkipList without a concurrent size thread

SizeSkipList vs SkipList with a concurrent size thread

Figure 3.13: Overhead breakdown by operation type

Chapter 4

Linearizability: A Typo

This chapter is based on the work presented at [SHP21a] and [SHP21b].

4.1 Introduction

Linearizability is the prevalent correctness condition for concurrent executions on shared ob-
jects. It determines whether a concurrent execution is correct by relating it to a sequential
execution that satisfies the sequential specification of the object. To relate a valid sequential
execution to a concurrent one, linearizability specifies an order of the concurrent operations,
denoted linearization order. On the one hand, linearizability requires that if we execute the
operations sequentially one by one according to their linearization order (with the same pa-
rameters as in the concurrent execution), we obtain a sequential execution (with the same
operation results as in the concurrent execution) that satisfies the sequential specification of
the object. On the other hand, linearizability dictates that the linearization order preserve
the order of non-overlapping operations in the original concurrent execution. Namely, if an
operation op1 completes before another operation op2 begins, then op1 must precede op2 in
the linearization order. A concurrent execution is called linearizable if it can be related as
above to a legal sequential execution (i.e., one that satisfies the sequential specification of the
object). The formal definition is provided in Section 4.2.

So far, we ignored pending invocations in the execution. These are invocations of opera-
tions that start during the execution, but do not complete. The issue that we point out in this
work concerns the treatment of pending invocations. The original linearizability definition
provides a treatment of pending invocations, stating which executions with pending invoca-
tions are linearizable. However, in this work we argue that, due to a typo, this treatment
of pending invocations is lacking. It contradicts our intuition about linearizable executions,
and furthermore, causes the locality and nonblocking properties to not hold. We then pro-
pose a simple fix for the typo that fits intuition and obtains these desirable properties also for
executions with pending invocations.

Linearizability allows eliding some of the pending invocations, namely, excluding their
operations from the related sequential execution. This can be interpreted as operations that

51

do not yet take effect before the execution ends. The rest of the pending invocations appear
in the sequential execution with a response, i.e., completion and returned results. These can
be interpreted as operations in the concurrent execution that have taken effect although their
responses have not yet been returned to the caller. The responses appended in the sequential
execution are determined in a way that fits the overall execution. In particular, responses are
set so that the related sequential execution satisfies the sequential specification of the object.

The problem that arises, due to the typo in the original definition, is that the definition
does not restrict the order of operations that have pending invocations, even when these
operations take effect, i.e., are included in the related sequential execution. In particular, a
pending invocation of an operation op may be placed in a linearization order before other
operations that completed earlier in the execution, even operations that completed before op

started. Imagine an execution that starts with an operation op1 that reads a shared variable x.
While x is initially 0, the operation weirdly reads the value 1, and then completes and returns
1. Later a new operation op2 is invoked on a different process. Operation op2 writes 1 into
x and does not complete before the execution ends. Intuitively, this does not seem like an
acceptable linearizable execution. However, under the existing definition with the typo, it is
linearizable, because the pending invocation of operation op2 (that writes 1) can be ordered
before the completed operation op1 that reads 1.

Interestingly, beyond contradicting intuition, the typo in the original definition does not
allow it to yield neither locality nor the nonblocking property. In Section 4.3 we describe the
intuitive problem with the typo in the definition and formally show that it is not local neither
nonblocking.

We propose a (syntactically very minor) modification to the definition that restricts the
linearization order of operations with pending invocations that take effect. Similarly to com-
pleted operations, operations with pending invocations are ordered later than any operation
that completes before they start. This modification makes the odd execution described above
not linearizable. In Section 4.2 we recall the formal original definition of linearizability (with
the typo). In Section 4.4 we formally specify the amended definition, and in Section 4.5 we
revisit the issues that the typo raises and show that they are resolved. We also show in Sec-
tion 4.7 that an alternative equivalent definition of linearizability [Lyn96] is actually not equiv-
alent to the definition of linearizability with the typo, but it is equivalent to the version that
we propose without the typo. In Section 4.6 we discuss an alternative interpretation of the
original definition (with the typo, but with a different definition of what an operation means)
and explain why this alternative interpretation is problematic as well. Finally, we put the
various linearizability definitions covered throughout this chapter in context in Section 4.8.

It is clear that the flaw in the definition is a typo, not a conceptual error, and the authors’
intended meaning is clear in context. We believe no prior paper was rendered incorrect by
relying on the original definition. However, linearizability is extremely important for concur-
rent executions. It has been used in thousands of papers and the definition with the typo has
been replicated in numerous subsequent publications. We believe it is important to point out
this typo and provide a rigorous discussion and a fix. The issue of pending invocations is be-

52

coming increasingly important as architectures with non-volatile main memory become com-
monplace. Non-volatile memory models encompass various definitions [e.g., IMS16; AF03;
GL04; BGT15] where a major focus is dealing with invocations pending at the time of a crash.
In this realm, pending invocations become critically important, making the fix of this typo
timely.

4.2 System Model and Linearizability Definition

The system model was presented in Chapter 2. We recall the exact definition of operations
from [HW90], which is inherent to the definition of linearizability:

Definition 4.2.1. (Operation) An operation in a history is a pair consisting of an invocation
and the next matching response.

The original definition of linearizability according to [HW90] follows:

Definition 4.2.2. (Linearizability) A well-formed history H is linearizable if it has an exten-
sion H ′ such that:

L1: There exists a legal sequential history S, to which complete(H ′) is equivalent.

L2: <H⊆<S .

S is denoted the linearization of H , and operations that appear in complete(H ′) are denoted
linearized operations. Definition 4.2.2 requires the existence of a linearization S that satisfies
two conditions. Condition L1 refers to each process individually, guaranteeing that all its lin-
earized operations are in the same order and with the same results as in the legal sequential
history S. Due to this equivalence to a legal sequential history, operations in H act as if they
were interleaved at the granularity of complete operations, and adhere to the sequential spec-
ification. Condition L2 guarantees that S preserves the order of non-concurrent operations
in H , so that it respects possible dependencies between operations in H .

4.3 Issues with the Definition with the Typo

Linearizability enforces real-time precedence order on operations. Definition 4.2.2 enforces it
only on operations that include both an invocation and a response in the given history. Fix-
ing the typo extends the enforcement to linearized operations related to pending invocations
as well, so that overall, the order is enforced on all linearized operations. To establish the
necessity of the typo fix, we present in Section 4.3.1 motivating examples of executions clas-
sified as linearizable by Definition 4.2.2 although intuitively they do not seem like acceptable
linearizable executions. Moreover, we show in Section 4.3.2 that linearizability as defined in
Definition 4.2.2 is not local, and show in Section 4.3.3 that it is not nonblocking.

53

4.3.1 Executions Counter-Intuitively Classified As Linearizable

We start with two simple examples of executions on a single object, that intuitively seem non-
linearizable, but are classified as linearizable by Definition 4.2.2. This stems from allowing
operations related to pending invocations to appear to take effect before operations by other
processes that precede them, since L2 enforces order amongH ’s operations only, and excludes
all pending invocations of H .

Consider the execution H1 that appears in Figure 4.1, involving two processes: A and
B, operating on a register object initialized to 0. H1 is intuitively unacceptable, as A cannot
”predict the future” and read the value that B has not yet even asked to write, and it cannot
distinguish between the given execution and an execution in which B does not invoke any
write. Therefore, A should return 0 and not 1. Nevertheless, Definition 4.2.2 classifies the
execution as linearizable, as there is an extension H ′

1 and a legal sequential execution S1 (see
Figure 4.1) that adhere to the conditions in Definition 4.2.2: L1 holds since the events per
process in complete(H ′

1) and in S1 are identical. L2 vacuously holds since it enforces order
only on operations of H1, and H1 has a single operation (since a pending invocation does not
count as an operation, see Definition 4.2.1). In particular, L2 does not force B’s write to occur
in S1 after the read operation by A.

We bring as a second example the execution H2 demonstrated in Figure 4.2, involving two
processes: A and B, operating on a FIFO queue initialized to be empty. H2 is intuitively unac-
ceptable due to the return value of the dequeue operation, which returns an item enqueued by
the second enqueue operation rather than the first one, thus violating the FIFO requirement.
Nonetheless, as Condition L2 of Definition 4.2.2 does not enforce linearizations of H2 to place
A’s enqueue before B’s enqueue, H2 is considered linearizable, by the extension H ′

2 and the
linearization S2 that appear in Figure 4.2.
Figure 4.1: Executions on a register:

• H1 – an execution with a return value conflicting with the order between the pending
write and the preceding read.

• complete(H ′
1) – identical to H ′

1, an extension of H1.

• S1 – a linearization of H1.

H1:
A

B

Read() 1

Write(1)

complete(H ′
1):

A

B

Read() 1

Write(1)

S1:
A

B

Read() 1

Write(1)

54

Figure 4.2: Executions on a FIFO queue:

• H2 – an execution with a return value conflicting with the order between the pending
enqueue and the preceding enqueue.

• complete(H ′
2) – identical to H ′

2, an extension of H2.

• S2 – a linearization of H2.

H2:
A

B

Enq(x) Deq() y

Enq(y)

complete(H ′
2):

A

B

Enq(x) Deq() y

Enq(y)

S2:
A

B

Enq(x) Deq() y

Enq(y)

Figure 4.3: H , a non-linearizable execution on two registers, although the object subhistory
for each register is linearizable

H :
A

B

x.Read() 1

y.Read() 1

y.Write(1)

x.Write(1)

4.3.2 Linearizability WithThe Typo Is Not Local

Aproperty of a concurrent system is local (synonymously composable) if the system as awhole
satisfies it whenever each object in the system satisfies it individually. Locality enables imple-
menting and verifying objects independently, thus maintaining modularity. To demonstrate
that linearizability as defined with the typo is not local, we bring an execution H in Figure 4.3,
involving two processes: A and B, operating on two register objects initialized to 0: x and y.
For each of x and y, the object subhistory of the presented execution H is similar to H1 (see
Figure 4.1). As shown in Section 4.3.1, these subhistories are linearizable by Definition 4.2.2.
However, H as a whole is not linearizable by Definition 4.2.2: An appropriate extension H ′

must include responses to both writes for the writes to be included in complete(H ′), other-
wise there will be no legal sequential execution S equivalent to complete(H ′), because the
read operations could not legally return 1. Together with the order enforced by Condition
L1 on operations by each process, we get the following order requirements, which form a
cycle: x.Read() must occur before y.Write(1) for S to preserve the order of A’s events (due to
Condition L1 that requires S|A = complete(H ′)|A); y.Write(1) must occur before y.Read()
for S to be a legal register history (which dictates in particular that 1 be a legal return value
of y.Read()); y.Read() must occur before x.Write(1) for S to preserve the order of B’s events
(due to Condition L1 that requires S|B = complete(H ′)|B); and finally x.Write(1) must occur
before x.Read() for S to be a legal register history.

55

4.3.3 Linearizability WithThe Typo Is Not Nonblocking

We look at pending invocations of total operations, which are operations defined for every
object value (following the terminology of [HW90]). A property of a concurrent system is
nonblocking if processes invoking total operations are never forced to wait for another pend-
ing invocation to complete. Formally, linearizability is nonblocking if for each linearizable
execution that has some pending invocation inv of a total operation, there exists a matching
response for inv such that appending it to the execution results in a linearizable execution.

To demonstrate that linearizability as defined with the typo is not nonblocking, we look
at the execution H1 (see Figure 4.1). This execution is linearizable by the original definition
(as shown above) and has a pending invocation – the invocation of B’s write. Appending a
response resp for this write to H1 results in the non-linearizable execution H1 · resp: The
pending write becomes an operation in H1 ·resp and is thus ordered by <H1·resp as appearing
after A’s read. Condition L2 of Definition 4.2.2 dictates that a linearization of H1 ·resp respect
this order and place the write after the read, which makes it impossible for A’s read to legally
return 1.

Another counterexample is the execution H2 (see Figure 4.2). It is linearizable by the
original definition (as shown above) and has a pending invocation – the invocation of B’s
enqueue. Appending a response resp for this enqueue to H2 results in the non-linearizable
execution H2 · resp: The pending enqueue becomes an operation in H2 · resp and is thus
ordered by <H2·resp as appearing after A’s enqueue. Condition L2 of Definition 4.2.2 dictates
that the linearization respect this order and place B’s enqueue after A’s enqueue, which makes
it impossible for A’s dequeue to return y while obeying the FIFO specification of a FIFO queue.

4.4 Amended Linearizability

We bring the amended definition of linearizability, which fixes a typo in Condition L2 with
a fix that enforces real-time precedence order on linearized operations related to pending
invocations:

Definition 4.4.1. (Amended Linearizability) A well-formed history H is linearizable if it has
an extension H ′ such that:

L1: There exists a legal sequential history S, to which complete(H ′) is equivalent.

L2: <complete(H′)⊆<S .

L2 is equivalent to <H′⊆<S because complete(H ′) and H ′ differ only in pending invocations
and according to the definitions in [HW90], which we use too, pending invocations are not
considered operations and a happens-before order does not apply to them. While writing L2
as above makes the definition easier to understand, note that writing L2 as <H′⊆<S provides
a fix that is within a single prime sign from the original definition. This missing prime is the
typo in the original definition.

56

Some papers have used an alternative definition of operations, in which pending invo-
cations are also considered as operations, to which a happens-before relation applies. We
consider this alternative definition (with the original linearizability definition) in Section 4.6
and show that it does not yield an adequate definition for linearizability.

4.5 Issues Revisited

We explain how the typo fix solves the issues raised in Section 4.3.

4.5.1 Executions Become Non-Linearizable As Expected

We have shown in Section 4.3.1 that H1 (see Figure 4.1) is linearizable by Definition 4.2.2
although intuitively it is not an acceptable linearizable execution. With the amendment of
L2, H1 becomes non-linearizable by Definition 4.4.1: To satisfy Condition L1, an appropriate
extension H ′

1 must include a response for the write operation, otherwise there will be no
legal sequential execution S1 equivalent to complete(H ′

1), because the read operation could
not legally return 1. In addition, an appropriate linearization S1 must satisfy the amended
L2 Condition, which dictates that the read precede the write in S1 because it precedes it in
complete(H ′

1). This means the read must return 0 in S1 for S1 to be legal, which contradicts
Condition L1 that requires S1 to have the same return values as complete(H ′

1).
In a similar fashion, H2 (see Figure 4.2) becomes non-linearizable by Definition 4.4.1 as

desired: an appropriate extension H ′
2 must include a response for Enq(y); thus, Enq(y) must

happen in S after Enq(x); and so Deq() must return x in S, in contradiction to L1.

4.5.2 Linearizability Becomes Local

With the typo fix, the history H demonstrated in Figure 4.3 does not stand anymore as a
counterexample to the locality of linearizability, since H ’s object subhistories for x and y are
not linearizable by Definition 4.4.1, as explained for H1 in Section 4.5.1. We will show that
linearizability with the typo fix is indeed local.

Next, we repeat the locality proof from the original paper, explain why the proof does not
hold for the definition with the typo, and describe an amendment of the proof that makes it
correct for Definition 4.4.1. We start by recalling the theorem and its proof as in the original
paper. (We note that H mentioned in the theorem is assumed to be a well-formed history, as
all histories in [HW90].)

Theorem 4.1. H is linearizable if and only if, for each object x, H|x is linearizable.

Proof The ”only if” part is obvious.

For each x, pick a linearization of H|x. Let Rx be the set of responses appended to
H|x to construct that linearization, and let <x be the corresponding linearization
order. Let H ′ be the history constructed by appending to H each response in Rx.
We will construct a partial order < on the operations of complete(H ′) such that:

57

(1) For each x, <x⊆<, and (2)<H⊆<. LetS be the sequential history constructed
by ordering the operations of complete(H ′) in any total order that extends <.
Condition (1) implies that S is legal, hence that L1 is satisfied, and Condition (2)
implies that L2 is satisfied.

Let < be the transitive closure of the union of all <x with <H . It is immediate
from the construction that < satisfies Conditions (1) and (2), but it remains to be
shown that < is a partial order. We argue by contradiction. If not, then there
exists a set of operations e1, . . . , en, such that e1 < e2 < · · · < en, en < e1, and
each pair is directly related by some <x or by <H . Choose a cycle whose length
is minimal.

Suppose all operations are associated with the same object x. Since <x is a total
order, there must exist two operations ei−1 and ei such that ei−1 <H ei and
ei <x ei−1, contradicting the linearizability of x.

The cycle must therefore include operations of at least two objects. By reindexing
if necessary, let e1 and e2 be operations of distinct objects. Let x be the object
associated with e1. We claim that none of e2, . . . , en can be an operation of x.
The claim holds for e2 by construction. Let ei be the first operation in e3, . . . , en,
associated with x. Since ei−1 and ei are unrelated by <x, they must be related
by <H ; hence the response of ei−1 precedes the invocation of ei. The invocation
of e2 precedes the response of ei−1, since otherwise ei−1 <H e2, yielding the
shorter cycle e2, . . . , ei−1. Finally, the response of e1 precedes the invocation of
e2, since e1 <H e2 by construction. It follows that the response to e1 precedes
the invocation of ei, hence e1 <H ei, yielding the shorter cycle e1, ei, . . . , en.

Since en is not an operation of x, but en < e1, it follows that en <H e1. But
e1 <H e2 by construction, and because <H is transitive, en <H e2, yielding the
shorter cycle e2, . . . , en, the final contradiction.

The above proof does not hold for the definition with the typo since the history S con-
structed in the proof is not guaranteed to satisfy Condition L1 of linearizability. L1 requires
S to preserve the precedence order of the linearized operations by each process. But the con-
structed S is not guaranteed to preserve the order between two linearized operations by the
same process on two different objects, if the later operation of the two is related to a pend-
ing invocation in H . For operations on different objects, S is guaranteed to preserve order
only among linearized operations whose invocations are not pending in H , due to Condition
(2) with the typo in the proof (namely, <H⊆< rather than <complete(H′)⊆<). For exam-
ple, the history S demonstrated in Figure 4.4 may be constructed by the proof (when using
Definition 4.2.2) as a linearization of H from Figure 4.3. Due to the reversed order for B,
complete(H ′)|B ̸= S|B, and so S does not satisfy L1 for H .

To fix the proof, we replace every reference to <H in the proof with <complete(H′), sim-
ilarly to the typo fix of the definition. The fixed proof is correct when applied to the lin-

58

Figure 4.4: S, a sequential history that might be constructed in the proof of Theorem 4.1 as a
linearization of H

S:
A

B

x.Read() 1

y.Read() 1

y.Write(1)

x.Write(1)

earizability definition with the typo fix. In particular, thanks to the fix of Condition (2), L1 is
guaranteed to be satisfied. We note that the fixed proof naturally holds for the definition with
the typo fixed, but it does not work for the linearizability definition with the typo, which is
not local as proven above. The barrier in this case is that the constructed < is not necessarily
a partial order, but rather might contain cycles. In detail, the above proof argues by contra-
diction that < is a partial order. It assumes an operation cycle e1 < e2 < · · · < en < en < e1

satisfying certain properties and needs to reach a contradiction. In the case that all opera-
tions in this cycle are associated with the same object x, then as the proof states, there must
exist two operations in the cycle, ei−1 and ei, such that ei−1 <complete(H′) ei (referring to
<complete(H′) rather than <H is due to the proof fix) and ei <x ei−1. This contradicts the lin-
earizability of H|x if linearizability is defined with the typo fix, namely, L2 for H|x requires
<complete(H′)|x⊆<x, because then ei−1 <complete(H′) ei leads to ei−1 <x ei, contradicting the
asymmetry of <x. However, without the definition fix (namely, with L2 for H|x requiring
<H|x⊆<x), we do not reach a contradiction if ei is an operation related to a pending invoca-
tion of H . The reason is that for such an ei, ei−1 <complete(H′) ei does not lead to ei−1 <H|x ei

(since <H|x does not refer to ei at all), and so L2 does not imply ei−1 <x ei. Consider, for
example, H from Figure 4.3, and let e1 be x.Read() and e2 be x.Write(1). < constructed in the
proof contains the cycle e1 < e2 < e1, which stems from e1 <complete(H′) e2 and e2 <x e1.

4.5.3 Linearizability Becomes Nonblocking

With the typo fix, the histories H1 and H2 do not stand anymore as counterexamples to lin-
earizability being nonblocking, since they are not linearizable by Definition 4.4.1, as explained
in Section 4.5.1. We will show that linearizability with the typo fix is indeed nonblocking.

Next, we repeat the nonblocking property proof from the original paper, explain why the
proof does not hold for the definition with the typo, and why it does hold for Definition 4.4.1.
We start by recalling the theorem and its proof as in the original paper.

Theorem 4.2. Let inv be an invocation of a total operation. If ⟨x inv P ⟩ is a pend-

ing invocation in a linearizable history H , then there exists a response ⟨x res P ⟩
such that H · ⟨x res P ⟩ is linearizable.

Proof Let S be any linearization of H . If S includes a response ⟨x res P ⟩ to
⟨x inv P ⟩, we are done, since S is also a linearization of H ·⟨x res P ⟩. Otherwise,
⟨x inv P ⟩ does not appear in S either, since linearizations, by definition, include
no pending invocations. Because the operation is total, there exists a response
⟨x res P ⟩ such that S′ = S · ⟨x inv P ⟩ · ⟨x res P ⟩ is legal. S′, however, is a
linearization of H · ⟨x res P ⟩, and hence is also a linearization of H . ■

59

Thefirst part of the above proof does not hold for the definitionwith the typo, as Condition
L2 of Definition 4.2.2, applied to the history H · ⟨x res P ⟩, might not be satisfied by S: S, as a
linearization of H , is guaranteed by L2 of Definition 4.2.2 to respect the precedence order <H .
The issue is that <H does not enforce any order on pending invocations of H , in particular
⟨x inv P ⟩. Since this invocation is not pending in the history H · ⟨x res P ⟩, L2 for this
history requires more than L2 for H guarantees. In particular, it requires that a linearization
of H · ⟨x res P ⟩ order the operation of ⟨x inv P ⟩ after any operation completed beforehand.
However, S might not satisfy it (like in the examples brought in Section 4.3.3).

The first part of the proof does hold for the amended definition: If S is a linearization of
H by Definition 4.4.1 that includes a response ⟨x res P ⟩ to ⟨x inv P ⟩, then there exists an
extension H ′ of H , which includes ⟨x res P ⟩ as the first response appended after H , such
that S and H ′ satisfy Definition 4.4.1 for H . This H ′ is also an extension of H · ⟨x res P ⟩,
and so the same S and H ′ satisfy Conditions L1 and L2 of Definition 4.4.1 for H · ⟨x res P ⟩
as well.

4.6 An Alternative Interpretation

While the original paper only considers completed operations, i.e., an operation is a pair of
an invocation and the next matching response, it might seem that if we also consider pending
invocations as valid operations, as some papers do, then the original definition may work
adequately, leading to an easy fix for the typo in the original definition. In this section we
show that this is not the case. Formally, an alternative definition for an operation would be:

Definition 4.6.1. (Operation - alternative definition) An operation in a history is either a pair
consisting of an invocation and the next matching response, or a pending invocation only in
case of an invocation that has no matching response in the execution.

This leads to an alternative interpretation of the linearizability definition with the typo,
with <H applied to operations by Definition 4.6.1 – including pending invocations. This in-
terpretation of operations does solve the problem pointed out in Section 4.3 for the original
linearizability definition, since it makes Condition L2 cover pending invocations. But this
brings about a new problem, as not only linearized pending invocations are covered, but also
pending invocations that are not linearized, namely, eliminated from complete(H ′) and S

(which are equivalent by Condition L1). The definition by this interpretation might exclude
an execution that seems legitimately linearizable: for an execution containing a pending invo-
cation e2 that cannot be legally linearized (and hence cannot appear in a linearization S) and
an operation e1 that precedes e2, there exists no appropriate linearization S, since L2 implies
that e1 <S e2 and in particular that e2 appears in S (including a response, as S is equivalent
to complete(H ′) by L1, which means it contains no pending invocations).

An example of such a history that seems naturally linearizable but would be ruled out by
the original definition with the alternative interpretation of an operation follows. Consider a
stack object, where if the stack is empty, then a popping process spins until an item is pushed

60

Figure 4.5: Hs, an execution on a stack with a second pop that cannot be completed

Hs:
A

B

Push(1)

Pop() 1 Pop()

into the stack. Consider the history Hs with processes A and B illustrated in Figure 4.5.
The first pop’s response precedes the second pop’s invocation in Hs, hence 1st Pop <Hs

2nd Pop (interpreting the happens-before relation relying on the alternative operation defini-
tion). Condition L2 of the linearizability definition implies that the same relation appears in
S: 1st Pop <S 2nd Pop, and in particular the second pop appears in S. However, the second
pop cannot be included in S because it cannot be legally completed on an empty stack.

This problem regarding the definition of linearizability in the alternative interpretation is
different from the problem with the original interpretation (pointed out in Section 4.3), but
we remark that applying our fix, i.e., changing L2 to <complete(H′)⊆<S , solves this problem
as well and can make the alternative interpretation be an adequate (equivalent) definition for
linearizability.

4.7 An Equivalent Definition

According to the intuitive discussion in the original paper [HW90], linearizability provides
the illusion that each operation takes effect instantaneously at some point between its invo-
cation and its response. This point was later denoted a linearization point. Referring to the
intuitive meaning of linearizability, it makes sense that if a pending invocation takes effect,
it does so instantaneously at some point after the invocation and before the end of the exe-
cution. Such an interpretation of linearizability has appeared in [Lyn96]. Moreover, many
data structure implementations [e.g., MS96; Mic02] are proven to be linearizable by listing
linearization points as locations in the code for each of their methods. These locations natu-
rally occur during the method call, after the invocation (and before the response or the end of
the execution), obliviously of whether the invocation has a matching response in the original
execution.

We next specify an equivalent definition of linearizability, similar to the atomicity defini-
tion in [Lyn96], which formalizes the above intuitive interpretation of linearizability.

Definition 4.7.1. (Linearizability by Linearization Points) A well-formed history H is lin-

earizable if there exist distinct points in H , denoted linearization points, satisfying the fol-
lowing:

1. For each operation, there exists a linearization point between its invocation and its
response.

2. There exists a subset T of H ’s pending invocations, such that for each invocation inv

in T there exists a linearization point after the invocation, and there exists a response
denoted respinv for the invocation.

61

Such that if we place each invocation that has a matching response and its matching response
one right after another at their respective linearization point, do the same for each invocation
inv inT and its response respinv , and exclude pending invocations not inT , then the resulting
sequence of invocations and responses, denoted S, is a legal sequential history.

The original linearizability definitionwith the typo is not equivalent to Definition 4.7.1. As
a counterexample, H1 demonstrated in Figure 4.1 is linearizable by Definition 4.2.2 as shown
in Section 4.3.1, but not by Definition 4.7.1, since the pending write must be linearized for the
read to return 1, but placing the write’s linearization point after the read’s one cannot yield a
legal register sequential history.

We next show that fixing the typo in the linearizability definition makes the definition
equivalent to Definition 4.7.1, which formalizes the intuition behind linearizability.

Claim 4.7.2. Definition 4.7.1 (linearizability by linearization points) is equivalent to Definition

4.4.1 (amended linearizability).

Proof First we prove that Definition 4.7.1 implies Definition 4.4.1: Assume H is linearizable
by Definition 4.7.1. Let T and S be a subset and a history that satisfy the definition. We
will prove that H is linearizable by Definition 4.4.1 with the same S. Form H ′ from H by
appending (in some arbitrary order) for each invocation in T , the response appended for it
in S. L1 holds: For each process, complete(H ′) is made of the same events as S. Their order
is the same in complete(H ′) and S, since S is constructed by ”shrinking” each operation (in-
vocation and response) to its linearization point, which is placed by Definition 4.7.1 between
an invocation and a following response. L2 holds as well, since if one operation precedes an-
other operation in complete(H ′), meaning the first operation’s response happens before the
second operation’s invocation in complete(H ′), then this order is preserved in S, in which
the response of the first operation is moved to an earlier point (to the linearization point of
the first operation) and the invocation of the second operation is moved to a later point (to
the linearization point of the second operation).

We proceed to prove the other direction - Definition 4.4.1 implies Definition 4.7.1. Assume
H is linearizable by Definition 4.4.1. Let H ′ and S be an extension of H and a linearization
that satisfy the definition. We define T to be the set of all pending invocations in H for which
a response is added in H ′. Next, we pick linearization points for operations of H and for
pending invocations of T , namely for operations of complete(H ′), which are – due to L1 –
the operations of S. Denote the ith operation in S by ei. We pick the linearization point of ei

to be right after the later of the following: ei’s invocation, and the linearization point of ei−1.
We will prove that our selected linearization points satisfy the requirements of Definition

4.7.1. First, Conditions (1) and (2) of Definition 4.7.1 hold as the linearization point of each
ei is after its invocation in complete(H ′) by definition, and also before its response as we
next show. If not, it implies that the linearization point of ei is set right after the linearization
point of ei−1, and that the linearization point of ei−1 is after ei’s response. If the linearization
point of ei−1 was picked to be right after its invocation, it means that ei <complete(H′) ei−1

62

and we reach a contradiction by Condition L2 of Definition 4.4.1 (thanks to the typo fix). Else,
it was picked to be right after the linearization point of ei−2, and we continue with the same
arguments until reaching a contradiction (the process is guaranteed to stop at e1 at the latest).
Second, the linearization point order preserves the order of operations inS by our definition of
the linearization points. Therefore, the history constructed in Definition 4.7.1 by ”shrinking”
each operation of S (namely, moving its invocation and response) to its linearization point, is
equal to S and is thus a legal sequential history.

4.8 Comparison of all Definition Versions

Let H be a history. Then for each choice of an extension H ′, we may divide the invocations
in H into three categories:

1. Invocations that have a matching response in H .

2. Pending invocations in H that have a matching response in H ′.

3. Pending invocations in H that do not have a matching response in H ′.

The operations related to invocations of categories (1) and (2) form complete(H ′). Therefore,
as implied by Condition L1 of linearizability, if H is linearizable then the linearization of H

which stems from this H ′ is made of these operations.
The different versions of the linearizability definition differ in the operations amongwhich

their L2 Condition enforces order preservation. Definition 4.2.2 forces preserving order among
operations whose invocations are of category (1) only. Definition 4.4.1 (and thus the equiva-
lent Definition 4.7.1 as well) dictates that the linearization preserve the order of all operations
in complete(H ′), namely, all linearized operations, which are operations whose invocations
are of categories (1) and (2). Since L2with the typo fix enforces precedence order on additional
operations in comparison to the original L2, then the typo fix strengthens the definition of
linearizability. Namely, the amended definition eliminates some executions that are lineariz-
able according to the definition with the typo, e.g., executions H1 (see Figure 4.1) and H2 (see
Figure 4.2). The typo fix does not include any execution not classified as linearizable by the
original definition: each execution linearizable by Definition 4.4.1 is linearizable by Definition
4.2.2 as well because <H⊆<complete(H′).

Definition 4.2.2 with the alternative interpretation of an operation as described in Sec-
tion 4.6, forces preserving order among operations whose invocations are of any of the 3
above-mentioned categories, namely, operations related to all invocations. L2 in this interpre-
tation implies that a linearization S includes all pending invocations of H (that are preceded
by any response), including those of category (3) – which cannot appear in S by Condition L1.
Consequently, for a history to be classified as linearizable, there must exist an extension H ′

for which H has no invocations of category (3), namely, all pending invocations are linearized
(again, referring only to invocations preceded by a response). Hence, the definition in this

63

Figure 4.6: The relationship between histories categorized as linearizable by the different ver-
sions of linearizability

Histories linearizable
by Definition 4.2.2

Histories linearizable
by Definition 4.4.1

Histories linearizable by
the alternative interpretation

of Definition 4.2.2.
H1

.
H2

.
Hs

interpretation excludes histories with pending invocations (preceded by some response) that
cannot be linearized, like Hs (see Figure 4.5). It is thus stronger than Definition 4.4.1 – in fact,
too strong.

The inclusion relations between the histories categorized as linearizable by the different
versions of linearizability are illustrated in Figure 4.6.

64

Chapter 5

The FIDSTheorems: Tensions
between Multinode and Multicore
Performance in Transactional
Systems

This chapter is based on the work presented at [BSS23a] and [BSS23b].

5.1 Introduction

Transactional systems offer a clean abstraction for programmers to write concurrent code
without worrying about synchronization issues. This has made them extremely popular and
well studied in the last couple of decades [AF15; FTA14; GK08; PPR+15; SWL+20; YPSD16;
ZSS+15; TZK+13a].

Many transactional systems in practice are distributed across multiple machines [CDE+12;
ZXS+21; LM10], allowing them to have many benefits that elude single-machine designs. For
example, distributed solutions can scale to much larger data sets, handle much larger work-
loads, service clients that are physically far apart, and tolerate server failures. It is therefore
unsurprising that distributed transactional systems have garnered a lot of attention in the lit-
erature, with many designs aimed at optimizing their performance in various ways: minimiz-
ing network round trips to commit transactions [KPF+13; SWL+20; ZSS+15; MNLL16; CL12;
LMP17], increasing robustness and availability when server failures occur [KPF+13; ZSS+15;
SWL+20], and scaling to heavier workloads [ZXS+21; EGG+22].

Due to increased bandwidth on modern networks, new considerations must be taken into
account to keep improving the performance of distributed transactional systems. In partic-
ular, while traditional network communication costs formed the main bottleneck for many
applications, sequential processing within each node is now no longer enough to handle the
throughput that modern networks can deliver (through e.g., high-bandwidth links, multicore

65

NICs, RDMA, kernel bypassing). Thus, to keep up with the capabilities of modern hardware,
distributed transactional systems must make use of the parallelism available on each server
that they use. That is, they must be designed while optimizing both network communication
and multicore scalability.

Twomain approaches have been employed by transactional storage systems to take advan-
tage of the multicore architecture of their servers [Sto85]: shared-nothing or shared-memory.
The shared-nothing approach, where each core can access a distinct partition of the database
and only communicates with other cores through message passing, has a significant draw-
back: cores responsible for hot data items become a throughput bottleneck while other cores
are underutilized. To be able to adapt to workloads that stress a few hot data items, the shared
memory approach, where each core can access any part of the memory, can be used. However,
sharedmemorymust be designed with care, as synchronization overheads can hinder scalabil-
ity. Fortunately, decades of work has studied how to scale transactional systems in amulticore
shared-memory setup [AHM11; AH12; AF15; BHG86; BDFG14; Pap79; PPR+15; AS08]. Thus,
there is a lot of knowledge to draw from when designing distributed transactional systems
that also employ parallelism within each server via the shared-memory approach.

In this work, we study these systems, which we call parallel distributed transactional
systems (PDTSs). Our main contribution is to show that there is an inherent tension between
properties known to improve performance in distributed settings and those known to improve
performance in parallel settings. To show this result, we first formalize a model that combines
both shared memory and message passing systems. While such a model has been formulated
in the past [ABC+18], it has not been formulated in the context of transactional systems.

We then describe and formalize three properties of distributed transactional systems that
improve their performance. These properties have all appeared in various forms intuitively
in the literature [ZSS+15; KPF+13; SWL+20], but have never been formalized until now. We
believe that each of them may be of independent interest, as they capture notions that apply
to many existing systems. In particular, we first present distributed disjoint-access parallelism,
a property inspired by its counterpart for multicore systems, but which captures scalabil-
ity across different distributed shards of data. Then, we describe a property that intuitively
requires a fast path for transactions: transactions must terminate quickly in executions in
which they do not encounter asynchrony, failures, or conflicts. While many fast-path prop-
erties have been formulated in the literature for consensus algorithms, transactions are more
complex since different transactions may require a different number of network round trips,
or message delays, in order to even know what data they should access. We capture this vari-
ability in a property we name fast decision, intuitively requiring that once the data set of a
transaction is known, it must reach a decision within one network round trip. Finally, we
present a property called seamless fault tolerance, which requires an algorithm to be able to
tolerate some failures without affecting the latency of ongoing transactions. This has been the
goal of many recent works which focus on robustness and high availability [SWL+20; MAK12;
MNLL16; KPF+13; ZSS+15].

Equipped with these properties, we then show the inherent tension that exists between

66

them and the well-known multicore properties of disjoint-access parallelism and invisible
reads, both of which intuitively improve cache coherence and have been shown to increase
scalability in transactional systems [RHH09; FFMR10]. More precisely, we present the Fast
decision, Invisible reads, distributed Disjoint-access parallelism, and Serializability
(FIDS) theorem for sharded PDTSs: a PDTS that guarantees a minimal progress condition
and shards data across multiple nodes cannot simultaneously provide Fast decision, Invisible
reads, distributedDisjoint-access parallelism, and Serializability. An important implication of
this result is that serializable shared-memory sharded PDTSs that want to provide multicore
scalability cannot simply use a two-phase atomic commitment protocol (such as the popu-
lar two-phase commit). Furthermore, we turn our attention to replicated PDTSs. We discover
that a similar tension exists for PDTSs that utilize client-driven replication. With client-driven
replication replicas do not need to communicate with each other to process transactions. It
is commonly used in conjunction with a leaderless replication algorithm to save two mes-
sage delays [KPF+13; ZSS+15; SWL+20; MNLL16], as well as in RDMA-based PDTSs which
try to bypass the replicas’ CPUs [DNN+15; SRN+19]. We present a robust version of the FIDS
theorem, which we call the Robust Fast decision, Invisible reads, Disjoint-access paral-
lelism, and Serializability (R-FIDS) theorem: a PDTS (that may or may not shard its data)
and utilizes client-driven replication cannot simultaneously provideRobustness to failures in
the form of seamless fault tolerance, Fast decision, Invisible reads,Disjoint-access parallelism,
and Serializability.

Interestingly, similar impossibility proofs appear in the literature, often showing proper-
ties of parallel transactional systems that cannot be simultaneously achieved [PPR+15; AHM11;
BDFG14]. Indeed, some works have specifically considered disjoint-access parallelism and in-
visible reads, and shown that they cannot be achieved simultaneously with strong progress
conditions [AHM11; PPR+15]. However, several systems achieve both disjoint-access paral-
lelism and invisible reads with weak progress conditions such as the one we require [YPSD16;
TZK+13a; DNN+15]. To the best of our knowledge, the two versions of the FIDS theorem are
the first to relate multicore scalability properties to multinode scalability ones.

Finally, we show that the FIDS theorems are minimal in the sense that giving up any one
of these properties does allow for implementations that satisfy the rest.

In summary, our contributions are as follows.

• We present a transactional model that combines the distributed and parallel settings.

• We formalize three distributed performance properties that have appeared in intuitive
forms in the literature.

• We present the FIDS and R-FIDS theorems for parallel distributed transactional systems,
showing that there are inherent tensions between multicore and multinode scalability
properties.

• We show that giving up any one of the properties in the theorems does allow designing
implementations that satisfy the rest.

67

The rest of this chapter is organized as follows. Section 5.2 presents the model and some
preliminary notions. In Section 5.3, we define the properties of distributed transactional sys-
tems that we focus on. We present our impossibility results in Section 5.4, and then in Sec-
tion 5.5, we show that it is possible to build a PDTS that sacrifices any one of the properties.
Finally, we discuss related works in Section 5.6 and future research directions in Section 5.7.

5.2 Model and Preliminaries

Communication. We consider a message-passing model among n nodes (server hosts) and
any number of client processes, as illustrated in Figure 5.1. Each node has P node processes.
Messages are sent either between two nodes or between clients and nodes. We consider
partial synchrony [DLS88]; messages can be arbitrarily delayed until an a priori unknown
GST, after which all messages reach their target within a known delay ∆. An execution
is said to be synchronous if GST is at the beginning of the execution. Furthermore, node
processes within a single node communicate with each other via shared memory. That is, they
access shared base objects through primitive operations, which are atomic operations, such as
read, write, read-modify-write (compare-and-swap, test-and-set, fetch-and-increment, etc.),
defined in the usual way. A primitive operation is said to be non-trivial if it may modify
the object. Two primitive operations contend if they access the same object and at least one
of them is non-trivial. The order of accesses of processes to memory is governed by a fair

scheduler which ensures that all processes take steps.

Transactions. We consider a database composed of a set of data items, Σ, which can be
accessed by read and write operations. Each node Ni holds some subset Σi ⊆ Σ, which may
overlap with the subsets held on other nodes. A transaction T is a program that executes read
and write operations on a subset of the data items, called its data set, DT ⊆ Σ. A transaction
T ’s write set, WT ⊆ DT , and read set, RT ⊆ DT , are the sets of data items that it writes and
reads, respectively. Two transactions are said to conflict if their data sets intersect at an item
that is in the write set of at least one of them.

Transaction Interface. An applicationmay execute a transactionT by calling an invokeTxn(T)

procedure. The invokeTxn(T) procedure returns with a commit or abort value indicating
whether it committed or aborted, as well as the full read and write sets of T , with the order
of execution of the operations (relative to each other), and with the read and written values.
We say that a transaction is decided when invokeTxn(T) returns.

Failure Model. Nodes can fail by crashing; if a node crashes then all processes on the node
crash as well. We do not consider failures where individual processes crash and we assume
clients do not fail. We denote by failure-free execution an execution without node crashes.

Client process
Client process

Node

Server process

Server process

…

Shared

Memory

Client process
Node

Server process

Server process

…

Shared

Memory

Node

Node process

Node process

…

Shared

Memory

Node-Node channel

Client-Node channel

Figure 5.1: Communication mediums between the different types of processes considered in
our model.

68

Handlers and Implementations. An implementation of a PDTS provides data representa-
tion for transactions and data items, and algorithms for two types of handlers: the coordinator

handler and themessage handler. Each handler is associatedwith a transaction and is executed
by a single process. Each process executes at most one handler at any given time, and is oth-
erwise idle. The coordinator handler of a transaction T is the first handler associated with T

and is triggered by an invokeTxn(T) call on some client process.
The execution of a handler involves a sequence of handler steps, which are of one of three

types: (1) an invocation or response step, which is the first or last step of the handler respec-
tively, (2) a primitive operation on a base object in shared memory, including its return value,
and (3) sending or receiving a message, denoted send(T , m) or receive(T , m). Each handler
step is associated with the corresponding transaction and the process that runs it. The return
value in a response step of a transaction’s coordinator handler is the return value of invokeTxn
described above, and a message handler has no return value.

Executions. An execution of a PDTS implementation is a sequence of handler steps and node

crash steps. Each node crash step is associated with a node. After a node crash step associated
with node Ni in execution E, no process on node Ni takes any steps in E. An execution can
interleave handler steps associated with different transactions and processes. An extension

E′ of E is an execution that has E as its prefix.
We say that a transaction T ’s interval in an execution E begins at the invocation step of

T ’s coordinator handler, and ends when there are no sends associated with T that have not
been received whose target node has not crashed, and all handlers associated with T have
reached their response step. Note that the end of a transaction’s interval must therefore be a
response step of some handler associated with T , but might not be the response step of T ’s
coordinator handler (whichmay terminate earlier than some other handlers of T). We say that
two transactions are concurrent in E if their intervals overlap. We say that two transactions,
T1 and T2, contend on node Ni in E if they are concurrent, and there is at least one primitive
operation step on node Ni in E associated with T1 that contends with a primitive operation
step in E associated with T2. We say that T1 and T2 contend in E if there is some node Ni

such that they contend on node Ni in E.
The projection of an execution E on a process p, denoted E|p, is the subexecution of

E that includes exactly all of the steps associated with p in E. Two executions E and E′

are indistinguishable to a process p if the projections of E and E′ on p are identical (i.e., if
E|p = E′|p).

It is also useful to discuss knowledge of properties during an execution. The notion of
knowledge has been extensively used in other works [HM90; FHMV04]. Formally, a process
p knows a property P in an execution E of a PDTS implementation I , if there is no execution
E′ of I that is indistinguishable to p from E in which P is not true.

We adopt two concepts introduced by Lamport [Lam06b; Lam78] to aid reasoning about
distributed systems: depth of a step, and the happened-before relation. The depth of a step s

associated with transaction T in execution E is 0 if s is the invocation of T ’s coordinator

69

handler. Otherwise, it equals the maximum of (i) the depths of all steps that are before s in E

within the same handler as s, and (ii) if s is a receive(T , m) step of a message sent in a send(T ,
m) step, s′, then 1 plus the depth of s′. Happened-before is the smallest relation on the set of
steps of an execution E satisfying the following three conditions: 1) if a and b are steps of
the same handler and a comes before b in E, then a happened-before b; 2) if a is a send(T , m)
step and b is a receive(T , m) step, then a happened-before b; 3) if a happened-before b and b

happened-before c, then a happened-before c.

Serializability. Intuitively, a transactional system is serializable if transactions appear to
have executed in some serial order [Pap79].

Formally, a committed history is a higher-level model of an execution defined as a sequence
of read and write events of the transactions that committed. A committed history H is de-

rived from an execution E if it consists of exactly the following events: for each committed
transaction T in E, H includes read and write events associated with T for all the reads and
writes in the response step of T ’s coordinator handler, including the read or written value,
in the order stated in the response step’s return value (which is the return value of the call
to invokeTxn(T)). The events of different transactions may be interleaved in any order in a
derived committed history. A committed history S is sequential if it contains no overlapping
transactions, namely, events of different transactions do not interleave each other. S is legal

if each read of a data item returns the last value written to that data item (or its initial value
if no write operation was applied to it so far). An execution of a PDTS is serializable if it
derives some legal sequential committed history. A PDTS is serializable if all its executions
are serializable.

Weak Progress. A transactional system must guarantee at least weak progress: every trans-
action is eventually decided, and every transaction that did not execute concurrently with any
other transaction eventually commits.

5.2.1 Multicore Scalability Properties

To scale to many processes on each server node, transactional systems should reduce memory
contention between different transactions. This topic has been extensively studied in the
literature on parallel transactional systems [AHM11; AH12; AF15; Boy14; CKZ+13; GK08;
IR94; PPR+15]. Here, we focus on two well-known properties, disjoint-access parallelism
and invisible reads, that are known to reduce contention and improve scalability in parallel
systems. We later show how they interact with distributed scalability properties.

Disjoint-Access Parallelism

Originally introduced to describe the degree of parallelism of implementations of sharedmem-
ory primitives [IR94], and later adapted to transactional memory, disjoint-access parallelism

intuitively means that transactions that are disjoint at a high level, e.g., whose data sets do not
intersect, do not contend on shared memory accesses [AHM11; PPR+15]. While this property
may sound intuitive, it can in fact be difficult to achieve, as it forbids the use of global locks

70

or other global synchronization mechanisms. Multiple versions of disjoint-access parallelism
exist in the literature, differing in which transactions are considered to be disjoint at a high
level. Here, we use the following definition.

Definition 5.2.1 (disjoint-access parallelism (DAP)). An implementation of a PDTS satisfies
DAP if two transactions whose data sets do not intersect cannot contend.

Invisible Reads

The second property we consider, invisible reads, intuitively requires that transactions’ read
operations not execute any shared memory writes. This property greatly benefits workloads
with read hotspots, by dramatically reducing cache coherence traffic. Two variants of this
property are common in the literature. The first, which we call weak invisible reads, only
requires invisible reads at the granularity of transactions. That is, if a transaction is read-only
(i.e., its write set is empty), then it may not make any changes to the shared memory. This
simple property has been often used in the literature [AHM11; PPR+15].

Definition 5.2.2 (Weak invisible reads). An implementation of a PDTS satisfies weak invisi-

ble reads if, in all its executions, every transaction with an empty write set does not execute
any non-trivial primitives.

However, this property is quite weak, as it says nothing about the number of shared mem-
ory writes a transaction may execute once it has even a single item in its write set. When
developing systems that decrease coherence traffic, this is often not enough. Indeed, papers
that refer to invisible reads in the systems literature [SWL+20; TZK+13a] require that no read
operation in the transaction be the cause of shared memory modifications. Note that an algo-
rithm that locally stores the read set for validation (which is the case in the above referenced
systems) can still satisfy invisible reads, since the writes are not to shared memory. Attiya
et al. [AH12] formalize this stronger notion of invisible reads by requiring that we be able
take an execution E and replace any transaction T in E with a transaction that has the same
write set but an empty read set, and arrive at an execution that is indistinguishable from E.
Intuitively, this captures the requirement that reads should not update shared metadata (e.g.,
through “read locks”). We adopt Attiya et al.’s definition of invisible reads here, adapted to fit
our model.

Definition 5.2.3 (Invisible reads (adapted from [AH12])). An implementation I of a PDTS
satisfies the invisible reads property if it satisfies weak invisible reads and, additionally, for
any execution E of I that includes a transaction T with write set W and read set R, there
exists an execution E′ of I identical to E except that it has no steps of T and it includes steps
of a transaction T ′, which has the same interval as T (i.e., T ’s first and last steps in E are
replaced by T ′’s ones in E′), and writes the same values to W in the same order as in T , but
has an empty read set.

Note that the invisible reads property complements the DAP property for enhanced mul-
ticore scalability. A system that has both allows all transactions that do not conflict, not just

71

the disjoint-access ones, to proceed independently, with no contention (as we will show in
Lemma 5.4.2). Interestingly, previous works discovered some inherent tradeoffs of such sys-
tems [AHM11; PPR+15], in conjunction with strong progress guarantees. In this work, we
study these properties under a very weak notion of progress, but with added requirements on
distributed scalability (see Section 5.3).

5.3 Multinode Performance Properties

To overcome the limitations of a single machine (e.g., limited resources, lack of fault toler-
ance), distributed transactional systems shard or replicate the data items on multiple nodes,
and, thus, must incorporate distributed algorithms that coordinate among multiple nodes.
The performance of these distributed algorithms largely depends on the number of commu-
nication rounds required to execute a transaction. Ideally, at least in the absence of conflicts,
transactions can be executed in few rounds of communication, even if some nodes experi-
ence failures. In this section we propose formal definitions for a few multinode performance
properties.

5.3.1 Distributed Disjoint-Access Parallelism

We start by proposing an extension of DAP to distributed algorithms, whichwe term distributed-

DAP, or DDAP. In addition to requiring DAP, DDAP proscribes transactions from contending
on a node unless they access common elements that reside at that node:

Definition 5.3.1 (Distributed disjoint-access parallelism (DDAP)). An implementation of a
PDTS satisfies distributed disjoint-access parallelism (DDAP) if for any two transactions T and
T ′, and any node Ni, if T and T ′’s data sets do not intersect on node Ni (i.e., DT ∩DT ′∩Σi =
∅), then they do not contend on node Ni.

While the main goal of sharding is to distribute the workload across nodes, DDAP links
sharding to increased parallelism – DDAP systems can offer more node parallelism than DAP
systems through sharding.

5.3.2 Fast Decision

Distributed transactional systems must integrate agreement protocols (such as atomic com-

mitment and consensus) to ensure consistency across all nodes involved in transaction pro-
cessing. Fast variants of such protocols can reach agreement in two message delays in “good”
executions [Lam06c]. Ideally, we would like distributed transactional systems to preserve this
best-case lower bound, and decide transactions in two message delays; reducing the number
of message delays required to process transactions not only can significantly reduce the la-
tency as perceived by the application (processing delay within a machine is usually smaller
than the delay on the network), but can also reduce the contention footprint [FTA14] of the

72

transactions (intuitively, this is the duration of time in which a transaction might interfere
with other transactions in the system).

Requiring transactions to be decided in just twomessage delays, however, is too restrictive
in many scenarios. The latency of a distributed transactional system depends on how many
message delays are required for a transaction to “learn” its data set (data items and their val-
ues); the data set needs to be returned to the application when the transaction commits, and
is also used to determine whether the transaction can commit. For example, for interactive
transactions or disaggregated storage, the values must be made available to the application
(which runs in a client process) before the transaction can continue to execute. Thus, since
the data items are remote, each read operation results in two message delays, one to request
the data from the remote node and one for the remote node to reply. For non-interactive
transactions or systems where transaction execution can be offloaded to the node processes,
the latency for learning the data set can be improved; since the client does not need to im-
mediately know the return value of read operations, the values of data items can be learned
through a chain of messages that continue transaction processing at the nodes containing the
remote data. More precisely, the client first determines a node, n1, that contains the first data
item the transaction needs to read; the client sends a message to n1 containing the transac-
tion; n1 processes the transaction, preforming the read locally, until it determines that the
transaction needs to perform a remote read from another node, n2; n1 sends a message to
n2 containing the transaction and its state so far; n2 continues processing the transaction,
performing the read locally, and so on. RPC chains [SAKM09] already provides an imple-
mentation of this mechanism, saving one message delay per remote read operation. At the
lowest extreme, non-sharded transactional systems can learn a transaction’s entire data set
in a single message delay.

We introduce the fast decision property to describe distributed transactional systems that
can decide each transaction in “good” executions within only two message delays in addi-
tion to the message delays it requires to “learn” the transaction’s entire data set. As explained
above, the number of message delays required to learn a transaction’s data set depends on sev-
eral design choices. We note that often, deciding a transaction’s outcome within two message
delays after learning its data set is not plausible if the execution has suboptimal conditions,
for example, if there are transactional conflicts that need to be resolved, or if not all nodes
reply to messages within some timeout. This is true even for just consensus, where the two-
message-delay decisions can happen only in favorable executions, on a fast path [ABG+20;
Lam06a]. We therefore define the fast decision property to only be required in such favorable
executions.

To formalize fast decisions, we must be able to discuss several intuitive concepts more
formally. In particular, we begin by defining the depth of a transaction, to allow us to for-
mally discuss the number of message delays that the transactional system requires to decide
a transaction.

Definition 5.3.2 (Depth of a transaction). The depth of a decided transaction T in execution

73

E of a PDTS implementation, dE(T), is the depth of the response step of T ’s coordinator
handler in E.

In many cases, we need to refer to the depth of a transaction T in an execution in which
T is still ongoing, and its coordinator handler has not reached its response step yet. While
we could simply refer to the depth of the deepest step of T in the execution, this would not be
appropriate: it is possible that a transaction in fact took steps along one ‘causal path’ that led
to a large depth, but when the response step to T ’s coordinator handler happens, its depth is
actually shorter. In such a case, we really only care about the depth along the ‘causal paths’
that lead to the response step, since these are the ones affecting the latency to the application.
To capture this notion, we define the partial depth of a transaction T in a prefix of an execution
in which T is decided as follows.

Definition 5.3.3 (Partial depth of a transaction). Let T be a decided transaction in execution
E of a PDTS implementation. The partial depth of T in a prefix P of E in which T is not
decided, dE(T, P), is the maximum step depth across all steps associated with T in P , which
happened-before the response step of T ’s coordinator handler in E (or 0 if there are no such
steps).

We next formalize another useful concept that we need for the discussion of fast decisions;
namely, what it means to learn the data set of a transaction. For that purpose, we introduce
the following two definitions:

Definition 5.3.4 (Decided data item). A data item d is decided to be in a transaction T ’s read
or write set in execution E of a PDTS implementation if, in all extensions of E, the read or
write set respectively in the return value of invokeTxn(T) contains d.

Definition 5.3.5 (Decided value). A data item d’s value is decided for T in execution E of a
PDTS implementation if, in all extensions ofE, the read set in the return value of invokeTxn(T)
contains d and with the same value.

Note that a data item’s value can be decided for a transaction only if that data item is part
of its read set; the definition does not apply for data items in the write set. In the definition of
the fast decision property and in the proofs, we refer in most places to knowing the decided
values and not the data items in the write set as well. This is because knowing the read set
and its values implies that a transaction’s write set is decided in case it commits; this is the
property that matters in many of the arguments we use in this work.

Finally, we are ready to discuss the fast decision property. Intuitively, the formal definition
of the property considers favorable executions, which are synchronous, failure-free and have
each transaction run solo. For those executions, the property requires two things to hold: first,
a transaction is not allowed to spend more than two message delays without learning some
new value for its data set, and second, once its entire data set is known, it must be decided
within 2 more message delays (Corollary 5.1). This captures ‘speed’ in both learning the data

74

set and deciding the transaction outcome. As discussed above, 2 message delays is an upper
bound on the minimal amount of time needed to perform a read operation (and bring its value
to the necessary process). Note that this is a tight bound for systems processing interactive
transactions, and as such, fast decision also means optimal latency for these systems.

Definition 5.3.6 (Fast decision). APDTS implementation I is fast deciding if, for every failure-
free synchronous execution E of I and every decided transaction T in E that did not exe-
cute concurrently with any other transaction, for any prefix P of E such that dE(T, P) <

dE(T) − 2, there exists a prefix of E of partial depth dE(T, P) + 2 in which the number of
values known by some process to be decided is bigger than in P .

Formalizing the allowed depth of a transaction in terms of prefixes of an execution in
which the transaction is already decided (sowe know its depth in that execution) helps capture
the two requirements we want: (1) for any prefix of the execution, if we advance from it by
two message delays, we must have improved our knowledge of the values of the read set, and
(2) once the read set and its values are completely known (regardless of the depth of the prefix
in which this occurs), we must be at most 2 message delays from deciding that transaction.
Corollary 5.1 helps make this intuition concrete.

Corollary 5.1. For every failure-free synchronous execution E of a fast-deciding PDTS imple-

mentation I and every decided transaction T in E that did not execute concurrently with any

other transaction, let P be the shortest prefix of E in which the value of each item in T ’s read

set is known by some process to be decided. Then

dE(T) ≤ dE(T, P) + 2.

(Intuitively, T must be decided within at most 2 message delays from when T ’s read set including

its values are known to be decided.)

Proof Assume by contradiction that dE(T) > dE(T, P) + 2. Then by the fast decision prop-
erty of I , there exists a prefix of E in which the number of data items whose value is known
by some process to be decided is bigger than in P . But this is impossible, since the values of
T ’s entire read set are known to be decided in P . ■

Several fast-deciding distributed transactional systems have been recently proposed for
general interactive transactions [KPF+13; ZSS+15; SWL+20]; our fast decision property cap-
tures what they informally refer to as “one round-trip commitment”. These systems use an
optimistic concurrency control and start with an execution phase that constructs their data
sets with two message delays per read operation. The agreement phase consists of valida-
tion checks that require a single round-trip latency (integrates atomic commitment and a fast
consensus path in one single round trip). The write phase happens asynchronously, after the
response of the transaction has been emitted to the application.

75

5.3.3 Seamless Fault Tolerance

High availability is critical for transactional storage systems, as many of their applications
expect their data to be always accessible. In other words, the systemmust mask server failures
and network slowdowns. To achieve this, many systems in practice are designed to be fault
tolerant; the system can continue to operate despite the failures of some of its nodes.

However, oftentimes, while the system can continue to function when failures occur, it
experiences periods of unavailability, or its performance degrades by multiple orders of mag-
nitude while recovering [ABG+20; WJC+17]. This is the case in systems that must manually
reconfigure upon failures [VS04], and those that rely on a leader [ABG+20; OO14; WJC+17;
Lam01; Lam98].

These slow failure-recovery mechanisms, while providing some form of guaranteed avail-
ability, may not be sufficient for systems in which high availability is truly critical; suffering
from long periods of severe slowdowns potentially from a single server failure may not be
acceptable in some applications.

To address this issue, some works in recent years have focused on designing algorithms
that experience minimal slowdowns, or no slowdowns at all, upon failures. One approach
has been to minimize the impact of leader failures by making the leader-change mechanism
light-weight and switching leaders even when failures do not occur [YMR+19]. Another ap-
proach aims to eliminate the leader completely; such algorithms are called leaderless algo-
rithms [ADG+21; SWL+20; ZSS+15; MAK12]. All of these approaches aim to tolerate the
failure of some nodes without impacting the latency of ongoing transactions.

In this work, we formalize this goal of tolerating failures without impacting latency into a
property that we call s-seamless fault tolerance, where s ≤ f . In essence, s-seamless fault tol-
erance requires that if only up to s failures occur in an execution, no slowdown is experienced.
To capture this formally, we require that for any execution E with up to s − 1 crashes, it be
possible to find an equivalent execution E′ with one more crash event, which may happen at
any time after the crashes in E, where the depth of all transactions are the same in E and E′.
We express this in an inductive definition.

Definition 5.3.7 (s-seamless fault tolerance). Any implementation of a PDTS satisfies 0-seam-
less fault tolerance. An implementation I of a PDTS satisfies s-seamless fault tolerance if it
satisfies (s−1)-seamless fault tolerance, and for any execution E of I with s−1 node crashes,
for any prefix EP of E that contains the s− 1 node crashes, and any node crash event c of a
node that has not crashed in EP , there exists an execution E′ of I whose prefix is EP ·c, such
that (1) stripping each of E and E′ of all steps other than invocation and response steps of co-
ordinator handlers results in the same sequence of invocation and response steps (intuitively,
the executions are equivalent), and (2) the depth of each decided transaction is the same in
both executions (intuitively, E′ seamlessly tolerates the node crashes).

While s-seamless fault tolerance offers the extremely desirable robustness property, it also
requires that: a) no single node can be on the critical path of all transactions, and b) no single

76

node can be solely responsible for processing a transactional task. This can be a double-edged
sword; on the one hand, this eliminates the possibility of a leader bottleneck, which implies
better scalability. On the other hand, it disallows certain optimizations, like reading from a
single replica.

5.4 Impossibility Results

Having specified some key properties which make distributed transactional systems fast and
scalable, we now turn to the main result of our work: unfortunately, there is a tension be-
tween these multinode performance properties and the single-node multicore performance
properties discussed in Section 5.2. More specifically, we present the FIDS theorems, which
formalize the impossibility of achieving all of these properties simultaneously in two different
parallel distributed settings.

5.4.1 The FIDSTheorems

The first FIDS theorem states that no PDTS with weak progress which shards data can guar-
antee Fast decision, Invisible reads, distributedDisjoint-access parallelism, and Serializability
simultaneously. This is in contrast to known systems that achieve just the multinode proper-
ties [SWL+20; ZSS+15; MNLL16] or just themulticore properties [YPSD16; TZK+13a; DNN+15].
Thus, the FIDS theorem truly shows tensions that arise when a transactional system is both
parallel and distributed. This version of the FIDS theorem considers only systems that shard
data, that is, systems in which each node only stores part of the database items. Interest-
ingly, the impossibility holds in this setting even without requiring any fault tolerance, and
in particular, without seamless fault tolerance. We note that the FIDS theorem applies also to
systems that replicate data in addition to sharding it; adding replication on top of a sharded
system only makes it more complex. Formally:

Theorem 5.2 (The FIDS theorem for sharded transactional systems). There is no imple-

mentation of a PDTS which shards data across multiple nodes that guarantees weak progress,

and simultaneously provides fast decision, invisible reads, distributed disjoint-access parallelism,

and serializability.

For systems that maintain multiple copies of the data, but do not necessarily shard it, we
show a different version of the result. Note that in such systems, distribution comes from
replication; several nodes, each with a copy of the entire database, are used to ensure fault
tolerance. For this setting, we present the R-FIDS theorem: a PDTS with weak progress
that utilizes client-driven replication and satisfies Robustness to at least one failure through
the seamless fault tolerance property, in addition to satisfying Fast decision, Invisible reads,
Disjoint-access parallelism, and Serializability, is also impossible to implement. Formally:

Theorem 5.3 (The R-FIDS theorem for replicated transactional systems). There is no im-

plementation of a PDTS that utilizes client-driven replication that guarantees weak progress, and

77

simultaneously provides 1-seamless fault tolerance, fast decision, invisible reads, disjoint-access

parallelism, and serializability.

Next we present an overview of the proof technique for the two versions of the FIDS
theorem, followed by a detailed proof for each of them and the supporting lemmas.

5.4.2 Proof Overview

Both proofs have a similar structure; we consider example transactions that form a depen-
dency cycle, and show an execution in which all of them commit, thereby violating serial-
izability. To argue that all transactions in our execution commit, we build the execution by
merging executions in which each transaction ran solo (and therefore had to commit by weak
progress), and showing that the resulting concurrent execution is indistinguishable to each
transaction from its solo run. Starting with solo executions also gives us another property
that we can exploit; we define the solo executions to be synchronous and failure-free, and
therefore they must be fast deciding as well.

The key challenge in the proofs is how to construct a concurrent execution Econcur that
remains indistinguishable to all processes from the solo execution that they were a part of.
To do so, we divide the concurrent execution into two phases; first, we let the solo executions
run, in any interleaving, until right before the point in each execution at which some pro-
cess learns the values of its transaction’s read set. When this point is reached in each solo
execution, we carefully interleave the remaining steps in a second phase of the concurrent
execution. A key feature is that by the fast decision property, which each solo execution
satisfies, once some process learns the read set including its values, there are at most two
message delays left in each solo execution before the transaction is decided. This bounds the
amount of communication we need to worry about in the second phase of the concurrent
execution.

To show that Econcur is indistinguishable from the solo runs, we look at each of the two
phases separately. The idea is to show that no process makes any shared memory modifica-
tions in the first phase, and then show that we can interleave messages and message handlers
in a way that allows each transaction to be oblivious to the other transactions for at least
one more intuitive ‘round trip’, which is all we need to reach decision according to the fast
decision property.

To show that a transaction performs no shared memory modifications in the first phase
of the concurrent execution we construct, we rely on the way we choose the transactions,
their data sets, and when in the execution their data sets are decided; in both proofs, the
transactions we choose may have empty or non-empty write sets, depending on the results of
their reads. The following lemma shows that as long as a transaction’s write set is not known

to be non-empty, the transaction cannot cause any modifications in a system that provides
weak invisible reads.

Lemma 5.4.1. Let I be an implementation of a PDTS that provides weak invisible reads, and

let T be a transaction in an execution E of I , such that no process in E knows the following

78

proposition: T ’s write set is non-empty in all extensions of this execution in which T is decided.

Then T cannot cause any base object modifications in E.

This lemma, combined with the way we choose the transactions in our proofs, immedi-
ately implies that phase 1 of Econcur is indistinguishable to all processes from the solo execu-
tions they are a part of.

The proofs differ somewhat in how they show that Econcur is indistinguishable from
the solo runs in the second phase. We argue about restricted shared memory modifications
through the use of the DAP and invisible reads properties in the following key lemma, which
intuitively shows that transactions that do not conflict do not (visibly) contend.

Lemma 5.4.2. Let I be an implementation of a PDTS that provides both DAP and invisible reads,

and let T be a transaction in an execution E of I , such that its final write set is W . Then T does

not cause any base object modifications visible to any concurrent transaction in E whose data

set does not overlap with W .

To make phase 2 of Econcur also indistinguishable from the solo executions, we schedule
the remaining messages carefully. In particular, we schedule messages sent by reading trans-
actions to each node before those sent by writing transactions, and again rely on DAP and
invisible reads to argue that the reading transactions’ handlers will not cause changes visible
to those who write afterwards. However, here the two proofs diverge.

Sharded Systems

We first discuss the proof structure for showing that serializable sharded transactional sys-
tems that provide weak progress cannot simultaneously achieve fast decision, invisible reads
and distributed disjoint-access parallelism (DDAP). That is, sharding the data across multiple
nodes while achieving these properties is impossible even if we do not tolerate any failures
(Theorem 5.2).

The proof uses two nodes and two transactions, each reading from a data item on one
node and, if it sees the initial value, writing on the other node. The read set of one transaction
is the same as the (potential) write set of the other transaction. We need to argue that the
reading transaction on some node cannot cause modifications on that node that are visible to
the writing transaction. However, since the write set of each transaction overlaps with the
data set of the other, we cannot apply Lemma 5.4.2. Instead, we rely on DDAP, and show that
with this property, the reading transaction indeed cannot be visible to the writing one on each
node. We show a lemma very similar to Lemma 5.4.2 but which applies to transactions whose
write set on a specific node does not overlap the data set of another transaction on that node.

Lemma 5.4.3. In any implementation of a PDTS that provides both DDAP and invisible reads,

a transaction whose write set is W does not cause any modifications on shared based objects on

a node N visible to any concurrent transaction whose data set does not overlap with W on N .

79

The proof of this lemma is very similar to the proof of Lemma 5.4.2. The only required
adjustments are using DDAP instead of DAP, and referring to T ′’s data set and T ’s write set
and modification on a certain node N .

Note that while the proof of the FIDS theorem relies on sharding, it does not need fault
tolerance. In particular, it does not make use of the seamless fault tolerance property. How-
ever, the result does apply to systems in which the data is both sharded and replicated, as
those systems are even more complex than ones in which no replication is used.

Replicated but Unsharded Systems

So far, we have considered a PDTS in which node failures cannot be tolerated; if one of the
nodes crashes, we lose all data items stored on that node, and cannot execute any transactions
that access those data items. However, in reality, server failures are common, and therefore
many practical systems use replication to avoid system failures. Of course, the impossibility
result of Theorem 5.2 holds for a PDTS even for the more difficult case in which failures are
possible and each node’s data is replicated on several backups.

However, we now turn our attention to PDTSs in which the entire database is stored on
each node. This setting makes it plausible that a client could get away with accessing only
one node to see the state of the data items of its transaction. However, we show that the
impossibility of Theorem 5.2 still holds in this setting for a system in which failures are toler-
ated without affecting transaction latency (i.e., systems that satisfy seamless fault tolerance)
(Theorem 5.3).

As explained in Section 5.4.2, the use of seamless fault tolerance requires us to explicitly
argue about the length of the executions in which transactions decide. To do so, we need the
following lemma, which gives a lower bound for the depth at which a transaction’s read set
and values can be decided.

Lemma 5.4.4. There is no execution E of any serializable PDTS implementation that tolerates

at least 1 failure in which there is a transaction T and prefix P such that dE(T, P) < 2 and

some process knows the decided value of some read of T in P .

Once we have this lemma, the proof of the R-FIDS theorem is then similar to the proof
of the FIDS theorem. We build a cycle of dependencies between transactions where each
neighboring pair in the cycle overlaps on a single data item that one of them reads and the
other writes. The key is that because of invisible reads, each read can happen before the
write on the same data item without leaving a trace. However, to construct this cycle in the
replicated case, we need at least 3 replicas, 3 transactions and 3 data items. This is because we
can no longer separate the read and write of a single transaction on each node. Furthermore,
we make use of Lemma 5.4.4, as well as the budgeted depth of a transaction in a fast-deciding
execution, to explicitly argue about the amount of communication possible after a transaction
learns its write set.

More specifically, we choose three transactions, where the write set of one equals the read
set of the next. We divide them into pairs, where within each pair, the write set of one does

80

not overlap with the data set of the other. We can then directly use Lemma 5.4.2 to argue that
the second one to be scheduled of this pair will not see changes made by the first. We exploit
fault tolerance to have the third transaction’s messages never reach that node. However, here,
we must be careful, since we defined the solo executions to be failure-free to guarantee fast
decisions. We therefore rely on seamless fault tolerance; we show indistinguishability of the
concurrent execution not from the original solo executions, but from executions of the same
depth that we know exist due to seamless fault tolerance.

Interestingly, when we convert a solo execution S to an execution F of the same depth
(but with a node failure) via the seamless fault tolerance property, wemay lose its fast decision
property. That is, while the new execution must have the same depth as the original ones,
that does not guarantee that it will also be fast deciding, as the fast decision property does
not solely refer to the length of the execution. In particular, it could be the case that in F ,
the data set of a transaction including its values is learned earlier, but then the transaction
takes more than 2 message delays to be decided. This would be problematic for our proof, in
which the indistinguishability relies heavily on fast decision once the data set including its
values are known. To show that this cannot happen in the executions we consider, we rely
on Lemma 5.4.4 that bounds the depth at which any transaction in a fault tolerant system can
learn the decided values of its reads.

5.4.3 Full Proofs

Lemma 5.4.1. Let I be an implementation of a PDTS that provides weak invisible reads, and

let T be a transaction in an execution E of I , such that no process in E knows the following

proposition: T ’s write set is non-empty in all extensions of this execution in which T is decided.

Then T cannot cause any base object modifications in E.

Proof Let I be an implementation of a PDTS that satisfies weak invisible reads. Assume by
contradiction that there is a transaction T in execution E of I , such that no process in E

knows that T ’s final write set is not empty in all extensions in which T is decided, and a
process p runs a handler associated with T that performs some base object modification.

Since p does not know that T ’s final write set is not empty in all extensions of the current
execution in which T is decided, there exists an execution indistinguishable to p from E that
has an extension in which T ’s final write set is empty. Let that extension be EreadOnly . Since
T ’s final write set in EreadOnly is empty, then by weak invisible reads, T cannot cause base
object modifications in EreadOnly . Contradiction. ■

Lemma 5.4.2. Let I be an implementation of a PDTS that provides both DAP and invisible reads,

and let T be a transaction in an execution E of I , such that its final write set is W . Then T does

not cause any base object modifications visible to any concurrent transaction in E whose data

set does not overlap with W .

Proof Let I be an implementation of a PDTS that satisfies DAP and invisible reads. Let T be
a transaction whose final write set in an execution E of I is W . Assume by contradiction

81

that there exists some transaction T ′ concurrent with T in E whose data set does not overlap
with W , but which sees a modification made by T in E. That is, there is some base object
operation step s of T ′ whose return value is affected by T ’s modification.

By invisible reads, there exists an execution E′ of I identical to E except that it includes
a transaction TnoRead in place of T with the same interval, where TnoRead has W as its write
set and an empty read set. By DAP, TnoRead does not modify in E′ any base object accessed
by any concurrent transaction whose data set does not overlap with W . In particular, TnoRead

cannot make any modifications visible to T ′ in E′. Note that step s must exist in E′, since by
definition, E′ is identical to E except in steps associated with T and TnoRead. However, in
E, s’s return value is affected by T ’s modification, and in E′, this modification does not exist.
Therefore, E′ cannot be an execution of I . Contradiction. ■

Lemma 5.4.3. In any implementation of a PDTS that provides both DDAP and invisible reads,

a transaction whose write set is W does not cause any modifications on shared based objects on

a node N visible to any concurrent transaction whose data set does not overlap with W on N .

Proof Let I be an implementation of a PDTS that satisfies DDAP and invisible reads. Let T

be a transaction whose final write set on a node N in an execution E of I is W . Assume by
contradiction that there exists some transaction T ′ concurrent with T in E whose data set on
N does not overlap with W , but which sees a modification made by T on a base object on N

in E. That is, there is some base-object operation step s of T ′ whose return value is affected
by T ’s modification.

By invisible reads, there exists an execution E′ of I identical to E except that it includes
a transaction TnoRead in place of T with the same interval, where TnoRead has W as its write
set on N and an empty read set. By DDAP, TnoRead does not modify in E′ any base object on
N accessed by any concurrent transaction whose data set does not overlap with W on N . In
particular, TnoRead cannot make any modifications visible to T ′ on N in E′. Note that step
s must exist in E′, since by definition, E′ is identical to E except in steps associated with T

and TnoRead. However, in E, s’s return value is affected by T ’s modification, and in E′, this
modification does not exist. Therefore, E′ cannot be an execution of I . Contradiction. ■

Lemma 5.4.4. There is no execution E of any serializable PDTS implementation that tolerates

at least 1 failure in which there is a transaction T and prefix P such that dE(T, P) < 2 and

some process knows the decided value of some read of T in P .

Proof Assume by contradiction that there is some implementation I of a serializable PDTS
that tolerates at least 1 failure, an executionE of I , and a prefixP ofE such that dE(T, P) ≤ 1
and some process knows the decided value of some data item d of T in P . Without loss of
generality, let process p on node N be the process that knows d’s decided value, let that value
be v and let T ’s invoking client be C . Note that since C does not have access to the data, and
any step of any process not on C’s node must be of depth at least 1, p cannot be on C’s node,
and cannot have received any message from any process other than C within depth less than

82

2. Therefore p can only know the value of d on node N , but not any other nodes. Consider
the following executions.

EN−fail . EN−fail and E are identical up to right before T ’s invocation. In EN−fail , node
N fails at this point. Then, a transaction T ′ is invoked by a client C ′ ̸= C . T ′ writes a value
v′ ̸= v to d and commits. After T ′ commits, T is invoked in EN−fail . Clearly, by serializability,
T ’s read of d in EN−fail returns v′ or a more updated value, but not v.

EN−slow . EN−slow is identical to EN−fail except that node N does not fail in EN−slow .
Instead, all messages to and from N are arbitrarily delayed in EN−slow starting at the same
point at which N fails in EN−fail . Clearly, EN−slow is indistinguishable from EN−fail to all
processes not on N .

E′. E′ is identical to EN−slow except that node N receives messages from client C .
Clearly, E′ and EN−slow are indistinguishable to all processes not on N . So, T ’s read of
d must return the same value as in EN−slow , namely v′ or a more updated one, but not v.
However, note that E′ is also indistinguishable to processes on N from E in any prefix of E

of partial depth < 2 for T , since no process in N received any messages other than those it
received in E, and since clients do not receive any messages not related to their own trans-
actions, so C must have sent the same message(s) to N in E′ as it did in E. Therefore, there
is a prefix P ′ of E′ indistinguishable to p from P , in which v is not the decided value of d,
contradicting p’s knowledge of d’s decided value in P . ■

Theorem 5.2 (The FIDS theorem for sharded transactional systems). There is no imple-

mentation of a PDTS which shards data across multiple nodes that guarantees weak progress,

and simultaneously provides fast decision, invisible reads, distributed disjoint-access parallelism,

and serializability.

Proof Assume by contradiction that there exists an implementation I of a PDTS with all the
properties in the theorem statement. Consider a database with 2 data items, X1, X2, parti-
tioned on 2 nodes, N1, N2 respectively. Consider two transactions, T1, T2, with the following
data sets: T1’s read set is {X1}. Its write set is {X2} if its read returns the initial value of
X1, in which case it writes a value different from X2’s initial value. Otherwise, its write set
is empty. For T2, its read set is {X2}, and its write set is {X1} if its read returns the initial
value of X2, and empty otherwise. If its write set is non-empty, it writes a value different
from X1’s initial value. Let T1 be executed by a client C1 and T2 be executed by a different
client C2. Consider the following executions.

Solo Executions. We define two executions S1, S2, corresponding to T1, T2 respectively
running in isolation, without the other transaction present in the execution. Both executions
are synchronous and failure-free. By weak progress, Ti commits in Si, and by serializability,
Ti returns the initial value of its read item and therefore its write set is not empty.

Concurrent Execution. We define an execution, Econcur , where T1 and T2 execute
concurrently. On each node, each transaction is executed on different processes. Recall that
this can happen since this is a parallel system, and the executing processes for a transaction
are arbitrarily chosen among the idle processes of each node. In Econcur , for each transaction

83

Ti, we let each process that executes it run until right before it knows the decided read set
and read set value of Ti. Let the prefix of Econcur that includes all these steps be P1. We
then let each process that handles Ti run until when the next step of its handler has depth
≥ dSi(Ti)−2. Next, we let all messages sent on behalf of T1 to N1 and not yet received reach
N1 and be handled before any message sent on behalf of T2 to N1. For node N2, we let the
reverse happen; messages sent on behalf of T2 reach it and are handled before messages sent
on behalf of T1. Finally, we resume all processes, and pause node processes that handle Ti

when the next step of their handler has depth≥ dSi(Ti). As for the client of each transaction,
we let any messages sent to it arrive in the same order as they did in their corresponding solo
executions (we will show that it receives the same messages in Econcur).

We now claim that execution Econcur is indistinguishable to Ci from Si, and indistinguish-
able to each node process running Ti from the prefix of Si containing all this process’s steps
of depth < dSi(Ti). To do so, we consider the execution in two phases; the phase before the
two transactions achieve knowledge of their data sets including their values (up to the end of
P1), and the phase afterwards.

Phase 1 of Econcur . Note that for any prefix P of Econcur in which Ti’s read set’s value
is not known to be decided by some process, Ti’s known decided write set in P is empty.
Consider the longest prefix Pundecidedi

of P1 in which the decided write set of Ti is still empty.
Note that for every process p, its knowledge of Ti’s write set in Pundecidedi

is the same as it is
in P . Therefore, by Lemma 5.4.1, in any such prefix P , Ti may not make any modifications to
shared base objects visible to any concurrent transaction. Therefore, in phase 1 there are no
modifications visible to either transaction that were not visible in the solo execution as well.
Thus, by the end of phase 1, Econcur’s prefix P1 is indistinguishable to both transactions from
their respective solo executions. Therefore, both transactions read the initial values of their
respective read sets, and both have a non-empty write set in Econcur .

Phase 2 of Econcur . To show that Econcur remains indistinguishable from the solo exe-
cutions to their respective transactions in phase 2, we rely on the order of messages that are
received by the two nodes.

First, we note that by Lemma 5.4.3, Ti does not make base object modifications visible to
T(i mod 2)+1 on node Ni, since Ti’s final write set is {X(i mod 2)+1}, which does not intersect
T(i mod 2)+1’s final data set on node Ni.

Next, note that in each solo execution Si, the first process that knows the decided value of
Ti must be on node Ni, since that is where the data for the read of Ti is stored. Furthermore,
by construction of Econcur , any messages sent on behalf of Ti to Ni immediately after both
transactions gain knowledge of their write sets arrives before any suchmessage sent on behalf
of T(i mod 2)+1, and its handler is completely executed. Thus, by the above claim, on both
nodes, all handlers of both transactions for messages sent at depth dEconcur (Ti, P1) execute
to completion in a way that is indistinguishable to Ti from the solo execution Si.

Finally, note that since Si is synchronous and failure and conflict free, and I satisfies
the fast decision property, by Corollary 5.1, the depth of Ti in Si is at most 2 more than the
partial depth of the first prefix in which Ti’s data set including its values became known.

84

Transactions read and write sets
T T1 T2 T3

RT {X2} {X3} {X1}
WT {X1} if

R(X2)=⊥,
else {}

{X2} if
R(X3)=⊥,
else {}

{X3} if
R(X1)=⊥,
else {}

In particular, since Si is indistinguishable to processes executing Ti from Econcur up to that
point, this means that dSi(Ti) ≤ dEconcur (Ti, P1) + 2. Thus, once messages from within
the handlers that were activated by messages sent in Econcur at depth dEconcur (Ti, P1) are
received, Ti must be decided in Econcur as well, since Econcur is indistinguishable from Si to
all processes running Ti up to this point. Therefore, both transactions commit successfully in
Econcur in a manner indistinguishable from their respective solo executions.

However, this yields a circular dependency between the two transactions; T2 must occur
before T1, since it returns the initial value of X2, before T1 writes to it. Similarly, T1 must
occur before T2, since it returns the initial value of X1. This therefore contradicts serializabil-
ity. ■

Theorem 5.3 (The R-FIDS theorem for replicated transactional systems). There is no im-

plementation of a PDTS that utilizes client-driven replication that guarantees weak progress, and

simultaneously provides 1-seamless fault tolerance, fast decision, invisible reads, disjoint-access

parallelism, and serializability.

Proof Assume by contradiction that there exists an implementation I of a parallel replicated
transactional system with all the properties stated in the theorem.

Consider a transactional system with 3 nodes N1, N2, N3. (For less than 3 nodes, there
is no PDTS that tolerates f ≥ 1 failures in the partial-synchrony model [DLS88].) Further
consider 3 transactions T1, T2, T3, 3 client processes C1, C2, C3, and 3 data items X1, X2, X3

each of which is replicated on all 3 nodes. The data sets of the transactions are as follows: Ti’s
read set includes X(i mod 3)+1, and if the result of Ti’s read of X(i mod 3)+1 is the initial value
of X(i mod 3)+1, its write set includes Xi. Otherwise, its write set is empty. Each transaction
Ti, if its write set is non-empty, writes a value that is different from Xi’s initial value.

Consider the following executions. For each i = 1, 2, 3, in any of the following executions,
if it includes Ti then its coordinator handler is executed by Ci.

Solo Executions. Let E1, E2, E3 be failure-free synchronous executions of I , where
transaction Ti runs solo in Ei. Since Ei contains a single transaction and I satisfies weak
progress, transaction Ti commits in Ei. Since Ei is synchronous, has no failures and contains
only Ti, and I satisfies fast decision, Ti is fast deciding in Ei.

Claim: Ti must have a depth of at most 4 in Ei.

To see this, note that by the definition of fast decision, if transaction Ti in Ei has depth at
least 3, the empty prefix of Ei must have an extension Ci of partial depth dEi(Ti, Ci) ≤ 2 in

85

which the value of the read set’s item is known by some process to be decided, and therefore
the write set is known by that process to be decided as well. By Corollary 5.1, the depth of Ti

in Ei must be at most 2 more than the depth of Ci, and therefore is at most 4.

Since I satisfies 1-seamless fault tolerance, there exist executions E′
1, E′

2, E′
3 of I , where

the first event in E′
i is a crash of Ni, Ti runs solo and the depth of Ti in E′

i is the same as its
depth in Ei. We assume that in each E′

i, a different set of processes runs the handlers. Lastly,
since I is serializable, each E′

i is serializable, thus Ti’s read in E′
i returns the initial value of

X(i mod 3)+1, and therefore modifies Xi as part of its write set.

Since Ti’s write set is only determined from the outcome of Ti’s read, and may be empty
until that read’s value is decided, by Lemma 5.4.1, no base object modifications visible to
other transactions are executed by Ti in E′

i until after Ti’s read set values are known to some
process. Let the shortest prefix at which some process gains knowledge of Ti’s read set values
in E′

i be Pi. By Lemma 5.4.4, dE′
i
(Ti, Pi) ≥ 2.

Concurrent Execution. We define an execution Econcur with all 3 transactions. In
Econcur , all messages between processes on node Ni and any process that executes handlers
associated with Ti are arbitrarily delayed. For each i = 1, 2, 3, let processes that execute Ti

in E′
i run in Econcur identically to E′

i, in the same order of steps, until the end of Pi.

Note that up to this point, Econcur is indistinguishable to all executing processes from the
solo executions, since none of them has made any shared memory modifications visible to the
others. Therefore, the prefix Pknowledge of Econcur up to this point is an execution of I .

We continue Econcur as follows: Let all messages sent on behalf of Ti at depth dE′
i
(Ti, Pi)

be sent in Econcur , and be received and handled in the following order: on node N1, messages
for T2 are received first, and their handlers are run to completion, followed by messages for
T3. On node N2, T3’s messages are handled first, followed by messages of T1. Finally, on node
N3, messages of T1 are handled first followed bymessages of T2. coordinator handlers receive
messages in the same order they received them in their corresponding solo executions.

Recall that transaction Ti reads data item X(i mod 3)+1 and, if it reads the initial value,
writes data item Xi. Thus, the service order defined above for execution Econcur (see the
order in which the nodes process their writes in Figure 5.2) means that on each node, the
second serviced transaction writes to data item X after the first transaction reads X , but it is
never the case that a transaction reads a data item after it was written by another transaction
on the same node. Since the data set of the second transaction to execute handlers after prefix
Pknowledge on each node does not overlap with the write set of the first one, and since I

X1 X2 X3

N1 1 2
N2 2 1
N3 1 2

Figure 5.2: Visual representation of execution Econcur in the proof of Theorem 5.3. The num-
bers in the table represent the order of writing on each node; on node N1, X2 is written first,
followed by X3, and so on.

86

provides invisible reads and DAP, then by Lemma 5.4.2, the first transaction does not make
base object modifications visible to the second transaction. In other words, on each node,
a process executing the second transaction cannot observe any changes on shared memory.
Thus, Econcur is still indistinguishable from E′

i to any node process that executes Ti up to
the end of the handlers of messages sent at depth dEconcur (Ti, Pi). Note, however, that since
dE′

i
(Ti) ≤ 4 and dEconcur (Ti, Pi) ≥ 2, this means that Econcur remains indistinguishable from

E′
i to these processes until Ti is decided.
Therefore, for all three transactions Ti commit in Econcur , reading the initial value of

X(i mod 3)+1 and writing a non-initial value in Xi. However, this yields a circular dependency
between the transactions (transaction T1 must happen before T2, which must happen before
T3, which must happen before T1), which contradicts serializability. ■

5.5 Possibility Results

In this section, we show that any subset of the properties outlined inTheorem 5.3 is possible to
achieve simultaneously in a single system. To do so, we present four distributed transactional
system algorithms, each sacrificing one of the desired properties. Recall from our model
description that the presented protocols work under the assumption that the client does not
fail and nodes do not recover, and as such are not intended to be used “as is” in practice.

Our algorithms all have a similar structure, with minor tweaks to guarantee or sacri-
fice certain properties. We therefore begin by presenting a ‘base’ algorithm. This algorithm
achieves all the desired properties (i.e., fast decision, invisible reads, DDAP, and seamless
fault tolerance), but is not serializable. In each of the following subsections, we tweak the
base algorithm to sacrifice one desirable property and gain serializability. We note that we
refer here to DDAP though Theorem 5.3 refers to DAP, since DDAP is stronger than DAP (it
implies DAP), and so our possibility results are accordingly stronger using DDAP.

The base algorithm works as follows. Each data item d is replicated on 0 < k <= n

nodes, to which we refer as d’s replica group. If k < n then we assume the system is sharded.
All nodes execute the same state machine both in the sharded and the fully replicated case
(in which k = n). Each data item maintains its current value and a sequence number. Each
data item is also assigned two locks: a short-lived lock, lockS , that ensures that the value and
the sequence number of the data item are read and written atomically, and a long-lived lock,
lockL, utilized by the distributed concurrency control mechanism. We adopt an interactive
transaction model for executing transactions, where the initiating client coordinates its own
transaction. There are two phases per transaction:

Execution phase. During the execution phase the client reads items and dynamically
constructs its data set. A process receiving an execution phase message from a client waits
until the relevant data item lockS is unlocked, and then reads the data item and sends its
value and sequence number to the client. To ensure that the sequence number and the data
item’s value are read atomically while still maintaining the invisible reads property (e.g., there

87

are no read locks), we employ a lock-free read mechanism, as follows. To read a data item,
the reader checks that its lockS is not acquired, then checks the sequence number, and then
verifies that the lock is still not taken. If that verification passes, it now reads the data item’s
value, and finally checks the sequence number one more time. If the sequence numbers are
the same and the lock was free on both checks, it succeeds. Otherwise, it fails (the reader can
retry or send an abort message to the client). Writers first acquire the lock on the data item,
then change its sequence number, and only then modify the value. This mechanism is similar
to the one used in Silo [TZK+13a], and guarantees atomic reads of the sequence number and
value, even if they cannot be read atomically together in hardware. During this execution
phase, the client records the sequence number of each data item it reads.

Validation phase. The client then executes a validation phase in which it communicates
with the nodes to verify that its read values are still valid (the data items have the same
sequence number) and to update the items in its write set. A process receiving a validation
phase message on node Ni iterates through the data items d in the message such that d is
stored in node Ni; for each item in the read set, the process checks whether the data item d’s
long-lived lock lockL is locked, and whether its current sequence number matches the one
specified by the client. For each item in the write set, the process tries to acquire d’s lockL.
If at any point, it runs into a data item that is already locked or its sequence number is out of
date, it releases the data items it has already locked (if any), and replies ‘abort’ to the client.
Otherwise, if all data items’ sequence numbers matched the client’s validation phase message
and (if it’s not a read-only transaction) the process managed to lock them itself, the process

110 //Execution phase
111 for each key r in the read set:
112 Send ⟨READ,r⟩ to all nodes that have r
113 Wait to receive (val, seqNum) from k-f nodes
114 Record for r the (val, seqNum) of the message with the max seqNum

116 Create transaction message T=⟨tid,sequence⟩, where sequence specifies the data item accesses,
↪→ with reads of the form (key, seqNum) and writes of the form (key, newVal)

118 //Validation Phase
119 Send ⟨VALIDATE,T⟩ to all nodes
120 Wait for n-f responses
121 if all responses are of COMMIT type:
122 for each key w in the write set:
123 Append seqNum to w in T, where seqNum = max seqNum for w across all responses +

↪→ 1
124 Commit T
125 Send ⟨COMMIT,T⟩ to all nodes
126 else:
127 Abort T
128 Send ⟨ABORT,T⟩ to all nodes

Figure 5.3: Client code in the base algorithm.

88

sends ‘commit’ to the client.
The client waits to receive n−f replies from each shard, where f is the number of failures

the algorithm tolerates (at most (k − 1)/2 for k replicas of each shard). If any of them was
‘abort’, the transaction is aborted. Otherwise, the transaction is committed. The client then
lets all nodes know whether the transaction committed by sending another message. Note
that this message does not affect the fast decision property, since this is after the client knows
the outcome of the transaction. A process receiving this final message applies the writes to
the transaction’s write set if it committed, and then releases all locks. We present pseudocode
for this algorithm split by client code (Figure 5.3) and node process code (Figure 5.4).

It is easy to see that this algorithm satisfies all 4 desired properties; each data item has
its own associated base objects, and a transaction only accesses data item d if d is in its data
set. Therefore, DDAP holds. Furthermore, non-trivial primitives are only applied to base
objects associated with a data item in a transaction’s write set. In particular, only the write
set is locked, and the value and sequence numbers are only updated on locked data items.
Thus, the invisible reads property is satisfied; any two transactions whose write sets are the
same execute non-trivial primitives on the same set of base objects. The other two properties
hold because of the way the client operates; the client only sends one message and waits
for one response from n − f nodes in the validation phase before it knows the outcome of
the transaction. Furthermore, the execution phase causes only trivial primitives on shared
memory, and therefore sends no non-trivial messages. Thus, the fast decision and f -seamless
fault tolerance properties also hold. However, the impossibility results apply to this algorithm,
since it is not serializable (it provides the read committed isolation guarantee; the lack of
serializability can be checked by running the scenarios presented in our impossibility proofs).

5.5.1 Sacrificing Fast Decision

In this subsection we show how to achieve serializability by sacrificing the fast decision prop-
erty. To do so, we split the validation phase of the client into two round trips (4 message
delays), similarly to [DNN+15], but leave the rest of the algorithm the same. In this version,
the client first sends a message with just its write set, and the nodes attempt to lock all data
items in that set. If all nodes are successful, the client then sends its read set for the nodes to
verify that the sequence numbers have not changed. If all nodes observe the same sequence
number for all data items in the read set, then the client can commit. Otherwise, the transac-
tion is aborted. Clearly, this algorithm does not fast decide, but does not damage the other
properties of the base algorithm we considered.

Proof of serializability. We now briefly argue that the algorithm satisfies serializability.
Recall that the client first reads all items in its read set and learns their sequence number.
It then acquires all write locks in the first round of the validation phase, and then rechecks
the sequence numbers of read items in the second round. Note that data items change if and
only if their sequence number changes as well. Thus, if no sequence number changed in the
read set, then none of these items have been modified by any other process between the time

89

129 Upon receiving ⟨READ,r⟩ from C:
130 Let d be the data item with key r
131 // lock-free atomic read of r’s seqNum and val
132 wait until d.lockS is not locked
133 int seqNum = d.seqNum

134 if d.lockS is locked: retry
135 data val = d.val

136 if seqNum != d.seqNum: retry
137 Send (val, seqNum) to C

139 Upon receiving ⟨VALIDATE,T⟩ from C:
140 bool success = true
141 List⟨key,seqNum⟩ writeSeqs = []
142 for each data item d corresponding to an item of T:
143 if d.lockL != None:
144 success = false; break
145 if d is in the read set of T:
146 if d.seqNum != seqNum of d in T:
147 success = false; break
148 else:
149 if not d.lockL.CAS(None, T.tid):
150 success = false; break
151 Append ⟨d.key,d.seqNum⟩ to writeSeqs
152 if success:
153 Send ⟨COMMIT,writeSeqs⟩ to C
154 else:
155 Set all successfully-CASed lockL to None
156 Send ABORT to C

158 Upon receiving ⟨COMMIT,T⟩ from C:
159 for ⟨k,newVal,seqNum⟩ in the write set of T:
160 Let d be the data item with key k
161 d.lockS .lock()
162 if d.seqNum < seqNum:
163 d.seqNum = seqNum
164 d.val = newVal
165 d.lockS .unlock()
166 if d.lockL == T.tid:
167 d.lockL = None

169 Upon receiving ⟨ABORT,T⟩ from C:
170 for each data item d corresponding to a write set item of T:
171 if d.lockL == T.tid:
172 d.lockL = None

Figure 5.4: Process code in the base algorithm.
the client read the last item in the execution phase and the time it read the first one in the
validation phase. Thus, the transaction can serialize at the point at which it holds all write

90

locks.
For the replicated case, as long as f < k/2, any two client quorums will intersect at at

least one node of each replica group of each data item common to both transactions; this
guarantees that concurrent conflicting transactions cannot both commit.

5.5.2 Sacrificing Invisible Reads

We now present a simple transactional memory algorithm that satisfies serializability, DDAP,
fast decision, f -seamless fault tolerance, and weak invisible reads. That is, we show that
weakening the invisible reads property suffices to make such a system feasible.

To relax the invisible reads property, but guarantee serializability, we tweak the base algo-
rithm to acquire more locks. In particular, instead of just acquiring the locks of data items in a
transaction’s write set, processes now also acquire the locks for the data items in the read set.
However, to achieve the weak invisible reads property, this is only done for transactions that
have a non-empty write set. The rest of the algorithm behaves exactly like the base algorithm.
This algorithm is very similar to the one presented by Szekeres et al. in Meerkat [SWL+20].
The main difference here is that we avoid non-trivial primitives by read-only transactions, to
maintain the weak invisible reads property.

Clearly, this algorithm preserves DDAP, fast decision, and f -seamless fault tolerance. Fur-
thermore, by construction, it is clear that it satisfies the weak invisible reads property.

Proof of Serializability. To argue about serializability, we show a reduction to strict
two-phase locking (S2PL) [BHG86], which is known to produce serializable executions. S2PL
acquires read and write locks on all data items in the transaction’s data sets and releases them
only after commit. We note that this is the behavior of transactions in our algorithm if they are
not read-only. Thus, any non-read-only transaction in our algorithm can serialize. We now
only have to argue about read-only transactions. Note that this was already covered in the
argument for the algorithm in Section 5.5.1; since the client reads items in its read set before
the validation phase, and then checks that all sequence numbers remain unchanged during
the validation phase, these data items cannot have been modified during the time between
the client’s last read in the execution phase and its first read in the validation phase. Thus,
read-only transactions can serialize during that time.

5.5.3 Sacrificing Seamless Fault Tolerance

Wenow present an algorithm that satisfies all properties outlined in this work except seamless
fault tolerance. Note that this property only makes sense for the replicated case; unreplicated
distributed systems do not tolerate any failures. Also, note that the algorithm only provides
DAP, as opposed to DDAP, since we proved that achieving DDAP with the other properties
is impossible when the system is sharded (Theorem 5.2).

Furthermore, note that seamless fault tolerance is closely related to fast decision. In par-
ticular, an algorithm that is fast deciding but does not satisfy seamless fault tolerance may

91

stop satisfying the fast decision bounds not only if there are transaction conflicts, but also if
there are node failures.

We capitalize on this fact in our solution. To create a serializable transactional system that
satisfies all desirable properties except for even just 1-seamless fault tolerance, we employ the
base algorithm almost as-is; the only change is that this time, the client waits for all nodes
to reply, rather than just n − f . This solution is serializable, since each node handles all
transactions, so conflicting transactions will compete for the same lock.

To still allow fault tolerance (though not seamless), we allow the client to time out on the
nodes. If the client times out while waiting to hear replies from all nodes, then the algorithm
defaults to the one presented in Section 5.5.1. That is, the client sends a signal to all nodes
letting them know it is switching gears, and restarts executing its current transaction, but this
time waiting for just n − f node responses, and using a two-round validation phase. When
a process receives such a restart signal from the client, it releases all locks it held for the
current transaction. The correctness of this algorithm follows directly from the correctness
of the algorithm in Section 5.5.1.

5.5.4 Sacrificing Distributed Disjoint-Access Parallelism

Guaranteeing the rest of the properties without DDAP is simple; we use the base algorithm,
but maintain a global lock per node, rather than a lock per data item. Transactions always
lock all nodes, even if they do not have any data item on some of them. The only exception is
read-only transactions, which do not acquire locks, but check that the relevant lock is free and
that the data items on the node have the same sequence number as they did in the execution
phase. Clearly, this solution maintains fast decision and seamless fault tolerance, but does
not preserve DDAP. Note that since read-only transactions do not acquire locks, the weak
invisible reads property is preserved. Furthermore, since all writing transactions acquire the
locks of all nodes, transactions with the same write set execute non-trivial primitives on the
same set of objects: all of the locks, and the sequence numbers and values of each data item
in their write set. Thus, the invisible reads property is preserved as well.

The serializability argument for this algorithm is very similar to that of the algorithm
in Section 5.5.2. Non-read-only transactions acquire the locks on their entire data set, and
commit only after successfully doing so. Thus, they are serializable by S2PL [BHG86]. Read-
only transactions can serialize sometime between the last read in the execution phase and the
first in the validation phase.

5.6 Related Work

Disjoint-access parallelism was first introduced in [IR94] in the context of shared memory
objects. It was later adapted to the context of transactions. Over the years, it has been ex-
tensively studied as a desirable property for scalable multicore systems [YPSD16; TZK+13b;
SWL+20; AHM11; AF15; PPR+15; GK08]. Several versions of DAP have been considered, dif-

92

fering in what is considered a conflict between operations (or transactions). A common vari-
ant of DAP considers two transactions to conflict if they are connected in the conflict graph of
the execution (where vertices are transactions and there is an edge between two transactions
if their data sets intersect) [AHM11; PPR+15]. In this work, we consider a stricter version,
which only defines transactions as conflicting if they are neighbors in the conflict graph. This
version has also appeared frequently in the literature [PPR+15; BDFG14].

Invisible reads have also been extensively considered in the literature [SS05; AHM11;
SWL+20; TZK+13b; YPSD16; HLMS03]. Many papers consider invisible reads on the gran-
ularity of data item accesses; any read operation on a data item should not cause changes to
shared memory [TZK+13b; SWL+20; HLMS03]. Others, often those that study invisible reads
from a more theoretical lens, consider only the invisibility of read-only transactions [AHM11;
PPR+15].

Some impossibility tradeoffs for transactional systems, similar to the one we show in this
work, are known in the literature. Attiya et al. [AHM11] show that it is impossible to achieve
weak invisible reads, disjoint-access parallelism, and wait-freedom in a parallel transactional
system. Peluso et al. [PPR+15] show an impossibility of a similar setting, with disjoint-access
parallelism, weak invisible reads, and wait-freedom, but consider any correctness criterion
that provides real-time ordering. Bushkov et al. [BDFG14] show that it is impossible to achieve
disjoint-access parallelism and obstruction-freedom, even when aiming for consistency that
is weaker than serializability. In this work, none of our algorithms provide the obstruction-
freedom considered in [BDFG14]; we use locks, and our algorithms can therefore indefinitely
prevent progress if process failures can occur while holding locks.

Fast paths for fast decision have been considered extensively in the replication and con-
sensus literature [KR01; DGL05; Lam06a; ABG+19; ABG+20]. In most of these works, the
conditions for remaining on the fast path include experiencing no failures. That is, they do
not provide seamless fault tolerance. However, some algorithms, like Fast Paxos [Lam06a],
can handle some failures without leaving the fast path. In the context of transactional sys-
tems, the fast path is often considered for conflict-free executions rather than those without
failures [SWL+20; ZSS+15; MNLL16; KPF+13], as we do in this work. Seamless fault tolerance
captures the idea that (few) failures should not cause an execution to leave the fast path. Sys-
tems often have a general fault tolerance f that is higher than the number of failures they can
tolerate in a seamless manner [SWL+20; ZSS+15; MNLL16; KPF+13].

Seamless fault tolerance as presented here is also related to leaderlessness [MAK12; ADG+21],
as any leader-based algorithm would slow down upon a leader failure. However, the leader-
less requirement alone is less strict than our seamless fault tolerance; Antoniadis et al. [ADG+21]
defined a leaderless algorithm as any algorithm that can terminate despite an adaptive adver-
sary that can choose which process to temporarily remove from an execution at any point in
time. This does not put any requirement on the speed at which the execution must terminate.

Parallel distributed transactional systems have been recently studied in the systems litera-
ture. Meerkat [SWL+20] provides serializability and weak progress, and three of the desirable
properties we outline in this work. It does not, however, provide invisible reads in any form

93

(not even the weaker version). Eve [KWQ+12] considers replication for multicore systems. It
briefly outlines how PDTS transactions are possible using its replication system, but it is not
their main focus.

5.7 Discussion

This work is inspired by recent trends in network capabilities, which motivate the study of
distributed transactional systems that also take advantage of the parallelism available on each
of their servers. We formalize three performance properties of distributed transactional sys-
tems that have appeared intuitively in various papers in the literature, and show that these
properties have inherent tensions with multicore scalability properties. In particular, in this
work we formalized the notions of distributed disjoint-access parallelism, a fast decision path
for transactions, and robustness in the form of seamless fault tolerance. Combined with the
well-known multicore scalability properties of disjoint-access parallelism and invisible reads,
we present the FIDS theorem, and its fault tolerant version, the R-FIDS theorem, which show
that serializable transactional systems cannot satisfy all these properties at once. Finally, we
show that removing any one of these properties allows for feasible implementations.

We note that our possibility results can be seen as “proofs of concept” rather than practical
implementations. It would be interesting to design practical algorithms that give up just one
of the properties we discuss. We believe that each property has its own merit for certain
applications and workloads, and it would be interesting to determine which property would
be the best to abandon for which types of applications.

In this work, we focused on studying parallel distributed transactional systems under a
minimal progress guarantee. It would also be interesting to explore PDTSs under stronger
progress conditions, or consistency conditions other than serializability. It would be equally
interesting to see if the tension still exists between weaker variants of the properties we con-
sidered.

94

Chapter 6

DurableQueues: The Second
Amendment

This chapter is based on the work presented at [SP21a] and [SP21b] (and the code is available
at https://github.com/galysela/DurableQueues).

6.1 Introduction

Byte-addressable non-volatile memory combines the byte-accessibility of DRAM with the
durability and size of storage. Various technologies, such as resistive random access memory
[AS10], phase-changememory [RBB+08] and 3D XPoint [Int19], are expected to become avail-
able soon, with Intel/Micron 3DXPoint already available to consumers (under the brand name
Optane). NVRAM is expected to co-exist or replace DRAM in upcoming architectures, allow-
ing program’s modifications to its data structures survive system crashes. NVRAM platforms
are expected to make a fundamental change in the design of the computing infrastructure
including file systems, databases and other computations that process persistent data.

While data stored in main memory will survive a crash, without further technological
development, the caches and machine registers remain volatile, losing their content during a
crash. This creates a consistency challenge, because writes may not reach the memory at the
time and order the processor issues them. When programs write data to memory, the CPU
does not access the memory directly, but rather writes to the cache and the data only later
gets flushed back to memory. Furthermore, the order in which cache lines get written back
to the memory is unpredictable, as cache line evictions are triggered by local needs to make
room for new cache content. This process may cause the state of the memory after a crash
to become inconsistent, reflecting some modifications but missing others, impeding correct
recovery.

In order to make sure that the memory contains the required data for a potential crash and
recovery, special instructions are used to force the flushing of cache lines from the cache to the
memory. Asynchronous flush instructions initiate a cache line flush and let other instructions
proceed while the data is being copied to memory. An additional synchronous fence (such

95

https://github.com/galysela/DurableQueues

as Intel’s Store Fence (SFENCE) instruction) makes sure that the flushing becomes visible
before any other memory instruction becomes visible to other threads. The fence instruction
is blocking and costly and therefore durable algorithms have attempted to reduce the use of
SFENCE to achieve better performance. Cohen et al. [CGZ18] have shown that a durably
linearizable [IMS16] lock-free [Her91] object must use at least one fence instruction per up-
date operation at worst case. They also presented a universal construction that achieves this
bound, but their universal construction was intended as a proof of existence and no attempt
was made to provide acceptable performance.

The initial goal of this project was to optimize the performance of a durable FIFO queue.
FIFO queues are used at the core of several existing persistent messaging systems (e.g., IBM
MQ [IBM], Oracle Tuxedo MQ [Ora], Rabbit MQ [Sof] and many more). Currently these
queues are structured to suit the block-based interface of HDDs and SSDs. This design incurs
costs like marshaling queue updates in streams, file system calls to persist message queues,
etc., and so an adaptation to NVRAM platforms can bring a dramatic improvement to the
queues performance and future use.

Following previous work in this area, we focused on reducing the number of blocking
persist operations. We startedwith the lock-freeMichael-Scott queue (MSQ) [MS96], which
was used in previous work [FHMP18] due to its wide applicability to all architectures. We
amended MSQ in two different manners, obtaining two novel durably linearizable lock-free
queue constructions with a minimal number of blocking persist operations: one blocking
persist operation for any data structuremodification operation. Thismeets the lower bound of
Cohen et al. [CGZ18]. These two optimal durable queue algorithms are the first contribution
of this work.

One of these two algorithms, called UnlinkedQ, is designed in the spirit of [ZFS+19] to
avoid persisting the underlying node links. In this algorithm, we allocate the nodes on des-
ignated areas, in which the recovery procedure can look for valid nodes of the queue. This
requires a new persistent ordering mechanism that allows the recovery to determine the or-
der of nodes in the queue without incurring a large overhead on the normal execution of the
queue. The second algorithm, denoted LinkedQ, does persist the underlying node links. It
reduces the number of fences by using a validity scheme to inform the recovery algorithm
which nodes are adequate for recovery. It also adds a backward link to the queue nodes, for
enabling to efficiently assist persisting concurrent operations.

We implemented these two algorithms on a platform with an Intel Cascade Lake pro-
cessor and an Intel Optane NVRAM. Surprisingly, the new algorithms did not show a clear
improvement over the state-of-the-art durable queue of Friedman et al. [FHMP18] although
Friedman’s queue executes more blocking persist operations during the execution. Further
investigations raised an interesting problem. Our queues frequently access flushed cache
lines, and these accesses significantly deteriorated performance. It turned out that Intel flush
instructions, which flush a cache line to the NVRAM, cause the flushed cache line to be inval-
idated in the cache, so that subsequent accesses yield cache misses and re-read the data from
memory. (We tried various instructions including the most advanced Cache Line Write

96

Back (CLWB) instruction, but they all had the same performance degradation effect). The
resulting additional loads from memory are significantly more costly on NVRAM than on
DRAM, due to the high NVRAM read latency. While the recently-launched Intel Ice Lake
processors with Optane persistent memory 200 series may provide flush instructions that
do not invalidate the flushed cache lines, existing NVRAM architectures with Cascade Lake
processors do not seem to support such instructions. Our impression is corroborated in the
findings of [WCD+20; KAK20; vRVL+19; Hao19; BDY+21; FBW+20; FPR21]. Existing (costly)
architectures will probably remain in use for years to come and one needs to use algorithmic
modifications to obtain improved performance on such machines.

We amended the two algorithms further, obtaining algorithms that avoid accessing flushed
locations. While changing the algorithms, we made sure that their original advantage of a
single fence per update operation is maintained. An evaluation of this second amendment
demonstrates a significant performance improvement, which confirms the high cost of ac-
cessing flushed content on these platforms.

The second contribution of this work is a guideline for designing durable data structures
and algorithms for NVRAM. In addition to thewell-known guideline tominimize blocking per-
sist operations, we recommend designing algorithms with reduced access to recently flushed
cache lines1. This guideline is relevant for platforms that invalidate cache lines when flushing
their content to the memory, and the purpose is to avoid the cost of fetching data from the
memory after it is evicted from the cache. This guideline is especially important in light of
the high read latency of available NVRAM (see measurements in [vRVL+19; YKH+20]).

Our third contribution is the design of durable lock-free queues with significantly im-
proved performance for the new Intel Optane architecture. We present OptUnlinkedQ and
OptLinkedQ, obtained by amending UnlinkedQ and LinkedQ respectively according to the
new guideline. OptUnlinkedQ and OptLinkedQ are the best performing lock-free durable
queues available today. We compare the performance of OptUnlinkedQ and OptLinkedQ
against state-of-the-art durable queues and against UnlinkedQ and LinkedQ themselves,
which use minimal blocking persist operations but do not consider the new guideline and
do not reduce access to flushed cache lines. While OptUnlinkedQ and OptLinkedQ outper-
form all other queues on nearly all thread counts and workloads, we believe UnlinkedQ and
LinkedQ are still interesting to present. This is because for potential more advanced plat-
forms that might provide flushing without cache invalidation, UnlinkedQ and LinkedQ may
turn out best.

From a theoretical standpoint, it is interesting to note that OptUnlinkedQ and Opt-
LinkedQ yield the best possible design characteristics for durability. Following our guideline
above, they make zero accesses to content that was previously (explicitly) flushed, while they
also meet the lower bound shown by Cohen et al. [CGZ18], executing only a single blocking
persist operation per data structure update operation. Interestingly, while these theoretical

1We consider only explicitly flushed cache lines. There are additional implicit flushes, e.g., when the system
evacuates cache lines to make space for new lines that need to be loaded to the cache. Such implicit flushes are
hard to predict and this guideline does not attempt to consider them.

97

characteristics are the best possible, they are also obtainable for any object. This follows from
the universal construction of [CGZ18]. While Cohen’s universal construction of lock-free
durably linearizable data structures is not practical, it has the above-mentioned characteristics
(a single blocking persist instruction per update operation and no access to flushed content)
and it is applicable to any object.

The rest of the chapter is organized as follows. In Section 6.2 we elaborate on the model
and the general upper bound on the design parameters. In Section 6.3 we recall the definitions
of durable linearizability and lock-freedom as well as MSQ, the basic queue algorithm that
we extend in our constructions. We discuss related work in Section 6.4. In Section 6.5 we
provide describe the main ideas in the first amendment to MSQ: minimizing blocking persist
operations, which produces UnlinkedQ and LinkedQ. In Section 6.6 we describe the second
amendment to the two algorithms, adhering to the guideline of reducing access to flushed data,
which results in the optimal queues OptUnlinkedQ and OptLinkedQ. We argue about the
durable linearizability and lock-freedom of our queues in Sections 6.7 and 6.8. The memory
management scheme applied in our queues is described in Section 6.9, and the performance
of all queue algorithms is evaluated in Section 6.10. We conclude in Section 6.11.

6.2 Model

In the persistent memory model, there are two levels of memory – volatile (registers, caches)
and persistent (NVRAM). Values in the cache may be written back to the persistent memory
implicitly by a cache eviction, or explicitly by flush instructions. We adopt the failure model
of Izraelevitz et al. [IMS16] for crashes, which considers full-system crashes in which all
processes fail together. The state of the volatile memory is lost in a crash, but the state of the
persistent memory remains unaffected. After a crash, new threads are created and proceed
with the computation. Each data structure may provide a recovery procedure to be invoked
after the crash for restoring a consistent state of the object from its preserved state in the
NVRAM. Our data structures apply a complete recovery before continuing with any new
operation.

Tomaintain correctness in the presence of crashes, one has to ensure that necessarywrites
propagate from the cache to the persistent memory. To ensure a written value becomes per-
sistent (after being written to the cache), one may issue a flush instruction and block until
it completes. A flush instruction receives a memory address and flushes the content of the
cache line containing this address to the persistent memory. Some flush instructions are asyn-
chronous, enabling issuing multiple flushes concurrently as an optimization. Subsequently, a
store fence instruction, denoted SFENCE (like the instruction name on Intel), may be placed
to ensure completion of all previous asynchronous flushes. Throughout the thesis, when men-
tioning a persisting of a location, we refer to an asynchronous flush of its address accompanied
by an SFENCE to ensure that the data in this location has been written to the NVRAM.

Intel flush instructions (such as the synchronous Flush Cache Line (CLFLUSH) and the
asynchronous Flush Cache Line Optimized (CLFLUSHOPT) and CLWB) take a mem-

98

ory location and write back the cache line containing it to the memory, if this line consists
of modified data. According to the Intel architectures software developer’s manual [Int20],
CLFLUSH and CLFLUSHOPT do not only write the cache line to the memory, but rather
also invalidate it. Regarding CLWB, the Intel manual states that it may retain the line in the
cache. However, on the Second Generation Intel Xeon Scalable Cascade Lake processor we
use, CLWB seems to invalidate the cache line like CLFLUSHOPT does: replacing CLWB
with CLFLUSHOPT in all the data structures we measured yielded similar performance.
This is also noted by others [e.g., WCD+20; KAK20; vRVL+19; Hao19; BDY+21; FBW+20;
FPR21]. The recently-launchedThird Generation Intel Xeon Scalable Ice Lake processors with
Optane persistent memory 200 series may implement CLWB retaining lines in the cache, but
NVRAM platforms currently in the market do not seem to support flushes without cache in-
validation. Existing architectures will probably remain in use for years to come. Therefore,
designers of efficient durable algorithms should take into consideration the cost of accessing
a memory location after it was flushed and evicted from the cache.

To eliminate some of the costly persisting occurrences, we rely on the following assump-
tion, which is based on the cache line granularity of write backs to memory. The assumption
is mentioned in the SNIA NVM programming model [SNI17, Section 10.1.1], adopted by Intel
for working with persistent memory (as stated in Intel’s formal persistent memory program-
ming book [Sca20]), and is confirmed by Intel Senior Principal Engineer Andy Rudoff in online
informal discussions [e.g., Rud19; Rud20; BR21]. This assumption was also previously made
in [CBB14, Footnote 16] and [CFL17, Assumption 2].

Assumption 6.2.1. A cache line is evicted atomically to memory, thus, the order of multiple
writes to the same cache line is preserved in memory. In other words, the content of a cache
line in the memory reflects a prefix of the stores to that cache line.

As the order of writes to the same cache line is preserved in NVRAM2, placing a flush
plus SFENCE between them to ensure their persistence order (which is required for writes
to different cache lines) is redundant.

In addition to a flush, another useful instruction for our algorithms is an instruction that
writes back data directly to the memory without touching or polluting the cache (like Store
Doubleword Using Non-Temporal Hint (MOVNTI)). Such asynchronous instructions re-
quire an accompanying SFENCE to ensure their completion.

6.2.1 Upper Bound on Accesses after a Flush

Due to cache invalidation after a flush, we recommend designing algorithms that minimize
accesses to flushed content. This comes in addition to designing algorithms that minimize

2Writes to the cache are not guaranteed to occur in program order, due to compiler optimizations, but program
order can be enforced by placing inexpensive release fences (that prevent compiler optimizations, thus, ordering
writes to cache). We placed release fences in our implementation where required, and we do not further mention
them here.

99

blocking flushes. In fact, we claim that it is possible to implement any object with a deter-
ministic sequential specification in a durably linearizable lock-free way using the minimum
possible number of fences (one per update operation and zero per read-only operation, as
proved by [CGZ18]) while at the same time performing zero accesses to (explicitly) flushed
cache lines.

To prove our claim, we leverage the universal construction of [CGZ18], called Order Now,
Linearize Later (ONLL). ONLL consists of two main components. The first is a shared execu-
tion trace, containing a mark indicating the trace’s prefix guaranteed to be persistent. This
prefix represents the current state of the object. The execution trace is not used during recov-
ery, thus also not persisted to memory. The second component is local per-thread persistent
logs (adopted from [CFL17]), that will be read during recovery. An update operation first ap-
pends a record representing it to the execution trace, then appends a copy of the trace’s suffix
that is not yet guaranteed to be persistent to its local log and persists it, and finally marks the
trace’s prefix up to the current operation as persistent. A read-only operation calculates its
response based on the current state of the object, represented by the trace’s marked prefix.

[CGZ18] proves that ONLL obtains the minimum possible number of fences. We suggest
the following slight modification to ONLL: align log entries to cache lines, so that no two
entries will share a cache line. By applying this modification, ONLL still obtains minimum
fences, while also performing no access to flushed memory. This is because only data in
the local per-thread persistent logs is explicitly flushed, and these logs’ cache lines are not
accessed after their flush: they are read only during recovery, and not written by following
log appends – which write to following cache lines thanks to our modification.

6.3 Preliminaries for the DurableQueues

6.3.1 MS-Queue

Our persistent queue algorithms extend the widely used MSQ (the Michael and Scott queue
[MS96]), a well-performing concurrent queue adequate for general hardware, included as part
of the Java™ Concurrency Package [Lea09]. This is a (non-persistent) lock-free FIFO queue,
which supports enqueue and dequeue operations. It implements the queue as a singly-linked
list with head and tail pointers. Nodes in the list have two fields: a value and a next pointer.
The head points to the first node of the list, which functions as a dummy node. Subsequent
nodes, after the dummy and until the node whose next pointer’s value is NULL, contain
the queue’s items. The queue is initialized to an empty queue as a list that contains a single
(dummy) node, to which both the head and tail point.

A dequeue operation checks if next of the obtained head is NULL (meaning the queue is
empty). If so, this is a failing dequeue that returns without extracting an item from the queue.
Otherwise, an attempt is made to update the head to point to its successive node in the list,
using a CAS, and on failure the dequeue operation starts over. A dequeue that succeeds to
perform a CAS that advances the queue’s head is denoted a successful dequeue.

100

Enqueuing requires two CAS operations. Initially, a node with the item to enqueue is
created. Then, an attempt to set tail->next to the address of the new node is made using a
first CAS. The CAS fails if the value of tail->next is not NULL in that moment. In such a
case, an attempt to advance tail to the current value of tail->next is made using a CAS, to
help an obstructing enqueue operation complete. Then, a new attempt to perform the first
CAS starts. After the first CAS succeeds, a second CAS is applied to update tail to point to
the new node.

6.3.2 Linearizability and Durable Linearizability

Defining correctness for durable executions in the presence of both concurrency and NVRAM
is not a trivial task. In this work, following recent work in this domain, we adopt durable
linearizability [IMS16] described below as a correctness criterion. Nevertheless, it is easy to
verify that our proposed queues satisfy also other correctness criteria, like strict linearizability
[AF03], persistent atomicity [GL04] and recoverable linearizability [BGT15].

In Chapter 2 we brought the linearizability definition and some relevant basic terminol-
ogy. We now bring the adjustments required to define correctness in a system that ensures
durability. In the full-system-crash model, an execution of a concurrent system may be mod-
eled by a finite sequence of events of three types: invocation events and response events, each
tied to specific process and object, and system crash events (which are not tied to a specific
process or object). Such sequence is denoted a history. A history in the full-system-crash
model (i.e., a history that might contain crashes in which all processes fail together and there
is no subsequent thread reuse) is considered durably linearizable [IMS16] if the history with
the crashes omitted is linearizable.

6.3.3 Lock-Freedom

Webrought the definition of lock-freedom [Her91] in Chapter 2. We now extend the definition
to executions with crashes, and define a concurrent object implementation to be lock-free in
the presence of crashes if each time a thread executes an operation on the object, and there are
no interrupting crash events since the operation’s invocation, some thread (not necessarily
the same one) completes an operation on the object within a finite number of steps. This
definition is equivalent to the one brought in [ZFS+19], which considers crashes as progress,
as if a crash is one of the operations on the data structure. Lock-freedom guarantees system-
wide progress. Our implementations are lock-free.

6.4 Related Work

There has been a large body of work by multiple communities that provides algorithms for
NVRAM. Several libraries for persistent transactional access to objects in NVRAM have been
proposed [CCA+11; CFR18; KPS+16; MMT+18; RCFC19; tea; VTS11; WRL19; ZZLS19], but
persistent transactions require heavy-duty logging mechanisms, and thus do not yield highly

101

efficient solutions, and are not competitive with ad-hoc constructions such as ours. [MIS20]
presents an NVRAM library taking another logging-based approach. Izraelevitz et al. [IMS16]
suggested to automaticallymake concurrent objects durably linearizable by adding a flush and
a fence after each access to global memory (a read or a write). This transformation yields a
durable variant of any existing lock-free data structure, but the resulting implementations
are typically inefficient. The first ad-hoc efficient lock-free durable data structure was the
queue presented by Friedman et al. [FHMP18], with a substantial reduction of the number
of fences executed with each operation over the general construction of Izraelevitz. Subse-
quently, David et al. [DDGZ18] presented lock-free durable set implementations (including a
linked list, a skip list and a hash map). Zuriel et al. [ZFS+19] improved over that construction
and presented a set with a single SFENCE per update operation, thus meeting the lower
bound of Cohen et al. [CGZ18] and also obtaining much better performance. Raad et al.
[RWNV20] implemented a persistent FIFO queue to demonstrate the application of their sug-
gested hardware model, but did not aim for optimized performance (e.g., they do not track
the tail pointer, thus significantly slowing down enqueues).

6.5 First Amendment: Queues with Minimum Fences

The current literature offers a fast queue with several fences [FHMP18] on the one hand, and
a universal construction for all data structures with a single fence (per update operation)
which is extremely inefficient [CGZ18] on the other hand. A question that naturally arises is
whether it is possible to reduce the number of fences to the minimum possible number, and at
the same time be able to use this reduced blocking to obtain a better performing queue. In this
section we provide two durably linearizable lock-free queues, UnlinkedQ and LinkedQ, that
meet the theoretical lower bound on the number of fences (a single SFENCE per operation).

6.5.1 UnlinkedQ

As its name implies, UnlinkedQ does not rely on links between nodes for restoring the queue
after a crash and therefore does not persist them, similarly to the basic idea in [ZFS+19]. It
keeps all information required for recovery in the nodes themselves, which are located in des-
ignated areas. Upon a crash, the recovery procedure checks these nodes to decide which ones
are valid and belong to the resurrected queue. The links are still used to expedite operations
on the queue when no crash occurs, but they are not required to reconstruct the queue after
a crash. Care is taken to persist the queue order in the nodes to allow proper recovery.

UnlinkedQ places index and linked fields in each node to enable the recovery to identify
which nodes in the designated areas should be restored and in what order. The index field
states the node’s index in the queue (according to enqueue order). Overflow can be handled,
but for now we allocate 64 bits for the index field and assume that it does not overflow (while
humans are still around). The linked field marks nodes that have been added to the queue.
After an enqueuer succeeds to link a node to the queue, it sets its linked flag, and then per-

102

sists the node content. The recovery procedure resurrects nodes that are marked linked and
have an index larger than the head, and arranges them in the order induced by their indices.
After advancing the head, a dequeuer persists the new head’s index, to indicate to the recov-
ery that all nodes up to this one are dequeued. This scheme forms a consecutive prefix of
dequeued nodes – all those that the head has persistently passed, thus satisfying the FIFO
order requirement.

The simple scheme described so far involves several races which should be resolved. One
race stems from the fact that the order in which enqueue operations complete does not nec-
essarily match the linking order of their nodes. For example, it is possible that the enqueue
of the fourth node in the queue has completed before the enqueue of the third node in the
queue completed. Hence, it might be that the fourth node is marked linked while the third
node is not. One consequence of this race is that the indices of valid linked nodes that the
recovery identifies do not always form a sequence of consecutive integers. Even worse, a
dequeue operation might point the head at a node inserted by a concurrent enqueue, whose
content is not yet flushed and therefore contains a stale index that may confuse the recovery.

Next, we elaborate on the implementation of UnlinkedQ, including describing how it
resolves the above-mentioned issues. The UnlinkedQ algorithm is presented in Figure 6.1. A
description of its operations follows.

173 class Node
174 Item* item
175 atomic⟨Node*⟩ next
176 bool linked
177 int index

178 Item* Dequeue()
179 while (true)
180 head = Head
181 headNext = head.ptr–>next
182 if (headNext == NULL)
183 FLUSH(&Head.index); SFENCE
184 return NULL
185 if (CAS(&Head, head, ⟨headNext,

↪→ headNext–>index⟩)
186 dequeuedItem = headNext–>item
187 FLUSH(&Head.index); SFENCE
188 if (nodeToRetire[tid]) // It equals

↪→ NULL in the first
↪→ successful dequeue

189 retire(nodeToRetire[tid])
190 nodeToRetire[tid] = head.ptr
191 return dequeuedItem

192 Enqueue(item)
193 newNode = allocNode()
194 newNode–>item = item
195 newNode–>next = NULL
196 newNode–>linked = false
197 while (true)
198 tail = Tail
199 if (tail–>next == NULL)
200 newNode–>index = tail–>index +

↪→ 1
201 if (CAS(&tail–>next, NULL,

↪→ newNode))
202 newNode–>linked = true
203 FLUSH(newNode); SFENCE
204 CAS(&Tail, tail, newNode)
205 break
206 CAS(&Tail, tail, tail–>next)

Figure 6.1: UnlinkedQ implementation

103

The Enqueue Operation

The enqueue operation first allocates a node and initializes its data (Lines 193–195). It then
unsets linked (Line 196), sets the index of the new node to be the index of the last node plus one
(Line 200), and attempts to link the node to the queue (Line 201). The reason linked is unset
before index is updated, is that when the node is allocated, its linked flag might be set; thus,
assigning the new node a relevant index in this state might erroneously cause the recovery
to restore the node even though it is not yet linked to the queue.

After succeeding to link the node, the enqueuer sets its linked flag (Line 202), to signal to
the recovery (that would run if a crash occurs) that the node should be restored. The described
order of writes to the node fields guarantees, based on Assumption 6.2.13, that a node will be
restored by the recovery only if it is successfully linked. Finally, the enqueuer persists the
node and advances the queue’s tail to point to the new node (Lines 203–204). If a concurrent
enqueue operation interferes, the enqueuer attempts to assist the other enqueue to advance
the tail to point to its node (Line 206), before starting a new attempt to enqueue its own item.

We note that the recovery procedure might restore a suffix of enqueues with nonconsec-
utive indices. This happens only if several enqueues are running when a crash occurs: an
enqueue that linked e.g. the fourth node in the queue might have set its linked flag and per-
sisted it before the crash, while an enqueue that linked the third node in the queue has not.
Discarding pending enqueue operations which have not set and persisted the linked flag is
correct due to the following observation:

Observation 6.5.1. Durable linearizability allows pending operations to not be linearized.
Therefore, the recovery may discard pending enqueue operations, which might result in a
suffix of enqueued nodes with nonconsecutive indices.

The Dequeue Operation

If a dequeue operation encounters an empty queue, it returns NULL. Otherwise, it attempts
to advance the head by one node, and on success – it returns the oldest item to the caller. On
failure it retries the whole scheme.

To signal to the recovery procedure that it should ignore the dequeued node, a successful
dequeue operation ensures that the head’s index is persistently increased to a value bigger
than or equal to its dequeued node’s index. Persisting the new head’s index is intended to
indicate to the recovery not only that this node is dequeued, but also that all nodes up to
this one are dequeued, and a failing dequeue also needs to persist the head’s index before
returning in order to persist the previous dequeues that emptied the queue. This is obligatory
due to the following observation:

Observation 6.5.2. The recovery must restore a consecutive prefix of dequeued nodes, to
satisfy the FIFO order requirement.

3Applying Assumption 6.2.1 requires that the whole node resides on a single cache line, which is typically the
case, and it also holds for the queues implemented in this work. The method of [CFL17] can be used to generalize
the algorithms to nodes that span multiple cache lines without adding fence operations.

104

The recovery achieves this by interpreting nodes with index smaller than or equal to the
head’s index as dequeued.

A successful dequeue is responsible to reclaiming the node that was the head during the
previous dequeue that this thread executed. This node to be retired is kept in a nodeToRetire

array, consisting of a cell per thread. Its cells do not share cache lines to avoid false sharing.
Each thread may access its cell using its thread ID as an index.

Next, we explain how dequeuers ensure that the correct head’s index is restored by the
recovery. If we let a dequeuer persist the head’s address, and let the recovery determine
the head’s index to be the index in the node pointed to by this head (as appears in NVRAM
in the crash moment), then the recovery might erroneously restore a stale (smaller) head’s
index value, and discard completed dequeues. This could happen if the enqueuer of the node
pointed to by the head has linked the node but was interrupted by the crash before persisting
the node’s data. Therefore, UnlinkedQ takes a different approach to determine the head’s
index in recovery.

UnlinkedQ makes the head hold not only a pointer to the dummy node, but also its index.
They are held side-by-side and updated together atomically using a double-width CAS. A de-
queuer starts by performing a double-width CAS (Line 185) that advances the head’s pointer
and increments the head’s index. Next, the dequeuer persists the index placed in the head
(Line 187). A failing dequeue assists persisting the head’s index too (Line 183).4 The recovery
procedure restores the head’s index from the value kept in the queue’s head, rather than from
the possibly stale value in the node pointed to by the head. This prevents discarding a com-
pleted dequeue: persisting the head’s index after incrementing it to the index of the dequeued
node, makes the recovery procedure ignore the dequeued node.

The use of a double CAS can be eliminated (if the platform does not support it) by taking
an alternative approach: Each thread couldmaintain a local index. After each time it advances
the queue’s head, it would update the local index with the value of the new head’s index and
persist it. The recovery would then restore the head’s index as the maximum across these
local indices. The alternative handling of the head’s persistence described here, is actually
required and applied in the second amendment of MSQ (see Section 6.6).

Recovery

Therecovery procedure of UnlinkedQ resurrects nodes in the designated areas that aremarked
linked and have an index bigger than the head’s index. It then sets their links to form a linked
list that holds the queue nodes in the order induced by their indices. This is implemented as
follows.

The head’s index is not modified. A dummy node is allocated and assigned an index that
matches the head’s index. The head’s pointer is set to point at this dummy node. Next, the
recovery scans the designated areas and makes a list of recovered nodes, which are those

4We particularly specify the head’s index as the flushed value in order to stress that this is the data required
in recovery, but its flush clearly writes the whole containing cache line to the memory.

105

with a set linked flag and an index larger than the head’s index. All other nodes are reclaimed.
The recovered nodes are then sorted and their next pointers are set accordingly to create the
queue. Finally, the queue’s tail is set to point to the last node in the queue.

We note that free nodes (owned by the memory manager) in the designated areas are ap-
propriately ignored by the recovery: When the memory manager allocates a new designated
area for nodes from the operating system, it zeros its content, to make all nodes consist of a
zeroed index, and then persists it in NVRAM (by placing asynchronous flushes of the whole
area accompanied by a single SFENCE). If the number of required nodes is unknown in ad-
vance, each time a designated area is depleted, the memory manager may allocate a new area
from the operating system and initialize it in a similar manner using a single SFENCE. The
zeroed indices guarantee that the unused nodes owned by the memory manager are ignored
by the recovery. In addition to these not-yet-allocated nodes, nodes reclaimed by dequeuers
are also ignored by the recovery thanks to their index value, as dequeue operations return
nodes to the memory manager only after the head’s index persistently equals to the index
of a subsequent node. Finally, nodes reclaimed by a previous recovery process are ignored
thanks to either their index or their unset linked.

6.5.2 LinkedQ

LinkedQ also performs a single fence in each operation, but using a completely different ap-
proach. We start with an overview of LinkedQ. The first idea LinkedQ employs is to make
the recovery procedure able to deal with nodes whose data has not been persisted. This allows
linking nodes to the queue without blocking to persist their data beforehand, thus avoiding
one of the fences of the queue in [FHMP18]. To enable this, LinkedQ presents a mecha-
nism that identifies nodes with stale data: a designated initialized flag in each node signifies
whether the content of the node is guaranteed to be valid. We maintain the invariant that if
the node’s data is not initialized in NVRAM, then its initialized flag is unset in NVRAM. To
achieve this, LinkedQ’s enqueue operation initializes the node in two steps: first, it initial-
izes the node content, and then it sets the initialized flag. No SFENCE is issued during this
execution, as Assumption 6.2.1 guarantees that the order of writes to the same cache line is
not reversed.

For this scheme to work, we need to make sure that when a node is allocated, its initialized
flag is unset. This can be easily done with an extra fence at allocation time, but would yield
two fences per enqueue operation. We manage to avoid this fence by postponing the return
of dequeued nodes to the memory manager. Think first of a simplified version that lets each
thread accumulate k nodes it removed from the queue. After each kth successful dequeue,
before returning the k nodes to the memory manager, the thread clears their initialized flags,
issues an (asynchronous) flush for each of the flags, and then a single blocking fence before
letting thememorymanager reclaim these objects. Such a simplified algorithmwould execute
1+1/k fences per successful dequeue operation, not perfectly meeting the desired theoretical
lower bound of a single fence. To reduce the number of fences to one, we take a more complex

106

approach: After removing a node N from the queue, its dequeueing thread T clears N ’s
initialized flag and records N ’s address for later. Instead of placing an additional fence every k

dequeues, T will piggyback on the fence which its next successful dequeue anyhow performs:
T will flush N ’s initialized flag before this fence, and return N to the memory manager after
this fence. Such piggybacking on a fence of a later operation by the same thread makes sure
that initialized flags are properly reset in memory before their nodes are reused, without
incurring additional fences.

The recovery procedure resurrects all nodes reachable from the head through a path of
consecutive nodes with the initialized flag set. It remains to ensure that completed enqueue
operations are visible to the recovery procedure, even though previous nodes5 in the queue
may have been enqueued by operations that have not yet completed. Before an enqueue op-
eration completes, LinkedQ makes sure that all data on nodes from the head to the enqueued
node is written back to the NVRAM. This guarantees that the recovery will reach the new
node in its traversal from the head. Naively, before an enqueue operation completes, the en-
queuer could traverse all nodes from the head until the new node, flush their contents, and
then issue a single fence. This persists all relevant nodes but at a very high cost. To make this
process efficient, we add a backward edge to the underlying linked list, and walk backwards
persisting only nodes that might have not yet been persisted. We attempt to minimize the
length of the walk as much as possible.

The LinkedQ algorithm appears in Figure 6.2. Next, we describe its operations in detail.

The Enqueue Operation

The enqueue operation first allocates a node denoted newNode from the memorymanager and
initializes its data (Lines 237–239). Then it sets newNode’s initialized flag (Line 240). In what
follows, the enqueue operation attempts to link newNode to the last node (Line 245). Note
that it might have just linked a node whose data is not persisted in NVRAM. If the link to
newNode is written back to NVRAM (which could happen implicitly due to a cache eviction)
and then a crash occurs, the recovery would have to deal with reaching a node with stale data.
The correctness is maintained using the initialized flag and a matching recovery procedure:
The initialized flag is used as a stamp indicating to the recovery that newNode is initialized.
Relying on Assumption 6.2.1, the order of writing initialized after newNode’s data is preserved
in NVRAM. Accordingly, the recovery resurrects only nodes with the initialized flag set. This
guarantees that it resurrects only nodes with persisted data. If a crash occurs after the link to
newNode is flushed to NVRAM and before newNode’s data is written back to NVRAM, then
newNode’s initialized flag must be unset in NVRAM, thus, the recovery will ignore it (and all
nodes linked after it).

The recovery procedure resurrects all nodes reachable from the head through a path of
consecutive nodes with the initialized flag set. Since durable linearizability allows the recov-

5We think of the nodes as ordered by the underlying linked list of the queue. This order enables the terms
previous, preceding, subsequent, consecutive, etc.

107

ery procedure to ignore enqueue operations that are concurrent with a crash and elide their
nodes from the queue, the fact that the recovery procedure ignores nodes of ongoing enqueues
that were linked after a node with an unset initialized, does not break durable linearizability.
However, after an enqueue operation completes, the recovery procedure must not discard it,
even if earlier nodes belong to incomplete enqueue operations. To this end, after successfully
linking newNode, the enqueue operation ensures that the path of nodes leading from the head
to newNode is persisted (Lines 246–247). This could be achieved naively by flushing all nodes
from the head until newNode. To save redundant flushes, an enqueuer avoids flushing a prefix
of queue’s nodes that are guaranteed to be already flushed. Instead, it flushes only a suffix
of queue’s nodes that are not guaranteed to be persistent. To identify the relevant suffix, we
place backward links in the nodes, but we remove a backward link when we know that all
previous nodes in the queue have already been persisted. The backward links preserve the
following invariant: all queue nodes (starting from the current queue’s head) that precede a
node with a nullified backward link have all relevant content (their item, set initialized flag
and a non-NULL forward link) persisted.

207 class Node
208 Item* item
209 atomic⟨Node*⟩ next
210 atomic⟨Node*⟩ pred
211 bool initialized

212 Item* Dequeue()
213 while (true)
214 head = Head
215 headNext = head–>next
216 if (headNext == NULL)
217 FLUSH(&Head); SFENCE
218 return NULL
219 if (CAS(&Head, head, headNext)
220 dequeuedItem = headNext–>item
221 if (nodeToPersistAndRetire[tid])
222 FLUSH(&

↪→ nodeToPersistAndRetire
↪→ [tid]–>initialized)

223 FLUSH(&Head)
224 SFENCE
225 headNext–>pred = NULL
226 if (nodeToPersistAndRetire[tid])
227 retire(nodeToPersistAndRetire[

↪→ tid])
228 head–>initialized = false
229 nodeToPersistAndRetire[tid] =

↪→ head
230 return dequeuedItem

231 FlushNotPersistedSuffix(notPersisted)
232 do
233 FLUSH(notPersisted)
234 notPersisted = notPersisted–>pred
235 while (notPersisted != NULL);
236 Enqueue(item)
237 newNode = allocNode()
238 newNode–>item = item
239 newNode–>next = NULL
240 newNode–>initialized = true
241 while (true)
242 tail = Tail
243 if (tail–>next == NULL)
244 newNode–>pred = tail
245 if (CAS(&tail–>next, NULL,

↪→ newNode))
246 FlushNotPersistedSuffix(

↪→ newNode)
247 SFENCE
248 CAS(&Tail, tail, newNode)
249 // All nodes preceding

↪→ newNode are
↪→ persistent

250 newNode–>pred = NULL
251 break
252 CAS(&Tail, tail, tail–>next)

Figure 6.2: LinkedQ implementation

108

To maintain a backward path connecting the linked list’s nodes that should be flushed, an
enqueuer links a node with a backward link pointing to the previous node (Line 244). After
linking newNode, its enqueuer traverses the queue from newNode backwards using the back-
ward links, until reaching a NULL backward link, and flushes the content of all traversed
nodes (including newNode itself) (Lines 232–235). Finally, it issues a single SFENCE to block
until all these flushes complete (Line 247). By the above-mentioned invariant, all nodes start-
ing from the current head and preceding this suffix of nodes, are persistent. Now, as this suffix
is persisted as well, the data of all nodes preceding newNode starting from the current head
is guaranteed to be persistent. As an optimization to prevent future enqueues from flushing
these nodes, the enqueuer then sets newNode’s backward link to NULL (Line 250). Thus, each
enqueue operation that reaches newNode from now on, during its backward walk, would not
need to traverse the preceding persistent nodes. Note that backward links are not used in the
recovery and there is no need to explicitly flush them.

To complete the enqueue operation, the tail is advanced to point to newNode (Line 248).
Like in the original MSQ, a concurrent enqueue might prevent the enqueue’s linking. In this
case, the enqueuer tries to assist and advance the tail to point to the node enqueued by the
obstructing enqueue (Line 252), before starting a new attempt to enqueue its own item.

We note that, as an optimization on x86 platforms, the SFENCE in Line 247 can be elimi-
nated, because the followingCAS instruction serves as anSFENCE guaranteeing completion
of previous flushes. In the measured implementations of all algorithms, each SFENCE pre-
ceding a CAS is eliminated. We did not include this optimization in the thesis’s pseudocode
for clarity.

The Dequeue Operation

The dequeue operation attempts to extract the oldest item, placed in the node subsequent
to the dummy node. If the queue is empty when the dequeue operation takes effect, it re-
turns NULL. But before returning, the failing dequeue must persist the head (Line 217), to
ensure that previous ongoing dequeues that emptied the queue are persistent. Otherwise, if
a crash occurs after the failing dequeue returns, the previous dequeues might be discarded.
This would break durable linearizability, since it will be impossible to linearize the completed
failing dequeue correctly as applied to an empty queue, without the previous dequeues being
linearized beforehand.

If the queue is not empty, the dequeuer attempts to advance the head by one node (Line 219),
and on success – returns the oldest item to the caller. On failure it retries the whole scheme.
Before returning, the dequeuer persists the head (Lines 223–224), to comply with durable
linearizability, which requires that completed operations be linearized.

Each dequeue makes sure that the dummy node from which it advances the head will be
unreachable by future operations, so that the next successful dequeue by the same thread will
safely return this dummy node to the memory manager. To make it unreachable by backward
walks (of enqueue operations that will try to identify a not persisted suffix), the dequeuer

109

disconnects the backward link from the new dummy head to the previous one (Line 225). In
addition, persisting the head guarantees that the previous dummy node will be unreachable
by future operations even in case of a crash.

A successful dequeue does not simply return the previous dummy node (i.e., the node
from which the previous successful dequeue by the same thread has advanced the head) to
the memory manager as it is. Recall from Section 6.5.2 that we must make sure that newly
allocated nodes have their initialized flags reset. The initialized flag placed in each node is used
by its enqueuer to signal to the recovery when the node’s data is persisted. Suppose a node is
erroneously allocated in an enqueue operation with a set initialized flag. After the enqueue
operation links the node, the link to the node might be implicitly flushed to the NVRAM, and
– before the node’s data is persisted – a crash might follow. The recovery procedure would
then find the linked node, containing stale data including a set initialized flag, and would
erroneously interpret the node with the stale content as part of the queue. To prevent this
scenario, enqueuers could unset the initialized flag after the node’s allocation and then persist
it before initializing its data, but this incurs an additional fence. Instead, we make sure that a
node is always allocated with an initialized flag persistently unset. Next we explain how we
ensure that.

If we allocate nodes from the operating system, we would get nodes with arbitrary con-
tent, possibly with the initialized field set. Instead, we implement a memory manager that
maintains large designated areas from which all node allocations are performed.

First, we explain how nodes, allocated from the designated areas for the first time, are
allocated with a persistently unset initialized value. If the number of nodes required by the
program is known in advance, then on program startup, the memory manager may allocate
a sufficiently large designated area for nodes from the operating system, zero its content to
make all nodes marked as not initialized, and then persist it in NVRAM (by placing asyn-
chronous flushes of the whole area accompanied by a single SFENCE). This guarantees that
when the memory manager allocates a node for the first time, its initialized field is unset. If
the number of required nodes is unknown in advance, each time a designated area is depleted,
the memory manager may allocate a new area from the operating system, and initialize it in
a similar manner using a single SFENCE.

It remains to explain how nodes, reallocated from the designated areas after reclamation,
are allocated with an initialized flag persistently unset. The dequeue operation and the recov-
ery procedure return nodes to the memory manager, hence, they are responsible to return
them with an initialized flag persistently unset.

Starting with dequeue, a successful dequeuer could unset the initialized flag of the dummy
node from which it has advanced the head and then perform additional flush and SFENCE
to persist the unset initialized flag before returning the node to the memory manager. How-
ever, to achieve the fence lower bound of a single SFENCE per operation, LinkedQ takes a
different approach.

The persistence of the previous dummy node’s initialized flag is accomplished through
piggybacking on the next successful dequeue’s SFENCE, which this thread is anyhow go-

110

ing to execute (in Line 224). More precisely, the dequeuer sets the previous dummy node’s
initialized flag to false (Line 228) after the queue’s head persistently points to a subsequent
node. The dequeuer thread postpones the reclamation of this previous dummy node, and
keeps the node locally in a nodeToPersistAndRetire array (Line 229). This array consists of a
pointer cell per thread, each cell lying in another cache line to avoid false sharing. Each thread
may access its cell using its thread ID as an index. In the next successful dequeue execution
of the same thread, right before its SFENCE, the initialized flag of the node we kept aside
is flushed (Line 222). After the fence completes, the node may be returned to the memory
manager (Line 227).

As for the recovery, as detailed in Section 6.5.2, for each node with a set initialized flag
that it returns to the memory manager – the recovery unsets the flag and flushes it. A single
SFENCE placed in the end of the recovery ensures that these flags are unset in the memory.

Recovery

The recovery procedure of LinkedQ, running after a crash, resurrects all nodes reachable
from the head through a path of consecutive nodes with the initialized flag set. It does so by
leaving the queue’s head as it is and reconstructing the queue as follows.

1. If the initialized flag of the dummy node (namely, the node pointed to by the head) is
unset, the recovery procedure sets the dummy node’s next to NULL and then sets its
initialized flag. The order of the last two writes ensures (based on Assumption 6.2.1) a
proper recovery from a possible crash in the midst of the current recovery. The tail is
set to point to the dummy node as well.

2. Otherwise (the dummy node’s initialized is set) –

(a) The recovery procedure traverses the nodes starting with the one pointed to by
the head, until it reaches either a node whose next value is NULL, or a node with
an unset initialized. In the first case, the recovery points the queue’s tail to the
last traversed node.

(b) If the traversal ends due to a node with an unset initialized flag, then let P be its
preceding node. The recovery sets P.next to NULL and flushes it, and sets the tail
to point to P .

In all cases, the pred field of the last node (pointed to by the tail) is set to NULL. In addition,
throughout the queue traversal, the addresses of all traversed nodes with a set initialized

flag are recorded. All other nodes in the designated allocation areas are reclaimed. For each
reclaimed node with a set initialized flag, the recovery unsets the initialized flag and flushes it
before retiring the node. There could be at most two such nodes per thread: There is at most
one such node (namely, a node which is not part of the queue but has a set initialized flag)
which the thread has dequeued and placed in its local nodeToPersistAndRetire array, where the
node awaits its persistence. In addition, there could be another such node – a node that the

111

thread was about to enqueue, if the thread were in the middle of an enqueue operation when
the crash occurred; or alternately a node that the thread has just advanced the head from, if
the thread were in the middle of a dequeue operation when the crash occurred.

If any flush were executed during the recovery, a single SFENCE is placed in the end to
ensure the completion of the executed flushes.

6.6 Second Amendment: Queues with No Post-Flush Access

It turns out in the evaluation that reducing the number of fences is not enough to obtain
high performance, and one should further improve the algorithms by reducing accesses to
flushed data. In this section we describe further transformations of UnlinkedQ and LinkedQ
into the new algorithms OptUnlinkedQ and OptLinkedQ respectively which do not access
flushed locations, while still executing the minimal possible number of blocking fences per
operation. Evaluation will show that the obtained algorithms yield excellent performance in
current architectures. These algorithms are the fastest available persistent queues today, but
we believe that UnlinkedQ and LinkedQ are of value on their own. This is because future
architectures may provide flushes that do not invalidate cache lines. In such architectures Un-
linkedQ and LinkedQ are expected to perform well thanks to using the minimal number of
fence instructions. However, we cannot evaluate this performance prediction on the platform
we currently possess.

6.6.1 OptUnlinkedQ

We start with looking at what data is flushed in the UnlinkedQ algorithm, for use in a recov-
ery. UnlinkedQ flushes the global head index, plus, the index, item and linked fields for each
node in the underlying linked list. All of these values except for the linked field are later ac-
cessed. We eliminate these accesses using algorithmic modifications, amending UnlinkedQ
to become OptUnlinkedQ.

First, we switch the global head index with a per-thread head index, holding the value that
the head index had during the last dequeue by the thread. In OptUnlinkedQ the head pointer
is a pointer only (with no adjacent index). Instead of persisting the global head index in the
end of every dequeue operation as UnlinkedQ does, a dequeuer of OptUnlinkedQ copies the
index value of the node pointed to by the head pointer to its local head index and persists it.
In a recovery, the head index is set to the maximal index among the local head indices of all
threads. Note that in this description we write to the local head index after persisting it. We
eliminate this access in Section 6.6.3 below.

The index and item fields of a node in UnlinkedQ are written by the node’s enqueuer, and
then (after the node is linked to the queue) – flushed by it, as well as read by subsequent
operations: the item is read by a subsequent dequeue and the index is read by subsequent
enqueuers. To prevent reads of a location after it is flushed, an enqueuer in OptUnlinkedQ
physically splits the node into two nodes. The first one is calledPersistent and it is flushed and

112

not accessed after the flush. It is only used during a recovery, for which its content is essential.
It is allocated in the designated areas that the recovery will scan. The second node is denoted
Volatile and it is not flushed and not used in a recovery. However, Volatile is accessed after
the flush of Persistent and is utilized to expedite the normal operation on the object. The
index and item fields are placed in both Persistent and Volatile, with the two copies of each
of them set to the same value. The enqueuer persists Persistent, while subsequent operations
read the index and item from Volatile, thus adhering to our guideline. To enable access to the
non-flushed fields, the queue’s head and tail point to the Volatile part.

Each part of the node contains additional fields other than index and item: The linked

field is not accessed after the enqueuer performs the flush (except for during recovery), so
there is no need to keep two copies of it, and it is placed in Persistent only. The two follow-
ing additional fields, which are not required in recovery, are placed in Volatile: next, and a
pointer to the associated Persistent object, which the enqueuer sets for enabling the thread
that reclaims the node later to locate Persistent and reclaim it together with Volatile.

The recovery procedure of OptUnlinkedQ resurrects Persistent objects in the designated
areas that are marked linked and have an index bigger than the head’s index. It then allocates
matching Volatile objects and links them in a linked list in the order induced by their indices.
This is implemented as follows.

Let headIndex be the maximal index among the local head indices of all threads. These
per-thread indices are not modified. A dummy Persistent object is allocated and assigned the
index headIndex. Next, the recovery scans the designated areas and makes a list of recovered
Persistent objects, which are those with a set linked flag and an index larger than headIndex.
All other Persistent objects are reclaimed. Then, in order to construct a queue of Volatile
objects, for each of the recovered Persistent objects, as well as for the dummy Persistent,
the recovery allocates a Volatile object and sets a pointer from it to the associated Persis-
tent object. In addition, the index and item of each Volatile are copied from the associated
Persistent. The Volatile objects are sorted by their indices, and their next pointers are set
accordingly to create the queue. Finally, the queue’s head and tail pointers are pointed at the
first and last Volatile objects in the linked list.

Figure 6.3 contains the pseudocode of theOptUnlinkedQ algorithm. Note that the queue’s
global head and tail pointers point to Volatile nodes. The MOVNTI instruction is a non-
temporal store instruction that writes back data directly to the memory, bypassing the caches.

6.6.2 OptLinkedQ

Transforming LinkedQ to a queue with no access to flushed data is trickier and involves
further modifications, since it is problematic to eliminate accesses to a node’s next field after
its flush. It is easier to avoid accessing a node’s backward link pred after its flush, so we make
the recovery rely on the node’s pred instead of next. Accordingly, the recovery mechanism
is reversed, so that instead of resurrecting a path of consecutive valid nodes reachable from
the head (as LinkedQ does), OptLinkedQ resurrects a chain of consecutive nodes reachable

113

Figure 6.3: OptUnlinkedQ implementation

253 class Persistent
254 Item* item
255 int index
256 bool linked
257 class Volatile
258 Item* item
259 int index
260 atomic⟨Volatile*⟩ next
261 Persistent* persistentNode

262 Item* Dequeue()
263 while (true)
264 head = Head
265 headNext = head–>next
266 if (headNext == NULL)
267 movnti(&localData[tid].headIndex,

↪→ head–>index)
268 SFENCE
269 return NULL
270 if (CAS(&Head, head, headNext)
271 dequeuedItem = headNext–>item
272 movnti(&localData[tid].headIndex,

↪→ headNext–>index)
273 SFENCE
274 if (localData[tid].nodeToRetire)
275 retire(localData[tid].

↪→ nodeToRetire
↪→ –>persistentNode)

276 retire(localData[tid].
↪→ nodeToRetire)

277 localData[tid].nodeToRetire = head
278 return dequeuedItem

279 Enqueue(item)
280 newNode = allocVolatile()
281 newNode–>item = item
282 newNode–>next = NULL
283 newNode–>persistent = allocPersistent()
284 newNode–>persistent–>item = item
285 newNode–>persistent–>linked = false
286 while (true)
287 tail = Tail
288 if (tail–>next == NULL)
289 newNode–>persistentNode–>index

↪→ = tail–>index + 1
290 newNode–>index = newNode

↪→ –>persistentNode–>index
291 if (CAS(&tail–>next, NULL,

↪→ newNode))
292 newNode–>persistentNode

↪→ –>linked = true
293 FLUSH(newNode

↪→ –>persistentNode);
↪→ SFENCE

294 CAS(&Tail, tail, newNode)
295 break
296 CAS(&Tail, tail, tail–>next)

from the tail by backward links, ending with the node succeeding the dummy node. Similarly
to OptUnlinkedQ, the queue node will be split into two nodes (Persistent and Volatile) so
that the fields accessed after a flush (including the forward links) will not reside on the same
cache line with the flushed fields (including the backward links).

Maintaining a single fence in each enqueue operation complicates the design of Opt-
LinkedQ further: An enqueuer needs to use a single fence to ensure the persistence of both
all recently inserted nodes and the tail. Therefore, before the final fence, the tail might be
already persisted while some nodes are not, which may cause the recovery to encounter stale
nodes when walking from the tail backwards. The way we deal with this problem is to let
the recovery identify stale nodes during the traversal. When a stale node is discovered, the
recovery starts over from an older recorded value of the tail, and repeats this process until
finding a recorded tail value from which the node succeeding the head is reachable through
a chain of persisted nodes. An index field placed in the nodes allows the recovery to identify

114

stale nodes. These are nodes whose index value is nonconsecutive. This field is set in a new
node by its enqueuer, to the index of the last node plus 1.

The index field in nodes is also utilized to recover the head and the tail. As for the head, we
cannot let dequeues flush the head pointer, because it will be accessed thereafter by following
dequeues. Like in OptUnlinkedQ, we assign a per-thread head index, which dequeues update
with the head index and persist, and recover the head index as the maximum among these
values in all threads. The recovery terminates its backward walk when it reaches a node with
the head index plus 1.

We can also not let enqueues flush the tail, because it will be accessed thereafter by sub-
sequent enqueues. To solve this, we assign a per-thread last-enqueue pointer (pointing to
the last Persistent object enqueued by the thread), as well as a per-thread last-enqueue in-
dex. Note that a backward walk from a last-enqueue pointer of a thread that performed an
enqueue during the crash, might pass through stale nodes, as the per-thread last-enqueue
pointer and index might be persisted before some queue nodes are persisted. Thus, the re-
covery looks for the per-thread last-enqueue pointer pointing to the latest node up to which

all nodes are persisted. The recovery starts the traversal from the node pointed to by the
per-thread last-enqueue pointer with the maximum associated per-thread last-enqueue index
among all threads, and if the index of this node is different from the associated last-enqueue
index, or if nonconsecutive index values are encountered (each of these cases implies that
the inspected node is stale), it restarts the walk from the next last-enqueue pointer candidate,
which is the one with the next largest associated index, until it identifies a Persistent object
from which it establishes a complete walk up to the node succeeding the head.

The recovery scheme cannot be complete without dealing with the following rare sce-
nario. All threads execute enqueues concurrently, the new last-enqueue pointer and index of
them all are persisted in the memory, but then a crash occurs before any of the new nodes
is persisted. In such a case, all last-enqueue pointers in all threads point to stale nodes, and
the recovery will identify them as such. To restore a valid tail in this case, we assign two

per-thread last-enqueue pointer and index, in which each thread keeps the details of both the
last node enqueued by this thread and the penultimate node enqueued by this thread (up to
which all queue nodes are definitely persisted by now because the penultimate enqueue was
completed, including its fence instruction). The recovery sorts all last-enqueue indices (two
of each thread) from largest to smallest and gathers their matching pointers to a single list of
potential tail pointers. It attempts starting a backward walk from them, one after another. For
each attempted tail pointer, if the index in the node it points to is different from the associated
local enqueue index, or if a nonconsecutive index is encountered during the backward walk
from it to the node with the recovered head index plus 1 (each of these cases implies that the
index of the inspected node is stale) – the recovery moves on to try the next potential tail.

An enqueuer sets the index of the new node after setting its item and pred, so based on
Assumption 6.2.1, when the recovery identifies the node’s index as non-stale, it is guaranteed
that its item and pred values are not stale. In this new recovery scheme that uses index to
detect stale nodes, an initialized field like in LinkedQ is redundant.

115

Overall, the node’s fields required in the recovery of OptLinkedQ are index, item and
pred. A node of OptLinkedQ is composed of the following two parts: Persistent consists
of the above mentioned fields, and Volatile consists copies of these fields for access after the
flush of Persistent, as well as a next field that is not required in recovery, and a pointer to the
associated Persistent object for its later reclamation.

OptLinkedQ Details

The pseudocode of the OptLinkedQ algorithm appears in Figures 6.4 and 6.5. The queue’s
global head and tail pointers point to Volatile nodes. localData is an array consisting of a
cell per thread. Each thread may access its cell using its thread ID as an index. Each cell con-
sists of the fields headIndex and nodeToRetire accessed in dequeues, and lastEnqueues (an array
containing two cells, each composed of a pointer to a Persistent object and an index), lastEn-
queuesIndex and validBit accessed in enqueues. localData array’s cells do not share cache lines
to avoid false sharing. In addition, for each cell, the lastEnqueues array and headIndex field,
which are written using MOVNTI instructions, are kept in a cache line separate from the
rest of the cell’s fields.

Next, we describe OptLinkedQ’s operations in detail.

The Enqueue Operation The enqueue operation first allocates a Volatile node denoted
newNode from the memory manager and a matching Persistent node and initializes their
data (Lines 343–347). Then, before attempting to link newNode to the last node, it sets the
pred and index fields of both the Volatile and Persistent parts (Lines 351–354). The index

field of the Persistent object serves as a stamp indicating to the recovery that the object’s
data is up-to-date: index is the last written field of the Persistent object, for ensuring that if
this object is traversed during a recovery walk, and its index is identified as non-stale, then
all the object’s data is non-stale. This is due to Assumption 6.2.1, guaranteeing that the order
of writing index after the other fields is preserved in NVRAM.

Next, the enqueue operation attempts to link newNode to the last Volatile node (Line 355),
and on success it advances the queue’s tail and ensures that the path of nodes leading from
the head to newNode->persistentNode is flushed to the NVRAM (Lines 356–357).

It then records the address and index of the newly enqueued Persistent node in the
thread’s lastEnqueues array (Line 358). This array contains two cells per thread – for keeping
record of the thread’s last and penultimate enqueued nodes. The thread writes alternately –
on each enqueue it writes to the cell with index localData[tid].lastEnqueueIndex and in the
end flips its lastEnqueueIndex (in Line 341). The writes to lastEnqueues are performed using
MOVNTI instructions (Lines 338–339). In case a crash occurs after only one of the address
and index was written to thememory, the subsequent recovery needs to identify that the cell’s
content is invalid and should be ignored. To this end, we place a valid bit in both the address
and value (the least significant bit of the address and the most significant bit of the index).
A lastEnqueues cell is considered valid only if the valid bits of its address and index match.

116

After the writes, the value of localData[tid].validBit is flipped if localData[tid].lastEnqueues=1

(Line 340), so that the thread’s following writes to its two lastEnqueues cells will be with the
opposite valid bit value.

Finally, the enqueue operation issues an SFENCE (Line 359) to ensure the completion of
all executed flushes and MOVNTI instructions. In particular, all Persistent nodes succeeding
the current head up to newNode->persistentNode are guaranteed to be persistent. To prevent
future enqueues from redundantly flushing these nodes, the enqueuer then sets newNode’s
backward link to NULL (Line 361). Thus, each enqueue operation that reaches newNode from
now on, during its backward walk, would not need to traverse the preceding Persistent nodes.

Like in the original MSQ, a concurrent enqueue might prevent the enqueue’s linking. In
this case, the enqueuer tries to assist the obstructing enqueue and advance the tail to point to
the node enqueued by that obstructing enqueue (Line 363), before starting a new attempt to
enqueue its own item.

TheDequeueOperation Thedequeue operation attempts to extract the oldest item, placed
in the node subsequent to the dummy node. If the queue is emptywhen the dequeue operation
takes effect, it returns NULL. But before returning, the failing dequeue must ensure that
previous dequeues that emptied the queue survive a crash. It does so by copying the head’s
index to its local head index and persisting it (Lines 312–313). Each thread’s local head index
variable is placed in the thread’s cell in the localData array.

If the queue is not empty, the dequeuer attempts to advance the head by one node (Line 315),

297 class Persistent
298 Item* item
299 Persistent* pred
300 int index
301 class Volatile
302 Item* item
303 atomic⟨Volatile*⟩ next
304 atomic⟨Volatile*⟩ pred
305 int index
306 Persistent* persistentNode

307 Item* Dequeue()
308 while (true)
309 head = Head
310 headNext = head–>next
311 if (headNext == NULL)
312 movnti(&localData[tid].headIndex,

↪→ head–>index)
313 SFENCE
314 return NULL
315 if (CAS(&Head, head, headNext)
316 dequeuedItem = headNext–>item
317 movnti(&localData[tid].headIndex,

↪→ headNext–>index)
318 SFENCE
319 headNext–>pred = NULL
320 if (localData[tid].nodeToRetire)
321 retire(localData[tid].

↪→ nodeToRetire
↪→ –>persistentNode)

322 retire(localData[tid].
↪→ nodeToRetire)

323 localData[tid].nodeToRetire = head
324 return dequeuedItem

Figure 6.4: OptLinkedQ implementation – Objects and Dequeue

117

Figure 6.5: OptLinkedQ implementation – Enqueue

325 FlushNotPersistedSuffix(notPersisted)
326 while (true)
327 pred = notPersisted–>pred
328 if (pred == NULL)
329 break
330 FLUSH(notPersisted–>persistentNode)
331 notPersisted = pred
332 ZeroBit(value, bitIndex)
333 return value & ~(1 ⟨⟨bitIndex)
334 ApplyBit(value, bitIndex, bitValue)
335 return ZeroBit(value, bitIndex) | (bitValue

↪→ ⟨⟨bitIndex)
336 RecordLastEnqueue(newNode)
337 i = localData[tid].lastEnqueuesIndex
338 movnti(&localData[tid].lastEnqueues[i].ptr,

↪→ ApplyBit(newNode
↪→ –>persistentNode, 0, localData[tid
↪→].validBit))

339 movnti(&localData[tid].lastEnqueues[i].
↪→ index, ApplyBit(newNode–>index,
↪→ sizeof(newNode–>index)*8-1,
↪→ localData[tid].validBit))

340 localData[tid].validBit ^= i // Flip valid
↪→ bit if i=1

341 localData[tid].lastEnqueuesIndex ^= 1 //
↪→ Flip index

342 Enqueue(item)
343 newNode = allocVolatile()
344 newNode–>item = item
345 newNode–>next = NULL
346 newNode–>persistentNode =

↪→ allocPersistent()
347 newNode–>persistentNode–>item = item
348 while (true)
349 tail = Tail
350 if (tail–>next == NULL)
351 newNode–>pred = tail
352 newNode–>index = tail–>index +

↪→ 1
353 newNode–>persistentNode–>pred

↪→ = tail–>persistentNode
354 newNode–>persistentNode–>index

↪→ = newNode–>index
355 if (CAS(&tail–>next, NULL,

↪→ newNode))
356 CAS(&Tail, tail, newNode)
357 FlushNotPersistedSuffix(

↪→ newNode)
358 RecordLastEnqueue(newNode)
359 SFENCE
360 // All nodes up to newNode

↪→ are persistent
361 newNode–>pred = NULL
362 break
363 CAS(&Tail, tail, tail–>next)

and on success – returns the oldest item to the caller. On failure it retries the whole scheme.
Before returning, the dequeuer copies the new head’s index to its local head index and per-
sists it (Lines 317–318), to comply with durable linearizability, which requires that completed
operations be linearized.

A successful dequeue is responsible for reclaiming the dummy node recorded by the pre-
vious dequeue executed by the same thread. Before reclaiming, it must ensure that the node
is unreachable by future operations. To make it unreachable by backward walks (of enqueue
operations that will try to identify a non-persisted suffix), the dequeuer disconnects the back-
ward link from the new dummy head to the previous one (Line 319). It then returns the Per-
sistent and Volatile objects of the previous dummy node to the memory manager (Lines 320–
322), and keeps a record of the current dummy node for its future reclamation (Line 323).

Recovery The recovery procedure of OptLinkedQ resurrects all nodes reachable through
backward links from the abstract tail until the node succeeding the dummy head. It then
allocates matching Volatile objects and sets their forward links to form the linked list that
constitutes the volatile queue. This is implemented as follows.

Let headIndex be the maximal index among the local head indices of all threads. The

118

recovery does not modify these per-thread indices. It sorts all per-thread lastEnqueues’s in-
dices that are valid (namely, their valid bit value matches the valid bit value of the associated
pointer), bigger than headIndex and have an associated non-NULL pointer from largest to
smallest, and gathers them with their matching per-thread last enqueue pointers to a single
list of potential tails. The recovery then attempts to start a backward walk from each potential
pointer, one after another. For each attempted pointer, if the index in the Persistent object
it points to is different from the associated index kept in the appropriate lastEnqueues cell, or
if a nonconsecutive index is encountered during the backward walk from it to the Persistent
object with index headIndex+1 (each of these cases implies that the index of the inspected
Persistent object is stale) – the recovery moves on to try the next potential tail.

All Persistent objects in the designated allocation areas but the ones traversed in the last
successful walk are reclaimed (if there was such a walk, otherwise the queue is empty and
all Persistent objects are reclaimed). For each reclaimed node with an index bigger than
headIndex (there could be at most one such node per thread – for threads that were in the
middle of enqueuing when the crash occurred), the recovery zeroes the node’s index and
flushes it before retiring the node.

In order to construct a linked list of Volatile objects, for each of the recovered Persis-
tent objects, the recovery allocates a Volatile object and sets its Persistent pointer to the
associated Persistent object. In addition, the index and item of each Volatile are copied from
the associated Persistent. The next pointers of the Volatile objects are set according to the
queue’s order. The pred field of the last Volatile object is set to NULL. Dummy Volatile
and Persistent objects are allocated too. Their index fields are set to headIndex. The Persis-
tent pointer of the dummy Volatile object is pointed at the dummy Persistent object. The
next pointer of the dummy Volatile is pointed at the recovered Volatile object with index
headIndex+1, or set to NULL if an empty queue is recovered. The queue’s head and tail
pointers are pointed at the first and last Volatile objects in the linked list respectively.

For all threads that do not contain a valid record of the recovered tail in any of their
lastEnqueues cells, these cells are zeroed using MOVNTI instructions. In addition, their las-

tEnqueuesIndex is set to 0, and their validBit is set to 1. For a thread with a valid lastEnqueues

cell referring to the recovered tail: Its other cell is zeroed using MOVNTI instructions. In
addition, its lastEnqueuesIndex is set to the other cell’s index, and the thread’s validBit is set
appropriately (so that the next write to the cell that refers to the recovered tail will be with a
valid bit value opposite of its current one).

Finally, the recovery issues an SFENCE to ensure the completion of all executed flushes
and MOVNTI instructions.

6.6.3 Direct Write-Backs to Memory

Thescheme described forOptUnlinkedQ replaces the global head index of UnlinkedQ, which
is read, written and persisted for an unbounded number of times, with local variables that are
never read (except for during recovery). However, they are still written and persisted for

119

an unbounded number of times: each dequeue operation writes and persists the local head
index of its thread. A standard write to a value that is absent from the cache causes a fetch
of the containing cache line from the memory. Thus, we wish to avoid such a write to a
flushed (thus evicted) location. Instead of a standard write, we issue a non-temporal write
(using the MOVNTI instruction) of the local head index, which writes back the value to the
memory without touching the cache. This way, OptUnlinkedQ optimally performs no access
to flushed cache lines.

To achieve this goal for OptLinkedQ as well, we need to eliminate any access to its local
variables. The head index is handled just like in OptUnlinkedQ, using non-temporal writes.
In addition, the local last-enqueue pointers and indices are also written and persisted for an
unbounded number of times, and we update them too using non-temporal writes.

6.7 Durable Linearizability

To define linearization points for our queue algorithms, we first define some supporting ter-
minology. We start with volatile linearization points, which match the standard linearization
points of MSQ, and are intuitively the steps applying the operations to the volatile queue.
We also define a survival point for each operation, which marks the time from which the op-
eration survives a crash. These two terms should basically be interpreted as: if an operation
passes its survival point, then it is linearized at the time of its volatile linearization point. If
it does not reach its survival point, then it is not linearized in this execution. Then, we derive
the abstract state of the queue for each possible state of the queue’s underlying list of nodes.

6.7.1 Linearization Points

Definition 6.7.1 (Volatile Linearization Point). For each operation op in an execution E of
the queue, we define its volatile linearization point to be the same as op’s standard linearization
point in MSQ:

• Enqueue’s volatile linearization point is theCAS that links its new node (Volatile object
in case of OptUnlinkedQ and OptLinkedQ) to the last one.

• For a successful dequeue, its successful CAS that advances the queue’s head is its
volatile linearization point.

• The volatile linearization point of a failing dequeue is reading the next pointer of the
dummy node (Volatile object in case of OptUnlinkedQ and OptLinkedQ), which is
later revealed to be NULL.

An operation in E that does not reach its volatile linearization point as defined above, does not
have a volatile linearization point (similarly to how not all operations in an execution have
a linearization point). Intuitively, an operation’s volatile linearization point is the step that
applies the operation to the volatile queue.

120

Definition 6.7.2 (Survival Point). For each operation op in an execution E of the queue, we
define a survival point as follows:

• Successful Dequeue. Let op be a successful dequeue that advances the head to point
to N at moment t.

op’s survival point in UnlinkedQ and LinkedQ is the first (implicit or explicit) flush
of the queue’s head to the NVRAM after t, if a crash does not happen between t and
this flush (else, the dequeue operation does not have a survival point). (Note that the
flushed value of the head could be pointing to N or a subsequent node in the queue).

op’s survival point in OptUnlinkedQ and OptLinkedQ is the first (implicit or explicit)
flush of a per-thread head index to the NVRAM after t with a value greater than or
equal toN’s index, if a crash does not happen between t and this flush (else, the dequeue
operation does not have a survival point).

• Failing Dequeue. Let op be a failing dequeue. Let head be the last value read off
the queue’s head, before discovering the queue is empty. This read is followed by op’s
volatile linearization point, where the next pointer in head is read and found NULL.
Let tℓ be the time of this volatile linearization point, and let us look back in time at the
point t where the value head was written to the queue’s head. Let tp be the first time
after t, where the content of the queue’s head was flushed (implicitly or explicitly) to
the memory, if a crash does not happen between t and this flush (else, tp is undefined,
and so is the survival point of the dequeue). Then op’s survival point in UnlinkedQ and
LinkedQ is defined to be the later between tℓ and tp.

op’s survival point in OptUnlinkedQ and OptLinkedQ is defined similarly but using
an alternative definition of tp, as the moment of the first (implicit or explicit) flush of
a per-thread head index to the NVRAM after t with a value greater than or equal to
head->index, if a crash does not happen between t and this flush (else, tp is undefined,
and so is the survival point of the dequeue).

• Enqueue. Let op be an enqueue operation that inserts N to the queue. By N we refer
to a Node object linked to the queue in case of UnlinkedQ and LinkedQ, and to a
Persistent object pointed to by a Volatile object that is linked to the queue in case of
OptUnlinkedQ and OptLinkedQ. Then the first of the following events to occur in E

after the linking and before a crash occurs, is op’s survival point (if none of the following
happens after the linking and before a crash, then the enqueue operation does not have
a survival point):

1. The queues differ in this event:

– For UnlinkedQ and OptUnlinkedQ: An (implicit or explicit) flush of N’s
linked field to the NVRAM after it is set to true.

– For LinkedQ: The first time when all of the following conditions have been
met, for some node preceding N, denoted dummy (intuitively, N has become

121

reachable from dummy and marked as initialized in the NVRAM view):
(a) The queue’s head has been flushed (implicitly or explicitly) to theNVRAM

with a pointer to dummy. (Intuitively: dummy has become the queue’s
dummy node in the NVRAM view.)

(b) The underlying linked list of the queue connects dummy to N; and for
each of the nodes along the way excluding N, its next field pointing to the
subsequent node has been flushed (implicitly or explicitly) to theNVRAM.
(Intuitively: N has been linked to the queue in the NVRAM view.)

(c) The setting of a true value to the initialized field in N reaches NVRAM
by an (implicit or explicit) flush of N. (Intuitively: N has been marked as
valid in the NVRAM.)

– For OptLinkedQ: The first time when all of the following conditions have
been met, for some Persistent object precedingN, denoted dummy, and some
Persistent object denoted last that is either N or a later Persistent object
(intuitively, a backward path from the tail to the head through N became
persistent):
(a) Some per-thread head index has been flushed (implicitly or explicitly) to

the NVRAM with the index of dummy (which means the head index will
be recovered as dummy’s index or a bigger value).

(b) A last-enqueue pointer of some thread has been flushed (implicitly or
explicitly) to the NVRAM with a pointer to last, and the associated last-
enqueue index of that thread has been flushed to the NVRAM with the
value last.index. (Intuitively: last has become a potential tail for the re-
covery.)

(c) The index of each Persistent object, from last backwards up to dummy ex-
cluding dummy, has been flushed (implicitly or explicitly) to the NVRAM
with its final value (namely, the indices of all these Persistent objects
have been flushed with consecutive values).

2. The survival point of a successful dequeue operation that dequeues the value in-
side N.

An operation in E that does not reach its defined-above survival point (in particular, a failing
dequeue that does not reach both tℓ and tp, and an enqueue that does not reach any of the two
detailed points), either due to a crash or since the execution ends, does not have a survival
point.

Intuitively, an operation’s survival point is the flush that makes the operation survive
a crash. The failing dequeue is somewhat different, as this operation does not modify the
queue and we sometimes let its survival point be set to its volatile linearization point, rather
than a flush. Operations that reach a survival point are linearized even if a crash occurs after
their survival point before they complete. Note that for our queues the survival point always
happens when the volatile linearization point has already occurred.

122

Definition 6.7.3 (Linearization Point). The linearization point of an operation op in an exe-
cution E of the queue, is defined to be its volatile linearization point if op reaches a survival
point in E. In this case, we say that op is linearized. Otherwise, op is not linearized, i.e., has
no linearization point.

6.7.2 The Abstract State of theQueue

We define the abstract state of the queue at each moment (including during the recovery) in
a given execution of each queue. This state reflects the applying of all operations linearized
so far in their linearization order.

UnlinkedQ

The abstract head index in an execution of UnlinkedQ is set to the value6 of the index field
in the queue’s head except in an interval before a crash. Between the last flush of the head to
the NVRAM before a crash and the crash, the value of the abstract head index is not modified.
It remains the value that was flushed to the memory.

The abstract state of the queue for execution E at moment t is defined as all items in
nodes with indices bigger than the current abstract head index, which were enqueued by
linearized enqueues whose linearization points occurred prior to t, ordered by their enqueues’
linearization order.

LinkedQ

Theabstract head of the queue in an execution E of LinkedQ is defined similarly to the abstract
head defined for UnlinkedQ, but this time we look at the head pointer. We define the abstract
head to be the queue’s head value, except in an interval before a crash. From the last flush of
the head (explicitly or implicitly) to the memory before a crash, until the crash, the abstract
state of the head keeps the value flushed to the memory with no further abstract head state
modifications in this interval.

Consider an execution E of the queue and a moment t during the execution, and consider
the sequence of underlying list’s nodes, starting with the dummy node pointed to by the
abstract head, and ending with the first node along the chain whose next pointer is NULL
or points to a node enqueued by a non linearized enqueue. Namely, we do not include nodes
whose enqueues have not been linearized yet. The abstract state of the queue for E at t is
the sequence of items contained in all these nodes except for the first one (the dummy node).
Note that the abstract state of the queue is an empty sequence if and only if the next pointer
of the dummy node is NULL or points to a node enqueued by a non linearized enqueue.

6To avoid confusion between the value in cache and the value in memory, we clarify that whenever a variable’s
value is mentioned, we refer to the last value written to the variable (regardless of whether it has reached the
NVRAM).

123

OptUnlinkedQ

The abstract head index of the queue in an execution E of OptUnlinkedQ is set to the value
of the index field in the node pointed to by the queue’s shared head, except in an interval
enclosing a crash. Let headIndex be the biggest per-thread head index value flushed (explicitly
or implicitly) to the NVRAM before the crash. Between the moment a pointer to a node with
the index headIndex is written to the queue’s head and the moment the recovery procedure
(that runs after the crash) terminates, the abstract head index keeps the value headIndex.

The abstract state of the queue for execution E at moment t is defined as all items in Persis-
tent objects with indices bigger than the current abstract head index, whichwere enqueued by
linearized enqueues whose linearization points occurred prior to t, ordered by their enqueues’
linearization order.

OptLinkedQ

The abstract head index of the queue in OptLinkedQ is defined exactly like that of Opt-
UnlinkedQ. OptLinkedQ is our only algorithm for which the abstract state of the queue
depends also on the abstract state of the tail. The abstract tail index in an execution E of Opt-
LinkedQ is set to the index of the node enqueued by the last linearized enqueue operation.
The abstract state of the queue is the sequence of items contained in the Persistent objects
starting with the one enqueued by the last linearized enqueue and going through backward
links until (including) the Persistent object with index bigger by 1 than the abstract head
index, in reversed order; or an empty queue if the abstract tail index is not bigger than the
abstract head index.

6.8 Lock-Freedom

To prove lock-freedom in the presence of crashes, we need to prove that each time a thread
executes an operation on the queue, and there are no interrupting crash events since the oper-
ation’s invocation, some thread completes an operation on the queuewithin a finite number of
steps. Namely, it is sufficient to prove progress for crash-free intervals of execution. We will
show that for each of the four described queue algorithms, the following holds: within n+1
loop iterations of a given running operation (assuming a crash-free long-enough interval of
execution), wheren is the number of threads operating on the queue, some operation succeeds
to perform a linearization point. This is because an operation might fail to perform a volatile
linearization point only when another operation performs a conflicting volatile linearization
point, causing the original operation to retry in a new loop iteration. We argue that at a
crash-free interval of execution, it is guaranteed that within a finite number of retries, some
operation succeeds to reach not only a volatile linearization point, but also a survival point,
thus achieving a linearization point. Hence, system-wide progress is ensured.

The same basic argument applies to all operations of all presented queues: A queue oper-
ation op branches backwards and starts a new loop iteration each time another operation per-

124

forms an obstructing volatile linearization point. If op does not succeed to pursue a volatile lin-
earization point within n iterations, where n is the number of threads operating on the queue,
then some other thread must have reached two volatile linearization points. This means it has
completed the operation for which its first volatile linearization point was reached, and per-
sisted it before returning (to satisfy durable linearizability). Thus, this operation is linearized.
Yet, its linearization point might have occurred before op’s execution, and we need to verify
that some linearization point occurs during op’s execution.

To prove the above argument, we start with noting that an obstructing volatile lineariza-
tion point of some operation does not cause another operation to branch backwards more
than once: a dequeue obstructing another dequeue has advanced the head, so the interrupted
dequeue will read a new value from the queue’s head in its next iteration, and an enqueue
interrupted by another enqueue ensures the tail is advanced before starting a new iteration.

Next, we explain why in case of a dequeue operation, n iterations are sufficient to guar-
antee progress. Let the examined running op be a dequeue. It branches backwards each time
another dequeue precedes it with advancing the head. If op does not complete within n it-
erations, some other thread must have advanced the head twice, in two different dequeue
operations. This means it must have completed the first dequeue operation of the two, de-
noted firstDeq. Prior to completing firstDeq, the other thread has persisted the head. Thus,
firstDeq is linearized. We still need to show that the linearization point occurs within the n

inspected iterations of op and not prior to them, in order to show that n iterations of a de-
queue are enough to achieve progress. firstDeq’s linearization point occurs in op’s iteration
in which firstDeq has failed op, because in this iteration op read the queue’s head, and then
failed to advance it since the obstructing firstDeq has advanced it in between.

For an enqueue, n iterations are not adequate to ensure progress. Let the examined run-
ning op be an enqueue. We analyze its execution since an iteration it started at moment t. op

branches backwards each time another enqueue precedes it with linking a node to the tail. If
a linearized enqueue fails op’s first linking attempt, it is not guaranteed that the linearization
point of this enqueue occurs after t. But from op’s second iteration on, each enqueue that
fails op and is linearized – is guaranteed to be linearized after t: it is linearized when it links
its node to a previous node denoted N, after the tail is advanced to point to N, which happens
after op obtains the tail in the first inspected iteration (since its obtained value must point to
a preceding node, to which another enqueue operation has linked a node). Therefore, we do
not look at the first n iterations of op, but rather at the n iterations starting with the second
one. A similar argument to the one brought for a dequeue op applies to these iterations: If op

does not complete within n+1 iterations, some other thread must have linked twice within
iterations 2 to n+1, in two different enqueue operations. This means it has completed the first
enqueue of the two. Prior to returning from this enqueue, it has ensured the survival point
of that enqueue. Thus, this enqueue is linearized. As explained before, its linearization point
occurs after t, namely, within the n+1 inspected iterations of op.

125

6.9 Memory Management

All queues evaluated in this work (except for OneFileQ and RedoOptQ which were adopted
from [RCFC19] and [CFR20] respectively as they are with their integrated memory manager),
use the same version of epoch based reclamation for memory management, called ssmem.
This memory manager is adopted from [ZFS+19], which implements a durable extension of
themechanism presented by [DGT15] for volatile memory. ssmemmaintains designated areas
in the heap memory for node allocation. When a thread enqueues an item, it allocates a node
from the next available space in these areas, or from a free list (to which dequeued nodes
are inserted) if it is not empty. The memory manager keeps a persistent list of all the areas
it allocated throughout the execution. During recovery, free lists are reconstructed from the
unused chunks in these areas. Each thread in ssmem has its own allocator, operating on its
separate designated areas and local free list, to avoid synchronization and reduce contention.
See [ZFS+19] for more details.

6.10 Evaluation

Evaluated algorithms We compare to the durable queue in [FHMP18] as the most effi-
cient lock-free durably linearizable queue algorithm known today. However, the queue as
presented in [FHMP18] is built to satisfy more than just durable linearizability. It contains
a mechanism for retrieving previously obtained results after a crash, which is not required
by durable linearizability, and is not provided by other durable data structures [DDGZ18;
ZFS+19]. To put all these data structures on the same level of guarantees, we remove the addi-
tional mechanism from [FHMP18], obtaining a thinner version of the original durable queue
that executes faster, a version we denote durable MSQ (DurableMSQ). Comparison to the
exact original queue from [FHMP18] would yield better performance for us, but would not be
fair. The extra mechanism in [FHMP18] can be easily added to the versions we propose (with
the corresponding additional cost).

In addition, we compare to a persistent queue implementation resulting from applying
the general construction of Izraelevitz [IMS16] to MSQ. We also compare to the persistent
queue version obtained by NVTraverse [FBW+20], which resembles IzraelevitzQ since the
traversal phase in MSQ is empty, hence, the operations access directly the critical point, being
the head or tail. The only difference between the two versions is that NVTraverseQ does
not issue a fence after a flush that follows a read or CAS instruction. To complement the
comparison, we compare to queues produced bywrapping a sequential queue implementation
with a persistent transactional memory (PTM): OneFileQ, produced using the OneFile lock-
free PTM [RCFC19], and RedoOptQ, produced using the RedoOpt PTM [CFR20].

Platform The queues were implemented in C++ and compiled using the g++ (GCC) com-
piler version 9.3.0 with a -O3 optimization level. We conducted our experiments on a machine
running Linux (Ubuntu 18.04) equipped with 2 Intel Xeon Gold 6234 3.3GHz processors with

126

8 cores each. In experiments with up to 8 threads, each thread was attached to a different
core of the same processor. In experiments with more than 8 threads in which the ninth and
on threads were attached to the second processor, NUMA effects kick in impeding scalability
and reducing performance, but the trends remain the same (OptUnlinkedQ performs best,
OptLinkedQ is second best). To avoid NUMA effects, we utilize hyper-threading (SMT) on a
single processor for measurements of more than 8 threads reported in Figure 6.6: we attach
the (8 + i)th thread to the second virtual core on the same physical core as the ith thread.

The machine has an L1 data cache of 32KB and an L2 cache of 1MB per core, and an L3
cache of 25MB per processor. It has 1.5TB of NVRAM (Intel Optane DC Persistent Memory),
organized as 128GB DIMMs (6 per processor). The machine uses the NVRAM in App-Direct
Mode Interleaved in our configuration. CLWB is utilized as a flush instruction, SFENCE as
a store fence and MOVNTI as a write-back to memory (non-temporal store) instruction.

Methodology In each experiment, the queue is initialized with a certain number of en-
queued items, and then operations are applied to it, for five seconds unless specified other-
wise. Each data point [x, y] in the graphs represents the average result of 10 experiments. In
each experiment, x threads performed operations concurrently. The left graphs depict the
throughput, namely, number of operations applied to each queue per second by the threads
altogether. The right graphs depict the throughput ratio between each queue and the baseline
DurableMSQ.

We ran various workloads following prior works (see Figure 6.6): In the first workload, op-
erations were randomly chosen to be enqueue or dequeue (50-50 uniform distribution) follow-
ing [YM16; HSS07; LS04]. In the second workload, each thread ran enqueue-dequeue pairs,
following measurements in [MS96; FHMP18; RCFC19; YM16; MA13; FK12; HSS07; LS04].
Next, we ran producers only (performing enqueues) on an empty queue. We also ran con-
sumers only (performing dequeues) on a queue of size 12M following [OM20] for 1 second.
At last, we ran a mixed producer-consumer workload, loosely following [OM20; HLH+13;
KLP13]. Here, unlike in other workloads, the threads did not run for a preset amount of time,
but rather executed a preset number of operations: one quarter of the threads performed 1M
dequeues and then 1M enqueues, and the rest performed 1M enqueues and then 1M dequeues.
This is intended to ensure that the queue is not drained, as enqueues are slower than dequeues.
The initial queue in the presented graphs in the first, second and last workloads is of size 10.
An initial size of 10K yields similar results (as we do not traverse the entire queue, but only
touch the front and rear of the queue). RedoOpt is evaluated only in the first two workloads
since we had problems running it on the other workloads.

Results Our first two queue designs, UnlinkedQ andLinkedQ, perform better thanDurableMSQ
for some workloads and worse for others. They do not gain an advantage over DurableMSQ
although performing minimum fences, due to accesses to flushed cache lines. Our efficient
transformations that avoid such accesses, OptUnlinkedQ and OptLinkedQ, outperform all
other queues including DurableMSQ, the state-of-the-art durable queue, in nearly all exper-

127

128

OptUnlinkedQ

OptLinkedQ

UnlinkedQ

LinkedQ

DurableMSQ

IzraelevitzQ

NVTraverseQ

OneFileQ

RedoOptQ

2 4 6 8 10 12 14 16
Threads

0

1

2

3

4

5

6

7

M
ill

io
n

O
p

s
p

e
r

S
e

co
n

d

2 4 6 8 10 12 14 16
Threads

0

1

2

3

O
p

s
p

e
r

D
u

ra
b

le
M

S
Q

 O
p

s

Random operat ions (on queue size 10)

2 4 6 8 10 12 14 16
Threads

0

1

2

3

4

5

6

M
ill

io
n

O
p

s
p

e
r

S
e

co
n

d

2 4 6 8 10 12 14 16
Threads

0

1

2

3

O
p

s
p

e
r

D
u

ra
b

le
M

S
Q

 O
p

s

Enqueue-dequeue pairs (on queue size 10)

2 4 6 8 10 12 14 16
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ill

io
n

O
p

s
p

e
r

S
e

co
n

d

2 4 6 8 10 12 14 16
Threads

0

1

2

3

4

O
p

s
p

e
r

D
u

ra
b

le
M

S
Q

 O
p

s

Enqueues (on em pty queue)

2 4 6 8 10 12 14 16
Threads

0

2

4

6

8

10

12

M
ill

io
n

 O
p

s
p

e
r

S
e

co
n

d

2 4 6 8 10 12 14 16
Threads

0

1

2

3

4

5

6

7

O
p

s
p

e
r

D
u

ra
b

le
M

S
Q

 O
p

s

Dequeues (on queue size 12M)

4 8 12 16
Threads

0

1

2

3

4

5

6

M
ill

io
n

O
p

s
p

e
r

S
e

co
n

d

4 8 12 16
Threads

0

1

2

3

4

O
p

s
p

e
r

D
u

ra
b

le
M

S
Q

 O
p

s

Producers-consum ers (on queue size 10)

Figure 6.6: Measurement results

iments. For example, OptUnlinkedQ runs more than twice faster than DurableMSQ for
nearly all workloads with more than one thread. IzraelevitzQ is substantially slower than
DurableMSQ and our queues, as expected from a universal construction that places many
more fences than the tailor-made queues. NVTraverseQ, which is similar to IzraelevitzQ,
shows nearly identical performance. The transactional approach of OneFileQ and RedoOpt-
Q results in reduced performance as transactions impose additional overhead over a short
operation.

6.11 Conclusion

In this work we presented a new guideline for designing efficient durable algorithms suitable
for the current architecture: reducing accesses to flushed memory. We demonstrated the
advantage of following this guideline with durable queues. We first present novel queues
that abide only to the known guideline of minimizing the fence count, meeting the theoretical
lower bound on the number of fences from [CGZ18], executing only one blocking fence per
operation. UnlinkedQ does not persist the links, but rather allocates the nodes on designated
areas and adds an ordering mechanism, so the recovery procedure can look for valid nodes of
the queue in the designated areas and order them correctly. LinkedQ uses a validity scheme
on the queue nodes to inform the recovery algorithm which nodes are adequate for recovery,
and adds a backward link to the queue’s underlying structure to allow enqueues to persist
previous enqueues efficiently. These queues do not beat state-of-the-art queues in spite of
issuing fewer fences. We then amended these queues to achieve zero accesses to flushed
memory while still maintaining a single blocking fence per operation. The resulted queues
demonstrate a significant performance improvement on the Intel Optane NVRAM over state-
of-the-art durable queues, showing that, at least in our context, the second amendment is
desirable.

129

130

Chapter 7

Distributed Computations in
Fully-Defective Networks

This chapter is based on the work presented at [CCGS22] and [CCGS23].

7.1 Introduction

Faults are a main hurdle in a large variety of distributed systems. Faults manifest them-
selves in several different manners, ranging from nodes that crash due to malfunctions to
environmental disruptions that affect the communication channels connecting distant nodes.
In the last few decades, research has focused on developing fault-tolerant algorithms, as nodes
crashes and channel noise are utterly inevitable. See, e.g., recent books and surveys on fault-
tolerant systems [Dub13; KK20] and algorithms [BDM93; Ray18], and references within.

In this work, we consider the case of channel noise within asynchronous distributed net-
works, where messages communicated between nodes are subject to corruption. When deal-
ing with channel noise, some restrictions must be imposed on its power. Clearly, if noise can
affect channels arbitrarily without any restrictions, then it could, for instance, delete all the
communication and prevent any non-trivial computation over the network. Previous work
either limited the number of channels that may suffer (arbitrary) noise [Dol82; SW90; Pel92;
SAA95; HP21a; HP21b] or the total amount of corruptions (usually, alterations) the channels
are allowed to make altogether [HS16; CGH19; GKR19; ADHS20].

Throughout this work, we consider noisy channels that may arbitrarily change the content

of transmitted messages, but can neither delete nor inject messages. This is known in the
literature as alteration noise. Yet, we do not bound the amount of noise nor the number of
noisy channels in any way. That is, we ask the following question:

Can one design fault-tolerant algorithms robust to an unlimited amount of corruption on all
communication channels?

On its surface, the above task seems doomed. However, we answer the question in the
affirmative for the large family of 2-edge-connected networks. We further show that if the

131

network is not 2-edge-connected, the noise can destroy any non-trivial computation.
Towards this goal, we develop content-oblivious algorithms, that is, algorithms that do

not rely on the content of communicated messages [CGH19]. Instead, the actions of a node
depend on the specific links and the order in which messages are received. In particular, we
devise a method that compiles any distributed algorithm into a content-oblivious version that
computes the same task over 2-edge-connected graphs.

A folklore approach (see, e.g., in [JKL15; CGH19]) is to send amessage along a certain path
from u to v to signify a 0 bit, and to send a message along a different path to signify a 1 bit,
where the existence of two different paths is promised by the 2-edge-connectivity property.
This approach conceals many challenges. First, the edges along these two paths are also
edges in paths between other nodes in the network, and so the nodes must somehow be able
to associate each such “bit” with its correct origin, in order to be able to decode each original
piece of information and avoid mixing up bits of different ones. Second, in order to know
where to forward the message to, the nodes need to extract the sender/receiver information
from these “bit” messages, yet those might be fully corrupted. Third, some guarantee needs
to be obtained on the order in which different 0/1 “bits” arrive at their destination, in order
for them to faithfully represent the encoded message, a caveat on which the asynchrony of
the network imposes another obstacle.

Before elaborating on how we overcome all these issues and stating our main results, let
us explain our setting and noise model in more detail. We abstract the network as a graph
G = (V, E) where every node v ∈ V is a computing device and every edge e ∈ E is a noisy
bi-directional communication channel. Once u sends a message m over some link (u, v),
the channel guarantees that after some arbitrary yet finite time, v receives some message
m′ ∈ {0, 1}+. Note that m′ may or may not equal m. In other words, the noise over the
channel can corrupt the content of any transmitted m into any m′, but it cannot completely
delete it, nor can it inject new messages. We say that G is a fully-defective network if all its
channels are noisy in the above manner.

7.1.1 Our Contribution and Techniques

Intuition: Content-oblivious encodingwith parallel channels. Let us beginwith a simple
toy example that illustrates some of our techniques. Suppose u and v are directly connected
by two separate noisy channels, which we name data and end. The basic idea is to communi-
cate the information over the data channel by sending, “bit-by-bit”, a unary encoding of the
original message. In order to communicate the end of the unary encoding, a single message
is sent on the end channel. Note, however, that timing is crucial: if the message sent on end
is received before all the messages sent on data reach their destination, the receiver decodes
incorrect information. To avoid this confusion, the receiver sends one message over end as
an acknowledgment for each received data message. The sender waits until all its data mes-
sages are acknowledged and only then sends the termination message on end. Sending the
terminating end message has an additional effect: it switches the roles of the nodes. If u is

132

the sender, then after sending the end message it takes the role of the receiver and vice versa.
We call the sender at each point the token holder.

Main result. Since we do not wish to assume two separate channels between any two
nodes, we ask whether they can be replaced with two separate paths between any two nodes,
i.e., canwe constitute reliable communication between any two neighbors in 2-edge-connected
graphs?

We answer this question affirmatively and show a method that takes any asynchronous
message-passing distributed algorithm π for a noiseless network G, and simulates it over
the fully-defective G, given that G is 2-edge connected. By simulating we mean that every
node has a black-box interface to π through which the node can deliver messages to π and
(asynchronously) receive messages to be communicated to some neighbor. The simulation
guarantees that, at any given moment, all the nodes behave similarly to some valid execution
of π over the noiseless G.

Theorem 7.1 (main, informal). There exists a simulator for any asynchronous algorithm π such

that executing the simulator over a 2-edge connected fully-defective network G simulates an

execution of π over the noiseless network G.

Once we establish that such a simulator even exists, a natural question is, what is the best
that could be aimed for in terms of its message overhead? To avoid excessive clutter in the
presentation, we delay the complete statement of ourmain theorem that includes its overhead,
to Theorem 7.2 at the end of this section.

Warm-up: Resilient computations over a simple cycle. To describe our approach for
proving Theorem 7.1, we begin with the much simpler case of cycle graphs. In a cycle graph,
any node u is connected to only two neighbors. Our goal is to simulate u’s communication
with its two neighbors over a fully-defective cycle. In this special case, every two neighbors
have exactly two separate paths between them: the direct link, and the rest of the cycle. The
difference from the two-channel toy example illustrated above is that the paths of each two
certain neighbors intersect the paths of other neighbors and we need to coordinate between
the nodes so that each message reaches its correct destination and is interpreted correctly.

We address this difficulty by guaranteeing that only a single node is the sender (token
holder) at any given time. All the other nodes are passive and only forward messages along
the cycle. In this way, the sender can communicate with its neighbor using both paths of the
cycle—one of them, say, the clockwise path, replaces the data channel, and the other one, the
counterclockwise path, replaces the end channel.

In fact, u can use the same method to communicate with any other node on the cycle,
since all the nodes see the same sequence of clockwise and counterclockwise messages. In a
sense, u broadcasts information over the cycle, and all the nodes learn this information.

Next, we design a method to change the roles such that another node may become the
token holder, i.e., the sender: After forwarding the message initiated by the sender in the end
path, the nodes enter a token delivery phase. During this phase, a counterclockwise token
message, initiated by the previous token holder, is forwarded along the cycle. When it reaches

133

a node, if the node does not have a message to send, then it forwards the token along by
propagating it counterclockwise. Otherwise, it becomes the new token holder and initiates a

clockwise message forwarded along the entire cycle which denotes the end of the token phase,
so all the nodes go back to the stage of interpreting messages as data and end.

The above method has one significant drawback. If it takes some time for the nodes to
produce a message to send, then the tokenmessage will keep circulating in the cycle, causing
many superfluous transmissions. We circumvent this situation of wasteful transmissions by
introducing a request mechanism: the token transfer is performed only if some node issues a
request, which is done by sending a clockwise reqest message. The requesting node can be
far away from the current token holder, thus, each node, upon receiving a reqest message,
propagates it clockwise. We note that several nodes might issue a request at the same time at
different locations on the cycle. Eventually, all nodes will have sent and received a reqest
message, and after it reaches the current token holder, it issues the counterclockwise token
message described above.

This simulator for simple cycles, in which messages are interpreted as data, end, token
or reqest based only on their direction and order of transmissions, is formally given and
proved in Section 7.3.

Main result: Resilient computations over 2-edge-connected graphs. To apply our
approach for simple cycles to more complex graphs, we mimic it over a (not necessarily sim-
ple) cycle that goes through all the graph nodes. Such a cycle needs to be chosen carefully,
because of the crucial role that the direction of messages plays in our approach. Robbins’s
theorem [Rob39] states that any 2-edge-connected graph G is orientable. That is, there exists
a way to orient all edges in G so that the implied directed graph is strongly connected. This
implies that there exists a cycle that goes through all nodes, possibly with multiple occur-
rences of some of the nodes, where all instances of any edge along the cycle bear the same
orientation. We leverage the existence of such a Robbins cycle by mimicking our approach for
the simple cycle over the Robbins cycle. To this end, we must first construct a Robbins cycle,
as the nodes are unaware of the topology of the network. Then, we need to communicate
over the Robbins cycle. Both steps are highly non-trivial and pose many challenges, as we
now describe. During the first step—the construction of a Robbins cycle—we need the nodes
to start communicating over partial pieces of the cycle (which are cycles by themselves), for
which we need to already use the second step. For this reason, we describe the two steps in
reverse order: we begin with describing the second step of communicating over a non-simple
cycle, given that each node knows its previous and next neighbors along the cycle for each
of its occurrences (Section 7.4). Then, we show the first step of how to construct the Robbins
cycle and produce this information (Section 7.5).

Second step: Communicating over a non-simple cycle. The input of each node for
this step, as will be guaranteed by our construction for the first step, is the previous and
next nodes along the cycle for each of its occurrences. These inputs are consistent with some
Robbins cycle, so that, in particular, each edge in the cycle has a unique orientation, and a

134

single orientation of the edges is considered by all nodes as the clockwise direction.
Mimicking our approach for a simple cycle over a Robbins cycle brings along several

challenges. Consider, for instance, the network G and its induced Robbins cycle depicted in
Figure 7.1. Suppose a clockwise message is received at node d along the edge (c, d). Should
this message be propagated over the edge (d, e) or over the edge (d, a), or maybe over both?
Note that both these options are in the clockwise direction, however, they belong to different
segments of the cycle. Further, note that some messages are initiated in an asynchronous
manner, e.g., the reqest message. Thus, when the node d receives a reqest message from
node c, it is possible that the request originated at node a and should be propagated to node e

or it originated at node e and should be propagated to node a.

a

b

c

d

e c

b
a

d

c

b
e

d

Figure 7.1: (a) A 2-edge-connected graph G with a Robbins orientation and (b) the resulting
Robbins cycle with multiple occurrences per node. The arrows denote the clockwise direction
of the cycle.

We cope with these issues using two separate mechanisms. The first mechanism makes
sure that the token, data, and end messages are propagated correctly along the Robbins
cycle. This mechanism consists of two main ingredients. First, we guarantee that these three
message types are forwarded in a sequential manner, in the sense that the token holder issues
the next message among them only after receiving the previous one from the other direction
of the cycle. Second, we assure that at any given moment, each node u knows “where the
token is”, that is, on which segment of the cycle (i.e., between which two occurrences of u)
the token resides. Since the token holder is the only node to initiate the above three message
types, knowing the relative position of the token holder resolves the above and allows each
node to track each message along the Robbins cycle. Indeed, each such message must first
arrive from the segment in which the token holder resides and then be propagated by u to
the next segment in the respective direction of the cycle. We prove that since at any given
moment only one message travels through the cycle, there can be no confusion at u regarding
what the message type is, which one of u’s occurrences has received a message and where a
message should be forwarded to.

The second mechanism we employ is for reqest messages. These have no pre-specified
origin, and they can be initiated by any node and even by multiple nodes at the same time.
The mechanism for these messages is as follows. Whenever a node receives a reqest mes-
sage or when a node wishes to initiate one, it sends a clockwise message to all of its clockwise

135

neighbors along the Robbins cycle at the same time. Then, the nodewaits to receive a reqest
message from each of its counterclockwise neighbors and only then it continues with execut-
ing the cycle algorithm described above. We prove that this guarantees that all nodes send
and receive a request message regardless of their position(s) on the Robbins cycle.

First step: A content-oblivious construction of a Robbins cycle. Our Robbins cycle
construction follows an ear-decomposition technique by Whitney [Whi32], claiming that any
2-edge-connected graph G can be decomposed into edge-disjoint parts, G = C0 ∪E0 ∪E1 ∪
· · · ∪ Ek, where C0 is a simple cycle, and for any 0 ≤ i ≤ k, Ei is an ear—a simple path
or cycle whose endpoints belong to C0 ∪ E0 ∪ · · · ∪ Ei−1. Following Whitney’s work, we
iteratively decompose a 2-edge-connected graph G into some C0, E0, . . . , Ek, part by part,
and combine them into a Robbins cycle. The main obstacle we face is that our construction
must be content-oblivious and cannot rely on the content of messages sent by the nodes.

The first stage of our construction is performing aDFS-like search starting from a specified
root node. The DFS search progresses by sending a message (a DFS-token) sequentially, i.e.,
each node propagates this message to one of its unexplored adjacent edges. This DFS-token
message propagates through the network until it reaches the root node again. At this stage,
the path the DFS-token has taken defines a cycle C0.

The key challenge in this stage is that the DFS-token might reach some node u twice
before reaching the root. This might cause the DFS to “get stuck”, e.g., if deg(u) = 3. We
overcome this pitfall by insisting on C0 being a simple cycle that starts and closes at the root.
If some u ̸= root receives the DFS-token for the second time, it sends that message back on
the same edge on which it was received. This has the effect of “backtracking” that edge so it
is excluded from the constructed cycle. Nodes that backtrack all their adjacent edges go back
to their initial state and are added to the Robbins cycle at a later step.

Once C0 is established, the nodes on it switch to the second stage, in which they use our
resilient communication approach of the above second step, in order to coordinate exploring
further ears. One node on C0 that has adjacent edges that do not belong to C0 gets selected
to initiate another DFS-like search, which again propagates in G until reaching a node on C0,
possibly different from the initiator. The path the DFS-token takes defines the ear E0. Then,
the nodes on C0 and E0 jointly coordinate to form a new non-simple cycle C1 that includes
all the edges in C0 and E0. The nodes on C1 switch to communicate over this cycle using
the above resilient communication of the second step. The nodes iterate this process, until a
Robbins cycle is formed. A crucial aspect of these iterations of adding ears is that much coor-
dination is required among the nodes for switching in a timely manner from communication
on Ci to communication on Ci+1. The technical specification of this mechanism is given in
Section 7.5.

We emphasize that the nodes do not know |V |, and hence they do not know when a
Robbins cycle is already formed, i.e., when each node already appears on the current Ci at
least once. Instead, they keep adding edges to the constructed cycle, until no node has an
adjacent edge that is not in Ci, which is a state they can detect. At that point, the construction

136

ends.

Putting it all together. With the above two steps, our result can now be formally stated.
Given any 2-edge-connected fully-defective network G and an asynchronous algorithm π

designed to work on the noiseless G, we show how to compute π over the fully defective G

by first constructing a Robbins cycle C on G using a resilient content-oblivious algorithm,
and then simulating π over the Robbins cycle C in a resilient content-oblivious manner.

Theorem 7.2 (main). There exists a simulator for any asynchronous algorithm π, such that

executing the simulator over a 2-edge connected fully-defective network G simulates an execution

of π over the noiseless network G.

The simulator has a pre-processing phase that construct a Robbins cycle C (which depends

only on G) and an online phase that simulates the communication of π over C . The pre-processing

step communicates CCinit = |C|O(1) bits. In the online phase, any message m communicated by

π is simulated by communicating CCoverhead(m) = O(|C| · |m|+ |C| log |V |) bits.

We note that, in the worst case, |C| = O(|V |3); see Section 7.5.3 for a detailed discussion. We
do not strive to optimize the polynomial overhead of our schemes, as their mere existence is
the focus of this work. Nevertheless, unary encoding as explained above imposes an expo-
nential overhead in the length of the message. In Section 7.3.3 we offer a binary encoding
method that reduces the communication complexity to the polynomial terms stated above.

Impossibility result. We complement the above result and show that if G is not 2-edge-
connected, then there is no way to conduct non-trivial computations over a fully-defective G.
To this end, we prove the following impossibility for two-party computation over a fully-
defective channel. The impossibility for a non 2-edge-connected G follows since it contains
a bridge, and we can reduce the two sides of the bridge to the two-party case.

Theorem 7.3. Fix a non-constant function f(x, y). No two-party deterministic algorithm that

gives output or terminates can compute f over a fully-defective channel.

The theorem requires the nodes to either terminate or irrevocably give an output. Note
that the above theorem differs from the famous two generals coordinated-attack impossibil-
ity [Gra78], since our noise model does not allow deleting messages. See Section 7.6 for
complete details.

7.1.2 Related Work

There are two common ways to deal with channel corruptions. One is by adding redundancy,
i.e., coding the information, an approach that is known in the literature as Interactive Coding.
The other is by diverting the communication so it would not pass through corrupted edges,
which are known as Byzantine edges.

We review some related work in these areas, but we stress that neither approach can be
used in fully-defective networks: Interactive coding must assume some bound on the errors,

137

either per channel or globally, while solutions for networks with Byzantine edges must as-
sume a bound on the number of noisy channels.

Interactive coding was initiated by the seminal work of Schulman [Sch92; Sch93; RS94],
see [Gel17] for a recent survey on this field. In this setting, communication channels either
suffer from stochastic noise [RS94; GMS14; BEGH17; GK19; ABE+19] or from some bounded
amount of adversarial noise. E.g., if limiting the overhead of the coding scheme to be linear,
[GMS14; HS16; JKL15; LV15; GKR19] develop schemes resilient to up to a fraction O(1/|E|)
of the total communication. Without any restriction on the overhead, schemes can cope with
noise up to a fraction O(1/|V |) of the total communication, and such a fraction is shown to
be maximal [JKL15]—otherwise, the adversarial noise could completely corrupt all the outgo-
ing communication of the node that communicates the least. The above works assume syn-
chronous networks. Censor-Hillel, Gelles, and Haeupler [CGH19] developed the first coding
scheme for asynchronous networks that suffer from up to a fraction O(1/|V |) of adversar-
ial noise. Communication with an unbounded (yet, finite) amount of noise was examined in
[DMSY15; ADHS18; GI20] for the two-party case and in [ADHS20] for the multiparty case. In
a work by Efrmenko, Haramaty, and Kalai [EHK20], the noise model is similar to the one we
consider here in the sense that it can corrupt the content of messages but not their existence.
However, the amount of bit-corruptions in [EHK20] (measured as the edit distance between
sent and receivedmessages) is bounded to a constant fraction out of the entire communication.
Furthermore, their work considers only two parties.

Networks with Byzantine edges do not restrict the amount of noise per link, and even
allow insertion/deletion errors, but allow only a bounded number of links to be noisy. In
asynchronous settings, Fisher, Lynch, and Paterson [FLP85] exclude the existence of consen-
sus algorithms when a single node may crash, or equivalently, when all the links connected to
some single node may crash. In synchronous networks, certain tasks are also impossible with
arbitrary link failures [Gra78; SWK09]. On the other hand, Santoro and Widmayer [SW90]
considered distributed function evaluation when (a large number of) links suffer either cor-
ruptions, insertions, deletions, or their combination. In a sense, the synchrony guarantee
allows simpler solutions, e.g., encoding information via the time in which messages are sent.
Pelc [Pel92] shows that if the number of Byzantine links is bounded by f , robust communi-
cation is achievable only over graphs whose edge-connectivity is more than 2f . This is also
implied by the work of Dolev [Dol82]. Additional works [PT86; GLR95; SCY98; Das98; Bie03]
consider the case of mixed node and link failures.

Recent work by Hitron and Parter [HP21a; HP21b] gives a compiler that turns any algo-
rithm in the noise-free setting into an algorithm that works correctly even if the adversary
controls f edges in a (2f + 1)-edge-connected network. The above is for the synchronous
Congest setting. Their approach is to construct a family of low-congestion cycle-covers (see
also [PY19a; PY19b]), which are structures in which for every edge (u, v), there are at least
f + 1 cycles that contain no adversarial edges. We stress that low-congestion cycle-covers do
not seem to be helpful for our setting: Even if we were promised only two cycles that share
a single edge, it is not clear how to communicate over them in a way that distinguishes one

138

from the other.

7.2 Preliminaries

Notations. We use a∥b or a · b for the concatenation of a and b. For a positive integer k ∈ N
and a string b, we let bk = b · b · · · · · b denote b concatenated to itself for k times; b0 = ϵ is
the empty string. For a string b and an integer 0 ≤ i ≤ |b| − 1, we let bi denote the i-th bit
of b, i.e., b = b0b1 · · · b|b|−1.

Networks and protocols. A protocol π over an undirected network G = (V, E) with n =
|V | nodes is an asynchronous event-driven distributed algorithm, in which nodes conduct
some computation by sending messages to their neighbors in G (for simplicity, we assume
only deterministic algorithms in this work). Upon the reception of a message, π instructs
the recipient node what message(s) to send next, as a function of the node’s input and all
the messages it has received so far. Specifically, each node v begins with a private input xv

(which may be empty), and knowledge of the IDs of its neighboring nodes, N(v) = {u |
(u, v) ∈ E} (we can remove this assumption, see Remark 6). According to the input to v, π

generates messages to send to zero or more of v’s neighbors (possibly different messages to
different neighbors). Afterwards, the protocol behaves in an event-driven manner, i.e., nodes
act only upon receiving messages: whenever a node v receives a message, it performs some
computation and produces messages designated to zero or more of its neighbors. We impose
no assumption on the computation time of π except that it is finite. We additionally assume a
preselection of one designated node (which will function as a root node in our Robbins cycle
construction), and assume that every node knows whether it is the designated node.

Communicating a message over some link of G takes arbitrary positive finite time. Chan-
nels are not assumed to be FIFO. Incoming messages are kept in an incoming buffer until
processed by the node.

The protocol’s transcript τ of a given execution, is the sequence of messages sent and
received during the execution. Each item in τ indicates the message sent or received, the
sending or receiving node and the link on which the message was communicated. Events
that happen in different nodes at the same time are assumed to be ordered in some arbitrary
order. The local transcript τv of a node v, is the ordered sequence ofmessages sent and received
by v. Note that τv can be derived from τ as the sub-sequence in which v is the sending or
receiving node.

We say that π gives an output if every node eventually writes an output to its write-only
output register. This action is irrevocable. If needed, the nodemay remain active and send and
receive messages after giving an output; that is, we do not require termination, but our result
also applies to protocols that terminate. We say that the protocol has reached quiescence at
some time, if no message is still in transit and from that time on, no new messages are sent
over the network.

Fully-defective networks and noise-resilient simulations. Wework in networks with

139

noisy channels exposed to alteration noise, which can corrupt the content of any message
communicated over any channel. That is, once a message m ∈ {0, 1}+ is sent over some
link, the received message may be any m′ ∈ {0, 1}+. However, the noise cannot completely
delete a message nor can it inject a message on a link in which no m was sent. We stress
that, except for inserting and deleting messages, the noise has no restrictions at all. In par-
ticular, it can apply to all channels and corrupt all messages in a given execution. We call
networks that suffer noise as specified above fully-defective networks. Equivalently, one can
think about such a network as one in which nodes communicate only by means of sending
pulses to their neighbors, which could be the case, for instance, when the nodes have very
basic communication hardware.

A noise-resilient simulator designed for a noiseless network G = (V, E) is a protocol π̂

which is given as an input an asynchronous black-box interface to some π. When π̂ is exe-
cuted on a fully-defective network G, it produces for each node v ∈ V a string τ̂v , such that
there exists some execution of π over the noiseless network G that generates a transcript τ ,
for which τv = τ̂v for each node v. We allow a simulator to perform some pre-processing
before simulating π. We define CCinit to be the communication complexity in bits of the sim-
ulator during the pre-processing, and CCoverhead(m) to be the communication complexity for
simulating the delivery of a message m. Note that CC accounts only for the length of sent

messages, even if later their content is corrupted by the noise.

Distributed representation of cycles. A (directed) cycle can be represented in a dis-
tributed network in twomanners: locally and globally. A local representation of some cycle C

means that every node on C knows its two neighbors on the cycle along with their respective
direction, clockwise or counterclockwise, usually held in the local variables next and prev,
respectively. In case C is not a simple cycle, then every node knows its clockwise and coun-
terclockwise neighbors for each of its occurrences on C . This information is consistent across
all nodes in the sense that an outside observer who follows the neighbors and directions of
each node would see a consistent directed cycle.

A global representation of a directed cycle means that every node v ∈ C holds the string
C = (v1, v2, . . .) of the IDs of the nodes on C in their clockwise order.

7.3 SimulatingComputations over a Fully-Defective SimpleCy-
cle

As discussed in Section 7.1, we can establish a resilient connection between two nodes con-
nected by two separate links, sending content-less messages between them, which we will call
pulses throughout this chapter. Our goal is to implement this idea for any two nodes in a
2-edge-connected graph, since in such a graph any two nodes are connected by two separate
paths. As a stepping stone, in this section we consider the special case of simple cycles.

Theorem 7.4 (A simulator for a simple cycle). There exists a noise-resilient simulator for any

asynchronous protocol π and any fully-defective simple cycle G in which each node knows its

140

clockwise and counterclockwise neighbors. The simulator featuresCCinit = 0 andCCoverhead(m) =
O(|V | · |m|+ |V | log |V |) pulses.

Let G be a simple cycle on V = {vi}0≤i≤n−1 with E = {(vi, vi+1)}0≤i≤n−1, where
indices are taken mod n. The main idea is to imitate the two-channel idea described in Sec-
tion 7.1 above over the cycle. That is, suppose vi wishes to send a message to its neighbor vi+1.
We can think of the link (vi, vi+1) as the data channel, and on the path vi, vi−1, vi−2, . . . , vi+1

as the end channel. For this to work, all the nodes beside vi and vi+1 need to simply forward
each pulse they receive along the same direction. However, the above description supports
only a single fixed sender and a single fixed receiver. Thus, we need a method that allows dif-
ferent nodes to become the sender. For this we use a token mechanism, where only a single
node holds the token at any given time.

Our simulator can be split into two separate phases per message transfer: the first one is
the token phase which handles transferring the token between the nodes, and the second one
is the data phase that handles communication between the current token-holder and the rest
of the nodes.

The token phase works as follows. At the starting point, there exists only a single token
holder. During the token phase, pulses carry one out of two possible meanings: either they
are a reqest pulse or a token pulse. The meaning of a pulse is dictated by the direction
in which the pulse progresses along the cycle: reqest is a clockwise pulse while token is
a counterclockwise pulse. A node that wishes to obtain the token issues a reqest pulse.
Every node that receives such a reqest pulse, propagates it in the same direction, unless
it has already sent a reqest pulse previously in this phase, so eventually every node sends
and receives a single reqest pulse.

Upon receiving a reqest pulse, the current (single) token holder releases the token
by sending a counterclockwise token pulse. This pulse propagates along the cycle until it
reaches one of the nodes which requested the token. A node that receives the token pulse
and wishes to become a token holder does not propagate the token pulse but instead sets
itself as the new token holder. Then, the new token holder switches to its data phase and be-
gins sending clockwise pulses, which are interpreted as data pulses. The first of these pulses
propagates throughout the entire cycle and informs all the other nodes that the token phase
has completed. This first pulse cannot be confused with a reqest pulse since we guarantee
that every node sends and receives exactly a single reqest pulse in each token phase. In
other words, the second clockwise pulse received during a token phase must be a data pulse,
which triggers its recipient to switch to its data phase.

In the data phase, the token holder delivers its message via a unary coding. That is, it
sends a number of clockwise data pulses that equals the length of the unary encoding of
the information. Each node other than the token holder forwards each received data pulse
clockwise, so these pulses propagate along the cycle until they reach the token holder back
from the other side of the cycle. Then, the token holder sends a single counterclockwise end
pulse that signals the end of the message and the end of the data phase. Note that once the

141

token holder receives the end pulse from the other direction, all nodes know that the data
phase is over, and are back in the token phase. Note also that due to the asynchrony, nodes
that already moved to the next token phase might send a reqest pulse before the end pulse
arrives at the token holder. Our design promises that these reqest pulses are not confused
with pulses of the current data phase: end pulses are sent in the other direction, and as for
data pulses—the token holder does not proceed to sending a reqest pulse before it receives
the end pulse of the data phase, so reqest pulses of the new token phase can only reach
nodes that have already received the end pulse for this phase and therefore do not interpret
them as additional data pulses.

A phase is a local concept, in the sense that each node runs a specific data or token phase in
any given time, and different nodes might be in different phases in a certain time. We denote
each token phase and its subsequent data phase an epoch. An epoch is a local concept too,
viewed by each node according to the phase it is currently running. Different nodes might be
in different epochs in a certain time: some nodes might already send a reqest pulse in the
new epoch while others have still not received an end pulse for the previous epoch.

7.3.1 Formal Description

Wenow formally describe our simulator over fully-defective simple cycles, where each node is
given the identities of its clockwise and counterclockwise neighbors. Our simulator receives
as an input an asynchronous protocol π for noiseless communication channels. Messages to
be sent are generated by π, and any message received by a node in our simulator is delivered
and processed by π. Our simulator thus treats π as an asynchronous black box that interfaces
with the simulator by sending and receiving messages, internally at each node. We stress that
π’s actions take finite arbitrary time unknown to and independent of the simulator algorithm.

Our simulator appears in Algorithms 1(a) and 1(b). All nodes begin executing the token
phase (Algorithm 1(a)). Each node u has an internal isTokenHolderu variable that indicates
whether it is the token holder. Moreover, each nodeu keeps a queueQu ofmessages generated
by π, which should be broadcast over the cycle. Messages in Qu are of the form (m, u, v),
where m is a message that π instructs u to send to v. At the onset, isTokenHolderu is True
for a single node, and each Qu is empty. When π gives an output, the respective node gives
the same output in the simulator but keeps executing the communication algorithm over the
cycle. If in a certain time all the queues {Qu} are empty and remain empty, then the simulator
stops sending messages and reaches quiescence.

The simulator is content-oblivious, and as such it communicates by sending pulses (content-
lessmessages). Note that in our algorithmswewrite next to each pulse itsmeaning (data, end,

reqest, token), however, this is only for the analysis; the nodes assign this meaning accord-
ing to their current state and the clockwise/counterclockwise direction of the pulse, and not
by the pulse content, which is ignored.

142

Algorithm 1(a) A simulator for simple cycles: token phase (node u)
Init: A single node has isTokenHolder = True. Node u holds a (possibly empty) input
xu for π.
Handlingmessages sent by π: During the execution of the algorithm, node u enqueues
to Qu any new message π asks u to send, in the form (message, source, destination). The
actions of π occur in parallel to the execution of this algorithm.

1: wait until Qu is not empty or a clockwise reqest pulse is received
2: send a clockwise reqest pulse
3: if no clockwise reqest pulse was received then wait until receiving a clockwise

reqest pulse end if
4: if isTokenHolderu then
5: isTokenHolderu ← False
6: send a counterclockwise token pulse
7: end if
8: wait until receiving a pulse
9: if the pulse is a counterclockwise token pulse then ▷ Else, the pulse is a clockwise

data pulse
10: if Qu is not empty then
11: isTokenHolderu ← True
12: else
13: forward the counterclockwise token pulse
14: go to Line 8
15: end if
16: end if
17: continue with Algorithm 1(b)

7.3.2 Analysis

Let us set some notation for the analysis of Algorithm 1. Let ‘1’ indicate a pulse sent clockwise,
and let ‘0’ indicate a pulse sent counterclockwise. Recall that an epoch is the execution of
consecutive token and data phases. We say that a node has completed its k-th epoch once it
has executed Line 31 for the k-th time. Let Tk be the k-th node to have set its isTokenHolderu

to True in Line 11, whereas T0 is the node whose isTokenHolderu variable is initialized to
True. (We will show that Tk sends, in its k-th epoch, the k-th simulated message in the
system.) Let sk, for k ≥ 1, be the time in which Tk sets its isTokenHolder ← True (sk =∞
if Tk is undefined). Finally, let tk be the time in which Tk completes its k-th epoch (tk = ∞
if Tk is undefined or never ends the k-th epoch). We let s0 = t0 = 0. Let [u ↷ v] denote
the clockwise path from u to v along the cycle including both ends, and similarly let [uÀ v]
denote the counterclockwise path from u to v. In the special case of identical endpoints,
[u ↷ u] denotes the path through the whole cycle. To exclude an endpoint, we use a round
bracket in place of a square bracket, e.g. [u↷ v) denotes the clockwise path excluding v; the

143

Algorithm 1(b) A simulator for simple cycles: data phase (node u)
18: if isTokenHolderu then
19: dequeue a message from Qu, denote it by (m, u, v) and let 1d be its unary encoding
20: send d clockwise data pulses
21: wait until receiving d clockwise data pulses
22: send a counterclockwise end pulse
23: wait until a counterclockwise end pulse is received
24: else
25: forward any received clockwise data pulse until receiving a counterclockwise end

pulse
▷ Including the data pulse received during the preceding token phase

26: let count be the number of received clockwise data pulses
27: decode 1count as the unary encoding of (m′, u′, v′)
28: if u = v′ then deliver m′ to π (as if received from u′) end if
29: forward the counterclockwise end pulse
30: end if
31: continue with Algorithm 1(a)

path can be empty, i.e., (u↷ v) for u, v neighbors.
Our analysis is based on the following technical lemma, which provides us with three

important properties satisfied by Algorithm 1 in every epoch: (1) progress, which says that
as long as there is a message to send, the next epoch will eventually start and complete; (2)
single token holder, which says that at most a single node holds the token at any moment
(there is no such node during the time in which the token is being passed), and Tk is the only
one to hold it during the data phase of the k-th epoch; and (3) global consistency, which
says that in any given epoch k, exactly one message is being communicated—sent by Tk and
received by all other nodes, and the pattern of pulses every node sends has a distinct structure.
We now formalize these ideas as follows.

Lemma 7.3.1. Consider an execution of Algorithm 1 and consider any k ≥ 1, for which tk−1 <∞.

If from time tk−1 and forward, all queues {Qv}v∈V are always empty, then tk =∞. Otherwise,

the following hold:

(1) Progress: All nodes eventually complete their k-th epoch. In particular, tk < ∞, and

at time tk, all nodes have already processed the end pulse (of epoch k) but have not yet

passed Line 8 in epoch k + 1 (they are either waiting in Lines 1 or 3 for a request pulse,

or waiting in Line 8 for either a data or a token pulse).

(2) Single token holder: It holds that tk−1 < sk < tk. At each moment in (tk−1, tk), there
is at most a single node for which isTokenHolder = True. More specifically, within this

time frame, the token is passed as follows: the node Tk−1 releases the token at some time

in [tk−1, sk) and the node Tk is the next node that gains the token at time sk. The node Tk

(solely) holds the token in [sk, tk].

144

(3) Global consistency: There exist integers d1, . . . , dk > 0 and for any u ∈ V there are

bu
1 , . . . , bu

k ∈ {0, 1}, such that when the node u completes its k-th epoch, its sent transcript

(the overall pulses sent so far by u) is Pu,k ≜ 10bu
1 1d10 · 10bu

2 1d20 . . . 10bu
k 1dk0.

In addition, the message each node decodes and processes (Lines 26–28) in its k-epoch is

the unary decoding of 1dk , which is the message sent by Tk (Line 19) in its k-th epoch.

Proof We prove the statement by induction on the epoch number k. We start with proving
the base case, k = 1. The proof for the general case is very similar. The analysis follows the
progress of the protocol and shows that each pulse sent with a certain meaning (i.e., data,
end, token, reqest) is correctly interpreted by its recipient.

Base Case, k = 1. Note that t0 = 0, hence, tk−1 <∞. All the nodes begin by executing
Algorithm 1(a), with a single node T0 having isTokenHolder = True. While all nodes have
empty queues Qv , they all wait in Line 1 and thus, if the queues remain empty indefinitely,
we have t1 =∞.

Otherwise, at some time there is at least one node u that enqueues to Qu a message to
be simulated. Each such u sends a reqest pulse in Line 2 and waits to receive a reqest
pulse in Line 3, unless it has already received such a pulse in Line 1. As there is at least one
such node, at least one reqest pulse is sent. The rest of the nodes first wait to receive a
reqest pulse and then forward it. It follows that all nodes eventually receive and send a
single reqest pulse. Let us denote by P̃u the partial transcript of a node u at the “current”
time (which evolves with the proof), then ∀u ∈ V , we have P̃u = 1 after sending the reqest.
To prove Property (3), we keep track of the partial transcript P̃u, recording the pulses sent by
each node.

After sending and receiving a reqest pulse, any node u ̸= T0 waits to receive another
pulse (Line 8). The node T0 sets isTokenHolderT0 = False, sends a counterclockwise token
pulse (Line 6) and then waits for another pulse like all other nodes. The token pulse triggered
byT0 propagates counterclockwise until it reaches a node v with a non-emptyQv , whichmust
exist. The node v subsequently sets isTokenHolderv to True (Line 11). Thus, by the above
definitions, we get that T1 = v and s1 is the time when v executes Line 11. Note that T1

might get the token pulse before getting a reqest pulse, in which case it delays its actions
until a reqest pulse is received. This has no effect on the proof.

In case T1 ̸= T0, at time s1, all the nodes on [T0 À T1) have sent a token pulse and are
now waiting for a data pulse (Line 8) that would switch them to their data phase of epoch
k = 1. The nodes on (T0 ↷ T1) could be in two possible stages: either they are still waiting
for a reqest pulse (Lines 1 or 3) as described above, or they are waiting in Line 8. Hence at
time s1, every node u ∈ [T0 À T1) has P̃u = 10, while every node u ∈ (T0 ↷ T1] has P̃u = ϵ

if it has not yet sent a reqest pulse, or P̃u = 1 otherwise. Eventually, perhaps at a different
time per node, each node u thus reaches the partial transcript P̃u = 10bu

1 with bu
1 ∈ {0, 1}

being the indicator of whether u has sent a token pulse (namely, whether u ∈ [T0 À T1)).
In the special case where T1 = T0, at time s1, the token has just reached back at T1; all

nodes have sent a token pulse, and all nodes but T1 are now waiting for a data pulse (Line 8)

145

that would switch them to their data phase of epoch k = 1. Hence at time s1, every node u

has the partial transcript P̃u = 10bu
1 with bu

1 = 1 indicating that u has sent a token pulse.
When the node T1 switches to the data phase (Algorithm 1(b)), its queue QT1 is non-empty

and so it sends d ≥ 1 clockwise data pulses (Line 20). We define d1 = d. These data pulses
propagate clockwise through all nodes, after the first received data pulse in each node but T1

triggers it to switch to its data phase, after it has previously received a reqest pulse. Note
that each such node must have received a reqest pulse before it receives the first data pulse.
This is because its counterclockwise neighbor, who sends the data pulse, moves to the data
phase only after it has sent a clockwise reqest pulse.

Once a node u ̸= T1 is in its data phase of epoch k = 1, it records each received data
pulse. The node propagates the pulse clockwise and eventually the pulse arrives back at T1.
Thus, since T1 sends d1 data pulses, after propagating them, each node u has P̃u = 10bu

1 1d1 .
Once the d1 clockwise pulses reach back at T1, and only then, it issues a counterclockwise
end pulse (Line 22). T1 does not generate nor does it propagate any additional pulses before
receiving the propagated end from the other side of the cycle. This implies that any u ̸= T1

receives exactly d1 clockwise data pulses followed by a counterclockwise end pulse. Upon
receiving the end pulse, u processes the message 1d1 (Lines 26–28) and forwards the end
pulse (Line 29). It then completes its k-th data phase and its k-th epoch, with P̃u = 10bu

1 1d10.
The node T1 also has P̃T1 = 10b

T1
1 1d10 when it receives the end pulse and switches to the

next token phase, at time t1. At that time, all the other nodes have already processed the
end pulse. This proves the first part of Property (1).

Next, we need to prove that at time t1, none of the nodes has passed Line 8. In order
for a node to pass Line 8, it must be the case that after the node has switched to the token
phase, it has received a reqest pulse followed by one additional pulse (in any direction).
We argue this cannot happen. Indeed, at the time where some node v receives the end pulse
and switches to its second token phase, only the nodes in (T1 À v] have received the end
pulse and only these nodes have switched to their (second) token phase. In their token phase,
they may or may not have sent a clockwise reqest pulse by this time. Thus, only nodes in
[T1Àv) might have received a reqest pulse. However, it is impossible that they received an
additional pulse by time t1, as we next show. Each node in (T1Àv) that has received a reqest
pulse is waiting to receive another pulse (Line 8) and is not generating any pulse. The node
T1, if receiving a reqest pulse, does not process it and does not send a reqest pulse before
receiving an end pulse in Line 23. It also never sends a pulse in the counterclockwise direction
before receiving its end pulse back. Furthermore, each node in (T1 ↷ v) (for v ̸= T1) is still
executing Line 25, so it only forwards pulses and never generates pulses. Finally, v has just
started its token phase and is waiting to receive a reqest. We conclude that no additional
pulse (beyond the reqest pulse, if sent) can be received by the nodes in (T1Àv). This holds
for any v at the time it transitions to its second token phase. It thus holds for all nodes at
time t1, when the end pulse eventually reaches back at T1.

Next we prove Property (2) based on the above description of the first epoch. At the onset
(at time t0), T0 is the only node with isTokenHolderT0 = True. As mentioned above, T0 sets

146

isTokenHolderT0 = False and sends a token pulse during its token phase. The propagated
token pulse is the one that triggers T1 to set isTokenHolderT1 = True later, at time s1. Thus,
it is clear that s1 > t0 = 0, and that T0 releases the token before s1 and T1 becomes a token
holder at s1. Later, at time t1, the node T1 completes the first epoch, hence, t1 > s1. The node
T1 does not set isTokenHolder = False during the time frame [s1, t1], and it remains to show
that it is the only token holder throughout this time frame.

It is clear that no node in (T0ÀT1) has set itself as a token holder as otherwise, that node
would have been the node we indicate as T1. After time s1, no more token pulses are sent
in the first token phase. Further, T1 sends a clockwise data pulse that transitions all other
nodes into their data phase. This implies that no node besides T1 can execute Line 11 and
set isTokenHolder = True in this token phase. As for the second token phase, each node
that reaches it before t1 does not pass Line 8 before time t1, as we have shown above, thus in
particular, it does not receive a token pulse and does not reach Line 11.

Finally, we prove Property (3), that is, that all nodes reach a global consistency regarding
the sent message of the first epoch. This follows from the above analysis: As we argued, at
the time some node u completes its first epoch, it holds that P̃u = 10bu

1 1d10. The part 1d1

corresponds to the d1 data pulses initiated by T1, which form the encoding of the message
communicated in this epoch. This completes the proof of Property (3).

Induction Step. To complete the proof, we need to prove the induction step. Most of the
above proof holds as is for k > 1, if we replace s1, t1, T1 with sk, tk, Tk, etc.

Fix k > 1 with tk−1 <∞ (otherwise, the lemma holds vacuously). We use the induction
hypothesis on epoch k − 1. We are allowed to do so since tk−1 <∞, which implies that at or
after time tk−2 there is at least one non-empty Qv and the three properties of the lemma apply
to epoch k − 1. The differences between proving the base case and the step are as follows:

In the case where all nodes have an empty Qv , it is immediate in the base case that no node
ever passes Line 1; we prove the same happens here. However, all the induction hypothesis
gives us is that at tk−1 all nodes are waiting either in Line 1 or 3, or 8. Clearly, nodes cannot
be in Line 3 since their queue is empty. We now prove they cannot be in Line 8 as well.

Assume towards a contradiction that v is the first to pass Line 1 in its k-th epoch. Let t̃

be the time when v receives the end pulse of its epoch number k − 1. After time t̃, the node
v completes its epoch and transitions to its k-th token phase. Since Qv is empty, v gets to
Line 1 and awaits there for a reqest pulse. Because v eventually reaches Line 8, it must
have received a clockwise pulse from its neighbor u, which caused v to pass Line 1.

For v ̸= Tk−1, recall that at time t̃, the nodes [Tk−1 ↷ v) are still in their data phase
after receiving dk−1 data pulses. Recall also that they do not generate new pulses but only
propagate pulses, and they do not propagate any additional clockwise pulses because Tk−1

does not generate any clockwise pulses until the counterclockwise end reaches it. The above-
mentioned neighbor u belongs to [Tk−1 ↷ v), hence, it does not propagate further clockwise
pulses from time t̃ until u gets the end pulse. In case v = Tk−1, u gets the end pulse before
time t̃.

147

In any case, after u gets the end pulse, u transitions to its k-th token phase and reaches
Line 1. Therefore, if u did send a reqest pulse that causes v to pass Line 1, then u would have
also passed Line 1 prior to sending this reqest pulse, in contradiction to our assumption that
v is the first node to pass Line 1.

If some node has a non-empty Qv , in the base case we had that all nodes begin the token
phase at the same time t0, and then send a reqest pulse if their queue is non empty or if they
receive a reqest pulse. When considering the induction step at time tk−1, some nodes may
have already started their k-th epoch, and have already sent a reqest pulse before time tk−1,
as given by Property (1) of the induction hypothesis. The behavior from this point on remains
the same as described above for the base case.

For proving the global consistency property in the induction step, let Pu,k−1 be the tran-
script of u at the end of its epoch k − 1. By Property (3) of the induction hypothesis, we
know that there exist d1, . . . , dk−1 and bu

1 , . . . , bu
k−1 for any u ∈ V such that Pu,k−1 ≜

10bu
1 1d10 · 10bu

2 1d20 . . . 10bu
k−11dk−10 for any u ∈ V . Furthermore, the above analysis shows

that there exist an integer dk > 0 and an indicator bu
k ∈ {0, 1} per u, such that the pulses

sent by node u during its k-th epoch can be described by 10bu
k 1dk0, where 1dk signifies the

data pulses sent by Tk, which encodes the communicated message of this epoch. This gives
Property (3). ■

Next, we show that Lemma 7.3.1 implies the correctness of the simulator (Theorem 7.5).
We then analyze its overhead (Lemma 7.3.2). Finally, we discuss in Section 7.3.3 ways to
improve the obtained complexity (Lemma 7.3.4). Together, these three prove Theorem 7.4.

Theorem 7.5. Let G = (V, E) be a cycle. For any asynchronous protocol π, let π̂ be the protocol

defined by Algorithm 1 with the input π. Then, executing π̂ on the fully-defective G simulates

an execution of π on the noiseless network G.

Proof Let Eπ̂ be an execution of π̂ over the fully-defective cycle G. We derive a transcript
τ from Eπ̂ , and claim that τ corresponds to a valid transcript of some execution of π in the
noiseless network G, which we denote Eπ . The reader should distinguish between the sim-
ulated π which is the black-box interface used as an input of Algorithm 1, and the protocol
π that generates the execution Eπ on the noiseless network G. In order to avoid confusion,
we will use the term simulated π to denote the former and refer to Eπ when discussing the
latter.

Let us specify the structure of the transcript τ . We can think about it as an ordered se-
quence of events τ = τ1τ2 · · · , where τi is either the event that some node u sent a message
m to v, i.e., τi = (⟨send⟩, u, v, m) or the event that some node u received a message m from
v, i.e., τi = (⟨receive⟩, u, v, m).

To derive τ from Eπ̂ , we follow the execution of π̂ as the time evolves. We add a send event
every time the simulated π instructs node u to send a new message m. Specifically, when
node u enqueues M = (m, u, v) to Qu, we add the event (⟨send⟩, u, v, m) to τ . Additionally,
every time some node v delivers the message M = (m, u, v) to the simulated π (Line 28), we

148

add the event (⟨receive⟩, v, u, m) to τ . Recall that π generates messages to u sequentially and
τ maintains this order; events that happen at the same time in different nodes are ordered
arbitrarily in τ .

Given Eπ̂ and its derived τ , we prove that there exists an execution Eπ of π on the noiseless
network G that produces these exact same events in the same order, i.e., such that τ is exactly
the transcript of Eπ .

The execution Eπ is obtained by executing π over G with the following scheduler that
imitates the behavior of Eπ̂ . Every time a node sends a message in Eπ , the message is delayed
at the channel and delivered only at the time the respective message is received in Eπ̂ . That
is, our scheduler “follows” the execution of Eπ̂ , and delays each message until the time its
corresponding message is delivered in Eπ̂ . Specifically, whenever a receive event is registered
in τ (in Eπ̂), we deliver the corresponding message in Eπ . The scheduler also controls the
execution time of all nodes, which enables it to control the timing of the send events π initiates
in Eπ so they correspond to the same order of send events in Eπ̂ . We now show that the above
defines a valid scheduler, and that the resulting Eπ has the transcript τ .

Define time(j) to be the time in Eπ̂ when the event τj is registered (note, for multiple
events that occur at the same time, we let time(j) refer only to the events up to τj). We prove
the following statement by induction on j: (1) The scheduler is valid: whenever instructed to
deliver a message m, this m was issued to the channel and hasn’t been delivered yet. (2) The
transcript τ derived from Eπ̂ is a prefix of the transcript of Eπ .

For the base case, time(0), the transcript τ is empty. It is clear that the scheduler is
(vacuously) valid, and that τ is a prefix of the transcript of Eπ .

We proceedwith the induction step. Assume that the induction statement holds at time(j−
1), that is, at this point in time, the events τ1 · · · τj−1 are a prefix of the events in Eπ , and all
the actions of the scheduler so far are valid. Now consider the next event recorded to τ . There
are two options here, either it is a send event or a receive event.

In the first case, let τj = (⟨send⟩, u, v, m). Consider Eπ right after the event τj−1, i.e., at
time(j−1). Every nodeu in Eπ has exactly the same state as the simulatedu in the simulatedπ,
which follows from the induction hypothesis. Therefore, if the simulated π instructs u to send
the message m to v (which triggers τj in Eπ̂), the same (eventually) happens at node u in Eπ .
The scheduler delays all other nodes until the same message is sent in Eπ , and the claim thus
holds after event τj , i.e., at time(j) as well.

The other case is when the j-th event is a receive event, say, τj = (⟨receive⟩, u, v, m).
Consider the node u that executes Line 28 which corresponds to this event. By Property (3)
of Lemma 7.3.1, this message is sent by themessage sender of that epoch, v. Denote this epoch
by k. This means that at the beginning of epoch k the message m appeared in Qv and was
dequeued by v at the beginning of the data phase of epoch k; note that dequeued messages
are never enqueued back to Qv . This means that at some point in time before time(j), node v

enqueued this message to Qv and it was never dequeued before the k-th epoch; let τi with
i < j be the corresponding event of enqueuing m to Qv . Now consider Eπ . By the induction
hypothesis we know that up till event τj−1 at time(j − 1), the transcript τ describes the

149

execution Eπ , thus, the message m was sent at time(i) and is currently being delayed by the
channel (since the first and only delivery of m in Eπ̂ occurs at time(j)). The scheduler then
instructs the channel to deliver this message, which is a valid action as this message was
already issued to the channel and never delivered before. This completes the inductive proof.

The above proves that at any point in time the execution Eπ̂ over the fully-defective G

simulates a prefix of a valid execution of π over the noiseless G. It remains to show liveness,
namely, that the prefix keeps growing. This follows from Properties (1) and (3) of Lemma 7.3.1:
the simulation makes progress as long as some Qv is non-empty or eventually becomes non-
empty. Progress means that all nodes begin and complete their next epoch. In each epoch
one message (from some Qv) is being delivered to its destination. If the simulated π of some
node gives an output, the same node will give the same output in Eπ̂ . If we consider the point
in time where all nodes have given output, then all these outputs are valid since τ at that time
is a prefix of the execution Eπ , which also gives the same outputs, by definition.

The only situation where the simulation could reach quiescence is when all the queues Qv

are empty and remain empty indefinitely. But τ up to that time, as argued above, is a transcript
of some Eπ on the noiseless G, where no messages are currently delayed by any channel, and
no new messages are going to be sent since the nodes in Eπ are at the same state as in the
simulated π. Thus, Eπ has reached quiescence as well. ■

Let us point out a couple of additional remarks about our simulation.

Remark. FIFO:The scheduler derived from our simulator maintains FIFO: Consider an execu-
tion Eπ̂ of the simulator π̂. If multiple messages from u to v exist in the simulation, they are
enqueued and communicated by their order. These enqueues translate in Eπ to messages sent
over the same link. However, the scheduler for Eπ will deliver them according to their order
in Eπ̂’s transcript, which is their order in Qu, that maintains a FIFO property. This strength-
ens our result, that is, the simulation works correctly both with or without FIFO assumptions
for the simulated protocol.

Remark. No starvation: Our proof shows that as long as some u has a message to send, then
some message will be sent during the next epoch. Since the token pulse travels counterclock-
wise sequentially in the cycle, there can be at most n − 1 epochs until u becomes the token
holder. Thus, our simulator actually satisfies the stronger notion of no starvation.

Remark. Broadcast: We note that by design, our simulator offers an additional broadcast

operation. That is, a node can send a message whose destination is all other nodes. To provide
this functionality, we utilize the fact that every message arrives at all nodes, regardless of its
original destination. To broadcast a message m, a node simply fixes its destination to be ∗.
Each node that decodes a message delivers it to π if its destination is either that node (as
before) or ∗. We will use this feature in our Robbins cycle construction in Section 7.5.

Lemma 7.3.2. Theoverhead of simulating a singlemessagem in Algorithm 1 isCCoverhead(m) =
|V |O(1) · 2|m|.

150

Proof Let n = |V | be the length of the cycle. Suppose themessage M = (m, u, v) is dequeued
in some epoch and is being communicated (i.e., m is being communicated by the simulated π

over the link (u, v)). We can write |M | = |m| + O(log n). Communicating M over the
cycle results in the following pulses sent by each node during this epoch (Property (3) of
Lemma 7.3.1): a single reqest pulse, at most a single token pulses, 2|M | data pulses and a
single end pulse. Since there are n nodes, where each node sends at most 3 + 2|M | pulses, we
conclude that CCoverhead(m) = O(n · 2|m|+O(log n)) = nO(1) · 2|m|. ■

7.3.3 Reducing the Communication via Binary Encoding

Encoding each message via a unary encoding leads to a pulse overhead that is exponential in
the message size: CCoverhead(m) = poly(n, 2|m|), with n = |V |. We now show how to send
messages over a simple cycle via a binary encoding of themessage. This binary encoding leads
to a much improved communication complexity of CCoverhead(m) = O(n · |m|+ n log n).

Let M = (m, u, v) ∈ {0, 1}∗ be the message that the token holder u wishes to send. The
idea is to encode the bits of M so that a clockwise pulse denotes the bit 1, and a counterclock-
wise pulse denotes the bit 0; we denote these as data(1) and data(0), respectively. Since
the order of the bits is important, the token holder sends the next bit only after receiving
the previous bit from the other direction of the cycle. (As an optimization, all the pulses of
consecutive same-bit sequences may be sent concurrently, and then the token holder should
wait to receive all the pulses of the same direction before sending pulses in the other direc-
tion. For clarity of the presentation, we do not delve into the details.) However, now that
counterclockwise pulses signify a 0 data bit, the challenge is that we need a different way to
indicate the end of transmitting M , that is, we need a way to encode an end pulse.

We overcome this challenge by having the nodes agree on a fixed parameter L. In order
to communicate that M ’s transmission has completed (replacing the end pulse), the token
holder sends L ≥ 2 consecutive counterclockwise pulses. In addition, the bitstring M is
padded with a 1 after every L−1 consecutive 0s (when read from its first symbol and onward).
An additional trailing 1 is sent after pad(M) and guarantees that, even if M has ended with
a 0 or a sequence of 0s, then pad(M)·1·0L hasL consecutive 0s only at its suffix. Furthermore,
we add a preceding 1 before pad(M): Recall that the token holder must initiate the sending
protocol with a clockwise data pulse, as otherwise, the sender’s first counterclockwise pulse
might bemistaken for a token pulse in those nodes that have not yet forwarded a token pulse
and are still in the token phase. To summarize, in order to communicate the message M , the
token holder communicates pulses according to the encoded message Z = 1 ·pad(M) ·1 ·0L.

The revised data phase algorithm is given in Algorithm 2.
We argue that replacing Algorithm 1(b) with Algorithm 2 does not change the premise of

Theorem 7.5. For the rest of this section, we change Line 17 in Algorithm 1(a) to say “continue
with Algorithm 2”.

We show that an execution of Algorithm 1(a) along with Algorithm 2 satisfies a Global

consistency property similar to the one of Lemma 7.3.1. One can easily verify that the Progress

151

Algorithm 2 Data phase: Broadcasting a message, binary version (node u)
An integral parameter L ≥ 2 is agreed upon all nodes.

1: if isTokenHolderu then
2: dequeue a message from Qu and denote it as M = (m, u, v)
3: let pad(M) be the string obtained from M by inserting a 1 after every L− 1 consec-

utive 0s of M

4: Z ← 1 · pad(M) · 1 · 0L

5: for j = 0 to |Z| − 1 do
6: if Zj = 1 then
7: send a clockwise data(1) pulse
8: wait until a clockwise pulse is received
9: else

10: send a counterclockwise data(0) pulse
11: wait until a counterclockwise pulse is received
12: end if
13: end for
14: else
15: repeat
16: forward every incoming pulse along the cycle, according to its original direction
17: record each clockwise pulse as a 1 and each counterclockwise pulse as a 0
18: until L consecutive 0s have been recorded
19: let Z be the recorded string. Parse Z = 1 · P · 1 · 0L

20: let M ′ ← pad−1(P) be the string obtained by removing any 1 that appears after a
sequence of L− 1 consecutive 0s. Parse M ′ = (m′, u′, v′)

21: if u = v′ then deliver m′ to π (as if received from u′) end if
22: end if
23: continue with Algorithm 1(a)

property and the Single token holder property hold as well, with the same proof as before.

Lemma 7.3.3. Consider the following modification of the Global consistency property:

There exist strings z1, . . . , zk, where zi = 1mi10L for some mi ∈ {0, 1}+, and for

any u ∈ V there are bu
1 , . . . , bu

k ∈ {0, 1}, such that when the node u completes

its k-th epoch, its sent transcript (the overall pulses sent so far by u) is Pu,k ≜
10bu

1 z1 · 10bu
2 z2 · · · · · 10bu

k zk.

In addition, the message each node decodes and processes (Line 20 in Algorithm 2)

in epoch k is exactly the message pad−1(mk) sent by Tk.

Then the statement of Lemma 7.3.1 holds for the simulator given by Algorithms 1(a) and 2.

In order to avoid excessive repetition, we sketch below only the differences from the proof of
Lemma 7.3.1 that stem from replacing Algorithm 1(b) with Algorithm 2.

152

Proof Recall from the proof of Lemma 7.3.1, thatTk gains the token during its k-th token phase
(at time sk) since its QTk

is non-empty and a token pulse arrives from its counterclockwise
neighbor. The node Tk then switches to its data phase (Algorithm 2).

The node Tk dequeues a message M from its queue QTk
and sets zk = 1 · pad(M) · 10L

in Line 4. Thus, its first pulse is a clockwise data(1) pulse, which causes every other node u

to switch to its data phase and execute the code with isTokenHolderu = False, similarly to
the case in the proof of Lemma 7.3.1, upon receiving the first data.

Note thatTk transmits bits sequentially and proceeds to the next bit only after the previous
pulse is received from its other side of the cycle. That is, once the first data(1) pulse arrives
back at Tk, it continues to communicating pad(M) · 10L, bit after bit.

The padding pad(M) and the trailing 1 following it guarantee that there exists only a
single substring of L consecutive 0s in zk, which resides at the suffix of zk. It follows that
all other nodes receive the string zk: they record the message communicated by Tk bit by bit,
until they see L consecutive 0s. This sequence appears only at the suffix of zk and signifies its
termination. We can thus deduce that the message Z recorded by each node has the structure
Z = 1 · P · 10L so each node continues to extracting the part P (whose length is unknown
beforehand) and decodes M ′ = pad−1(P) to obtain the correct message M ′ = M commu-
nicated by Tk in Line 20. If the node is the recipient of M it delivers it to its simulated π

(Line 21). Each node then completes its k-th epoch, and transitions to its token phase k + 1
(Algorithm 1(a)).

Since every received pulse is forwarded along the same direction it was received, during
the k-th epoch each node u transmits exactly the sequence of pulses described by 10bu

k zk, and
thus its overall sent transcript is Pu,k = Pu,k−1 ·10bu

k zk, which has the correct structure using
the induction hypothesis. The rest of the proof follows the one of Lemma 7.3.1 as is. ■

Lemma 7.3.4. The overhead of simulating a single message m by Algorithm 1(a) and Algo-

rithm 2 over the simple cycle G is CCoverhead(m) = O(n · |m|+ n log n).

Proof Let n = |V | be the length of the cycle G. Suppose the message M = (m, u, v) is
dequeued in some epoch and being communicated (i.e., m is being communicated by the
simulated π over the link (u, v)). Communicating M over the cycle results in the following
pulses sent by each node during this epoch (Property (3) of Lemma 7.3.3): a single reqest
pulse, at most a single token pulses, and at most 2 + L +

(
1 + 1

L−1
)
|M | data pulses (a

preceding and trailing 1s, L trailing 0s, and |pad(M)| ≤
(
1 + 1

L−1
)
|M | “content” pulses).

Since L ≥ 2 is a constant, each of the n nodes sends O(|M |) = O(|m| + log n) pulses. We
conclude that CCoverhead(m) = n ·O(|M |) = O(n · |m|+ n log n). ■

7.4 SimulatingComputations over Fully-Defective 2-EdgeCon-
nected Networks

In this section we show how to perform resilient computations over any 2-edge-connected
fully-defective network, given a Robbins cycle.

153

Theorem 7.6 (A simulator for a Robbins cycle). Let C be a Robbins cycle (over G) and let each

node know its clockwise and counterclockwise neighbors for each of its occurrences on C . There

exists a noise-resilient simulator over the fully-defective G for any asynchronous protocol π. The

simulator features CCinit = 0 and CCoverhead(m) = O(|C| · |m|+ |C| log |V |) pulses.

Let G be a 2-edge-connected graph, and assume the nodes are given a Robbins cycle C ,
namely, a directed cycle that passes through each vertex at least once, and that does not
use any edge in both of its directions. (We stress that this assumption is later removed by
showing how to construct the Robbins cycle from scratch, in Section 7.5.) As a node u may
appear in C more than once, we denote by ku the number of its occurrences on C . The initial
knowledge of each node u about C is the value of ku and its clockwise and counterclockwise
neighbors along the cycle. That is, every node u knows the nodes prevu,i and nextu,i for
every 0 ≤ i ≤ ku− 1, such that the nodes along the cycle C correspond to the prev and next
variables of all nodes in a consistent manner. We refer to the sequence of nodes between
two successive occurrences of u on C (including the ending occurrence of u) as a segment

(u −→ · · · −→ u].
The high level approach for the algorithm is built upon Algorithm 1 of the simple cycle,

with pulses forwarded across the Robbins cycle C . By way of mimicking the protocol for
the simple cycle, u views each of its occurrences along C as a different node along the cycle.
Accordingly, when a node u is the token holder, it has exactly one occurrence on C which is
associated with holding the token, and when we refer to a token holder in this section, we
refer to that precise occurrence. When any node u forwards a pulse in some direction, it
forwards it to the node along C that follows its occurrence that received the pulse. There are
several challenges in this generalization.

Challenge 1: Edge repetition along C . Perhaps the main challenge is for u to keep
track of its occurrences and distinguish between them: it could be that multiple occurrences
of u have the same incoming edge. Still, this node needs to be able to associate each pulse
it receives with its appropriate segment, even when pulses that belong to different segments
arrive from the same neighbor.

For instance, consider the node d in Figure 7.1, and suppose it has just started its data phase
and received a clockwise data pulse from node c. This data pulse could have originated at
node e and should be forwarded to node a, or it could have originated at node a and should
be forwarded to node e.

To avoid this type of confusion, each node u tracks throughout the execution in which of
its segments the token is located. Specifically, the node u maintains the invariant that prevu,i

and nextu,i reflect the previous and next nodes of its occurrence number i, for 0 ≤ i ≤ ku−1,
in the specific rotation of the cycle that startswith the token segment considered by u, i.e., the
token always resides within segment 0, (locally) for all nodes. To achieve this, node u applies
a local rotation function upon receiving information about the token holder, namely, upon
receiving a token pulse which we show that can be traced correctly to a specific segment.

Challenge 2: Distinguishing between different data pulses. Another challenge that

154

arises is how to distinguish between different data pulses. Recall that in the simulator for
the simple cycle, the d data pulses are forwarded concurrently, in the sense that the token
holder issues all d data pulses and only then waits to receive them. However, once an edge
appears more than once in C , its endpoint u needs to tell apart the case in which it receives
two different data pulses on that edge from the case in which it receives the same data pulse
on that edge but from different segments. This is crucial because d is not known in advance
(and in fact the value of d is the exact piece of information that needs to be learned).

We overcome this challenge by making sure that the data pulses get forwarded in a se-
quential manner as follows. The node-occurrence that is the token holder does not issue all
d data pulses, but rather waits to receive data pulse number ℓ from its counterclockwise
neighbor before issuing data pulse ℓ + 1, for 1 ≤ ℓ ≤ d− 1. A node u that receives the data
pulse for the i-th time since the last reception of a counterclockwise end pulse, forwards it
to nextu,i−1 (where the index is taken mod ku).

Challenge 3: request pulses have no guaranteed structure. While our approach for
overcoming Challenges 1 and 2 allows the nodes to have consistent rotations of the cycle and
the token segments for streamlining the data, end, and token pulses, it is insufficient for
handling reqest pulses. The reason for this is that each of the other three types of pulses
traverses the cycle sequentially (or partially traverses in case of a token pulse), but reqest
pulses could be initiated by different nodes, so that a node that receives a reqest pulse does
not have any particular promise about its origin and hence cannot tell which neighbor to
forward this pulse to.

We remedy this uncertainty by having each node disseminate reqest pulses to all of
its clockwise neighbors, regardless of their origin (which is not known to the node). We
show that in the case of reqest pulses, this coarse action satisfies the conditions that are
needed in order for the simulator to work correctly, despite its somewhat more aggressive
and unstructured nature.

7.4.1 Formal Description

The main idea of the simulator, as mentioned above, is to let each node mimic Algorithm 1
while simulating each one of its occurrences on C as if it were a separate node on a simple
cycle. Nevertheless, some actions are performed by the node and apply for all its occurrences.
We expand on this shortly.

In particular, each node u has the internal variables isTokenHolderu and Qu, for holding
the token and queuing its simulated messages. These will serve all its occurrences. Recall that
a segment (u→ · · · → u] is a sub-path of the cycle C between two consecutive occurrences
of u. Each node u holds the variables prevu,i and nextu,i that reflect the previous and next
nodes of its occurrence number i, for 0 ≤ i ≤ ku − 1, see Figure 7.2.

Further, each node u tracks throughout the execution in which of its segments the token
is located and calls this its token segment (segment 0). The node u applies a local rotation
function RotateEdges() upon receiving information about the token holder, namely, upon

155

segment 0 (token segment)︷ ︸︸ ︷
−→ nextu,ku−1 −→ · · · −→ prevu,0 −→ u −→ nextu,0 −→ · · · −→ prevu,1 −→ u︸ ︷︷ ︸ −→

segment 1

· · ·
segment ku−1

−→ u
︷ ︸︸ ︷
−→ nextu,ku−2 −→ · · · −→ prevu,ku−1 −→ u

Figure 7.2: The segments of the rotation of C that starts with the token segment, as seen
by a specific node u. The token resides in one of the node-occurrences or links of the token
segment.

receiving a token pulse, which maintains this invariant. The procedure RotateEdges() is
formally defined as follows.

RotateEdges() for node u: Update each prevu,i to the previous value of prevu,i−1

and each nextu,i to the previous value of nextu,i−1, where indices are taken mod ku.

The pseudo-code of our simulator appears in Algorithms 3(a) and 3(b) below. We are now
ready to prove its correctness and analyze its communication complexity.

7.4.2 Analysis

Similar to the analysis in Section 7.3.2, we begin by proving the technical Lemma 7.4.1 that
specifies the behavior of the simulation and replaces Lemma 7.3.1. This technical lemma is
then used to argue the correctness of our simulation over a Robbins cycle (Theorem 7.7). We
prove the complexity of our simulation in Lemmas 7.4.2 and 7.4.3. Together, these prove
Theorem 7.6.

For the analysis, we use the same notations as in Algorithm 1, up to the followingmodifica-
tion. Since we have to be careful and distinguish between the different occurrences of a node
on C , we let Tk denote the following: Consider the k-th node to have set its isTokenHolderu

to True in Line 12. Tk is the node-occurrence of this node that has received a token and
subsequently set isTokenHolderu to True.

Lemma 7.4.1. Consider an execution of Algorithm 3 and consider any k ≥ 1, for which tk−1 <∞.

If from time tk−1 and forward, all queues {Qv}v∈V are always empty, then tk =∞. Otherwise,

the following hold:

(1) Progress: All nodes eventually complete their k-th epoch. In particular, tk < ∞, and

at time tk, all nodes have already processed the end pulse (of epoch k) but have not yet

passed Line 8 in epoch k + 1 (they are either waiting in Lines 1 or 3 for a request pulse,

or waiting in Line 8 for either a data or a token pulse).

(2) Single Token Holder: It holds that tk−1 < sk < tk. At each moment in (tk−1, tk), there
is at most a single node u for which isTokenHolderu = True and u associates this with

a single occurrence on C . More specifically, within this time frame, the token is passed as

follows: the node-occurrence Tk−1 releases the token at some time in (tk−1, sk) and the

node-occurrence Tk is the next node that gains the token at time sk. The node-occurrence

Tk (solely) holds the token in [sk, tk].

156

(3) Global consistency: There exist integers d1, . . . , dk > 0 and for any u ∈ V there are

bu
1 , . . . , bu

k ∈ {0, 1}, such that when the node u completes its k-th epoch, the sent transcript

by each of its occurrences is Pu,k ≜ 10bu
1 1d10 · 10bu

2 1d20 . . . 10bu
k 1dk0.

In addition, the message each node decodes and processes (Line 39) at its k-epoch is the

unary decoding of 1dk , which is the message sent by Tk (Line 20).

Proof In essence, we wish to follow the line of proof of Lemma 7.3.1. The high-level observa-
tion is that in the general case, every occurrence of a node on C behaves as in the case of the

Algorithm 3(a) A simulator for fully-defective networks given a Robbins cycle: token phase
(node u)

Init: A single node has isTokenHolder = True, associated with one specific occurrence.
Node u holds variables next and prev for each one of its occurrences, so that these vari-
ables (globally) form a Robbins cycle. The first segment (of u on the cycle) contains the
node-occurrence associated with the token. Node u holds a (possibly empty) input xu

for π.
Handlingmessages sent by π: During the execution of the algorithm, node u enqueues
to Qu any new message π asks u to send, in the form (message, source, destination). The
actions of π occur in parallel to the execution of this algorithm.

1: wait until Qu is not empty or a clockwise reqest pulse is received from some prevu,i

2: send a reqest pulse to nextu,i for all 0 ≤ i ≤ ku − 1
3: wait until a reqest pulse is received on each prevu,i for all 0 ≤ i ≤ ku − 1

▷ Including reqest pulses received in Line 1, if any
4: if isTokenHolderu then
5: isTokenHolderu ← False
6: send a counterclockwise token pulse to prevu,0

7: end if

8: wait until receiving a pulse
▷ Or process any second pulse received in Line 3 from prevu,i for some 0 ≤ i ≤ ku − 1

9: if the pulse is a counterclockwise token pulse then ▷ Else, the pulse is a clockwise
data pulse

10: RotateEdges()
11: if Qu is not empty then
12: isTokenHolderu ← True
13: else
14: forward the counterclockwise token pulse to prevu,0

15: go to Line 8
16: end if
17: end if
18: continue with Algorithm 3(b)

157

Algorithm 3(b) A simulator for fully-defective networks given a Robbins cycle: data phase
(node u)
19: if isTokenHolderu then
20: dequeue a message from Qu, denote it by (m, u, v) and let 1d be its unary encoding
21: for d times do
22: for i from 0 to ku − 1 do
23: send a clockwise data pulse to nextu,i

24: wait until receiving a clockwise data pulse from prevu,(i+1) mod ku

25: end for
26: end for
27: for i from ku − 1 to 0 do
28: send a counterclockwise end pulse to prevu,(i+1) mod ku

29: wait until a counterclockwise end pulse is received from nextu,i

30: end for
31: else
32: repeat
33: for i from 0 to ku − 1 do
34: wait until receiving a clockwise data pulse from prevu,i

▷ Including the DATA pulse received in the preceding token phase, if exists
35: forward the clockwise data pulse to nextu,i

36: end for
37: until receiving a counterclockwise end pulse
38: let count be the total number of clockwise data pulses received by u divided by ku

39: decode 1count as the unary encoding of (m′, u′, v′)
40: if u = v′ then deliver m′ to π (as if received from u′) end if
41: for i from ku − 1 to 0 do
42: wait until a counterclockwise end pulse is received from nextu,i

▷ for i = ku − 1 this is already received in Line 37
43: forward the counterclockwise end pulse to prevu,i

44: end for
45: end if
46: continue with Algorithm 3(a)

simple cycle, rather than every node behaving that way. There are a few subtle exceptions to
this, which do not harm the proof but are rather essential for allowing it to go through. We
elaborate as follows.

Token Phase. For the token phase, if a node u has a non-empty queue Qu, then it
reaches Line 2 and sends a reqest pulse to each of its clockwise neighbors, nextu,i for all
0 ≤ i ≤ ku − 1, and waits in Line 3 to receive a reqest pulse from each of its counter-
clockwise neighbors, prevu,i for all 0 ≤ i ≤ ku − 1. This is equivalent to saying that every
occurrence of u on C sends a single clockwise reqest pulse and waits to receive a single

158

counterclockwise reqest pulse. Thus, Lines 1–3 are equivalent to Lines 1–3 of Algorithm 1
for each occurrence of u.

Similarly, any node u that receives a reqest pulse from prevu,j for some 0 ≤ j ≤ ku−1
in Line 1, forwards it to each of its neighbors nextu,i for all 0 ≤ i ≤ ku − 1, and waits in
Line 3 to receive a reqest pulse from each of its neighbors prevu,i for all 0 ≤ i ≤ ku − 1
for which i ̸= j. For occurrence j of u, this is equivalent to Lines 1–3 of Algorithm 1. For
other occurrences of u, this is slightly different, as they first forward the reqest pulse and
only then wait to receive it. However, this still satisfies that if some reqest pulse is sent in
an epoch, then each occurrence of every node sends and receives exactly one reqest pulse
in that epoch, which is all that is needed for the proof of Lemma 7.3.1. Notice that in Line 3
a node may receive a second clockwise pulse from prevu,i for some single 0 ≤ i ≤ ku − 1, in
which case this is a data pulse that is processed in Line 8.

Consider now the node u which has isTokenHolderu set to True. In Lines 4-6, this node
sends a counterclockwise token pulse to prevu,0. This corresponds to having only occurrence
0 of u on C send a token pulse, which is the same as Lines 4–6 in Algorithm 1 and indeed
the proof of Lemma 7.3.1 needs that only a single token pulse traverses the cycle.

It remains to show that each occurrence of a node u on C that receives a token pulse for-
wards it to its counterclockwise neighbor inC if the queueQu is empty, or sets isTokenHolderu

to True otherwise, and that there is exactly one occurrence of one node among those with a
non-empty queue which receives a token pulse. For this, we need to show that each node
correctly keeps track of its token segment. We rely on the local RotateEdges() procedure
by showing that the following invariant holds in any time throughout the execution: Let v∗
be the node-occurrence of v that is associated with v having isTokenHolderv set to True,
or the node-occurrence that most recently received a token pulse if no such v exists. Then
for every node u, the occurrence v∗ is located in segment 0 of u on C (i.e., v∗ is located in
[nextu,ku−1, . . . , prevu,0, u]). This invariant is assumed to hold at the onset of the execution.
Since the invariant holds, once a token pulse reaches a node u in Line 9, it must reach it
from nextu,ku−1. Then, u invokes RotateEdges() in Line 10 before setting isTokenHolderu

to True in Line 12 or forwarding the token pulse in Line 14, depending on whether its queue
Qu is empty. In either case, the invocation of RotateEdges() guarantees the invariant is
maintained.

Now, consider the case where a node v sets its isTokenHolderv to True. For the node-
occurrence v∗, Lines 8-17 correspond to Lines 8-16 in Algorithm 1, that is, v∗ receives a
token pulse and switches to its data phase. For the other occurrences of v this is slightly
different, as the node v along with all its occurrences, switches to its data phase once v∗
obtains the token and node v executes Line 18 after completing Line 12. This is fine, since
all the occurrences at this point have sent and received a reqest pulse, and can switch to
the data phase. Indeed, some of v’s node-occurrences might have already forwarded a token
pulse before and remained in the token phase (e.g., if Qv was empty once the token had
reached them); these occurrences switch to the data phase “late” in comparison to Algorithm 1.
Additionally, some of v’s node-occurrences might have not received any pulse in this token

159

phase and they switch “early” compared to respective node in Algorithm 1 (i.e., before they
receive the first data pulse). Nevertheless, they are all in the data phase when they need to
send and receive data pulses. This essentially corresponds to Lines 8–17 in Algorithm 1. The
same reasoning applies to every other node: once one of its occurrences receives the data
pulse originated at v∗ and switches to the data phase, then all its occurrences do so at the same
time, but they all wait for the first data pulse to arrive (Line 34) and thus behave similarly to
Algorithm 1, despite the “early” transition to the data phase.

Data Phase. For the data phase, if node u has its isTokenHolderu set to True, then in

Line 19 it dequeues a message from Qu and denotes by 1d its unary encoding. Next, in Lines 20-

30, for each of the d pulses of data that need to be forwarded, each occurrence of u according

to their order on C receives and sends the clockwise data pulse and then receives and sends the

counterclockwise end pulse. This corresponds to Lines 19-23 in Algorithm 1, with two subtleties.
The main subtlety is that Line 19 is invoked only once by u, which corresponds to Line 19

in Algorithm 1 being invoked only by occurrence 0 of u in its rotation of C . This is essential,
as otherwise if each occurrence of u initiates d separate data pulses then clearly there will
be too many in the system and the message will not be correctly decoded. We emphasize that
the queue Qu is a single queue used by all occurrences of u, and hence once a message is
dequeued from Qu, other occurrences cannot dequeue it again later in further epochs if they
become the occurrence of u that is associated with the isTokenHolderu variable being set to
True.

The second subtlety is that each data pulse begins its traversal over C only after the
previous one is received back at occurrence 0 of u. The latter does not harm the proof as it is
only a stronger requirement compared to Algorithm 1.

Similarly, for every node u whose isTokenHolderu variable is set to False, each of its
occurrences according to their order on C receives and sends the clockwise data pulse (in
Lines 32–37) and the counterclockwise end pulse (in Lines 41–44), for d times. This corre-
sponds to Lines 25 and 29 in Algorithm 1.

Finally, Lines 38-40 are also invoked by any node u only once, in order to avoid deliv-
ering to π duplicates of the received message, corresponding to Lines 26-28 in Algorithm 1.
Note that this also means that every node u moves to the token phase of the next epoch in
Algorithm 3(a) only after all of its occurrences finish the current data phase in Algorithm 3(b).

The above establishes that we can now repeat the proof of Lemma 7.3.1 for obtaining a
proof of Lemma 7.4.1. ■

Lemma 7.4.1 allows proving the correctness of our simulation, as follows.

Theorem 7.7. Let G = (V, E) be some graph and let C be a Robbins cycle in it. Given any

asynchronous protocol π, let π̂ be the Algorithm 3 given the input π. Then, executing π̂ on the

fully-defective network G simulates an execution of π on the noiseless G.

Proof The proof of Theorem 7.7 is exactly the same as the proof of Theorem 7.5, with the
modifications that (i) it uses Lemma 7.4.1 instead of Lemma 7.3.1, (ii) instead of referring to a

160

node in the network, it refers to its occurences along C , and (iii) it adjusts the line numbers
that reflect the delivery of a message to the protocol π (Line 40 in Algorithm 3(b) instead of
Line 28 in Algorithm 1(b)). ■

Finally, the following lemma states the message overhead of our simulator. Its proof is
identical to that of Lemma 7.3.2, except that we consider pulses sent by each of the occurrences

of nodes on C , whose length |C| can be greater than the number of nodes n.

Lemma 7.4.2. Given a Robbins cycle C , the overhead of simulating a single message m in

Algorithm 3 is CCoverhead(m) = O(|C| · 2|m|+O(log n)).

A direct application of the binary encoding described in Section 7.3.3 yields the following
optimization.

Lemma 7.4.3. Given a Robbins cycle C , the overhead of simulating a single message m in

Algorithm 3, replacing the unary encoding with a binary encoding, is CCoverhead(m) = O(|C| ·
|m|+ |C| log n).

We omit the details as they repeat the proofs in Section 7.3.3 for reducing the communication
complexity in the simple cycle.

7.5 Constructing a Robbins Cycle in a Fully-Defective 2-Edge
Connected Network

The simulator of Section 7.4 assumes the nodes are given a Robbins cycle on which they
communicate. In this section, we show how the nodes can construct such a cycle on any
2-edge-connected fully-defective network G.

Whitney [Whi32] proved that any 2-edge-connected graph G can be decomposed into

G = C0 ∪ E0 ∪ E1 ∪ · · · ∪ Ek,

where C0 is a simple cycle, and for any i ≥ 0, Ei is an ear—a simple path or cycle whose
endpoints belong to C0 ∪ E0 ∪ · · · ∪ Ei−1. Moreover, the process of decomposing G into
ears can be performed by starting from a single node, and constructing C0 and Ei in an
increasing order i = 0, 1, 2, See also [Lov85; KR00; Tsi04; Sch13] for further details and
several distributed ear-decomposition algorithms in noiseless settings. Our Robbins cycle
construction essentially performs a distributed and content-oblivious version of Whitney’s
ear-decomposition process (see, e.g., Lemma 2.1 in [Ram93] for the centralized algorithm),
where nodes form the cycle C0 and the ears E0, E1, . . . sequentially. A newly constructed
ear is incorporated with the previous constructions to form a non-simple cycle that includes
them all.

We start at a designated root node and perform a content-oblivious DFS by sending a
token over edges in a sequential manner; see, e.g., [Pel00, Section 5.4]. This process continues

161

until the token returns to the root which signifies that a cycle is closed at the root. We require
the constructed cycle to be simple. Indeed, if the token reaches some node v ̸= root twice,
then v sends the token back to where it came from, which is equivalent to backtracking in the
standard DFS algorithm. Backtracked edges do not participate in the constructed cycle, and
they are left for future ears.

We denote the simple cycle constructed by the above procedure by C0. The order the
DFS-token progresses along C0 defines the clockwise direction on the cycle. Nodes on C0

employ Algorithm 3 to communicate over C0 in a noise-resilient manner with the root being
the first token holder.

Recall that a directed cycle can be represented by the nodes either locally, i.e., each node
knows its clockwise and counterclockwise neighbor(s), or globally, i.e., knowing the sequence
of IDs that defines the cycle. Our algorithm will use both representations, however, this is
done only to simplify the analysis and reduce the length of the constructed Robbins cycle. In
Remark 5 we sketch how to remove this assumption.

Before the nodes on C0 continue with adding ears to C0, they first broadcast their IDs
and achieve a global representation of the cycle. The root sends its ID to its neighbor, who ap-
pends its own ID and transfers the message to its next neighbor and so on. When the message
reaches the root again, it contains the sequence of IDs of the cycleC0 = (root, v1, v2, . . . , root).
The root broadcasts this information; it will be used towards continuing the Robbins cycle
construction.

Next, the nodes on C0 select a new root, denoted by root0, to be one of the nodes on C0

that still has unexplored edges, which are edges that do not participate in C0. The construction
proceeds by constructing a new ear, E0, starting from root0. Again, the nodes perform a
sequential DFS by sending a DFS-token over unexplored edges, until the DFS-token reaches
some node z0 that belongs to C0. As before, we require the path of the DFS-token to be simple,
and backtrack whenever the token reaches twice the same node that does not lie on C0.

The simple path that the DFS-token has undergone from root0 to z0, excluding edges that
have backtracked in the DFS search, becomes the newly constructed ear E0. A new ear can
be a simple cycle if it is a closed ear with z0 = root0, or it can be a simple path if it is an open
ear with z0 ̸= root0.

Based on C0 and the ear E0, we define a new cycle C1 that contains all the edges of C0

and of E0, possibly multiple times, so that C1 is a closed (non-simple) cycle. Recall that in a
Robbins cycle, each edge has a unique orientation and the cycle is not allowed to cross the
same edge in both directions. Thus, we let C1 be the cycle

root0 −→
C0

root0 −→
E0

z0 =⇒
C0

root0.

The notation a −→
P

b here means that we take the complete path P . The notation a =⇒
P

b means
the shortest path from a to b implied by the clockwise orientation of edges in P . If multiple
such paths exist, we take the first one by lexicographic order. Note that this path might not

162

be a sub-path of P ,1 however, it is uniquely defined and can be retrieved by any node that
holds the sequence of IDs that defines P .

It follows that the paths root0 −→
C0

root0 and z0 =⇒
C0

root0 are well defined and known
by all nodes on C0, since all these nodes know the sequence of IDs that lie on C0, in their
respective order. However, the nodes still need to know the IDs on root0 −→

E0
z0 in order to

obtain the sequence of IDs in the new cycle C1. Towards this end we do the following.
The nodes on P0 ≜ (z0 =⇒

C0
root0) along with the nodes on E0 form a simple cycle E0∥P0

(recall that ∥ denotes concatenation). This cycle is locally defined: the nodes on E0 define
their neighbors when they first obtain the DFS-token. Each node on P0 belongs to C0 and,
as argued above, can locally define its neighbors on P0. Then, the root starts communicating
over this cycle using Algorithm 3. As before, the first thing the nodes do is communicating
their IDs. In fact, only the new nodes that are on E0 but not in C0 need to broadcast their IDs
in their respective order, similarly to the way it was done after the completion of C0. After
this part, root0 can simply construct the string of IDs of the nodes in C1 and communicate it
over E0∥P0.

Then, the root communicates the sequence of IDs of C1 to all the nodes in cycle C0. That
is, the root and the nodes on P0 stop communicating on the cycle P0∥E0 and switch back to
communicating over the cycle C0. Next, the root sends a message to instruct all the nodes in
C0 to switch to the new cycle C1. Note that this message need not reach the nodes in E0, as
they are already “set” to the correct C1. Since the other nodes are set to communicate over C0,
the nodes in E0 are excluded from this communication and these nodes remain idle until the
first pulse arrives, which happens once the rest of the nodes switch to communicate over C1.

The process then repeats: for any i > 0, rooti is selected to be a node on Ci that still has
edges that do not belong to Ci. The nodes construct a new ear Ei whose endpoints, rooti

and zi, belong to Ci. The nodes then locally define the non-simple cycle Ci+1 = rooti −→
Ci

rooti −→
Ei

zi =⇒
Ci

rooti, and start communicating over it. Next, the nodes globally learn the
sequence of IDs included in Ci+1, which is required for the next iteration, and so on. This
process ends when the cycle Ci+1 contains all the edges of G. See Figure 7.3 for a demonstra-
tion.

7.5.1 Formal Description

We now formally define our construction. Each node holds a variable named cycle that con-
tains a global representation of the current Ci. At the same time, the simple cycle rooti −→

Ei

zi =⇒
Ci

rooti is represented locally, using the variables nextv for the clockwise neighbor of v

and prevv for its counterclockwise neighbor.
In our algorithms, the first ID in the variable cycle is the current root. When the root

node changes, each node v locally rotates the sequence of IDs in cyclev (say, clockwise), so
that the new root becomes the first ID in the string.

1For instance, let P = (a → b → c → b → e), then a =⇒
P

e is the path (a → b → e) which is not a sub-path
of P .

163

164

v1

v2

v3

v4

v5

(a) An example of constructing a
simple cycle, C0 = (v1, v2, v3, v4),
starting from the root v1. The clock-
wise direction corresponds to the
pulse propagation in Algorithm 4(a)
and is marked with arrows. The
nodes set nextvi = vi+1 and
prevvi

= vi−1 for i = 1, 2, 3, 4,
except for nextv4 = v1 and
prevv1 = v4. Node v5 does
not receive any pulse and is not
on C0. Node v5 keeps executing Al-
gorithm 4(a), while the rest of the
nodes continue to Algorithm 4(b).

v1

v2

v3

v4

v5

E0

(b) Adding the ear E0 = (v1 →
v5 → v3) to C0. The nodes on
C0 execute ΠNextRoot to choose as
a new root a node that has unex-
plored edges. Suppose v1 is elected
as the new root. The thick blue ar-
rows describe the pulse propagation
during the construction of E0. The
nodes v1, v5, v3 update their next
and prev to indicate this path. Then,
nodes on P0 = (v3 → v4 → v1),
i.e., on v3 =⇒

C0
v1 update their prev

and next to (locally) form the sim-
ple cycle E0∥P0. This cycle is used
to learn the IDs of nodes in E0. The
node v1 constructs a global repre-
sentation of C1 and broadcasts it
over C0 and over E0∥P0.

v1

v2

v3
v4

v1

v5
v3

v4

C0

E0 P0

(c) The resulting Robbins cy-
cle C1, obtained after adding the
ear E0 described in part (b) to C0.
The clockwise direction of C1 is
marked with arrows.

Figure 7.3: Constructing a simple cycle by Algorithm 4(a) and extending an ear by Algo-
rithm 4(b).

The pseudo-code for our content-oblivious protocol for constructing a Robbins cycle ap-
pears inAlgorithms 4(a) and 4(b). These use as sub-procedures the protocolsΠlearnID andΠNextRoot,
which are the content-oblivious versions of Algorithms 5 and 6, obtained by simulating them
through Theorem 7.7. Note that all these algorithms share the same variables, i.e., cyclev ,
prevv , and nextv of node v.

Our protocols use the ability to broadcast a message on a cycle defined either locally or
globally. To be more accurate, the instruction “broadcast M” and “wait for message M” are to
be understood as sending the message M with destination ∗ and receiving any message with
destination ∗, respectively, using the method of Remark 3. The sender also receives the broad-
cast message after all other nodes receive it and acts upon the pseudo-code for processing it.
This guarantees synchronization, i.e., that the sender does not continue before all other nodes
receive the broadcast message, which is crucial, for example, when we switch the underlying
cycle we communicate over. Indeed, in the noise-resilient protocol, the sender holds the to-
ken and does not release it before it gets the end pulse for that message, and by this time all
other nodes receive that message as well. If now all nodes change their cyclev , then the next
pulse sent by the root goes through the new cycle.

7.5.2 Analysis

Our main theorem in this section shows that Algorithm 4 constructs a Robbins cycle that
includes all the edges in G despite a fully-defective environment.

Theorem 7.8. For any 2-edge-connected graph G, Algorithm 4 constructs a sequence of cycles

C0, . . . , Ck, where C0 is a simple cycle that includes the root, and Ck is a Robbins cycle that

contains all the edges E of G.

For the ease of the analysis, we define iterations of Algorithm 4. We say that iteration
i+1 begins when the ΠNextRoot is being executed for the i-th time by a node which is currently

marked as root, i.e., when such a node reaches either Line 33 or 64. Note that by the code,
there can only be one root for each iteration. We start with some helping lemmas.

Lemma 7.5.1. Suppose Algorithm 4(a) is executed by all nodes in a 2-edge-connected graph G,

where a single node is marked as a root. Then, the root node eventually reaches Line 29, and at

that time, there exists a single simple cycle C0, locally represented by the nodes on it. Furthermore,

root ∈ C0.

Proof It is immediate from the pseudo-code that Algorithm 4(a) performs a sequential depth
first traversal starting from the root and usingmarked edges to avoid repeating already visited
edges. We can think of the DFS as sending a DFS-token that progresses over non-visited edges
until reaching a visited node v. The DFS-token advances by sending a single pulse.

Suppose the DFS-token reaches an already-visited node v, this node is either the root, in
which case we are done, or it is not the root. In the latter case, the node v sends the DFS-token
back to where it came from, causing the DFS to backtrack that edge and continue with the

165

166Algorithm 4(a) Content-oblivious Ear-Decomposition: Closing an ear for the first time
1: Init: Set ΠlearnID and ΠNextRoot to be the content-oblivious versions of Algorithms 5 and 6,

respectively, obtained via Theorem 7.7.

node v, upon initialization:
2: statev ← init, nextv ← ⊥, prevv ← ⊥, cyclev ← ϵ. All edges unmarked.
3: if v is the root then
4: choose an arbitrary edge (v, u)
5: send a pulse to u and mark the edge (v, u) as used.
6: nextv ← u, statev ← DFSroot
7: end if

node v, upon receiving a pulse from w:
8: if statev = init then
9: prevv ← w, mark (w, v) as used

10: choose an arbitrary neighbor u ̸= w where (v, u) is unmarked
11: send a pulse to u and mark (v, u) as used
12: nextv ← u, statev ← DFS
13: else if statev = DFS then
14: if w = nextv then ▷ This is a cancellation pulse
15: choose an arbitrary neighbor u′ where (v, u′) is unmarked:
16: send a pulse to u′, set nextv ← u′ and mark (v, u′) as used
17: if no such u′ exists then
18: send a pulse to prevv ▷ Send a cancellation pulse to parent
19: statev ← init, prevv ← ⊥, nextv ← ⊥, unmark all edges
20: end if
21: else if w ̸= prevv then ▷ A cycle is closed at v, but v is not the root
22: send a pulse to w and mark (v, w) as used.
23: else (w = prevv) ▷ This is a second pulse—node is on a cycle
24: send a pulse to nextv

25: cyclev ← ΠlearnID, executed over the cycle locally defined by prevv, nextv ; initial-
ize as non token holder.

26: execute ΠNextRoot over cyclev ; initialize as non token-holder.
27: end if
28: else if statev = DFSroot then
29: prevv ← w

30: send a pulse to nextv ▷ A cycle is closed, start communicating on it
31: wait until a pulse is received from prevv

32: cyclev ← ΠlearnID, executed over the simple cycle locally defined by prevv, nextv ;
initialize as token holder.

33: execute ΠNextRoot over cyclev ; initialize as token holder.
34: end if

Algorithm 4(b) Content-oblivious Ear-Decomposition: Ear extension
node v marked as root, upon initialization:

35: choose an edge (v, u) /∈ cyclev and send a pulse to u

36: nextv ← u

node v, upon receiving a pulse on (v, u) /∈ cyclev :
37: prevv ← u

38: broadcast “⟨EarClosedAt⟩, v” over cyclev

▷ In parallel to the above, pulses from cyclev are interpreted as messages of a
noise-resilient protocol
node v, upon receiving “⟨EarClosedAt⟩, w” on cyclev :

39: Pi ← the simple path w ===⇒
cyclev

root ▷ Pi = ∅ if w = root

40: if v ∈ Pi then
41: set prevv , nextv according to Pi ▷ The root sets prev and w sets next (un-

less root = w); inner nodes set both42: end if
43: if v is the root then
44: send a pulse to nextv

45: if root = w then
46: wait to receive a pulse from prevv ▷ A closed ear, the pulse will reach back the

root
47: broadcast ⟨ready⟩ on cyclev

48: end if
49: else if v = w then ▷ w ̸= root

50: wait to receive a pulse from prevv

51: broadcast ⟨ready⟩ on cyclev

52: end if
53: wait to receive ⟨ready⟩ on cyclev

54: if prevv, nextv ̸= ⊥ then ▷ v is on Pi

55: execute ΠlearnID over the simple cycle locally defined by prevv, nextv ; root is token
holder.

56: prevv ← ⊥, nextv ← ⊥
57: end if
58: if v is the root then
59: broadcast “⟨NewCycle⟩, Ci+1” over cyclev , where Ci+1 is the output of ΠlearnID.
60: else
61: wait to receive the message “⟨NewCycle⟩, Ci+1” over cyclev .
62: end if
63: cyclev ← Ci+1 ▷ All nodes in Ci switch to Ci+1; nodes on Ei were set at line 25
64: execute ΠNextRoot over cyclev ; The root initializes as the token holder

167

Algorithm 5 πlearnID, learning the IDs on a newly constructed ear (noiseless setting)
node v, upon initialization:

1: if v is the root then
2: send id(v) to nextv

3: end if

node v, upon receiving m = (id1, id2, . . .):
4: if id1 ̸= id(v) then ▷ {nextv}v∈V is guaranteed to induce a simple cycle
5: m′ ← m∥id(v)
6: send m′ to nextv

7: else ▷ Back to root, m contains all the nodes on {nextv}v∈V

8: new_cycle ← cyclev∥m
9: broadcast “⟨done⟩, new_cycle”

10: end if

node v, upon receiving “⟨done⟩, C”:
11: return C

DFS from the parent of v in the induced DFS tree. Since the graph is 2-edge-connected, there
exists a simple cycle that begins and ends at the root. A DFS search, once completed, explores
all the edges in G. Therefore, the DFS must eventually reach the root again and close a simple

cycle, defined by the progress of the DFS-tokenwhile ignoring any backtracked edges. Indeed,
each node sets its prevv variable to the first node from which the DFS-token is received and
sets its nextv variable to be the node to which the DFS-token progresses. Backtracking an
edge resets prevv, nextv , accordingly in Lines 16 or 19.

Denote the above constructed cycle asC0. We note that nodes that are not onC0 are either
never reached by the DFS or the DFS reaches them and backtracks since it does not reach the
root from that path. In either case, their status at the time when the root reaches Line 29, and
also at the end of Algorithm 4(a), is init with no marked edges, and with prev = next = ⊥.
Therefore, C0 is the only cycle defined at this point. ■

Next, we observe that the nodes on C0 switch to a global representation of their cycle.

Lemma 7.5.2. Once the root completes Line 32, all the nodes on C0 hold a global representation

string of C0.

Proof Lemma 7.5.1 establishes that once the root reaches Line 29, then C0 is locally well-
defined, i.e., every node that belongs to C0 knows the previous and subsequent nodes in the
cycle. The root then sends a second pulse which progresses over C0 and causes all the nodes
on C0 to execute ΠlearnID, where the root is the token holder (Line 32) and other nodes are
non token holders (Line 25). Note that the root awaits until the second pulse reaches it back
(Line 31). By that time, all the other nodes on C0 start executing ΠlearnID, but they are not

168

Algorithm 6 πNextRoot, choosing a new root (noiseless setting)
node v, upon initialization:

1: if v is the root then
2: broadcast “⟨check edges⟩”
3: wait to receive |{id(v′) | v′ ∈ cyclev}| many replies
4: if received “⟨has unexplored edges⟩, id(u)” then ▷ Choose arbitrarily, if non unique
5: broadcast “⟨new root⟩, id(u)”
6: else ▷ All edges are explored
7: broadcast “⟨completed⟩”
8: end if
9: end if

node v, upon receiving ⟨check edges⟩:
10: if v has unexplored edges then
11: broadcast “⟨has unexplored edges⟩, id(v)”
12: else
13: broadcast “⟨no unexplored edges⟩, id(v)”
14: end if

node v, upon receiving “⟨new root⟩, id(u)”: ▷ Broadcast message is received also by
its originator

15: rotate cyclev clockwise until it starts with an occurrence of u. The node u is now marked
root

16: execute Algorithm 4(b)

node v, upon receiving ⟨completed⟩:
17: terminate ▷ A Robbins cycle is constructed

token holders, so they remain idle. Only once the root starts executing ΠlearnID, pulses are
sent over C0 and the content-oblivious computation of Algorithm 5 initiates.

The execution of Algorithm 5 produces the sequence of IDs in C0 according to the clock-
wise direction of the cycle: the root begins by sending its ID to its next (clockwise) neighbor,
which concatenates its ID, and so on. Once the message reaches the root again, it contains all
the IDs of the nodes in C0 according to the clockwise direction of the cycle. This string is then
broadcast to all C0, so all the nodes now possess the global representation of C0 as required.■

Note that after the construction of C0 completes, the nodes that belong to C0 continue
to execute Algorithm 4(b), while the rest of the nodes are still executing Algorithm 4(a). We
now argue that the algorithm keeps adding edges to the currently-constructed cycle.

For a cycle C , let us denote by Edge(C) the set of edges in C . We prove that each it-
eration of Algorithm 4 constructs a larger cycle. That is, assuming the nodes on C execute
Algorithm 4(b) while the rest of the nodes execute Algorithm 4(a), then at the end of that

169

iteration, there is a globally defined cycle C ′ such that all the nodes on C ′ know this cy-
cle (the other nodes keep executing Algorithm 4(a)), and C ′ is strictly larger than C , that is,
Edge(C) ⊊ Edge(C ′).

Lemma 7.5.3. LetG be a 2-edge-connected graph and letCi be a cycle, such thatE\Edge(Ci) ≠
∅. Let the root be a singlemarked node onCi that is adjacent to an edge inE\Edge(Ci). Suppose
nodes onCi all start executing Algorithm 4(b) while other nodes inG runAlgorithm 4(a) and their

state is init. At the end of this iteration, there exists a cycle Ci+1 with Edge(Ci) ⊊ Edge(Ci+1),
all the nodes on Ci+1 know its global representation, and all the other nodes continue executing

Algorithm 4(a) and their state is init. Further, if all the occurrences of any edge in Edge(Ci)
have the same orientation, the same holds for Ci+1.

Proof Note that the nodes basically perform a DFS search over the unused edges, i.e., over all
the edges except edges that belong to Ci. The root initiates the DFS search (Line 35). Since
the root has at least one edge which does not belong to Ci, denote the edge to which the root
sends a pulse in Line 35 by (root, v).

We argue that the DFS, after passing the DFS-token over (root, v), must reach a node
that belongs to Ci before it backtracks the edge (root, v). Suppose not, then there is no path
between v and any node in Ci that does not go through (root, v). Hence, (root, v) is a bridge,
yet this is a contradiction since G is 2-edge-connected.

Once the DFS reaches some node z on Ci in Line 37, the path Ei is well defined: it is
the new ear—the path the token has taken from root to z, disregarding any backtracked edge.
Note that Ei is not empty and Edge(Ei) ⊆ E \ Edge(Ci), i.e., Ei contains at least one
new edge that does not belong to Ci. Additionally, the path Pi constructed in Line 39 is
well defined: it is the shortest path between z and root that uses only the directed edges
in Edge(Ci). We know at least one such path exists since z and root are both nodes on the
cycle Ci, and take the lexicographic-first such path if multiple shortest-paths exist. Since all
nodes on Ci know Edge(Ci) then Pi is agreed upon all of them. Hence Ci+1 = Ci∥Ei∥Pi is
a well defined cycle from root to root for which Edge(Ci) ⊊ Edge(Ci+1). It is easy to verify
that all the occurrences of any edge in Edge(Ci+1) have the same orientation: edges in Ei

appear only once in Ci, and all the other edges obey their orientation in Ci, which is unique
by assumption.

We now show that at the end of the iteration, all the nodes on Ci+1 hold a global repre-
sentation of Ci+1 while the rest of the nodes remain in state init, executing Algorithm 4(a).
Note that as the DFS progresses through Ei, all the nodes on Ei define their next and prev
variables according to the progress of the DFS-token, so that the path Ei is locally defined.
After the DFS-token reaches z in Line 37, this node communicates over Ci to let all the nodes
of Ci know that an ear is closed and its endpoints are root and z. With this information, each
node on Ci can tell whether it belongs to Pi, and if it is on Pi, it can tell its successor and
predecessor nodes on Pi. Thus, each such node locally sets its next and prev variables accord-
ing to the path Pi in Line 41. Note that the concatenation of the two paths, Ei∥Pi, yields a

170

simple cycle, locally defined by all the nodes on it. Also note that if Ei is a closed ear, when
z = root, then Pi = ∅, yet Ei∥Pi is still a simple cycle.

Next, the root sends a second pulse in Line 44 which propagates along Ei and triggers the
nodes on Ei, except for root and z, to start executing ΠlearnID on the cycle locally defined by
their next and prev variables (Line 25). However, none of the (inner) nodes on Ei is the token
holders in the execution of ΠlearnID, so they remain idle, in the sense that they do not request
the token.

Once this second pulse reaches z in Line 51, it informs the nodes in Ci about this event by
broadcasting ⟨ready⟩ on Ci. Note that at this point, the nodes on Ci are all idle. Specifically,
no node wishes to obtain the token, so no pulses are being sent over Ci. It is safe to switch
to communicating over the locally defined simple cycle Ei∥Pi. The nodes on that cycle now
execute ΠlearnID, after which all of them learn the global string representing Ci+1 = Ci∥Ei∥Pi.
At this point, the nodes in Ei except root and z switch to communicate over Ci+1. However,
they are not the token holders so they keep being idle until the rest of the nodes switch toCi+1,
without interfering with them.

After ΠlearnID terminates, all the nodes on Ei∥Pi that were executing it know it has termi-
nated. The root is the last to obtain the final message “⟨done⟩, Ci+1”, so at the time when the
root finishes ΠlearnID, all other nodes on Ci are set to communicate over Ci: the nodes on Pi

are done with ΠlearnID, and set next = prev = ⊥ in Line 56, and now await the ⟨NewCycle⟩
message on Ci. The rest of the nodes on Ci do not perform the if statement of Line 54 and
thus are already awaiting the ⟨NewCycle⟩ message.

Finally, the root broadcasts “⟨NewCycle⟩, Ci+1” over Ci which causes all the nodes in Ci

to change their cycle variable to Ci+1. The root is the last to finish the procedure of the
broadcast invocation, and by that time, all nodes of Ci+1 are set to the cycle Ci+1 and idle.
The root is the token holder and is expected to send the next message on Ci+1. ■

The proof of Theorem 7.8 can now easily be obtained as a corollary of the above lemma.
Multiple invocations of Algorithm 4(b) eventually yield a Robbins cycle Ck with Edge(Ck) =
E.

Proof of Theorem 7.8 By Lemma 7.5.1, we know that after the first iteration of Algorithm 4(a)
we obtain a simple cycle C0. If C0 consists of all the edges of G, we are done—the nodes
run ΠNextRoot to find out that all edges are exhausted, and the algorithm terminates in Line 17
of Algorithm 6. Otherwise, we keep executing Algorithm 4(b) with a new root that has an
adjacent unused edge. This is done by Algorithm 6: each node broadcasts whether or not
it has unused edges adjacent to it, along with its ID. The current root arbitrarily picks one
node with unused edges (Line 4) and broadcasts this choice to all the nodes of Ci. Since
all the nodes possess a global representation of Ci, they can rotate it so that the new root
becomes first in the global representation, which is consistent among all nodes and allows,
for example, to determine Pi in a consistent manner. Then, Algorithm 4(b) is invoked again
with this chosen node as the new root (Line 16). At this point, the statement of Lemma 7.5.3
holds: there is a cycle Ci globally represented by all the nodes in it, there is a single root on Ci

171

and it has adjacent unused edges, and all the nodes in G\Ci are in state init in the execution
of Algorithm 4(a).

By Lemma 7.5.3, every iteration of the algorithm starting on Ci produces a cycle Ci+1

with at least one additional edge in E that does not appear in Ci. It is easy to verify that, as
long as some edge is still unused, at the end of constructing Ci+1, i.e., after executing Line 64
but before the nodes re-iterate Algorithm 4(b) (Line 16 of Algorithm 6), the requirements for
Lemma 7.5.3 hold with respect to the newly constructed cycle. Thus, after at most |E| −
|Edge(C0)| iterations of Algorithm 4(b), the obtained cycle consists of all the edges E in G.
Since each edge has a single orientation induced by the cycle (this clearly holds for the simple
cycle C0, and inductively throughout the construction), and since all the nodes in G appear
in the obtained cycle, it is a Robbins cycle. ■

Remark. In order to communicate over any intermediate (non-simple) cycle Ci via Algo-
rithm 3, a single node-occurrence must be defined as the token holder. Furthermore, all other
nodes must know the segment in Ci that contains that designated node-occurrence. Recall
that in Algorithm 3, each node maintains the invariant that the token resides in its segment 0
(see Section 7.4). Our construction indeed provides the nodes with this information, which
can be retrieved from the global representation of Ci. The first node-occurrence in Ci is de-
fined to be the token holder, and each other node can re-number its occurrences along Ci in
the natural manner, so it is consistent with having the token at its segment 0. The above also
holds also for the Robbins cycle Ck constructed in Theorem 7.8.

Remark. Avoiding Global Knowledge: In the above construction, the nodes obtain a global
representation of the cycles Ci they construct. We remark that this knowledge helps in sim-
plifying the construction and reducing the length of the constructed cycle. However, it is not
necessary, and a similar construction can be designed in which each node only holds local
information about Ci, i.e., only its clockwise and counterclockwise neighbors for each of its
occurrences on Ci. We provide here the main differences in such a construction.

(1)Theglobal representation of Ci is used to determine the path Pi between the end points
(root, z) of the newly constructed ear Ei. For the above construction to work, we need every
node to know whether or not it belongs to Pi; if it is part of Pi, then it should appear one
more time in Ci+1. Now, suppose that every node v on Ci knows only a local representation
of Ci, namely, its next and prev neighbors for each occurrence of v on Ci. The path Pi can be
determined in the following way. Once the endpoint z of the ear Ei broadcasts the message
“⟨EarClosedAt⟩, z” over Ci, all the nodes in Ci switch to a new state of “detecting Pi”. In this
state, if a node-occurrence receives a clockwise pulse, it means that this occurrence belongs
to Pi. A counterclockwise pulse signifies that the node-occurrence should quit this new state
and continue executing Algorithm 4(b). In both cases, each pulse is propagated by the node-
occurrence along the same direction it is received.

The nodes use the above mechanism as follows. Once the broadcast of “⟨EarClosedAt⟩, z”
completes at z, it sends a single clockwise pulse. This pulse propagates along Ci until it
reaches a node-occurrence of the root; denote by Pi the path that this pulse has taken. The

172

root does not propagate the pulse, but instead sends a single counterclockwise pulse, which
travels along the entire Ci until reaching that same root node-occurrence again. At this point,
all the node-occurrences that belong to Pi have received a clockwise pulse, and all the node-
occurrences on Ci have received a counterclockwise pulse, so all nodes can continue with the
construction as above. Note that this method also allows the nodes to track the segment in
which the root lies, so that at the end of the construction they can infer the token segment at
any step.

(2) The other place our construction uses the global representation is in πNextRoot, where
the root awaits to receive a message from every node on Ci to knowwhether the construction
is done. However, without a global representation, the root does not know how many nodes
are in Ci and thus it cannot know how many messages to expect. The remedy for this issue
utilizes the token delivery method of Algorithm 3. Namely, we replace Algorithm 6 with the
followingmethod. The root begins by broadcasting ⟨check edges⟩. Every node that still has an
unexplored edge requests the token, and if it receives the token, it sends its ID. The first node
to do so becomes the new root. If no such node exists, the token propagates until it reaches
the (old) root again. In this case, the root acquires the token and broadcasts ⟨completed⟩ to
indicate that the Robbins construction is done.

Remark. Coping with KT0: Algorithm 5 and its noise-resilient form ΠlearnID are KT1 algo-
rithms, in which each node knows the IDs of its neighbors. We remark that we can establish
the learn-ID functionality, and thus the construction of the Robbins cycle, even in KT0 net-
works, in which the IDs of the neighbors of a node are not known to it upon initialization.
Note that Algorithm 5 as stated cannot work in a KT0 network since a node does not know
which node comes immediately next to it in the cycle. In other words, after the root sends its
ID as the first message, this message reaches all other nodes and none of them knows they
are the next one on C0.

We can solve this issue by relying on the order in which the token holder shifts in the
underlying simulator. A KT0 protocol for learning the IDs starts by instructing all the nodes
to broadcast their ID. Thus, all nodes request to be token holders. Once the root sends its own
ID and releases the token, its immediate counterclockwise neighbor becomes the new token
holder. Thus, the IDs are broadcast exactly in their counterclockwise order on C0. Once the
root becomes a token holder again, this process is done.

We also note that the simulator of Section 7.4 only requires local knowledge of a Robbins
cycle and thus can run on KT0 networks with the above pre-processing step. Thus, Theo-
rem 7.2 holds for KT0 networks as well.

7.5.3 The Length of the Obtained Robbins Cycle

We complete this section with a crude analysis of the size of Robbins cycle our construction
obtains and the communication complexity of the construction.

173

Lemma 7.5.4. Let G be a 2-edge-connected graph, and let C be the Robbins cycle constructed

by Theorem 7.8. Then |C| = O(n3). Further, Algorithm 4 communicates O(n8 log n) pulses

altogether.

Proof Given some Ci, it holds that |Ci+1| = |Ci|+ |Ei|+ |Pi|. Since Pi is a shortest (simple)
path between two nodes, we have |Pi| < n, for all iterations i. A bound on the worst-case
length of the Robbins cycle is obtained by considering O(n2) iterations of Algorithm 4, in
each of which, adding only a single edge to the current Ci. In this case, the cycle’s length
extends by O(n) in each of the O(n2) iterations, yielding a total length of O(n3).

Let us now bound the communication complexity. Consider the iteration where the nodes
begin with Ci and construct Ci+1. The πlearnID algorithm communicates at most αi = |Ei|+
|Pi|messages, each of length at most O(αi log n), except for the ⟨done⟩message whose length
isO(|Ci+1| log n). TheπNextRoot algorithm communicates |Ci+1|messages of lengthO(log n).
The rest of Algorithm 4(b) makes O(1) broadcasts of messages of length O(log n), and a single
⟨NewCycle⟩message whose length is αi. Recall that by Lemma 7.4.3, broadcasting a message
of length m over the cycle Ci takes O(|Ci|(m + log n)) pulses.

Next, we argue that theDFS searchwithin a single iteration of Algorithm 4 sendsO(n2) pulses.
To see that, recall that each edge is marked as used once the DFS-token passes through it. Ad-
ditionally, the token might backtrack that edge, but no more pulses should be sent on that
edge, leading to a total of at most 2|E| = O(n2) pulses overall. The above does not hold for
nodes that have backtracked all their edges and reset their state to init, because they also
unmark all their edges and might re-send pulses over edges that were already explored in this
iteration. We argue, however, that such nodes will never get the DFS-token again during that
iteration. Indeed, assume towards contradiction that u is a node that has reset its state during
the current iteration and is the first node that receives the DFS-token after resetting its state,
say, over the edge (u, v). Since u has explored and backtracked all its edges, the DFS-token
must have already passed through the edge (u, v) previously in this iteration. Therefore, it
is marked used by v, and it is impossible that v sends a DFS-token over this edge, unless v

resets its state and unmarks all its edges. However, if v reset its state and then sends a DFS-
token over (u, v), then v must have received the DFS-token after resetting and before u did,
contradicting our choice of u.

We then conclude that the complexity of constructing the Robbins cycle in Algorithm 4
is bounded by

∑
i

[
αi ·O(αi · αi log n) + O(αi · |Ci| log n) + |Ci+1| ·O(|Ci+1| log n) + O(|Ci| log n) + O(n2)

]

pulses. Bounding αi = O(n) and |Ci|, |Ci+1| = O(n3), and the number of iterations i ≤
|E| = O(n2), we conclude that the complexity of constructing the Robbins cycle isO(n8 log n)
pulses. ■

Note that the complexity can be reduced if we assume KT1 networks and global representa-
tion of the constructed cycle. Instead of terminating when all the adjacent edges of all the

174

nodes were explored, we terminate when all nodes see that all their neighbors appear on the
current Ci. Each node can determine this information assuming KT1 knowledge and a global
representation of the cycle. This guarantees that at least one node is added at each iteration of
Algorithm 4, which reduces the number of iterations to i ≤ n. This method leads to a Robbins
cycle of total length O(n2) and a communication complexity of O(n6 log n).

7.6 Impossibility ofResilientCommunication in Fully-Defective
Networks which are not 2-Edge Connected

In this section we complement our simulator for 2-edge-connected graphs, with a proof show-
ing that 2-edge connectivity is required for communication in fully-defective networks. The
intuitive argument is that if the communication network is not 2-edge connected, then a
bridge exists, and corrupting messages over that edge will lead to disconnecting the net-
work, preventing the correct computation of any non-trivial function. Towards that goal
we show the impossibility of asynchronous computation with two parties in the presence of
fully-defective channel noise. The two-party impossibility implies a general impossibility re-
sult for any network that contains a bridge since the two connected components over the two
sides of the bridge can be reduced to the two parties case.

Formalizing the above intuition is slightly more subtle. For the impossibility to hold, we
must require the protocol to give output (or explicitly terminate). To see why, consider the
case of two parties (say, Alice and Bob) that hold the private inputs x and y, respectively, and
need to compute some fixed known function f(x, y). Suppose that, instead of requiring the
protocol to give a non-revocable output, we only require that there exists a time t after which
both parties hold f(x, y) and never change it again. Then, the following protocol succeeds
in computing f in the fully-defective two-party network (stated for Alice; Bob’s protocol is
symmetric): (a) Send x messages to Bob; (b) count← 0; (c) Upon the reception of a message,
count← count + 1; update the output variable to f(x, count).

Nevertheless, if we require the parties to terminate or to give an output, no protocol for
non-trivial functions f exists.

Theorem 7.9. Consider a fully-defective network of two parties connected via a single noisy

channel, and let f(x, y) be any non-constant function. Any two-party deterministic protocol

that computes f and gives an output, is incorrect.

Proof Let f be some non-constant function and assume, without loss of generality, that its
input and output domains are the natural numbers. We can restrict the discussion to protocols
in which each message sent by any of the parties contains a single ‘1’ bit. This is without loss
of generality, since we can equivalently consider the case where the adversary corrupts the
content of any message to be ‘1’. Since the setting is asynchronous, a party can send zero or
more messages as a function of its input and the number of messages it has received so far.
A party is assumed to be idle between the time it sends a batch of messages until the time

175

a new message arrives (which may trigger the transmission of new messages). In particular,
once a new message arrives, the party immediately decides upon the number k ≥ 0 of new
messages to send, transmits them, and then goes back to being idle (or terminates).

Consider some inputs (x, y) and (x′, y) for which f(x, y) ̸= f(x′, y), if no such inputs
exist then a symmetric proof holds for a pair of inputs (x, y) and (x, y′). Fix Bob’s input
to y. Note that once y is fixed, Bob’s actions depend only on the number of messages he has
received so far. That is, we can completely describe Bob’s protocol by the sequence By =
(0, action0)(1, action1)(2, action2) · · · , where for any t ≥ 0, the item (t, actiont) is to be
interpreted as the action Bob performs after seeing t messages fromAlice. The value actiont ∈
{sendk, SendAndOutputk,r}k,r≥0 describes the action Bob takes at that step of the protocol:
sendk means that Bob transmits k messages to Alice, and SendAndOutputk,r means that Bob
sends k messages to Alice and sets its output register (irrevocably) to r, i.e., Bob commits to
the output r. Note that this is a complete characterization of Bob’s protocol. We may assume
that Bob continues to send and receive messages after setting its output, however, if in a later
step Bob performs the action SendAndOutputk,r , then Bob will only send k messages but the
output register will not change.

Also note that Bob progresses sequentially. That is, Bob first performs action0, then
action1, etc. Once Bob receives no further messages from Alice, he stops making any fur-
ther progress. Thus, in order to give an output, Bob must reach some t ≥ 0 where actiont =
SendAndOutputk,r . ConsiderBy and set t̂ = arg mint(actiont ∈ {SendAndOutputk,r}k,r≥0);
we know that t̂ < ∞ and actiont̂ = SendAndOutputk̂,r̂ , with some k̂, r̂ ≥ 0, or otherwise
Bob never gives an output on input y. Finally, we note that Bob acts as described regardless
of Alice’s input: Bob advances sequentially until seeing t̂ messages from Alice, after which it
commits on the output r̂.

Now consider an execution of the protocol on the input (x, y). As described above, Bob
commits on output when performing actiont̂ = SendAndOutputk̂,r̂ . If Bob does not give the
correct output, we are done. Otherwise, r̂ = f(x, y). Next, consider the execution of the
protocol on the input (x′, y). If Bob receives less than t̂ messages overall (and the protocol
then reaches quiescence), Bob does not give an output. Otherwise, upon receiving the t̂-th
message, Bob outputs r̂ = f(x, y). As both these options are incorrect for the input (x′, y),
we have reached a contradiction. ■

7.7 Conclusion and OpenQuestions

We showed that content-oblivious computation, where message content is empty or invalid, is
possible in any 2-edge connected network. Further, this condition is necessary: No non-trivial
computation can be performed in networks that are not 2-edge connected and have a bridge.
Content-oblivious computation may have applications in systems suffering from very harsh
noise or in systems where communication is extremely limited, so nodes can only signal each
other by sending pulses.

We conclude with some open questions and research directions.

176

• Overhead. Our main motivation was to show the feasibility of content-oblivious sim-
ulation, and we did not care too much about the resulting overhead caused by our com-
piler. Finding the minimum overhead for content-obvious simulations and the exact
relationship between topology properties and overhead is an interesting open question.
For example, any graph that can be decomposed into (short) disjoint cycles will have
overhead proportional to its longest cycle length. Can other properties be exploited to
achieve a faster compiler, for example, when the network is k-edge-connected, with
k > 2? Is it possible to simulate computations using an infrastructure other than cy-
cles, such as (a family of) spanning trees? The overhead of the pre-processing phase
can potentially be further reduced. As mentioned in Section 7.5.3, our Robbins Cy-
cle construction exhausts all edges in the network, even when an edge does not add
new nodes to the cycle. Constructing cycles over directed graphs or when edges have
weights (which we try to minimize) might lead to compelling applications.

• A root. The preprocessing phase of our construction assumes that a particular node
has been preselected as the root. We conjecture that this assumption is necessary for
any non-trivial content-oblivious computation.

• Probabilistic protocols. Our construction assumes deterministic algorithms. If the
noiseless protocol is probabilistic, then our compiler will still simulate one specific ex-
ecution of the noiseless protocol. However, this will affect the success probability and
might have further undesired consequences. Extending the simulation and analysis to
probabilistic algorithms remains an interesting open direction.

• Content-oblivious computation of specific tasks. Our compiler can be used to
compute any task (that has a noiseless protocol) in a content-oblivious manner, but
with high overhead. Can some specific tasks be solved more efficiently directly (i.e.,
without applying our general compiler)? In this work, we gave direct constructions for
Robbins Cycle, DFS, and ear-decomposition. In [CGH19], a direct BFS construction was
given. What other tasks can be computed (fast!) in this setting?

177

178

Chapter 8

Conclusion

This thesis explores concurrent and distributed systems guaranteeing efficiency, correctness,
and robustness. We pushed the boundaries of what is possible and introduced novel algo-
rithms that improve upon previous literature: the first methodology for an efficient and cor-
rect concurrent size operation, optimal efficient concurrent durable FIFO queues for NVRAM,
and content-oblivious protocols for computations in fully-defective networks.

In a broader sense, we enhanced our understanding of the limitations of computation in
concurrent and distributed systems. For instance, we identified which network graphs could
tolerate unbounded alteration noise, and proved that the desirable performance and robust-
ness properties we propose for parallel distributed transactional systems cannot be achieved
all together.

The research presented in this thesis opens various avenues for future exploration. Firstly,
our possibility and impossibility results could guide the development of future improved im-
plementations within the feasible design space. As an example, content-oblivious computa-
tion techniques for 2-edge connected networks could be enhanced, e.g., by targeting a specific
more limited topology. Another example is designing PDTSs that satisfy a subset of the per-
formance properties we propose. Secondly, studies similar to ours, exploring variations of
the models and properties we addressed, could lead to new impossibility results and new al-
gorithms for relevant applications. Examining the impact of stronger progress conditions for
parallel distributed transactional systems on performance properties is one potential direc-
tion. Another is developing correct and efficient algorithms for data structures’ aggregate
properties other than size. A summary of our contributions, along with further directions for
future research, follows.

Correctness

We addressed the challenge of obtaining the size of concurrent data structures while maintain-
ing both correctness and efficiency in Chapter 3. Even though the size is an elementary prop-
erty, existing library implementations are incorrect, returning an approximation of the size.
Our proposed methodology for adding a linearizable size operation to concurrent sets and
dictionaries has attractive theoretical properties in terms of progress guarantees and asymp-

179

totic time complexity. Evaluation of correct size computations demonstrated that while our
methodology incurs some overhead on the original operations of the data structures, it sig-
nificantly improves the performance of the size operation—by orders of magnitude compared
to existing solutions—and yields a scalable size operation, with performance insensitive to
the size of the data structure. Reducing the overhead on the original operations remains the
missing piece to making the methodology fully acceptable for data structures in concurrent
libraries in Java, Python, C++, etc. Other than the size property, other kinds of range queries
would benefit from a correct and efficient solution, that would return succinct information
about the input range of data items without taking a snapshot of the target range and travers-
ing its elements. This direction was explored in recent works [KAA24; SP24; FR24].

Linearizability is a widely accepted correctness condition for concurrent objects. In Chap-
ter 4 we drew attention to a somewhat-neglected aspect of linearizability concerning the han-
dling of pending invocations, particularly relevant for systems with non-volatile main mem-
ory. We identified a typo in the original definition of linearizability which impacts this aspect,
and provided an amendment to correct the definition. We believe that rigorously addressing
this issue is important and timely.

Performance

Inspired by recent advancements in network capabilities, we studied in Chapter 5 distributed
transactional systems that leverage server parallelism. We formalized performance proper-
ties of distributed transactional systems—distributed disjoint-access parallelism, a fast deci-
sion path for transactions, and seamless fault tolerance—and demonstrated their inherent
tensions with well-known multicore scalability properties. Specifically, we proved that seri-
alizable transactional systems that guarantee a minimal progress condition cannot satisfy all
desirable properties, but could satisfy any subset of them. Future research could thus focus
on designing practical algorithms that give up just one property, chosen according to the tar-
geted applications and workloads. Examining whether the tension still exists between weaker
variants of the properties we considered could also contribute to the future development of
improved transactional systems.

Fault Tolerance

We studied fault tolerance in the presence of different kinds of failures across different sys-
tems. In Chapter 6we considered systems utilizing newNVRAM technologies. We introduced
a guideline for designing efficient durable algorithms for current NVRAM architectures, dic-
tating to reduce accesses to flushed memory. We demonstrated the advantage of following
this guideline with durable queues. After initially implementing queues that adhered to the
known guideline of minimizing the fence count and not achieving the expected performance
gains, we further amended them to ensure zero accesses to flushed memory. This led to a
significant performance improvement on Intel Optane NVRAM, which highlights the impor-
tance of our general guideline. This guideline may contribute to an efficient design of future

180

implementations of concurrent durable data structures, including other queue implementa-
tions, a research topic that has garnered attention from others as well [e.g., FKK22; FGM24].

In Chapter 7 we examined another kind of fault: unlimited alteration channel noise in
distributed systems. We demonstrated that content-oblivious computation is feasible in any
2-edge connected network, but a non-trivial content-oblivious computation is impossible in
networks that are not 2-edge connected. This finding has applications in environments with
severe noise, and ones with limited communication where nodes can only signal each other
with pulses. Improving the overhead of content-oblivious simulations and analyzing the min-
imal possible overhead and its relationship with the network topology remains an open ques-
tion. Tailoring content-oblivious computation for specific tasks could help reduce the over-
head. Our work has already sparked further research aimed at eliminating the assumption of
a preselected distinguished node, as evident in a study presenting a content-oblivious algo-
rithm for leader election on rings [FGGN24].

181

182

Bibliography

[22] Java platform version 18 api specification. 2022. url: https://docs.oracle.com/
en/java/javase/18/docs/api/index.html.

[AAD+93] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir
Shavit. Atomic snapshots of shared memory. JACM, 40(4), 1993.

[AB18] Maya Arbel-Raviv and Trevor Brown. Harnessing epoch-based reclamation for
efficient range queries. In PPoPP, 2018.

[ABC+18] Marcos K Aguilera, Naama Ben-David, Irina Calciu, Rachid Guerraoui, Erez Pe-
trank, and Sam Toueg. Passing messages while sharing memory. In Proceedings

of the 2018 ACM symposium on principles of distributed computing, pages 51–60,
2018.

[ABE+19] Noga Alon, Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeu-
pler. Reliable communication over highly connected noisy networks.Distributed

Computing, 32(6):505–515, 2019. url: https://doi.org/10.1007/s00446-017-
0303-5.

[ABG+19] Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra Marathe,
and Igor Zablotchi. The impact of RDMA on agreement. In Proceedings of the

2019 ACM Symposium on Principles of Distributed Computing, pages 409–418,
2019.

[ABG+20] Marcos K Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J Marathe,
Athanasios Xygkis, and Igor Zablotchi. Microsecond consensus for microsecond
applications. In 14th USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI 20), pages 599–616, 2020.

[ADG+21] Karolos Antoniadis, Antoine Desjardins, Vincent Gramoli, Rachid Guerraoui,
and Igor Zablotchi. Leaderless consensus. In 2021 IEEE 41st International Confer-

ence on Distributed Computing Systems (ICDCS), pages 392–402. IEEE, 2021.

[ADHS18] Abhinav Aggarwal, Varsha Dani, Thomas P. Hayes, and Jared Saia. Sending a
message with unknown noise. In Proceedings of the 19th International Conference

on Distributed Computing and Networking, ICDCN ’18, Varanasi, India. Associa-
tion for Computing Machinery, 2018.

183

https://docs.oracle.com/en/java/javase/18/docs/api/index.html
https://docs.oracle.com/en/java/javase/18/docs/api/index.html
https://doi.org/10.1007/s00446-017-0303-5
https://doi.org/10.1007/s00446-017-0303-5

[ADHS20] Abhinav Aggarwal, Varsha Dani, Thomas P. Hayes, and Jared Saia. A scalable
algorithm for multiparty interactive communication with private channels. In
Proceedings of the 21st International Conference on Distributed Computing and

Networking, ICDCN 2020. Association for Computing Machinery, 2020.

[AF03] Marcos K Aguilera and Svend Frølund. Strict linearizability and the power of
aborting. Technical Report HPL-2003-241, 2003. url: https://hpl.hp.com/techr
eports/2003/HPL-2003-241.html.

[AF15] Hagit Attiya and Panagiota Fatourou. Disjoint-access parallelism in software
transactional memory. In Transactional Memory. Foundations, Algorithms, Tools,

and Applications, pages 72–97. Springer, 2015.

[AH12] Hagit Attiya and Eshcar Hillel. The cost of privatization in software transac-
tional memory. IEEE Transactions on Computers, 62(12):2531–2543, 2012.

[AHM11] Hagit Attiya, Eshcar Hillel, and Alessia Milani. Inherent limitations on disjoint-
access parallel implementations of transactional memory. Theory of Computing

Systems, 49(4):698–719, 2011.

[AHS94] JamesAspnes,MauriceHerlihy, andNir Shavit. Counting networks. JACM, 41(5),
1994.

[AS08] Hillel Avni and Nir Shavit. Maintaining consistent transactional states without
a global clock. In Colloquium on Structural Information & Communication Com-

plexity, 2008.

[AS10] Hiroyuki Akinaga andHisashi Shima. Resistive random accessmemory (ReRAM)
based on metal oxides. Proceedings of the IEEE, 98(12), 2010.

[AST12] Yehuda Afek, Nir Shavit, and Moran Tzafrir. Interrupting snapshots and the
java™ size method. Journal of Parallel and Distributed Computing, 72(7), 2012.

[AW04] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simula-

tions, and advanced topics. John Wiley & Sons, 2004.

[BCP16] Anastasia Braginsky, Nachshon Cohen, and Erez Petrank. CBPQ: high perfor-
mance lock-free priority queue. In Euro-Par, 2016.

[BDFG14] Victor Bushkov, Dmytro Dziuma, Panagiota Fatourou, and Rachid Guerraoui.
The pcl theorem: transactions cannot be parallel, consistent and live. In Proceed-

ings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures,
pages 178–187, 2014.

[BDM93] Michael Barborak, Anton Dahbura, and Miroslaw Malek. The consensus prob-
lem in fault-tolerant computing. ACM Computing Surveys (CSur), 25(2):171–220,
1993.

[BDY+21] Heng Bu, Ming-Kai Dong, Ji-Fei Yi, Bin-Yu Zang, and Hai-Bo Chen. Revisiting
persistent indexing structures on intel optane dc persistent memory. Journal of
Computer Science and Technology, 36(1), 2021.

184

https://hpl.hp.com/techreports/2003/HPL-2003-241.html
https://hpl.hp.com/techreports/2003/HPL-2003-241.html

[BEGH17] Mark Braverman, KlimEfremenko, RanGelles, and BernhardHaeupler. Constant-
rate coding for multiparty interactive communication is impossible. J. ACM,
65(1):4:1–4:41, December 2017.

[BGT15] Ryan Berryhill, Wojciech Golab, andMahesh Tripunitara. Robust shared objects
for non-volatile main memory. In OPODIS, 2015.

[BHG86] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Con-

trol and Recovery in Database Systems. Addison-Wesley Longman Publishing Co.,
Inc., USA, 1986.

[Bie03] Martin Biely. An optimal byzantine agreement algorithm with arbitrary node
and link failures. In Fifteenth IASTED International Conference on Parallel and

Distributed Computing and Systems, volume 1, pages 146–151, 2003.

[Boy14] Silas Boyd-Wickizer.Optimizing communication bottlenecks in multiprocessor op-

erating system kernels. PhD thesis, Massachusetts Institute of Technology, 2014.

[BP12] Anastasia Braginsky and Erez Petrank. A lock-free B+ tree. In SPAA, 2012.

[BR21] Hadi Brais and Andy Rudoff. Reply to on x86-64, is the ”movnti” or ”movntdq”
instruction atomic when system crash? 2021. url: https://stackoverflow.com/
a/65587308/7289606.

[Bro18] Trevor Brown. Java lock-free data structure library. 2018. url: https ://bitb
ucket .org/trbot86/implementations/src/master/java/src/algorithms/
published.

[BSS23a] Naama Ben-David, Gal Sela, and Adriana Szekeres. The FIDS theorems: ten-
sions between multinode and multicore performance in transactional systems.
In DISC, 2023.

[BSS23b] Naama Ben-David, Gal Sela, and Adriana Szekeres.The FIDS theorems: tensions
between multinode and multicore performance in transactional systems. arXiv

preprint, 2023. eprint: 2308.03919.

[CBB14] Dhruva R Chakrabarti, Hans-J Boehm, and Kumud Bhandari. Atlas: leveraging
locks for non-volatile memory consistency. ACM SIGPLAN Notices, 49(10), 2014.

[CCA+11] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K Gupta,
Ranjit Jhala, and Steven Swanson. NV-Heaps: making persistent objects fast and
safe with next-generation, non-volatile memories. In ASPLOS, 2011.

[CCGS22] Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed compu-
tations in fully-defective networks. In PODC, 2022.

[CCGS23] Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed compu-
tations in fully-defective networks. DC, 2023.

185

https://stackoverflow.com/a/65587308/7289606
https://stackoverflow.com/a/65587308/7289606
https://bitbucket.org/trbot86/implementations/src/master/java/src/algorithms/published
https://bitbucket.org/trbot86/implementations/src/master/java/src/algorithms/published
https://bitbucket.org/trbot86/implementations/src/master/java/src/algorithms/published
2308.03919

[CDE+12] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quin-
lan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher
Taylor, Ruth Wang, and Dale Woodford. Spanner: google’s globally-distributed
database. In Proceedings of the 10th USENIX Conference on Operating Systems

Design and Implementation (OSDI’12), 2012.

[CFL17] Nachshon Cohen, Michal Friedman, and James R Larus. Efficient logging in non-
volatile memory by exploiting coherency protocols. PACMPL, 1(OOPSLA), 2017.

[CFR18] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Romulus: efficient algo-
rithms for persistent transactional memory. In SPAA, 2018.

[CFR20] Andreia Correia, Pascal Felber, and Pedro Ramalhete. Persistent memory and
the rise of universal constructions. In EuroSys, 2020.

[CGH19] Keren Censor-Hillel, Ran Gelles, and Bernhard Haeupler. Making asynchronous
distributed computations robust to noise. Distributed Computing, 32(5):405–421,
October 2019.

[CGZ18] Nachshon Cohen, Rachid Guerraoui, and Igor Zablotchi. The inherent cost of
remembering consistently. In SPAA, 2018.

[CJ15] Shimin Chen and Qin Jin. Persistent B+-trees in non-volatile main memory.
VLDB, 8(7), 2015.

[CKZ+13] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T. Morris,
and Eddie Kohler. The scalable commutativity rule: designing scalable software
for multicore processors. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP ’13, pages 1–17, Farminton, Pennsylvania.
Association for Computing Machinery, 2013.

[CL12] James Cowling and BarbaraH. Liskov. Granola: Low-OverheadDistributed Trans-
action Coordination. In Proceedings of 2012 USENIX Annual Technical Conference

(USENIX ATC’12), pages 223–236, 2012.

[CST+10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Rus-
sell Sears. Benchmarking cloud serving systems with ycsb. In SoCC, 2010.

[Das98] Pallab Dasgupta. Agreement under faulty interfaces. Information Processing Let-

ters, 65(3):125–129, 1998.

[DDGZ18] TudorDavid, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi. Log-
free concurrent data structures. In USENIX ATC, 2018. url: https://usenix.org/
conference/atc18/presentation/david.

186

https://usenix.org/conference/atc18/presentation/david
https://usenix.org/conference/atc18/presentation/david

[DGL05] Partha Dutta, Rachid Guerraoui, and Leslie Lamport. How fast can eventual syn-
chrony lead to consensus? In 2005 International Conference on Dependable Sys-

tems and Networks (DSN’05), pages 22–27. IEEE, 2005.

[DGT15] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized con-
currency: the secret to scaling concurrent search data structures. In ASPLOS,
2015.

[DHW97] Cynthia Dwork, Maurice Herlihy, and Orli Waarts. Contention in shared mem-
ory algorithms. JACM, 44(6), 1997.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the pres-
ence of partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[DMSY15] Varsha Dani, Mahnush Movahedi, Jared Saia, and Maxwell Young. Interactive
communication with unknown noise rate. In Automata, Languages, and Pro-

gramming: 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,

2015, Proceedings, Part II, pages 575–587. Springer Berlin Heidelberg, 2015.

[DNN+15] AleksandarDragojević, DushyanthNarayanan, EdmundB. Nightingale,Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No compro-
mises: distributed transactions with consistency, availability, and performance.
In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,
pages 54–70, Monterey, California. Association for Computing Machinery, 2015.
url: https://doi.org/10.1145/2815400.2815425.

[Dol82] DannyDolev.The byzantine generals strike again. Journal of Algorithms, 3(1):14–
30, 1982.

[DTM+18] Benoit Daloze, Arie Tal, Stefan Marr, Hanspeter Mössenböck, and Erez Petrank.
Parallelization of dynamic languages: synchronizing built-in collections. PACMPL,
2(OOPSLA), 2018.

[Dub13] Elena Dubrova. Fault-Tolerant Design. Springer, 2013.

[EFRvB10] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-
blocking binary search trees. In PODC, 2010.

[EGG+22] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek, Richard Krog,
Colin Lazier, ErbenMo, AkhileshMritunjai, Somasundaram Perianayagam, Tim
Rath, Swami Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul,
Doug Terry, and Akshat Vig. Amazon DynamoDB: a scalable, predictably per-
formant, and fully managed NoSQL database service. In 2022 USENIX Annual

Technical Conference (USENIX ATC 22), 2022.

187

https://doi.org/10.1145/2815400.2815425

[EHK20] Klim Efremenko, Elad Haramaty, and Yael Tauman Kalai. Interactive Coding
with Constant Round and Communication Blowup. In 11th Innovations in The-

oretical Computer Science Conference (ITCS 2020), volume 151 of Leibniz Inter-

national Proceedings in Informatics (LIPIcs), 7:1–7:34. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2020.

[FBW+20] Michal Friedman, Naama Ben-David, Yuanhao Wei, Guy E Blelloch, and Erez
Petrank. NVTraverse: in NVRAM data structures, the destination is more im-
portant than the journey. In PLDI, 2020.

[FFMR10] Pascal Felber, Christof Fetzer, Patrick Marlier, and Torvald Riegel. Time-based
software transactional memory. IEEE Transactions on Parallel and Distributed

Systems, 21(12):1793–1807, 2010.

[FGGN24] Fabian Frei, Ran Gelles, Ahmed Ghazy, and Alexandre Nolin. Brief announce-
ment: content-oblivious leader election on rings. In PODC, 2024.

[FGM24] Panagiota Fatourou, Nikos Giachoudis, and George Mallis. Highly-efficient per-
sistent FIFO queues. In SIROCCO, 2024.

[FHMP18] Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. A per-
sistent lock-free queue for non-volatile memory. In PPoPP, 2018.

[FHMV04] Ronald Fagin, Joseph Y Halpern, Yoram Moses, and Moshe Vardi. Reasoning
about knowledge. MIT press, 2004.

[FK12] Panagiota Fatourou and Nikolaos D Kallimanis. Revisiting the combining syn-
chronization technique. In PPoPP, 2012.

[FKK22] Panagiota Fatourou, Nikolaos D Kallimanis, and Eleftherios Kosmas.The perfor-
mance power of software combining in persistence. In PPoPP, 2022.

[FLP85] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. JACM, 32(2), 1985.

[FPR21] Michal Friedman, Erez Petrank, and Pedro Ramalhete. Mirror: making lock-free
data structures persistent. In PLDI, 2021.

[FR24] Panagiota Fatourou and Eric Ruppert. Lock-free augmented trees. arXiv preprint,
2024. eprint: 2405.10506.

[Fra04] Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, UK,
2004.

[FTA14] Jose M. Faleiro, Alexander Thomson, and Daniel J. Abadi. Lazy evaluation of
transactions in database systems. In SIGMOD ’14, 2014.

[Gel17] Ran Gelles. Coding for interactive communication: a survey. Foundations and

Trends® in Theoretical Computer Science, 13(1–2):1–157, 2017.

188

2405.10506

[GI20] Ran Gelles and Siddharth Iyer. Interactive Coding Resilient to an Unknown
Number of Erasures. In 23rd International Conference on Principles of Distributed

Systems (OPODIS 2019), volume 153, 13:1–13:16. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2020.

[GK08] Rachid Guerraoui and Michal Kapalka. On obstruction-free transactions. In Pro-

ceedings of the twentieth annual symposium on Parallelism in algorithms and ar-

chitectures, pages 304–313, 2008.

[GK19] RanGelles and Yael T. Kalai. Constant-rate interactive coding is impossible, even
in constant-degree networks. IEEE Transactions on InformationTheory, 65(6):3812–
3829, 2019.

[GKR19] Ran Gelles, Yael Tauman Kalai, and Govind Ramnarayan. Efficient multiparty
interactive coding for insertions, deletions, and substitutions. In Proceedings of

the 2019 ACM Symposium on Principles of Distributed Computing, PODC ’19,
pages 137–146, Toronto ON, Canada. ACM, 2019. url: https ://doi .org/10.
1145/3293611.3331621.

[GL04] Rachid Guerraoui and Ron R Levy. Robust emulations of shared memory in a
crash-recovery model. In ICDCS, 2004.

[GLR95] Li Gong, Patrick Lincoln, and John Rushby. Byzantine agreement with authen-
tication: observations and applications in tolerating hybrid and link faults. In
Dependable Computing and Fault Tolerant Systems, volume 10, pages 139–158.
IEEE Computer Society, 1995. url: http://www.csl.sri.com/papers/dcca95/
dcca95.pdf.

[GMS14] Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient coding for interactive com-
munication. IEEE Transactions on Information Theory, 60(3):1899–1913, March
2014.

[Gra78] J.N. Gray. Notes on data base operating systems. In Operating Systems. Vol-
ume 60, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, 1978.

[Hao19] Xiangpeng Hao. Is clwb actually implemented? 2019. url: https://blog.haoxp.
xyz/posts/is-clwb-implemented.

[Har01] Timothy L Harris. A pragmatic implementation of non-blocking linked-lists. In
DISC, 2001.

[Her91] Maurice Herlihy. Wait-free synchronization. TOPLAS, 13(1), 1991.

[HHL+05] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N Scherer,
and Nir Shavit. A lazy concurrent list-based set algorithm. In OPODIS, 2005.

[HLH+13] AndreasHaas,Michael Lippautz,ThomasAHenzinger, Hannes Payer, Ana Sokolova,
Christoph M Kirsch, and Ali Sezgin. Distributed queues in shared memory: mul-
ticore performance and scalability through quantitative relaxation. In CF, 2013.

189

https://doi.org/10.1145/3293611.3331621
https://doi.org/10.1145/3293611.3331621
http://www.csl.sri.com/papers/dcca95/dcca95.pdf
http://www.csl.sri.com/papers/dcca95/dcca95.pdf
https://blog.haoxp.xyz/posts/is-clwb-implemented
https://blog.haoxp.xyz/posts/is-clwb-implemented

[HLLS07] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple opti-
mistic skiplist algorithm. In SIROCCO, 2007.

[HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N Scherer III. Soft-
ware transactional memory for dynamic-sized data structures. In Proceedings

of the twenty-second annual symposium on Principles of distributed computing,
pages 92–101, 2003.

[HM90] Joseph Y Halpern and Yoram Moses. Knowledge and common knowledge in a
distributed environment. Journal of the ACM (JACM), 37(3):549–587, 1990.

[HP21a] Yael Hitron and Merav Parter. Broadcast CONGEST algorithms against adver-
sarial edges. In Seth Gilbert, editor, 35th International Symposium on Distributed

Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference),
volume 209 of LIPIcs, 23:1–23:19. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021. url: https://doi.org/10.4230/LIPIcs.DISC.2021.23.

[HP21b] Yael Hitron and Merav Parter. General CONGEST compilers against adversar-
ial edges. In Seth Gilbert, editor, 35th International Symposium on Distributed

Computing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference),
volume 209 of LIPIcs, 24:1–24:18. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2021. url: https://doi.org/10.4230/LIPIcs.DISC.2021.24.

[HS08] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan
Kaufmann, 2008.

[HS16] William M. Hoza and Leonard J. Schulman. The adversarial noise threshold for
distributed protocols. In Proceedings of the Twenty-Seventh Annual ACM-SIAM

Symposium on Discrete Algorithms, chapter 18, pages 240–258, 2016.

[HSS07] Moshe Hoffman, Ori Shalev, and Nir Shavit.The baskets queue. InOPODIS, 2007.

[HW90] Maurice Herlihy and JeannetteM.Wing. Linearizability: a correctness condition
for concurrent objects. TOPLAS, 12(3), 1990.

[IBM] IBM. IBM MQ. url: https://ibm.com/software/products/en/ibm-mq.

[IMS16] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. Linearizability of
persistent memory objects under a full-system-crash failure model. In DISC,
2016.

[Int19] Intel. 3D XPoint™ : a breakthrough in non-volatile memory technology. 2019.
url: https://intel.com/content/www/us/en/architecture-and-technology/
intel-micron-3d-xpoint-webcast.html.

[Int20] Intel. Intel®64 and IA-32 architectures software developer’s manual. 2020. url:
https : / / software . intel . com / content / dam / develop / external / us / en /
documents-tps/325462-sdm-vol-1-2abcd-3abcd.pdf.

190

https://doi.org/10.4230/LIPIcs.DISC.2021.23
https://doi.org/10.4230/LIPIcs.DISC.2021.24
https://ibm.com/software/products/en/ibm-mq
https://intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents-tps/325462-sdm-vol-1-2abcd-3abcd.pdf

[IR94] Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of
strong shared memory primitives. In Proceedings of the Thirteenth Annual ACM

Symposium on Principles of Distributed Computing, PODC ’94, pages 151–160,
Los Angeles, California, USA. Association for Computing Machinery, 1994. url:
https://doi.org/10.1145/197917.198079.

[Jay05] Prasad Jayanti. An optimal multi-writer snapshot algorithm. In STOC, 2005.

[JKL15] Abhishek Jain, Yael Tauman Kalai, and Allison Lewko. Interactive coding for
multiparty protocols. In Proceedings of the 6th Conference on Innovations in The-

oretical Computer Science, ITCS ’15, pages 1–10, 2015.

[KAA24] Ilya Kokorin, DanAlistarh, andVitalyAksenov.Wait-free trees supporting asymp-
totically efficient range queries. In IPDPS, 2024.

[KAK20] Anuj Kalia, David Andersen, and Michael Kaminsky. Challenges and solutions
for fast remote persistent memory access. In SoCC, 2020.

[KK20] Israel Koren and C. Mani Krishna, editors. Fault-Tolerant Systems. Morgan Kauf-
mann, San Francisco (CA), second edition edition, 2020, page xi.

[KLP13] Christoph M Kirsch, Michael Lippautz, and Hannes Payer. Fast and scalable,
lock-free k-FIFO queues. In PaCT, 2013.

[KPF+13] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
MDCC: Multi-Data Center Consistency. In Proceedings of the 8th ACM European

Conference on Computer Systems, EuroSys ’13, pages 113–126, Prague, Czech
Republic. Association for Computing Machinery, 2013. url: https://doi.org/
10.1145/2465351.2465363.

[KPS+16] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M Chen, and Thomas F Wenisch.
High-performance transactions for persistent memories. In ASPLOS, 2016.

[KR00] A. Kazmierczak and S. Radhakrishnan. An optimal distributed ear decomposi-
tion algorithm with applications to biconnectivity and outerplanarity testing.
IEEE Transactions on Parallel and Distributed Systems, 11(2):110–118, 2000.

[KR01] Idit Keidar and Sergio Rajsbaum. On the cost of fault-tolerant consensus when
there are no faults: preliminary version. ACM SIGACT News, 32(2):45–63, 2001.

[KWQ+12] Manos Kapritsos, Yang Wang, Vivien Quema, Allen Clement, Lorenzo Alvisi,
andMikeDahlin. All about eve: execute-verify replication formulti-core servers.
In Proceedings of the 10th USENIX Conference on Operating Systems Design and

Implementation, OSDI’12, pages 237–250, Hollywood, CA, USA. USENIX Asso-
ciation, 2012.

[Lam01] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing

Column) 32, 4 (Whole Number 121, December 2001):51–58, 2001.

[Lam06a] Leslie Lamport. Fast paxos. Distributed Comput., 19(2):79–103, 2006. url: https:
//doi.org/10.1007/s00446-006-0005-x.

191

https://doi.org/10.1145/197917.198079
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1007/s00446-006-0005-x
https://doi.org/10.1007/s00446-006-0005-x

[Lam06b] Leslie Lamport. Lower bounds for asynchronous consensus. Distrib. Comput.,
19(2):104–125, October 2006. url: https://doi.org/10.1007/s00446-006-0155-
x.

[Lam06c] Leslie Lamport. Lower bounds for asynchronous consensus. Distrib. Comput.,
19(2):104–125, October 2006. url: https://doi.org/10.1007/s00446-006-0155-
x.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978. url: https : / / doi . org / 10 . 1145 /
359545.359563.

[Lam79] Leslie Lamport. How tomake amultiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, 28(9), 1979.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Sys-

tems, 16(2):133–169, 1998.

[Lea04] Doug Lea. The java concurrency package (jsr-166), 2004. url: http://gee.cs.
oswego.edu/dl/concurrency-interest.

[Lea09] Doug Lea. The java concurrency package (JSR-166), 2009.

[LLS+17] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H Noh.
WORT: write optimal radix tree for persistent memory storage systems. In FAST,
2017.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010. url: https://
doi.org/10.1145/1773912.1773922.

[LMP17] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris: coordination-free consistent
transactions using in-network concurrency control. In Proceedings of the 26th

Symposium on Operating Systems Principles (SOSP’17), SOSP ’17, 2017.

[Lov85] L. Lovasz. Computing ears and branchings in parallel. In 26th Annual Symposium

on Foundations of Computer Science, pages 464–467, 1985.

[LS04] Edya Ladan-Mozes and Nir Shavit. An optimistic approach to lock-free FIFO
queues. In Distributed Computing, 2004.

[LV15] Allison Lewko and Ellen Vitercik. Balancing communication for multi-party in-
teractive coding, 2015. arXiv: 1503.06381.

[Lyn96] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

[MA13] AdamMorrison and Yehuda Afek. Fast concurrent queues for x86 processors. In
PPoPP, 2013.

[MAK12] Iulian Moraru, David G Andersen, and Michael Kaminsky. Egalitarian paxos. In
ACM Symposium on Operating Systems Principles, 2012.

192

https://doi.org/10.1007/s00446-006-0155-x
https://doi.org/10.1007/s00446-006-0155-x
https://doi.org/10.1007/s00446-006-0155-x
https://doi.org/10.1007/s00446-006-0155-x
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
http://gee.cs.oswego.edu/dl/concurrency-interest
http://gee.cs.oswego.edu/dl/concurrency-interest
https://doi.org/10.1145/1773912.1773922
https://doi.org/10.1145/1773912.1773922
https://arxiv.org/abs/1503.06381

[Mic02] Maged M. Michael. High performance dynamic lock-free hash tables and list-
based sets. In SPAA, 2002.

[MIS20] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. Pronto: easy
and fast persistence for volatile data structures. In ASPLOS, 2020.

[MMT+18] Virendra Marathe, Achin Mishra, Amee Trivedi, Yihe Huang, Faisal Zaghloul,
Sanidhya Kashyap, Margo Seltzer, Tim Harris, Steve Byan, Bill Bridge, et al. Per-
sistent memory transactions. arXiv preprint, 2018. eprint: 1804.00701.

[MNLL16] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating con-
currency control and consensus for commits under conflicts. In Proceedings of

the 12th USENIX Conference on Operating Systems Design and Implementation,
OSDI’16, pages 517–532, Savannah, GA, USA. USENIX Association, 2016.

[MRG16] Remigius Meier, Armin Rigo, and Thomas R Gross. Parallel virtual machines
with rpython. In DLS, 2016.

[MS96] MagedM. Michael andMichael L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In PODC, 1996.

[NHP22] Jacob Nelson-Slivon, Ahmed Hassan, and Roberto Palmieri. Bundling linked
data structures for linearizable range queries. In PPoPP, 2022.

[NM14] Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search
trees. In PPoPP, 2014.

[OLN+16] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang
Lehner. FPTree: A hybrid SCM-DRAM persistent and concurrent B-tree for stor-
age class memory. In SIGMOD, 2016.

[OM20] Or Ostrovsky and AdamMorrison. Scaling concurrent queues by using HTM to
profit from failed atomic operations. In PPoPP, 2020.

[OO14] Diego Ongaro and John Ousterhout. In search of an understandable consen-
sus algorithm. In 2014 USENIX Annual Technical Conference (Usenix ATC 14),
pages 305–319, 2014.

[Ora] Oracle. Oracle Tuxedo Message Queue. url: https://docs .oracle .com/cd/
E35855_01/otmq/docs12c/overview/overview.html.

[Pap79] Christos H Papadimitriou. The serializability of concurrent database updates.
Journal of the ACM (JACM), 26(4):631–653, 1979.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society for
Industrial and Applied Mathematics, 2000.

[Pel92] Andrzej Pelc. Reliable communication in networks with byzantine link failures.
Networks, 22(5):441–459, 1992.

193

1804.00701
https://docs.oracle.com/cd/E35855_01/otmq/docs12c/overview/overview.html
https://docs.oracle.com/cd/E35855_01/otmq/docs12c/overview/overview.html

[PPR+15] Sebastiano Peluso, Roberto Palmieri, Paolo Romano, Binoy Ravindran, and Francesco
Quaglia. Disjoint-access parallelism: impossibility, possibility, and cost of trans-
actional memory implementations. In Proceedings of the 2015 ACM Symposium

on Principles of Distributed Computing, pages 217–226, 2015.

[PT13] Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In DISC,
2013.

[PT86] Kenneth J. Perry and Sam Toueg. Distributed agreement in the presence of pro-
cessor and communication faults. IEEE Transactions on Software Engineering, SE-
12(3):477–482, 1986.

[PY19a] Merav Parter and Eylon Yogev. Low congestion cycle covers and their applica-
tions. In TimothyM. Chan, editor, Proceedings of theThirtieth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, Jan-

uary 6-9, 2019, pages 1673–1692. SIAM, 2019. url: https://doi.org/10.1137/1.
9781611975482.101.

[PY19b] Merav Parter and Eylon Yogev. Optimal Short Cycle Decomposition in Almost
Linear Time. In 46th International Colloquium on Automata, Languages, and Pro-

gramming (ICALP 2019), volume 132, 89:1–89:14. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2019.

[Ram93] Vijaya Ramachandran. Parallel open ear decomposition applications to graph
biconnectivity and triconnectivity. In Synthesis of Parallel Algorithms, chapter 7.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[Ray18] Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems: An Algorith-

mic Approach. Springer, Cham, 2018, page 459.

[RBB+08] Simone Raoux, Geoffrey W Burr, Matthew J Breitwisch, Charles T Rettner, Y-C
Chen, Robert M Shelby, Martin Salinga, Daniel Krebs, S-H Chen, H-L Lung, et
al. Phase-change random access memory: a scalable technology. IBM Journal of

Research and Development, 52(4.5), 2008.

[RCFC19] Pedro Ramalhete, Andreia Correia, Pascal Felber, and Nachshon Cohen. OneFile:
a wait-free persistent transactional memory. In DSN, 2019.

[RHH09] Amitabha Roy, Steven Hand, and Tim Harris. Exploring the limits of disjoint
access parallelism. In Proceedings of the 1st USENIX Workshop on Hot Topics in

Parallelism, Berkeley, CA, 2009.

[Rob39] Herbert Ellis Robbins. A theorem on graphs, with an application to a problem
of traffic control. The American Mathematical Monthly, 1939.

[RS94] Sridhar Rajagopalan and Leonard Schulman. A coding theorem for distributed
computation. In STOC ’94: Proceedings of the twenty-sixth annual ACM sympo-

sium on Theory of computing, pages 790–799, 1994.

194

https://doi.org/10.1137/1.9781611975482.101
https://doi.org/10.1137/1.9781611975482.101

[RST01] Yaron Riany, Nir Shavit, and Dan Touitou. Towards a practical snapshot algo-
rithm. Theoretical Computer Science, 269(1-2), 2001.

[Rud19] Andy Rudoff. Reply to how to use clwb instructions. 2019. url: https://groups.
google.com/g/pmem/c/R8H3sKq9sLQ/m/ltL7Kng4BAAJ.

[Rud20] Andy Rudoff. Reply to 8 byte atomicity & larger store operations. 2020. url:
https://groups.google.com/g/pmem/c/6%5C_5daOuEI00/m/nY%5C_
mtKd0CAAJ.

[RWNV20] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. Persistency se-
mantics of the Intel-x86 architecture. PACMPL, 4(POPL), 2020.

[SAA95] HasanM. Sayeed, Marwan Abu-Amara, and Hosame Abu-Amara. Optimal asyn-
chronous agreement and leader election algorithm for complete networks with
byzantine faulty links. Distributed Computing, 9(3):147–156, December 1995.

[SAKM09] Yee Jiun Song, Marcos K. Aguilera, Ramakrishna Kotla, and Dahlia Malkhi. Rpc
chains: efficient client-server communication in geodistributed systems. In Pro-

ceedings of the 6th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI’09), 2009.

[Sca20] Steve Scargall. Programming persistent memory: A comprehensive guide for devel-

opers. Springer Nature, 2020.

[Sch13] Jens M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Informa-

tion Processing Letters, 113(7):241–244, 2013.

[Sch92] Leonard J. Schulman. Communication on noisy channels: a coding theorem for
computation. Foundations of Computer Science, Annual IEEE Symposium on:724–
733, 1992.

[Sch93] Leonard J. Schulman. Deterministic coding for interactive communication. In
STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of

computing, pages 747–756, San Diego, California, United States. ACM, 1993.

[SCY98] Hin-Sing Siu, Yeh-Hao Chin, and Wei-Pang Yang. Byzantine agreement in the
presence of mixed faults on processors and links. IEEE Transactions on Parallel

and Distributed Systems, 9(4):335–345, April 1998.

[SGP18] Gali Sheffi, Guy Golan-Gueta, and Erez Petrank. A scalable linearizable multi-
index table. In ICDCS, 2018.

[SHP21a] Gal Sela, Maurice Herlihy, and Erez Petrank. Brief announcement: linearizabil-
ity: a typo. In PODC, 2021.

[SHP21b] Gal Sela,MauriceHerlihy, and Erez Petrank. Linearizability: a typo. arXiv preprint,
2021. eprint: 2105.06737.

[SKL+18] Gal Sela-Milman, Alex Kogan, Yossi Lev, Victor Luchangco, and Erez Petrank.
BQ: a lock-free queue with batching. In SPAA, 2018.

195

https://groups.google.com/g/pmem/c/R8H3sKq9sLQ/m/ltL7Kng4BAAJ
https://groups.google.com/g/pmem/c/R8H3sKq9sLQ/m/ltL7Kng4BAAJ
https://groups.google.com/g/pmem/c/6%5C_5daOuEI00/m/nY%5C_mtKd0CAAJ
https://groups.google.com/g/pmem/c/6%5C_5daOuEI00/m/nY%5C_mtKd0CAAJ
2105.06737

[SNI17] SNIA. NVM programming model (NPM). 2017. url: https://snia.org/sites/
default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf.

[Sof] Pivotal Software. RabbitMQ. url: https://rabbitmq.com.

[SP21a] Gal Sela and Erez Petrank. Durable queues: the second amendment. In SPAA,
2021.

[SP21b] Gal Sela and Erez Petrank. Durable queues: the second amendment. arXiv preprint,
2021. eprint: 2105.08706.

[SP22a] Gal Sela and Erez Petrank. Concurrent size. arXiv preprint, 2022. eprint: 2209.
07100.

[SP22b] Gal Sela and Erez Petrank. Concurrent size. PACMPL, 6(OOPSLA2), 2022.

[SP22c] Gal Sela and Erez Petrank. Concurrent size - artifact for oopsla’22. 2022.

[SP24] Gal Sela and Erez Petrank. Concurrent aggregate queries. arXiv preprint, 2024.
eprint: 2405.07434.

[SRN+19] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopoulos,
Aleksandar Dragojević, Dushyanth Narayanan, and Miguel Castro. Fast general
distributed transactions with opacity. In SIGMOD’19, 2019.

[SS05] William N Scherer III and Michael L Scott. Advanced contention management
for dynamic software transactional memory. In Proceedings of the twenty-fourth

annual ACM symposium on Principles of distributed computing, pages 240–248,
2005.

[ST05] Håkan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority queues
for multi-thread systems. Journal of Parallel and Distributed Computing, 65(5),
2005.

[Sto85] Michael Stonebraker. The case for shared nothing. In IEEE Database Eng. Bull.

1985.

[SW90] Nicola Santoro and PeterWidmayer. Distributed function evaluation in the pres-
ence of transmission faults. In International Symposium onAlgorithms, pages 358–
367. Springer, 1990.

[SWK09] Ulrich Schmid, Bettina Weiss, and Idit Keidar. Impossibility results and lower
bounds for consensus under link failures. SIAM Journal on Computing, 38(5):1912–
1951, 2009.

[SWL+20] Adriana Szekeres, Michael Whittaker, Jialin Li, Naveen Kr Sharma, Arvind Kr-
ishnamurthy, Dan RK Ports, and Irene Zhang. Meerkat: multicore-scalable repli-
cated transactions following the zero-coordination principle. In Proceedings of

the Fifteenth European Conference on Computer Systems, pages 1–14, 2020.

[SZ96] Nir Shavit and Asaph Zemach. Diffracting trees. TOCS, 14(4), 1996.

[tea] Intel PMDK team. Persistent memory programming. url: https://pmem.io.

196

https://snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
https://rabbitmq.com
2105.08706
2209.07100
2209.07100
2405.07434
https://pmem.io

[Tsi04] Y.H Tsin. On finding an ear decomposition of an undirected graph distributively.
Information Processing Letters, 91(3):147–153, 2004.

[TZK+13a] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Mad-
den. Speedy transactions in multicore in-memory databases. In Proceedings of

the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP ’13,
pages 18–32, Farminton, Pennsylvania. Association for Computing Machinery,
2013. url: https://doi.org/10.1145/2517349.2522713.

[TZK+13b] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
Speedy transactions in multicore in-memory databases. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 18–32,
2013.

[vRVL+19] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. Persistent memory I/O primitives. In DaMoN, 2019.

[VS04] Robbert Van Renesse and Fred B Schneider. Chain replication for supporting
high throughput and availability. In OSDI, 2004.

[VTS11] Haris Volos, Andres Jaan Tack, and Michael M Swift. Mnemosyne: lightweight
persistent memory. In ASPLOS, 2011.

[WBB+21] YuanhaoWei, Naama Ben-David, Guy E Blelloch, Panagiota Fatourou, Eric Rup-
pert, and Yihan Sun. Constant-time snapshots with applications to concurrent
data structures. In PPoPP, 2021.

[WCD+20] Haosen Wen, Wentao Cai, Mingzhe Du, Louis Jenkins, Benjamin Valpey, and
Michael L Scott. Montage: a general system for buffered durably linearizable
data structures. arXiv preprint, 2020. eprint: 2009.13701.

[Wei21] Yuanhao Wei. Vcaslib. 2021. url: https://github.com/yuanhaow/vcaslib.

[Whi32] Hassler Whitney. Non-separable and planar graphs. Transactions of the Amer-

ican Mathematical Society, 34(2):339–362, 1932. url: http://www.jstor.org/
stable/1989545.

[WJC+17] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. Apus:
fast and scalable paxos on rdma. In Proceedings of the 2017 Symposium on Cloud

Computing, pages 94–107, 2017.

[WRL19] KaiWu, Jie Ren, andDong Li. Architecture-aware, high performance transaction
for persistent memory. arXiv preprint, 2019. eprint: 1903.06226.

[YKH+20] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swan-
son. An empirical guide to the behavior and use of scalable persistent memory.
In FAST, 2020.

[YM16] Chaoran Yang and John Mellor-Crummey. A wait-free queue as fast as fetch-
and-add. In PPoPP, 2016.

197

https://doi.org/10.1145/2517349.2522713
2009.13701
https://github.com/yuanhaow/vcaslib
http://www.jstor.org/stable/1989545
http://www.jstor.org/stable/1989545
1903.06226

[YMR+19] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abra-
ham. Hotstuff: bft consensus with linearity and responsiveness. In Proceedings

of the 2019 ACM Symposium on Principles of Distributed Computing, pages 347–
356, 2019.

[YPSD16] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. TicToc:
Time Traveling Optimistic Concurrency Control. In Proceedings of the 2016 In-

ternational Conference on Management of Data (SIGMOD’16), 2016.

[YWC+15] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. NV-Tree: reducing consistency cost for NVM-based single level
systems. In FAST, 2015.

[ZFS+19] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank.
Efficient lock-free durable sets. PACMPL, 3(OOPSLA), 2019.

[ZSS+15] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and
Dan R. K. Ports. Building consistent transactions with inconsistent replication.
In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,
pages 263–278, Monterey, California. Association for Computing Machinery,
2015. url: https://doi.org/10.1145/2815400.2815404.

[ZXS+21] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, AlexMiller, Evan
Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave
Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser,
Young Liu, AlvinMoore, BhaskarMuppana, Xiaoge Su, andVishesh Yadav. Foun-
dationdb: a distributed unbundled transactional key value store. In Proceedings

of the 2021 International Conference on Management of Data (SIGMOD’21), 2021.

[ZZLS19] Pantea Zardoshti, Tingzhe Zhou, Yujie Liu, and Michael Spear. Optimizing per-
sistent memory transactions. In PACT, 2019.

198

https://doi.org/10.1145/2815400.2815404

- לנפילות עמידים בתורים מדובר אחרות. וחברות אינטל ידי על שפותחו חדשות למחצה מוליכים

גבוהים, ביצועים מציגים רק לא אלו תורים חשמל. מנפילת המחשב עלית עם לתפקד להמשיך שיכולים

חדשה כללית בהנחיה ועומדים הזיכרון, עם האינטראקציה במזעור כאופטימליים מוכחים גם אלא

נתונים מבני של נכונות ניתוח בעת נדיף. לא לזיכרון אלגוריתמים של יעיל לעיצוב מציגים שאנו

זה, בתנאי התעמקות כדי תוך ביותר. הנפוץ בשימוש הקריטריון היא הלינאריזביליות מקביליים,

לשלמה. ההגדרה להפיכת תיקון מספקים ואנו המקורי במאמר שהוצגה בהגדרה טעות מצאנו

מבוזרות. מערכות בתכנון יסודי אתגר תקלות, בפני בעמידות מתמקדים אנו מבוזרות, מערכות תחת

ההודעות כל את לשבש שעלול בערוצים, מוגבל בלתי רעש עם אסינכרוניות רשתות בוחנים אנו

2-קשירות-קשתות רשתות כיצד מראים אנו בתוכן. תלויה בלתי תקשורת דורש כן ועל הערוצים, בכל

מסוגלות. אינן אחרות שרשתות בעוד בערוצים, מוגבל בלתי רעש עם להתמודד מפתיע באופן מסוגלות

כאשר צמתים מספר כוללות כלומר, מקביליות, המשלבות מבוזרות מערכות בוחנים אנו כן, על יתר

מערכות של ועמידות למהירות קריטיות תכונות מנסחים אנו ליבות. מרובת מכונה הוא צומת כל

הדבר ליבות. מרובת במערכת ליעילות רצויות תכונות לבין ביניהן תמורות שקלול ומציגים מבוזרות,

גבוהים. ביצועים עם עתידיות משולבות מערכות בעיצוב מנחה כקו לשמש עשוי

ii

תקציר

המחשב, ביצועי את לשפר היתה המחשבים תעשית של העיקריות המטרות אחת המחשב, המצאת מאז

הורצו, התוכניות בה אחת ליבה הכילו מחשבים בתחילה, המודרנית. בחברה חיוני לכלי ולהפכו

יותר. מהר תוכנה אותה את שהריצו חדשים למחשבים הובילו הליבה של מתמשכים חומרה ושדרוגי

עקב שיטה באותה נוספים שיפורים לבצע עוד התאפשר לא ה-2000, שנות מתחילת החל זאת, עם

בעשרים המחשב מעבדי ביצועי לשיפור מרכזית דרך כתחליף, יתר). התחממות (בעיקר פיזיות מגבלות

רבים תהליכים של מקבילה הרצה מאפשרים אלו מעבדים ליבות. מרובי מעבדים ייצור הינה השנים

לסנכרון חדשים אלגוריתמים נדרשים זו, חומרה לנצל כדי זאת, עם הביצועים. את משפרים ובכך

במדעי כיום משמעותי אתגר מציב מקביליים אלגוריתמים תכנון השונות. הליבות בין לנתונים הגישה

מקביליים. נתונים מבני הן בהן, מתמקדת זו שתזה אלו, אלגוריתמים של בסיסיות יסוד אבני המחשב.

מודרניים יישומים שלנו, המקושר בעולם מבוזרות. מערכות הוא זו תזה במרכז שעומד אחר נושא

תשתית כן על להציע. יכול אינו יחיד שמחשב לתקלות ועמידות מחשוב כח קרובות לעתים דורשים

באמצעות שמתקשרים מחשבים מספר המאגדות מבוזרות, מערכות על מסתמכת המודרנית המחשוב

את משפר מחשבים מספר שילוב משותפות. משימות ביצוע לשם תקשורת בערוצי הודעות העברת

או שרתים תקלות של במקרים גם ללקוחות, רציף שירות ומבטיח המערכת של הכוללת היעילות

ברשת. הפרעות

(מערכות שתיהן של שילוב או מבוזרות, מקביליות, אם בין תהליכים, מרובות מערכות של במחקר

ושיתוף סנכרון על הדעת את לתת יש תהליכים), מספר מריץ מהם אחד שכל מחשבים מספר עם

היחיד הגורם אינם גבוהים ביצועים המשותפת. מטרתם להשגת התהליכים של ויעילים נכונים פעולה

ועמידות נכונות גם להבטיח יש אלא מבוזרות, או מקביליות מערכות כשמתכננים בחשבון לקחת שיש

אלו. חיוניות תכונות המספקים יסודיים ומבוזרים מקביליים אלגוריתמים חוקרים אנו תקלות. בפני

מרובות במערכות להשיג ניתן לא ומה ניתן מה לקבוע כדי החישוב גבולות את חוקרים אנו זו בתזה

ניתן שלא מה את מאפיינת שונות, לבעיות האפשריים הפתרונות מרחב את מתארת התזה תהליכים.

את דוחפים אנו בנוסף, בעתיד. יעילים ליישומים האפשרי התחום בתוך מנחים קווים ומנסחת לפתור,

הן מוכיחים שאנו כפי הקיימת, הספרות את המשפרים חדשים אלגוריתמים ומציגים האפשר גבולות

מדידות. ידי על והן תיאורטית

הראשונה השיטה את ומציגים שלהם הגודל תכונת את בוחנים אנו המקביליים, הנתונים מבני בתחום

של רחבה קבוצה על להחיל שניתן שיטה ונכון, מהיר באופן המבנה גודל את שמחזירה פעולה להוספת

ג'אווה, בשפות בספריות מקביליים נתונים מבני על שיטתנו את להפעיל ניתן מקביליים. נתונים מבני

נכנס-ראשון-יוצא- תורי עיצוב של המשימה עם גם מתמודדים אנו ועוד. פייתון פלאס, פלאס סי

בטכנולוגיות המשתמש זיכרון של חדש סוג נדיף, לא זיכרון עם מחשבים עבור יעילים מקביליים ראשון

i

בטכניון. המחשב למדעי בפקולטה פטרנק, ארז פרופ' של בהנחייתו בוצע המחקר

והשוואה התייחסות והצגתם, עיבודם הנתונים, איסוף כולל המחקר, כי מצהירה זה חיבור מחברת

המידה אמות לפי המבוצע מדעי ממחקר כמצופה ישרה, בצורה כולו נעשה וכו', קודמים למחקרים

ישרה בצורה נעשה זה בחיבור ותוצאותיו המחקר על הדיווח כן, כמו האקדמי. העולם של האתיות

מידה. אמות אותן לפי ומלאה,

במהלך ובכתבי-עת בכנסים למחקר ושותפיה המחברת מאת כמאמרים פורסמו זה בחיבור התוצאות

המחברת: של הדוקטורט מחקר תקופת

Gal Sela and Erez Petrank. Concurrent size. PACMPL, 6(OOPSLA2), 2022.

Gal Sela, Maurice Herlihy, and Erez Petrank. Brief announcement: linearizability: a typo. In PODC,
2021.

Naama Ben-David, Gal Sela, and Adriana Szekeres. The FIDS theorems: tensions between multinode
and multicore performance in transactional systems. In DISC, 2023.

Gal Sela and Erez Petrank. Durable queues: the second amendment. In SPAA, 2021.

Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed computations in fully-defective
networks. In PODC, 2022.

Keren Censor-Hillel, Shir Cohen, Ran Gelles, and Gal Sela. Distributed computations in fully-defective
networks. DC, 2023.

תודות

לי שיצא הנחמדים האנשים אחד הוא ארז פטרנק. ארז פרופ' שלי, למנחה מספיק להודות אוכל לא

נהניתי מהנה. גם אלא מלמדת רק לא היא ארז עם פגישה וכל אותו, שפגש מי כל שיעיד כפי להכיר,

ומקצועית, אקדמית אותי הדריך ארז מרתקות. בעיות על יחד ולעבוד מקביליות על ממנו ללמוד

לא לי הכיר גם הוא המשותפת, בעבודתנו כחוקרת והתעצבותי איתו מהעבודה שצברתי לידע ומעבר

התחשב האישיים, בחיים גם לי ודאג למנחה, מעבר הרבה היה ארז אבל מהתחום. אנשים מעט

המשותף הטיול את שהזכרנו לפני עוד זה לבקש. היה שאפשר מה לכל ומעבר מעל לי וסייע בצרכיי

לי היתה לא ארז ובלי אליו הגיעה לא שלי שהמזוודה הכנס ואת זילנד, בניו הכנס אחרי ויעל ארז עם

פיג'מה... אפילו

צקרס, אדריאנה בן-דוד, נעמה כהן, שיר גלס, רן צנזור-הלל, קרן למחקר, לשותפיי מודה אני

וחן לוצ'נגקו ויקטור לב, יוסי קוגן, אלכס בהר, איריס מורשת, טלי תומס, סמואל הרליהי, מוריס

להודות רוצה אני במיוחד משותפת. פוריה ועבודה ומעשירות מרתקות פגישות של שעות על קאס-שריר

היא לכך, מעבר אבל בקמפוס, שלנו פגישה מכל נהניתי .VMWare-ב להתמחות אותי שאירחה לנעמה,

ההתמחות. בתקופת בבית להרגיש לי גרמה - ובעיקר הנעימה, לדירתה אותי הזמינה

רועי צנזור-הלל, קרן אפק, יהודה שלי, והגמר המועמדות בחינות בועדות לבוחנים מודה אני

לי. נתנו שהם והתובנות שלהם הזמן על קידר, ועדית הרליהי מוריס פרידמן,

כמוה. שאין ולמשפחתי אהובי לאור תודה ולסיום

התמיכה על למדע הלאומית ולקרן לוי וגלוריה קנת' למלגת ג'ייקובס, למלגת לטכניון, מודה אני

בהשתלמותי. הנדיבה הכספית

ושרידות יעילות נכונות,
ומבוזרות מקביליות מערכות של

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה דוקטור

סלע גל

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2024 יולי חיפה ה'תשפ"ד תמוז

ושרידות יעילות נכונות,
ומבוזרות מקביליות מערכות של

סלע גל

	List of Figures
	Abstract
	Notation and Abbreviations
	1 Introduction
	1.1 Correctness
	1.1.1 Correct and efficient concurrent size
	1.1.2 Linearizability typo fix

	1.2 Performance
	1.2.1 Performance in Parallel Distributed Transactional Systems

	1.3 Fault Tolerance
	1.3.1 Durable Concurrent Queues
	1.3.2 Fully-Defective Distributed Networks

	2 Preliminaries
	3 Concurrent Size
	3.1 Introduction
	3.2 Terminology
	3.3 Related Work
	3.3.1 Inaccuracies of the Algorithm in Afek et al.

	3.4 Data-Structure Transformation
	3.4.1 Specific Examples and the SizeCalculator Object
	3.4.2 Applicability

	3.5 The Size Metadata
	3.6 Mechanism for Wait-Free Size
	3.6.1 SizeCalculator Details
	3.6.2 CountersSnapshot Details
	3.6.3 Memory Model

	3.7 Optimizations
	3.7.1 Eliminate Metadata Update on Behalf of Completed Insertions
	3.7.2 Size Backoff
	3.7.3 Check for an Already-Set Size

	3.8 Methodology Properties
	3.8.1 Linearizability
	3.8.2 Wait-Freedom and Asymptotic Time Complexity

	3.9 Evaluation
	3.9.1 Overhead Breakdown by Operation Type

	3.10 Conclusion

	4 Linearizability: A Typo
	4.1 Introduction
	4.2 System Model and Linearizability Definition
	4.3 Issues with the Definition with the Typo
	4.3.1 Executions Counter-Intuitively Classified As Linearizable
	4.3.2 Linearizability With The Typo Is Not Local
	4.3.3 Linearizability With The Typo Is Not Nonblocking

	4.4 Amended Linearizability
	4.5 Issues Revisited
	4.5.1 Executions Become Non-Linearizable As Expected
	4.5.2 Linearizability Becomes Local
	4.5.3 Linearizability Becomes Nonblocking

	4.6 An Alternative Interpretation
	4.7 An Equivalent Definition
	4.8 Comparison of all Definition Versions

	5 The FIDS Theorems: Tensions between Multinode and Multicore Performance in Transactional Systems
	5.1 Introduction
	5.2 Model and Preliminaries
	5.2.1 Multicore Scalability Properties

	5.3 Multinode Performance Properties
	5.3.1 Distributed Disjoint-Access Parallelism
	5.3.2 Fast Decision
	5.3.3 Seamless Fault Tolerance

	5.4 Impossibility Results
	5.4.1 The FIDS Theorems
	5.4.2 Proof Overview
	5.4.3 Full Proofs

	5.5 Possibility Results
	5.5.1 Sacrificing Fast Decision
	5.5.2 Sacrificing Invisible Reads
	5.5.3 Sacrificing Seamless Fault Tolerance
	5.5.4 Sacrificing Distributed Disjoint-Access Parallelism

	5.6 Related Work
	5.7 Discussion

	6 Durable Queues: The Second Amendment
	6.1 Introduction
	6.2 Model
	6.2.1 Upper Bound on Accesses after a Flush

	6.3 Preliminaries for the Durable Queues
	6.3.1 MS-Queue
	6.3.2 Linearizability and Durable Linearizability
	6.3.3 Lock-Freedom

	6.4 Related Work
	6.5 First Amendment: Queues with Minimum Fences
	6.5.1 UnlinkedQ
	6.5.2 LinkedQ

	6.6 Second Amendment: Queues with No Post-Flush Access
	6.6.1 OptUnlinkedQ
	6.6.2 OptLinkedQ
	6.6.3 Direct Write-Backs to Memory

	6.7 Durable Linearizability
	6.7.1 Linearization Points
	6.7.2 The Abstract State of the Queue

	6.8 Lock-Freedom
	6.9 Memory Management
	6.10 Evaluation
	6.11 Conclusion

	7 Distributed Computations in Fully-Defective Networks
	7.1 Introduction
	7.1.1 Our Contribution and Techniques
	7.1.2 Related Work

	7.2 Preliminaries
	7.3 Simulating Computations over a Fully-Defective Simple Cycle
	7.3.1 Formal Description
	7.3.2 Analysis
	7.3.3 Reducing the Communication via Binary Encoding

	7.4 Simulating Computations over Fully-Defective 2-Edge Connected Networks
	7.4.1 Formal Description
	7.4.2 Analysis

	7.5 Constructing a Robbins Cycle in a Fully-Defective 2-Edge Connected Network
	7.5.1 Formal Description
	7.5.2 Analysis
	7.5.3 The Length of the Obtained Robbins Cycle

	7.6 Impossibility of Resilient Communication in Fully-Defective Networks which are not 2-Edge Connected
	7.7 Conclusion and Open Questions

	8 Conclusion
	Bibliography
	Hebrew Abstract

