Data Structure Aware Garbage Collector *

Nachshon Cohen

Technion
nachshonc@gmail.com

Abstract

Garbage collection may benefit greatly from knowledge
about program behavior, but most managed languages do not
provide means for the programmer to deliver such knowl-
edge. In this work we propose a very simple interface that
requires minor programmer effort and achieves substantial
performance and scalability improvements. In particular, we
focus on the common use of data structures or collections
for organizing data on the heap. We let the program notify
the collector which classes represent nodes of data structures
and also when such nodes are being removed from their data
structures. The data-structure aware (DSA) garbage collec-
tor uses this information to improve performance, locality,
and load balancing. Experience shows that this interface
requires a minor modification of the application. Measure-
ments show that for some significant benchmarks this inter-
face can dramatically reduce the time spent on garbage col-
lection and also improve the overall program performance.

Categories and Subject Descriptors D.3.3 [Language
Constructs and Features]: Dynamic Storage Management;
D.3.4 [Processors]: Memory management (garbage collec-
tion)

General Terms Algorithms, Languages

Keywords Memory management, Data structures, Collec-
tions, Memory management interface, Parallel garbage col-
lection.

1. Introduction

Garbage collection is a widely accepted method for reducing
the development costs of applications. It is used in many of

*This work was supported by the Israeli Science Foundation grant No.
274/14 and by the Technion V.P.R. Fund.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ISMM’15, June 14, 2015, Portland, OR, USA.

Copyright © 2015 ACM 978-1-4503-3589-8/15/06. .. $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2754169.2754176Reprinted from
ISMM’15, [Unknown Proceedings], June 14, 2015, Portland, OR, USA, pp. 1-14.

Erez Petrank

Technion
erez@cs.technion.ac.il

today’s programming languages, such as Java and C#. How-
ever, garbage collection does not come without a cost, and
automatic memory management adds a noticeable overhead
on application performance.

Much effort has been invested in improving garbage col-
lection efficiency, see for example [4-6, 10, 12, 16-18, 20,
23, 24, 30]. Most modern collectors employ a tracing pro-
cedure that discovers the set of objects reachable from a set
of root objects. The tracing procedure is considered the most
time consuming task, so most performance improvement ef-
forts focus on it.

Knowledge about program behavior may greatly bene-
fit tracing. Yet, today’s programming languages do not pro-
vide interfaces to the application to pass on this informa-
tion. Creating a good interface and garbage collector support
for it is a challenge. First, we do not want to risk correct-
ness even when the programmer provides bad hints. Recall
that garbage collection was introduced to eliminate common
bugs originating from programmer misunderstanding of pro-
gram overall behavior. Second, a badly designed interface
may require high programmer effort for producing relevant
hints, and the programmer may not be willing to or not be
capable of spending the time to collect such information. Fi-
nally, a naive interface design may end up not yielding im-
provements in garbage collection performance, and in this
case there would be low incentive for implementing such an
interface in the compiler or for using it even when imple-
mented.

In this paper we propose the DSA (data structure aware)
interface: an interface between the program and the mem-
ory manager that avoids the above pitfalls. First, the DSA
interface allows the programmer to express the program’s
behavior, but in a way that requires very limited program-
ming effort. Second, the information that is exposed to the
garbage collector through the DSA interface does improve
its efficiency and scalability, and also the overall program
running times. And most important, a specification of incor-
rect program behavior through the DSA interface will never
lead to program failure or inappropriate pointer handling, but
only to decreased performance.

The DSA interface concentrates on data-management
applications that are centered around data structures. A
database server is a typical example: usually there exists a

single data structure that represents a table (e.g., a balanced
tree) and the database data is stored in these tables. Although
there might exist several tables in the database, each table is
typically an instance of the same tree. An example bench-
mark in this category is HSQLDB of the DaCapo bench-
mark suite 2006. Cache applications such as KittyCache also
fall into this category. A cache application reduces accesses
to a resource (e.g., the network or a database) by caching
frequently accessed data. A typical cache implementation
places all items in a single (large) hash table. An additional
example of applications that can be improved by the pro-
posed interface is the set of applications that deal with item
management, e.g., a management application for a whole-
sale company, such as SPECjbb2005. Such an application
tracks the number of items in each warehouse, the registered
customers, and the orders being processed. A typical im-
plementation would place items of the same kind in a data
structure (a hash table or a tree). While the application may
use several instances of such data structure, they typically
all share the same main node class.

Applications of the above categories share two useful
properties from a memory manager point of view. First, a
large fraction of the objects are accessible only via a domi-
nant data structure. Second, removing an item from the data
structure is a well defined operation; the programmer ac-
tively selects an item and removes it. While it is not correct
to assume that a removed item is unreachable and can be re-
claimed, it is safe to assume that an object is not reclaimable
before it is removed from a (reachable) data structure. This
is the property that we exploit in the proposed interface.

On the other end of the DSA interface there is a DSA
memory manager that benefits from the information passed
by the program through the DSA interface. The DSA mem-
ory manager that we present allocates nodes of the data
structure separately from the rest of the heap. This provides
additional locality for the data structure. The DSA memory
manager assumes that nodes in the data structure are alive
unless they were declared as deleted. It uses this knowledge
to improve garbage collection efficiency. Furthermore, plac-
ing all data structures together may improve locality of ref-
erence beyond just reducing the time spent on garbage col-
lection. In fact, improved performance (beyond reduced col-
lection times) is visible in all the programs we evaluated.

The developers may fail to report the removal of a node
from the data structure. Such missing information about
node removal is taken care of by an additional mechanism
of the DSA that can reclaim such nodes. On the other hand,
wrong hints provided by the program, i.e., notifying the
collector that objects are deleted from the data structures
while they are not, will never cause the garbage collector
to reclaim a reachable object. However, it may cause the
garbage collection to perform additional work and thus hurt
performance, and temporarily increase the space overhead.

The DSA interface is not beneficial to all programs, as
some may not use a major data structure to hold a signifi-
cant fraction of its data. It is therefore important to ensure
that a JVM using the interface does not claim a noticeable
overhead of applications that do not use the interface. The
design we propose only requires an overhead of one condi-
tional statement in the class loader and a second conditional
statement in the beginning of a GC cycle; evaluation shows
(as expected) that the overhead in this case is negligible.

A typical use of data structures makes the application of
the DSA interface even easier. Many programs use library
implementations of data structures to organize their data. If
the program chooses to use a library implementation that
employs the DSA interface, then the developer needs to do
very little to gain the DSA benefits. The library implemen-
tation will declare the relevant class as an appropriate data
structure and will issue remove notifications to the interface.
The one thing that the developer should take care of is to
notify the interface when the entire data structure becomes
unreachable, as discussed in Subsection 6.1.

We implemented the DSA memory manager in the Jikes-
RVM [2] environment. We also modified several com-
mon data structures from the java.util package to sup-
port the DSA interface. We then evaluated the DSA mem-
ory manager on the KittyCache program [19], the pseudo
SPECjbb2005 benchmark [27], the HSQLDB benchmark
from the DaCapo suite 2006, and the JikesRVM itself.

For KittyCache [19], a garbage-collection-aware ver-
sion required modifying 8 lines of the program code. These
changes yielded a 40-45% improvement in GC time and a
4-20% improvement in overall running time (depending on
the heap size and GC load). For the pseudo SPECjbb2005
benchmark, a garbage-collection-aware version required
modifying four lines of code, and yielded a 24-28% im-
provement in GC time and a 2.8-6% improvement in the
overall running time. For the HSQLDB benchmark, we mod-
ified three lines of code to obtain a 75-76% improvement in
GC time, and a 31-32% improvement in overall running
time. Finally, modifying the Jikes implementation to use a
data-structure aware garbage collection required the modifi-
cation of 8 lines of the Jikes code. These modifications were
tested for runs of the DaCapo 2009 benchmark suite and
yielded, on average, a 11-16% improvement in GC time and
a 1-2% improvement in the overall running time. This expe-
rience shows that the DSA method is applicable for various
kinds of applications and it may yield a significant improve-
ment with a small modification effort, where applicable. We
did not see a performance degradation in cases where the
DSA was not applied.

Organization In Section 2 we provide some background
and definitions. In Section 3 we present an overview of the
DSA interface and the DSA memory manager. In Section 4
we define the DSA interface and the interaction between the
application and the garbage collection. In Section 5 we de-

scribe the details of the DSA memory manager and discuss
its benefits. In Section 6 we explain the requirements from
the programmer. In Section 7 we describe an adaptation of
the DSA algorithm for incorporating it into the implemen-
tation settings of the highly efficient Immix memory man-
ager [6]. We present our performance results in Section 8,
discuss some related work in Section 9, and conclude in Sec-
tion 10.

2. Background and Preliminaries
2.1 Tracing Garbage Collectors

Many garbage collector algorithms employ at the heart of the
collection procedure a tracing routine, which marks every
object that is reachable from an initial set of roots. The trac-
ing routine typically performs a graph traversal, employing a
mark-stack which contains a set of objects that were visited
but whose children have not yet been scanned. The tracing
procedure repeatedly pops an object from the mark-stack,
marks its children, and inserts each previously unmarked
child to the mark-stack. The order by which objects are in-
serted and removed from the mark-stack determines the trac-
ing order. The most common tracing orders are DFS (depth-
first search) for a LIFO mark-stack, and BFS (breadth-first
search) for a mark-stack that works as a FIFO queue.

While tracing is easy to understand and implement, trac-
ing the whole heap efficiently is a more challenging task. In
large applications, the heap contains hundreds of millions of
live objects, spread over several GBs of memory. We now
review some of the challenges in the current tracing proce-
dures.

Work Distribution With the wide adoption of parallel plat-
forms, the ability to utilize several processing units to exe-
cute a garbage collection has become acute. However, a good
work distribution is not trivial to achieve. In practice, each
thread typically uses a local mark-stack, and synchronizes
with other threads by a work-stealing mechanism or when
too much (or too little) work becomes available in its local
mark-stack. While these heuristic methods provide reason-
able performance in practice, they are not optimal, and their
performance depend on the actual heap shape. While typical
heap shapes provide a more-or-less reasonable scalability,
there exist extreme cases that seem inherently hard to par-
allelize. The simplest example of a shape that is difficult to
parallelize is a long linked list. Such difficult heap shapes do
occur in practice [3, 13, 26]. The ability of our newly pro-
posed collector to work with nodes of a data structure allows
the tracing to be independent of the heap shape and creates
an embarrassingly parallel tracing with excellent scalability.

Memory Efficiency: Locality 1t is well known that the lo-
cality of tracing tends to be bad, as the heap is traversed in a
non-linear order. In addition, most objects are small, but the
CPU brings from memory the entire cache-line they reside
on. If two objects that share a single cache line are traced

together, the pressure on memory is reduced, and efficiency
increases. In the DSA memory manager, we allocate data
structure nodes separately. This substantially improves the
locality of the tracing procedure.

Mark-stack Management and Mark-stack Overflow The
mark-stack that is used to guide the heap traversal poses a
trade-off for a tracing run. A large mark-stack uses more
cache lines, more TLB entries and implies more time spent
on cache misses. On the other hand, a small mark-stack may
cause a mark-stack overflow, which implies a large over-
head. When the mark-stack overflows, it is possible to re-
store its state using an additional tracing over the heap. How-
ever, restoring the mark-stack is a very expensive operation,
even if it happens just once in a collection cycle. Garner et
al. [14] reported that mark-stack operations take 11%-13%
percent of the trace. Dynamically allocated mark-stacks are
sometimes used to handle such issues [4], but the manage-
ment of these stack chunks has its own cost. The DSA mem-
ory manager reduces the use of mark-stacks in two ways.
First, data structure nodes (that have not been removed) are
not put in the mark-stack. Second, objects reachable from
such data structure nodes are traced in a controlled manner
in order to decrease mark-stack use.

2.2 Data Structure Nodes

Data structures are often implemented using nodes. These
nodes are intended to abstract the data structure from the
data itself, and allow data-structure algorithms to operate on
abstract generic nodes, ignoring the specific data stored in-
side. Data is added to the data structure by allocating a new
node that represents the data and inserting it into the data
structure. Data is removed from the data structure by unlink-
ing the node that represent the data from the data structure.
Given this node-representation of data structures, the inter-
face requires that the programmer specifies the classes used
to represent data structure nodes and also specifies when the
nodes are removed from the data structure. Many times a
single node type (class) is used to represent the nodes of the
data structure and so declaring a single class for the data
structure suffices. Since a remove or a delete operation is typ-
ically a well-defined logical operation on nodes in the data
structure, it is usually very easy to identify code locations
in which a delete is executed. Again, many times there are
very few such code locations that perform a delete and of-
ten the delete would happen in a single method of the data
structure. These typical behaviors significantly simplify the
programmer efforts for interacting with the DSA interface.
We emphasize the separation of data structure nodes and
the stored data. In standard library data structure, the data
structure node is a (private) internal class that is accessed
only from within the data structure. The stored data, pointed
to by data structure nodes, is used in an arbitrary (com-
plex) manner by the program. For example, in the standard

(library) data structure java.util. HashMap <Integer,String>,
the data structure node is HashMap.Entry.

3. Overview

In this section we provide an overview of the DSA interface
and the corresponding DSA memory manager. We start by
defining the life cycle of a node. An instance of a node class
is first allocated, and then inserted to the data structure.
Many times these two operations occur in close proximity,
usually in the same function. At the application’s request, the
node is removed from the data structure. At some later point,
the node becomes unreachable by the application threads,
and is then freed or reclaimed by the garbage collector.

The DSA interface lets the programmer specify which
classes represent data structure nodes. For a data structure to
be treated as such by the DSA memory manager, the inter-
face must be used to annotate the class in order to announce
it as a data-structure node class. Allocating an instance of
an annotated class implicitly notifies the memory manager
that the allocated object will be inserted into the data struc-
ture. A second part of the interface is a new garbage collector
function, denoted remove, which lets the program notify the
garbage collector that a node is being deleted from the data
structure. When a node is removed from the data structure,
the programmer must explicitly call the memory manager’s
remove function. As a consequence, the node will later be
de-allocated during a garbage collection cycle, but only af-
ter the node becomes unreachable from the program roots.
We stress that a removed node may still be reachable by the
application, even after being deleted from the data structure.
In this case, it will not be erroneously reclaimed. Sometimes
a node is allocated for insertion to the data structure but the
insertion fails and the node is discarded before even being
added to the data structure. The programmer should be aware
of such a case, and this node needs to be passed to the mem-
ory manager’s DSA interface remove function.

The DSA memory manager allocates the data structure
nodes on specially designated pages, and tracks for each
node whether it was passed to the remove function. During a
garbage collection cycle, the garbage collector assumes that
a non-removed node is still a member of a data structure and
hence is still alive. Therefore, the garbage collector can treat
the remaining set of non-removed data structure nodes as
additional roots; these nodes are marked as alive and their
children are traced.

During a garbage collection cycle, the tracing procedure
benefits from this large set of objects that are known to be
alive and are co-located in memory. Moreover, there is no
dependency between the tracing of the nodes in this set.
Thus, we let each thread grab (synchronously) a bunch of
pages, and traces all live nodes that reside on these pages
and add their descendants to the mark-stack. Pages are traced
locally by a single thread and in memory order of nodes; that
is, co-located nodes are traced consecutively.

Memory order tracing improves locality since co-located
nodes are traced together. It also allows hardware prefetch-
ing, which further reduces memory latency. Multiple threads
benefit from the lack of dependency, leading to good work
distribution with lightweight synchronization. The “normal”
roots are traced by an unmodified tracing procedure, and
may exhibit bad work distribution. A thread that runs out
of nodes to trace in the regular trace can then turn to tracing
data structure nodes, which are always available for tracing.
This provides an excellent load balance between threads that
might suffer from idle times in a traditional garbage collec-
tion tracing.

4. Memory Management Interface

In this section we define the DSA interface between the ap-
plication and the memory manager. The DSA interface in-
cludes one annotation and two functions that the memory
manager provides. The annotation signifies that a class’ ob-
jects are used as data structure nodes. The first interface
function is used to let the memory manager know that a node
has been removed from the data structure. The second inter-
face function should be used infrequently. It asks the garbage
collector to perform an extensive cleaning collection to iden-
tify and reclaim all nodes that have been removed from the
data structure without proper notification from the program.
We next name and explain each of these interfaces.

The annotation provided to the program is the @ DataS-
tructureNodesClass annotation, which is applicable for
classes only. By annotating a class as @ DataStructureN-
odesClass, every instance of this class is considered a node
of a data structure and assumed alive until the application
notifies the memory manager that the node is removed (via
the first interface function). We denote a class that is anno-
tated by the @ DataStructureNodesClass annotation as an
annotated class, and an instance of an annotated class is
denoted an annotated object.

The first interface provided to the program is the remove
function. It is the responsibility of the programmer to make
sure that every annotated object is passed to the memory
manager’s remove function after it is deleted from the data
structure, so that the garbage collector may free this object.
Failing to do so would result in a temporary memory leak,
and may slow down the application (though not result in
memory failure). Unlike the free function in C, the program
may still reference an object that was passed to the memory
manager’s remove function.

The parameter passed to remove must be an annotated ob-
ject. Often this can be checked at compile time. Otherwise, a
runtime check can be used to trigger an adequate exception.
It is not necessary to limit the number of times that the pro-
gram calls remove with the same object. An annotated object
that was passed to the memory manager remove function is
referred to as an object that was announced as removed.

A second interface function provided to the programmer
is the IdentifyLeaks() function. This function is optional, and
should be called infrequently or not at all. This function tells
the collector that some objects may have been deleted from
the data structure without a proper corresponding call to the
collector’s remove function. This may create memory leaks
that this function is meant to solve (at a cost). A call to this
function will make the next garbage collection cycle perform
a full collection, which ignores knowledge about the data
structures, finds and eliminates all such memory leaks.

The implementation of these functions is provided by the
memory management subsystem of the virtual machine, and
is described in Section 5.

5. The Memory Manager Algorithm

We now present the DSA memory manager algorithm that
exploits the additional knowledge provided by the program-
mer via the DSA interface. The algorithm is presented as a
modification over an existing memory manager algorithm,
called the basic memory manager. For the current presen-
tation we assume that the basic memory manager uses a
mark sweep collection policy. Mark sweep collectors have
a choice between keeping the mark bits inside the object or
in a mark table aside from the objects. We assume that the
basic collector places the mark bits in a side table which is
a common choice for commercial collectors[4, 11], and fits
well into our algorithm. In Section 7 we present a possible
modification needed for running our algorithm on the high
performance Immix collector, which places the mark-bits in
the object header.

The dynamic class loader identifies classes annotated by
the proposed @DataStructureNodesClass annotation. For
each annotated class A, the class loader creates a memory
manager for A’s objects. We call such a memory manager a
A memory manager and we say that allocations of A’s objects
are directed to the A memory manager.

The A memory manager holds a set of blocks (allocation
caches) designated for the A objects. The A memory man-
ager allocates on its designated blocks which are separate
from the rest of the heap. Each such block is associated with
a table denoted the member-bit table. The member-bit table
has a bit for each object in the block, specifying whether the
chunk is currently a member in the data structure. In fact
this bit is set when the object is allocated and is reset to O
when the remove function is invoked with this object. Note
the linkage between the member-bit and the mark-bit that
the garbage collector uses to mark objects reachable from
the roots. When the member bit is on (and if the program
properly reports membership to the collector through the in-
terface) then we know that the object is reachable. On the
other hand, when the member bit is not set, we know that it
has been removed from the data structure, but it might still
be reachable from the roots. Thus, having the member-bit
set (and assuming proper use of the interface) implies that

ALGORITHM 1: Allocation
Output: Address of the newly allocated object of type A (DS
node)
if allocation cache is empty then
A-allocator.getNonFullAllocationCache();
if all A allocation caches are full then
basic.getEmptyAllocationCache();
A-allocator.registerAllocationCache();
end
end
allocated = allocCache.alloc(); // same algorithm as

® N N R W N =

basic but uses A allocation cache
9 memberBit(allocated) = true
10 return allocated

ALGORITHM 2: Remove
Input: Object object
1 if object type is not annotated then throw new Exception();

2 memberBit(object) = false

the mark-bit can be set at the beginning of the trace. We de-
note a block that is used to allocate annotated objects (of a
data structure) as an annotated block.

The A memory manager allocates objects just like the ba-
sic memory manager allocates objects. If A’s blocks are all
full, an empty block is requested from the global pool of
free blocks of the basic memory manager, and the alloca-
tion request is served from that block. Upon allocating an
object, the A memory manager also sets the member-bit cor-
responding to the allocated object. The allocation procedure
is presented in Algorithm 1.

During a call to remove, the memory manager clears the
member-bit corresponding to the passed object. At that point
the object may still be reachable as some threads may hold
pointers to that node even when it is not in the data structure.
The removal procedure is presented in Algorithm 2. The al-
gorithm should be executed in an atomic manner, for exam-
ple by using the CAS instruction.

The tracing procedure is presented in Algorithm 3. We
now discuss it in detail. The first loop (Step 1) initializes the
mark bits of data structure nodes (annotated objects) to their
member bits. This means that an object that belongs to the
data structure (and has its member bit set) is not scanned
by the standard tracing procedure, since the trace ignores
marked objects. We will give these objects a special treat-
ment at the end of the trace in Step 7. This initial copying
of the member bits into the mark bits is executed very effi-
ciently as it can be performed at the word level rather than
for each bit separately.

The barrier in Step 5 is used to prevent races between the
unsynchronized access to the mark bits during the copying
of the member bits at Step 2 and the synchronized access to

ALGORITHM 3: Tracing procedure

1 for each annotated block do
// marks live annotated nodes
Copy member-bit table to mark-bit table (block)
end
roots locations = basic.collectRoots()
barrier(); // wait for other threads to finish
basic.trace(roots locations) // trace using basic GC
for each annotated block do
// Trace annotated nodes
8 for each object in the annotated block do
9 if memberBit(object)==true then
10 Push the object’s unmarked children to the local

mark-stack
11 end

12 if mark-stack size reaches a predetermined bound
then
13 Transitively trace local mark-stack.

N UM R W N

14 end
15 end
16 end

the mark-bits at Step 6 during the marking of objects whose
member bit are reset (announced as removed).

In Step 6 the trace procedure invokes the basic tracing
procedure, which traces the root objects. A thread that ex-
hausts its available work for this trace proceeds to work on
data structure nodes (annotated objects) in Step 7. In Step 10
the children of each annotated object that has its member bit
set are pushed to the local mark-stack. Once in a while, when
the mark-stack gets filled beyond a predetermined bound, all
objects in the local mark-stack are traced transitively.

The basic collector may provide parallelism for the orig-
inal trace. However, parallelism can be limited by the heap
shape or heuristics used. The scanning of the data structure
nodes is embarrassingly parallel as we need to get their in-
formation from consecutive addresses in the memory. Work
distribution for a multithreaded execution is done by divid-
ing iterations of the for loop at Step 8 between threads. The
granularity of work distribution can be as small as a single
iteration per thread, or as large as several blocks per thread.
Note that iterations can be executed in any order.

5.1 Handling missed remove operations

The above description assumes that the programmer never
forgets to report a deleted object. In this section we discuss a
simple solution to leaks of annotated objects whose removal
is not properly reported. We call an annotated object leaked
if it is not reachable from the roots, but has not been an-
nounced as removed via the remove procedure. To reclaim
such objects we can simply invoke the regular garbage col-
lector on the entire heap. The garbage collection identifies
all unreachable objects whose member-bit is set. It then re-
claims these objects and resets their member-bit. A simple

implementation of this idea appears in Algorithm 4. This
algorithm can be called when the garbage collection does
not free enough space for required allocations, or following
an explicit request by the application. The programmer may
wish to call this procedure for example when a large data
structure becomes unreachable and the programmer does not
wish to announce the removal of each member object explic-
itly. Also, the programmer may invoke this procedure “once
in a while” if the remove announcement are known to be in-
accurate. It is also possible for the system to automatically
invoke this procedure once every ¢ collection cycles, for an
appropriate £.

ALGORITHM 4: IdentifyLeak tracing procedure

1 roots locations = basic.collectRoots()

2 basic.trace(roots locations) //trace normally using basic GC

3 barrier(); //wait threads to finish tracing

4 for each annotated block do

5 Member-bit table = member-bit table AND mark-bit
table // if (member-bit=true and
mark-bit=false) then member-bit:=false

6 end

There is no need to modify other phases of the GC algo-
rithm, e.g. sweep.

5.2 Performance Advantages over Standard Tracing

Next, we discuss the improvements of the DSA tracing al-
gorithm over standard tracing algorithms that are not data-
structure aware.

Parallel Tracing and Work Distribution The DSA collec-
tor can be easily parallelized with a good work distribution.
The iterations in the loop of Step 8 can be executed in any or-
der, and thus embarrassingly parallel. Furthermore, since the
embarrassingly parallel Step 10 is executed after the stan-
dard tracing procedure, the excellent work distribution of
Step 10 can aid a possible bad work distribution of the origi-
nal algorithm. While some threads may be delayed by some
unbalanced work, other threads need not wait, but can pro-
ceed with the data structure related work.

Disentanglement of Bad Heap Shapes The DSA garbage
collector cleanly solves the complicated problem of data
structures with deep heap shapes. Such data structures may
harm parallel tracing [3, 13, 26], but if such structures are
annotated using the DSA interface, then they can be paral-
lelized even in the presence of many-cores. In fact, the ex-
istence of a large data structure with deep heap shapes will
improve the scalability of the tracing, because imbalanced
work distribution would be resolved by the starving threads
switching to work on scanning the data structure.

Locality The tracing of data structure nodes in the DSA
collector is executed in memory order rather than in an
arbitrary order determined by object pointers in the heap.

Thus, locality of the tracing procedure and the ability of the
hardware to automatically prefetch required data improve
substantially. Two nodes that reside on the same cache line
suffer only one cache miss, and TLB misses are similarly
reduced.

Mark-stack Management and Control The mark-stack
used in Step 6 of the DSA algorithm is expected to be smaller
than the mark-stack used for the original trace. The (anno-
tated) data structure nodes and objects reachable from them
(only) will not appear in the mark-stack in the first stage of
the algorithm in Step 6. Next, in the second stage at Step 7,
the nodes inserted into the mark-stack are those that are
reachable only from nodes of the data structure. Further-
more, when the mark-stack passes a predetermined limit, we
trace the current list of objects before we add more to the
stack. This is expected to provide smaller mark-stacks on
average.

6. Programmer View

In this section we review the changes required in order for
a programmer to use the DSA interface. We assume that the
garbage collector in the runtime used supports the DSA in-
terface. Given an existing program, the required changes are
very lightweight. We separate the discussion to the design of
data structures (which may be put in a library) and the use of
data structures in a program. Let us start with the former.

6.1 Data Structure Designer

The designer of library data structures and also programmers
of ad-hoc data structures can add the interface for data-
structure-aware garbage collector with a minor effort.

First, the programmer has to annotate the data structure
nodes by the @DataStructureNodesClass annotation. Sec-
ond, the programmer has to call the interface System.gc.Data-
StructureAware.remove(N) method whenever a node N is
removed from the data structure. We stress that calling the
System.gc.DataStructureAware.remove(N) method does not
free the object N but rather lets the garbage collector reclaim
it later when the object becomes unreachable. Therefore one
can call this method even if N is still used by the calling
thread or other threads in the system.

Third, if the data structure contains a method for a mas-
sive delete of a set of nodes in the data structure or even the
entire data structure, then every node should be passed to
the memory manager’s remove function, or alternatively the
IdentifyLeaks() interface must be invoked.

Sometimes, the question whether a library data structure
benefits from the DSA interface depends on the context. For
example, a HashMap can be used in a context where it holds
many items and is never entirely discarded, but it can also
be used in another context where it holds a few items and is
frequently discarded. The DSA interface is beneficial only
in the former context. For such cases it is advisable for the
designer of a library data structures to create two copies of

each data structure: one with the DSA interface and one
without. This allows users to use the garbage-collection-
aware version of the data structure only when beneficial.

6.2 Using a Library Data Structure

Programmers often invoke standard data structures whose
implementation is provided in a library. We now discuss the
requirements of a programmer that uses a data structure that
supports the DSA interface. The only requirement of such
a programmer is that he will be aware of the deletion of
entire data structures. Usually, nodes are inserted into and
removed from the data structures. But once the data structure
is not needed anymore, the program may unlink it and expect
the garbage collection to reclaim all its nodes. This is the
case that requires extra care for the DSA memory manager
since such nodes will not be reclaimed. To solve this, the
programmer may either actively invoke Algorithm 4 using
the IdentifyLeaks interface to reclaim the unreachable data
structure nodes, or the programmer can delete all nodes from
the data structure before unlinking it from the program roots.

If the library provides both a DSA and a non-DSA ver-
sions of the data-structure, the programmer needs to decide
which version to use. A programmer may use both versions
simultaneously in the same program.

6.3 Some Experience with Standard Programs

To check how difficult and effective the use of the DSA in-
terface is, we have modified KittyCache[19], pjbb2005[27],
the HSQLDB benchmark from the DaCapo test suite [7], and
the JikesRVM Java virtual machine[2]. We are not authors of
the these programs; nevertheless, we discovered that the re-
quired modifications were easy and did not require a deep
acquaintance with the programs involved.

In all our attempts to use the DSA interface, we only used
it when the program had a substantial fraction of its data kept
in a small number of data structures. We did not attempt to
use the DSA with a large number of small data structures,
and we believe that the overhead and fragmentation that
such use will create will make it non-beneficial. Note that in
general, when the use of DSA turns out to be non-beneficial
for any application, it is possible to remove all overhead by
simply not using it for that application.

KittyCache The KittyCache is a simple, yet efficient,
cache implementation for Java. It uses the standard library
ConcurrentHashMap for the cache data, and the standard
library ConcurrentQueue to implement the FIFO behavior
of the cache. In order to make KittyCache use GC-aware
data structures we only needed to modify the library code
of these two data structures and nothing in the KittyCache
application itself. The changes to the library data structures
are described in Subsection 6.4 below.

pjbb2005 The SPECjbb2005 benchmark emulates a whole-
sale company, and saves the warehouses data in a standard
HashMap. Again, to gain the advantages of the DSA inter-

face, we modified the library code for the HashMap data
structure.

The pseudo SPECjbb2005 (pjbb2005) is a small modi-
fication for the research community, which fixes the num-
ber of warehouses and measures running time for a spe-
cific workload instead of throughput. Additionally, it runs
the benchmark multiple times to warm up the JIT compiler
and measure only the last iteration. After each iteration, the
data structure is discarded without freeing its entries. For this
application one more modification was required to make it
work with the DSA interface. To avoid going over the data
structures and applying a remove notification for each node,
we added a call to IdentifyLeaks at the end of each such it-
eration. This amounts to adding a single line of code to the
benchmark itself. (A similar line would be needed also if we
were using the original SPECjbb2005 benchmark. It would
deal with entire data structure deletions at the end of each
warmup phase.)

HSQLDB The HSQLDB is a SQL database written in
Java. The HSQLDB benchmark in the DaCapo 2006 suite
tests the database performance. Most of the database data is
stored in a tree-like structure, a custom (and rather complex)
data structure. Yet, adding garbage collection awareness was
simplified by the fact that the main data structure node has a
delete function which is called by the original code in an or-
derly fashion whenever a node is deleted. We annotated the
data structure node class, and called the memory manager re-
move inside the (already existing) database delete function.
Only two lines were added to the database code.

Similarly to pjbb2005, the entire data structure is dis-
carded in each iteration. Thus, we used the IdentifyLeaks
interface before each iteration started.

The newer DaCapo 2009 test suite contains another
benchmark that tests the performance of a different SQL
database called h2. The h2 database uses a different tree-like
structure to store its data. Still, it already contains a delete
function, so applying the DSA interface to this database was
as easy as applying it to the HSQLDB database. Although
we could easily modify this benchmark to be GC-aware, we
ended up not measuring its performance because the Jikes
RVM could not execute this benchmark.

JikesRVM The JikesRVM uses a library version of Linked-
HashMap for organizing the ZipEntries. The LinkedHashMap
forms a substantial data structure for Jikes RVM. This data
structure is used (to the best of our understanding) to handle
entries in the executed Jar file. We modified the library im-
plementation of LinkedHashMap to be GC-aware. Library
modifications are discussed in Section 6.4.

In addition, for the JikesRVM, it turned out to be useful
to also annotate the ZipEntry objects themselves (the objects
that the hash nodes reference). These nodes are not linked
in a data structure of their own, yet, they are deleted only
when their parent (a hash node) is deleted and so there is a
well defined point in the program when such a node gets un-

linked from the data structure that references it. These nodes
typically become unreachable shortly after their parent node
in the hash data structure gets deleted. We had to identify a
couple of places where a node is allocated and not inserted to
the data structure (e.g. cloning a node). For these allocation
points we cleared the member bit immediately after allocat-
ing the node. This was slightly more complex (but still only a
few hours of work), and required the modification of 4 lines
of code in Jikes RVM.

6.4 Some Experience with Standard Data Structures

For data structure examples, we have transformed several
data structures from the classpath GNU project (version
0.97.2) to fit the DSA interface. The changes for HashMap
include three lines of code. The modified code can be shortly
presented in a diff-like syntax.

+@ataStructureNodesClass
static class HashEntry<K, V> extends

public V remove(Object key){
if (equals(key, e.key)){
+ System.gc.DataStructureAware.remove(e);

public void clear(D{
Arrays.fill(buckets, null);
size=0;
+ System.gc.DataStructureAware.IdentifyLeaks();

The changes to the LinkedHashMap, TreeMap and Linke-
dList are very similar, and we do not present them here. It
was possible to use a simple inspection of method names
in order to determine the code locations where nodes are
removed. In the TreeMap data structure, nodes are removed
in a dedicated function, which makes the modification even
simpler.

We also modified the ConcurrentHashMap and Concur-
rentQueue from the classpath GNU (version 0.99.1-pre).
Special care was needed in the rehash function of Concur-
rentHashMap since objects are cloned. In the Concurren-
tQueue data structure, special care was taken to call remove
on the data structure sentinel. These changes took us few
hours to identify without prior acquaintance with the data
structure, and we assume that a programmer of a custom data
structure will be able to identify these places even more eas-
ily.

In all our modifications of a library data-structures, we
generated a copy of the original data structure implementa-
tion and added the DSA interface to the copy. We then used
the copy whenever we needed to use the interface.

6.5 Shortcoming of our algorithm

For some programs we were not able to improve perfor-
mance using our interface. We note two main reasons for
that.

1. The program has no dominant data structure. This is the
case for most of the DaCapo benchmarks.

2. The program uses a custom data structure without a clear
interface (no remove function). An example to the above
is the PMD benchmark in the DaCapo suite 2009. There
exists a dominant data structure, whose nodes are objects
of the pmd.ast.Token class. However, its data-structure
pointers are public, and are modified in many code loca-
tions. We cannot tell if the programmers of PMD have
invariants in mind that help identify code locations in
which a node is removed, or whether they would also find
it difficult to identify these locations.

7. Adaptation for the Immix Memory
Manager

We have implemented the DSA interface and algorithm on
top of the JikesRVM [2] environment version 3.1.3. Ini-
tially, we used the basic memory manager that uses a simple
mark sweep garbage collector. However, although the DSA
mechanism achieved significant improvement, this memory
manager runs very slowly compared to other high perfor-
mance memory managers. So, we proceeded and imple-
mented our algorithm over the high performance Immix[6]
memory manager. This required several modifications that
we describe below.

The main issue with the Immix memory manager is that
it puts the mark bit in the header of each object and not
in an auxiliary table. This complicates the implementation
of the DSA algorithm. When the DSA algorithm traces a
data structure node, it needs to check whether its children
are marked or not. If the mark bit is located in the children
headers, the tracing would incur the cost of cache misses
over accessing the children, even if both are members of
the data structure. Even on a singly-linked list, each child is
accessed at least twice, possibly by different threads. Thus,
a naive implementation would nullify the memory locality
benefit of our algorithm.

A possible solution is to identify the children which are
data structure objects, and ignore them during the trace.
Intuitively this seems correct since nodes are deleted from
the data structure by unlinking data structure pointers to
them. Thus, pointers from within the data structure to deleted
nodes should not exist. However, ignoring children during
trace may lead to correctness problems, especially when
relying on an untrusted programmer. Instead, in the case of
a child that is an annotated object we first check its member
bit. If the member bit is on, there is no need to further trace
the object, since it will be traced by the DSA tracing. Since
the member bits are placed in a side table, checking the
member bit usually hits the cache, instead of taking the cache
miss over the child.

Another problem is marking all annotated objects prior
to root tracing. When the mark bit is placed in the object
header, marking all objects requires loading all of them to

ALGORITHM 5: Tracing procedure for Immix

1 roots locations = Jikes.collectRoots()
2 barrier(); // same as immix

3 for each annotated block do

4 for each object in the annotated block do
5 if memberBit(object)==true then
6 Mark object
7 for each data structure pointer P of the object do
8 if memberBit(P)==false then
9 ProcessChild(P) // push to
markstack if not marked
10 end
11 end
12 for each non-data structure pointer P of the
object do
13 ProcessChild(P)
14 end
15 end
16 if the mark-stack size reaches a predetermined
bound then
17 Transitively trace local mark-stack.
18 end
19 end
20 end

21 Jikes.trace(roots locations) // trace using Immix trace

memory. Therefore, we modify the algorithm in the follow-
ing way. The algorithm first traces all annotated objects, and
then continues with the root tracing. This provides an initial
embarrassingly parallel tracing for the data structure node
but tracing other nodes on the heap does not get a balancing
guarantee. The tracing function, for the case that the mark
bit resides in the object header, is presented in Algorithm 5.

Finally, the IdentifyLeak tracing procedure cannot go over
the side tables (mark bit and member bit) to fix unreach-
able member nodes. Instead, it needs to go over the nodes
themselves and check whether the nodes are alive or not.
Since the IdentifyLeak tracing procedure is not called fre-
quently, this modification should not affect the algorithm
performance significantly. In our implementation we set the
triggering of the IdentifyLeak tracing procedure to include
only specific invocation of the IdentifyLeaks interface, but
not ~’once-in-a-while” invocation.

An alternative that we did not use is to trace the annotated
objects after the Immix tracing loop, but modify the trace
to not scan data-structure nodes with a set member bit. The
problem is that this adds some performance overhead to the
core of the tracing loop and so may reduce performance.

In Algorithm 5 Step 16 the local mark-stack is traced af-
ter a predetermined bound, which is a parameter of the al-
gorithm. The value of this parameter represents a tradeoff.
A lower value decreases the size of the mark-stack, which
is good, but it also reduces the locality advantage for tracing

consecutive objects, which is not good. In our implementa-
tion the mark-stack is traced after scanning all DSA objects
that correspond to a single word in the member-bit table.

8. Implementation and Evaluation

We compared the DSA collector with the original unmod-
ified Immix memory manager [6]. For the DSA memory
manager, the data structure nodes and the member-bit table
are part of the heap and are accounted for heap space us-
age, so the comparison is fair. The measurements were run
on two platforms. The first features a single Intel i7 2.2Ghz
quad core processor (HyperThreading enabled), an L1 cache
(per core) of 32 KB, an L2 cache (per core) of 256 KB, an L3
shared cache of 6 MB, and 4GB RAM. The system ran OS-
X 10.9 (Mavericks). The second platform featured 4 AMD
Opteron(TM) 6272 2.1GHz processors, each with 16 cores,
an L1 cache (per core) of 16K, L2 cache (per core) of 2MB,
an L3 cache of 6MB per processor, and 128GB RAM. The
machine runs Linux Ubuntu with kernel 3.13.0-36.

For each benchmark we measured performance of the
modified benchmark with the DSA memory manager, and
the unmodified benchmark with the original Immix collec-
tor. For each benchmark we report measurements on differ-
ent heap sizes. We invoked each benchmark 10 times (10
invocations), and reported the average (arithmetic mean) of
their running time and the average of the garbage collection
time; the error bars reports 95% confidence interval. To re-
duce overhead due to the JIT compiler, in each invocation we
measured only the 6th iteration, after 5 warm-up executions.

The first benchmark we measured was the HSQLDB
benchmark from the DaCapo 2006 suite. The HSQLDB is
a SQL database written in Java, and the HSQLDB bench-
mark test its performance. The changes to the benchmark
code were discussed at Section 6. The minimal heap size
was 130MB. We ran the program with 1.2x, 1.5x, and 2x
heap sizes. The benchmark calls System.gc() manually, so
garbage collection is invoked before the heap is exhausted
and so the performance differences between different heap
sizes were negligible. The total running time and total GC
time are presented in figure 1. The DSA version improved
GC time by 75-76% and overall time by 31-32%.

Next, we present the measurements of the DSA garbage
collector behavior with the pseudo SPECjbb2005 bench-
mark. The pjbb2005 benchmark models a wholesale com-
pany with warehouses that serve user’s operations. The
warehouse data is mostly stored in a HashMap, which we
modified in the DSA algorithm; the changes to the bench-
mark code were discussed at Section 6. We ran the bench-
mark with 8 warehouses, and fixed 50,000 operations per
warehouse. The minimal heap size was S00MB; we ran the
program with 1.2x, 1.5x and 2x heap sizes. The total run-
ning time and the total GC time are presented in figure 2.
The DSA version improved GC time by 24-28% and overall
time by 2.8-6%.

Total Gc time for HSQLDB: Intel
1000.0

Running time for HSQLDB: Intel
2500.0

2000.0 = = = 800.0

1500.0 600.0

“DSA “DSA

1000.0 400.0

Base Base

500.0 200.0 - - -

Ul T L N W

156 195 260 156 195 260

0.0

Running time for HSQLDB: AMD
2500.0

Total Gc time for HSQLDB: AMD
1000.0

2000.0 800.0

1500.0 = = = 600.0

“DsA “DsA
1000.0 Base 400.0 Base

500.0 200.0 - -

B B = 00

156 195 260 156 195 260

0.0 - | |

Figure 1. Total running time and total GC time (in milli-
seconds) for HSQLDB benchmark. The x-axis is the heap
size used.

Total GC time for pjbb2005: Intel
5000

Running time for pjbb2005: Intel

25000
I 4000 e

20000 TS

I II

600 750

3000
HDSA =
2000

“DSA

15000 Base Base

1000 -
T

1000 600 750 1000

10000

Total GC time for pjbb2005: AMD

8000
90000 T T 6000 I

] L
I “DSA 4000 1

3
2000 =T

0 . | -
1000 600 750 1000

Running time for pjbb2005: AMD
100000

80000 “DsA

1 T

600 750

Base Base

70000

60000

Figure 2. Total running time and total gc time (in milli-
seconds) for the pjbb2005 benchmark with 8 warehouses
and 50,000 transactions per warehouse. The x-axis is the
heap size used.

We then measured the DSA garbage collector with the
KittyCache stress test. It allocates a cache of size 250K
entries, and then executes 2,000,000 put commands. We ran
the cache with different heap sizes; the minimal heap size
was 200MB. The total running time and total GC time for
various heap size are presented in figure 3. The DSA version
improves GC time by 40-45% and overall time by 4-20%.

For these benchmarks we estimated the mark-stack us-
age by the baseline and the DSA versions. Accounting the
mark-stack exact size requires extensive synchronization. In-
stead, we noticed that each thread has a local mark-stack and
there is a shared pool of local mark-stacks when the local
mark-stack is exhausted (denoted work-packets). Thus we
measured the number of work-packets in the shared pool.
Each work-packet (or local mark-stack) is exactly a single
4K page. While this is not an exact evaluation, it provides
the amount of memory reserved for the mark-stack usage
and approximates the mark-stack usage. We executed each
benchmark 3 times with 1.5x heap size and record the max-

Running time for KittyCache: Intel Total Gc time for KittyCache: Intel

4000.0
3500.0 I 1500.0 J

n
g m—
20000 : : Base 500.0 Base
oo R Ml Py

220 250 300 350 220 250 300 350

Running time for KittyCache: AMD Total Gc time for KittyCache: AMD

4000.0
3500.0 I 1500.0 J

3000.0 I
1000.0
2500.0 = — “DsA I
- - L=

2000.0 Base Base

500.0
1500.0 _ _
gl 'l Ul FH | o LB a0 o
220 250 300 350 220 250 300 350

“DSA

Figure 3. Total running time and total GC time (in milli-
seconds) for KittyCache stress test with 250K entries. The
x-axis is the heap size used.

Mark-stack size

B oRr NN
o o o &
8 & & &

I HDSA

pjjb2005 HSQLDB

Base

packets in shared pool
w
3

Average number of

o

KittyCache

Figure 4. Number of work-packets in shared mark-stack.

imum shared pool size in each collection cycle. We then
computed the average and standard deviation of the obtained
record in the 3 executions and the results are depicted in
Figure 4. For the pjbb2005 and kittyCache the mark-stack
size was reduced by a factor of 3.85-4.15. For the HSQLDB
benchmark the difference is very small, but the mark-stack
size is rather small even in the baseline algorithm. The error
bars represents standard variant. For the baseline algorithm
the variance was very high, meaning that different collection
cycles (in the same execution) requires different mark-stack
size. In contrast, the variance is much smaller for the DSA
memory manager.

Finally, we experimented with the DaCapo benchmark
suite 2009. We were able to execute only 6 benchmarks:
avrora, luindex, lusearch, sunflow, xalan and pmd. The other
benchmarks could not be executed on the JikesRVM Java
virtual machine. In avrora, lusearch, and xalan, a data struc-
ture used by the JikesRVM Java virtual machine was the
dominant data structure. Therefore, we added the DSA in-
terface to the JikesRVM data structure. In the pmd bench-
mark, a custom data structure is significant. However, the
code semantics does not expose a data-structure-like inter-
face, so adding the DSA interface to the data structure re-
quires deeper understanding of the benchmark (if at all pos-
sible). Luindex makes an insignificant amount of allocation,
and the GC load was low. In sunflow, a dominant data struc-
ture is an array of image samples, which is already GC
friendly. Therefore, we did not add the DSA interface to any

of the benchmarks in the DaCapo suite 2009, and modified
only the JikesRVM internal data structure. For each of these
benchmarks, we compared the running times before and af-
ter modifying the JikesRVM major data structure. We do the
comparison for various heap sizes, namely 1.2x, 1.5x, and
2x of the minimal running heap size. The comparison is de-
picted in figure 5. For lack of space, the comparison for the
AMD machine is not depicted. The average improvement in
GC time is 11-16% and the average implemented in overall
time is 1-2%.

Note that the pmd benchmark suffers a slowdown due
to our modification. The pmd data structure has a linked-
list like structure, thus tracing it is poorly parallelized. A
possible explanation to the slowdown is that in the original
execution, a single thread traces this data structure while
other threads trace other nodes, including the JikesRVM
major data structure. In the modified execution, all threads
start by scanning the JikesRVM data structure. Only later, a
single thread traces the pmd data structure, which explains
the slowdown in this case. Indeed, there was no slowdown
where the basic memory manager was the mark-sweep and
the mark-bits were put in a side table. We stress that we were
not able to apply the DSA mechanism to the pmd program,
but only to the JikesRVM that executes this program.

9. Related Work

The interactions between applications and garbage collec-
tion systems have not been explored much in the literature.
Both Java and C# contain an interface for the program to in-
voke a garbage collection cycle. The use of these functions
is usually discouraged. We are unaware of any work that dis-
cusses these functions.

An immediate free instruction that can be inserted by the
compiler was studied by Cherem and Rugina [9], and Guyer
etal. [15]. They suggested a compiler analysis technique that
identifies unreachable objects. The compiler inserts an im-
mediate free instruction for these objects, which reduces the
number of garbage collection invocations, and improves ef-
ficiency. However, the compiler analysis is conservative. In
contrast, an analysis of data structures as in this paper is diffi-
cult to perform automatically. Triggering garbage collection
cycles when the live space is low is beneficial as there are
less objects to trace. Buytaert et al. [8] proposed a triggering
scheme with a pre-profiling stage that identifies locations of
code where it is favorable to initiate garbage collection.

Aftandilian and Guyer [1] proposed a GC-application in-
terface for evaluating user assertions. This interface allows
the user to express assertions about heap layout, which the
garbage collection evaluates at runtime. Wick and Flatt [29]
proposed another GC-application interface for bounding the
memory usage of a child processes. This allows the program
to launch untrusted child processes without allocating a dif-
ferent heap for each child and without complicating the data
transfer between the processes.

JikesRVM: Overall improvement for various dacapo
benchmarks

115.0%
W average
105.0%

* Xalan

95.0% 7 Lusearch
85.0% + Sunflow

.0%
H Avrora

75.0% & Pmd

JikesRVM: Improvement in GC time for various dacapo
benchmarks

W Average
& Xalan

% Lusearch

7 Sunflow

& Avrora

< Pmd

1.2% % Luindex

Figure 5. Comparing total running time and gc time for various benchmarks in the DaCapo suite. The figure only present the
ratio between the modified JikesRVM and the unmodified Immix. Only a JikesRVM internal data structure was changed.

Recently, Reames and Necula [22] used “freeing hints”.
This method relies on deletions of all (or almost all) objects
being specified by the programmer in the program.

Allocating objects based on their type was suggested by
Shuf et al. [25]. They considered a memory manager that
places frequently used objects in the young generation. This
improved garbage collection locality, eliminated barriers,
and improved space efficiency.

Deep heap shapes inherently limit parallelism opportuni-
ties. Barabash and Petrank [3] found that deep heap shapes
do exist in practice. They also proposed two ideas for over-
coming such heap shapes. Subsequently, Eran and Petrank
[13] discovered that deep heap shapes are mostly caused by
stacks or queues. They proposed a lock free queue imple-
mentation with low depth via shortcuts. Their solution does
not apply to other linked list structures. The DSA collector
eliminates the problem of deep heap shapes for all objects in
the annotated data structures.

Avoiding mark-stack overflow was considered by Ossia
et al. [21]. They divided the mark-stack into work packets,
where every work packet contains a fixed number of objects.
This allows the mark-stack to dynamically change its size,
and to be dynamically distributed between different threads.
It does not eliminate mark-stack overflow in the cases when
there is not enough memory for additional work packets.
Ugawa et al. [28] attempted to address mark-stack overflow
by improving recovery time. Upon an overflow, they record

the set of places where a visited untraced node can reside
and use it for faster recovery from the overflow.

10. Conclusion

We proposed an interface between a program and the mem-
ory manager that allows special treatment for data structures.
As data structures are often used to hold much of the pro-
gram data, a data-structure aware (DSA) garbage collector
can use knowledge about data structures in the program to
improve performance. Both the program and garbage col-
lector benefit from improved locality, and additionally the
garbage collector benefits from improved scalability and a
lower use of the mark-stack. We have demonstrated the ease
of use for our interface and its effectiveness by using it with
several data structures from the standard Java java.util pack-

age, as well as with the pSPECjbb2005 benchmark, the Kit-
tyCache program, and the JikesRVM Java virtual machine.

The use of the interface only required a handful of modifica-
tions in the code and the performance improvements for the
garbage collection and the program were dramatic. The Kit-
tyCache benchmark overall running time was improved by
4-20%; the pSPECjbb2005 benchmark overall running time
was improved by 2.8-6%; the HSQLDB benchmark over-
all running time was improved by 31 — 32%; the DaCapo
benchmarks, running over the JikesRVM that uses the DSA
interface, were improved by 1-2% on average.

References

[1] E. E. Aftandilian and S. Z. Guyer. Gc assertions: using the
garbage collector to check heap properties. In PLDI, pages
235-244, 2009.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. Mergen,
T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. Shepherd,
S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
jalapeno virtual machine. IBM Systems Journal, 39(1):211-
238, 2000.

[3] K. Barabash and E. Petrank. Tracing garbage collection on
highly parallel platforms. In ISMM, pages 1-10. ACM, 2010.

[4] K. Barabash, O. Ben-Yitzhak, 1. Goft, E. K. Kolodner,
V. Leikehman, Y. Ossia, A. Owshanko, and E. Petrank. A
parallel, incremental, mostly concurrent garbage collector for
servers. ACM Transactions on Programming Languages and
Systems, 27(6):1097-1146, 2005.

[5]1 S. M. Blackburn and K. S. McKinley. Ulterior reference
counting: Fast garbage collection without a long wait. In
OOPSLA, volume 38, pages 344-358. ACM, 2003.

[6] S. M. Blackburn and K. S. McKinley. Immix: a mark-region
garbage collector with space efficiency, fast collection, and
mutator performance. In PLDI, volume 43, pages 22-32.
ACM, 2008.

[7] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, et al. The dacapo benchmarks: Java benchmark-
ing development and analysis. In ACM Sigplan Notices, vol-
ume 41, pages 169-190. ACM, 2006.

[8] D. Buytaert, K. Venstermans, L. Eeckhout, and K. De Boss-
chere. Geh: Hints for triggering garbage collections. In Trans-
actions on High-Performance Embedded Architectures and
Compilers I, pages 74-94. Springer, 2007.

[9] S. Cherem and R. Rugina. Compile-time deallocation of
individual objects. In ISMM, pages 138—149. ACM, 2006.

[10] J. E. Cook, A. L. Wolf, and B. G. Zorn. A highly effective
partition selection policy for object database garbage collec-
tion. Transactions on Knowledge and Data Engineering, 10
(1):153-172, 1998.

[11] D. Detlefs and T. Printezis. A generational mostly-concurrent

garbage collector. Technical report, Sun Microsystems, 2000.

[12] T. Domani, E. K. Kolodner, and E. Petrank. A generational
on-the-fly garbage collector for java. In PLDI, volume 35,
pages 274-284. ACM, 2000.

[13] H. Eran and E. Petrank. A study of data structures with a deep
heap shape. In MSPC. ACM, 2013.

[14] R. Garner, S. M. Blackburn, and D. Frampton. Effective
prefetch for mark-sweep garbage collection. In ISMM, pages
43-54. ACM, 2007.

[15] S. Z. Guyer, K. S. McKinley, and D. Frampton. Free-me:
a static analysis for automatic individual object reclamation.
PLDI, pages 364-375, 2006.

[16] M. Hertz, Y. Feng, and E. D. Berger. Garbage collection
without paging. In PLDI, volume 40, pages 143—-153. ACM,
2005.

[17] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience
with safe manual memory-management in cyclone. In ISMM,
pages 73-84. ACM, 2004.

[18] H. Kermany and E. Petrank. The compressor: concurrent,
incremental, and parallel compaction. In PLDI, pages 354—
363, 2006.

[19] KittyCache.
cache/, 2009.

[20] Y. Levanoni and E. Petrank. An on-the-fly reference counting
garbage collector for java. In OOPSLA, pages 367-380, 1999.

[211 Y. Ossia, O. Ben-Yitzhak, I. Goft, E. K. Kolodner,
V. Leikehman, and A. Owshanko. A parallel, incremental and
concurrent gc for servers. In PLDI, pages 129-140, 2002.

Kittycache. https://code.google.com/p/kitty-

[22] P. Reames and G. Necula. Towards hinted collection: annota-
tions for decreasing garbage collector pause times. In ISMM,
pages 3—14. ACM, 2013.

[23] N. Sachindran, J. E. B. Moss, and E. D. Berger. mc?: high-
performance garbage collection for memory-constrained en-
vironments. OOPSLA, 39(10):81-98, 2004.

[24] R. Shahriyar, S. M. Blackburn, X. Yang, and K. S. McKinley.
Taking off the gloves with reference counting immix. In
OOPSLA, pages 93-110, 2013.

[25] Y. Shuf, M. Gupta, R. Bordawekar, and J. P. Singh. Exploiting
prolific types for memory management and optimizations.
Proceedings of the 29th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 295-306,
2002.

[26] F. Siebert. Limits of parallel marking collection. In ISMM,
pages 21-29. ACM, 2008.
[27] SPEC. Specjbb2005. http://www.spec.org/jbb2005/, 2005.

[28] T. Ugawa, H. Iwasaki, and T. Yuasa. Improvements of re-
covery from marking stack overflow in mark sweep garbage
collection. IPSJ Online Transactions, 5, 2012.

[29] A. Wick and M. Flatt. Memory accounting without partitions.
In ISMM, pages 120-130. ACM, 2004.

[30] X. Yang, S. M. Blackburn, D. Frampton, J. B. Sartor, and K. S.
McKinley. Why nothing matters: the impact of zeroing. In
OOPSLA, volume 46, pages 307-324. ACM, 2011.

KittyCache
3400 2500

HsQLDB

3200 2000

3000 Orig 1500 = Orig

2800 DSA 1000 DsA
2600 I HDSA-5 500 DSAS
2400

240 300 400 156 195 260

SPECjbb2005

600 750

Figure 6. Throughput comparison for the original imple-
mentation, the DSA standard implementation, and an imple-
mentation that runs IdentifyLeaks once every 5 collection
cycles.

94000
92000
90000
88000
86000
84000
82000
80000

=orig

DSA
DSA-5

1000

A. Memory Leaks

When using the DSA interface, there is a possibility that
the programmer will miss code locations in which nodes
are removed from the data structure, potentially causing
memory leaks. In this appendix we discuss our experience
in this matter.

In the benchmarks we modified we used two methods to
make sure that there were no memory leaks in the observed
executions. First, we modified the IdentifylLeaks interface
to check whether there existed an unreachable object that
was not declared as removed. Second, we measured the
number of occupied lines (which measures the amount of
live memory) and ensured that it was similar in both the DSA
and baseline execution.

The data structures that we modified are widely used
in practice and their implementation consists of hundreds
to thousands of lines of code. We did not study (or even
read) the entire implementation. Instead, we searched for
an internal class called “Node” or “Entry” and a function
called “remove” or “delete”. For all applications, except for

the ConcurrentQueue library data structure, we successfully
applied the DSA interface without any memory leaks in the
first attempt. Namely, we never missed a deletion of objects
from the data structure.

The one application for which we erred, was the Concur-
rentQueue for which our first DSA version leaked memory.
After inspecting the code of the remove function, which is
actually a pop for the queue data structure, we discovered
that when a node A is popped from the queue, it is not ac-
tually unlinked from the data structure. Instead, it becomes
the new sentinel and the previous sentinel is the node that
actually gets unlinked from the data structure. Incorrectly,
we marked the currently popped node A as removed. The
result of this mistake is that the first sentinel is never re-
moved, and subsequently, all nodes in the queue becomes
forever reachable from an un-removed data structure node.
This meant that no object could be reclaimed. In our imple-
mentation this implied some frequent GC cycles (because
not enough memory was freed) culminating in a cycle that
was not able to proceed and then IdentifyLeaks was called.
At that point, that first sentinel node was reclaimed and all
other leaked nodes were reclaimed with it. From there on,
performance was back to normal. Probably, the programmer
of the queue would not make such a mistake.

On top of mistakes, there could also be applications and
data structures for which it is easy to identify most of the
removals but not all of them. We don’t expect this to be fre-
quent, but for such cases there is an easy solution. It is pos-
sible to call IdentifyLeaks once every k collection cycles.
In Figure 6 we measure the performance overhead with a
typical parameter k = 5. Orig stands for the baseline imple-
mentation with no DSA, DSA stands for the DSA bench-
mark when IdentifyLeaks is called only when necessary, i.e.,

when an out-of-memory exception is about to be thrown, and
DSA-5 stands for the DSA benchmark when IdentifylLeaks

is called once every 5 collection cycles. As in 20% of the
collections the DSA interface is not used, the advantage is
reduced by 19-29% depending on application and heap size.

