
Limitations of Partial Compaction: Towards Practical Bounds ∗

Nachshon Cohen

Technion

nachshonc@gmail.com

Erez Petrank

Technion

erez@cs.technion.ac.il

Abstract

Compaction of a managed heap is considered a costly operation,
and is avoided as much as possible in commercial runtimes. In-
stead, partial compaction is often used to defragment parts of the
heap and avoid space blow up. Previous study of compaction limi-
tation provided some initial asymptotic bounds but no implications
for practical systems. In this work, we extend the theory to obtain
better bounds and make them strong enough to become meaningful
for modern systems.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Dynamic Storage Management; D.3.4 [Proces-
sors]: Memory management (garbage collection); D.4.2 [Stor-
age Management]: Allocation/deallocation strategies; D.1.5 [Pro-
gramming Technique]: Object Oriented Programming

General Terms Algorithms, Theory, Languages.

Keywords Memory management, compaction, fragmentation,
theory, lower bounds.

1. Introduction

The study of the theoretical foundations for memory management
is mostly lacking. Little is known about the limitations of various
memory management functionalities, and in particular on the space
consumption of various memory management methods. Previous
work consists of Robson’s classical results on fragmentation when
no compaction is employed [14, 15], a result on the hardness of
achieving cache consciousness [11], and work on the effectiveness
of conservative garbage collection and lazy reference counting
[5, 6]. A recent new work by Bendersky et al. [4] attempted to
bound the overhead mitigation that can be achieved by partial
compaction.

Memory managers typically suffer from fragmentation. Alloca-
tion and de-allocation of objects in the heap create “holes” between
objects that may be too small for future allocation and thus create a
waste of available heap space. Compaction can eliminate this prob-
lem, but compaction algorithms are notoriously costly and are thus
not frequently used [1, 9, 10]. Instead, memory managers today ei-
ther use compaction seldom, or employ partial compaction, where

∗ This work was supported by the Israeli Science Foundation grant No.
283/10

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $10.00

only a (small) fraction of the heap objects are compacted to make
space for further allocation [2, 3, 7, 8, 12].

The work in [4] studies limitations of partial compaction. But in
spite of [4] being novel and opening a new direction for bounding
the effectiveness of partial compaction, their results are only signif-
icant for huge heaps and objects. When used with realistic setting
of system parameters today, their lower bounds become meaning-
less. For example, suppose a program uses a live heap space of
256MB and allocates objects of size at most 1MB. For such a pro-
gram, even if the memory manager is limited and can only compact
1% of the allocated objects, the results in [4] would only imply that
the heap must be of size at least 256MB, which is obvious and not
very useful.

In this work we extend the lower bounds on partial compaction
to make them meaningful for practical systems. To this end, we
propose a new “bad” program, that makes memory managers fail
in preserving low space overheads. We then improve the mathemat-
ical analysis of the interaction between the bad program and the
memory manager to obtain much better bounds. For example, us-
ing the parameters mentioned in the previous paragraph, our lower
bound implies that a heap of size 896MB must be used, i.e., a space
overhead of 3.5x.

In general, the more objects we let the memory manager move,
the lower the space overhead that it may suffer. To put a bound on
the amount of compaction work that is undertaken by the memory
manager, we use the model set in [4] and bound the fraction of
allocated space that may be compacted by a constant fraction 1/c.
This means that at any point in the execution, if a space of s words
has been allocated so far, then the amount of total compaction that
is allowed up to this point in the execution is s/c words, where c is
the compaction bound.

The results we obtain involve some non-trivial mathematical ar-
guments and the obtained lower bound is presented in a complex
formula that is not easy to digest. The general lower bound is stated
in Theorem 1 (on Page 3). But in order to grasp the improvement
over the previously known results, we have depicted in Figure 1 (on
Page 3) the space overhead factor for the parameters mentioned
above (which we consider realistic). Namely, for a program that
uses live space of M = 256MB and whose largest allocated object
is of size at most n = 1MB, we drew for different values of c the re-
quired heap size as a factor of the 256MB live space. Note that if we
were willing to execute a full compaction after each de-allocation,
then the overhead factor would have been 1. We could have used
a heap size of 256MB and serve all allocation and de-allocation
requests. But with limited (partial) compaction, our results show
that this is not possible. In Figure 1 we drew our lower bound as
well as the lower bound obtained from [4] for these parameters.
In fact, throughout the range of c = 10, . . . ,100, the lower bound
from [4] gives nothing but the trivial lower bound overhead factor
of 1, meaning that 256MB are required to serve the program. In
contrast, our new techniques show that the space overhead must be
at least 2x, i.e., 512MB when 10% of the allocated space can be

compacted. And when the compaction is limited to 1% of the allo-
cated space, then an overhead of 3.5x is required for guaranteeing
memory management services for all programs.

In general, the result described in this work is theoretical, and
does not provide a new system or algorithm. Instead, it describes
a limitation that memory managers can never achieve. As such, it
does serve a practical need, by letting practitioners know what they
cannot aspire to, and should not spend efforts in trying to achieve.
The lower bounds we provide are for a worst-case scenario and
they do not rule out achieving a better behavior on a suite of bench-
marks. But providing a better guaranteed bound on fragmentation
(as required for critical systems such as real-time systems) is not
possible. Note that this bound holds for manual memory managers
as well as automatic one, even when applying sophisticated meth-
ods like copying collection, mark-compact, Lang-Dupont, MC2,
etc. [9].

Finally, we also make a slight improvement over the state-of-
the-art related upper bound. The upper bound is shown by present-
ing a memory manager that keeps fragmentation low against all
possible programs. The new upper bound slightly improves over
the result of [4], and it does so by providing a better memory man-
ager and a better analysis for its worst space overhead. This slight
improvement is depicted in Figure 3 (on Page 4), where we depict
the new upper bound and compare it to the previous upper bound
of [4]. The upper bound theorem is stated rigorously as Theorem 2
(on Page 3). Note that the proposed memory manager is not meant
to be a practical efficient memory manager that can be used in real
systems, but it demonstrates the ability to deal with worst-case frag-
mentation.

To achieve the bounds presented in this paper, we stand on the
shoulders of prior work, and in particular our techniques build on
and extend the techniques proposed in [15] and [4].

Organization. In Section 2 we provide some preliminaries, ex-
plain the execution of a memory manager, and state our results. In
Section 3 we provide an overview over the lower bound and its
proof. In Section 4 we provide the actual proof of the the lower
bound, and we conclude in Section 5. A full version of this work is
available [13], and contains the complete proof of the lower bound
and the upper bound.

2. Problem Description and Statement of Results

2.1 Framework

We think of an interaction between a program and a memory
manager that serves its allocation and de-allocation requests as a
series of sub-interactions of the form:

1. De-Allocation: The program declares objects as free

2. Compaction: The memory manager moves objects in the heap.

3. Allocation: The program requests to allocate objects by specify-
ing their sizes to the memory manager and receiving in response
the addresses in which the objects got allocated.

In this work, we question the ability of a memory manager to han-
dle programs within a given heap size. But if a program allocates
continuously and never de-allocates any memory, then the heap size
required is trivially unbounded. So to let the question make sense,
we assume a bound on the space that the program may use simul-
taneously. This bound is denoted by M.

A second important parameter of the execution of a program
(from a memory management point of view) is the variance of sizes
for the objects that it allocates. If all objects are of fixed size, say
1, a heap space of M is always sufficient. Although holes can be
created by de-allocating objects, these holes can always be filled
by newly allocated objects. If we denote the least size of an object

by 1, the parameter n will denote the maximum size of an object.
It can be thought of as the ratio between the largest and smallest
allowable objects. We denote by P(M,n) the (infinite) set of all
programs that never allocate more than M words simultaneously,
and allocate objects of size at most n. We denote by P2(M,n) the
set of programs whose allocated objects sizes are always a power
of two.

As explained in the introduction, if the heap is compacted after
every de-allocation, fragmentation never occurs. However, frequent
compaction is costly and so memory managers either perform a
full compaction infrequently, or just move a small fraction of the
objects occasionally. In this paper we adopt the definition of [4],
and consider memory managers that limit their compaction efforts
with a predetermined fraction of the allocated space. For a constant
c > 1, a memory manager is c-partial memory manager if it com-
pacts at most 1

c of the total space allocated by the program. We
denote the set of c-partial memory manager by A (c).

Given a program P and a memory manager A, the execution of
P where A serve as its memory manager is well defined. The total
heap size that A uses in this case is denoted by HS(A,P)

In order to present a lower bound on the space overhead required
by any memory manager, it is enough to present one bad program
whose allocation and de-allocation demands would make all mem-
ory managers need a large heap space. For an upper bound, we need
to provide a memory manager that would maintain a limited heap
space for all possible programs.

Our model is phrased above as one that lets the program know
the address of each allocated object. This knowledge helps the pro-
gram create the fragmented memory. We remark that it is enough
to let the program know the allocator’s algorithm and when GC is
invoked (namely, when de-allocation actually happens) in order to
obtain this information and create the large fragmentation.

2.2 Previous work

For programs that allocate only objects with size that is a power
of 2, and M|n, and for all memory managers that do not use
compaction, Robson [14, 15] proved lower and upper bounds that
match. For his lower bound, he presented a “bad” program Po ∈
P2(M,n) that makes any memory manager (that does not use
compaction) need a large heap. Specifically, 1

min
A∈A (∞)

HS(A,Po)≥ M ·

(

1

2
log(n)+1

)

−n+1

For an upper bound, Robson presented an allocator Ao that satisfies
the allocation requests of any program in P2(M,n) using a heap
size of

max
P∈P2(M,n)

HS(Ao,P)≤ M ·

(

1

2
log(n)+1

)

−n+1.

For programs that may allocate objects of arbitrary size (and not
only powers of 2), one may round each allocation to the closest
higher power of two. This rounding may (at the most) double the
size of each object, which means that if the program is allowed to
allocate 2M words simultaneously, then we obtain a doubled upper
bound of 2(M(1/2 · log(n)+1)−n+1).

When some compaction is allowed (but not an unlimited com-
paction effort), much less is known. For the upper bound, Ben-
dersky and Petrank [4] have shown a simple compacting collector
Ac ∈ A (c), that uses a heap space of at most

max
P∈P(M,n)

HS(Ac,P)≤ (c+1) ·M

words, when run with any program in P(M,n).

1 Here, and throughout the paper, all logarithms are of base 2.

They have also shown a “bad” program PW that makes all
memory managers with a c-partial compaction bound use a large
heap. In particular:
minA∈A (c) HS(A,PW (c))≥

{

1
10 M ·min

(

c, logn
logc+1 −

5n
M

)

for c ≤ 4logn

1
6 M · logn

loglogn+2 −
n
2 for c > 4logn

2.3 This work

Our main contribution is a new lower bound on the ability of a
memory manager to keep the heap de-fragmented. While the lower
bound of [4] is important for modeling the problem, providing
some tools for solving it, and an asymptotical lower bound, their
bound is meaningful only for huge objects and heaps. In particular,
it provides a lower bound that is higher than the obvious M only for
M > n ≥ 16T B. In this work we extend the theory enough to obtain
meaningful results for practical values of M and n.

Theorem 1. For any c-partial memory manager A, and for any
M > n > 1 there exists a program PF ∈ P2(M,n) such that for any

γ ≤ log(3
4 c) : γ ∈ N

min
A∈A (c)

HS(A,PF)≥ M ·h (1)

where h is set to:

h =

γ+2
2 − 2γ

c

(

γ +1− 1
2 ∑

γ
i=1

i
2i−1

)

+
(

3
4 −

2γ

c

)

log(n)−2γ−1
γ+1 − 2n

M

1+2−γ (3
4 −

2γ

c)
log(n)−2γ−1

γ+1

We remark that the theorem makes use of an integral parameter
γ . The theorem holds for any γ ≤ log(3

4 c) : γ ∈ N, but obviously
there is one γ that makes h the largest and optimizes the bound.
Determining this γ mathematically is possible (if we do not require
integral values) but the formula for that is complicated. In practice,
there are very few (integral) γ values that are relevant for any
given setting of the parameters, and so it can be easily computed
in practice.

Since h is given in a complicated formula, the implications of
HS(A,PF)≥ M ·h are not very intuitive. Therefore, we chose some
realistic parameters to check how this bound behaves in practice.
We chose M, the size of the allocated live space to be 256MB,
and n, the size of the largest allocatable object to be 1MB. With
these parameters fixed and with the parameter γ set to the value
that maximizes the bound, we drew a graph of h as a function
of the compaction quota bound c. This graph appears in Figure 1.
The x-axis has c varying between 10 to 100. Setting c = 10 means
that we have enough budget to move 10% of the allocated space,
whereas setting c= 100 means that we have enough budget to move
1% of the allocated space. For these c’s, the y-axis represents the
obtained lower bound as a multiplier of M. For example, when
compaction of 2% of all allocated space is allowed (c = 50), any
memory manager will need to use a heap size of at least 3.15 ·M.
Even with 10% of the allocated space being compacted, a heap size
of 2 ·M = 512MB is unavoidable. For these practical parameters,
previous results in [4, 14] do not provide any bound, except for the
obvious one, that the heap must be at least of size M.

We also depicted the lower bound as a function of a varying
maximum object size n. We fixed the compaction budget to c =
100, and the total size of live objects to M = 256n. The rational
for the last parameter setting is that it is uncommon for a single
object to create a significant part of the heap (larger than half a
percent). Setting M to a larger value does not change the bound.
We let the size of the largest object n vary between 1KB and 1GB,
and for these n values, the y-axis represents the obtained lower
bound as a multiplier of M. The graph is depicted in Figure 2.

Figure 1. Lower bound on the waste factor h for realistic parame-
ters (M = 256MB and n = 1MB) as a function of c

Figure 2. Lower bound on the waste factor h as a function of n
(c=100, M=256n)

We could also depict the lower bound as a function of M, where
n and c remain fixed. However, in a practical setting, the size of the
largest object is much smaller than the total live space (i.e., n/M is
small). Hence the lower bound as a function of M is very close to a
constant function and it does not provide an additional interesting
information.

We also consider the upper bound on the size of heap required.
In [4] an upper bound of the form (c+ 1)M was presented. How-
ever, this upper bound may become non-interesting when Rob-
son’s upper bound is stronger, meaning that the same heap size
may be obtained without moving objects at all. This happens when
c > logn + 1. As partial compactors often use a large c to limit
the fraction 1/c of moved objects, such a scenario seems plausible.
We provide some improvement to Robson’s algorithm when little
compaction is allowed and obtain better upper bound as follows.

Theorem 2. For any c > 1
2 logn, there exists a c-partial memory

manager A ∈ A (c), which satisfies allocation requests of any pro-
gram P ∈ P with heap size at most

max
P∈P(M,n)

HS(AC,P)≤ 2M ·
logn

∑
i=0

max

(

ai,
1

4−2/c

)

+2n log n

Where a0 = 1, and the values of ai, i = 1, . . . , log(n), satisfy the
following recursive formula:

ai = 1−
i−1

∑
j=0

max

(

1

c
,2 j−i

)

·a j

As the formulas in this theorem are also not easy to grasp, we
also drew a graph comparing previously known bounds with the
new result. It can be seen in Figure 3 that for c’s between 20 and
100 we get improvement with the largest improvement being 15%
at c = 20. We consider this result minor and the lower bound the
major result in this paper. The proof of the upper bound appears in
the full paper [13].

3. Overview and Intuitions

In this section we review the proof of the lower bound. The main
tool in this proof is the presentation of a ”bad” program that cause
large fragmentation. Our bad program will always allocate objects

Figure 3. Upper bound on the waste factor for realistic parameters
(M = 256MB and n = 1MB) as a function of c

of size which is an exponent of 2, and to simplify the discussion (in
this overview), we assume that the memory manager is restricted to
using only aligned allocation. This means that an object of size 2i

is placed in an address that is dividable by 2i.
The bad program will work in steps, where in each step of the

execution, the bad program will allocate only objects of size 2i, for
some i that it will determine. Consider such a step and consider a
memory region that starts at an address dividable by 2i and spans
2i words. Denote such a memory region a chunk. If a chunk is
fully populated by objects, there is no fragmentation in this chunk.
On the other extreme, if a chunk is empty, a new object of size
2i can be placed in this ”hole”, creating a fully populated chunk.
Fragmentation actually occurs (w.r.t. a chunk) when a chunk is
sparsely populated. In this case, the utilization of this chunk is low,
yet it can not be used for placing a new object. In the case that no
compaction is allowed, a ”bad” program should attempt to leave a
small object in each such chunk, by de-allocating as many objects
as possible, leaving one object in each chunk.

The bad program always tries to deallocate as much space as
possible, while keeping chunks occupied by objects that hinder
their reuse by the allocator. Recall that the program is restricted
in allocating at most M words at any time. Therefore, the larger the
de-allocated space, the larger the space that can be allocated in the
next step, and the larger the heap that the allocator must use. This is
the main design goal of the bad program: never allow chunk reuse,
and allocate as much as possible at each step (by de-allocating as
much as possible in the previous step).

In case compaction is allowed, avoiding reuse is more difficult.
In particular, a sparsely populated chunk can be evacuated and
reused by the memory manager. If the populated space on a chunk
is of size 2i/c or smaller, then the memory manager can move the
allocated objects away, losing a compaction budget of at most 2i/c,
but then allocating an object of size 2i on the cleared chunk and
gaining a compaction budget of 2i/c. So reuse of sparsely allocated
chunks becomes beneficial for the memory manager.

In order to create fragmentation in the presence of compaction,
the bad program attempts to maintain dense-enough chunks. If the
allocated space for a chunk is, say, 2 ·2i/c, then either the memory
manager does not reuse this chunk, or it does reuse the chunk, but
then it must pay at least 2 ·2i/c of its compaction budget. Allocation
of a new object re-charge compaction budget by 2i/c, thus the
memory manager remains with a minus of 2i/c words. This allows
bounding the overall reuse by bounding the overall compaction
budget.

Finally, let us discuss how we deal with objects that are not
aligned, and therefore, reside on the border of two chunks. If
objects are aligned, then an object is allocated exactly on one full
single chunk. In order to allocate an object, the chunk it is put on
must be entirely free of objects. When an object’s allocation is not
aligned, it may reside on two chunks. We start by looking at smaller
chunks, whose size is a quarter of the allocated object. This means
that a non-aligned allocated object must entirely fill three chunks
(and partially sit on two more chunks). These three chunks must be

completely free of allocated objects before the allocation can take
place. If one of these three chunks is about to be reused, then the
memory manager must move away every object that resides (even
partially) on the reused chunk, and lose some compaction budget.
Note that we have to make sure that if two adjacent chunks are
reused, then we do not double count budget loss due to the move of
a non-aligned object that resides on both.

3.1 Improvements over prior work [4]

In this subsection we review the main improvements of this work
over [4]. These improvements enabled the achievement of a better
lower bound, which is meaningful with realistic parameter settings.
We mention the three major improvements in this overview.

The first improvement follows from noting that in the first steps,
the size of allocated objects are large compared to the chunk sizes
(which are small in the first steps). Therefor, in these first steps,
it is useful to run a program that is very similar to Robson’s bad
program [14]. Robson’s program is designed for memory managers
that do not compact objects, but when objects are large compared
to the chunks, it is not beneficial to the memory manager to do any
compaction, and a reduction theorem is developed to show that this
program (or actually a similar program) creates fragmentation even
where compaction is allowed. Furthermore, these first steps nicely
integrate with the general algorithm that runs in the rest of the steps.

The second improvement consists of a small twist in the algo-
rithm that creates a more regimented behavior during the execution,
which then allows analyzing the execution and obtaining the im-
proved bound. Recall that the bad program attempts to de-allocate
as much space as possible in each step so that it can allocate as
many objects as possible in the next step. It turns out that this be-
havior can create scenarios that are hard to analyze. This happens
when we allocate a lot of objects in one step, and then very few in
the following steps. The second improvement that helps us obtain
higher fragmentation is in bounding the amount of memory that is
allocated per step. This, perhaps, does not use all the space that can
be used in one step, but it guarantees a sufficient amount of alloca-
tion in all steps. Allocating a fixed amount of memory at each step
allows a stronger analysis of the program behavior and results in a
better bound. Indeed the stronger analysis of the more regimented
execution is another improvement of this new work.

Finally, the third improvement that we mention concerns non-
aligned object allocation. When an object is not aligned, it consists
of two parts that lie on two different chunks. The reuse of one of
these chunks for allocation requires the moving of this object, but
such a move may also allow use of the other neighboring chunk.
The analysis of these scenarios is not simple. We gain more control
over the analysis by virtually assigning the non-aligned object to
one of its underlying chunks. Of-course, in order to reuse a chunk,
this object must still be moved, but the virtual assignment of an
object to one of its underlying chunk allows making easier algo-
rithm decisions and also computing tighter bounds on the amount
of reuse that the memory manager can achieve.

4. Lower bound: creating fragmentation

In this section we prove a lower bound on the ability of a memory
manager to keep the heap defragmented when its compaction re-
sources are bounded. In particular, we introduce a program PF that
forces any c-partial memory manager to use a large heap size to
satisfy all of PF ’s allocation requests.

Let us start by explaining the ideas behind the construction
of PF . The program PF works in two stages. The second stage is
probably the major contributor to the fragmentation achieved, but
the first stage is also necessary to obtain our results. The first stage
is an adaptation of Robson’s malicious program [14] that attempts
to fragment the memory as much as possible, when working against

Figure 4. association of objects and half objects with chunks

a memory manager that cannot move objects. We will discuss in
Section 4.2 how this algorithm behaves against a memory manager
that can move objects and show that it buys some fragmentation
in this case as well. After running for 2γ steps, a second stage
starts, which behaves differently. The second stage works in steps
i= 2γ , . . . , log(n)−2 and in each step it only requests allocations of
objects of size 2i+2 words. At each such step of the execution, we
consider a partition of the heap space into aligned chunks of size 2i

words. This means, for example, that each allocated object either
consumes four full consecutive chunks if its allocation is aligned,
or it consumes at least three full consecutive chunks.

Our goal is to show that the memory manager must use many
chunks. If at any point in the execution x+1 chunks of size 2 j are
used, even if only one word of each chunk is used, then the heap
must contain at least x chunks. (The last chunk may not be entirely
contained in the heap.) This means that the memory manager must
be using a heap size of at least x ·2 j words.

Since we do not assume aligned allocation, objects may spread
over more than one chunk. Nevertheless, each chunk that has a
word allocated on it (at any point of the execution) must be part
of the heap. Given an execution of the program PF with some given
memory manager, we associate with each chunk a set of objects that
were allocated on it at some point in the execution. This enables
tighter analysis. An object is associated with one of the chunks it
resides on. This means that at least one word of the object resides
on the associated chunk at the time the object is allocated. We then
aim to show that x+ 1 chunks have objects associated with them,
and obtain the bound as above.

The association of objects with chunks is chosen carefully to
establish the bound. Note that chunk sizes dynamically change as
we move from step to step. On a step change, each pair of adjacent
chunks become a single joint chunk. So, association of chunks
with objects changes between steps. The association is also updated
during the execution, as objects get allocated and de-allocated. The
program actively maintains the set of objects associated with each
chunk, and also uses this set in the second stage to determine which
objects to de-allocate. Association of an object with a chunk is only
removed when PF de-allocates the object. It is not removed when
an object is compacted. The fact that we do not “move” association
during compaction and attempt to claim that an additional chunk
must be used for the move follows from a analysis strategy: when
an object is moved, usually it is possible to put it in used chunks,
that are not fully occupied. Since the analysis can gain nothing
from checking the object’s new location, the bad program will just
de-allocate any object that’s being moved immediately, again, not
attempting to consider the location to which it was moved into, but
instead, de-allocating it and using its space for future allocation.
Note that the chunk that it did occupy will remain part of the heap
forever, so associating it with the old chunk makes sense.

We denote by OD(t) the set of objects that PF associates with the
chunk D at time t, and we sometimes omit the t, when its value is
clear from the context. In fact, when an object lies on the border of
two chunks, we sometimes choose to associate it with both chunks.
In this case, we associate exactly half of it with each of the chunks
(ignoring the actual way the object is split between the chunks).
This even split in association is used to preserve the property that

objects sizes are a power of two. This refinement of association
implies that a chunk may be associated with half an object, and a
single object may be associated with two chunks.

From the memory manager point of view, a chunk that contains
a small number of allocated words is a good candidate for com-
paction and reuse. Compaction allows reuse of a chunk’s space for
more allocations. As the program PF controls which objects get de-
allocated, PF will attempt to make sure that each chunk has enough
associated objects to make it non-beneficial for the memory man-
ager to clear a chunk. The density of a chunk is the total size of
objects that are associated with it, divided by the chunk size. We
define a density parameter 2−γ so that PF attempts to keep the den-
sity of a chunk at least 2−γ . This means that the program PF will
never choose to de-allocate an object if the de-allocation makes a
chunk too sparse, in the sense that its density goes below 2−γ . This
density will be chosen to be larger than 1/c to make the compaction
of objects from such a chunk not beneficial.

Loosely speaking, according to the compaction budget rules,
the memory manager gains an extra compaction budget of 1

c |o|
when it allocates o. However, if it needs to move 2−γ · |o| words to
make space for this allocation, then its overall compaction budget
decreases. (Recall that 2−γ > 1

c). An example of density threshold
and association set is depicted in Figure 4. Let the density threshold
2−γ be 1/4, which consists of 2 words per chunk of size 8. Half of
O2 is associated with Chunk C7, the other half is associated with
Chunk C8, and the object O3 is associated with Chunk C9 only.
These objects suffice to make the density of each chunk at least
1/4. The program can free the object O1 since a density of 1/4 is
preserved even without it.

The whole issue of maintaining a high enough density is not
relevant for the first steps in the computation. In these steps chunks
are small enough so that when even one word is allocated on the
chunk, a density of 2−γ is achieved. Therefore, we can simply
adopt Robson’s “bad” program [14] with a technical variation so
that it can deal with the memory manager’s compaction activity.
Robson’s program works well to blow the heap up for memory
managers that do not compact the heap. In our scenario, where the
chunks are small and so the density is always high, compaction
is not very useful, and so Robson’s original program can work
for us too. However, while compaction is not beneficial to the
memory manager, compaction may still occur and our bad program
must deal with it. We build a program PF that will be “similar”
to Robson’s program in the sense that it will keep a similar heap
shape, it will make very similar decisions on which objects to
de-allocate and it will allocate the same amount of space in each
step. We will then show a reduction saying that if there exists a
memory manager M that can maintain low fragmentation while
serving PF , then it is possible to create another memory manager
M′, that does not move objects, and maintains low fragmentation
against Robson’s program. Since no memory manager can keep low
fragmentation against Robson’s program, we get the lower bound
we need.

In order to make PF work similarly to Robson’s program, we
need to handle compaction. When objects are moved, several dif-
ferences are created that might influence the execution. First, space
gets occupied where an object is moved, so new objects can no
longer be allocated there. Second, vacancy is created in the old
space from which an object was moved, so objects might be al-
located there. And finally, the different shape of allocated objects
may change the de-allocation decisions of the bad program. To han-
dle the first difference, PF simply de-allocates each moved object
immediately after it gets moved. This makes sure that new objects
can be allocated as before. To handle the other two problems we in-
troduce ghost objects, which are not really in the heap, but are used

by PF to remember where objects existed so that Robson’s program
behavior can still be imitated.

The program PF maintains a list of ghost objects. These are ob-
jects that have been relocated by the memory manager along with
their original location. For all of its de-allocation considerations, PF

treats ghost objects as if they still reside at their original location.
In fact, each ghost object continue to exist until the de-allocation
procedure (of Robson’s) determines that it should be de-allocated.
Of-course, these objects have been de-allocated when they became
ghosts, so no actual de-allocation is required by the memory man-
ager, but at that point, they are removed from the list of ghost ob-
jects and are not considered further by the de-allocation procedure.

Note that memory space on which ghost objects reside may
receive allocations of new objects by the memory manager, who
is not aware of the ghost objects. This is fine. The de-allocation
procedure can view both objects as residing on the same location
while making its decisions. This seeming collision is later resolved
in the reduction theorem, by noting a property of the de-allocation
procedure. The de-allocation procedure only cares about location of
objects moduli 2i. Therefore, one can think of the ghost objects as
existing in a separate (far away) space at the same address moduli
2i. This additional space will not be counted as part of the heap
size, but it will allow the program PF and a real memory manager
to work consistently together. Details follow.

Definition 4.1. [A ghost object] We call an object that was com-
pacted by the memory manager during the execution and imme-
diately de-allocated by the program PF a ghost object. In the first
stage of the algorithm, such objects are considered by PF as still re-
siding as ghosts in the original location where they were allocated.
They do not impact the behavior of the memory manager, which
can allocate objects on a space consumed by ghosts. When ghost
objects are de-allocated by the program, they disappear and are no
longer considered by PF in subsequent steps.

At each step i of the first stage, i = 0,1, . . . ,γ , we start by
considering a partition D(i) of the heap into all aligned chunks
of size 2i. (Aligned here means that they start on an address that
is divisible by 2i.) The main decision that is taken at each step is
which objects should be de-allocated (by the malicious program).
To this end, Robson picks an offset fi and examines the word at
offset fi (from the beginning of the chunk) for all chunks. De-
allocation then is executed for all objects that do not intersect the
fi word of a chunk. Note that all objects that will be allocated
thereafter are all of size at least 2i, and therefore, two adjacent
chunks that have their fi offset word occupied, will never be able
to hold a new object between them.

Definition 4.2. [an f -occupying object with respect to step i]
An object is f -occupying with respect to step i if it occupies a word
at address k ·2i + f for some k ∈ N.

As a new step kicks in, the chunks sizes get doubled to 2i+1,
where each chunk contains two adjacent chunks of the previous
step i. We would like to pick a new offset fi+1 for the larger
chunks of size 2i+1. The new offset will be either the old offset
on the left 2i-sized sub-chunk or the old offset on the right 2i-
sized sub-chunk. Robson chooses the new offset to be the one that
maximizes the wasted space. In a way, Robson attempts to keep
the smallest objects that will still occupy words at the fi+1 offset.
So if one of these two offsets allows capturing more space with
smaller objects, this becomes the new offset fi+1. To formalize this,
Robson chooses fi+1 to be either fi or fi +2i, according to which
maximizes

∑
o is fi+1-occupying

2i+1 − |o|.

It is not necessary to understand the details of Robson’s analy-
sis, as we adopt it without repeating it for the first stage of our pro-
gram. However, to be able to link Robson’s program to PF ’s first
stage, we also work with ghost objects. In the summation above,
Robson naturally considers all objects in the heap that have been
allocated but not de-allocated yet, i.e., the set of live objects. In our
modified algorithm, we also consider ghost objects. Namely, we
sum over all live objects and also over all objects that were com-
pacted from their original location and thereafter de-allocated by
the program. The ghost objects are considered to reside at the loca-
tion they were allocated (and are not considered at the location to
which they were compacted into, as they were already deleted from
the heap.)

After running Robson’s program, PF runs extra γ −1 null steps
in which it does not allocate anything. This is done just for making
all objects in the heap be of size at most 2−γ of a chunk size. As
will be shown in the analysis, this helps ensuring that a lot of space
can be de-allocated by PF even while maintaining a density of 2−γ .
With much space de-allocated, PF gains ammunition for allocations
in the steps of the second stage. Recall that PF is limited and cannot
allocate more than M words simultaneously, so it must de-allocate
enough space before it can allocate again.

The bad program PF is presented in Algorithm 1 (on Page
7). It starts by running some steps that are similar to Robson’s
algorithm and proceeds with newly designed algorithm to deal with
compaction, and maintain some density in each chunk. When the
memory manager moves objects using its compaction quota, the
program will not try to take advantage of the moved objects in their
new location. There are not enough of those to justify the trouble.
Instead, it will simply immediately delete these objects, and use the
reclaimed space for future allocation.

Recall that we denote the density that the program attempts to
maintain in each chunk by 2−γ . Other inputs to PF include M,
n, which is the size of the largest allocatable object; and c, the
compaction budget factor.

4.1 Analysis of Program PF

Let us now analyze the behavior of the program PF when executing
against a c-partial memory manager A. We distinguish the behavior
of the program in the two stages. Denote the set of objects that PF

allocates during the first stage by S1 and during the second stage
by S2. Also, denote the total size of the objects in S1 by s1 and the
total size of the objects in S2 by s2. Finally, denote the set of objects
that the memory manager chooses to compact during the first stage
by Q1 and their total size by q1. Similarly, the corresponding set
of compacted objects in the second stage is Q2 whose accumulated
size is q2.

The execution of PF proceeds in in steps i = 0,1, . . . ,2γ −
1,2γ , . . . , log(n)−2. The steps 0,1, . . . ,2γ −1 define the first stage
(yet, nothing is done in steps γ + 1, . . . ,2γ − 1). The rest of the
steps happen in the second stage. At each first stage step, we use a
partition of the heap into chunks of size 2i, in an aligned manner,
i.e., each chunks starts at an address that is divisible by 2i. Denote
by D(i) the set of all aligned chunks of size 2i.

Our analysis is simplified by using a potential function u(t),
which we define next. It will turn out that this function provides a
lower bound on the heap usage during the execution, and our goal
will be to show that it becomes large by the end of the execution.
The function u(t) will be written as a sum of chunk functions uD(t),
one for each chunk in D(i). The function uD(t) will be zero for all
chunks that are not used to allocate objects. On the other hand,
uD(t) will always be at most 2i (i.e., the size of the chunk D) for
chunks that have been used until time t.

During the analysis of the second stage, we will need to give
special treatment to some of the chunks. The set of special chunks

ALGORITHM 1: Program PF

Input: M,n,c,γ

Initially: Compute x = 1−2γ ·h
γ+1

During the execution: If the memory manager compacts an object,
ask the memory manager to de-allocate this object immediately
(before any other action is taken), but add this object to the set of
ghost objects, with the same address it held when it was allocated.

1: // Stage I:
2: f0 := 0
3: Allocate as many objects of size 1 as is possible (i.e., M such objects.)
4: for i = 1 to γ do

5: Pick fi to be either fi−1 or fi−1 +2i−1, according to which of the
two maximizes

∑
o is live or ghost and o is fi-occupying

2i − |o|

6: Free every live or ghost object that is non fi-occupying

7: Allocate
⌊(

M−∑o is live or ghost |o|
)

/2i
⌋

objects of size 2i

8: end for
9: Associate objects with chunks: consider the chunk partition D(2γ −1)

to chunks of size 22γ−1. Each fγ -occupying object is associated with
the chunk that contains its fγ -occupying word.

10: // Stage II:
11: for i = 2γ to log(n)−2 do

12: Consider the chunk partition D(i) of chunks of size 2i. Each chunk
D is composed of chunks D1,D2 of the previous step, we set the
association: OD = OD1

∪OD2

13: For each 2i chunk, Free as many objects from OD as possible such
that ∑o∈OD

|o| ≥ 2i−γ .
When a half object is freed, associate it with the chunk that
contains the other half, and re-evaluate that chunk.

14: Allocate
⌊

x ·M ·2−i−2
⌋

objects of size 2i+2 if the total size of
allocated memory will not exceed M.

Each allocated object o fully cover 3 chunks D1,D2,D3,
if it cover four, pick the first three.

Set OD1
:= {o′},OD2

:= /0,OD3
:= {o′′}.

15: end for

will be denoted by E and defined later in Definition 4.12. For the
analysis of the first stage, one can simply think of E as the empty
set. Let us now set the terminology and then define the potential
function.

Definition 4.3. [The chunk function uD(t)] Let A be a c-partial
memory manager, and let t be any time during the execution of PF

against A which happen at step i. Let D be a chunk of size 2i. The
function uD(t) is defined as follows.

uD(t) =

{

2i D ∈ E (t)
min(2i−γ ·∑o∈OD(t) |o|,2

i) otherwise

The above definition depends on the association of objects to
the chunk D, as determined by the association function OD(t).
This association is computed explicitly by the program PF and it
dynamically changes during the course of execution. Let us now
define the potential function u(t).

Definition 4.4. [The potential function u(t)] Let A be a c-partial
memory manager, and let t be any time during the execution of PF

against A. Let i be the step in which t occurs. The function u(t) is
defined as follows.

u(t) =

(

∑
D∈D(i)

uD(t)

)

−
n

4
.

The function u(t) is used to prove the lower bound as follows.
It will later be shown that uD(t) is non-zero only if there exists an

object o which intersected with D at some point during execution.
We consider the heap to be the smallest consecutive space that the
memory manager may use to satisfy all allocation requests. Now,
if x+ 1 chunks of size 2i are used during the execution, then at
least x of them (all but the last chunk) must fully reside in the heap.
Thus, the heap size must be at least x ·2i. As u(t) sums over all used
chunks, and as it accumulate at most 2i for each of those, we get
that u(t) is a lower bound on the heap size. A caveat to that is that
u(t) may accumulate 2i also for the last chunk that is not fully used
in the heap. It is for this reason that u(t) is defined as the sum of all
uD(t) minus a single n/4 which is the largest 2i possible. With this
additional term, u(t) is guaranteed to be a lower bound on the size
of the heap used. Next, we analyze the increase of u(t) during the
execution.

When PF allocates an object, either the memory manager places
it on completely new chunks, which (as will be shown) increases in
the value of u(t), or, it places the new object in a chunk already oc-
cupied by other objects, that have been compacted away. As com-
paction is bounded, the latter will not happen too much, and fur-
thermore, it will be shown that such a combination of compaction
and allocation does not decrease u(t). It will also be shown that a
step change, which influences u(t) do not decrease it. Finally, new
objects may be placed on top of objects that have been de-allocated
earlier by PF . But the program PF will manage its de-allocations
to not allow reuse of a chunk unless some objects are compacted
away from it. Thus, we get that the function grows sufficiently to
provide a good lower bound on the heap usage.

The guaranteed growth of u(t) and the implied lower bound are
shown in two lemmas 4.5 and 4.6. The first lemma, Lemma 4.5,
asserts the increase of u(t) during the first stage. It also bounds
from above the amount of space allocated during the first stage.
This bound will be used to analyze the first stage.

Lemma 4.5. Let A be a c-partial memory manager, and let t f irst

be the time that PF finishes the execution of its first stage when
executing with A as its memory manager. Then

u(t f irst)≥ M ·
γ +2

2
−2γ ·q1 −

n

4

Also, the total size of allocated memory during the execution of the
first stage s1 is bounded by

s1 ≤ M

(

γ +1−
1

2

γ

∑
i=1

i

2i −1

)

The analysis of the second stage is summarized in Lemma 4.6.
This lemma again asserts that u(t) increases. However, the increase
depends on the total space allocated in the second stage and also on
the compaction budget in the second stage, which depends on the
space allocated (in both stages). To show that the increase in the
potential function u(t) is high, this lemma also bounds from below
the amount of allocated space s2 in the second stage. This second
bound uses an additional parameter h, which depends on γ , c, n,
and M and is set to the following complicated expression in order
to achieve the strongest possible bound.

h =

γ+2
2 − 2γ

c

(

γ +1− 1
2 ∑

γ
i=1

i
2i−1

)

+
(

3
4 −

2γ

c

)

log(n)−2γ−1
γ+1 − 2n

M

1+2−γ (3
4 −

2γ

c)
log(n)−2γ−1

γ+1

Intuitively, h is the wasted space factor. Namely, If M is a bound
on the live space allocated simultaneously by PF , then h ·M is the
lower bound we show on the size of the heap that the memory
manager must use to satisfy the allocation requests of PF . The
analysis will show that either the memory manager uses more than
M · h space, and we are done with the proof of Theorem 1, or the
program allocates a lot of space, as in the second part of the lemma,

which will then be used to show that the heap space used in both
stages is larger than M ·h, satisfying the assertion of Theorem 1.

Lemma 4.6. Let A be a c-partial memory manager, and let t f inish
be the time that PF finishes its execution with A as its memory
manager. Then,

u(t f inish)−u(t f irst)≥
3

4
s2 −2γ ·q2

Additionally, either the memory manager uses more than M · h
space, or the amount of allocation s2 in the second stage satisfies

s2 ≥ M

(

log(n)−2γ −1

γ +1

)

(

1−2−γ ·h
)

−2n

We now show how to obtain the lower bound stated in Theo-
rem 1 using Lemma 4.5 and 4.6. Using the fact that the memory
manager compacts at most 1

c of the total allocation, we know that

(q1 +q2)≤
1
c (s1 + s2). Thus,

HS(A,PF) ≥ u(t f inish) = u(t f irst)+(u(t f inish −u(t f irst))

≥ M ·
γ +2

2
+

3

4
s2 −2γ · (q1 +q2)−

n

4

≥ M ·
γ +2

2
+

3

4
s2 −

2γ

c
(s1 + s2)−

n

4

≥ M ·
γ +2

2
−

2γ

c
s1 +

(

3

4
−

2γ

c

)

s2 −
n

4

Now, if HS(A,PF) ≥ M · h, then we are done. Otherwise, Lemma
4.6 gives us the lower bound on s2:

s2 ≥ M

(

log(n)−2γ −1

γ +1

)

(

1−2−γ ·h
)

−2n

In addition, Lemma 4.5 implies

s1 ≤ M

(

γ +1−
1

2

γ

∑
i=1

i

2i −1

)

and using simple algebra we get that

HS(A,PF)≥ M ·h

which completes the proof of Theorem 1.

4.2 Analysis of the first stage

We now focus our attention on the first stage and prove Lemma 4.5.
We consider an execution of the malicious program PF with any
memory manager A and look at the first γ steps. In Step i, the size of
the chunks is 2i words, and therefore the size of any chunk through-
out the first stage is not larger than 2γ words. If any object is asso-
ciated with a chunk, and since any object is of size at least one
word, then the fraction (or density) of live space associated with
that chunk must be at least 2−γ . When the density is guaranteed to
be that high, and compaction is limited by the 1

c < 2−γ fraction,
compaction is very limited and not very beneficial to the memory
manager. Therefore, for these initial steps (of the first stage) we
chose to use a program that is very similar to a program presented
by Robson. Robson used his program for the case where no com-
paction is allowed. We will analyze the slightly modified program
to show that it is still useful when limited compaction is used by
the memory manager.

For completeness, let us recall Robson’s program in Algorithm
2. In the algorithm we use the term f -occupying objects that was
defined in Definition 4.2. Also, an object is live if it is in the heap,
i.e., has not been de-allocated. A simple example to the behavior of
Algorithm 2 is depicted in Figure 5. In this example, the object O3
will be freed in Line 5, since it is not fi occupying.

ALGORITHM 2: Robson’s “bad” program PR

1: Initially: f0 := 0
2: Allocate M objects of size 1.
3: for i = 1 to γ do

4: Pick fi ∈ { fi−1, fi−1 +2i−1} that maximizes

∑
o is live and fi-occupying

2i − |o|.

5: Free all non- fi-occupying objects
6: Allocate as many objects of size 2i as possible (within the M

live space bound.)
7: end for

Figure 5. Lower bound on the waste factor h for realistic parame-
ters (M = 256MB and n = 1MB) as a function of c

The original program was designed to maximize fragmentation
when no compaction is allowed. In our adaptation, appearing as the
first stage of Program PF , we also handle the case that the memory
manager employs compaction. When a compaction occurs, PF im-
mediately de-allocates the moved objects. But we would still like
to adopt the original analysis of Robson without redoing the entire
analysis for the slightly modified version that was used in the first
stage of PF . To this end, we use a mind experiment in which we let
Robson’s malicious program PR run against an imaginary memory
manager A′ that does not move objects. Clearly, Robson’s analysis
holds for the execution (PR,A′), as it holds for all memory man-
agers that do not move objects. From this analysis we will be able
to also deduce a lower bound on the heap size that A uses while
satisfying PF ’s allocation and de-allocation sequence. To make a
connection between the first stage of PF and PR we note that their
only difference is that PF must deal with compacted objects. (Such
objects are de-allocated by PF , but still count for the decisions on
future de-allocation of all objects.) Otherwise, it behaves exactly
like the original PR.

In the discussion in this subsection we only care about the
execution of the first stage of PF . In what follows, when we mention
PF , we only look at the first stage of PF .

The imaginary memory manager A′ is constructed only for this
proof and has no use otherwise. We therefore do not care much
about its efficiency or generality. A′ will be looking at the run of PF

against A in order to make its allocation decisions. Actually, it will
make sure that the program PR makes the same allocation requests
as PF makes when running against A. But A′ will satisfy them with
no compaction. Since PR will make the same allocation sequence,
A′ knows exactly which allocations to expect during the execution
against PR.

The memory manager A′ will require more heap space than the
original memory manager, but it will make sure that the number of
fi-occupying objects in each step i is similar throughout the exe-
cution. This is done by maintaining a one to one mapping between
objects in the execution of (PF ,A) and objects in the execution of
(PR,A′), such that mapped objects are always of the same size, and

are either both fi-occupying or are both not fi-occupying. Since
the allocation sequence of PR and PF is determined by the space
consumed by fi-occupying objects, we get that these sequences
remains the same for both programs. Interestingly, the set of fγ -
occupying objects at the end of executing the first stage can be used
to bound the value of the potential function u(t f irst) (from below)
at the end of PF ’s first stage. This will be the final connection and
the thing that will provide the desired bound.

It still remains to show how we handle the case that an object
is compacted, and why this does not break the maintained mapping
between objects. This is exactly the reason why ghost objects were
defined and used. Objects that have been moved by the memory
manager and de-allocated by the program PF are considered by PF

as remaining in their original location (where they were allocated)
as ghosts. This means that the memory manager can allocate space
at this original location and it simply ignores these ghost objects.
But the malicious program PF does consider their sizes when it
needs to decide on which objects to delete, and how many objects
to allocate. If ghost objects are f -occupying, then they are counted
in the summation there.

Let us now specify the imaginary memory manager A′ (which
depends on the execution (PF ,A)) such that the execution (PF ,A)
is made similar to the execution (PR,A′).

Definition 4.7. [Memory manager A′(A,PF)] The memory man-
ager A′(A,PF) works as follows. The k-th object that P′ allocates is
placed in a location in the memory whose address is equal modulo
2γ to where A placed the k-th object that PF allocated. There are
infinitely many such locations and A′ chooses one of them that does
not contain any other object previously allocated in an arbitrary
manner.

Indeed the arbitrary location that A′ uses to place the objects
may seem too much, as it may use a huge heap for that. But all
we care about in the end is the accumulated size of objects that are
fγ -occupying, and this set will be the same for both executions of
(PF ,A) and (PR,A′). Robson’s analysis will guarantee that this set
will be large, and we will deduce the bound we need.

We now prove that the mapping between objects in the execu-
tion of (PF ,A) and objects in the execution of (PR,A′) indeed exists
and satisfies some nice properties.

Claim 4.8. Consider the execution of PF against a memory man-
ager A, and the execution of PR against A′(A,PF), and suppose that
both finished their Step i. There is one to one mapping between
objects in A and objects in A′ with the following property.

1. A live or a (non-deleted) ghost object in the execution (PF ,A) is
mapped to a live object in the execution (PR,A′) and vise verse
(a live object in (PR,A′) is mapped to either live or ghost object
in (PF ,A)).

2. The sizes of two mapped objects are equal.

3. The addresses of two mapped objects are equal modulo 2γ .

Moreover, the total number of objects allocated during Step i is
equal in both execution.

Proof: The one to one mapping we chose maps the k-th object that
PF allocated to the k-th object that PR allocated. By the definition
of A′ their address is equal modulo 2γ and we are done with the
third property. The other two properties are more involved. The full
proof appears in [13].

We now quote an implicit lemma from Robson’s analysis, that
will help us in bounding the value of the potential function at the
end of the first stage of PF .

Claim 4.9 ([14], inequality 1). After the execution of step i, there
are at least M i+1+1

2i+1 = M i+2
2·2i objects that are fi-occupying.

By the end of the first stage execution, in PF Line 9, an object
o is associated with the chunk that contains its fγ -occupying word.
We now want to use Robson’s guarantee for many fγ -occupying
objects in order to say that there are many associated objects, and
prove the first part of Lemma 4.5.

Claim 4.10. Let A be a memory manager, and let t f irst be the time
PF finished the execution of its first stage against A. Then

u(t f irst)≥ M(γ/2+1)−2γ ·q1 −
n

4

Proof sketch: By Claim 4.9 there are lots of fi-occupying objects
and by Claim 4.8 this also holds for the execution of PF . The proof
follows from these two and the definition of uD(t).

Next we bound from above the amount of memory allocated by
Robson’s algorithm. It is used to bound the amount of compaction
allowed for a c-partial memory manager.

Claim 4.11. Let A be a memory manager, and consider the execu-
tion of PF ’s first stage against A. The total size of memory that PF

allocated is at most

s1 ≤ M

(

γ +1−
1

2

γ

∑
i=1

i

2i −1

)

Proof: Omitted for lack of space.
The proof of Lemma 4.5 directly follows from Claim 4.10 and

claim 4.11.

4.3 Analysis of the second stage

In this section we prove Lemma 4.6, which asserts a substantial
growth in the potential function during the second stage. We let
t f irst represent the time where the first stage completes, and t f inish
represent the time the second stage (and the entire algorithm) com-
pletes. Let us recall the statement of the lemma.

Lemma 4.6. Let A be a c-partial memory manager, and let t f inish
be the time that PF finishes its execution with A as its memory
manager. Then,

u(t f inish)−u(t f irst)≥
3

4
s2 −2γ ·q2.

Additionally, either the memory manager uses more than M · h
space, or the allocated space s2 in the second stage satisfies

s2 ≥ M

(

log(n)−2γ −1

γ +1

)

(

1−2−γ ·h
)

−2n

To show that this lemma holds, we look at changes that might
occur during the execution. This includes allocation of new objects
(initiated by PF), compaction of objects (by the memory manager),
de-allocation of objects (by PF), and a change of steps that changes
the chunk sizes, and therefore the summation over the chunks and
each chunks uD(t) function. We will show that we get substantial
growth during allocations, and also that all other events do not
decrease the potential function.

Recall that the potential function is defined as
u(t) = ∑D∈D(i) uD(t)−

n
4 and we need to show that the value of the

potential function grows by at least 3
4 s2 −2γ ·q2 during the second

stage of the execution.
We start by looking at allocations and show that whenever PF

allocates an object, either the potential function gets larger, or some
compaction occur (and the potential function does not decrease).
We then use the fact that compaction is limited to get the potential
function growth we need. Suppose an object o is allocated during
Step i of the execution of PF with A. The size of o is 4 · 2i (by the
definition of PF) and so when the memory manager places o in the
heap, it consumes at least three full consecutive chunks (of size 2i)

and maybe some additional space from the chunk preceding and
the chunk that comes after these three consecutive chunks. Denote
by D1, D2 and D3 the three chunks that are fully covered by o and
are selected at Step 14 of Algorithm 1. All three must be empty
when o is placed. We claim that this transition from empty chunks
to full chunks makes the potential function grow. We will show that
the value of uD1

(t)+uD2
(t)+uD3

(t) grows, which implies that the
value of u(t) grows. Note that uD(t) for any other chunk D (other
than D1, D2 or D3) is not affected by this allocation, because the set
of associated objects as well as membership in E (which we define
in the next paragraph) only changes for D1, D2, and D3.

During allocation step of PF (Line 14), when an object o is
allocated, PF associates D1 with the first half of object o and D3
with the second half of Object o. But since an object is associated
with at most two chunks (each half can be associated with a chunk),
it follows that D2 is left with no object associated with it, in spite of
it being completely covered by the allocated object o. The goal of
the set E is to deal with these middle chunks. This set will contain
all such middle chunks and make uD2

(t) of Definition 4.3 be set to
2i. We note that this “anomaly”, of a chunk being covered by an
object but with no associated object, is temporary and it disappears
at the next step change since the middle chunk is joined with either
its left or right chunk, and they become a single chunk with which
o (or o’s half) can be associated. Let us now define E .

Definition 4.12. [The set E (t)] Let A be a memory manager, and
consider any time t during the execution of PF ’s second stage with
A as its memory manager. Let i be the step where t happens. The set
of middle chunks E (t)⊂D(i) is the set of chunks that both their left
adjacent chunk and their right adjacent chunk were fully covered by
an object o allocated at step i (thus, the chunk itself is also covered
by o), but half of o was not associated with it. A chunk remains in
E (t) until either an new step kicks in, or an object is associated
with this chunk. The later may happen if o was compacted during
step i, and another object is allocated there.

Let us now claim a simple property about chunks in E . We’d
like to say if a chunk is in E , then the two chunks adjacent to it are
associated with a “big”, or “recently allocated” object.

Claim 4.13. Let t be a time during the execution of PF against a
memory manager A, and let i be the step in which t occurs. Let
D1 and D2 be two consecutive chunks such that D1 ∈ E (t). Then
there exists an object o that is allocated during Step i, such that at
time t half of o is associated with D2. The same holds for D1 when
D2 ∈ E (t).

Proof sketch: When a chunk joins E both chunks to its left and right
are associated with half objects allocated in Step i.

The chunks D1, D2 and D3 were empty before the allocation.
For each of these chunks, we distinguish between the case where
an object was associated with it before the allocation, or that no
object was so associated. In the latter case, the value of the function
uD(t) for that chunk grows since an object gets associated with it.
In the first case, it must be that the memory manager compacted
away all objects that were allocated on the chunk and made it
fully available for allocation. Note that the definition of PF rules
out a third possibility that these chunks were emptied due to de-
allocation of the objects that previously resided on them. Object
de-allocation is initiated by the program PF only (and not by the
memory manager). By the definition of PF , it only de-allocates an
object when there are enough other objects left on the chunk to
make the remaining space size at least 2i−γ .

When the second case occurs, i.e., that the memory manager
compacts away objects from a chunk before placing o, we are
not able to show that the value of the potential function grows.
However, we get that some compaction occurred, and we use that

to bound the number of such events. To this end, we associate
some compaction value with the newly allocated object. Recall that
the objects that were compacted away from a chunk and then de-
allocated immediately by PF are still considered associated with
the chunk until a new object is placed on the chunk. Therefore,
to determine how much compaction occurred to free space for
the allocation, we can just check the objects that were associated
with these chunks right before the allocation. The formal definition
follows.

Definition 4.14. [Compaction space associated with an object]
Let o be an object allocated during the execution of PF ’s second
stage against a memory manager A. Let t+1 be the allocation time
(and t be the time just before the allocation), and let D1, D2, and
D3 be the chunks picked by PF at Step 14 of PF , after allocating o.
Then we define the compacted space associated with the object o to
be

q(o) = ∑
o′∈OD1

(t)

|o′|+ ∑
o′∈OD2

(t)

|o′|+ ∑
o′∈OD3

(t)

|o′|

Next, we establish some properties of the set of objects associ-
ated with every chunk.

Claim 4.15. Consider a time t during the execution of PF ’s second
stage against a memory manager A, and let i be the step where t
happens. Then the following three properties hold:

1. The sets {OD : D ∈ D(i)} are disjoint.

2. Every live object o is either associated with a single chunk or
its two halves are associated with two chunks.

3. If a live object o is associated with a chunk D, then o intersects
D.

Proof sketch: The proof follows from the definition of the program
PF and its way of associating objects with chunks. The full proof is
omitted for lack of space.

We now show that the potential function u(t) indeed increases
substantially. We will show that no event causes a decrease in it,
while allocations cause sufficient increase. We will compute the
potential function u(t) increase for each allocation, and then sum
over all allocations to obtain the total increase in u(t) during PF ’s
second stage.

Claim 4.16. Let A be a memory manager, let u(t) be the potential
function as defined in Definition 4.4, and q(o) be the compaction
associated with an object as defined in Definition 4.14. Then during
execution of PF against A, the following properties of u(t) holds

1. No event in the execution causes u(t) to decrease.

2. During an allocation of an object o, u(t) increase by at least
3
4 |o|−2γ ·q(o).

Proof. The potential function only changes when the set of chunks
changes during step transition or when the set of associated objects
of a chunk changes. There are three types of events that may cause
such a change. Note that compaction of an object by A is not
an event that influences the potential function, since the object
association remains unchanged.

A step transition causes PF to consider a new partition of the
heap. Consider the time t when we consider a new partition of
the heap (when a new step i kicks in). Let D be a chunk of Step i
(of size 2i). D is composed of two chunks D1 and D2 of Step i−1
(and of size 2i−1). It suffices to show that uD(t)≥ uD1

(t)+uD2
(t).

If either D1,D2 ∈ E (t − 1), then by Claim 4.13 there exists an
object o that was allocated in Step i−1, and half of o is associated
with either D1 or D2. Since half of o is associate with D, and the
size of half of o is 2i, it holds that ∑o′∈OD

|o′| = 2i. Thus (recall

definition 4.3 of uD(t))

uD(t) = min(2γ ·2i,2i) = 2i ≥ uD1
(t −1)+uD2

(t −1).

Otherwise, both chunks are not in E and we know that the objects
that are associated with them are disjoint. Therefore, according to
Step 12 in PF ,

∑
o∈OD

|o|= ∑
o∈OD1

|o|+ ∑
o∈OD2

|o|,

and the statement follows by definition of uD(t).

PF de-allocates an object. By definition, PF does not free an
object if this decrease ∑o∈OD

|o| below 2i−γ , so uD(t) does not
decrease.

PF allocates an object o. Let t be the time PF allocates an object
o, and let D1,D2,D3 be the three chunks that PF picked. Only
the sets OD1

,OD2
,OD3

are changed during allocation. After the
allocation, size of each half an object is 2 ·2i, so uD1

(t) = uD3
(t) =

min(2γ ·2 ·2i,2i) = 2i, and D2 ∈ E (t). Thus

uD1
(t)+uD2

(t)+uD3
(t) = 3 ·2i =

3

4
|o|

Before the allocation, if either chunks was contained in E , then
by Claim 4.13 there exists an object o allocated at step i, and half
of o is associated with D1, D2, or D3. In this case 2γ · q(o) ≥
2γ ·2i+1 ≥ 3 ·2i . The last inequality follows since γ ≥ 1. Otherwise,
uDi

(t − 1) ≤ 2γ · ∑o′∈ODi
(t−1) |o

′| for i = 1,2,3. In both case we

have 2γ · q(o) ≥ uD1
(t − 1)+ uD2

(t − 1)+ uD3
(t − 1). Subtracting

the values before and after the allocation of o provides the bound
in this case and we are done

We now turn to bound the amount of memory that PF allocates
during the execution of its second stage. By its definition, In Step
14, PF attempts to allocate a

⌊

x ·M ·2−i−2
⌋

objects of size 2i+2 if
the total size of allocated memory does not exceed M. In order
to show that it allocates a lot, we need to show that the bound
of not exceeding M simultaneously allocated words does not limit
this allocation too much. To this end, we need to bound the space
occupied by live objects in the heap from above, which implies a
lower bound on the amount of memory available for allocation.

The next proposition asserts that any chunk D in the heap is
either empty, or it contains a single large object, or the total space
of its associated objects OD is bounded exactly by 2i/2γ , which is
the density that PF attempts to preserve in each chunk. This lemma
will later be used to bound the total size of live objects in the heap.

Proposition 4.17. Consider the execution of PF ’s second stage
against a memory manager A. Let t be a time when PF allocates
an object, and let i be the step in which t happens. Then for every
chunk D ∈ D(i) either |OD(t)|≤ 1, or ∑o∈OD(t) |o|≤ 2i−γ .

Proof sketch: The proof of this proposition follows from the behav-
ior of PF as defined in Line 13.

Next, we bound the space PF allocates during its second stage.

Claim 4.18. Consider the execution of PF against a memory man-
ager A. Then either A uses more than M ·h heap space, or the num-
ber of words that that PF allocates during its second stage satisfies

s2 ≥ (logn−2γ −1)
1−h ·2−γ

γ +1
−2n.

Proof sketch: Recall that x is set at the beginning of Algorithm 1 to:
1−h·2−γ

γ+1 . We show that in each step PF ’s allocation of M · x words
does not exceed the M bound, and then show that the accumulated
size of allocation is large enough.

Recall that in Claim 4.16 we bounded the increase in u(t) when
an object o is allocated by 3

4 |o|−2γ · q(o). Summing 3
4 |o| over all

objects allocated during stage two of PF gives 3
4 s2, which we also

computed. We now bound the total sum of q(o) over all objects
allocated during stage two of PF . The precise value of q(o) was
given in Definition 4.14.

Proposition 4.19. Consider the execution of PF against a memory
manager A. S2 is the set of objects allocated at PF second stage,
and q2 is the total size of objects that were compacted during the
second stage. Then q2 ≥ ∑o∈S2

q(o).

Proof. Omitted for lack of space.

Now we are ready to bound to total increase in the unavailable
space at Pt’s second stage

Claim 4.20. Consider the execution of PF against a memory man-
ager A, and let t f inish be the time when PF finished it execution, and
t f irst be the time when PF finished execution of first stage. Then

u(t f inish)≥ u(t f irst)+
3

4
s2 −2γ ·q2

Proof: Omitted for lack of space.
The proof of Lemma 4.6 directly follows from Claim 4.18 and
Claim 4.20.

5. Conclusion

This work contributes to building a solid theoretical foundation
for memory management. In particular, it extends previous work
by providing new lower and upper bounds on the effectiveness
of partial compaction. Our lower bound is the first bound in the
literature that carries implications for practical systems existing
today, by showing that some desirable (realistic) compaction goals
cannot be achieved.

References
[1] D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein. An efficient

parallel heap compaction algorithm. In OOPSLA 2004.

[2] D. F. Bacon, P. Cheng, and V. Rajan. A real-time garbage collector
with low overhead and consistent utilization. In POPL 2003.

[3] O. Ben-Yitzhak, I. Goft, E. Kolodner, K. Kuiper, and V. Leikehman.
An algorithm for parallel incremental compaction. In ISMM 2002.

[4] A. Bendersky and E. Petrank. Space overhead bounds for dynamic
memory management with partial compaction. POPL 2011.

[5] H.-J. Boehm. Bounding space usage of conservative garbage collec-
tors. In POPL 2002.

[6] H.-J. Boehm. The space cost of lazy reference counting. POPL 2004.

[7] C. Click, G. Tene, and M. Wolf. The Pauseless GC algorithm. VEE
2005.

[8] D. Detlefs, C. Flood, S. Heller, and T. Printezis. Garbage-first garbage
collection. In ISMM 2004.

[9] R. Jones, A. Hosking, and E. Moss. The Garbage Collection Hand-
book: The Art of Automatic Memory Management. Chapman & Hall,
Aug. 2011.

[10] H. Kermany and E. Petrank. The Compressor: Concurrent, incremen-
tal and parallel compaction. In PLDI 2006.

[11] E. Petrank and D. Rawitz. The hardness of cache conscious data
placement. In POPL 2002.

[12] F. Pizlo, E. Petrank, and B. Steensgaard. A study of concurrent real-
time garbage collectors. In PLDI 2008.

[13] N. Cohen and E. Petrank. Limitations of Par-
tial Compaction: Towards Practical Bounds.
http://www.cs.technion.ac.il/%7eerez/%50apers/compaction-full.pdf.

[14] J. Robson. Bounds for some functions concerning dynamic storage
allocation. Journal of the ACM, 21(3):491–499, 1974.

[15] J. Robson. An estimate of the store size necessary for dynamic storage
allocation. Journal of the ACM, 18(3):416–423, 1971.

