
Automatic Memory Reclamation for Lock-Free Data Structures ⇤

Nachshon Cohen
Technion Institute of Technology, Israel

nachshonc@gmail.com

Erez Petrank
Technion Institute of Technology, Israel

erez@cs.technion.ac.il

Abstract
Lock-free data-structures are widely employed in practice,
yet designing lock-free memory reclamation for them is no-
toriously difficult. In particular, all known lock-free recla-
mation schemes are “manual” in the sense that the devel-
oper has to specify when nodes have retired and may be
reclaimed. Retiring nodes adequately is non-trivial and of-
ten requires the modification of the original lock-free algo-
rithm. In this paper we present an automatic lock-free recla-
mation scheme for lock-free data-structures in the spirit of
a mark-sweep garbage collection. The proposed algorithm
works with any normalized lock-free algorithm and with no
need for the programmer to retire nodes or make changes
to the algorithm. Evaluation of the proposed scheme on a
linked-list and a hash table shows that it performs similarly
to the best manual (lock-free) memory reclamation scheme.

Categories and Subject Descriptors D.4.2 [Storage Man-
agement]: Allocation/deallocation strategies; D.1.3 [Pro-
gramming Technique]: Concurrent Programming

General Terms Algorithms, Design, Theory.

Keywords Memory Management, Concurrent Data Struc-
tures, Non-blocking, Lock-free, Hazard Pointers

1. Introduction
The rapid deployment of highly parallel machines has re-
sulted in the acute need for parallel algorithms and their
supporting parallel data-structures. In the last two decades,
many lock-free data-structures (a.k.a. non-blocking) [8, 9]
were proposed in the literature and their performance eval-
uated. Such data-structures offer progress guarantees for the

⇤ This work was supported by the Israel Science Foundation grant No.
274/14.

programmer, which imply immunity to deadlocks and live-
locks, and robustness to thread failures. However, a practi-
tioner wanting to employ such a data-structure must also ad-
dress the challenge of memory reclamation. In the presence
of parallel execution, it is difficult to decide when an object
will never be accessed by other threads.

Several memory reclamation schemes were proposed in
the literature to allow lock-free memory reclamation [1, 3,
4, 10, 16]. All these schemes are manual in the sense that
they require the programmer to install retire statements that
notify the memory manager each time an object is unlinked
from the data-structure and cannot be reached by subsequent
threads computation. The latter requirement is not easy to
determine and it sometimes requires a modification of the
lock-free algorithm in order to be able to determine a point
in the execution from which no thread can access an un-
linked node. Two well-known lock-free data-structures: Har-
ris’s linked-list [6] and Herlihy & Shavit’s skip-list [9] do
not satisfy this property and need to be modified to allow
memory reclamation [15]. Moreover, for data-structures that
contain several links to a node (such as the skip-list) and in
the presence of concurrent inserts and deletes, it is some-
times difficult to determine a safe point in time at which
the node is completely unlinked. Similarly to inadequate de-
allocate operations in unmanaged program code, inserting
retire statements at inadequate program locations may end
up in notoriously hard-to-debug memory reclamation errors.
Note that it is not possible to simply use a managed language
and its built in garbage collector, as there is no garbage col-
lection scheme available in the literature today that supports
lock-free executions [19].

Interestingly, algorithmic modifications required for the
insertions of the retire operations to lock-free data-structures
may sometimes change the algorithms’ properties and per-
formance. For example, the linked-list of Herlihy and Shavit
[9] allows wait-free searches. But modifying it to allow the
retire operations [15] foils this property. An elaborate dis-
cussion on the linked-list and skip-list examples is provided
in Appendix A.

In this paper we propose the Automatic Optimistic Ac-
cess (AOA) scheme, a memory reclamation scheme for lock-
free data-structures that does not require the programmer to
install retire statements. This scheme is inspired by mark-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

OOPSLA’15, October 25–30, 2015, Pittsburgh, PA, USA
c� 2015 ACM. 978-1-4503-3689-5/15/10...$15.00

http://dx.doi.org/10.1145/2814270.2814298

260

sweep garbage collection, but applied at a smaller scale – on
a single data-structure with a structured algorithm, instead of
over the entire heap with a general program. Recall that we
do not know how to perform full-scale lock-free garbage col-
lection over the entire heap [19]). The AOA scheme automat-
ically determines (at run time) the set of unreachable data-
structure nodes and reclaims them for future allocations. The
obtained benefits are similar to the benefits of garbage col-
lection for the heap: improve reliability, reduce debug time,
and make the programmer life easier.

There has been much work on garbage collectors that
obtain some partial guarantees for progress [2, 11, 12, 20–
22]. However, none were able to eliminate the seemingly
required synchronization barrier (e.g., handshake), when the
garbage collector waits for all threads to acknowledge the
beginning (or the end) of a collection cycle. A handshake
foils lock-freedom because if a thread gets stuck, it does
not respond to a handshake and eventually other threads
run out of memory. We stress that lock-freedom requires
making progress for any possible (and even a worst-case)
scheduling. The AOA scheme, unlike all garbage collectors
presented in the literature, strictly satisfies the lock-freedom
property. In particular, it does not assume that all threads
respond to a handshake.

While state-of-the-art garbage collectors can ensure the
progress of the program itself, they all fail to guarantee the
progress of the collector itself, causing an eventual failure
of allocations and the entire program. Three major difficul-
ties that arise in the full garbage collection setting need be
dealt with here as well. First, there is the challenge of getting
all threads’ roots in a lock-free manner. Second, the collec-
tor must be able to function with no handshake, meaning
that some threads may be executing under the assumption
that a previous collection is still active. Finally, to prevent
memory bloat, some form of lock-free compaction must be
implemented. The last is a minor problem for us, because
the nodes of the data-structure are of a fixed size. But we
will deal with the first two challenges in the smaller scale of
data-structure nodes under data-structure operations.

To read the roots of thread that does not respond, one
needs access to its registers but modern CPUs do not allow
reading other thread’s registers. A naive solution is to make
sure that each pointer held by a register also resides in the
memory. But that requires a write and a memory fence for
each register modification, making the overhead impracti-
cal. Building on the structured algorithms of lock-free data-
structures, the AOA scheme solves this by making the threads
record their roots at known interval and by making threads
(in rare cases) return to execute from locations where their
roots were known. A carefully merge of root snapshotting
and execution restart allows avoiding the continuous record-
ing of local roots. Restarting lock-free operations at vari-
ous points requires some known structure of the algorithm.
An adequate normalized algorithmic structure has been pro-

posed for a different reason in Timnat and Petrank [24].
The AOA scheme is proposed for normalized lock-free al-
gorithms. All lock-free data-structures we are aware of can
be represented in an efficient normalized representation.

Finally, since a handshake is not allowed, we must deal
with program threads or collector threads that wake up and
execute operations without realizing that the garbage col-
lection has advanced to a newer collection cycle and phase.
To do that, we employ standard versioning schemes to pro-
tect sensitive collector and program shared data. Careful use
of versioning provides a correct scheme that reclaims data-
structure nodes properly.

The main contribution of this paper is the proposal of
the AOA scheme, a lock-free memory reclamation scheme
that relieves the programmer from manually inserting retire
calls. The AOA scheme is applicable to any lock-free data-
structure in the normalized form of [24]. It eliminates the
need to modify algorithms to make them amendable to in-
sertions of retire instructions, and it eliminates the need to
find adequate locations for the retire instructions themselves.
Both of the above tasks are non-trivial as exemplified in
Appendix A. The AOA scheme allows a separation of con-
cerns: it facilitates an independent algorithm design that is
not memory-management-aware. Memory management can
then be added automatically without any modifications to the
original algorithm.

The AOA scheme deals with the main challenges of lock-
free garbage collection on a small scale. We hope that the
techniques and solutions proposed herein will be of use
for future attempts on solving the full lock-free garbage
collection problem.

Organization This paper is organized as follows. In Sec-
tion 2 we specify assumptions and present the AOA interface.
In Section 3 we present an overview of the AOA scheme. In
Section 4 we provide some important background. In Sec-
tion 5 we present the AOA scheme. In Section 6 we present
the implementation and evaluation of the AOA scheme. We
discuss related work in Section 7, and we conclude in Sec-
tion 8.

2. Settings and Problem Statement
2.1 Shared Memory With TSO Execution Model
We use the standard computation model of Herlihy [8]. A
shared memory is accessible by all threads. The threads
communicate through memory access instructions on the
shared memory, and a thread makes no assumptions about
the status of any other thread, nor about the speed of its
execution.

We also assume the TSO memory model, used by the
common x86 architecture. For a formal definition of this
model, see Owens et al. [18] and the references therein.
Informally, write instructions are cached in a local write
buffer and made visible either by a memory fence or by

261

an internal CPU action. Reads are not reordered with other
reads, and writes are not reordered with other writes.

2.2 Lock-Freedom and Wait-Freedom
The AOA scheme provides memory management support
for lock-free data structure. An data-structure is called lock-
free (a.k.a. non-blocking) [8] if it guarantees that (at least
one) operation will complete after the threads execute a
finite number of steps. Lock-free data structures are fast,
scalable and widely used. They eliminate deadlock, live-
lock, and provide guaranteed system responsiveness. In the
last two decades, many efficient lock-free implementations
for almost all common data structure have been developed.
While the lock-free property is important, it does not rule out
starvation of threads. It is possible that some threads make
progress but others do not. This paper focuses on memory
management support for lock-free data-structures.

The wait-free guarantee is a stronger guarantee, ensuring
that each and every operation terminates in a finite number of
steps and, in particular, without dependence on the behavior
of other processes in the system. Wait-free data-structures
are more complicated to design and not many wait-free im-
plementations were known until recently. A series of recent
papers led to a mechanical simulation of normalized lock-
free algorithms in a wait-free manner [13, 14, 24], which
produced many efficient wait-free algorithms as well.

2.3 Problem Definition
The AOA scheme automatically finds unreachable objects
and reclaims them. However, unlike a full garbage collec-
tion, the AOA scheme only reclaims objects of a predeter-
mined data-structure and it requires that the data-structure
algorithm be presented in the normalized form of [24]. Next
we specify the data-structure’s nodes and links and the in-
terplay between the data-structure, the AOA scheme, and the
underlying system.

We think of a data-structure as a set of objects that are
connected via data-structure links (or pointers). The data-
structure objects are denoted nodes. Each node may have
link fields and data fields; link fields contain pointers to
other nodes while data fields do not contain pointers to other
nodes. A pointer in the node that references an (outside)
object that is not a data-structure node (i.e., that the AOA
is not responsible for reclaiming) is not called a link. It is
a data field. In addition, there exists a set of global pointers
from outside the data-structure to nodes in the data-structure,
that allow access to the data-structure. These pointers are
denoted GlobalRoots and their location must be supplied to
the AOA scheme via the interface defined in Subsection 2.4.
We assume that the location of GlobalRoots are not modified
during the execution. For example, a head pointer, pointing
to the head of a linked-list is a global pointer. Note that the
content of a global root can be modified or nullified, but
the location of the root cannot be modified. We assume that
all pointers that allow access to nodes in the data-structure

are registered as GlobalRoots using the proper interface.
The pointers that are used by the data-structure operations
to traverse the structure are not called global roots. They
are local roots (local to each operating thread) and will be
discussed below.

All pointers into the data-structure, including links, global
roots, and local roots may contain marked (tainted) pointers
that do not point to the beginning of a node. Specifically,
many lock-free algorithms steal a bit or two of the address
for other purposes, such as preventing the modification of
the pointer. We assume a function that gets a marked pointer
and computes the address of the node implied by it. We de-
note this function as unmark. In many implementation, using
the function unmark(P) that simply clears the two least sig-
nificant bits of P is adequate.

Similarly to a garbage collector, the AOA scheme reclaims
all nodes that are not reachable (by a path of links) from the
global and local roots. However, the AOA scheme does not
consider all the pointers that are directly available to the pro-
gram as local roots. The AOA scheme may reclaim an object
that is being read by the program. In other words, when the
program reads an object without modifying it, the pointer to
this object does not protect it from being reclaimed. Thus,
local pointers, that reference objects that are only read and
not modified, are not considered local roots for the reach-
ability scan, and objects reachable only from such pointers
can be reclaimed. So in the AOA scheme we only consider
local pointers that participate in modifications of the shared
memory as roots for the traversal of live objects. The in-
terval during which a local pointer counts as a root for the
automatic memory reclamation is defined and explained in
Subsection 5.2.

Since nodes that the thread read can be reclaimed be-
fore the thread accesses them, an effort is made to make the
access of reclaimed nodes safe from hitting a trap. This is
achievable by using a user level allocator and not returning
pages to the operating system. Alternatively, the signal han-
dler can be configured to ignore the trap in such a case.

Throughout the rest of the paper we assume that enough
space is allocated for the program. Otherwise, an out-of-
memory exception will foil lock-freedom in a non-interesting
manner. We also assume that data-structure nodes and the
content of global roots are modified only via data-structure
operations that are presented in the normalized form of [24].

An Example: the Harris-Michael Linked-List Let us ex-
emplify the definitions above by considering the Harris-
Michael linked-list [15]. Consider the following snippet of
code: The data-structure node in this case is the struct node

structure. This struct contains a single link at offset 0 (the
next pointer) and two data fields. The void* field is consid-
ered a data field and it must not point to a node. This data-
structure has two global roots: {&list1head,&list2head},
which are located at fixed locations in memory. Each global
root contains a pointer to a node. Note that while the nodes

262

Listing 1. Harris-Michael linked-list
1 struct node{
2 struct node ⇤next;
3 int key;
4 void ⇤data;
5 };
6 struct node ⇤list1head, ⇤list2head;

referenced by list1head and list2head may change, the lo-
cations of the pointers list1head and list2head are fixed
throughout the execution.

2.4 The AOA Interface
Let us now briefly describe the interface between the AOA
scheme and the data structure it serves. A complete descrip-
tion of the interface is presented at Appendix C.

The data structure is responsible for providing a descrip-
tion of the data-structure node class to the AOA implemen-
tation. The description includes the class size, the number
of pointers, and the location (offset) of each pointer. In ad-
dition, the program provides the location of all global roots
to the AOA scheme. Before starting to execute data structure
operations, the program initializes the AOA scheme by call-
ing its initialization function.

Each read and write of the original algorithm operations
must be modified to include a read- and write-barrier. This
can be done automatically by a compiler, but in our simple
implementation we let the programmer add these barriers
manually. All allocations of data-structure nodes must be
handled by the AOA functionality using a dedicated function.

The AOA scheme can be applied to multiple data struc-
tures in the same program. In this case, the AOA scheme in-
terface is replicated. All components of the interface, includ-
ing the allocation function, the write-barrier, etc. are imple-
mented once for each data structure. A data-structure name
prefix is used to distinguish the different interfaces.

3. Overview
In this section we provide an overview of the AOA scheme.
The AOA scheme extends the optimistic access scheme [4],
using it to reclaim nodes. The AOA scheme is a fast lock-
free reclamation scheme and our goal is to keep the overhead
of reclaiming nodes low. But while the (manual) optimistic
access scheme assumes retire instructions were installed by
the programmer at adequate locations to notify a disconnect
of a node from the data-structure, the AOA scheme can work
without any retire statements.

The AOA scheme design is inspired by the mark-sweep
garbage collector. It marks nodes that are “reachable” by
the program threads and it then reclaims all nodes that were
not marked. On one hand, the task here is simpler, because
we are only interested in reachability of nodes of the data-
structure and not the reachability of all objects in the heap.

However, the reclaimer must avoid scanning the roots of the
threads (as some threads may not be responding), it must
make sure that threads that wake up after a long sleep do
not cause harm, and it must make sure that threads that stop
responding while scanning reachable nodes do not make the
entire tracing procedure miss a node.

Reachability, Roots, and Concurrence. The first step in
the design is an important observation. The observation is
that when running Cohen and Petrank’s optimistic access
scheme [4], all nodes that must not be reclaimed at any point
in time are reachable from either global pointers (as defined
in Section 2.3) or from hazard pointers used by that scheme.
The AOA is built to preserve this temporal observation in
the presence of concurrent execution. While the observation
is correct for a snapshot of the execution, the AOA scheme
works with it in a concurrent manner. First, the reclama-
tion scheme is modified so that all active threads join the
reclamation effort as soon as possible. Second, the setting
of hazard pointers and the cooperation of other threads (by
checking whether a reclamation has started and then mov-
ing to cooperate) is modified to ensure the correctness of the
reclamation. These modifications ensure that active threads
do not modify the reachability graph in a harmful way before
joining the reclamation effort. Note that joining the reclama-
tion effort does not block a thread’s progress as the reclama-
tion execution is lock-free and finite.

Protecting the Collector’s Data-Structures. A classical
mark-sweep garbage collector works in cycles, where in
each cycle, one collection (mark and sweep) is executed. In
this paper we use the term phase and not cycle to denote a
reclamation execution in order to stress that the execution
is asynchronous. Not all threads are assumed to cooperate
with the currently executing reclamation and some threads
may be (temporarily) executing operations that are relevant
to previous phases. All garbage collectors we are aware of
assume that the phases are executed in order; no thread starts
a phase before all threads have finished all stages of the
previous phase. This is not the case for us as we must deal
with threads that do not respond.

A second challenge for the AOA is to deal with threads
executing in an outdated reclamation phases and make sure
that they do not corrupt the reclamation execution of the cur-
rent phase. A proper execution is ensured using versioning of
the reclaimers’ shared data. Variables that can be corrupted
by threads executing the wrong phase are put alongside a
field that contains the current phase number. These variables
are modified via a CAS that fails if the current phase num-
ber does not match the local phase (the phase observed by
the thread that executes this modification). Before starting a
new phase, all such phase-protected variables are updated to
a new phase. Thus a late thread will never erroneously mod-
ify such phase-protected collector data.

An example of a phase-protected variable is the mark-bit
table. The concern here is that a thread executing the wrong

263

phase may mark a spurious node, corrupting the currently
executing marking stage. Since the mark-bits are phase-
protected, a thread executing the incorrect phase will fail to
mark a spurious node.

Similarly to standard garbage collection, we are able to
ensure that in each phase, all nodes that were unreachable
at the beginning of the phase are reclaimed and recycled for
new allocations.

Completing Work for Failing Threads. The final chal-
lenge is the proper completion of a collection phase even
if a thread fails in the middle of the phase. Before discussing
the solution, we start by explaining the race condition that
may harm the progress guarantee of the AOA algorithm. Dur-
ing the mark stage, it is customary to execute the following
loop: pop an item from the mark-stack, attempt to mark this
node, and if successful, scan the node’s children. Suppose
a thread drops dead after marking a node and before insert-
ing its children to its mark-stack. Then the node’s children
must be scanned, but other threads have no way of know-
ing this. This race condition is traditionally handled by wait-
ing for the thread to respond, which revokes the algorithm’s
progress guarantee.

To handle this challenge, we modified the mark stage as
follows. First, we let the local mark-stack of each thread be
readable by other threads. Second, we designed the mark
procedure to satisfy the invariant that children of a marked
node are either marked or are visible to other threads. Thus,
even if a thread get stuck, other threads can continue to
work on nodes that reside on its stack and no node is lost.
This solution allows the AOA scheme to complete a garbage
collection phase even when a thread crashes in the middle of
marking a node.

A similar race may happen during the sweep phase, but
with less drastic consequences. When a thread processing a
chunk of memory for sweep purposes is delayed, we allow
nodes that reside in that chunk to not be processed and
not be handed to the allocator. The unprocessed chunk is a
small fraction of the memory, making the harm negligible.
Furthermore, these free spaces are recovered at the next
phase.

4. Background
In this section we briefly describe the normalized represen-
tation and the optimistic access scheme, on which the AOA
scheme relies. We also present the read- and write-barriers
of the AOA scheme, which are inherited from the optimistic
access scheme.

4.1 Normalized Data-Structures [24]
The AOA scheme assumes that the data-structure implemen-
tation is given in a normalized form. In this subsection we
briefly describe what a normalized data-structure implemen-
tation looks like and explain why the normalized representa-
tion is required. Let us start with the latter.

The AOA scheme (infrequently) allows threads to access
nodes whose underlying memory was reclaimed and recy-
cled. Such an access may return an arbitrary value, which
must not be relied on. When this happens, the execution is
rolled back to a safe point where the stale value does not
exist, and all references point to real (unreclaimed) nodes.
In addition, a mark and sweep algorithm starts by gathering
local references to nodes (denoted root collecting in the GC
literature). To avoid considerable overhead, threads publish
their local references only during safe points. However, ad-
ditional references may be added to the threads’ local state
after the last encountered safe point; these references are
not traced during the garbage collection phase. Thus, rolling
back the execution to the safe point returns threads to the
point where the thread’s roots match the collected roots. The
structure of a normalized form allows for easy definition of
safe points and the rolling back mechanism. Next we infor-
mally explain what a normalized implementation looks like.
The formal definitions are provided in Appendix B and in
[24], but the discussion here is sufficient to understand the
rest of the paper.

Loosely speaking, a normalized form partitions each
data-structure operation into three routines. The first rou-
tine, called the CAS generator receives the input of the op-
eration. It searches the data-structure and prepares a list of
CAS instructions that would apply the required operation.
The second routine, called the CAS executor, receives the
prepared list of CASes and executes it, stopping at the first
failure (or after all CASes were executed). The third rou-
tine, called wrap-up, receives the input of the operation, the
CAS list prepared by the CAS generator, and the number of
CAS executed by the CAS executor method. It determines
whether the operation has completed, and (in case of suc-
cess) also the returned value. Otherwise, the operation is
started again using the CAS generator.

The partition into three routines needs to satisfy that the
first routine (the CAS generator) and the third routine (the
wrap-up) are parallelizable. An execution of a parallelizable
routine depends only on its input, and not on the local state
of the executing thread. Furthermore, at any point during the
execution of a parallelizable routine it is possible to abandon
the local state and return to the beginning of this routine
without harming the correctness of the operation. Due to
the special structure of parallelizable routines, it is possible
to define a safe point at the beginning of such a routine.
Consequently, at any point during execution, it is possible to
abandon the execution and (re)start from such a safe point.

The simplest example of a parallelizable routine is a rou-
tine that starts from the data-structure root (e.g. head pointer)
and then traverses part of the data-structure, never modi-
fying shared memory. Such a routine depends only on the
(unreclaimable) data-structure root, and restarting the traver-
sal from scratch is always correct. More complex paralleliz-
able routines may write to shared memory, if this modifica-

264

tion does not change data-structure semantics but only the
underlying representation. A typical example is the physi-
cal delete of nodes that were previously marked (logically
deleted) in Harris-Michael linked-list. In general, modifica-
tions of shared memory in normalized data-structures are al-
lowed only via the CAS instruction.

When the AOA scheme executes parallelizable methods, it
uses their nice properties and it returns to a safe point when
needed. In contrast to the CAS generator and the wrap-up
routines, the CAS executor is not parallelizable and cannot
be (safely) restarted. Thus, the AOA scheme ensures that
references in the thread’s local state are always made visible
during the execution of the CAS executor. By definition
of the CAS executor method, it never reads from shared
memory, and so the references in the thread’s local state
never change during the execution of the CAS executor. The
references in the thread’s local state are made visible during
the execution of this routine by recording them publicly once
before the CAS executor begins.

Finally, we note that efficient normalized representations
exist for all lock-free data-structures of which we are aware.
Further details appear in Appendix B and in [24].

4.2 The Optimistic Access Scheme [4]
The AOA scheme extends the optimistic access scheme, and
uses some of the mechanisms it supplies. In this subsection
we sketch the design of the original (manual) optimistic
access scheme and specify some details that the AOA scheme
inherits.

The optimistic access scheme was designed to pro-
vide fast manual lock-free memory reclamation for data-
structures in normalized form. The optimistic access scheme
was able to allow fast reads from the shared memory without
the high overhead incurred by earlier schemes. To this end,
it allowed optimistically reading a node even if this node
might have been concurrently reclaimed. When a thread
discovered that the read value might be stale, it used the
rolling-back mechanism of the normalized representation to
abandon the local state (including the stale value) and restart
from a safe point.

To discover when a value is potentially stale, the opti-
mistic access scheme works in phases. In each phase, it at-
tempts to reclaim only nodes that were unlinked and man-
ually retired at the previous phase. Each thread has a flag,
called the warning bit, and at the beginning of a phase, the
warning bits of all threads are set. When a thread notices
that its warning bit is set, the thread clears its warning bit
and rolls back the execution to a safe point. Therefore, we
get the invariant that a thread may read a stale value only
when its warning bit is set.

The optimistic access scheme assumes that memory is
never returned to the operating system, so that accessing re-
cycled nodes does not trigger traps. The AOA scheme follows
the optimistic access scheme by allowing optimistic accesses

and prohibiting the returning of pages to the operating sys-
tem.

Writes cannot be executed optimistically since an opti-
mistically executed write may corrupt a node used by other
threads. Thus, each thread has a set of three globally visible
“hazard” pointers, called WriteHPs. The optimistic access
scheme does not reclaim nodes pointed to by hazard point-
ers. Before the write begins, the thread writes the three par-
ticipating pointers (the modified node, the expected pointer,
and the new pointer) to its WriteHPs. Then it checks whether
the warning bit has been set. If it has, the thread clears its
warning bit and rolls back the execution to a safe point, and
if it hasn’t, then the CAS to the shared memory can be ex-
ecuted safely. These hazard pointers can be cleaned imme-
diately after the CAS completes. However, there are some
hazard pointers that need to be kept for longer than the exe-
cution of a single CAS as explained below.

The optimistic access scheme occasionally makes threads
roll back the execution to a safe point. The scheme maintains
an invariant that after returning to a safe point, a thread’s
local state does not contain references to reclaimed nodes.
This means that local pointers into the data-structures (links)
that are held at a safe point must be protected with hazard
pointers along the execution starting at a safe point and as
long as the thread might return to this safe point.

Safe points are clear and simple for normalized data-
structures. Two such safe points are defined by the optimistic
access scheme. The first safe point is at the beginning of
the CAS generator routine and the second safe point is at
the beginning of the wrap-up routine. The inputs to the CAS
generator are the inputs of the entire operation and so they
do not contain a reference to a node except for global roots.
Thus there is no need to protect any local pointer following
this safe point. But the second safe point, at the beginning of
the wrap-up routine, does have local pointers that reference
nodes in the data-structure. The inputs to the wrap-up routine
are again the inputs to the operation, but also the CAS list
generated by the CAS generator. In order to make sure that
any thread that returns to this safe point has local pointers
into nodes that were not reclaimed, all pointers in the CAS
list are protected by hazard pointers. These hazard pointers
are set just before starting to execute the wrap-up method
and are only cleared at the end of the wrap-up method.

In addition to protecting safe points and their subsequent
instructions, the optimistic access scheme never rolls back
the CAS executor because it writes to shared space and these
actions cannot be undone. Therefore, all the nodes the CAS
executor accesses during its execution must not be reclaimed
and they are also protected throughout its execution. The
inputs to the CAS executor is the CAS list generated by the
CAS generator, with exactly the same roots as is the safe
point at the beginning of the wrap-up routine (discussed in
the previous paragraph). Thus, the roots in the CAS list are
published immediately before the CAS generator finishes

265

Listing 2. Reading shared memory
1 //Original instruction: var=⇤ptr
2 var=⇤ptr
3 if(thread�>warning){
4 thread�>warning=0;
5 helpCollection(); // di↵erent from the OA scheme.
6 restart; // from the beginning of currently
7 // executing routine
8 }

Listing 3. Write shared memory
1 // Original instruction: res=CAS(O.field, A, B)
2 WriteHPs[0]=unmark(O);
3 if (A is a node pointer) WriteHPs[1]=unmark(A);
4 if (B is a node pointer) WriteHPs[2]=unmark(B);
5 memory fence();
6 if(thread�>warning){
7 thread�>warning=0;
8 helpCollection();// di↵erent from the OA scheme.
9 restart; // from the beginning of currently

10 // executing routine
11 }
12 res=CAS(O.field, A, B);
13 WriteHPs[0]=WriteHPs[1]=WriteHPs[2]=NULL;

and are preserved during the execution of the CAS executor
and the wrap-up routines.

4.2.1 Adopting Optimistic Access Scheme Code into
the AOA Scheme

Let us specify how the above description of the optimistic
access scheme gets adopted into the AOA scheme. In List-
ings 2, 3, and 4 we present code executed in the AOA scheme.
Listing 2 is executed with each read from shared memory
(a.k.a. a read-barrier). The code in Listing 3 is executed
whenever one writes to the shared memory during the ex-
ecution of the parallelizable CAS generator method or the
parallelizable wrap up method. The code in Listing 4 is ex-
ecuted at the end of the CAS generator method. These al-
gorithms are the same algorithms as in the optimistic access
scheme, except for one difference that is crucial for correct-
ness: threads that find out that a phase has changed (their
warning bit is set) move to helping the reclamation proce-
dure. As mentioned in Section 2.3, we sometimes need to
access a pointer that was marked by the original lock-free
algorithm. We use the notation UNMARK(O) for a routine
that returns a pointer to the beginning of the node O, with-
out any mark that the algorithm might have embedded in the
pointer.

At the end of the wrap-up routine, all SafePointHPs are
cleaned (i.e., set to NULL).

Listing 4. End of CAS generator routine
1 //Assume output of the CAS generator has been set to
2 //a sequence of CASes: CAS(Oi. f ieldi,Ai,Bi), 0  i < k
3 SafePointHPs = all node pointers in the CAS sequence
4 memory fence();
5 if(thread�>warning){
6 thread�>warning=0;
7 helpCollection();// di↵erent from the OA scheme.
8 restart; // from the beginning of currently
9 // executing routine (CAS generator)

10 }
11 // End of CAS generator method

5. The Mechanism
In this section we present the details of the AOA scheme.
We start by describing the memory layout, and then describe
the three stages of the algorithm: the root collecting, the
mark, and the sweep. We assume that the program has the
cooperation code described in Listings 2, 3, and 4 described
above.

Recall that we use the term phase (and not cycle) to de-
note a reclamation execution in order to stress that the ex-
ecution is asynchronous. Not all threads are assumed to be
cooperating with the currently executing reclamation. Each
phase is further partitioned into three stages: root collection,
mark, and sweep. In the first stage of a phase all global point-
ers plus all references residing in threads’ hazard pointers
are collected. In the second stage of a phase we mark all
nodes reachable from the set of root pointers collected in
the first stage. In the third stage of a phase we sweep, i.e,
reclaim all non-marked nodes and remove the marks from
marked nodes, cleaning them to prepare for the mark of the
next phase.

5.1 Memory Layout
The AOA scheme uses four globally visible variables: a phase
counter, an allocation pool, a mark-bit table, an additional
(small) mark-bit table for each array, and a sweep chunk
index.

The phase counter is the first variable that is incremented
when a new phase starts. It holds the current collection phase
number and is used to announce the start of a new phase.

The allocation pool contains the nodes ready to be allo-
cated during the current phase. It is emptied at the beginning
of a phase, refilled during the sweep phase, and then used
for new allocations. The allocation pool is phase-protected,
meaning that adding or removing items can succeed only if
the attempting thread is updated with the current phase num-
ber. The allocation pool is implemented as a lock-free stack,
where the head pointer is put alongside a phase-number
field. Modifications of the head pointer are executed by a
wide CAS, which succeeds only if the phase number is cor-
rect. Every item in the pool is an array containing 126 en-

266

tries; thus a thread accesses the global pool only once per
126 allocations. Like the global pool, the local pools are also
emptied at the beginning of a phase.

The mark-bit table is used for the mark stage. To avoid
spuriously marking nodes by threads operating on previous
phases, every 32 mark-bits are put alongside a 32-bit phase
number. The marking procedure marks a node with a 64-
bit CAS that sets the respective bit while checking that the
phase number was not modified. If necessary, it is possible
to extend the phase number to 64-bits by using a wide CAS
instruction of 128 bits. However, even for frequent triggering
in which a new reclamation phase starts after allocation of
1000 nodes, wraparound of the 32-bits phase number occurs
only once per 232 ·1000 ⇡ 4.3 ·1012 allocations.

The sweep chunk index is a phase-protected index used to
synchronize the sweeping effort. It contains a 32-bit index
that represents the next sweep page that should be swept.
This variable is phase protected, put alongside a 32-bit phase
number, and modified only via a 64-bit CAS.

5.1.1 Load Balancing for Tracing Arrays of Pointers
The AOA scheme employs an additional mark-bit table for
each large arrays of links. (For example, for a hash table.)
An array may create a problem for load balancing if not par-
titioned. It is preferable that each thread will trace a different
part of the array and not compete with the other threads on
tracing the entire array. Thus the AOA scheme divides each
array into chunks and associates a mark bit for each chunk.
These mark-bits are phase-protected; similarly to the mark-
bit table, every 32 bits are put alongside a 32-bits phase num-
ber. The mark bit is set if the respective chunk was traced
and all references already appear in the mark-stack. In ad-
dition, the AOA scheme associates an additional counter for
each array that is used for synchronizing the tracing efforts.
This counter is used to divide the chunks between threads.
If a chunk is treated as a simple node, threads may continu-
ously compete for tracing a chunk, reducing efficiency. The
counter is used to optimistically divide chunks into threads
such that each thread will start by tracing a different chunk.
But at the end, when the counter goes beyond the array lim-
its, threads make sure all chunks have been marked before
moving on to trace the next node.

5.2 Root Collecting
Collecting the roots for the AOA collection phase amounts to
gathering all hazard pointers and global roots. This is a huge
simplification over general garbage collection for which ef-
ficient lock-free root scanning is a major obstacle. Note that
we do not need thread cooperation to obtain these roots, and
we can gather the roots even if threads are inactive. The code
for the root collection procedure appears in Listing 5.

Root collection is done by every thread participating in
the collection phase. In fact, if a node is unreachable from
the roots collected by some thread, then this node is guaran-
teed to be unreachable. But threads that observed previous

Listing 5. Root collecting
1 void collectRoots(LocalRoots){
2 For each thread T do

3 LocalRoots += T.WriteHPs
4 LocalRoots += T.SafePointHPs
5 For each root in GlobalRoots
6 LocalRoots += ⇤root
7 }

roots may declare it as reachable (denoted floating garbage).
It is possible to reach a consensus about the roots, or even to
compute the intersection of the collected roots, but a simpler
solution is to let every thread to collect roots on its own and
to trace them.

Let us say a few words of intuition on why it is enough to
trace only nodes accessible by hazard pointers (in addition
to the global roots). In a sense, the hazard pointers represent
local roots for the garbage collection of the data-structure.
A memory reclamation phase starts with raising the warning
flags of all threads. Suppose that threads could immediately
spot the warning flag and could immediately respond to
it. In this case all threads immediately start helping the
collection and then they return to a safe point in which the
hazard pointers actually represent all the local roots that they
have into the data-structure. However, the threads do not
respond immediately. They may perform a few instructions
before detecting the warning flag. The barriers represented
in Listings 2, 3, and 4 ensure that if a thread modifies a
link during a collection phase (after the flag is set), then the
modified node, the old value, and the new value are stored
in hazard pointers (and thus are considered roots). Thus no
harm happens during this short execution until the flag is
detected.

5.3 The Mark Stage
In the mark phase we start from the data-structure root point-
ers and traverse inner-data-structure pointers to mark all
reachable data-structure nodes. This procedure is executed
while other threads may be executing operations on the data-
structure but in a very limited way. Each thread that discov-
ers that reclamation is running concurrently joins the recla-
mation effort immediately.

One of the things we care about is that if a thread fails,
then other threads can cover for it, completing the work
on its plate. To do this, we let each thread’s mark-stack
be public and also a thread keeps a public variable called
curTraced which holds a pointer to the node it is currently
working on. This allows all other threads to pick up the
tracing of a failed thread.

Next, let us describe the basic tracing routing that traces
one single node that currently resides on the top of the mark-
stack. The reclaiming thread starts by peeking at the top of
its local mark-stack, reading the first node. We stress that this

267

Listing 6. Mark a node
1 //Attempt to process (mark) a single node from the
2 //markstack. Return LOCAL FINISH if local markstack
3 //is exhausted, 0 otherwise.
4 int markNode(){
5 if(markstack.is empty())
6 return LOCAL FINISH;
7 obj = markstack.peek();
8 if(is marked(obj) ||
9 phase(markbit(obj))!=localPhase){

10 markstack.pop();
11 return 0;
12 }
13 curTraced=obj;
14 pos = ��markstack.pos;//popping obj.
15 for each child C of obj do
16 markstack.push(C);
17 if(mark(obj))//successfully modified mark�bit table
18 return 0;
19 else{
20 //undo pushing children.
21 markstack.pos=pos;
22 delete entries above pos (set to NULL);
23 return 0;
24 }
25 }

node is not popped, since popping it makes it “invisible” to
other threads and then they cannot help with tracing it. Sec-
ond, the thread checks that the node is still unmarked and the
phase is correct. If the node is already marked it is popped
from the mark-stack and we are done. If the global phase
was incremented, we know that we have fallen behind the
reclamation execution, so tracing terminates immediately.
It is fine to terminate reclamation at this point because the
reclamation phase that we are in the middle of has already
been completed by concurrent threads and we can attempt to
continue allocating after updating to the current phase. Third
(if the node is unmarked and the phase is correct), the mark
procedure saves the traced node in curTraced. Now there is
a global reference to the traced node and we pop it from the
mark-stack. Next, the mark procedure traces the node, push-
ing the node’s children to the mark-stack. Finally, the thread
attempts to mark the traced node by setting the relevant bit
in the mark-bit table. This mark operation succeeds if the
node was unmarked and the local phase matches the global
phase. If the node is successfully marked, we are done. If
we fail to mark the node, then the node’s children are re-
moved from the mark-stack and we return. The code of the
tracing routine appears in Listing 6. This procedure returns
”LOCAL FINISH” if the local mark-stack has been exhausted,
and the constant 0 otherwise.

The markNode routine is invoked repeatedly until the lo-
cal mark-stack is empty. But an empty (local) mark-stack

of a thread does not imply the termination of the marking
stage. Determining global termination in a lock-free man-
ner is our next challenge. The tracing stage completes when
all mark-stacks and the curTraceds of all threads contain
only marked nodes. However, a thread cannot simply read
all mark-stacks, because the mark-stacks can be modified
during the inspection. This challenge is solved by noting a
special property of the curTraced variable. A thread T mod-
ifies its curTraced variable when it discovers an unmarked
object. If a thread inspects T’s mark-stack, finds everything
marked (and also T’s curTraced is marked) and if and during
the inspection period T’s curTraced variable is not modified
and T’s local phase does not change, then T’s mark-stack
was also not modified during this period. If, however, some-
thing did change, or something was not marked, then T ei-
ther finds a unmarked node and helps marking it or it simply
starts the inspection from scratch.

Checking whether the marking stage completed starts by
recording the current phase and the curTraced variables of all
threads. Then it inspects mark-stacks of threads executing
the current phase. Finally it reinspects the curTraced vari-
able and the local phase of all threads. If no local phase was
modified, no curTraced variable was modified, and all mark-
stacks and all curTraced variables contained only marked
nodes, then tracing is complete. If the thread observes an un-
marked node and the thread is executing the current phase,
it helps with tracing it. If the curTraced variables were mod-
ified and the inspecting thread observed no unmarked node,
then the thread restarts the inspection. The code that checks
whether the marking effort completed and the code that exe-
cutes the marking stage are presented in Listing 7.

5.4 Sweep
The sweep stage is simpler than the previous stages. The
sweep is done in granularity of pages, denoted sweep pages.
Each thread synchronously grabs a sweep page and places all
unmarked nodes in this page in the allocation pool. Synchro-
nization is done by a phase-protected atomic counter, so that
threads executing an incorrect phase will not grab a sweep
page. A thread executing the sweep of an incorrect phase
will not corrupt the allocation pool since the allocation pool
is phase protected as well. A thread that drops dead at a mid-
dle of a sweep causes all unmarked nodes on this sweep page
to be abandoned for the current phase. However, at most a
single sweep page is lost per unresponsive thread.

Typically, sweep is also used to clear the marks from all
nodes in preparation for the next collection phase. This is
not done here. Instead, the mark clearing is executed at the
beginning of a new phase. During a new phase initiation
we need to protect all mark-bit words with the new phase
number. While creating this protection we can clear the
marks simultaneously with no additional cost.

The sweep algorithm is presented in Listing 8. It is di-
vided into two functions. The first function, sweepPage, pro-
cesses a single page, moving all unmarked nodes to the al-

268

Listing 7. mark-finish-or-progress
1 bool finish or progress(){
2 int curPhases[numThreads];
3 void ⇤curTraces[numThreads];
4 for each thread T at index i do
5 curPhases[i]=T.localPhase;
6 curTraces[i]=T.curTraced;
7 if(curPhases[i]==thread.localPhase &&
8 !is marked(curTraces[i]))
9 {help(curTraces[i]); return false;}

10 for each thread T at index i do{
11 if(curPhases[i] != thread.localPhase) continue;
12 for each markstack record R of T do{
13 if(!is marked(R)){
14 help(R);
15 return false;
16 }
17 }
18 }
19 for each thread T at index i do
20 void ⇤ct = T.curTraced;
21 if(curTraces[i]!=ct)
22 return false;//progress made by other thread.
23 if(curPhases[i]!=T.localPhase)
24 return false;//thread i joined the mark.
25 return true;//finished.
26 }
27 void help(void ⇤node){
28 if(thread.localPhase == phase)
29 markstack.push(node);
30 else

31 markstack.clear(); //finish mark stage.
32 }
33 void markStage(){
34 do{
35 while(markNode()!=LOCAL FINISH){}
36 }while(finish or progress()==false);
37 }

location pool. The second function, sweep, synchronizes the
sweeping effort between all participating threads.

5.5 Phase Triggering
Similarly to triggering of general garbage collection, trig-
gering a reclamation is more of an art than science. Various
triggering mechanisms can be used. In our simple implemen-
tation we used a very simple heuristic. Before the measure-
ment began we allocated a fixed number of nodes and in-
serted them to the allocation pool. This can be thought of as
analogue to a memory manager that allocates a heap for its
use in an execution. A new phase was triggered when the al-
location pool was exhausted. During the collection phase all
unreachable nodes were returned back to the allocation pool.

This implementation ensures that everything is lock-free.
If one uses an underlying allocator to extend the allocation

Listing 8. Sweep
1 sweepPage(int pageNumber){
2 void ⇤page = getPage(pageNumber);
3 for each node O residing in page do{
4 if(mark�bit(O)==false)
5 localPool.insert(O);
6 if(localPool.size ==LOCAL POOL SIZE){
7 allocationPool.insert(localPool, localPhase);
8 localPool.reset();
9 }

10 }
11 }
12 sweep(){
13 while(true){//while sweep not finished.
14 do{//obtain a single page for sweep
15 int64 old = sweep chunk index;
16 if(index(old)>=numSweepPages)
17 return;//sweep finished
18 if(phase(old)!=localPhase)
19 return;//entire phase finished
20 int64 new=old+1;//same phase, index+1
21 }while(!CAS(&sweep chunk index, old, new));
22 //Sweep nodes on obtained page.
23 sweepPage(index(old));
24 }
25 }

pool dynamically, then one should make sure that the under-
lying allocator is lock-free and does not allow unmapping
of previously allocated pages (note that unmapping pages
generally foils lock-freedom), then it is possible to consider
other triggering schemes that adapt to the runtime behavior
of the data-structure. In Listing 9 we present the code for al-
locating a node and the code for triggering a new collection
phase.

6. Methodology and Results
We used the AOA reclamation mechanism with two widely
used data-structures: Harris-Michael linked-list and a hash
table. We compared the execution of these data-structures
with the AOA mechanism to executions of these data-structures
with the basic manual optimistic access mechanism. This
scheme represents the most efficient manual reclamation
available today. We also compared to executions with no
reclamation and to executions with a reference counting
mechanism. Although not stated by its author, the reference
counting method of Valois [25], enhanced by Michael [17],
can be applied automatically by the compiler if there is no
cyclic garbage. Since cyclic garbage is not common in many
lock-free data-structures, reference counting can be consid-
ered an alternative to the AOA method proposed in this paper.
It offers comparable guarantees.

On commodity hardware, reading the node reference and
incrementing the reference count is not atomic. If the node is

269

Listing 9. allocation and phase triggering
1 void ⇤alloc DS(threadData t){
2 if(t.localPool is empty){
3 t.localPool = allocationPool.pop(t.localPhase);
4 if(t.localPool is empty)
5 TriggerNewPhase(t);
6 }
7 return t.localPool.pop();
8 }
9

10 void TriggerNewPhase(threadData t){
11 CAS(&phase, t.localPhase, t.localPhase+1);
12 t.localPhase = phase;
13 //Initialize phase�protected variables
14 For each phase�protected variable V do

15 tmp = V
16 while(tmp.version<t.localPhase){
17 CAS(&V, tmp, h0,t.localPhasei);
18 tmp = V
19 }
20 Set warning flag for all threads.
21 collectRoots(t.markstack);
22 markStage();
23 sweep();
24 }

reclaimed after reading the reference and before increment-
ing its counter, the counter of the non-existing node is modi-
fied, possibly corrupting memory. Thus, Valois [25] assumed
type-persistency: once a node is allocated at a memory loca-
tion, the memory location will occupy only instances of the
same class type as the first occupying node. Thus a belated
thread modifies only a valid reference count field. The refer-
ence counting scheme is denoted RC. The manual optimistic
access scheme is denoted MOA and the baseline algorithm
that performs no memory reclamation is denoted NR.

Methodology. Following the tradition in previous work,
we evaluated the data-structure performance by running a
stressful workload that executes the data-structure opera-
tions repeatedly on many threads. In all our tests, 80% of the
operations were read-only. For the linked-list data-structure
we tested two configurations: one where the list length was
5000 denoted LinkedList5000, and another with list length
128 denoted LinkedList128. The hash table size was 10000,
and the load factor was 0.75. These micro-benchmarks
cover a wide range of behaviors. The LinkedList5000 has
low contention as each operation is relatively long. The
LinkedList128 has higher contention as the operations are of
medium length. The hash has low contention, but extremely
fast operations. Similar settings were used in previous work
(e.g., [1, 4]).

To check the scalability of the proposed scheme, each
micro-benchmark was executed with a varying number of
threads, all of which were power-of-2’s ranging between

0.0#
0.2#
0.4#
0.6#
0.8#
1.0#
1.2#
1.4#
1.6#
1.8#
2.0#

1# 2# 4# 8# 16# 32# 64#M
ill
io
n&
op

er
a+

on
s&p

er
&se

co
nd

&

Threads&

Linked&list&4&5,000&

NR#

AOA#

RC#

MOA#

Figure 1. Comparing the throughput of the proposed AOA
scheme, reference counting, and no reclamation with Harris-
Michael linked-list with 5,000 items. The x-axis is the num-
ber of participating threads. The y-axis is the throughput of
the presented scheme.

1 and 64. Each execution lasted 1 second, and the total
number of executed operations was recorded (throughput).
Longer execution times (e.g., 10 seconds) produce similar
results. Each execution was repeated 10 times, and the av-
erage throughput and 95% confidence levels are reported.
For the AOA scheme we initialized the allocation pool with
32,000 nodes before the measurements began; a new collec-
tion phase is triggered when the allocation pool is exhausted.

The code was compiled using the GCC compiler version
4.8.2 with the -O3 optimization flag, running on an Ubunto
14.04 (kernel version 3.16.0) OS. The machine featured 4
AMD Opteron(TM) 6376 2.3GHz processors, each with 16
cores (64 threads overall). The machine used 128GB RAM,
an L1 cache of 16KB per core, an L2 cache of 2MB for every
two cores, and an L3 cache of 6MB per processor.

Results. In Figure 1 we compare the performance of the
proposed AOA scheme, the manual optimistic access scheme
(MOA), the reference counting scheme, and no reclamation,
with Harris-Michael linked-list of length 5,000 nodes. It can
be seen that the overhead of the AOA scheme, compared to
no reclamation, is very low, and at max reaches 3%. Com-
pared to the reference counting scheme, the AOA scheme
improves the performance by 3x� 31x. The reason is that
reading memory is very lightweight in the AOA scheme,
whereas the reference counting scheme requires two atomic
operations per read. The overhead of the reference counting
scheme is much higher as the number of threads grows, due
to the contention on the reference counting field. The AOA
scheme performed similar or slightly better than the manual
optimistic access scheme.

In Figure 2 we compare the performance of the proposed
AOA scheme, reference counting, manual optimistic access
reclamation, and no reclamation, when used with the Harris-

270

0.0#

2.0#

4.0#

6.0#

8.0#

10.0#

12.0#

14.0#

1# 2# 4# 8# 16# 32# 64#M
ill
io
n&
op

er
a+

on
s&p

er
&se

co
nd

&

Threads&

Linked&list&4&128&

NR#

AOA#

RC#

MOA#

Figure 2. Comparing the throughput of the proposed AOA
scheme, reference counting, and no reclamation, with
Harris-Michael linked-list with 128 items. The x-axis is the
number of participating threads. The y-axis is the throughput
of the presented scheme.

0.0#

50.0#

100.0#

150.0#

200.0#

250.0#

1# 2# 4# 8# 16# 32# 64#M
ill
io
n&
op

er
a+

on
s&p

er
&se

co
nd

&

Threads&

Hash&

NR#

AOA#

RC#

MOA#

Figure 3. Comparing the throughput of the proposed AOA
scheme, reference counting, and no reclamation, with the
hash table. The x-axis is the number of participating threads.
The y-axis is the throughput of the presented scheme.

Michael linked-list of length 128 nodes. The AOA scheme
incurs an overhead of 0�10% compared to the no reclama-
tion scheme. Compared to the reference counting scheme,
the AOA scheme improves performance by 6x � 25x. The
AOA scheme performed similar to the manual optimistic ac-
cess scheme: Comparing the AOA scheme with the manual
optimistic access scheme shows that it was better by 9% for
a single thread and slower by 9% for 64 threads. For a single
thread the additional retire calls had some overhead, while
for 64 threads these local computations probably reduced
contention and improved scalability.

In Figure 3 we compare the performance of the pro-
posed AOA scheme, reference counting, manual optimistic

0.0#

2.0#

4.0#

6.0#

8.0#

10.0#

12.0#

14.0#

16.0#

1# 2# 4# 8# 16# 32# 64#M
ill
io
n&
op

er
a+

on
s&p

er
&se

co
nd

&

Threads&

LinkedList128&7&HS&enhancement&

HS,NR#

HS,AOA#

NR#

MOA#

Figure 4. Studying the benefit of applying Herlihy-Shavit
enhancement. NR and MOA stands for the baseline imple-
mentation with no reclamation (NR) and the manual opti-
mistic access scheme. HS-NR and HS-AOA are the imple-
mentation enhanced by Herlihy-Shavit wait free searches
with no reclamation and the AOA scheme. This enhancement
does not satisfy the requirements needed to apply a manual
memory reclamation scheme.

access reclamation, and no reclamation, when used with
a hash table of size 10,000 nodes. The overhead of the
AOA scheme, compared to the no reclamation, is 14% �
33%, which slightly increases as the number of threads in-
creases. Compared to the reference counting scheme, the
AOA scheme improves performance by 30%� 54% for 1�
32 threads, and by 16% for 64 threads. With the hash micro-
benchmark, the fraction of CAS instructions (vs. read in-
structions) is greater than in previous micro-benchmarks, so
the reference counting cost of 2 atomic instructions per read
is somewhat reduced. Furthermore, the read operations do
not contend since each thread picks a random bucket, reduc-
ing the reference counting overhead in this case. The AOA
scheme performed almost exactly like the manual optimistic
access scheme. In fact it is difficult to see the gray line as it
is almost completely hidden by the green one.

In all of the measurements so far, we used one data-
structure implementation with different memory reclamation
schemes. But some algorithms cannot be used with manual
reclamation, yet, they can be used with automatic reclama-
tion (as discussed in Appendix A). So we also compared the
execution of the Harris-Michael linked-list which is amend-
able to manual memory reclamation to executions of the
linked-list with wait-free searches of Herlihy and Shavit [9].
The latter cannot be used with manual reclamation. Each
of these algorithms was also run with no memory reclama-
tion for comparison. For the Herlihy-Shavit algorithm we
considered NoRecl (HS-NR) and AOA (HS-AOA). And for
the Harris-Michael linked-list we used NoRecl (NR) and the
manual optimistic access scheme (MOA). The results are de-

271

0"

50"

100"

150"

200"

250"

1.5x" 2x" 3x" 4x" ∞"M
ill
io
n&
op

er
a+

on
s&p

er
&se

co
nd

&

Live&ra+o&

Hash&3&triggering&effect&

NR"

AOA"

Figure 5. Studying the effect of triggering on performance.
The x-axis is the number of nodes in the allocation pool di-
vided by the number of live nodes. The y-axis is the through-
put.

picted in Figure 4. The Herlihy-Shavit algorithm that cannot
be used with manual reclamation performed better than the
Harris-Michael algorithm, to which manual reclamation can
be added. With no reclamation the difference is 9%-23%.
Furthermore, the faster algorithm with the AOA scheme out-
performs the slower algorithm even when the slower algo-
rithm does not spend any time on memory reclamation.

In Figure 5, we study the effect of triggering on per-
formance under infrequent recycling. The frequency of re-
cycling is determined by the space reserved for allocation,
which determines how much allocation can take place be-
fore recycling is needed. Similarly to the garbage collec-
tion literature, we set the available space for allocation as
a multiplicative factor of the live space (nodes used by the
data-structure). For this benchmark, we let the live space
be 30,000 nodes and we vary the live ratio in the range
1.5x,2x,3x,4x and •. Note that when we use •, we don’t
reclaim at all and so the overhead originates only from the
read- and write-barriers. We compared these runs to runs
with no reclamation (for which triggering is not relevant).
In Figure 5 it can be seen that the AOA scheme is sensitive to
the frequency of triggering, and performance improves if the
triggering is infrequent. Looking at • live ratio (no reclama-
tion), we see that the overhead that the AOA scheme incurs
on the execution without reclamation is 11%. A ratio of 2
compared to a ratio of • demonstrates that the overhead of
the reclamation itself in this case is 19%.

For the AOA scheme the memory overhead is a constant
which our parameters determine to be around 32,000 ob-
jects. For the NoRecl method the space overhead is of-course
the largest in the long run. It is simply determined by the
number of allocations because there is no reclamation. For
the data structures at hand, allocations only happen during
insertions, when the key to be inserted is not found in the

data-structure. The number of such allocations is about 5%
of the overall number of operations executed, because in our
workload 10% of the operations are insertions and for ap-
proximately half the key is not found in the data structure.

The RC method exhibits a small memory overhead in
most of the cases as it reclaims space with no delay. How-
ever, for the hash table with 64 threads the overhead was
approximately 20,000 nodes. The reason is that in the imple-
mentation we used (of [17]), if the thread’s local list of re-
claimed nodes is empty, it immediately allocates a new node,
even though other lists are full. While it is possible to im-
prove the memory overhead for the RC scheme, we did not
investigate this avenue further. The MOA memory overhead
was similar to the AOA scheme almost everywhere except
when running the hash benchmark with 64 threads. There,
the reclamation overhead of the MOA scheme was high when
the memory overhead was set to 32,000 nodes. The reason
for this reduced performance for the manual scheme is that
this scheme allocates a local pool for retired objects to each
thread and also a local pool for local allocations. This re-
duces the number of objects that are available for allocation
(for all threads) and results in excessive reclamation cycles.
In addition, during a reclamation cycle, there is a high con-
tention on the shared pool of retired objects. Thus, for this
case we let the memory overhead be approximately 50,000
nodes.

We also recorded the number of memory reclamation
phases performed by the AOA scheme. For the hash micro-
benchmark, the number of phases varies between 32 for
a single thread and 375.8 for 64 threads. For the LL5K
micro-benchmark, the number of phases varies between 0
and 3. This is a long list and the number of operations that
execute in one second with a single thread did not require
memory reclamation. We did verify (for all benchmarks) that
executions of 10 seconds show similar throurghput behavior
with 10 times the number of collections. For the LL128
micro-benchmark, the number of phases varies between 5
and 18.

To summarize the performance evaluation, the AOA
scheme outperforms the reference count scheme on almost
all configurations, and many times in a drastic manner. For
moderate workloads, it demonstrates a very low overhead
over the baseline algorithm that reclaims no nodes. The AOA
performs similarly to the manual optimistic access scheme
but the automatic scheme is easier to apply and it can be ap-
plied in cases where the manual reclamation methods cannot
be applied.

7. Related Work
The first proposed lock-free memory reclamation scheme is
the reference counting scheme [25]. Each node is associated
with a count of the threads that access it and a node can
be reclaimed if its reference count is dropped to 0. Race
conditions may lead to a node being reclaimed immediately

272

before its reference count is incremented. Solving this race
requires either a type persistence assumption [23, 25] or the
use of the double compare-and-swap (DCAS) primitive [5]
which is not always available. The performance overhead is
high as this method requires (at least) two atomic operations
per node read [7].

Sundell [23] extended the reference counting scheme to
support wait-free execution. Wait-freedom is achieved by re-
questing help whenever a thread reads a pointer from shared
memory. The proposed scheme guarantees that the read
completes after finite number of instructions. The scheme
requires at least 4 atomic instructions per read and no mea-
surements were provided.

The most popular lock-free reclamation schemes are the
hazard pointers and pass the buck mechanisms of Michael
[16] and Herlihy et al. [10]. In these schemes every thread
is associated with a set of pointers, denoted hazard pointers
or guards, which mark nodes the thread is accessing. These
schemes defined the manual memory reclamation interface.
Loosely speaking, the following is required: first, a node can
be accessed only if it is linked to the data-structure or the
thread holds a hazard pointer to the node. Second, the pro-
grammer may retire a node only after it is unlinked from
the data-structure. These two properties implies that a node
can be reclaimed after it was retired and there is no haz-
ard pointer that points it. Except for the complexity of using
the manual memory reclamation interface, the runtime cost
of these methods is also non-negligible. In these schemes
a node is accessed only after writing its address to a haz-
ard pointer; on the TSO (or weaker) memory model, this
requires a write and a memory fence per read node. Still, the
hazard pointers scheme is scalable since each thread writes
only its own hazard pointers so concurrent readers do not
contend.

Braginsky et al. [3] proposed the anchor scheme as an im-
provement to the hazard pointer scheme. The anchor scheme
writes to hazard pointers only once per k reads, and the haz-
ard pointer implicitly prevents the next O(k) nodes from be-
ing reclaimed. They use time stamps and a freezing mech-
anism to recover from stuck threads. The anchor method
significantly reduces the overhead of memory fences. How-
ever, it is required to design an anchor version for each data-
structure, and the authors only provided an example imple-
mentation for the linked-list.

Alistarh et al. [1] proposed the StackTrack method, which
utilizes hardware transactional memory to solve the memory
reclamation problem. This method breaks each operation to
a series of transactions and writes its hazard pointers only
once per transaction. It is shown that successfully committed
transaction cannot interfere with a memory reclamation. The
method is automatically applicable by a compiler, but the
programmer is still required to provide retire statements.

Cohen and Petrank [4] have recently proposed the OA
scheme. The OA scheme allows threads to optimistically

read reclaimed nodes, thus avoiding the need to write hazard
pointers for every read. A thread writes its hazard pointers
only when the thread writes to shared memory. The OA
scheme is faster than both the hazard pointers and the anchor
methods, and is slightly simpler to apply than the hazard
pointers method. Still, the programmer is required to retire
nodes.

8. Conclusions
In this paper we presented the AOA automatic lock-free
memory reclamation scheme. Unlike manual memory recla-
mation schemes, the AOA scheme does not require the pro-
grammer to manually install retire instructions for nodes
after unlinking them from the data-structure. As exemplified
for the linked-list and the skip-list, installing retire instruc-
tions is non-trivial. It requires changing the original algo-
rithms and a very subtle understanding of the original con-
current algorithms. Therefore, using the automatic scheme
proposed in this paper significantly simplifies programmer
efforts for memory reclamation of lock-free data-structures.
Measurements show that the AOA scheme significantly out-
performs the competing reference-counting scheme, it is
comparable to the best known manual lock-free memory
reclamation and it incurs moderate overhead when compared
to executions that do not reclaim memory at all.

References
[1] D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and N. Shavit.

Stacktrack: An automated transactional approach to concur-
rent memory reclamation. In EuroSys. ACM, 2014.

[2] J. Auerbach, D. F. Bacon, P. Cheng, D. Grove, B. Biron,
C. Gracie, B. McCloskey, A. Micic, and R. Sciampacone.
Tax-and-spend: Democratic scheduling for real-time garbage
collection. In EMSOFT, pages 245–254, 2008.

[3] A. Braginsky, A. Kogan, and E. Petrank. Drop the anchor:
lightweight memory management for non-blocking data struc-
tures. In SPAA, pages 33–42. ACM, 2013.

[4] N. Cohen and E. Petrank. Efficient memory management for
lock-free data structures with optimistic access. In SPAA.
ACM, 2015.

[5] D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele Jr. Lock-
free reference counting. DISC, pages 255–271, 2002.

[6] T. L. Harris. A pragmatic implementation of non-blocking
linked-lists. In DISC, pages 300–314. Springer, 2001.

[7] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Per-
formance of memory reclamation for lockless synchroniza-
tion. JPDC, pages 1270–1285, 2007.

[8] M. Herlihy. Wait-free synchronization. TOPLAS, 1991.

[9] M. Herlihy and N. Shavit. The Art of Multiprocessor Pro-
gramming, Revised Reprint. Elsevier, 2012.

[10] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Non-
blocking memory management support for dynamic-sized
data structures. TOCS, 23(2):146–196, 2005.

273

[11] M. P. Herlihy and J. E. B. Moss. Lock-free garbage collection
for multiprocessors. TPDS, 1992.

[12] R. L. Hudson and J. E. B. Moss. Sapphire: Copying GC with-
out stopping the world. In Joint ACM-ISCOPE Conference on
Java Grande, pages 48–57, 2001.

[13] A. Kogan and E. Petrank. Wait-free queues with multiple
enqueuers and dequeuers. In PPoPP, pages 223–234. ACM,
2011.

[14] A. Kogan and E. Petrank. A methodology for creating fast
wait-free data structures. In PPoPP, pages 141–150. ACM,
2012.

[15] M. M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In SPAA, pages 73–82. ACM, 2002.

[16] M. M. Michael. Hazard pointers: Safe memory reclamation
for lock-free objects. TPDS, 15(6):491–504, 2004.

[17] M. M. Michael and M. L. Scott. Correction of a memory
management method for lock-free data structures. Technical
report, DTIC Document, 1995.

[18] S. Owens, S. Sarkar, and P. Sewell. A better x86 memory
model: x86-tso. In Theorem Proving in Higher Order Logics,
pages 391–407. Springer, 2009.

[19] E. Petrank. Can parallel data structures rely on automatic
memory managers? In MSPC, pages 1–1. ACM, 2012.

[20] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgard. Sto-
pless: A real-time garbage collector for multiprocessors. In
ISMM, pages 159–172, 2007.

[21] F. Pizlo, E. Petrank, and B. Steensgaard. A study of concurrent
real-time garbage collectors. In PLDI, pages 33–44, 2008.

[22] F. Pizlo, L. Ziarek, P. Maj, A. L. Hosking, E. Blanton, and
J. Vitek. Schism: Fragmentation-tolerant real-time garbage
collection. In PLDI, pages 146–159, 2010.

[23] H. Sundell. Wait-free reference counting and memory man-
agement. In IPDPS, pages 24b–24b. IEEE, 2005.

[24] S. Timnat and E. Petrank. A practical wait-free simulation for
lock-free data structures. In PPoPP, pages 357–368. ACM,
2014.

[25] J. D. Valois. Lock-free linked lists using compare-and-swap.
In PODC, pages 214–222. ACM, 1995.

A. Motivating Examples
In this section we demonstrate the difficulty of applying
manual memory management with retire instructions in or-
der to motivate automatic memory management. We look
at two basic and well-known lock-free data-structure algo-
rithms: Harris’s linked-list [6] and Herlihy and Shavits’ skip-
list [9]. For both data-structures we show that non-trivial al-
gorithmic modifications are required in order to place re-
tire instructions and apply a manual memory reclamation
method. We then discuss possible solutions for making these
algorithms amendable to manual memory reclamation.

A.1 Harris’s Linked-List [6]
Harris’s linked-list [6] was innovative when introduced and
is still considered one of the most simple and efficient lock-

free data-structures. Harris also proposed the Epoch-Base
Reclamation (EBR) scheme for reclaiming nodes in the list,
but using Epoch-Base reclamation foils lock-freedom as it is
not robust to thread failures.

Michael [15] discusses the difficulty of node reclamation
for Harris’ list and argues that it is not possible to apply the
hazard pointers method to this data-structure implementa-
tion. The reason is that in order to apply hazard pointers or a
similar reclamation method a retire operation must satisfy a
condition that cannot be satisfies by Harris’ list. The condi-
tion is that one issues a retire operation on node N only after
N has been disconnected from the list and no thread will ob-
tain access to it from now on. It is possible that a thread is
looking at N simultaneously with the execution of the retire
instruction and this case is fine because hazard pointers will
be used to delay the actual reclamation of N. But no thread
should be able to gain access to N after the retire instruc-
tion was issued. This is important because N may be now
reclaimed and future accesses may view stale values.

Let us review why the condition is not satisfied in Har-
ris’ algorithm and then present Michael’s fix. Note that this
understanding and modification requires a subtle (i.e., deep)
understanding of the algorithm and of the memory reclama-
tion scheme.

Deleting a node N in Harris’s linked-list happens in two
stages. First, N’s next pointer is marked (to prevent fur-
ther modifications). Then, the node is physically deleted by
rerouting the next pointer of N’s preceding node to point to
the node that follows N in the list. Concurrence may cause
several subsequent nodes to be marked before physical dele-
tion happens to any of them. Handling a series of consec-
utive marked nodes is a major issue for the installation of
retire operations. Let us explain why. In Harris’s implemen-
tation, if two (or more) consecutive nodes are marked, then
they are simultaneously deleted physically by rerouting the
next pointer of the node that precedes all these consecutive
marked nodes to point to the node that follows the series of
marked nodes. This seems a natural way to deal with a series
of marked nodes and it is also a very efficient solution. But
the simultaneous physical deletion makes the installation of
hazard pointers fail because it foils the condition needed to
apply the hazard pointers scheme. Suppose a thread is cur-
rently accessing one of the nodes in the sequence of marked
nodes. Then this thread is able to access other nodes in this
sequence even after they are physically deleted from the list.
This is bad news for the installation of retire instructions.
This thread may access a node that has been retired.

Let us describe specific race condition. Suppose that
A,B,C,D are consecutive nodes in the list A ! B ! C ! D.
T1 starts a search, and reaches B. T2 marks C, and then T3
marks B. Next, T4 notices that B and C are marked and phys-
ically deletes B and C by connecting A ! D. At this point
B and C are retired. Then, both T2 and T3 discovered that B
and C were unlinked and restart the operation, cleaning their

274

own hazard pointers to the nodes B and C. Since C was re-
tired and no hazard pointer references it, it is next reclaimed.
Now T1 wakes up, reads B’s next field (C), protects it with a
hazard pointer, revalidates that B still points to C, and then
accesses C in spite of the fact that C has been reclaimed and
may contain stale values for T1.

This race condition is rather tricky and non-expert devel-
opers may attempt to apply hazard pointers to this scheme.
The resulting bug reveals itself only under rare conditions,
which complicates debugging.

Herlihy and Shavit [9] proposed a variant of the Harris-
Michael algorithm where the search (a.k.a. contains) opera-
tions do no participate in physical deletion. This yields faster
and wait-free searches. But their variant also does not enable
the installation of hazard pointers due to similar races.

Michael’s solution to this problem is to physically delete
one node at the time, starting at the first one. In addition,
Michael makes sure that a thread does not traverse through
a marked pointer without attempting to handle the phys-
ical deletion and starting from scratch if the delete fails.
Michael’s solution allows memory reclamation, and prior
to this work there was no way around Michael’s condition
for inserting retire statements. But as shown in our measure-
ments, Michael’s solution also has a performance cost due
to threads starting searches from scratch.

A.2 Herlihy and Shavits’ [9] Skip-List
Skip-list is a widely used data-structure as it allows a simple
implementation that (probabilistically) achieves a logarith-
mic execution time for the insert, the delete and the search
operations. The lock-free skip-list algorithm of Herlihy and
Shavit is much simpler than the competing lock-free tree al-
gorithms.

The skip-list is composed of a sequence of sorted linked-
lists. In the lock-free implementation [9] these lists are im-
plemented according to the Harris-Michael linked-list [15].
The lowest linked-list contains all the elements in the skip-
list. Higher linked-lists contain only a subset of the elements,
where on average, the size of the ith linked-list is half the
size of the i�1th linked-list. Each element of the skip-list
has a height, and an element of height ` participates in the
first ` linked-lists. Element insertion begins with the thread
inserting the element to the bottom level and then proceed-
ing with the insertions to the following levels, one level at
a time. Deleting an element works the other way, starting
from the linked-list of the element’s height and finishing at
the bottom level. As in Harris-Michael linked-list, the ele-
ment is first logically deleted, and then (after all levels are
logically deleted) it is disconnected from the list.

This implementation does not satisfy the conditions
needed to apply the hazard pointers (or any other similar)
manual memory reclamation scheme. Consider an element
with a height 2, but any height higher than 1 will do. The
main difficulty here is that such an element is inserted twice

to the data-structure. Once into the bottom level and then
into the second level. If a thread is delayed before installing
the last reference to this node, then it is unsafe to retire
this node, because a reference to this node might be later in-
stalled into the skip-list. If one attempts to retire such a node,
than there is a scenario in which a retired node is reached by
a thread after it was reclaimed.

Let us describe a specific race condition. Suppose a thread
gets delayed in the middle of inserting an element E of value
X and height 2 into the data-structure. The thread has already
inserted E to the bottom level but gets delayed before linking
it to the second level. At this time, another thread starts
a delete operation of value X , finds E, deletes it from the
skip-list, then unlinks it. At this point it is natural to put
a retire statement, with which the deleting thread notifies
the reclamation system about E, and the reclamation system
may in turn recycle the node and allocate it again as E 0.
Next, the inserting thread wakes up and installs the reference
to E, which actually references E 0, into the skip-list. This
corrupts the data-structure. Such a corruption is very difficult
to debug.

Let us now describe a possible modification of the algo-
rithm that enables the installation of retire statements, and
so also the application of the hazard pointers [16] or the
OA [4] memory schemes. The inserting thread prevents re-
cycling of the currently inserted item using some methodol-
ogy (a hazard pointer or some other coordination method)
until the insertion operation is complete. When it is com-
plete, the inserting thread checks whether the node was con-
currently deleted. If it was, the inserting thread unlinks it
from the data-structure. Thus, when the node becomes re-
claimable, it is guaranteed not to be reachable from the data-
structure. This solution is delicate and requires expertise and
care about possible races. The AOA reclamation scheme is
automatic and does not require such modifications.

B. Normalized Representation of Data
Structures

In this section we provide the formal definition of normal-
ized data-structure implementations [24]. Similar to [4],
we relax the original definition a bit, because we can also
work with data-structures that do not satisfy all the con-
straints of the original definition. Of-course, the optimistic
access memory scheme will work with the original definition
of [24] as well, but the relaxed restrictions that we specify
below suffice.

Definition 4.1 of [24] (slightly relaxed): A lock-free al-
gorithm is provided in a normalized representation if:

• Any modification of the shared data-structure is executed
using a CAS operation.

275

• Every operation of the algorithm consists of executing
three methods one after the other and which have the
following formats.

1. CAS Generator: its input is the operation’s input, and
its output is a list of CAS descriptors. CAS descriptors
are tuples of the form (address, expectedVal, newVal).
This method is parallelizable (see Definition 3.4 of
[24] below).

2. CAS Executor, which is a fixed method common to
all data-structures and all algorithms. Its input is the
list of CAS descriptors output by the CAS generator
method. The CAS executor method attempts to exe-
cute the CASes in its input one by one until the first
one fails, or until all CASes complete. Its output con-
tains the list of CAS Descriptors from its input and
the index of the CAS that failed (which is zero if none
failed).

3. Wrap-Up, whose input is the output of the CAS Ex-
ecution method plus the operation’s input. Its out-
put is either the operation result, which is returned to
the owner thread, or an indication that the operation
should be re-executed from scratch (from the Gener-
ator method). This method is parallelizable (see Defi-
nition 3.4 of [24] below).

We remark that in [24] there is an additional requirement for
a contention failure counter and for versioning that we do
not need for our construction. This makes the above defi-
nition more relaxed. Of-course, the proposed memory man-
agement scheme will work well also when the data-structure
representation adheres to the full (stricter) definition of [24].

As discussed in [24], any data-structure has a normal-
ized lock-free implementation, but not necessarily efficient.
However, interesting data structures had a small (often neg-
ligible) overhead.

We provide the definition of parallelizable methods be-
low. An important property of parallelizable methods is that
at any point during their execution, it is correct to simply
restart the method from its beginning (with the same input).
We will use this fact by starting the CAS generator and the
wrap-up methods from the beginning whenever we detect
stale values that were read optimistically following a con-
current reclamation.

The algorithm we propose is optimistic. Optimistic al-
gorithms typically execute instructions even when it is not
clear that these instructions can be safely executed. In order
to make sure that the eventual results are proper, optimistic
algorithms must be able to roll back inadequate execution,
or they stop and check before performing any visible modi-
fication of the shared memory that cannot be undone. In the
AOA scheme, rolling back is done by restarting from the be-
ginning of the method (Generator or Wrap-Up). In the rest
of the paper, the instruction restart refers to restarting from

the beginning of the currently executed method (which will
always be the Generator or the Wrap-Up).

To simplify the discussion of a restart, we assume that the
CAS generator and wrap-up methods do not invoke meth-
ods during their execution. The reason is that if a method
is invoked by the CAS generator (for example), restarting
the CAS generator from scratch, when a check in the in-
voked method detects stale values, implies returning from
all invoked methods, removing their frames from the run-
time stack without executing them further. Note first that
this is achievable by letting the invoked routines return with
a special code saying that a restart is required and the call-
ing method should act accordingly. Note also that inlining
can be applied to create a method that does not invoke other
methods if no recursion is used and no virtual calls exist.

Additionally, we assume that the executions of the orig-
inal data structure (with no memory management) do not
trigger a trap. Adding checks and handling restarts in a trap
code are more involved and are outside the scope of the cur-
rent paper.

Before starting with the definition of parallelizable meth-
ods, we start by defining an avoidable execution of a method
(3.3 of [24]). An avoidable execution of a method is an exe-
cution that can be rolled back. Such an execution should not
perform any modification visible by other threads, otherwise
it cannot be rolled back. For completeness we also provide
Definition 3.1 and Definition 3.2 of [24] below.

Definition 3.1 of [24] (Futile CAS) A futile CAS is a CAS in
which the expected value and the new value are identical.

Definition 3.2 of [24] (Equivalent Executions) Let I1 and
I2 be two (different) implementations of a data-structure D.
Let E1 be an execution over I1 and let E2 be an execution
over I2. Then the executions are equivalent if the following
hold:

Results: In both executions all threads execute the same
data-structure operations and receive identical results.

Relative Operation Order: The order of invocation points
and return points of all data-structure operations is the
same in both executions.

Definition 3.3 of [24] (Avoidable Method Execution) A run
of a method M by a thread T on input I in an execution E is
avoidable if each CAS that T attempts during the execution
of M is avoidable in the following sense. Let S1 denote the
state of the computation right before the CAS is attempted
by T. Then there exists an equivalent execution E 0 for E such
that both executions are identical until reaching S1, and in
E 0 the CAS that T executes in its next step (after S1) is either
futile or unsuccessful. Also, in E 0 the first execution step from
S1 is executed by a thread who is the owner of an ongoing
operation.

276

We now recall the definition of parallelizable methods,
i.e., Definition 3.4 of [24] and then explain why it implies
that restarting from the beginning of the method is fine.

Parallelizable Method (Definition 3.4 of [24]). A method
M is a parallelizable method of a given lock-free algorithm,
if for any execution in which M is called by a thread T
with an input I the following two conditions hold. First,
the execution of a parallelizable method depends only on
its input, the shared data-structure, and the results of the
method’s CAS operations. In particular, the execution does
not depend on the executing thread’s local state prior to the
invocation of the parallelizable method. Second, at the point
where M is invoked, if we create and run a finite number of
parallel threads, each one executing M on the same input I
concurrently with the execution of T, then in any possible
resulting execution, all executions of M by the additional
threads are avoidable.

Now we show that a parallelizable method can be restarted
from scratch. Consider an execution where a thread T
restarts a method M a finite number of times, each time
with the same input. The method execution does not depend
on the thread’s local state, so there exists an equivalent exe-
cution where each invocation is executed by a different (aux-
iliary) thread. Only the last invocation (which never restarts)
is considered executed by T , which is the owner thread for
the ongoing operation. The auxiliary threads do not finish to
execute the method. Thus, consider these threads as crash-
ing at the point where a restart is executed. By definition
of parallelizable method, there exists an equivalent execu-
tion where the auxiliary threads execution of M is avoidable.
But then the auxiliary threads execute no modification ob-
servable by other threads, which is equivalent to having T
execute the method alone with no restarts.

C. The AOA Interface
Let us now describe the interface between the AOA scheme
and the data-structure it serves. The AOA scheme is imple-
mented as a header file in C. The rest of this paper ex-
plains how to implement the functionalities included in this
header file. But before including the header file in the data-
structure’s source code, several #define statements must be
provided by the programmer. These #define statements are
discussed below.

The programmer starts by providing a name space for the
data-structure to be used by the AOA scheme for this data-
structure and to avoid collision of AOA actions on different
data-structures. This name space will be used as a suffix for
all the AOA function names. The name space (denoted DS)
is provided using a #define statement. The second definition
provided by the programmer is the NODE SIZE parameter
that contains the size of the data-structure node. The third de-
fine statement specifies NCHILDREN that contains the num-
ber of link fields in the data-structure node. In our simple
implementation NCHILDREN must be between 1 and 3, but

Listing 10. Harris-Michael linked-list
1 #include ”hmll.h” //the data�structure definitions
2 ��������������� AOA memory manager
3 #define DS HMLL //Harris�Michael linked�list
4 #define NODE SIZE sizeof(struct node)
5 #define NCHILDREN 1
6 #define CHILD OFFSET 1 o↵setof(struct node, next)
7 //default (unneeded) definition
8 //#define UNMARK(ptr) ((void⇤)(((long)(ptr))&(˜3ul)))
9 #include ”aoa.h” // supplied by the aoa implementation

10 ��������������� Implementation
11 void insert(...){
12 ...
13 struct node ⇤newnode=alloc HMLL(threadData[tid]);
14 }
15 void init(){
16 //initialize HMLL memory manager
17 init allocator HMLL(threadData, numThreads);
18 //add global roots
19 addGlobalRoot HMLL(&list1head, 1);
20 addGlobalRoot HMLL(&list2head, 1);
21 ...

it is easy to support any constant number of links. The fourth
set of (NCHILDREN) definitions is CHILD OFFSET {1,2,3}.
The definition CHILD OFFSET i specifies the offset of the
ith link. The fifth (optional) definition specifies a function
UNMARK(ptr) that gets a pointer and returns an unmarked
pointer. If undefined, the implementation used the default of
clearing the two least significant bits.

Each read and write of the original algorithm operations
must be modified in a way that is named read- and write-
barrier in the memory management nomenclature. This can
be done automatically by a compiler, but in our simple im-
plementation we let the programmer apply these additions.
All allocations of data-structure nodes must be handled by
the AOA functionality and this should be done using the al-
loc DS function (where DS is the name space of the said
data-structure). The alloc DS function returns a newly allo-
cated node.

An initiation function denoted init allocator DS must be
called during the initiation of the data-structure to initiate the
memory manager. The destroy DS function may be invoked
to de-allocate the AOA internal data-structure when it is no
longer needed. The function addGlobalRoot DS is used to
declare the location of global roots. It is possible to declare
an array of roots by calling this function once and providing
the length of the array. (That may be useful for a hash table.)

Harris-Michael Linked-List Example Let us now exem-
plify the user of the AOA interface on the Harris-Michael
linked-list. The example is provided in Listing 10.

Applicability to Multiple Data-Structures It is possible
to apply the AOA scheme to multiple instances of a data-

277

structure by providing the global roots of all instances via the
AOA interface. It is also possible to apply the AOA scheme
to multiple data-structures. In this case, each data-structure
must be compiled separately (on a different source file) and
each data-structure must provide a unique name space. In
our implementation there is no sharing between multiple
instances of the AOA scheme, even though such sharing may
be possible (e.g. using a single set of hazard pointers). Of
course, the AOA scheme does not prohibit using different
memory reclamation schemes on other data-structures. But
if the data-structure uses the AOA interface, it is incorrect to
allocate an instance without registering it properly.

D. Some Words on Correctness
D.1 Root Collection (Subsection 5.2)
In this subsection we further explain why it is sufficient to
collect the hazard pointers instead of the local roots. To this
end, we relax the responsibility of the root collecting stage
in two ways. Suppose a thread has a local reference to a node
R. First, consider the case that after root collecting the thread
executes several instructions and rolls back to a safe point,
and during this period (between root collecting and rolling
back) R does not participates in accesses to shared memory.
If R is not referenced at the safe point, the root collection
may ignore this root so it can be reclaimed. Second, suppose
that the thread reads the node R, but immediately drops the
read value and rolls back the execution to a safe point. If the
read instruction does not trigger a trap or the trap is caught,
the read can be considered a no-operation (specifically, an
operation that does not access shared memory). Next we
argue that collecting the hazard pointers and the global roots
provides the same set of roots as collecting all node pointers
in thread’s local state after the two relaxations above.

Root collecting starts by setting the warning flag for all
threads. By Listings 2, 3 and 4, the threads execute the data-
structure operation until before writing to shared memory
or after reading shared memory. After this point the thread
helps with the collection efforts. Combining the two relax-
ations discussed above, a root R should be considered only
if

1. R is still referenced at the safe point;

2. R participates in a memory write (i.e. CAS) operation.

Let us start with the latter. Before writing to shared mem-
ory during the CAS generator or the wrap-up routines, all
local roots participating in the write (i.e. the written node,
the expected value, and the new value) are exposed via a set
of hazard pointers. The write is executed only after verify-
ing that the roots were exposed before a memory reclamation
phase begin. This set of hazard pointers is called WriteHPs.
Similarly, before writing to shared memory in the CAS ex-
ecutor, all local roots participating in the write are exposed
via the SafePointHPs set of hazard points.

Next we consider roots that are referenced from safe
points. We define two safe points in each operation. The
first is at the beginning of the CAS generator method and
the second is at the beginning of the wrap-up method. The
CAS generator method depends only on its input, which
is passed from outside the data-structure. Since the input
cannot contain a node reference unless it is protected by a
global root, the thread is not required to publish anything via
hazard pointers. The safe point at the beginning of the CAS
generator is applicable (can be jumped into) during the entire
execution of the CAS generator.

The second safe point is the beginning of the wrap-up
method; it is applicable during the entire execution of the
wrap-up routine. The thread is required to publish all roots
referenced from this safe point during the execution of the
wrap-up routine. The inputs to the wrap-up routine are the
CAS list generated by the CAS generator and the operation
input. As discussed above, the operation input does not con-
tain roots. So during the execution of the wrap-up routine, all
references in the CAS list must be published via the Safe-
PointHPs set of hazard pointers. Next note that during the
execution of the CAS executor it is not allowed to roll back
the execution, so all roots must be published during the en-
tire execution of the CAS executor. Since the CAS executor
does not read any pointer from shared memory, the set of
roots are not modified and are equal to the set of roots in the
method input, which is the CAS list generated by the CAS
generator routine. To summarize, during the execution of the
CAS executor and the wrap-up routine, the roots in the CAS
list generated by the CAS generator are public via the Safe-
PointHPs set of hazard pointers.

D.2 The Mark Stage (Subsection 5.3)
Before discussing the correctness of the presented mark
stage, let us first describe some challenges that the mark
stage handles. The first challenge in the marking stage is to
avoid missing nodes even when a thread drops dead in the
middle of marking a node. The second challenge is to avoid
tracing corrupted addresses when a tracing thread wakes up
and is acting in the presence of a subsequent marking phase
that it is not yet aware of.

To show that the tracing routine handles the first chal-
lenge, we declare the following invariant: during the execu-
tion of the mark stage, the children of a marked node are
either marked, resides on some (maybe another thread’s)
mark-stack, or resides on some curTraced variable. This
way, nodes are never lost during a trace. Let us explain why
the tracing procedure (Listing 6) satisfies the declared invari-
ant. We start by assuming that threads do never modify links
or global roots during the mark stage and handle this case
later. Then the invariant follows from three simple proper-
ties of the tracing algorithm. First, a node is popped from
the mark-stack only after it is inserted to the curTraced posi-
tion in the mark-stack. Second, a node is removed from the
curTraced position only after it was marked. Third, a node is

278

marked (by a thread T) only after all its children resides on
T ’s mark-stack. These three properties implies that a node
is removed from the mark-stack only after all its children
resides on a mark-stack of some thread. The argument is fin-
ished by noting again that the children are removed from a
mark-stack only after being marked.

Next we describe why data-structure operations cannot
foil the invariant. To this end we need to declare another in-
variant regarding modification of shared memory (links and
global roots) during ongoing reclamation phase. The invari-
ant is as follows: if a thread T 0 modifies shared memory af-
ter T started the mark stage of the current phase, then T ob-
served both the old value and the newly modified value when
collecting T 0 hazard pointers. This invariant implies that if a
link is modified during the marking stage the new value is a
root, thus satisfying the tracing invariant.

Let us now explain why this second invariant holds. Root
collection starts by raising the threads warning flags, then
all hazard pointers are collected, and eventually global roots
and links are traversed. Before a write began, the thread in-
stalls all participating pointers into its hazard pointers (in-
cluding the new and old values). Then it checks whether the
warning flag was set or not; if the warning flag is set the
thread does not execute the write but rather joins the collec-
tion efforts. If the thread T 0 modifies a link during the time T

executes the mark stage, then surely T 0’s warning flag is set
and it was not set after T 0 finished to install the hazard point-
ers and check the flag. Since T collected T 0 hazard pointers
after the warning flag of T 0 was set, it is guaranteed that T
observed both the old and the newly modified value.

Finally let us explain why a corrupted address is never
traced. If a node is traced, then the node address was ob-
tained and then the parent was marked. The key observation
here is that the mark-bit table is phase protected, so marking
a node implies that the thread observes the correct phase.
Since the node was obtained before the parent was marked,
it surely points to a valid node during the current phase. By
our assumption on the underlying allocator, the node content
can be accessed even after arbitrarily number of phases. Note
that it does not imply that the node location contains a valid
node; during the time the node is traced it may contain unre-
lated data (i.e. corrupted children). But the thread will fail to
mark the node and will remove the node’s children from its
mark-stack. In the node is referenced from a global root, the
argument follows since global roots always points to valid
nodes. When helping other threads, the argument follows
since a helper thread checks whether the helped thread exe-
cutes the current phase and whether the helping thread exe-
cutes the correct phase. If the phase is incorrect, helping is
not provided as the address may be corrupted.

279

