BQ: A Lock-Free Queue with Batching”

GAL MILMAN, Technion, Israel

ALEX KOGAN, Oracle Labs, USA

YOSSI LEV, Oracle Labs, USA

VICTOR LUCHANGCO, Oracle Labs, USA
EREZ PETRANK, Technion, Israel

Concurrent data structures provide fundamental building blocks for concurrent programming. Standard
concurrent data structures may be extended by allowing a sequence of operations to be submitted as a batch
for later execution. A sequence of such operations can then be executed more efficiently than the standard
execution of one operation at a time. In this paper we develop a novel algorithmic extension to the prevalent
FIFO queue data structure that exploits such batching scenarios. An implementation in C++ on a multicore
demonstrates a significant performance improvement of up to 16x (depending on the batch lengths and the
number of threads), compared to previous queue implementations.

Additional Key Words and Phrases: Concurrent Algorithms; Concurrent Data Structures; Lock-Freedom;
Linearizability; FIFO Queue

1 INTRODUCTION

The era of multi-core architectures has been having a huge impact on software development:
exploiting concurrency has become the main challenge of today’s programming. Concurrent data
structures provide the basic blocks for concurrent programming; hence it is crucial that they are
efficient and scalable. In this paper we consider a setting in which threads sometimes execute a
sequence of operations on a shared concurrent data structure (rather than a single operation each
time). This scenario occurs either because the threads are willing to delay execution of operations
in order to improve performance, or because they deliberately want operations to be executed later.

As an example, consider a server thread that serves requests of remote clients. Such a thread
may accumulate several relevant operations required by some client, generate a sequence of these
operations, submit them for execution on shared data, finish handling them, and then proceed to
handle other clients whose operations can be accumulated similarly.

Kogan and Herlihy [17] formulated batching of operations in a concurrent setting using the future
programming construct. Batching means grouping a sequence of standard operations to a single
batch operation, which applies them together to the shared object. They formalized correctness
(linearization) guarantees and demonstrated the advantages of batching even when using naive
batching strategies.

In this paper we present a novel extension to the concurrent lock-free queue by Michael and
Scott [22] (henceforth msQ) that can handle a sequence of operations in a batch. Our queue extension,
denoted BQ (which stands for Batching Queue), provides faster execution for operation sequences.
Kogan and Herlihy suggested to apply each sequence of operations of the same type to the shared
queue at once. Specifically, they execute each subsequence of enqueues-only together by appending
adequate nodes at the end of the queue, and each subsequence of dequeues-only by unlinking
several nodes from the head of the queue. The advantage of this method degrades when operations
in the batch switch frequently between enqueues and dequeues, which is the case with general
sequences. We present an algorithm that handles any batch of enqueues and dequeues locally and
applies it at once to the shared queue to reduce contention. Using novel observations on the effect

“This work was supported by the Israel Science Foundation grant No. 274/14



of a mixed sequence on the shared queue, we achieve a fast application of the sequence on the
shared queue with low synchronization.

Concurrent queues are typically not scalable because they have two points of contention: the
head and the tail. However, batching of operations provides an excellent opportunity to combine
operations locally and improve scalability. Such local computation reduces the number of accesses
to the shared structure, which yields an overall reduced contention. As shown in the measurements,
BQ improves the performance and scalability over msQ and over the simpler batching method of
Kogan and Herlihy.

We also extend Kogan and Herlihy’s formal treatment of systems that only execute batch
operations, to allow simultaneous execution of standard (single) operations, while still satisfying
an extended form of linearizability that we present.

BQ is lock-free. It uses only compare-and-swap (CAS) atomic operations (which can easily be
replaced with LL/SC instructions) and can thus be ported to other existing platforms. The original
MsQ we build upon is widely known as a well-performing queue for general hardware and is
included as part of the Java™ Concurrency Package [20]. Measurements for BQ demonstrate a
significant performance improvement of up to 16x compared to MsQ when threads employ batch
operations to update the queue.

Batching provides a performance improvement for operations that the user agrees to delay.
Additionally, BQ guarantees that deferred operations of a certain thread will not take effect until
that thread performs a non-deferred operation or explicitly requests an evaluation of previous
future operations. This is useful when the user wishes to call several operations and knowingly
delay their execution to a chosen time.

The rest of the paper is organized as follows: Section 2 introduces the model we work with and
surveys the work we build on. In Section 3 we define linearizability and its extensions to objects
with batch operations. Having set the terminology, we discuss related work in Section 4. Section 5
presents an overview of the BQ algorithm, whose implementation details are described in Section 6.
The memory management mechanism we used is covered in Section 7. The algorithm’s correctness
is laid out in Section 8. Section 9 describes measurement results. Section 10 lays out a possible
portability adjustment of the algorithm.

2 PRELIMINARIES

Model. We consider a standard shared memory setting, with a set of threads accessing the shared
memory using the atomic primitives Read, Write and CAS. A CAS primitive is defined by a triplet
consisting of a target memory address, an expected value, and a new value. A CAS operation
compares the value stored in the target address to the expected value. If they are equal, the value in
the target address is replaced with the new value, and the Boolean value true is returned. In such
a case we say that the CAS is successful. Otherwise, the shared memory remains unchanged, and
false is returned.

Future. A future is an object returned by an operation whose execution might be delayed. The
user may call an Evaluate method to ensure the operation’s execution and get its result.

MS-Queue. BQ extends MsQ to support future operations. MsQ is a lock-free algorithm for a FIFO
queue, which supports Enqueue and Dequeue operations. It implements the queue as a singly-linked
list with head and tail pointers. head points to the first node of the list, which functions as a dummy
node. The following nodes, starting with the node pointed to by the dummy node’s next pointer
and ending with the node whose next pointer’s value is NULL, contain the queue’s items. The queue
is initialized as a list containing a single (dummy) node, to which both head and tail point. This
setup represents an empty queue.



Dequeuing is implemented as follows: If head->next is NULL, the queue is empty, and hence the
dequeue operation returns without extracting an item from the queue. Otherwise, an attempt is
made to update head to point to its successive node in the list, using CAS. On the occasion that the
CAS fails, the dequeue operation starts over.

Enqueuing requires two CAS operations. Initially, a node with the item to enqueue is created.
Then, an attempt to set tail->next to the address of the new node is made using a first CAS. The CAS
fails if the current value of tail->next is not NULL. In such a case, tail is advanced to the current
value of tail->next using an assisting CAS, in order to help an obstructing enqueue operation
complete. Then, a new attempt to perform the first CAS starts. After the first CAS succeeds, a second
CAS is applied to update tail to point to the new node. There is no need to retry this CAS, since it
fails only if another thread has already performed the required update, trying to help our operation
complete in order to next apply its own operation.

Lock-Freedom. A concurrent object implementation is lock-free [12] if each time a thread executes
an operation on the object, some thread (not necessarily the same one) completes an operation on
the object within a finite number of steps. Thus, lock-freedom guarantees system-wide progress.
Our implementation is lock-free.

3 LINEARIZABILITY AND FUTURES

We describe the original linearizability [14], defined for a setting of no future operations, and
generalize it for a setting with future operations. Some basic terms are required first: A method
call is described by two events — its invocation, which refers to the call to the method, and its
response, which refers to the return from the method. Each object has a sequential specification,
which describes its behavior in sequential executions, where method calls do not overlap.

3.1 Linearizability

An execution is considered linearizable [14] if each method call appears to take effect at once,
between its invocation and its response events, in a way that satisfies the sequential specification
of the objects.

3.2 Medium Futures Linearizability (MF-Linearizability)

Medium futures linearizability is defined by Kogan and Herlihy [17] as an extension of linearizability
to futures, which we adopt and extend. For each future operation, we look at two associated method
calls: the future one, which creates a future and returns it, and Evaluate, which is called with the
future returned by the first method call and ensures the operation’s execution. MF-linearizability
requires the following:

(1) Each operation takes effect at some instant between the invocation of its first related method
(which produces the future) and the response of its second related method (which evaluates
the future).

(2) Two operations issued by the same thread to the same object take effect in the order of their
first method calls (i.e. their future method calls).

3.3 Extended Medium Futures Linearizability (EMF-Linearizability)

We extend the MF-linearizability definition to cover a data structure which supplies standard (single)
operations in addition to future-returning operations (the original paper did not refer to single
operations). We do so by reduction to MF-linearizability: informally, we transform an execution that
possibly contains single calls into one that contains only future-returning operations, by replacing
each single operation call with an adequate future call followed by an Evaluate call.



Next, we define extended medium futures linearizability (EMF-linearizability) formally.

Definition 3.1. Let H be a history, consisting of operation invocation and response events. We
construct a new history Hy, denoted the future history, as follows. The invocations and responses of
all future dequeue, future enqueue and Evaluate calls are copied to Hy unchanged. Each dequeue call
op in H is rewritten in Hy: its invocation is replaced with an invocation and an immediate response
of a future dequeue call, and its response is replaced with an invocation and an immediate response
of an Evaluate call that evaluates this future dequeue. Enqueue calls are rewritten similarly.

Definition 3.2. A history H is EMF-linearizable if its future history Hy is MF-linearizable.

3.4 Atomic Execution

We define atomic execution, a property of an object with future methods regarding its linearization.
We then describe its implication for EMF-linearizable objects and its benefit. We begin with an
auxiliary term regarding future operations on shared objects:

Definition 3.3. A pending operation is a future operation that has not yet been applied to the
shared object.

Definition 3.4. Let ob be an object with future methods and ¢ be a thread. ob satisfies atomic

execution if:

(1) Pending operations of t on ob are applied only during the following calls on ob by ¢: either a
single operation call, or an Evaluate call for one of t’s pending operations.

(2) Let op be a call in t during which some pending operations of t, denoted opy, ..., opy, are
applied. Then opy, ..., op, must be linearized successively in their original invocation order,
without any other operation on ob linearized between them. Moreover, if op is a single
operation (i.e., not an Evaluate or a future operation), then opy, ..., 0p, and also op must be
linearized successively in their original invocation order, without any other operation on ob
linearized between them.

If ob is EMF-linearizable, then when a single method op is called by a thread t, all pending
operations of t must take effect prior to op to satisfy EMF-linearizability. Atomic execution dictates
that they are executed at once together with op.

Similarly, when ¢t calls the Evaluate method for some pending operation op, all ¢’s pending
operations preceding op must take effect prior to op to satisfy EMF-linearizability. Additional
pending operations by t may be applied as well. Atomic execution dictates that all these operations
are executed at once.

An example of a potential benefit of atomic execution is that it can achieve locality for a producers-
consumers system, where consumer servers handle requests of remote producer clients. In such
scenario, the clients enqueue their requests, possibly several at a time, to a shared queue. Each
server consumes requests regularly by performing a batch operation consisting of a certain number
of dequeues. Both clients and servers perform batch operations by calling several future operations,
followed by an Evaluate operation of the last future operation.

Serving requests of the same client consecutively may allow for more efficient processing due to
locality of the client’s data. A queue that supports batching and satisfies atomic execution would
enable the servers to exploit locality and successively serve several requests by the same client,
which he applied in the same batch-of-enqueues operation. This is thanks to the atomic execution’s
guarantee that both a batch-of-enqueues operation by a client and a batch-of-dequeues operation
by a server take effect instantaneously.



4 RELATED WORK

Various papers introduce lock-free linearizable FIFO queues, which use different strategies to
outperform MsQ.

Tsigas et al. [26] present a queue that allows the head and tail to lag at most m nodes behind the
actual head and tail of the queue, so that the amortized number of CAS executions per operation
is 1 + 1/m. Their algorithm is limited to bounded queues due to their static allocation. Additional
cyclic array queues are described in [3, 6, 25]. Moir et al. [23] present a queue that uses elimination
as a back-off strategy to increase scalability: pairs of concurrent enqueue and dequeue method
calls may exchange values without accessing the shared queue. However, in order to keep the FIFO
queue semantics, the enqueue method can be eliminated only after all items of preceding enqueue
operations have been dequeued, which makes the algorithm practical only for nearly empty or
highly overloaded queues. Hoffman et al. [15] present the baskets queue, which increases scalability
by allowing concurrent enqueue operations to insert nodes at adjacent positions at the end of the
linked list, regarded as baskets. Such insertion, however, is done only after a failed initial attempt
to append the node to the tail. Thus, the contention on the tail is only partially diminished, and
there is also contention on the baskets.

Ladan-Mozes et al. [19] present an optimistic queue, which replaces one of the two CAS operations
performed during an enqueue operation with simple stores. Like the original mMsQ, this algorithm
does not scale, due to synchronization on the head and tail variables that allows only one enqueue
operation and one dequeue operation to be applied concurrently. Gidenstam et al. [7] present
a cache-aware queue that stores the items in fixed-size blocks, connected in a linked list. This
allows for a lazy update of the head and tail, only once per block. Nevertheless, at least one CAS
per operation is still required, making the queue non-scalable under high contention. Morrison et
al. [24] present a queue based on a linked list of ring queue nodes. To reduce contention, it relies
on the fetch-and-add primitive to spread threads among items in the queue and let them operate in
parallel. Yang et al. [27] utilize fetch-and-add as well, to form a wait-free queue. Queues that improve
scalability by relaxing the sequential specification of the queue appear in [1, 10, 16]. For example,
Basin et al. [1] suggest to trade fairness for lower contention by relaxing the FIFO semantics of the
queue. The extension of linearizability BQ adheres to could be viewed as a relaxation, but a stricter
one, as it forces FIFO semantics and preserves process order.

Previous works [e.g., 4, 5, 8, 9, 11, 13, 18] present concurrent constructs that combine multiple
operations into a single operation on the shared object. We chose to combine operations and apply
them as batches, in order to increase scalability. The paper of Kogan and Herlihy [17] is the closest
to this work. They propose alternative definitions for linearizability of executions with batches,
including MF-linearizability, which we use. They describe very simple implementations of stacks,
queues and linked lists that demonstrate the benefits of using futures. In this work we propose a
novel implementation of the queue that obtains better scalability and performance. Moreover, BQ
satisfies atomic execution, while Kogan and Herlihy’s simple queue does not.

5 ALGORITHM OVERVIEW

We present BQ, an extension to mMsQ, which supports deferred operations and satisfies EMF-
linearizability. Unlike standard operations, deferred operations need not be applied to the shared
queue before their responses occur. When a future method is called, its details are recorded locally
together with previous deferred operations that were called by the same thread. A Future object is
returned to the caller, who may evaluate it later.

Deferred operations allow to apply pending operations in batches: BQ delays their execution
until the user explicitly evaluates a future of one of them or calls a standard method. When that



happens, all pending operations of the same thread are gathered to a single batch operation. This
operation is then applied to the shared queue. Afterwards, the batch execution is finalized by locally
filling the futures’ return values. This mechanism reduces synchronization overhead by allowing
fewer accesses to the shared queue, as well as less processing in the shared queue — thanks to the
preparations performed locally by the initiating thread during the run of each future operation,
and the local pairing of applied futures with results following the batch execution.

5.1 Batch Execution

Whenever a deferred enqueue operation is called, the executing thread appends its item to a local
list. This way, when the thread has to perform a batch operation, the list of nodes to be linked to
the shared queue’s list is already prepared.

The key to applying all operations of a batch at once to the shared queue, is to set up a moment
in which the state of the queue is "frozen". Namely, we establish a moment in which we hold both
ends of the queue, so that we know its head and tail, and its size right before the batch takes effect.
This way we can unambiguously determine the queue’s shape after applying the batch, including
its new head and tail. We achieve a hold of the queue’s ends by executing a batch operation in
stages, according to the following scheme.

The thread first creates an announcement describing the required batch operation. An announce-
ment is an auxiliary object used to announce an ongoing batch operation, so that other threads will
not interfere with it but rather help it complete. Then, the thread modifies the shared queue’s head
to point to the created announcement. This marks the head so that further attempted dequeues
will help the batch execution to be completed before executing their own operations. Now we hold
one end of the queue.

Next, the initiating thread or an assisting thread links the list of items, which the initiating thread
has prepared in advance, after the shared queue’s tail. This determines the tail location after which
the batch’s items are enqueued. Thus, now we hold both ends of the queue, as required. We then
update the shared queue’s tail to point to the last linked node.

As a last step that would uninstall the announcement and finish the batch execution, we update
the shared queue’s head. It is possible that during the execution of the required enqueues and
dequeues the queue becomes empty and that some of the dequeues operate on an empty queue
and return NULL. We make a combinatorial observation that helps quickly determine the number
of non-successful dequeues. This number is used to determine the node to which the queue’s
head points following the batch execution. By applying this fast calculation, we execute the batch
with minimal interference with the shared queue, thus reducing contention. This computation is
described in Section 5.2 below.

The entire algorithm, including the process of setting futures’ results, is discussed in detail in
Subsection 6.2.

5.2 A Key Combinatorial Property of Batches on Queues

Let us state combinatorial observations that help us execute the local batch quickly on the queue.
The enqueued items in the batch are kept as a linked-list so that they can be attached at the end of the
list in a single CAS. This list is added to the tail of the queue and then #success fulDequeues dequeues
are executed by pushing the head #success fulDequeues nodes further in the shared linked-list
representing the queue, and then dequeued items are privately matched with the batch dequeue
operations. In the simplest scenario, #success fulDequeues equals the number of future dequeues
in the batch. The problem is that some dequeues may operate on an empty queue and thus, must
return a NULL value. The following discussion explains how the adequate #success fulDequeues
can be computed.



Definition 5.1. We call a future dequeue a failing dequeue with respect to a given state of the
shared queue, if the application of the batch that contains it (as well as the other local pending
operations) on this shared queue makes this dequeue operate on an empty shared queue. A future
dequeue that is not failing is called a successful dequeue.

Note that a failing dequeue does not modify the queue, and its future’s result is NULL.

We start by analyzing the execution of a batch on an empty queue (which can be analyzed
independently of the current shape of the shared queue) and then we show that this analysis can
be extended to a general shared queue, simply by plugging the shared queue size.

Definition 5.2. An excess dequeue is a future dequeue operation that is a failing dequeue with
respect to an empty queue.

For example, if the sequence of pending operations in some thread is EDDEEDDDEDDEE, where
E and D represent enqueue and dequeue operations respectively, then the thread has three excess
dequeues (the second, fifth and seventh).

An excess dequeue is a special case of a failing dequeue. We start by computing how many excess
dequeues there are in a batch.

LEMMA 5.3. Let B be a batch of queue operations. The number of excess dequeues in this batch
equals the maximum over all prefixes of this batch, of the number of dequeues in the prefix minus the
number of enqueues in this prefix.

Proor. First, we note that if, for some prefix p of the batch operations, the number of dequeues
minus the number of enqueues is k, then the overall number of excess dequeues must be at least k.
This is simply because when executing the prefix p on the empty queue, the number of items that
enter the queue is #enqueues, the number of enqueues in the prefix. On the other hand, #dequeues,
the number of dequeues that are executed in this prefix, is larger by k. So at least k dequeues must
operate on an empty queue (returning NULL).

On the other hand, we show by induction on the number of excess dequeues that in the prefix that
ends in the £ excess dequeue, #dequeues — #enqueues > £. We inspect the execution of the prefix
on an empty queue. The base of the induction follows from the fact that the first excess dequeue
must happen when the number of dequeues so far exceeds the number of enqueues. (Otherwise,
there is an item to dequeue.) For the induction step we look at the prefix of the batch that ends in the
£ — 1% excess dequeue. By the induction hypothesis, for that prefix #dequeues — #enqueues > € — 1.
Also, the queue must be empty after (any excess dequeue and in particular after) the £ — 15! excess
dequeue. So the subsequence of operations between the £ — 15 excess dequeue and the £ excess
dequeue operates on an empty queue and has an excess dequeue at the end, which means that for
this subsequence #dequeues — #enqueues > 1 (like in the base case of the induction), and we are
done. O

Now we proceed to discuss a batch applied to a queue of any size.

CrLaM 5.4. Let n be the size of the queue right before a given batch is operated on it. The number
of failing dequeues in the batch with respect to a queue of size n equals to the maximum value of
(#dequeues — #enqueues — n) over all prefixes of the batch’s operation sequence, or 0 if this maximum
is negative.

The claim can be proven by adjusting the proof of Lemma 5.3 to failing dequeues instead of
excess dequeues, and to a queue of general size n rather than 0. Note that the first n excess dequeues
are not failing dequeues because they can dequeue the n items in the original queue. Any additional
excess dequeues will become failing dequeues.

Claim 5.4 and Lemma 5.3 yield the following corollary:



COROLLARY 5.5. Let n be the size of the queue right before a given batch is operated on it. The
number of failing dequeues in the batch equals to max{#excessDequeues — n, 0}.

It immediately follows that the number of successful dequeues in a batch with respect to a queue
of size n equals:
#success fulDequeues = #dequeues — max{#excessDequeues — n, 0}

5.2.1 Using The Combinatorial Property in BQ. In order to optimize the calculation of the new
head after a batch is applied, each thread maintains three local counters: the quantities of Future-
Enqueue and FutureDequeue operations that have been called but not yet executed on the shared
queue, and the number of excess dequeues. The thread updates these counters on each of its future
operation calls. When a thread executes a batch operation, it includes its local counters in the
batch’s announcement, to allow any helping thread to complete the batch execution.

In addition, we let the shared queue’s head and tail contain not only a pointer, but also a successful
dequeue and enqueue counters respectively. When applying a batch, they are updated using the
announcement’s counts. The difference between the queue’s enqueue and dequeue counts prior
to a batch execution yields the queue’s size n in its "frozen" state right before linking the batch’s
items.

These counters in the batch’s announcement and in the head and tail are used to quickly calculate
the number of successful dequeues according to Corollary 5.5. This number helps discovering the
new head — by iterating over #success fulDequeues nodes, and avoids a heavier simulation of the
batch enqueues and dequeues one by one to discover the shape of the resulting shared queue.

Indeed, to determine the result of each future dequeue in the batch, the thread that initiated the
batch operation will need to simulate these future operations according to their order. Nevertheless,
it will conduct this simulation after the announcement is removed from the shared queue, without
delaying other threads that access the shared queue.

6 ALGORITHM DETAILS

We now turn to the details of the algorithm. In Section 6.1 we elaborate on the principal underlying
data structures, and in Subsection 6.2 we describe the algorithm. Memory management is covered
in Section 7.

6.1 Underlying Data Structures

Table 1 depicts the auxiliary data structures, out of which the Future structure is the only one
exposed to the user of the Queue object, while all others are internal to the queue’s implementation.

6.1.1 Queue. Similarly to MsQ, the shared queue is represented as a linked list of nodes in which
the first node is a dummy node, and all nodes thereafter contain the values in the queue in the
order they were enqueued. We maintain pointers to the first and last nodes of this list, denoted
SQHead and SQT ail respectively (which stand for Shared Queue’s Head and Tail).

Batch operations require the size of the queue for a fast calculation of the new head after applying
the batch’s operations. To this end, Queue maintains counters of the number of enqueues and the
number of successful dequeues applied so far. These are kept size-by-side with the tail and head
pointers respectively, and are updated atomically with the respective pointers using a double-width
CAS. This is implemented using a Pointer and Count object (PtrCnt, that can be atomically modified)
for the head and tail of the shared queue.

Batch operations that enqueue at least one item install an announcement in the head. SQHead
can either hold the aforesaid PtrCnt object with a pointer to the head of the queue, or a pointer to
an Ann object, described next. Therefore, SQHead is a Pointer and Count or Announcement object



Table 1. Underlying Data Structures

struct Future {result: Item*, isDone: Boolean}
struct Node {item: Item”, next: Node™}
struct BatchRequest {firstEnq: Node*,
lastEng: Node*,
engsNum: unsigned int,
degsNum: unsigned int,
excessDeqsNum: unsigned int}

struct PtrCnt {node: Node*,
cnt: unsigned int}
struct Ann {batchReq: BatchRequest,

oldHead: PtrCnt,
oldTail: PtrCnt}

union PtrCntOrAnn {ptrCnt: PtrCnt,
struct {tag: unsigned int,

ann: Ann*}}

struct FutureOp {type: {ENQ, DEQ},
future: Future*}

struct ThreadData {opsQueue: Queue of FutureOp,
engsHead: Node*,
engsTail: Node®,
engsNum: unsigned int,
degsNum: unsigned int,
excessDeqsNum: unsigned int}

(PtrCntOrAnn), which is a 16-byte union that may consist of either PtrCnt or an 8-byte tag and an
8-byte Ann pointer. Whenever it contains an Ann, the tag is set to 1. Otherwise, SQHead contains a
PtrCnt (the tag overlaps PtrCnt.node, whose least significant bit is 0 since it stores either NULL or
an aligned address).

For brevity, we will mostly avoid specific mention of the counter; however, when we refer to an
update of the head’s pointer, it means that the head’s counter is updated as well, and likewise for
the tail.

It is possible to avoid the double-width CAS in platforms that do not support such an operation.
This can be accomplished by replacing the PtrCnt object with a pointer to a node, replacing the
PtrCntOrAnn object with a pointer to either a node or an announcement (with a least significant
bit mark indicating the type of the pointed object), and have the Node object contain a counter.
We describe this variation of BQ in Section 10. Measurements demonstrate that it does not incur a
significant performance degradation.

Thread-Local Data. A threadData array holds local data for each thread. First, the pending opera-
tions details are kept, in the order they were called, in an operation queue opsQueue, implemented as
a simple local non-thread-safe queue. It contains FutureOp items. Second, the items of the pending
enqueue operations are kept in a linked list in the order they were enqueued by FutureEnqueue
calls. This list is referenced by engsHead and engsTail (with no dummy nodes here). Lastly, each
thread keeps record of the number of FutureEnqueue and FutureDequeue operations that have
been called but not yet applied, and the number of excess dequeues.

Each thread can access its local data in threadData using its thread ID as an index. In the
pseudo-code, threadData[threadld] is abbreviated to threadData for brevity.



6.1.2 Future. A Future contains a result, which holds the return value of the deferred operation
that generated the future (for dequeues only, as enqueue operations have no return value) and an
isDone Boolean value, which is true only if the deferred computation has been completed. When
isDone is false, the contents of result may be arbitrary.

6.1.3 BatchRequest. A BatchRequest is prepared by a thread that initiates a batch, and consists of
the details of the batch’s pending operations: firstEnqg and lastEnq are pointers to the first and
last nodes of a linked list containing the pending items to be enqueued; engsNum, deqgsNum, and

excessDeqsNum are, respectively, the numbers of enqueues, dequeues and excess dequeues in the
batch.

6.1.4 Announcement. An Ann object represents an announcement. It contains a BatchRequest
instance, with all the details required to execute the batch operation it stands for. Thus, any
operation that encounters an announcement may help the related batch operation complete before
proceeding with its own operation.

In addition to information regarding the batch of operations to execute, Ann includes oldHead,
the value of the head pointer (and dequeue counter) before the announcement was installed, and
oldTail, an entry for the tail pointer (and enqueue counter) of the queue right before the batch is
applied (i.e., a pointer to the node to which the batch’s list of items is linked).

6.2 Algorithm Implementation

We detail the algorithm implementation, accompanied by pseudo-code. First we describe the core
operations, performed on the shared queue. Then we outline the enclosing methods, which call the
core methods and carry out complementary local computations. Finally we refer to the special case
of a dequeues-only batch operation.

6.2.1 Internal Methods Operating on the Shared Queue. The following methods are used internally
to apply operations to the shared queue: EnqueueToShared, DequeueFromShared and Execute-
Batch. To help a concurrent batch execution and obtain the new head, they call the HelpAnn-
AndGetHead auxiliary method. To carry out a batch, the ExecuteAnn auxiliary method is called.
Its caller may be either the batch’s initiating thread, or a helping thread that encountered an
announcement when trying to execute its own operation.

Let us elaborate on each of these methods.

EnqueueToShared. EnqueueToShared appends an item after the tail of the shared queue, using
two CAS operations, in a similar manner to MsQ’s Enqueue: it first updates SQT ail.node->next to
point to a node consisting of the new item, and then updates SQTail to point to this node. An
obstructing operation might enqueue its items concurrently, causing the first CAS (in Line 5) to
fail. In this case, EnqueueToShared would try to help complete the obstructing operation, before
starting a new attempt to enqueue its own item. This assistance is performed in Lines 9-13. Herein
lies the distinction between EnqueueToShared in BQ and Enqueue in MsQ: In MsQ, the first CAS
might fail only due to an obstructing enqueue operation, and thus only the equivalent to Line 13
of BQ is executed. In BQ, on the other hand, the obstructing operation may be either a standard
enqueue operation or a batch operation.

Listing 1. EnqueueToShared

1 EnqueueToShared (item)

2 newNode = new Node(item, NULL)
3 while (true)

4 tailAndCnt = SQTail



5 if (CAS(&tailAndCnt.node->next, NULL, newNode))

6 // newNode is linked to the tail

7 CAS(&SQTail, tailAndCnt, (newNode, tailAndCnt.cnt + 1))

8 break

9 head = SQHead

10 if head consists of Ann: // (head.tag & 1 != 0)

11 ExecuteAnn(head.ann)

12 else

13 CAS(&SQTail, tailAndCnt, (tailAndCnt.node->next, tailAndCnt.cnt + 1))

DequeueFromShared. If the queue is not empty when the dequeue operation takes effect, Dequeue-
FromShared extracts an item from the head of the shared queue and returns it; otherwise it returns
NULL. The only addition to the MsQ’s Dequeue is helping pending batch operations complete first
by calling the HelpAnnAndGetHead method.

Listing 2. DequeueFromShared

14 Item* DequeueFromShared()
15 while (true)

16 headAndCnt = HelpAnnAndGetHead ()

17 headNextNode = headAndCnt.node->next

18 if (headNextNode == NULL)

19 return NULL

20 if (CAS(&SQHead, headAndCnt, (headNextNode, headAndCnt.cnt + 1)))
21 return headNextNode->item

HelpAnnAndGetHead. This auxiliary method assists announcements in execution, as long as
there is an announcement installed in SQHead.

Listing 3. HelpAnnAndGetHead

22 PtrCnt HelpAnnAndGetHead()
23 while (true)

24 head = SQHead

25 if head consists of PtrCnt: // (head.tag & 1 == 0)
26 return head.ptrCnt

27 ExecuteAnn(head.ann)

ExecuteBatch. ExecuteBatch is responsible for executing the batch. Before it starts doing so, it
checks whether there is a colliding ongoing batch operation whose announcement is installed in
SQHead. If so, ExecuteBatch helps it complete (Line 31). Afterwards, it stores the current head in
ann (Line 32), installs ann in SQHead (Line 33) and calls ExecuteAnn to carry out the batch. The
batch execution’s steps are illustrated in Figure 1.

Listing 4. ExecuteBatch

28 Nodex ExecuteBatch(batchRequest)
29 ann = new Ann(batchRequest)
30 while (true)

31 oldHeadAndCnt = HelpAnnAndGetHead()
32 ann->o0ldHead = oldHeadAndCnt // Step 1 in Figure 1
33 if (CAS(&SQHead, oldHeadAndCnt, ann)) // Step 2 in Figure 1

34 break



35 ExecuteAnn(ann)
36 return oldHeadAndCnt.node

ExecuteAnn. ExecuteAnn is called with ann after ann has been installed in SQHead. ann’s
oldHead field consists of the value of SQHead right before ann’s installation. ExecuteAnn car-
ries out anns’s batch. If any of the execution steps has already been executed by another thread,
ExecuteAnn moves on to the next step. Specifically, if ann will have been removed from SQHead
by the time ExecuteAnn is executed, ann’s execution will have been completed, and all the steps of
this run of ExecuteAnn would fail and have no effect.

ExecuteAnn first makes sure that ann’s enqueued items are linked to the queue, in the while
loop in Line 39. If they have already been linked to the queue, and the old tail after which they
were linked has also been recorded in ann, it follows that another thread has completed the linking,
and thus we break out of the loop in Line 43. Otherwise, we try to link the items by performing a
CAS operation on the next pointer of the node pointed to by the tail in Line 44. In Line 45 we check
whether the items were linked after tail, regardless of which thread linked them. If so, we record
tail, to which the items were linked, in ann. Otherwise, we try to help the obstructing enqueue
operation complete in Line 50, and start over with a new attempt to link the batch’s items.

The next step is SQTail’s update in Line 52. There is no need to retry it, since it fails only
if another thread has written the same value on behalf of the same batch operation. Lastly, we
call UpdateHead to update SQHead to point to the last node dequeued by the batch. This update
uninstalls the announcement and completes its handling.

The UpdateHead method calculates success fulDeqgsNum as described in Corollary 5.5. It then
determines the new head according to the following optimization: If the number of the batch’s

|
ann SQHead sQail m SQHead sQTail

el | I | ) !
oldHea
oldTail R N 4’| I | oldTail |, N 4,| It
Step 1 I Step 2
SQHead ‘ SQHead
\ ann sQTail ‘ ann sQTail
Ny batchReq | - ‘ \‘ batchReq
oldHead- ~a oldHead "
: 1
oldTail BN _— [“I-\ —> —>| | ! ldnall —> 1 > [ 4" It
|
Step 3 | Step 4
SQHead SQHead

|
\ ann o SQTail k‘ ann sQTail
batchReq _— T \ batchReq _— —
oldHead —~ & \\g ‘ oldHead —— a i
oldTail oldTail
== —> — —> — 4>| | | — — — — 4>| 1l
Step 5 | Step 6

Fig. 1. Steps of the Batch Execution

(1) Setting ann->oldHead to the head of the queue right before the batch.

(2) Installing ann in SQHead.

(3) Linking the batch’s items to SQT ail.node->next.

(4) Setting oldTail field in the installed announcement ann.

(5) Advancing SQTail to point to the last node enqueued by the batch operation (and increasing its
enqueue count by the number of enqueues).

(6) Setting SQHead to point to the last node dequeued by the batch operation in place of ann (and

increasing its dequeue count by the number of successful dequeues).



successful dequeues is at least the size of the queue before applying the batch, which implies
that the new dummy node is one of the batch’s enqueued nodes, the new head is determined by
passing over success fulDeqsNum — oldQueueSize nodes, starting with the node pointed to by the
old tail. Otherwise, it is determined by passing over success fulDeqsNum nodes, starting with the
old dummy node. Finally, UpdateHead updates SQHead (and as in SQTail’s update, there is no
need to retry the CAS).

Listing 5. ExecuteAnn

37 ExecuteAnn(ann)
38 // Link items to tail and update ann
39 while (true)

40 tailAndCnt = SQTail

41 ann0ldTailAndCnt = ann->oldTail

42 if (ann0ldTailAndCnt.node !'= NULL)

43 break

44 CAS (&tailAndCnt.node->next, NULL, ann->batchReq.firstEnq) // Step 3 in Figure 1

45 if (tailAndCnt.node->next == ann->batchReq.firstEnq)

46 // Step 4 in Figure 1:

47 ann->o0ldTail = ann0ldTailAndCnt = tailAndCnt

48 break

49 else

50 CAS(&SQTail, tailAndCnt, (tailAndCnt.node->next, tailAndCnt.cnt + 1))

51 newTailAndCnt = (ann->batchReq.lastEng, ann0ldTailAndCnt.cnt + ann->batchReq.engsNum
)

52 CAS(&SQTail, ann0ldTailAndCnt, newTailAndCnt) // Step 5 in Figure 1
53 UpdateHead(ann)

54

s5 UpdateHead(ann)

56 oldQueueSize = ann->o0ldTail.cnt - ann->oldHead.cnt

57 successfulDeqsNum = ann->batchReq.degsNum

58 if (ann->batchReq.excessDeqsNum > oldQueueSize)

59 successfulDeqsNum -= ann->batchReq.excessDegsNum - oldQueueSize

60 if (successfulDeqsNum == 0)

61 CAS (&SQHead, ann, ann->oldHead) // Step 6 in Figure 1

62 return

63 if (oldQueueSize > successfulDeqsNum)

64 newHeadNode = GetNthNode(ann->oldHead.node, successfulDeqsNum)

65 else

66 newHeadNode = GetNthNode(ann->o0ldTail.node, successfulDeqsNum - oldQueueSize)

67 CAS(&SQHead, ann, (newHeadNode, ann->oldHead.cnt + successfulDeqsNum)) // Step 6 in
Figure 1

69 Nodex GetNthNode(node, n)

70 repeat n times:
71 node = node->next
72 return node

6.2.2 Interface Methods. The queue’s interface methods exposed to the user are Enqueue, Dequeue,
FutureEnqueue, FutureDequeue and Evaluate. These methods wrap the methods that access the
shared queue, which are detailed in Subsection 6.2.1. After describing them, we will elaborate on



the PairFuturesWithResults auxiliary method, which is called by Evaluate, and locally sets the
futures’ results to complete the batch operation.

Enqueue. Enqueue checks whether the thread-local operation queue opsQueue is empty. If it is,
it directly calls EnqueueT oShared. Otherwise, to satisfy EMF-linearizability, the pending operations
in opsQueue must be applied before the current Enqueue is applied. Hence, Enqueue calls Future-
Enqueue with the required item, which in turn returns a future. It then calls Evaluate with that
future. This results in applying all preceding pending operations, as well as applying the current
operation.

Listing 6. Enqueue

73 Enqueue(item)
74 if (threadData.opsQueue.Empty())

75 EnqueueToShared(item)
76 else
77 Evaluate(FutureEnqueue(item))

Dequeue. The implementation of Dequeue is similar to the one of Enqueue. If Dequeue succeeds,
it returns the dequeued item, otherwise (the queue is empty when the operation takes effect) it
returns NULL.

Listing 7. Dequeue

78 Itemx Dequeue()
79 if (threadData.opsQueue.Empty())

80 return DequeueFromShared()
81 else
82 return Evaluate(FutureDequeue())

FutureEnqueue. FutureEnqueue adds the item to be enqueued to thread’s list of items pending to
be enqueued. This list will be appended directly to the end of the shared queue’s list of nodes when a
batch operation is executed by this thread. This is the reason why these items are stored in a linked
list of nodes rather than directly in opsQueue. FutureEnqueue also updates the local numbers of
pending enqueue operations. In addition, FutureEnqueue enqueues a FutureOp object representing
an enqueue operation to the thread’s opsQueue. A pointer to the Future object encapsulated in
the created FutureOp will be returned by the method, so that the caller could later pass it to the
Evaluate method.

Listing 8. FutureEnqueue

83 Futurex FutureEnqueue(item)

84 AddToEnqgsList(item)

85 ++threadData.enqsNum

86 return RecordOpAndGetFuture(ENQ)
87

88 AddToEngsList(item)

89 node = new Node(item, NULL)

90 if (threadData.engsHead == NULL)

91 threadData.enqsHead = node
92 else
93 threadData.enqsTail->next = node

94 threadData.enqsTail = node



96¢ Futurex RecordOpAndGetFuture(futureOpType)

97 future = new Future()
98 threadData.opsQueue.Enqueue ({futureOpType, future))
99 return future

FutureDequeue. FutureDequeue updates the local numbers of pending dequeue operations and
excess dequeues. The latter is calculated based on Lemma 5.3. FutureDequeue then enqueues a
FutureOp object representing a dequeue operation to the thread’s opsQueue. Like FutureEnqueue,
FutureDequeue returns a pointer to a Future object.

Listing 9. FutureDequeue

100 Futurex FutureDequeue()

101 ++threadData.deqsNum

102 threadData.excessDeqsNum = max(threadData.excessDeqsNum, threadData.degsNum -
threadData.enqgsNum)

103 return RecordOpAndGetFuture(DEQ)

Evaluate. Evaluate receives a future and ensures it is applied when the method returns. Notice
that a future may be evaluated by its creator thread only.

If the future has already been applied from the outset, its result is immediately returned. Other-
wise, all locally-pending operations found in thread Data.opsQueue are applied to the shared queue
at once. After the batch operation’s execution completes, while new operations may be applied to
the shared queue by other threads, the batch operation results are paired to the appropriate futures
of operations in opsQueue.

If opsQueue consists of at least one enqueue operation, the batch operation’s execution and the
results-to-futures pairing are accomplished by calling ExecuteBatch and Pair FuturesWithResults
(described next) respectively. If all pending operations are dequeues, we pursue a different course
of action, on which we elaborate in Subsection 6.2.3.

Listing 10. Evaluate

104 Item*x Evaluate(future)

105 if (!future->isDone)

106 ExecuteAllPending()

107 return future->result

108

109 ExecuteAllPending()

110 if (threadData.engsNum == 0)

111 // No enqueues. Execute a dequeues-only batch

112 (successDeqsNum, oldHeadNode) = ExecuteDeqsBatch()
113 PairDeqFuturesWithResults(oldHeadNode, successDeqNum)
114 else

115 // Execute a batch operation with at least one eng
116 oldHeadNode = ExecuteBatch(

117 (threadData.enqsHead,

118 threadData.enqgsTail,

119 threadData.enqgsNum,

120 threadData.deqsNum,

121 threadData.excessDeqsNum))

122 PairFuturesWithResults(oldHeadNode)



123 threadData.enqsHead = NULL

124 threadData.enqsTail = NULL
125 threadData.engsNum = 0

126 threadData.deqsNum = 0

127 threadData.excessDeqsNum = 0

PairFuturesWithResults. PairFuturesWithResults receives the old head. It simulates the pend-
ing operations one by one according to their original order, which is recorded in the thread’s
opsQueue. Namely, it simulates updates of the head and tail of the shared queue. This is done by
advancing nextEngNode (which represents the value of tail->next in the current moment of the
simulation) on each enqueue, and by advancing currentHead on dequeues that occur when the
queue in its current state is not empty. The simulation is run in order to set results for future objects
related to the pending operations and mark them as done.

Listing 11. PairFuturesWithResults

128 PairFuturesWithResults(oldHeadNode)

129 nextEngNode = threadData.enqgsHead

130 currentHead = oldHeadNode

131 noMoreSuccessfulDeqs = false

132 while threadData.opsQueue is not empty:

133 op = threadData.opsQueue.Dequeue()

134 if (op.type == ENQ)

135 nextEngNode = nextEngNode->next

136 else // op.type == DEQ

137 if (noMoreSuccessfulDeqgs ||

138 currentHead->next == nextEngNode)

139 // The queue is currently empty

140 op.future->result = NULL

141 else

142 currentHead = currentHead->next

143 if (currentHead == threadData.enqgsTail)
144 noMoreSuccessfulDeqs = true

145 op.future->result = currentHead->item
146 op.future->isDone = true

6.2.3 Dequeues-Only Batch. The batch execution scheme outlined in Subsection 5.1 and detailed
in Subsection 6.2.1 does not work if the batch operation consists solely of dequeue operations.
In such scenario, the Evaluate method calls ExecuteDeqgsBatch to apply the batch operation. The
ExecuteDegsBatch method first assists a colliding ongoing batch operation if there is any (in
Line 149). It then calculates the new head and the number of successful dequeues by traversing
over the items to be dequeued in the loop in Line 152. If there is at least one successful dequeue, the
dequeues take effect at once using a single CAS operation in Line 160. The CAS pushes the shared
queue’s head success fulDeqsNum nodes forward.

Then Evaluate calls PairDeqFuturesWithResults to pair the successfully-dequeued-items to
futures of the appropriate operations in opsQueue. The remaining future dequeues are unsuccessful,
thus their results are set to NULL.

Listing 12. ExecuteDeqsBatch

147 {(unsigned int, Nodex) ExecuteDeqsBatch()
148 while (true)



149 oldHeadAndCnt = HelpAnnAndGetHead()

150 newHeadNode = oldHeadAndCnt.node

151 successfulDeqsNum = 0

152 repeat threadData.deqsNum times:

153 headNextNode = newHeadNode->next

154 if (headNextNode == NULL)

155 break

156 ++successfulDeqsNum

157 newHeadNode = headNextNode

158 if (successfulDegsNum == 0)

159 break

160 if (CAS(&SQHead, oldHeadAndCnt, (newHeadNode, oldHeadAndCnt.cnt +
successfulDeqsNum)))

161 break

162 return (successfulDeqsNum, oldHeadAndCnt.node)

Listing 13. PairDeqFuturesWithResults

1

o

3 PairDeqFuturesWithResults(oldHeadNode, successfulDeqsNum)

164 currentHead = oldHeadNode

165 repeat successfulDeqsNum times:

166 currentHead = currentHead->next

167 op = threadData.opsQueue.Dequeue()

168 op.future->result = currentHead->item

169 op.future->isDone = true

170 repeat threadData.deqsNum - successfulDeqsNum times:
171 op = threadData.opsQueue.Dequeue()

172 op.future->result = NULL

173 op.future->isDone = true

7 MEMORY MANAGEMENT

We utilized the optimistic access scheme [2], which extends the hazard pointers scheme [21], as
a lock-free manual memory management mechanism for BQ. All measurements include use of
memory reclamation.

We describe memory management of lock-free data structures in general in Subsection 7.1, and
explain the optimistic access mechanism. Then, we describe how this mechanism is utilized in BQ
in Subsection 7.2.

7.1 Lock-Free Manual Memory Management

A lock-free data structure requires a delicate memory reclamation mechanism. Such mechanism
should prevent two risks posed by reclamation: an access to shared memory that has been freed
by another thread, and the ABA problem (comparing a pointer to an expected value that has
been recycled). No efficient lock-free automatic garbage collector exists in literature. Therefore, to
manage memory of lock-free data structures in a lock-free fashion, one should employ a manual
memory management scheme. In such schemes, an object that is part of the shared data structure
is reclaimed in coordination between the data structure’s algorithm and the reclamation procedure:
First, the algorithm unlinks the object from the data structure. Next, to declare that the object
is no longer needed, the algorithm announces it as retired. This implies that the object should
be reclaimed when with certainty no one might access it or compare its address anymore. A
reclamation procedure runs periodically or when there is not enough free memory space, and



reclaims the nodes that were announced as retired so far and are guaranteed not be accessed
or compared later. Each manual memory management scheme dictates a different approach to
determine which retired nodes are safe to reclaim.

The lock-free memory management scheme we utilize in our measured implementations of BQ,
MsQ and Kogan and Herlihy’s queue is optimistic access [2]. It employs hazard pointers [21] for
write operations. In the hazard pointers method, each thread owns single-writer multi-reader shared
pointers called hazard pointers. A thread assigns hazard pointers indicating memory locations it
might later access or compare, in order to protect them from reclamation. This scheme considers a
retired node as safe to reclaim if no hazard pointer points to it.

Read operations are performed in the optimistic access method without installing hazard pointers
and setting memory fences: A read operation first reads the data without a prior check, and only
then verifies that the read memory location has not been reclaimed. The verification will mostly
succeed, but when it does not, the operation should be restarted as it might have read reclaimed
memory. To enable reading a possibly deallocated address without triggering a segmentation fault,
the algorithm utilizes a user-level allocator. This allocator maintains a pool of objects and does not
return pages back to the operating system.

A verification is carried out in both read and write operations: in read operations, after reading
a value we verify its memory has not been reclaimed; in write operations, after setting a hazard
pointer to an address we verify this address is still safe to use. The verification in optimistic access
is performed by confirming that a thread-local flag is not set: To signal that a reclamation phase
has started and every object retired so far might be recycled, optimistic access maintains a local
warning flag per thread. This flag is set during the reclamation process.

7.2 Applying the Optimistic Access Scheme to BQ

We adapted the optimistic access scheme presented in [2] to our needs. To begin with, we extended
it to support both requisite objects (Node and Ann). For additional details about the adjustment of
the original optimistic access mechanism to BQ, refer to Subsection 7.2.1.

When applying memory management to BQ, we had to make sure that a dequeued item is
read before it is retired, so that it could be returned to its dequeuer. This requires some delicate
manipulations, described in Subsection 7.2.2 under Retirements.

We also made some optimizations upon the conservative optimistic access usage scheme. In
writes to shared locations, we assign hazard pointers only to relevant addresses that might be
retired and not to all related addressed. Moreover, we do not use a CAS where it is not necessary in
contrast to the specification of the original scheme. We further explain about write optimizations
in Subsection 7.2.2 under Writes.

We apply another optimization when finding out, during a batch operation’s execution, that a
warning flag is set. In such cases we refrain from starting the execution from scratch, and instead
perform an additional check to determine if we may proceed. See details in Subsection 7.2.2 in the
part that discusses avoiding batch execution restart.

Next we elaborate further on the adjustment of the optimistic access mechanism to BQ and its
usage throughout BQ’s algorithm.

7.2.1 Adjusting the Optimistic Access Mechanism. We utilize the optimistic access mechanism
described in Section 4 in [2], and extend it to handle two object sizes - Node’s size and Ann’s
size. We call MM.Retire to trigger the mechanism’s Reclaim function, and MM.AllocateNode and
MM.AllocateAnn to trigger its Allocate function for the appropriate object size.

BQ’s ThreadData entry held by each thread is extended to include the memory management
related data: a warning Boolean flag as well as hazard pointers (nodeHp and annHp).



7.2.2  Adjusting BQ’s Code. We cover the necessary modifications that must be applied to alloca-
tions, retirements, writes and reads from the shared memory in BQ. The code modifications are
presented thereafter.

Allocations. Objects are allocated by a user-level allocator. It allocates a node for a standard
enqueue operation in Line 175, and for a future enqueue operation in Line 377. An announcement
object is allocated in Line 237.

Retirements. An announcement is retired in Line 253 by the same method that created it. Nodes
could be retired in several occasions, depending on the way they are dequeued: A node dequeued by
a single dequeue operation is retired in Line 219 right after advancing the queue’s head to the next
node. A node dequeued by a batch operation is retired when traversing it during the pairing process
of the batch’s applied future operations with results (in Line 435 in case of a batch that includes
both enqueues and dequeues; or in Lines 453 and 457 for nodes dequeued by a dequeues-only batch
operation).

Retiring nodes should be done carefully to ensure retrieving a dequeued item prior to the recycling
of its enclosing node. Next, we describe the difficulties in achieving this goal and then detail how
we accomplish it.

Recall that the queue’s head points to a dummy node. Consequently, each node’s matching item
lies in its successor node. Let A be an address of a node pointed to by the head, and let newHead
equal A->next, which is a pointer to A’s successor. A is dequeued by setting the head to newHead,
retiring A and returning newHead->item as the dequeued item. This dequeue operation, which
returns newHead->item, is not the same one that retires newHead. We should make sure to read
newHead->item when newHead is still certainly not retired. Otherwise (i.e., if another dequeue
or batch operation retire newHead beforehand), then the node pointed to by newHead may be
recycled, in which case the dequeuing thread might not be able to get a hold of its dequeued item.

In a single dequeue operation, we make sure to read the item prior to its recycling by reading
newHead->item before applying a CAS to the queue’s head. If we read newHead->item and then
successfully CAS the head, we know for certain that when we read newHead->item, newHead has
not yet been retired: a node is retired only during the execution of its dequeuing by a dequeue or
a future dequeue operation, and the node pointed to by newHead could not have been dequeued
before the CAS of head from A to newHead succeeded.

Accomplishing the goal of retrieving an item dequeued by a future operation prior to its recycling
is more tricky. The reason is that during a batch execution, we do not read all dequeued items
before applying a CAS to the queues’ head, because we aim to minimize the synchronization time.
Thus, only after CASing the head to complete the batch’s effect on the shared queue, does the thread
that initiated the batch pair its applied futures with results locally. During the pairing process, the
initiating thread traverses its successfully-dequeued nodes, reads their corresponding items and
retires them. Reading all dequeued items but the last one can be easily performed before retiring the
nodes that contain them, as the initiating thread is the one responsible for their retirement. We read
the items’ values in Lines 443 and 455 of PairFuturesWithResults and PairDeqFuturesWithResults
methods respectively, before retiring the node that holds them in the next loop iteration in Line 435
of PairFuturesWithResults and Lines 453 and 457 of PairDeqFuturesWithResults.

The last dequeued item is problematic: It lies in the node that is pointed by the head after the
batch execution. This node is retired by the thread that performs the subsequent dequeue or batch
operation. This might not be our batch’s initiator, but rather another thread.

Therefore, like in a single dequeue operation, the thread that executes the batch operation should
read the last dequeued item before performing a CAS of the head, since after this CAS occurs, the
node that holds the last dequeued item might be recycled. The remaining question is how this read



value is later paired with the appropriate future. The answer depends on the kind of batch that the
future dequeue is a part of.

Let us examine a dequeues-only batch first. It requires a single modification to the shared queue’s
state: a CAS of the head. Therefore, no helping is involved in its execution. The batch’s initiator
is the only one to apply it to the shared queue, and then match the futures with the results. It
reads the last dequeued item, which lies in the node that is about to be pointed to by the new head,
in Line 279. Just like in a single dequeue operation, the item is read before applying a CAS to the
queue’s head, which enables a recycling of the node that holds this item. Then, as the initiating
thread is also the one to pair the batch’s futures with results, it simply sets the future’s result of the
last successful dequeue to this read value in Line 459.

The case of a batch operation that contains both dequeues and enqueues is more complicated,
because the thread that initiates such batch operation is the one responsible for pairing its futures
with results, but the batch execution itself may be carried out by a helping thread. The thread that
executes the batch operation should read the last dequeued item before performing the CAS that
uninstalls the announcement from the head, and inform the initiating thread of this item. This is
mandatory since after the CAS of the head, by the time the future of the last successful dequeue is
paired with the appropriate item, the node that holds this item might have already been recycled.
To inform the initiating thread about the read item, the thread that executes the batch should keep
it in some shared location. We chose to place it in the node that was pointed to by the queue’s
head prior to the current announcement’s installation. This node is under the responsibility of
the batch’s initiator who should retire it, thus no one else relies on its content (due to the same
arguments). The last dequeued item is read in Line 344 and placed in the node pointed to by the old
head in Line 348 (after verifying that the item was read before its node was possibly changed by a
subsequent batch operation or retired). Later, the future of the last successful dequeue is paired
with this item in Line 446 of Listing 25.

The batch’s applied futures are paired with results by the thread that initiated the batch (in
Method PairFuturesWithResults in Listing 25). However, this thread has not necessarily carried
out the batch on its own, so it might not know which item is the last to be successfully dequeued
from the queue. Therefore, when it traverses over the batch’s operations and pairs them with
results, it does not know if a current successful dequeue is the last successful one and its item was
stored in the node pointed to by the old head, or it is not the last and its item lies in the next node.
To circumvent this problem, on each successful dequeue the initiator encounters, it sets the result
of the previous successful dequeue, which is now revealed not to be the last. When the traversal is
over, the last successful future dequeue is revealed, and its result is set to the item that was stored
in the node pointed to by the old head node in advance.

Writes. Before each write to a shared location, we set a hazard pointer to the hazardous reference,
apply a memory fence to ensure the hazard pointer is visible to all threads, and check the warning
flag to verify we may proceed.

The original optimistic access paper described a conservative approach to protect writes to
shared locations: writing only using a CAS, and setting hazard pointers to all associated pointers
(the location that is about to be written, its expected value and the new value). However, in most
writes, optimizations may apply, and so we avoid any of these hazard pointers where they are not
required, as well as refrain from using an avoidable CAS.

One kind of writes we guard is to long-lasting shared locations: the shared queue’s current head
and tail pointers. This kind of write carries the risk of the ABA problem, in case the CAS’s expected
value is recycled. Hence we install a hazard pointer to the expected pointer value of head before
performing a CAS of the shared queue’s head (in Lines 207, 241 and 258, where head’s previous



value is a pointer to a node, and in Lines 192 and 228, where its previous value is a pointer to an
announcement) and similarly for tail (in Lines 179, 293 and 301). The location to which we write is
not subjected to an access hazard, since it is not freed during the whole run.

On the other hand, an access to a short-lasting shared object (a node or an announcement) is
subjected to an access hazard. For this type of writes, we install a hazard pointer to the target
object’s address prior to the access, to prevent recycling of the target object. We guard a tail pointer
before the next field of the node it points to is updated when linking new nodes (in Lines 179
and 301). A node to which we wish to write a batch’s last dequeued item is guarded first (in Line 330).
Likewise, an announcement object is protected before its batch execution, which involves setting
its oldT il field (in Lines 192 and 228).

The two kinds of writes we described sometimes overlap. In such cases, an installation of a
certain hazard pointer serves as a safeguard against both potential problems.

Reads. Reads are treated differently: After reading a node’s next pointer, we set a compiler fence
to prevent compiler reordering. We then check the warning flag to verify the node has not been
recycled, and thus the address we read is valid. This occurs when traversing over the nodes to be
dequeued for finding the new head after a batch operation (in Lines 269 and 356).

Avoid batch execution restart. We apply the following optimization throughout the execution of a
batch in Method ExecuteAnn (Listing 19): If we test the warning flag and find it set, then according
to the optimistic access scheme guidelines we should unset it and restart the operation. Restarting
in the current stage of execution would mean to reread the queue’s head value, and if it contains
an announcement, start its execution from the beginning.

Instead of restarting, when discovering that our warning flag is set, we check whether the
announcement we hold is still installed in the queue’s head. If not, the batch execution has anyhow
been completed by another thread, so we may immediately return. Otherwise, we may proceed
with the batch execution: When we find the warning set in Line 356 after reading node->next, the
still-installed announcement implies that when we read the next pointer it has not been retired,
because it is located in a later node in the queue that cannot be retired as long as the announcement
is installed. Similarly, we might find the warning set after assigning a hazard pointer to the node
that was pointed to by the head or tail prior to the batch execution. In such case, the still-installed
announcement implies that when we set the hazard pointer, the node pointed to by the old head or
tail has not been retired.

The modified code. The additions to the algorithm presented in Section 6 are colored in red in the
following code snippets.
We begin with the implementation of the internal methods operating on the shared queue.

Listing 14. EnqueueToShared

174 EnqueueToShared (item)
175 node = MM.AllocateNode()

176 node.item = item; node.next = NULL

177 while (true)

178 tailAndCnt = SQTail

179 threadData.nodeHp = tailAndCnt.node
180 _memoryFence

181 if (threadData.warning)

182 threadData.warning = false

183 threadData.nodeHp = NULL

184 continue



185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

201
202
203

if (CAS(&tailAndCnt.node->next, NULL, node))
// Linked node to tail
CAS(&SQTail, tailAndCnt, (node, tailAndCnt.cnt+1))
break
head = SQHead
if head consists of Ann: // (head.tag & 1 != 0)
threadData.nodeHp = NULL
threadData.annHp = head.ann
_memoryFence
if (threadData.warning)
threadData.warning = false
threadData.annHp = NULL
continue
ExecuteAnn(head.ann)
threadData.annHp = NULL
else
CAS(&SQTail, tailAndCnt, (tailAndCnt.node->next, tailAndCnt.cnt+1))
threadData.nodeHp = NULL
threadData.nodeHp = NULL

Listing 15. DequeueFromShared

204 Itemx DequeueFromShared()

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

while (true)

headAndCnt = HelpAnnAndGetHead()

threadData.nodeHp = headAndCnt.node

_memoryFence

if (threadData.warning)
threadData.warning = false
goto cleanup

headNextNode = headAndCnt.node->next

if (headNextNode == NULL)
threadData.nodeHp = NULL
return NULL

dequeuedItem = headNextNode->item

if (CAS(&SQHead, headAndCnt, (headNextNode, headAndCnt.cnt+1)))
threadData.nodeHp = NULL
MM.Retire(headAndCnt.node)
return dequeuedItem

cleanup:

threadData.nodeHp = NULL

Listing 16. HelpAnnAndGetHead

223 PtrCnt HelpAnnAndGetHead ()

224
225
226
227
228
229
230
231

while (true)

head = SQHead

if head consists of PtrCnt: // (head.tag & 1 == 0)
return head.ptrCnt

threadData.annHp = head.ann

_memoryFence

if (threadData.warning)
threadData.warning = false



232 threadData.annHp = NULL

233 continue
234 ExecuteAnn(head.ann)
235 threadData.annHp = NULL

Listing 17. ExecuteBatch

236 Nodex ExecuteBatch(batchRequest)
237 ann = MM.AllocateAnn()

238 ann->batchReq = batchRequest
239 while (true)

240 oldHeadAndCnt = HelpAnnAndGetHead()

241 threadData.nodeHp = oldHeadAndCnt.node

242 _memoryFence

243 if (threadData.warning)

244 threadData.warning = false

245 goto cleanup

246 ann->oldHead = oldHeadAndCnt // Step 1 in Figure 1
247 if (CAS(&SQHead, oldHeadAndCnt, ann)) // Step 2 in Figure 1
248 break

249 cleanup:

250 threadData.nodeHp = NULL

251 threadData.nodeHp = NULL

252 ExecuteAnn(ann)

253 MM.Retire(ann)
254 return oldHeadAndCnt.node

Listing 18. ExecuteDeqgsBatch

255 {unsigned int, Nodex, Itemx) ExecuteDeqsBatch()
256 while (true)

257 oldHeadAndCnt = HelpAnnAndGetHead()
258 threadData.nodeHp = oldHeadAndCnt.node
259 _memoryFence

260 if (threadData.warning)

261 threadData.warning = false

262 goto cleanup

263 newHeadNode = oldHeadAndCnt.node

264 successfulDeqsNum = 0

265 // Calculate new head and successful dequeues num:
266 repeat threadData.deqsNum times:

267 headNextNode = newHeadNode->next
268 _compilerFence

269 if (threadData.warning)

270 threadData.warning = false

271 goto cleanup

272 if (headNextNode == NULL)

273 break

274 ++successfulDeqsNum

275 newHeadNode = headNextNode

276 if (successfulDegsNum == 0)

277 lastDeqItem = NULL

278 break



279
280

281
282
283
284
285

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

318
319
320
321
322
323
324
325

lastDeqItem = newHeadNode->item
if (CAS(&SQHead, oldHeadAndCnt, (newHeadNode, oldHeadAndCnt.cnt +
successfulDeqsNum)))
break
cleanup:
threadData.nodeHp = NULL
threadData.nodeHp = NULL
return (successfulDeqsNum, oldHeadAndCnt.node, lastDeqItem)

Listing 19. ExecuteAnn

// ann 1is assured not to be reclaimed during ExecuteAnn run
ExecuteAnn(ann)
// Link items to tail and update ann
while (true)
tailAndCnt = SQTail
ann0ldTailAndCnt = ann->oldTail
if (ann0ldTailAndCnt.node !'= NULL)
threadData.nodeHp = ann0ldTailAndCnt.node
_memoryFence
if (threadData.warning)
threadData.warning = false
if (SQHead != ann)
threadData.nodeHp = NULL
return
break
threadData.nodeHp = tailAndCnt.node
_memoryFence
if (threadData.warning)
threadData.warning = false
if (SQHead != ann)
threadData.nodeHp = NULL
return
CAS(&tailAndCnt.node->next, NULL, ann->batchReq.firstEnq) // Step 3 in Figure 1
if (tailAndCnt.node->next == ann->batchReq.firstEnq)
// Step 4 in Figure 1:
ann->o0ldTail = ann0ldTailAndCnt = tailAndCnt
_memoryFence
break
else
CAS(&SQTail, tailAndCnt, (tailAndCnt.node->next, tailAndCnt.cnt+1))
threadData.nodeHp = NULL
newTailAndCnt = (ann->batchReq.lastEng, ann0ldTailAndCnt.cnt + ann->batchReq.engsNum
)
CAS(&SQTail, annOldTailAndCnt, newTailAndCnt) // Step 5 in Figure 1
threadData.nodeHp = NULL
UpdateHead(ann)

UpdateHead(ann)
oldQueueSize = ann->o0ldTail.cnt - ann->oldHead.cnt
successfulDeqsNum = ann->batchReq.deqsNum
if (ann->batchReq.excessDeqsNum > oldQueueSize)



326 successfulDeqsNum -= ann->batchReq.excessDegsNum - oldQueueSize

327 if (successfulDegsNum == 0)

328 CAS(&SQHead, ann, ann->oldHead) // Step 6 in Figure 1

329 return

330 threadData.nodeHp = ann->oldHead.node

331 _memoryFence

332 if (threadData.warning)

333 threadData.warning = false

334 if (SQHead !'= ann)

335 threadData.nodeHp = NULL

336 return

337 if (oldQueueSize > successfulDeqsNum)

338 newHeadNode = GetNthNode(ann->oldHead.node, successfulDeqsNum, ann)
339 else

340 newHeadNode = GetNthNode(ann->o0ldTail.node, successfulDeqsNum - oldQueueSize, ann

)
341 if (newHeadNode == NULL)

342 threadData.nodeHp = NULL

343 return

344 lastDequeuedItem = newHeadNode->item

345 if (SQHead !'= ann)

346 threadData.nodeHp = NULL

347 return

348 ann->o0ldHead.node->item = lastDequeuedItem

349 threadData.nodeHp = NULL

350 CAS (&SQHead, ann, {(newHeadNode, ann->oldHead.cnt + successfulDeqsNum)) // Step 6 in
Figure 1

351

352 Nodex GetNthNode(node, n, ann)

353 repeat n times:

354 node = node->next

355 _compilerFence

356 if (threadData.warning)

357 threadData.warning = false
358 if (SQHead != ann)

359 return NULL

360 return node

Next we present the implementation of the queue’s interface methods.

Listing 20. Enqueue

361 Enqueue(item)
362 if (threadData.opsQueue.Empty())

363 EnqueueToShared (item)
364 else
365 Evaluate(FutureEnqueue(item))

Listing 21. Dequeue

366 Itemx Dequeue()
367 if (threadData.opsQueue.Empty())
368 return DequeueFromShared()



369 else
370 return Evaluate(FutureDequeue())

Listing 22. FutureEnqueue

371 Futurex FutureEnqueue(item)

372 AddToEngsList(item)

373 ++threadData.engsNum

374 return RecordOpAndGetFuture(ENQ)
375

376 AddToEnqsList(item)

377 node = MM.AllocateNode()

378 node.item = item; node.next = NULL
379 if (threadData.engsHead == NULL)

380 threadData.enqsHead = node

381 else

382 threadData.enqsTail->next = node

383 threadData.enqsTail = node
384
385 Futurex RecordOpAndGetFuture(futureOpType)

386 future = new Future()
387 threadData.opsQueue.Enqueue ({futureOpType, future))
388 return future

Listing 23. FutureDequeue

389 Futurex FutureDequeue()

390 ++threadData.deqsNum

391 threadData.excessDeqsNum = max(threadData.excessDeqsNum, threadData.deqsNum -
threadData.enqsNum)

392 return RecordOpAndGetFuture(DEQ)

Listing 24. Evaluate

393 Itemx Evaluate(future)

394 if (!future->isDone)
395 ExecuteAllPending()
396 return future->result

397
398 ExecuteAllPending()
399 if (threadData.enqsNum == 0)

400 // No enqueues. Execute a dequeues-only batch

401 (successfulDegsNum, oldHeadNode, lastDeqltem) = ExecuteDeqsBatch()
402 PairDeqFuturesWithResults(oldHeadNode, successfulDegNum, lastDeqItem)
403 else

404 // Execute a batch operation with at least one enq

405 oldHeadNode = ExecuteBatch(

406 (threadData.enqsHead,

407 threadData.enqgsTail,

408 threadData.enqgsNum,

409 threadData.deqsNum,

410 threadData.excessDeqsNum))

411 PairFutureswWithResults(oldHeadNode)



412
413
414
415
416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

447
448
449
450
451
452
453
454
455
456
457
458

threadData.enqsHead = NULL

threadData.enqsTail = NULL

threadData.engsNum = 0
threadData.deqsNum = 0
threadData.excessDeqsNum = 0

Listing 25. PairFuturesWithResults

PairFuturesWithResults(oldHeadNode)

nextEngNode = threadData.enqgsHead
currentHead = oldHeadNode
noMoreSuccessfulDeqs = false
shouldSetPrevDeqgResult = false
lastSuccessfulDegFuture = NULL
oldHeadItem = oldHeadNode->item
while threadData.opsQueue is not empty:
op = threadData.opsQueue.Dequeue()
if (op.type == ENQ)
nextEngNode = nextEngNode->next
else // op is DEQ
if (noMoreSuccessfulDeqs || currentHead->next == nextEngNode)
// The queue is currently empty
op.future->result = NULL
else
nodePrecedingDegNode = currentHead
currentHead = currentHead->next
MM.Retire(nodePrecedingDeqgNode)
if (currentHead == threadData.enqgsTail)
noMoreSuccessfulDeqs = true
if (shouldSetPrevDeqResult)
lastSuccessfulDeqFuture->result = lastSuccessfulDeqIltem
else
shouldSetPrevDeqResult = true
lastSuccessfulDeqFuture = op.future
lastSuccessfulDeqltem = currentHead->item
op.future->isDone = true
if (shouldSetPrevDeqResult)
lastSuccessfulDegFuture->result = oldHeadItem

Listing 26. PairDeqFuturesWithResults

PairDeqFuturesWithResults(oldHeadNode, successfulDeqsNum, lastDeqItem)

if (successfulDegsNum > 0)

currentHead = oldHeadNode

repeat successfulDeqsNum-1 times:
nodePrecedingDegNode = currentHead
currentHead = currentHead->next
MM.Retire(nodePrecedingDeqNode)
op = threadData.opsQueue.Dequeue()
op.future->result = currentHead->item
op.future->isDone = true

MM.Retire(currentHead)

op = threadData.opsQueue.Dequeue()



459 op.future->result = lastDeqIltem

460 op.future->isDone = true

461 repeat threadData.deqsNum-successfulDeqsNum times:
462 op = threadData.opsQueue.Dequeue()

463 op.future->result = NULL

464 op.future->isDone = true

8 CORRECTNESS

In this section we prove the correctness (i.e., linearizability) and progress guarantee (lock-freedom)
of BQ.

8.1 Linearizability Proof

To prove that BQ is linearizable, we first define in Section 8.1.1 a translation of an execution on BQ
to a linearization - a sequential execution on an abstract queue. The abstract queue is an imaginary
sequential FIFO queue on which the linearization’s operations are executed, and its state represents
the state of the queue in the original execution. By translation we refer to picking a linearization
point for each operation in the original execution, which is a moment during the operation’s
execution when it is applied to the abstract queue. From this translation, we derive in Section 8.1.2
the correspondence in every moment between the abstract queue’s state in the linearization and
BQ’s underlying list of nodes in the original execution. This correspondence helps to reason about
the state of the queue in each moment. In Section 8.1.3, we confirm that the results of operations
performed in an execution on BQ are the same as the results of applying these operations in their
linearization points to the abstract queue. This is what linearizability requires — that operating on
BQ is equivalent to a linearization, namely, a legal execution on a sequential FIFO queue. In addition,
we show in Section 8.1.4 that no operation is applied twice, in spite of concurrent assisting threads
attempting to execute the same operation, by proving that for each operation, a single linearization
point is reached (by any of the threads). For simplicity, we ignore the nodes’ memory reclamation
throughout our proof.

8.1.1 Linearization Points. We define linearization points for all operation types, starting with
single (non-batched) operations. A successful dequeue operation takes effect when it modifies the
head pointer (and counter). An unsuccessful dequeue operation is linearized when it reads the next
pointer of the dummy node (whose value is revealed to be NULL). An enqueue operation takes effect
when the next pointer of the last node in the underlying list is modified from NULL to point to a
new node.

We proceed to listing the linearization points of batch operations. All enqueues and dequeues
of a batch operation that enqueues at least one item take effect one after another when the next
pointer of the last node is modified from NULL to point to the first node of the batch. Note that this
is the only linearization step that may be carried out by a helping thread rather than the thread
that invoked the operation.

Regarding a batch operation that contains only dequeue operations, all dequeues of such batch
operation are linearized one after another, in the moment of reading the next pointer in Line 153
(of Method ExecuteDegsBatch in Listing 12) for the last time before ExecuteDegsBatch returns.
This reading ends the list traversal performed to calculate the new head, either due to encountering
the end of the list (as detected in Line 154), or due to completing a traversal of deqgsNum items.
The later advance of the head, which completes the dequeues batch, might intuitively seem like a
simpler linearization point, nevertheless it is not a correct linearization point in all cases. Consider
the following scenario: A thread T performs a dequeues-only batch. During the traversal over the



nodes to be dequeued, it encounters the end of the nodes list, after traversing less than deqgsNum
items. Then, another thread enqueues an item, before T advances the head to point to the last
dequeued node. In this scenario, the head modification by T cannot be considered the batch’s
linearization point, since it happens after the enqueue operation, while the batch operation does
not dequeue the new item. On the other hand, the moment in which T read the next pointer in
Line 153 for the last time occurred appropriately before the enqueue.

To satisty EMF-linearizability, the future history Hy, constructed from the original history H (as
described in Definition 3.1), should be MF-linearizable. Thus far, we defined linearization points
relating to H. We set the same linearization points in Hy: the linearization point in Hy is the same
as in H for a future operation call, and for a single operation call — we set the linearization point of
the appropriate future call to the same moment as the linearization of the single call in H. Note
that since the linearization points defined for single operations occur during their method calls in
H, they occur between the adequate future call’s invocation and Evaluate call’s response in Hy,
which complies with MF-linearizability.

8.1.2 The Abstract State of the Queue. From the above linearization point definitions, we derive
the abstract state of the queue (and in particular the abstract head), with respect to the shared
queue’s underlying list of nodes. The abstract state of the queue is the sequence of items contained
in the underlying list’s nodes, starting with the item in the second node (i.e., the node succeeding
the dummy node pointed to by the abstract head) if any, and ending with the node whose next
pointer is NULL. The queue is empty iff the next pointer of the node pointed to by the abstract head
is NULL. The tail pointer does not affect the state of the abstract queue.
The fine point is the definition of the abstract head of the queue:

e If no announcement is installed in SQHead, the abstract head is the same as SQHead.
There is one exception to this rule: a dequeues-only batch operation that succeeds to dequeue
at least one item!. Such operation modifies the abstract head: when it reads the next pointer
in Line 153 (of Method ExecuteDegsBatch in Listing 12) for the last time before Execute-
DegsBatch returns, the abstract head is set to point to the last node dequeued by this batch
operation. The pointer to this node is the value to which SQHead is set in Line 160 in the
same execution of ExecuteDeqgsBatch.

e If there is an announcement installed in SQHead, but the CAS that links its items to the tail
(in Line 44 in Listing 5) has not yet been performed successfully, then the abstract head
is the same as SQHead.ann->oldHead, which is in practice SQHead’s value prior to the
announcement’s installation. Thus, installing an announcement does not change the abstract
head.

e If there is an announcement installed in SQHead, and the CAS that links its items to the
tail has already succeeded, then the abstract head points to the node that is going to be
the dummy node after all enqueues and dequeues of the batch operation have taken effect.
SQHead is going to be set to the same value when the announcement is uninstalled. Thus,
removing an announcement does not change the abstract head.

Hence, when a batch operation is announced (i.e., SQHead is set to point to the related an-
nouncement), the abstract state of the queue does not change. It remains the sequence of items
currently contained in the nodes of the shared queue’s list, starting with the node succeeding the
node pointed to by the previous SQHead. The moment the CAS that links the batch’s enqueued
items to the tail (in Line 44 in Listing 5) succeeds, the abstract queue’s head is changed to point to
the node to which SQHead will point after completing the announcement handling. Therefore, the

!In the short version of the paper we did not elaborate on the effect of a dequeues-only batch on the abstract head.



whole batch, including both its enqueues and dequeues, takes effect instantaneously. From that
moment, until another operation takes effect, the abstract state of the queue is the sequence of
items in the list starting with the node succeeding the new dummy node, including the batch’s
linked items.

8.1.3  Operation Results Comply with the Sequential Specification of a FIFO Queue. We will show that
applying operations to BQ is equivalent (in terms of their results) to applying the same operations, in
their linearization point moments, to the sequential FIFO abstract queue. We start with operations
that affect the shared queue’s state.

Regarding a non-batched dequeue operation, a successful dequeue’s linearization point is in
Line 20 in Listing 2, where SQHead is updated to point to the next node. Note that the abstract
head before and after the update is the same as SQHead. This is because no batch operations are
involved: First, no announcement is installed in the head at this moment, since both the previous
and new SQHead values contain PtrCnt objects. Second, no dequeues-only batch operation has
advanced the abstract head. To do so it needs to later succeed advancing the current SQHead,
which is impossible as the present dequeue is the one to succeed performing a CAS of SQHead.
Thus, the CAS in Line 20, which advances SQHead by one node, advances the abstract head as well.
This translates to dequeuing the first item from the abstract queue.

As to a dequeues-only batch operation that takes effect when the queue is not empty - all its
dequeues are linearized successively, in the moment of reading the next pointer in Line 153 (of
Method ExecuteDegsBatch in Listing 12) for the last time before ExecuteDegsBatch returns. We
denote this moment by t,. Let t; be the moment when SQHead’s value is obtained in Line 149
for the last time before ExecuteDegsBatch returns, and let H be the obtained value. The abstract
head at t; is H, according to the abstract head’s definition in Section 8.1.2: H does not point to an
announcement (as guaranteed by HelpAnnAndGetHead), and since ExecuteDegsBatch is about to
succeed to CAS the head from H - no other dequeues batch has succeeded to do this. The abstract
head remains H from #; until #,: since our dequeues batch is about to succeed to CAS the head from
H to point to another node, no other dequeue or batch succeeds to do this (i.e., during this time,
no dequeue or another batch that contains dequeues is applied). If the last next pointer to be read
in Line 153 at #; is NULL, then right before this read there are exactly success fulDeqsNum items
in the abstract queue (because the abstract head is still H as explained above, and we traversed
success fulDeqsNum nodes, linked after the abstract head, until reaching the end of the list). In
this case, the abstract head is advanced at t, by success fulDeqsNum nodes and the queue becomes
empty. The rest of the dequeues in the batch fail. If, on the other hand, the last next pointer to be
read in Line 153 at t; is not NULL, then right before this read there are at least threadData.deqsNum
items in the queue. The abstract head is advanced at t; by threadData.deqsNum nodes, which
translates to an extraction of this amount of items from the beginning of the queue. In any case,
SQHead is eventually advanced in Line 160 of ExecuteDeqsBatch, in a CAS that does not affect the
abstract state of the queue.

Moving to enqueue, and starting with the non-batched operation, an enqueue is linearized in
Line 5 in Listing 1, where the next pointer of the last node in the underlying list is modified from
NULL to point to the new node that the enqueuer created. To show that the abstract state of the
queue reflects the change, i.e. the new item is appended to the abstract queue’s items, we rely on
the following observations:

OBSERVATION 8.1. The next field of a node may change only once in the algorithm, from NULL to a
pointer to a linked node.



Proor. During FutureEnqueue method (Listing 8), a node intended to be enqueued is thread-
local. Its next field’s value is initially NULL. It might be set to a non-NULL value in Line 93, and right
after that the local queue’s tail is advanced to the new linked node, so the current node will not be
locally further modified. The only additional modifications of a node’s next field are performed in
Lines 5 and 44 (in Listings 1 and 5 respectively), where it might be modified (using a CAS operation)
from NULL to a non-NULL value, thus such CAS may succeed only once per node. O

CoROLLARY 8.2. Linking nodes twice to the same node is impossible.

OBSERVATION 8.3. Consider the shared queue’s underlying list of nodes, starting with the initial
dummy node, i.e., the node with which the queue is initialized. SQTail always points to a node that is
contained in this list. (We ignore the nodes’ memory reclamation for simplicity.)

Proor. The claim holds initially since SQTail is initialized to point to the first dummy node,
when it is the only node in the list. Based on Observation 8.1, the only changes applied to the
queue’s list of nodes are additions of nodes to its end. SQT ail is updated in Lines 7, 13, 50 and 52
inductively from pointing to one node of this list to another, so the claim prevails. O

Consider a successful CAS in Line 5 of the next field of the node pointed to by the obtained tail.
According to Observation 8.3, this node (which was pointed to by SQT ail) was part of the list of
nodes starting with the initial node of the shared queue, and remains part of this list since, based
on Observation 8.1, nodes are not removed from this list. In addition, the previous value of the
above mentioned next pointer is NULL. Hence, this node, to which we link the new node, is the
last node in the underlying list of nodes. Specifically, it means that the abstract head points to this
node or a prior node. Thus, the node which we link to it becomes one of the nodes in the list that
starts with the node succeeding the dummy node (pointed to by the abstract head), which means
its item becomes part of the abstract queue in the linearization moment of the enqueue operation.
Moreover, the next pointer of the enqueued node is NULL, thus only this node’s item is appended to
the abstract queue’s items in this linearization point.

Lastly, similarly to an enqueue operation, all enqueues and dequeues of a batch operation that
enqueues at least one item are linearized one after another when the next pointer of the last node
in the shared queue’s underlying list of nodes is modified from NULL to point to the first node of
the batch in Line 44 in Listing 5. The abstract state of the queue changes accordingly: The batch’s
items are appended to the abstract queue’s items (the new items become part of the abstract queue
due to similar arguments to the ones stated above for a single enqueue). In addition, items that
the batch operation dequeues are omitted from the abstract queue in the linearization point, since
from this moment the abstract head points to the new dummy node (as defined in Section 8.1.2).
This advancing of the head takes into account all enqueues and dequeues of the batch operation,
using a calculation described in Section 5.2.

We move to argue about operations that have no effect on the shared queue. Linearization points
that do not modify the abstract state of the queue occur during a single dequeue and a dequeues-only
batch that are applied to an empty queue. We prove that these linearization points take place when
the abstract queue is indeed empty, thus the operations follow the sequential specification of a
queue: they appropriately fail and return without affecting the state of the abstract queue. We will
focus on a failing dequeue operation, and the same arguments apply for a dequeues-only batch
applied to an empty queue.

Let t;;, be the linearization moment of an unsuccessful dequeue performed by a thread T, i.e. the
moment T executes Line 17, reading the next pointer of its obtained dummy node before revealing
in the next line that it is NULL. Let t,.,4 be the moment in which T executed Line 24 for the last
time before t;;,,. We will prove that the abstract queue is empty at ¢;;,.



The next pointer of the node pointed to by the head obtained at #,¢,4, is NULL at ¢;;,, (according
to t1;,’s definition). From Observation 8.1 we deduce that this next pointer was NULL also at any
point earlier than t;;,, in particular at t,44.

At tyeqq, T obtains the queue’s head from SQHead when no announcement is installed. Thus,
the abstract head, according to Section 8.1.2, is either equal to the obtained head, or was equal
to it at some previous moment after which a concurrent dequeues-only batch has advanced the
abstract head. But the latter is impossible, because for a dequeues-only batch to succeed advancing
the head, there must have been at least one node linked after the obtained head, but its next is NULL
as mentioned above. Thus, the abstract head equals the obtained head at t,,44.

The abstract head is not modified between t,.,4 and t;;,: in order for it to change by a batch
operation or a successful dequeue operation, nodes should have been linked - between f,.,4 and
t1;n — after the obtained head, but they have not, based on Observation 8.1. Thus, at t;;,, the abstract
head still equals the obtained head. Since the next field of the dummy node pointed to by this head
is NULL at t;;,,, the abstract queue is empty at this moment.

8.1.4  No Recurring Linearization Points. We prove why each operation takes effect once, namely,
its linearization point occurs one time only. For each linearization point, the thread that performs it
does not take any backward branches after that, and the operation completes without repeating the
linearization point. We will now establish that other threads do not perform the linearization step
again. A successful dequeue operation and a dequeues-only batch that succeeds to dequeue at least
one item are achieved using a single operation on the shared queue, thus no help is involved and
the initiator thread is the only one to perform the linearization step. An enqueue operation may be
assisted by other threads advancing the tail, but the linearization step is taken by the enqueuer only,
so no helping thread may perform it and cause the operation to take effect twice. This is not the
case for a batch operation that contains enqueues: a helping thread may perform its linearization
step. Next we explain how we prevent the linearization step of such operation from occurring twice.
The proof is also illustrated in Figure 2.

Let batchOp be a batch operation that contains at least one enqueue. The thread that initiates the
batch installs an announcement in SQHead (in Line 33 in Listing 4), which makes the batch public.
Let t;;n1 be the first time in which batchOp’s linearization step is performed (i.e., the CAS in Line 44
in Listing 5 that links the batch’s items to the tail is performed successfully for the first time for
batchOp). Let Ty be the thread that performed this linking. T; could either be the batch’s initiator
(as depicted in Figure 2) or a helping thread that encountered the announcement. Let t,.44; be the
last time in which T; obtained SQTail’s value in Line 40 before performing the linearization step,

SQTail unchanged (points to N;)

- M

T,, executing 1 tread1 ting toet
linearization point € o ® - —] ot —>t
of batchOp Install ann Last SQTail read Read ann->oldTail Link’ \ to N; Set ann->oldTail
in SQHead before tjns == NULL
==&N;
T, executing 2™ tread2 toldamail2
linearization point ® >& ® » t
of batchOp Last SQTail read Read ann->oldTail Link to N
before tjn, == NULL
== &N,

Fig. 2. The impossible scenario of two linearization points of the same batch



and Nj be the node pointed to by this value (i.e., the node to which batchOp’s items are linked at
t1in1). Let tge; be the first time that Line 47, which sets the oldTail field of the announcement, is
executed for batchOp. It could be executed by any thread; its execution by Ty in Figure 2 is merely
an example. ts.; > t];,1 since Line 47 is executed only after the batch’s items are linked.

Assume a second linearization step of batchOp is carried out by a thread T, at t;;,,2. Let t,.442 be
the last time in which T, obtained SQTail’s value in Line 40 before performing the linearization
step, and N, be the node pointed to by this value (i.e., the node to which T, linked batchOp’s items
at t)n2). After t,.qq2 and before t;,5, T obtains the oldTail field of the announcement in Line 41
at moment f,;474i12. For T, to proceed to the linking, this field must be revealed (in Line 42) to be
NULL.

To complete the proof that a linearization of a batch operation that contains enqueues does
not occur twice, we proceed to show how assuming a second linearization point results in a
contradiction. This is an overview of the rest of the proof in a nutshell: SQTail points to N; during
treaq1 through ts.; (Claim 8.8), thus N; (the node pointed to by SQTail at t,.442, which happens
before ;) is either Nj or a preceding node (Corollary 8.10), hence N,->next is not NULL after t;;,1,
so the CAS at t;;,,» cannot succeed.

To prove that SQTail points to N during t,.,q4; through ts.;, we need to establish that SQT ail
does not change in this time frame. To prove that, we will rely on the following lemma:

LEMMA 8.4. For any CAS operation of SQTail that occurs between t,.qq41 and tses, the previous value
passed to the CAS is not a pointer to Nj.

Proor. We list all code lines that modify SQTail and explain why the claim holds for each of
them.

In Line 7, an enqueue operation advances SQTail to point to the node it has just linked. SQT ail
could not have pointed to N; prior to this change due to Corollary 8.2, as batchOp’s items are
linked to Nj. So a CAS in Line 7 with a pointer to Nj passed as the previous value is impossible.

In Line 13, an enqueue operation attempts to assist a conflicting operation and advance SQT ail
using a CAS. Suppose that the previous SQTail’s value passed to the CAS operation is a pointer to N;
(see Figure 3). We will show that this CAS must happen after ¢, so it particularly cannot take place
between t,.441 and ts.;. If the enqueue operation reached Line 13, it means that previously the
CAS in Line 5 that attempted to link a node to Nj has failed, then SQHead has not consisted of an
announcement (when reading SQHead in Line 9). For the CAS in Line 5 to fail, it must have happened
after t;;,; (due to Observation 8.1), which in turn happened after the installation of batchOp’s
announcement in SQHead. Thus, ann must have been uninstalled from SQHead before Line 9’s
execution. SQHead that consists of an announcement is modified only in Method UpdateHead
(in Listing 5), which is called in Line 53 during the batch’s execution. Therefore, Line 53, which

Line 5 Line 9 Line 13
Enqueueing thread 4 — —-@ > t
Link /" to Ny fails Read T SQHead Attempt to
- notJ announcement advance SQTail
from N4
o tlinl tset
T, executing batchOp & - > —-@ > t
Install ann  Linkto N;  Setann->oldTail  Advance SQHead
in SQHead (uninstalling ann)

Fig. 3. Enqueuer attempts to advance SQTail from Nj



uninstalls the announcement from SQHead and completes the batchOp’s execution, must have
been executed for batchOp before Line 9’s execution. Prior to the batch completion, as part of
batchOp’s execution, ann->oldT ail was set at ts.;. It follows that the above mentioned CAS in Line
13 happens after ts.;, which is what we aimed to prove.

Another CAS of SQTail in attempt to assist a conflicting operation occurs in Line 50, by a thread,
denoted batchThread, while it is trying to commit a batch operation. Assume batchThread reaches
Line 50 with N; as the previous value. For this to happen, its attempt to link an item to Nj in
Line 44 must fail, which means N;’s next field is not NULL at that moment. In addition, N;’s next
field does not point to the first node enqueued by the batch that batchThread executes, according
to the check in Line 45. Consequently, N;’s next field must point to another node, linked by an
operation denoted con flictingOp, which is conflicting with the batch operation that batchThread
executes. We will show that con flictingOp is not batchOp, and thus this scenario is impossible -
due to N;’s definition as the node to which batchOp’s items were linked, and based on Corollary
8.2. So it remains to show that conflictingOp is not batchOp: batchThread tries to commit either
batchOp, or another batch operation, which we will denote by batchOp2. We will cover both cases.
If batchThread is trying to carry out batchOp, then failing the check in Line 45 clearly indicates, as
mentioned above, that an operation which is not batchOp has linked a node to Ny. If batchThread
is trying to carry out batchOp2, then according to Claim 8.5 (which is brought after this proof),
conflictingOp is a single enqueue, and in particular not batchOp.

An additional modification of SQTail happens during a batch execution in Line 52. Suppose
some thread advances SQTail in Line 52, and suppose that the previous value passed to the CAS
operation is a pointer to Nj. If the thread tries to carry out batchOp, it does not advance the tail
between t,.441 and tse;: to reach Line 52 it has to break from the while loop, which could happen
only after ts.; (the first time oldTail field of batchOp’s announcement was set). Otherwise, the
thread tries to carry out another batch operation. To reach Line 52 it has to break from the while
loop. This happens only after Line 47 is carried out for this other batch and sets the oldTail field of
the batch’s announcement to point to Nj. This, in turn, happens only after the first node that the
other batch wishes to enqueue has been linked to N; (according to Line 45). But this is impossible,
due to N;’s definition as the node to which batchOp’s items were linked, and based on Corollary
8.2. O

We shall prove the following claim and lemmas to complete the last proof:

Craim 8.5. When attempting to advance the tail in Line 50 in ExecuteAnn after an attempt to link
a batch’s items to a node N has failed, the conflicting operation that linked to N is necessarily a single
enqueue and not a batch operation.

Proor. See Figure 4 for an illustration of the proof. Let batchOp1 be a batch operation containing
at least one enqueue. Let T; be a thread that attempts at ¢4 to link batchOp1’s items to N, the
node it obtained from SQTail, and fails. T; then checks in Line 45 whether another thread has
linked batchOp1’s items to N and caused T; to fail performing the CAS. Assume T; finds out that
this is not the case, i.e., an item of another operation has been linked to N. Hence, T; needs to take
a backward branch. Assume the conflicting operation whose root step caused T;’s CAS to fail is
another batch operation that contains at least one enqueue, denoted batchOp2. We will show that
this assumption leads to a contradiction, hence the conflicting operation must be a single enqueue.

Let T; be the thread that executed the above mentioned root step, linking batchOp2’s items to N
at tj;ny prior to tr4;. Let H be the history described in the proof (and in Figure 4). Let t,.qq be the
moment in which T; obtained the oldTail field of ann1, batchOp1’s announcement, in Line 41. The
obtained value must be NULL since T; proceeded to a linking attempt. We will establish in Lemma



T,executing o t'iad tf"

PY L 4 » t
batchOp1 Install ann1 Last SQTail read Read ann1->oldTail Link to N fails Read N->next
in SQHead before tg ==NULL # batchOp1's 1%
==&N enqueued node

Last SQTail read

before tj,,
T, executing ==&N | in2 >t
4 *—> >
batchOp2 Install f ann2 Read Linkto N
infSQHead  ann2->oldTail
== NULL
T3 executing a t"e"i toet >t
® ® ® ->& >
batchOp1 | a5t sQTailread  Read Link Set Advance SQHead
before tj,;  anni->oldTail annl->oldTail ~ (uninstalling ann1)

==NULL

Fig. 4. The impossible scenario of one batch failing another

8.6 that t,cqq < t1in2, SO at t;in2 — €, Ty has passed Line 41. It hasn’t passed Line 44, since in H it
executes this line at t7,;;, which happens after ¢;;,5. So at #j;,2 — €, T1’s next step is either Line 42
or 44.

Now, consider an alternative history H', which starts with the same prefix as H until ¢;;,,» — €, but
then T; is scheduled to run rather than T2. The result of T} executing Line 42 is predetermined: the
value obtained from annl->o0ldTail is NULL, as previously mentioned. So whether T; executes this
line in H’ at t;;, — € or earlier, it will proceed to attempt a CAS in Line 44, trying to link batchOp1’s
items to N. This CAS would succeed, since in H, T, succeeded performing a CAS of the tail at the
same moment, which means that the current value of the tail’s next pointer must be NULL.

To reach a contradiction, we will prove in Lemma 8.7 that a linearization step has been carried out
for batchOp1in H at t;;,,1, prior to ¢;;,,,. Therefore, it was carried out in H' as well. This implies that
two linearization steps have been performed for batchOp1 in H’: both at #;;,; and in the new suffix
of H’'. This contradicts what we proved in Section 8.1.4 - that no operation has two linearization
points — and concludes our proof. O

LEMMA 8.6. t,cqq happens before tj;,s.

Proor. For T, to link batchOp2’s items at ¢;,,2, an announcement ann2 for this batch must first be
installed in SQHead (either by another thread, or by T as illustrated in Figure 4). This must happen
after the installation of ann1, because if batchOp2 happened before batchOp1, then before ann2
was uninstalled, the tail had been advanced from pointing to N, so T; could not obtain N from the
tail while executing batchOp1. Clearly, prior to ann2’s installation, annl must be uninstalled from
SQHead (by a thread executing batchOp1, which could be another thread T5 as depicted in Figure
4, and could also be T itself, helping completing batchOp1’s execution). Before annl is uninstalled
as the last step of batchOp1’s execution, annl->oldTail is set as part of the batch’s execution at ts.,
(by T5 or by another thread executing batchOp1). So far we showed that fse; < t;;p,2. In addition,
tser must happen after t,.,4, when the value of ann1->o0ldTail is still NULL. ]

LEMMA 8.7. batchOp1’s items were linked at t;;,1 earlier than ty;,;.

Proor. Before annl->oldTail is set at t¢;, batchOp1’s items must have been linked as part of
the batch’s execution (by Ts or by another thread executing batchOp1), at moment tj;,,; < tser. In
addition, in the proof of Lemma 8.6 we argued why ts.; < t7;,2. Consequently, t7;,1 < t1in2. m]



We continue with the proof that assuming a second linearization point results in a contradiction.
Cramv 8.8. SQTail is not modified between ty.qq1 and tse;.

PROOF. At tyeqq1, SQTail points to Ny (by t,eqq1°s definition). According to Lemma 8.4, no CAS
of SQTail may be the first to modify it from N; between t,.44; and tg¢;. Thus, no successful CAS of
SQTail occurs during this time frame. O

LEMMA 8.9. Up to tser, SQTail points to either Ny or a preceding node.

When mentioning a preceding or subsequent node, we refer to the nodes’ order in the queue’s
underlying list of nodes. We view this list as starting with the initial dummy node, so it contains
all nodes that were ever enqueued. (In the proof we ignore the nodes’ memory reclamation for
simplicity, but anyhow in practice the threads do not hold pointers to reclaimed nodes.)

Proor. According to Observation 8.3, SQT ail always points to a node in the queue’s underlying
list of nodes. Up to tj;,1, this list does not consist of any nodes subsequent to Nj, so SQT ail must
point to N; or a preceding node. Namely, up to t;,; the claim holds. In view of Claim 8.8, SQTail
remains the same since t,.441, and in particular since #;;,,1, until ¢5.,. Hence, the claim prevails. O

COROLLARY 8.10. N, the node pointed to by the tail obtained by T, at tyeqq2, is either Ny or a
preceding node.

Proor. Tp’s reading of SQTail at t,.,q2 happens before t..;, because after t,,42, the announce-
ment’s oldT ail field is still NULL at t,;474i72- The claim immediately follows from Lemma 8.9. O

CrAaim 8.11. At tjina, No->next # NULL.

PROOF. tj;p2 > tin1 based on ty;,1’s definition as batchOp’s first linearization point. Hence,
by the time of #;;,2, T1 has linked a node to N;. Nodes had been clearly previously linked to all
preceding nodes as well. According to Corollary 8.10, N; is either Nj or a preceding node, so a
node has been linked to it before #;;,,5. This implies that the next field’s value of Nj is not NULL at
tinz- O

Claim 8.11 yields a contradiction to the assumption of a second linearization point, as the CAS at
t1ino is destined to fail.

8.2 Lock-Freedom Proof

In this subsection we show that our algorithm ensures system-wide progress. In the algorithm
of BQ, announcements are used to assist in constituting lock-freedom: a thread that wishes to
perform a batch operation installs an announcement describing the batch in the shared queue’s
head. The purpose of the installation is to enable other threads to complete this batch operation so
that they can thereafter proceed to perform their own operations, even if the thread that installed
the announcement is delayed.

To prove that our algorithm is lock-free, we break each of the shared queue’s operations down
to a sequence of intermediate progress steps.

Definition 8.12. The completion of an interface method of the queue (one of Enqueue, Dequeue,
FutureEnqueue, FutureDequeue and Evaluate) is labeled a full progress step.

The following operations may be applied to the shared queue: enqueue, dequeue, batch with at
least one enqueue and dequeues-only batch. We will refer to them as the shared queue’s operations.
The methods EnqueueToShared, DequeueFromShared, ExecuteBatch and ExecuteDegsBatch apply
these operations respectively.



Definition 8.13. An intermediate progress step is a CAS operation that achieves progress toward
achieving a full progress step. It might be executed either by the thread that initiated the operation
or by a helping thread. It is a point of no return in the context of the current shared queue’s
operation: once a thread (either the initiator or a helping thread) that executes a shared queue’s
operation detects that an intermediate progress step has been completed for this operation, it
may not branch back to a step in that shared queue’s operation that is earlier than the completed
intermediate progress step.

Definition 8.14. A backward branch refers to branching back to an earlier point in the execution
of the same shared queue’s operation, due to a step, carried out by an obstructing operation, that
prevents the current operation from achieving its pursued intermediate progress step.

Definition 8.15. An intermediate progress step s is the root step of a backward branch b, if s
prevents the thread that executes b from achieving an intermediate progress step, which causes
this thread to take the backward branch b after revealing the obstruction.

Note that all backward branches are caused by conflicting intermediate progress steps, so a root
step is necessarily an intermediate progress step.

In practice, after detecting an obstructing step and before the jump backwards, an attempt to
assist an obstructing operation to complete might be made. Afterwards, there is a branch back to
the beginning of the current loop - a loop that appears right after the last intermediate step, or at
the beginning of the operation if no intermediate progress step has been accomplished yet. The
thread then starts another iteration in pursue of accomplishing the same intermediate progress
step.

OBSERVATION 8.16. These are the intermediate progress steps of the shared queue’s operations:

(1) In EnqueueToShared method:

o A CAS of the next pointer of the node pointed to by the shared queue’s tail from NULL to the
enqueued node.
o A CAS of the shared queue’s tail from the current tail to a pointer to the enqueued node.

(2) In DequeueFromShared method: In case the next field of the node pointed to by the obtained
queue’s head is NULL, DequeueFromShared finishes and returns NULL without performing any
intermediate progress steps. Otherwise:

o A CAS of the shared queue’s head from the current head to a pointer to the next node.

(3) In ExecuteDegsBatch method: In case the next field of the node pointed to by the obtained queue’s
head is NULL — ExecuteDeqsBatch finishes without performing any intermediate progress steps.
Otherwise:

o A CAS of the shared queue’s head from the current head to a pointer to the last node dequeued
by the batch operation.

(4) For a batch with at least one enqueue (The first intermediate progress step is performed in
ExecuteBatch method and the rest are performed in ExecuteAnn auxiliary method):

o A CAS of the shared queue’s head from the current head to the batch’s announcement.

o A CAS of the next field of the node pointed to by the shared queue’s tail from NULL to a pointer
to the first node enqueued by the batch operation.

o A CAS of the shared queue’s tail from the current tail to a pointer to the last node enqueued by
the batch operation.

o A CAS of the shared queue’s head from the installed announcement to a pointer to the last
node dequeued by the batch operation.

This is the outline of the lock-freedom proof: We examine the execution from a given moment .
We need to show that a full progress step is achieved in a finite number of steps. Each intermediate



progress step could cause a bounded number of backward branches (Lemma 8.19), and each thread
performs a finite number of steps in any execution segment that contains no backward branches
(Observations 8.20 and 8.22). Based on this, we prove that every finite number of steps, a progress
step — intermediate or full — is achieved (Lemma 8.23). If a full progress step is achieved, we are
done. As long as this does not happen, intermediate progress steps keep being achieved, and after a
bounded number of them - a full progress step is eventually achieved (Lemma 8.24).

CrLaM 8.17. Let T be a thread executing a shared queue’s operation. Suppose T takes a backward
branch, after it detects a root step performed by another thread. Then the same root step can cause
only one additional backward branch in the same code line in T’s run.

Proor. We list all backward branches and show that, as claimed, each of them is caused by a
simultaneous conflicting operation that would cause at most one additional backward branch when
the same thread executes the same line later.

Let T be a thread executing an operation on the queue. We review the backward branches
according to the shared queue’s operations. Note that in addition to the backward branches T might
take while trying to commit intermediate progress steps of its current operation, T might encounter
conflicting operations and take backward branches also while assisting them and trying to commit
their intermediate progress steps.

1. Enqueue (performed by EnqueueToShared, Listing 1): While executing an enqueue operation,
T obtains the value of the tail in Line 4. Let N be the node pointed to by this value. If T then
fails to CAS the next pointer of N (in Line 5), it is due to a conflicting operation that has linked
anode to N in a step denoted s. As a result of the CAS failure, T attempts to assure the tail is
advanced, and then takes a backward branch due to s. The conflicting operation could be
either an enqueue or a batch.

1.1. First, we analyze the case of a single enqueue operation enql executing the linking step
s. We will show that after at most two backward branches of T due to linking failures,
the tail no longer points to N (as either T or another thread has advanced the tail). Thus,
afterwards, when T attempts to link to the tail, it shall not fail again due to eng1.

1.1.1. If when T obtains the head (in Line 9) it does not consist of an announcement, then T
tries to advance the tail to point to the node linked by s. If this attempt fails, it implies
that the tail has been already advanced by another thread. So in this case, the tail no
longer points to N after a single backward branch.

1.1.2. On the other hand, the head value obtained by T might consist of an announcement. Let
trainn be the moment T fails to CAS the next pointer of N when trying to perform an
enqueue operation denoted eng2, and t;;, be s’s execution moment, namely, the moment
in which a thread denoted T; links a new item to N while executing a conflicting enqueue
operation enql (different from enq2). We assumed that when T reads the head after the
CAS fails, it obtains a value pointing to an announcement. Let ann be this announcement,
installed for a batch operation batchOp. Right after reading the head, T calls ExecuteAnn
to assure the completion of batchOp’s execution.

Let t,.,q be the moment in which T, obtains the tail value for the last time before t;;,,.
batchOp’s step of advancing the tail could either happen before or after ¢,.,4, with the
implication of batchOp happening before enq1 or vice versa.

1.1.2.1. The following scenario is illustrated in Figure 5. Suppose batchOp’s step of advancing

the tail has been accomplished (by the batch initiator as illustrated in Figure 5 or by a
helping thread) before t,.,4. Le., batchOp has linked its items before enq1 has linked
its item. In this scenario, a root step may cause two backward branches of the same
thread in the same code line.



T; executing - - a

batchOp

v
-+

Install ann  Link Advance SQTail

in SQHead to point to the last node
enqueued by batchOp
T, executing tread tLin >t
A4 »
enql Last SQTail read | Link to N
before t;,
== &N
Last SQTail read Advance SQTail
read SQHead before tsiz to point to
T executing a iy == &ann N ==&N tfﬁilz N->next ,
L * L 4 ® * L 2 L g >
enq2 Last SQTail read Link to N fails Advance SQHead Link to N fails Read SQTail
before tiz (uninstalling ann) # &N
== &N

Fig. 5. engl causes eng2 to fail while ann is installed in the head, after batchOp has advanced the tail

1.1.2.2.

The tail has already been advanced for batchOp when T executes ExecuteAnn method
(since this happens after t7,;;1, the tail is advanced before ¢,¢44, and tyeqa < tin <
trair1)- Therefore, the only remaining step ExecuteAnn applies to the shared queue is
uninstalling ann from the head if it has not been uninstalled yet. All previous steps of
the batch execution are already done. Then, T branches backwards to start a second
linking attempt. It is possible that no thread has advanced the tail yet from pointing to
N.Insuch a case, T would obtain a pointer to N again when reading SQTail, and would
again fail to link to N. The difference from the previous loop iteration is that now ann
is no longer installed in the head. When T reads the head in Line 9, it either points to a
node or to an announcement. In the first case (no announcement installed in the head),
like in case 1.1.1., T makes sure in Line 13 that the tail is advanced. In the second case,
a new announcement is installed, and like in case 1.1.2.2., its batch happens after enq1.
T makes sure this batch is completed by calling ExecuteAnn. During this call - prior
to linking the batch’s items - the tail is advanced in Line 50 from pointing to N if it
has not been advanced earlier. The reason thaAnt this time, unlike when executing
ExecuteAnn for ann, the tail must be advanced, is that the new announcement happens
after enql1, so it must assist enq1 to advance the tail, to subsequently link its own items.
Consequently, in any case, when T reads the tail (in Line 4) again after the second
linking failure, the tail no longer points to N.

On the other hand, batchOp’s step of advancing the tail might happen after t,.,4. This
implies that batchOp’s items are linked to a node down the list, subsequent to N, after
t1in (because if they were linked before f;;,, the tail must have been advanced before
t1in, for T, to be able to link after the tail). Before linking batchOp’s items, the tail
must be advanced from pointing to N to point to the next node. Thus, when T’s call
to ExecuteAnn returns after the batch completion, the tail has already been advanced
from pointing to N.

1.2. Second, we analyze the case in which a batch operation batchOp that contains at least one
enqueue is the one to execute the linking step s. We will show that by the time T branches
backwards, the tail will have already been advanced from pointing to N to point to the last
node enqueued by batchOp. Therefore, if T fails to link to the tail again, it would be to a



new tail to which another conflicting operation has linked an item, so s would not cause T
to take another backward branch.
If when T obtains the head it does not consist of batchOp’s announcement, then batchOp’s
announcement must have been uninstalled, so batchOp’s execution has been completed,
including advancing the tail (and if the obtained head is not an announcement, then T
would perform a CAS of the tail in Line 13 but it would fail). Otherwise, T calls ExecuteAnn
to assure that batchOp’s execution is completed, including advancing the tail.
It remains to explain why any advancing of the tail from N is necessarily to the last node
enqueued by batchOp, and not to the first one. This is required to guarantee that s is not
going to be the root step of additional backward branches of T, which could be the case
if the tail were advanced node by node through all batchOp’s enqueued nodes. We will
prove that the tail cannot be advanced from pointing to N in the two occasions (in Lines
13 and 50) of attempting to advance the tail by one node to assist a conflicting operation,
thus it could be only advanced from pointing to N to point to the last enqueued node in
Line 52. Claim 8.5 proves that the assisted operation in Line 50 must be a single enqueue.
But batchOp - and not a single enqueue operation — linked to N, thus SQTail cannot be
advanced from pointing to N in Line 50. For the other occasion, of Line 13 (see also Figure
6): T reaches Line 13 after failing to link a node to N in Line 5, and later reading the head
when it does not consist of an announcement. For the CAS in Line 5 to fail, it must have
happened after either batchOp’s initiator or an assisting thread has linked batchOp’s items
to N (due to Observation 8.1), which in turn happened after the installation of batchOp’s
announcement, denoted ann, in the head. Since ann has been installed in the head before
T executes Line 9, it must have also been uninstalled before Line 9’s execution. SQHead
that consists of an announcement is modified only in Method UpdateHead (in Listing
5), which is called in Line 53 during the batch’s execution. Therefore, Line 53, which
uninstalls the announcement from SQHead and completes the batchOp’s execution, must
have been executed for batchOp before T executes Line 9. Prior to the batch completion, as
part of batchOp’s execution, SQT ail is advanced. Namely, batchOp’s execution has been
completed, including advancing the tail, before T read the head and thus before T performed
a CAS of the tail in Line 13. Hence, this CAS, with N as the previous value, would fail.

2. Dequeue (performed by DequeueFromShared, Listing 2) has two possible backward branches:

o DequeueFromShared first calls HelpAnnAndGetHead auxiliary method. In case HelpAnn-

AndGetHead encounters an announcement installed in the shared queue’s head by a con-
flicting batch operation, it assists the related batch by calling ExecuteAnn (in Line 27). Then,

Line5 Line9 Line 13
Enqueueing thread T » »- g > t
Link /" to N fails Read T SQHead Attempt to
- notf announcement advance SQTail
from N
Thread executing o » e - > t
batchOp Install ann  Linkto N Advance SQTail  Advance SQHead
in SQHead from N (uninstalling ann)

Fig. 6. Enqueuer fails to advance SQTail from N



after the batch’s execution is assured to be over, including uninstalling its announcement,
the dequeuer branches backwards and will certainly not encounter the same announcement
installed in the head again.

o If the CAS of the shared queue’s head (in Line 20 in DequeueFromShared) fails, the dequeuer
thread restarts the operation. When the dequeuer attempted to perform the CAS from its
obtained value N, the head pointed to either a node down the list, or an announcement
ann. In the first case, a pointer to a node different from N would be obtained the next
time the dequeuer obtains the head, thus the dequeuer may not encounter again the same
conflicting operation that advanced the head from pointing to N. In the second case, after
the dequeuer restarts the operation, it calls HelpAnnAndGetHead. If the head that this
method obtains does not point to ann, then ann has been uninstalled and would not cause
another backward branch. However, if the obtained head points to ann, then the dequeuer
assists it to complete (in Line 27) and then branches backwards - for the second and last
time due to this batch operation.

3. Dequeues-only batch (performed by ExecuteDeqsBatch, Listing 12): Its backward branches
are similar to those of DequeueFromShared.

4. A batch containing at least one enqueue (performed by ExecuteBatch, Listing 4): It may
take the same backward branches as DequeueFromShared, and one more backward branch -
detailed next - during its call to the auxiliary method ExecuteAnn (Listing 5) for the current
batch (in Line 35).

ExecuteAnn branches to its beginning in case it fails to CAS the next pointer of the node

pointed to by the tail, to point to the first enqueued node of the batch (in Line 44), and

no other thread has accomplished this modification. Before restarting, ExecuteAnn helps
the conflicting operation and advances the queue’s tail by one node, in case it has not yet
been advanced by another thread (in Line 50). If the conflicting operation were a batch, its
linearization step could be the root step of several backward branches: ExecuteAnn might
advance the tail node by node, one node down the list before each backward branch, until the
tail would point to the conflicting batch’s last enqueued node. But this is impossible, since
the conflicting operation must be a single enqueue and not a batch operation, according to

Claim 8.5. Thus, advancing the tail by one node completes the conflicting operation. After

ExecuteAnn’s restart, a new tail would be obtained, and the same root step would not cause

a second CAS failure in Line 44.

]

AssuMPTION 8.18. There is a bounded number of threads operating simultaneously on the shared
queue, denoted n.

We denote the number of code lines in which backward branches may occur by B.

LEMMA 8.19. Each intermediate progress step may be the root step of up to 2B(n — 1) backward
branches.

Proor. From Claim 8.17, it follows that a root step may cause at most 2 backward branches per
backward branch code line per thread. Moreover, a root step may not cause a backward branch in
the thread that carried it out, since this thread is aware of the step and will not attempt to apply
conflicting operations. O

OBSERVATION 8.20. Each queue’s interface method, denoted IM, wraps zero or one internal method
that applies a shared queue’s operation. Other than the call to this internal operation method, IM



executes O(pendingOps) computational steps, where pendingOps is the number of pending operations
in the thread executing the interface method.

Proor. Enqueue calls either EnqueueToShared, or Evaluate that in turn calls an internal method
as detailed next. Dequeue calls either DequeueFromShared or Evaluate. Evaluate calls either
ExecuteBatch or ExecuteDeqsBatch. FutureEnqueue and FutureDequeue do not call any of the
queue’s internal methods.

Other than these calls to internal methods, all interface methods execute O(1) computational steps
(with no backward branches), with the exception of the Evaluate method. This method, called either
by the user or by Enqueue or Dequeue, calls PairFuturesWithResults or PairDeqFuturesWith-
Results. These result-pairing methods make O(pendingOps) computational steps. O

Definition 8.21. A forward segment is a maximal part of a method’s execution that contains no
backward branches. Namely, if the method did not take any backward branches, then its whole
execution is a single forward segment, otherwise its execution is composed of a first forward
segment — from its invocation until the first backward branch, possible forward segments between
each two consecutive backward branches performed throughout this method’s execution, and a
last forward segment — from after the last backward branch until the method’s response.

OBSERVATION 8.22. Each shared queue’s operation method makes O(pendingDeqs) computational
steps in each of its forward segments, where pendingDeqs is the maximum number of pending dequeue
operations in any of the threads during the method’s execution.

Proor. Each of EnqueueToShared, DequeueFromShared and ExecuteBatch performs O(1) com-
putational steps in each of its forward segments, except for when calling ExecuteAnn (directly or
through a call to HelpAnnAndGetHead). ExecuteAnn, called to commit the batch operation of the
caller thread or an assisted thread, performs O(1) computational steps in every forward segment,
except for its last forward segment, in which it carries out O(pendingDeqs) computational steps
during the call to GetNthNode auxiliary method (in Line 64 or 66) that calculates the new head.
Regarding ExecuteDeqsBatch, every time it calls ExecuteAnn during a call to HelpAnnAndGet-
Head, it performs forward segments of O(pendingDeqs) computational steps as detailed above.
The rest of ExecuteDeqsBatch’s execution is also made of forward segments of O(pendingDeqs)
computational steps, each due to a traversal of the dequeued nodes when calculating the new head
(in Lines 152-157). Thus, in any case, O(pendingDeqs) computational steps are carried out in every
forward segment of a shared queue’s operation method. O

LEmMA 8.23. From each moment t, some intermediate or full progress step is accomplished within a
finite number of system-wide computational steps (of methods operating on the queue).

Proor. Let IPS be the total number of intermediate progress steps achieved in the execution
until ¢, and pendingDegs and pendingOps be the maximum number of pending dequeue operations
and pending operations of any kind (enqueue or dequeue) respectively in any of the threads at ¢.

Since moment t, as long as no progress step — intermediate or full - is achieved by any thread:
There are O(IPS- B-n) backward branches across all threads, based on Lemma 8.19. From Observation
8.22, each thread performs O(pendingDeqs) computational steps in each of its forward segments
(i.e., between each two consecutive backward branches it takes, as well as before the first and
after the last). (Note that as long as no progress steps are achieved since ¢, the number of pending
operations in each thread remains as it was at ¢, hence pendingDeqs remains a bound on the number
of pending dequeue operations in any of the threads.) It follows that after O(IPS- B-n-pendingDegs)
computational steps, there could be no more backward branches, so each thread that runs an internal
method must return to the calling interface method. According to Observation 8.20, each thread



performs O(pendingOps) additional steps before returning from the executed interface method,
i.e., performing a full progress step. (Note that a new pending operation could not be formed in a
thread after ¢ before it performs a progress step, hence pendingOps remains a bound on the number
of pending operations in any of the threads.) Thus, overall, there are additional O(n - pendingOps)
steps before a full progress step is achieved. Such full progress step is guaranteed to happen, due
to the arguments we laid out, as long as no progress step is achieved beforehand. But if a thread
performs a progress step earlier, we are anyhow done. Thus, in any case, an intermediate or full
progress step is achieved within O(IPS - B - n - pendingDeqs + n - pendingOps) steps since t. This
is sufficient — there is no need for the tightest bound, as all we need to show is that progress is
achieved within a finite number of steps.

]

LEMMA 8.24. Every up to 4n system-wide intermediate progress steps, a new full progress step is
accomplished.

Proor. Each queue’s interface method executes intermediate progress steps only during calls to
shared queue’s operations. According to Observation 8.20, every interface method calls at most
one shared queue’s operation. Each shared queue’s operation is composed of up to 4 intermediate
progress steps (see Observation 8.16). Therefore, while the threads execute methods operating on
the queue, after at most 4n intermediate progress steps, all threads will return from their executed
interface methods before another intermediate progress step is accomplished. O

COROLLARY 8.25. BQ is lock-free.

Proor. We need to prove that from any moment, a queue’s interface method is completed within
a finite number of steps. Lemma 8.23 states that within a finite number of steps, an intermediate or
full progress step is accomplished. If it is a full progress step, we are done. Otherwise, we apply
Lemma 8.23 repeatedly at most 4n times, and get from Lemma 8.24 that a new full progress step
must be eventually accomplished. O

9 PERFORMANCE

We compared the proposed BQ to two queue algorithms: the original MsQ that executes one oper-
ation at a time, and the queue by Kogan and Herlihy [17] that satisfies MF-linearizability, hence
denoted KHQ. KHQ executes pending operations in batches of homogeneous operations: it executes
each subsequence of enqueues-only together by linking nodes to the end of the queue, and each
subsequence of dequeues-only by unlinking nodes from the head of the queue.

We implemented the shared parts of the different queue versions identically to filter any unrelated
performance difference. All queues use the optimistic access scheme for memory management. The
implementations were coded in C++ and compiled using the GCC compiler version 6.3.0 with a
—03 optimization level.

We conducted our experiments on a machine running Linux (Ubuntu 16.04) equipped with 4
AMD Opteron(TM) 6376 2.3GHz processors. Each processor has 16 cores, resulting in 64 threads
overall. The number of threads in each experiment varied from 1 to 128. Each thread was attached
to a different core, except for the experiment that ran 128 threads, in which two threads were
attached to each core. The machine used 64GB RAM, an L1 data cache of 16KB per core, an L2
cache of 2MB for every two cores, and an L3 cache of 6MB for every 8 cores.

In each experiment testing BQ or KHQ, our workload performed batch operations with a fixed
number of future operations for that experiment. Our workload for msQ performed standard
operations only. In the workloads of all queues, we randomly determined whether each operation
(standard or future) would be an enqueue or a dequeue.



BQ 4-long batches MsQ BQ 16-long batches MsQ BQ 64-long batches MsQ

KHQ 4-long batches KHQ 16-long batches KHQ 64-long batches
212 212 212 —
S g S
&1 3t 31
5} G 5}
o g o g o g
2 2 2
2 2 ¢ 2 g
o © o
] ] ]
g g g
c c c
S 2 S 2 S 2
B o S B
1T 2 4 8 16 32 64 128 1T 2 4 8 16 32 64 128 T 2 4 8 16 32 64 128
Threads Threads Threads
Fig. 7. Throughput for 4, 16 and 64 long batches respectively
1.2 4.0, 18,
E] E 2
a a - 2 16| —_—
Elo | | g3s g
3 33.0 || 2 -
£ 0.8 N £ S 12| = _—
o 525 EEEEae o
3 a @ 10 | 1 1
= 0.6] TR =20 —u I 1 1 1 % | = )
3 2 1.5 11 fn 2
£0.4 = P B BB R £ < 6 EE
3 310 5 8 8 8§ 8 | 34 11 1 0 |
So2b B L £ £
o sost BEE= = 5 2 == B A - -
2] 2] 2]
0.0! 0.0 0!
1 2 3 4 8 16 32 64 128 1 2 3 4 8 16 32 64 128 1 2 3 4 8 16 32 64 128
Threads Threads Threads
Fig. 8. Throughput ratio of BQ compared to msq for 4, 16 and 64 long batches
1.4 2.5 14
5 5 5
212 = g 219 —
g 2% ] | g
St £ £10 =
osl Q15 1111 N | ™
4 ~ 4
S0.60+ — 5, o [ 5 6 - 1 1 .
2 2 £
50.4 @1 W 111 g’ §‘4 1 1
£ gost 4———————— 2
S 0.2 R - R z B - i 1 1R
[} © [
0.0 0.0 0

1 2 3 4 8 16 32 64 128 : 1 2 3 4 8 16 32 64 128 1 2 3 4 8 16 32 64 128
Threads Threads Threads

Fig. 9. Throughput ratio of BQ compared to kHQ for 4, 16 and 64 long batches

Each data point [x, y] in the graphs in Figure 7 represents the average result of 10 experiments. In
each experiment, x threads performed operations concurrently for two seconds. The graphs depict
the throughput in each case, i.e., the number of operations (Enqueue / Dequeue / FutureEnqueue
/ FutureDequeue) applied to the shared queue per second by the threads altogether, measured
in million operations per second. The BQ curve appears along with the MmsQ and kHQ curves for
different batch sizes.

In addition to the throughput graphs of BQ compared to MsQ and kHQ, we display the corre-
sponding throughput ratio graphs. Each chart in Figure 8 shows the ratio between the throughput
of BQ for a certain size of batches and the throughput of msqQ. Similarly, each chart in Figure 9
shows the ratio between the throughputs of BQ and xHQ for a certain size of batches. A ratio bigger
than 1 means that batching all operations to a single operation was beneficial, and a fraction means
that it was detrimental.

BQ demonstrates a significant performance improvement over both competitors for batches of
more than 10 operations. Indeed, for batches containing 4 operations, MsQ and KHQ are preferable.
The overhead of executing a batch operation makes small batches less worthwhile. However, for
longer batches, and when at least 3 threads operate on the queue, BQ performs better.

BQ exploits parallelism better as execution of operations in batches reduces contention substan-
tially: instead of accessing the shared queue for every operation, each thread interacts with the



shared queue throughout the execution of a single batch operation. Later, it performs local work to
pair futures applied by the batch operation with results. BQ performs better than xHQ as well, since
it applies each batch at once to the shared queue, while xHQ applies each batch operation using
several homogeneous batch executions. Therefore, BQ is an excellent choice for a lock-free queue
when future operations can be employed.

The throughput of MsqQ decreases as the number of threads increases, since the contention makes
it impossible to exploit parallelism. On the other hand, when using batches of size 16 or more,
3 threads achieve better throughput in BQ than 2, and 4 perform better than 3, demonstrating
improved scalability.

The more operations a batch contains, the greater the performance gap between BQ and the
other queues becomes. BQ performs better as batch size increases since the reduction in contention
more than compensates for the greater overhead. The performance improvement from batches
containing 4 operations to ones containing 16, and from these to 64-long batches, is shown in
Figure 7. Additional measurements we conducted demonstrate further improvement for 256-long
batches in comparison to 64-long batches, especially for executions with many threads.

10 AVOID USING DOUBLE-WIDTH CAs

To make the algorithm portable to platforms that do not implement double-width CAS, the algorithm
may be modified to use a single-word CAS only. Currently, SQHead is a PtrCntOrAnn object and
SQTail is a PtrCnt object. Both of them are double-word wide, so an atomic update of them requires
a double-width CAS. To avoid it, SQHead and SQT ail may become pointers only.

The dequeue and enqueue counters associated with the head and tail respectively are still
required, because we use them to calculate the queue’s size when a batch is operated in order to
figure out the new head. We will place a counter in the Node object, to indicate the node’s index in
the shared queue (i.e., its index in the underlying list of nodes starting with the node following the
initial dummy node). Right before the queue’s head or tail is updated to point to a certain node, we
will set the node’s counter. This occurs in the following cases:

(1) A single dequeue operation will update head->next.count before performing a CAS of the
head. Similarly, a dequeues-only batch operation will update the counter of the node pointed
to by the new head before performing a CAS of the head to point to this node. The new
counter value in this case is the amount of dequeues in the batch accumulated to the counter
of the node currently pointed to by the head.

(2) A single enqueue operation will update the counter of the new node before linking it to the
tail.

(3) When a thread carries out a batch operation that contains at least one enqueue operation,
it will update the counter of its last enqueued node, which is about to be pointed to by the
new tail. The new counter value equals the amount of enqueues in the batch summed to
the counter of the node pointed to by the current tail. This update shall be performed right
before the CAS of the tail to point to the last enqueued node. If other threads try to execute
this batch operation simultaneously, they may also perform this update, as the amount of
enqueues in the batch is detailed in the announcement.

If the batch operation contains at least one successful dequeue, it will also update the counter
of the node that is about to be pointed to by the head, right before performing the head’s CAS
that completes the batch execution.

Note that writing the counter does not require a CAS: The written value is the node’s index in
the queue’s sequence of items, which is unambiguous. Therefore, under no circumstances may two
threads try to write different values.



An additional adaptation is required to distinguish whether SQHead points to a node or an an-
nouncement. Currently, the least significant bit of SQHead.tag, which overlaps SQHead.ptrCnt.node,
is set to indicate that SQHead contains an announcement. In the new suggested design, we would
take a similar approach and use the least significant bit of the SQHead pointer as a mark.

11 CONCLUSION

We presented BQ, a novel lock-free extension to msQ that supports future operations. Unlike KHQ,
BQ supports single operations as well, according to EMF-linearizability. BQ exploits batching to
reduce contention and improve scalability. It enables a fast application of a mixed sequence of
enqueue and dequeue operations all at once to the shared queue. Thus, it significantly reduces
accesses to the shared queue and overall processing in it, in comparison to both MsQ and KHQ. BQ
demonstrates a substantial performance improvement of up to 16x compared to MsQ and up to 12x
compared to KHQ.

REFERENCES

[1] Dmitry Basin, Rui Fan, Idit Keidar, Ofer Kiselov, and Dmitri Perelman. 2011. Café: Scalable task pools with adjustable

fairness and contention. In DISC.

[2] Nachshon Cohen and Erez Petrank. 2015. Efficient memory management for lock-free data structures with optimistic

access. In SPAA.

3] Robert Colvin and Lindsay Groves. 2005. Formal verification of an array-based nonblocking queue. In ICECCS.

4] Panagiota Fatourou and Nikolaos D. Kallimanis. 2011. A highly-efficient wait-free universal construction. In SPAA.

5] Panagiota Fatourou and Nikolaos D. Kallimanis. 2012. Revisiting the combining synchronization technique. In PPoPP.

6] John Giacomoni, Tipp Moseley, and Manish Vachharajani. 2008. FastForward for efficient pipeline parallelism: a

cache-optimized concurrent lock-free queue. In PPoPP.
[7] Anders Gidenstam, Hakan Sundell, and Philippas Tsigas. 2010. Cache-aware lock-free queues for multiple producers/-
consumers and weak memory consistency. In OPODIS.
[8] James R. Goodman, Mary K. Vernon, and Philip J. Woest. 1989. Efficient synchronization primitives for large-scale
cache-coherent multiprocessors. In ASPLOS.
[9] Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. 1983. Basic techniques for the efficient coordination of very
large numbers of cooperating sequential processors. TOPLAS 5, 2 (1983).

[10] Andreas Haas, Michael Lippautz, Thomas A. Henzinger, Hannes Payer, Ana Sokolova, Christoph M. Kirsch, and Ali
Sezgin. 2013. Distributed queues in shared memory: multicore performance and scalability through quantitative
relaxation. In CF.

[11] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat combining and the synchronization-parallelism
tradeoff. In SPAA.

[12] Maurice Herlihy. 1991. Wait-free synchronization. TOPLAS 13, 1 (1991).

[13] Maurice Herlihy, Beng-Hong Lim, and Nir Shavit. 1995. Scalable concurrent counting. TOCS 13, 4 (1995).

[14] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness condition for concurrent objects. TOPLAS
12, 3 (1990).

] Moshe Hoffman, Ori Shalev, and Nir Shavit. 2007. The baskets queue. OPODIS (2007).
] Christoph M. Kirsch, Michael Lippautz, and Hannes Payer. 2013. Fast and scalable, lock-free k-FIFO queues. In PaCT.

[17] Alex Kogan and Maurice Herlihy. 2014. The future(s) of shared data structures. In PODC.

]
]

(
[
[
[

Alex Kogan and Yossi Lev. 2017. Transactional lock elision meets combining. In PODC.

Edya Ladan-Mozes and Nir Shavit. 2008. An optimistic approach to lock-free FIFO queues. Distributed Computing 20,

5 (2008).

[20] Doug Lea. 2009. The java concurrency package (JSR-166).

[21] Maged M. Michael. 2004. Hazard pointers: safe memory reclamation for lock-free objects. TPDS 15, 6 (2004).

[22] Maged M. Michael and Michael L. Scott. 1996. Simple, fast, and practical non-blocking and blocking concurrent queue
algorithms. In PODC.

[23] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit. 2005. Using elimination to implement scalable and lock-free
FIFO queues. In SPAA.

[24] Adam Morrison and Yehuda Afek. 2013. Fast concurrent queues for x86 processors. In PPoPP.

[25] Niloufar Shafiei. 2009. Non-blocking array-based algorithms for stacks and queues. In ICDCN.

=



[26] Philippas Tsigas and Yi Zhang. 2001. A simple, fast and scalable non-blocking concurrent FIFO queue for shared
memory multiprocessor systems. In SPAA.
[27] Chaoran Yang and John Mellor-Crummey. 2016. A wait-free queue as fast as fetch-and-add. In PPoPP.



	Abstract
	1 Introduction
	2 Preliminaries
	3 Linearizability and Futures
	3.1 Linearizability
	3.2 Medium Futures Linearizability (MF-Linearizability)
	3.3 Extended Medium Futures Linearizability (EMF-Linearizability)
	3.4 Atomic Execution

	4 Related Work
	5 Algorithm Overview
	5.1 Batch Execution
	5.2 A Key Combinatorial Property of Batches on Queues

	6 Algorithm Details
	6.1 Underlying Data Structures
	6.2 Algorithm Implementation

	7 Memory Management
	7.1 Lock-Free Manual Memory Management
	7.2 Applying the Optimistic Access Scheme to bq

	8 Correctness
	8.1 Linearizability Proof
	8.2 Lock-Freedom Proof

	9 Performance
	10 Avoid Using Double-Width CAS
	11 Conclusion
	References

