
LOFT: Lock-Free Transactional Data
Structures

Avner Elizarov





LOFT: Lock-Free Transactional Data
Structures

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Avner Elizarov

Submitted to the Senate of
the Technion — Israel Institute of Technology

Kislev 5779 Haifa November 2018





The research thesis was done under the supervision of Prof. Erez Petrank in the Computer Science
Department.

The generous financial support of the Technion is gratefully acknowledged.





Contents

Abstract 1

Abbreviations and Notations 2

1 Introduction 3

2 The LOFT Framework 5
2.1 LOFT Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 LOFT Data Structure API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Engine Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Programming Interface and Operation Dependencies . . . . . . . . . . . . . . . . 9

2.5 Abort Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Resolving Cyclic Helping conflicts 13

4 Related Work 15

5 A LOFT Set 17
5.1 LOFT API Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Auxiliary methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Adding Fast Skip-List Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.4 Additional Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5 Singleton Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 A LOFT Register 25

7 A LOFT Queue 28

i



8 Measurements 33
8.1 The LOFT Set Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 The LOFT Set Singleton Performance . . . . . . . . . . . . . . . . . . . . . . . . 36
8.3 The LOFT Queue Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Correctness 39
9.1 Linearizability Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2 The LOFT Set Linearizability Proof . . . . . . . . . . . . . . . . . . . . . . . . . 45

10 Conclusions 55

ii



List of Figures

2.1 Transaction Engine Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Cycle Resolving Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.1 Collection of three LOFT sets, each containing the head and tail nodes, and other items,
some currently labeled by a transaction. Grayed out nodes are items marked for deletion
(logically removed). The transactions appear next to the lists, with their status and operations.

18
5.2 The LOFT set API implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Auxiliary functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Singleton methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.1 LOFT register API implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.1 LOFT queue API implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 LOFT queue label methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 LOFT queue complete methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 LOFT queue un-label methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 LOFT queue aux methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8.1 Throughput and aborts graphs of transactions over sets for high contention scenario. . . . 34
8.2 Throughput and aborts graphs of transactions over sets for low contention scenario. . . . . 35
8.3 Throughput graphs of set singleton operations . Each row contains a different key range . . 36
8.4 Throughput graphs of transactions over queues. . . . . . . . . . . . . . . . . . . . . . 37

iii



iv



Abstract

Concurrent data structures are widely used in modern multi-core architectures, providing atomicity
(linearizability) for each concurrent operation. However, it is often desirable to execute several
operations on multiple data structures atomically. This requirement cannot be easily supported by
concurrent data structures, and requires the use of a locking mechanism or some sort of transactional
framework. We present a design of such a transactional framework supporting linearizable transactions
of multiple operations on multiple data structures in a lock-free manner. Our design is comprised
of concurrent lock-free data structures supporting a transactional API, and a transaction engine
responsible for executing operations as an atomic transaction. We employ a helping mechanism
to obtain lock-freedom, and an advanced lock-free contention management mechanism to mitigate
the effects of aborting transactions. When cyclic helping conflicts are detected, the contention
manager reorders the conflicting transactions execution allowing all transactions to complete with
minimal delay. Our design supports operation dependencies, i.e., results of operations can affect the
inputs of subsequent operations or their control flow. To exemplify this framework we implement
a transactional set using a skip-list, a transactional queue, and a transactional register. We present
an evaluation of the system showing that we outperform general software transactional memory,
and are competitive with lock-based transactional data structures, while providing an additional
(lock-free) progress guarantee.
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Abbreviations and Notations

LOFT — Lock-Free Transactional Data Structures
TDSL — Transactional Data Structures Libraries
TL2 — Transactional Locking 2
STM — Software Transactional Memory
HTM — Hardware Transactional Memory
API — Application Programming Interface
TX — Transaction
CAS — Compare and Swap
JIT — Just in Time Compiler
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Chapter 1

Introduction

Concurrent computing architectures have become widespread, raising the need for efficient and
scalable concurrent algorithms and data structures. Concurrent data structures are designed to
utilize all available cores, achieving good performance as well as consistent behavior in the form of
linearizability of operations [?]. Many implementations of concurrent data structures were proposed
in recent years (e.g., [?, ?, ?]), providing an abstraction of a sequential data structure that can
be accessed concurrently. However, it is often desirable to have several operations, operating on
multiple data structures appear to take effect simultaneously and atomically. Linearizability of a
single operation does not always suffice [?, ?, ?]. For example, moving an item from one queue to
another while maintaining the invariant that other threads always see it in exactly one queue cannot
be supported by a regular concurrent queue without costly synchronization.

To ensure the atomicity of such operations one can use a global lock to synchronize all accesses
to the data structures, but this approach limits concurrency significantly, hindering scalability. Furthermore,
the use of locks is susceptible to deadlocks, live locks, priority inversions, etc. A different approach
for obtaining atomicity is Transactional Memory [?]. Transactional memories allow the programmer
to specify a sequence of instructions that take effect atomically or not at all. Transactional Memories
can be implemented using specialized hardware (HTM) or using software (STM)[?, ?]. In these
implementations all reads and writes of a transaction logically appear to occur at a single instant
of time (or not at all), and intermediate states are not visible to other threads. This approach is
programmer-friendly, simplifying programming in a concurrent envirnoment. However, HTMs
are limited in transaction size and STMs carry a performance cost [?]. In both implementations,
conflicting accesses to data cause transactions to abort, and re-execute. The conflict detection
mechanism and the need to re-execute transactions create an overhead that reduces performance
and foils progress guarantees.

Recently, transactional data structure libraries [?, ?] were proposed to deal with some of the
above disadvantages. Transactional data structures limit transactions to only execute operations on
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data structures, but they provide transaction semantics for concurrent data structures, and support
atomic transactions containing sequences of data structure operations. Transactional data structures
use mechanisms that build on the specific implementations of these data structures to reduce both
the overhead and the abort rate.

In this work, we propose a framework for linearizable execution of transactions on data structures
called LOFT that supports full lock-freedom. In order to be used with LOFT, a lock-free data
structure has to be extended to support an adequate API that we define in this work. The proposed
LOFT mechanism executes LOFT transactions, which consist of LOFT data structures operations.
Transactions are always executed atomically. The LOFT engine extends and adapts a standard
helping mechanism to help concurrently executing transactions to complete. In addition, the LOFT

engine employs advanced contention management for handling cyclic conflicts. Cyclic conflicts
are detected dynamically and transactions are executed in an adequate order that avoids the conflict.
Next, we present an optimization for a common special case, where transactions contain a predetermined
control flow, and they contain operations whose operands are known upfront. We formalize this
special case and use reordering to fully avoid transaction aborts. Measurements show that this
optimization (when applicable) benefits performance significantly, due to avoided aborts.

We exemplify LOFT for transactions on sets, queues, and register objects. We implemented a
transactional abstract set, by extending a lock-free linked-list with the required LOFT API. We then
add a skip-list to allow fast indexing into the list elements. The obtained transactional set is efficient
and allows a transaction with various operations on multiple sets to be executed atomically. Next, we
implemented a transactional queue, and finally we added a transactional register. We implemented
and measured the LOFT sets against software transactional memory and the transactional data
structures of [?]. Results show that the LOFT mechanism performs better than STMs and transactional
data structures (for most scenarios). In contrast to lock-based transactional data structures and lock-
based STMs, LOFT provides a lock-free progress guarantee and an advanced contention management
mechanism for cyclic helping conflicts.

4



Chapter 2

The LOFT Framework

Our model for concurrent multi-threaded computation follows the linearizability model of [?]. In
particular, we assume an asynchronous shared memory system where a finite set of deterministic
threads communicate by executing atomic operations on shared variables.

We consider a collection of data structures 〈d1, d2, . . .〉 on which simultaneous operations will
be executed as a transaction. The collection is dynamic, i.e., data structures can be added or deleted
from the collection during the execution. All operations in a transaction t are to be executed at a
single instant in time, with no intermediate state of t visible to other threads. For each operation
a result is returned according to the data structure’s semantics. For example, consider two sets
set1, set2 which are meant to be identical, and contain exactly the same items. When performing
an operation on set1, we would like it to be performed on set2 as well s.t. no other thread can see
the results of the operation performed only on one of the sets. Such behavior can be achieved in a
lock-free manner using the LOFT framework.

In this Section we describe the LOFT engine and the underlying structures used by its data
structures (Section 2.1). We then present the API to be implemented by LOFT data structures
(Section 2.2). We continue with the engine implementation in Section 2.3. Finally, we expand
on our support of operation dependencies (Section 2.4), and how we can improve our algorithm
when operation dependencies do not exist (Section 2.5).

2.1 LOFT Engine

We propose the LOFT Engine which receives a list of data structure operations, executes them
atomically and returns a list indicating the result of each operation according to the data structure
semantics. Different transactions can overlap and perform changes to the data structures simultaneously.
Thus, when executing a transaction we must provide a guarantee of atomicity. Simply executing
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and committing the operations in a transaction one after the other is not possible since a concurrent
transaction may affect later operations resulting in an inconsistent state of the data structures. Hence,
a more complex mechanism should be implemented.

The basic idea of the proposed algorithm is to add a transaction label (descriptor), for each
operation in a transaction t, that is visible to conflicting operations. When another transaction tries
to label a conflicting operation, it detects t’s label, and helps finish t’s operations before proceeding
with its own. This helps to not let transactions manipulate the memory addresses relevant to
conflicting operations concurrently, and therefore avoids the need for validation prior to committing.
Thus, we avoid unwanted aborts or an inconsistent state of the data structures. We rely on the conflict
definition specified in [?] (two operations conflict if they do not commute). Namely, a label of an
operation must be visible to operations that do not commute so that they do not run concurrently.
Of course, labels may be further visible also to operations that commute with it and then excessive
conflict resolution may harm performance, but not foil correctness.

Intuitively, the presented design resembles a lock-free analogue of two-phase locking. The first
stage labels all of t’s operations, and the second stage completes the operations and removes the
labels. Contention is solved using a helping mechanism, and dead-locks (cycles) are solved using
contention management. Let us start by defining several structures used by the engine and the data
structures:

TNode: A TNode (Transaction Node) structure holds a pointer to its transaction t, the information
needed to complete or un-label a single Transactional operation op ∈ t, op’s result and op’s index
in the transaction. A LOFT data structure is responsible for creating a TNode for every operation
performed on it.

DSop: A DSop (Data Structure Operation) structure encapsulates the parameters of a single
operation op in a transaction t. This structure contains the data structure ds to perform the operation
on, the operation opName to perform on ds (e.g. Add, Remove for a set) and the parameters for
that operation (e.g. key for a set operation). Additionally, it specifies op’s dependencies on other
operations as explained in Section 2.4. This structure is given as input to the transaction engine, as
opposed to the TNode which is generated by the corresponding data structure.

Transaction Object: This is a descriptor object [?] that specifies a transaction t. It contains
the operations to execute (given by the user as DSops), a nodes array containing pointers to t’s
TNodes (all initialized to null), a status field, a synchronized index and an id. The status field
represents t’s current status. The status is Pending while t’s operations are being labeled. Upon
successful labeling of t’s operations its status is modified to Done, and it is exactly at this point that
t’s operations are considered logically committed and become visible to other threads. The status
can also be set to Replaced when a cyclic helping conflict is detected as explained in Section 3.
The index field represents the index of the next operation to label (initialized to 0), and the id field
is a unique identifier representing t’s age (smaller is older).
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2.2 LOFT Data Structure API

Let us describe the methods that need to be implemented by LOFT data structures. We later present
a specific implementation of a LOFT Set in Section 5, a LOFT Register in Section 6, and a LOFT

Queue in Section 7. The API consists of three methods:

labelOp: This method receives a transaction object t with status Pending, the index i of an
operation op in t’s list of operations, and a thread-local help stack containing pointers to transactions
this thread is currently helping. The labelOp method is responsible for ensuring the data structure
state relevant to op does not change until op is completed. It does that by adding a label to the data
structure that is visible to all other threads executing operations conflicting with op (e.g. changing
the value of a linked list node’s field). This label contains a pointer to op’s TNode and it allows
transactions executing conflicting operations to help complete t before proceeding.

The labelOp method is also responsible for returning a TNode, as specified above. A null value
is returned in case the labeling was unsuccessful and needs to be retried (for example, after helping
a conflicting transaction). If during the execution of this method a label of a conflicting operation
op′ belonging to a different transaction t′ is visible then a call to the help method to complete t′

must be placed. If op′ belongs to the same transaction t, then the label should be updated to indicate
that it belongs to several operations.

completeOp: This method receives a transaction object t with status Done, the index i of an
operation op ∈ t, and op’s TNode n (the output of labelOp). When a transactions t is marked as
Done it takes effect in the sense that other operations view all of t’s operations as already logically
executed. The completeOp method performs the ”physical” execution, completing operation execution
on the relevant data structure, using the information in n. It also updates op’s result in t’s transaction
object, and removes the label added for op so conflicting operations can proceed. We require that
completeOp be idempotent, i.e., that concurrent or consecutive invocations of completeOp with the
same parameters have the same effect on the data structure as a single invocation. This enables
different threads to help complete the transaction concurrently.

unlabelOp: This method receives a transaction object t with status Replaced, index i of
an operation op ∈ t, and a TNode n belonging to op (the output of labelOp). A transaction is
marked as Replaced when it is rescheduled to a later execution due to conflicts, and its operation
labels should be removed. The unlabelOp method is responsible to remove the label added for op
and revert any changes op performed on its data structure using the information in n. We require
unlabelOp to be idempotent as well.
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1: execute(operations):
2: t← new Transaction(operations)
3: t.status← Pending
4: executeTX(t, new Stack())
5: return t.getResults()

6: executeTX(t, helpStack)

7: helpStack.push(t)
8: while (i← t.index) < t.size do
9: if t.status = Pending

10: op← t.getOp(i)
11: n← op.ds.labelOp(t, i, helpStack)
12: if n 6= null
13: t.nodes[i].cas(null, n)
14: t.index.cas(i, i+ 1)

15: else
16: break . t is Done or Replaced
17: if t.status == Replaced
18: replace(t)
19: else
20: t.status← Done

21: completeTransaction(t)
22: helpStack.pop()

23: completeTransaction(t) :
24: for i← 0; i < t.size; i++ do
25: n← t.getNode(i)
26: op← t.getOp(i)
27: op.ds.completeOp(t, i, n)

28: help(t, n, helpStack) :
29: if n /∈ t.nodes . n is a duplicate TNode
30: op← t.getOp(n.opIndex)
31: op.ds.unlabelOp(t, n.opIndex, n)
32: return
33: if t ∈ helpStack
34: resolveCycle(t, helpStack)
35: return
36: executeTX(t, helpStack)

Figure 2.1: Transaction Engine Implementation

2.3 Engine Implementation

The LOFT engine implements the execute method which executes operations as an atomic transaction.
It is external to the data structure implementation, and assumes the above API implemented by the
data structures on which the operations should be performed. The execute method receives a list of
data structure operations parameters 〈DSop1, . . . , DSopm〉 to execute atomically, and it returns a
list containing the result of each operation. The operations are encapsulated in a transaction object
t that will be used for labeling. t’s status is initialized to Pending, indicating it is still in progress.
Next, executeTX is called with t and an empty thread-local helpStack, to execute t from its first
operation. The helpStack records all the transactions this thread is currently helping, and is used
to identify cyclic helping conflicts as explained in Section 3. When executeTX is complete, t’s
operations have completed and we return the results to the user.

The executeTX method is used to execute a transaction t, one operation after another starting
from t’s index field. This method receives a transaction t to execute and a thread-local helpStack.
The method adds t to its help stack and iterates over t’s remaining operations (assuming it is still
Pending). For each operation op, executeTX calls its data structure’s labelOp method. labelOp is
responsible for making op visible to other threads with conflicting operations and returns a TNode
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n. We save n in t’s nodes array (using a cas) and try to increase t’s index. If null is returned (instead
of a TNode), then the operation should be retried, and we do not increase t’s index.

When t is no longer Pending or all of its operation were labeled we check its status. If it is
Replaced, we call the replace method as described in Section 3. Otherwise, we set its status to
Done and call completeTransaction which iterates over all of t’s operations and calls completeOp
on each operation’s data structure to complete the operation and remove its label. Finally, we pop t

from the help stack as it was completed (Line 22).
The help method is called by a Thread T executing transaction t′ when it detects a label of

a conflicting transaction t and tries to complete it. help’s parameters are t’s transaction object,
the TNode n belonging to the conflicting operation and T ’s helpStack containing pointers to the
transaction it is currently helping. This method verifies that n is indeed saved in t’s nodes array. If
not, it was mistakenly labeled due to a benign race and should be unlabeled, so we call unlabelOp
of the relevant data structure and return. This scenario is described in Section 5.1. We also verify
that a helping cycle is not created. If one is created, we handle it as explained in 3. If all checks
passed we call executeTX .

2.4 Programming Interface and Operation Dependencies

Our current work does not focus on an adequate programming interface for specifying operations
in transactions. We focus on the engine that executes transactions in a lock-free manner and the
contention management mechanism. In our implementation we use a very simple solution in which
the input list of operations is written in the format of a list of DSop structures. We leave more
sophisticated software engineering constructions to future work.

Specifying operations with dependencies is even more challenging. For simplicity of presentation,
the pseudo code described in this work does not handle data dependencies between different operations
inside a transaction. However, our implementation does include support for such dependencies,
including conflicting operations inside the same transaction, by allowing operation parameters to
be determined by the results of previous operations. For example, moving data from one queue to
another can be defined as adding a dependency between a dequeue operation on one queue to an
enqueue operation executed on another queue. The data of the enqueue operation is unknown when
the transaction starts executing. It is revealed during the transaction execution.

To obtain dependent data for an operation in our implementation, we let the user specify a
function f which receives as input the results of all previous operations and outputs the parameters
of the subsequent operation. The required update to the proposed engine design includes calling the
function f before labeling an operation op to update its parameters.

The above can be extended to support control flow dependencies, which we have not implemented.
For example, deciding the number of operations to perform in the transaction based on the result
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of a previous operation cannot be specified using a list of DSop structures. However, it is possible
to support control flow dependencies by changing the input to the transaction engine. We can
replace the list of operations with a representation of the required logic as an object which supports:
(1) Retrieving the next operation to label based on previous results, (2) updating the result of
an operation after it was labeled (and thus advancing to the next operation). This object should
support concurrent accesses to it, and its internal logic must be deterministic. One can think of this
object as having an instruction pointer to the next operation, which is advanced when it receives
the operation’s result. When using such an object, control flow dependencies can be supported in
its internal logic. The extension to support control flow dependence and an adequate programming
interface is outside the scope of this work.

2.5 Abort Freedom

When the control flow of all transactions is known upfront (i.e., does not depend on results of
transaction operations), and when there are no data dependencies in the sense that all parameters
are also known in advance, it is possible to perform an optimization which sorts operations inside a
transaction. This sorted execution reordering guarantees that no cyclic helping conflicts occur and
full abort-freedom can be obtained. Measurements show that this optimization is highly beneficial
(when applicable). Let us formalize the requirements of LOFT transactions and LOFT data structures
that enable the sorting optimization and abort-freedom.

We call a set of transactions data-independent if the transactions control flow and operations
parameters do not depend on result of transaction operations. A set T of data-independent transactions
on a given set of LOFT data structures enables the sorting optimization if there exists a total order r
between transactional operations and a labeling mechanism l which satisfy the following conditions:

1. Conflicting operations reside in the same equivalence class of r. Specifically, for operations op1,
op2 if there exists a state of the data structures for which op1 conflicts with op2, then we call op1
and op2 potentially conflicting, and require op1 =r op2. For example, two inserts of the same
key to a set are (always) conflicting. On the other hand, a dequeue operation and an enqueue
operation to the same queue are potentially conflicting since they conflict only when the queue
is empty.

2. l’s labeling of an operation op1 ∈ t1 blocks the labeling of any potentially conflicting operation
op2 ∈ t2. For the LOFT engine, this means that t2 is forced to help t1 complete before executing.

3. Executing a transaction t ∈ T (in its original operations order) is equivalent to executing t when
its operations are re-ordered according to the relation r (while maintaining original order for
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operations that are in the same equivalence class). Meaning, the result for each operation is the
same, and the state of the data structure after executing the transaction is the same.

Let us exemplify the above on the set and the queue. Consider any given strict total order r1
on the data structures, and a total order r2 over operations on the same data structure, which places
potentially conflicting operations in the same equivalence class. We define the total order r in our
implementation as follows: op ≤r op′ ⇐⇒ either op <r1 op′ or op =r1 op′ and op ≤r2 op′. We
next describe r2 for the LOFT set and LOFT queue.

For the LOFT set described in Section 5, we define r2 as follows: op ≤r2 op′ ⇐⇒ op.key ≤
op′.key. When r is used with the labeling of operations described for the LOFT set, all above
conditions are met:

1. Two set operations potentially conflict if they operate on the same key in the same set, and indeed
such operations are placed in the same equivalence class of r.

2. The labelOp implementation presented in Section 5.1 does not allow transactions to concurrently
label a node with the same key.

3. Sorting a transaction by the above order on sets does not change the result of each operation and
the state of the set at the end of the transaction execution, because operations affect only a single
key in the set. Operations performed on the same key remain sorted in the original order, hence
their result remains unchanged.

For the LOFT queue we define all operations on the same queue to be in the same equivalence
class of r2. The labeling described in Section 7 does not meet the above requirement, as it allows
for enqueues of transactions t and dequeues of transaction t′ to execute concurrently, even though
they potentially conflict (as described above). Therefore, the sorting optimization cannot be applied.
However, it is not very difficult to design a labeling mechanism which labels both the head and the
tail of the queue, forbidding concurrency of enqueues and dequeues. Such a labeling mechanism
satisfies the above criteria and can enable the sorting optimization.

We next claim that transactions cannot create a helping cycle when their operations are sorted.
Let r be the total order and l the labeling mechanism which satisfy the above requirements. We
execute the operations in each transaction according to their order in r. Assume, in a way of
contradiction, that there exists a helping cycle t1, t2, . . . , tn, tn+1 = t1, s.t. each transaction ti
helps the next transaction in the cycle ti+1 due to a conflict when trying to label an operation
opi ∈ ti. ti helps ti+1 only if ti+1 earlier labeled an operation op′i which conflicts with opi.
This means that op′i was labeled prior to opi. Since operations are labeled one after the other,
then op′i must have been labeled prior to opi+1 because opi+1 cannot be labeled due to a conflict
with an operation op′i+1 ∈ ti+2. The operations inside a transaction are sorted, which means that
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op′i ≤r opi+1. If op′i =r opi+1, then they conflict, which suggests that op′i also conflicts with
op′i+1 (transitivity), however both op′i and op′i+1 are labeled, meaning they did not conflict. Thus,
op′i <r opi+1. Since opi and op′i are conflicting they must be in the same equivalence class,
hence opi =r op′i <r opi+1 for every i. From transitivity, we get that op1.key < opn.key, but
opn.key < opn+1.key = op1.key. Thus, our assumption that a helping cycle exists is contradicted.
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Chapter 3

Resolving Cyclic Helping conflicts

Existing transactional memory systems abort transactions whenever a conflict is detected, thus
having to re-execute the transaction or require the programmer to specify how to proceed following
an abort. Much work has been done to reduce the number of aborts [?, ?, ?, ?]. In all previous
works, as well as in this work, a transaction must be aborted when a dependency cycle occurs. In
this work we present a contention manager that dynamically identifies cyclic conflicts and resolves
such cycles by rescheduling one transaction, for each cyclic dependency in a way that guarantees
progress.

37: resolveCycle(t, helpStack) :
38: cycle← transactions above t in the stack including t
39: if a transaction in the cycle is ¬ Pending
40: return
41: nextT ← oldest transaction in cycle
42: oldT ← transaction above nextT in helpStack
43: newT ← new Transaction(oldT.ops)
44: oldT.nextT.cas(null, nextT )
45: oldT.newT.cas(null, newT )
46: oldT.status← Replaced
47: replace(oldT )

48: replace(t) :
49: for i← 0; i < t.size; i++ do
50: n← t.getNode(i)
51: op← t.getOp(i)
52: op.ds.unlabelOp](t, i, n)
53: executeTX(t.nextT, new Stack())
54: executeTX(t.newT, new Stack())

Figure 3.1: Cycle Resolving Mechanism

We proceed with the details. In our framework concurrent transactions may create a helping
cycle. For example, consider two transactions t1, t2, each executing the same two operations
op1, op2 in an opposite order. This can lead to a scenario in which t1 and t2 add a label for op1
and op2 respectively. Then, when t1 tries to execute op2 it notices t2’s label and must help t2 which
requires executing op1 and forms an endless helping loop. This happens since accesses to the Data
Structures and within a data structure are not sorted in advance. Sorting accesses is a standard
mechanism for avoiding deadlock or other cyclic conflicts. As explained in Section 2.5 we cannot
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always sort operations according to accesses because operations in transactions may depend on one
another and when they do, operands are not available upfront for sorting. Therefore, a mechanism
for resolving helping cycles is employed.

Our mechanism finds such cycles using a help stack containing pointers to the transaction
objects of the transactions a thread is currently helping. When a call to the help method with a
transaction object t is made, we validate that t does not exist in our help stack (line 33). If it
does, then a helping cycle exists and we must reschedule the execution of one of the transactions
in the cycle to let other transactions complete. The helping cycle consists of all transactions in the
helpStack starting from t. We first verify that all of the transactions in the cycle are still Pending,
as some other thread might have already resolved the cycle. If the cycle still exists, we find the
oldest transaction in the cycle (smallest id) denoted nextT , and attempt to help it complete first.
We reschedule the execution of the transaction oldT that nextT tried to help (the transaction above
it in the stack), and un-label oldT ’s operations. Thus, we remove the conflict which caused nextT

to help oldT , and now nextT can continue to execute. Before un-labeling oldT ’s operations, we
replace its current transaction object with a new transaction object newT with oldT ’s operations.
We save a pointer to newT and nextT in oldT . We then set oldT ’s status to Replaced, thus
informing all other threads helping oldT to call the replace operation which performs the following
protocol:

1. Remove the labels installed by oldT using the data structure’s unlabelOp method.

2. Call executeTX with nextT to complete the transaction nextT before re-labeling oldT ’s operations,
hence the conflict causing nextT to help oldT will not occur again.

3. Call executeTX with newT to re-label oldT ’s operations with a new transaction object.

By enforcing all threads helping nextT to perform the above protocol we ensure that nextT
or some older transaction (in a future helping cycle with nextT ) completes and transactions don’t
remain stuck. The reason for replacing oldT ’s transaction object is to enable all helping threads
to distinguish between operations labeled prior to its re-labeling and operations labeled in the
rescheduled execution.
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Chapter 4

Related Work

Much work has been done in the field of software transactions (e.g. [?, ?, ?, ?]). These came to
replace (or integrate with) hardware transactional memory, and provide an interface for composing
several operations atomically. A typical implementation of software transactional memory maintains
a read-set (addresses accessed during the transaction and their values) and a write-set (addresses
to be updated and their new values) for all operations performed during the transaction. A locking
mechanism is employed to lock all addresses in these sets and the content of the read-set is validated
to not have changed. If this validation succeeds, then the transaction commits and performs the
writes in the write-set. Otherwise, the transaction is aborted and has to be retried. Under contention,
this basic approach induces aborts and may damage performance, sometimes drastically. The focus
of this work is to improve performance, eliminate aborts, and provide a progress guarantee to
transactions. This is done at the cost of limiting transaction’s capabilities to only execute data
structure operations.

There exist previous attempts to implement transactional data structures libraries. Transactional
Boosting [?] proposed a methodology for transforming highly concurrent linearizable objects into
transactional objects. This transformation enables concurrent commutative method invocations on
transactional objects to execute without aborting the transaction. Other solutions [?, ?] incorporate
the construction of a concurrent data structure and an interface providing the ability to execute an
atomic sequence of operations (add, remove or contains) on them. This requires some changes to
the underlying data structure code. These implementations are not lock-free and transactions can be
aborted.

A recent paper [?] also proposes lock-free support for transactions performed on linked data
structures in an attempt to eliminate transaction aborts. However, their mechanism is not abort-free.
Transactions abort when a cyclic helping conflict is detected. Also, in their implementation each
transaction must complete all insert and remove operations of the set successfully according to the
set semantics. Otherwise, the transaction aborts. This always-succeeding transaction framework

15



can be limiting when a programmer does not want to fail the entire transaction when one operation
is unsuccessful. For example, having an add operation fail means that an item with the same
key is already present, and in many cases this outcome is sufficient for the programmer. Our
implementation can easily support this always-succeeding semantics by adding a Failed option
for a transaction’s status, which will act similarly to Replaced, only without the need to re-label
operations. In Addition, the mechanism of [?] is only implemented on lists, it does not support
singleton operations and operation dependencies.

Finally, there is a subtle bug in the algorithm proposed in [?], which goes as follows. Consider
the scenario in which a thread T1 helps perform an add operation belonging to a transaction
executed by another thread T2. Thread T1 becomes idle right before it adds (CAS) the new node n

between its pred and succ, and T2 in that time performs the add operation itself (by adding his own
new node n′) and then completes the transaction. Immediately thereafter, another transaction kicks
in and performs a remove of n′. Finally, T1 awakens and performs the intended CAS successfully,
as both pred and succ remain in the data structure and pred’s next pointer is again set to succ. It
then completes the transaction and n is considered logically in the list. This means that the add

operation was performed twice for the same transaction, thus violating the correctness of the data
structure.

16



Chapter 5

A LOFT Set

In this section we present an implementation of a LOFT set. Each item i in a set has a unique key ki
and some data. There exists a total order < on all possible keys such that for any two keys ki 6= k′i
either ki < k′i or k′i < ki. We also assume that there exist two special keys −∞ and∞ which are
respectively smaller (larger) than all possible keys. The LOFT set supports the following operations:
(1) add for adding a new item, (2) remove for removing an item, (3) contains for checking existence
of an item, and (4) get for retrieving an item’s data.

We implement the LOFT set as a simple lock-free concurrent (ordered) linked-list, based on
Harris’s non-blocking linked list implementation [?]. We design this list carefully to maintain
correctness and Linearizability, which ensures all operations in a transaction take effect at once in
the presence of concurrently executing transactions and singleton operations (such as add, remove,
etc). In addition, we add a skip-list index on top of each linked list for faster lookup time. The
skip-list is implemented in a more relaxed manner that does not always hold an updated view of all
items in the set. This inaccuracy may increase the search time but will never lead to an incorrect
result of an operation. We start by describing the linked-list implementation and further elaborate
on the indexing skip-list and why it is safe to relax its coordination with the linked-list in Section
5.3.

Similar to Harris [?], a node in the list contains an item’s data, key, and a next pointer to
the following node in the list. To support the remove operation, the next pointer also contains a
marked boolean flag. The pointer and boolean flag can be updated together or apart from each
other, atomically. A node is considered to be (logically) removed from the set if its marked flag is
turned on. The list contains two special unlabeled dummy nodes - head and tail, with keys−∞ and
∞ respectively. The list starts with the head node and ends with the tail node. These nodes are not
considered data structure items, and therefore cannot be removed from the list. We next extend his
list to support LOFT.

We view two set operations as conflicting when they operate on the same key. This expands the

17



non-commutative definition of [?] which only considers two set operations as conflicting when at
least one is a write operation (e.g. add, remove). In our implementation two read operations on the
same key (e.g. contains, get) are also treated as conflicting. 1 Thus, the labeling of an operation
op in a transaction t is implemented by adding a special transaction descriptor to a node containing
op’s key. If no such node exists, e.g., during a successful add operation or an unsuccessful remove
operation, then a new node with op’s key is allocated and added in its correct location in the list.
The descriptor contains a pointer to t’s transaction object, op’s result and op’s index. For brevity,
the pseudo code presented in this section does not handle multiple operations on the same key in
the same transaction. However, our implementation does support this. These operations need to
label the same node, so we add a flag to the transaction descriptor stating that several operations are
performed on this node. When completing or un-labeling the operations we calculate the new state
of the node based on all operations performed on it in their original order.

Recall that a TNode structure holds all the information required for completing or un-labeling
an operation, op’s result, and op’s index. For the list, we are able to save space by keeping all this
information on the actual list node. This is an optimization performed to avoid allocating a TNode
for each operation. We store op’s index and result in the list node’s transaction descriptor. As for the
information needed for completing or un-labeling op, we require only the list node’s address and its
data field. Thus, a pointer to a list node serves as pointer to the TNode.

Figure 5.1: Collection of three LOFT sets, each containing the head and tail nodes, and other items, some
currently labeled by a transaction. Grayed out nodes are items marked for deletion (logically removed). The
transactions appear next to the lists, with their status and operations.

In Figure 5.1 we present an example of three LOFT sets. The arrows represent the next references.
Each item has a transaction descriptor, possibly empty, which contains a pointer to a transaction and
the result of the transaction’s operation on the node (Xfor a successful operation and X for a failed
one). Transaction T1 is Done, and T2 is still Pending. T1 successfully removed the node with key
21 in L3 and failed to add an item with key 1 to L1, since an item with that key already exists. T1’s

1These additional conflict resolutions reduce performance, but we did not see a simple correct, and efficient way to
avoid them for the LOFT set design.
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remove operation was both labeled and completed. However, T1’s add operation was only labeled
and not completed. This completion can be accomplished by any helping thread. T2 labeled its first
operation, an unsuccessful add of key 15 to L3, but did not label its second operation yet.

In what follows we describe the LOFT set algorithm. We present the implementation of the
required API in Section 5.1 and the auxiliary methods used to implement it (Section 5.2). We then
introduce a skip-list index used for faster lookup time (Section 5.3), and present further optimizations
in Section 5.4.

5.1 LOFT API Implementation

55: labelOp(t, i, helpStack) :
56: key, opName, data← t.getOp(i)
57: shouldKeyExist← (opName 6= Add)
58: pred, n← find(key)
59: if n.key = key . Item with key possibly exists
60: return labelNode(t, n, i,
61: shouldKeyExist, helpStack)
62: else . No item with key exists
63: res← ¬shouldKeyExist . Update result
64: desc← new Descriptor(t, i, res)
65: newNode← new Node(key, data, desc)
66: newNode.next← n
67: if pred.next.cas(n, newNode, false, false)

68: return newNode . newNode added
69: return null

70: unlabelOp(t, i, n) :
71: if n = null
72: return
73: DSop← t.getOp(i)
74: res← n.res
75: desc← n.transaction
76: if desc = null ∨ desc.t 6= t
77: return . Already Unlabeled
78: existed← (DSop.opName = Add ∧ ¬res)
79: ∨(DSop.opName 6= Add ∧ res)
80: if existed . n already existed
81: n.transaction.cas(desc, null) . Un-label
82: else . n was added by t
83: mark n.next
84: return

85: completeOp(t, i, n) :
86: opName← t.getOp(i).name
87: res← n.res
88: data← n.data
89: desc← n.transaction
90: if desc = null ∨ desc.t 6= t
91: return . Already Completed
92: mark← (opName = Remove) ∨
93: (opName ∈ {Contains, Get} ∧ ¬ res )
94: if mark
95: mark n.next . remove n
96: else . Clear label
97: n.transaction.cas(desc, null)

98: if opName = Get
99: t.setResult(i, data)
100: else
101: t.setResult(i, res)

Figure 5.2: The LOFT set API implementation
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LabelOp: The labelOp method receives a transaction t, index i of an operation op in t,
and a helpStack. It then extracts op’s key, data and the name of the operation to perform on
the item (e.g. add, remove). This method tries to label an existing node containing key with a
transaction descriptor pointing to t or adds such a node if a node with key does not exist. A variable
shouldKeyExist is set to true if op is not an add operation, meaning op expects that a node with
op.key exists in the list. A call to find is executed in order to get the predecessor pred of the node
containing key and pred’s successor n s.t. n.key ≥ key. If n.key = key, then it is possible that a
node with key is already present. We call the labelNode method to label n and return labelNode’s
result (n if n was successfully labeled or null to retry).

If n.key > key (Line 62), then no node containing key exists, so we add a new node newNode

between pred and n. This node holds op’s data, and is labeled with a new Transaction Descriptor
pointing to t and result set to be the opposite of shouldKeyExist (since a node containing key does not
exist). We set newNode’s next pointer to n, and try to insert it using a cas. If the cas is successful,
we return newNode. Otherwise, the data structure state changed, and we return null to retry the
operation.

Duplicate Labels It may happen that more than one node gets labeled for the same operation op

in a transaction t. This is possible when different threads try to label op concurrently on different
nodes, e.g. both allocate a new node for insertion. However, in our algorithm only one is actually
used for labeling op. This is the first node added to t’s nodes array using a cas instruction (Line
13). All other nodes are not added to the nodes array and do not become part of the transaction.
Hence, we remove their label (Line 31), ensuring that op will only be executed once. An example of
such a scenario is when two threads T1 and T2 execute the same Add operation op of a transaction
t and try to perform the cas operation in Line 67. Suppose T1 succeeds and T2 is suspended by
the scheduler before completing the cas operation. Meanwhile, the transaction t is completed and
a subsequent transaction executes a remove operation on the same node. T2 is now scheduled to
continue and successfully completes the cas operation between pred and n. Thus, T2’s inserted
node is labeled by op of transaction t, that has already completed. This scenario is then identified
when another thread notices this label and starts the helping procedure. It discovers that this node
is not referenced by the nodes array and then it reverts the operation op on this node (Line 31).

CompleteOp: The completeOp method is responsible for completing a transaction t’s operation
op on a single node, and is called only after t’s state is Done. completeOp’s parameters are a node
n, a transaction t, and op’s index i. We first verify that n is still labeled by t. If not, we return as op
was already completed. To complete op, we either need to remove n from the set (marking its next
pointer) or clear its label (its transaction descriptor). We remove n in the following two cases: (1)
op is remove, so we either complete a successful remove operation or remove a dummy node in case
of an unsuccessful remove operation; (2) res is false and opName ∈ {contains, get}, so we remove

20



a dummy node in an unsuccessful contains or get operation. We do not un-label a marked node as it
will be physically removed by a later find operation, making it inaccessible to other transactions. In
all other cases we un-label n by clearing its transaction descriptor, thus allowing it to be manipulated
by other transactions.

UnlabelOp: The unlabelOp method is responsible for removing the label of a transaction’s
operation op, and is called only after t’s state is Replaced. unlabelOp’s parameters are a node n,
a transaction t, and op’s index i. As in completeOp we verify that n is still labeled with t. If not,
we return as n was already unlabeled. To un-label op we either need to remove n’s label if n was
already in the list prior to t or otherwise remove the node n. n was already in the list prior to t in the
following two cases: (1) op’s result was false and its operation was Add (an add operation fails only
if a node with the same key already exists). (2) op’s result was true and its operation was not Add
(i.e. remove, cotains or get). These operations succeed only if a node with the same key exists in
the set. In all other cases, n was inserted by t and it should be removed by marking n’s next pointer.

5.2 Auxiliary methods

102: find(key) :
103: retry: . Starting a new search
104: pred← head
105: n← pred.next
106: while true do . While item not yet found
107: succ,mark ← n.next
108: if mark
109: pred.next.cas(n, succ, false, false)
110: goto retry . List changed so retry
111: if n.key ≥ key
112: return pred, n

113: pred← n
114: n← succ

115: labelNode(t, n, i, shouldKeyExist, helpStack):
116: desc← n.transaction
117: if desc 6= null . Another transaction
118: if desc.t = removeT
119: mark n.next . Complete remove
120: return null . n removed so retry
121: if desc.t = t
122: return n . Op already executed
123: help(desc.t, n, helpStack)
124: return null . Retry
125: if ¬ shouldKeyExist ∧(¬n.next.isMarked())
126: . Item exists
127: desc← new Descriptor(t, i, false)
128: if n.transaction.cas(null, desc)
129: return n . Successfully labeled n

130: desc← new Descriptor(t, i, true)
131: if shouldKeyExist ∧ n.transaction.cas(null,desc)
132: return n . Successfully labeled n

133: return null . Retry

Figure 5.3: Auxiliary functions

Find: The find method receives a key key and returns two items, pred and n, such that (1)
pred.key < key, (2) n.key ≥ key and (3) n is pred’s successor in the data structure. The method
starts its traversal from the head node. The pred and n references are advanced throughout the
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data structure, until the relevant two items are found and returned (Line 112). In addition to finding
the requested item, the find method also helps physically remove items that are logically removed
(next pointer is marked). If n is unmarked, the traversal continues. Otherwise, we try to physically
remove n by performing a cas of (Line 109) pred’s successor to succ (n’s successor). We then start
the traversal again from head as the state of the data structure has changed.

LabelNode: The labelNode method receives a transaction t, a list node n, a helpStack, an
operation’s index i and a boolean shouldKeyExist. It returns a node labeled with transaction t. If
n’s state in the list is inconclusive it returns null to retry. We check that n is not labeled with another
transaction by checking its transaction descriptor desc. If it is non-null and belongs to the singleton
remove operation (explained in Section 5.5), then n is in the process of being removed. We mark
n so it will be physically unlinked from the data structure and return null to retry. If n is already
labeled with t, then another thread executed this operation on n, as part of t so we return n. If n is
labeled by a different transaction desc.t, then we help desc.t complete (Line 123), and return null
to retry.

If n is unlabeled we try to label it. If n is not expected to exist in the set (¬shouldKeyExist)
and its next pointer is not marked then the operation is unsuccessful. We allocate a transaction
descriptor with a false result and try to label n (Line 128), Upon success we return n. If n is
marked, then we return null in Line 133, assuming it will be unlinked by a consequent find method.
If n is expected to exist in the set, and we successfully label it with a descriptor desc pointing
to t (Line 131), then it is not marked (since every marked node remains labeled forever with the
transaction that marked it), and we can return it. This means that the operation was successful so
desc’s result is true. If the labeling fails, then n is already labeled, and we return null to retry.

5.3 Adding Fast Skip-List Indexing

Each operation executed on the LOFT set generates a call to the find procedure. This procedure
finds a predecessor of the node with the required key by traversing the list from its head, one node
at a time. This traversal is extremely costly when the lists are long, and we would like to start the
traversal closer to the required node. To do that, we add a skip-list index to the set similarly to [?, ?],
mapping keys to list nodes. This mechanism will be used by the find method to retrieve some close
preceding node to the required node much faster.

The indexing skip list does not necessarily represent the exact content of the set, as it is lazily
updated by threads after completing a transaction. This does not hurt the algorithm as the find
method only needs a valid predecessor of the required node. Upon completing a transaction, every
successful add and remove operation in the transaction is performed on the index with the relevant
node and key. Successful singleton add and remove operations also propagate their operation to the
index.
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5.4 Additional Optimization

When implementing the transactional set we performed an additional optimization for improved
performance. Similar to Doug Lea’s Concurrent Skip List Map implementation in Java we replaced
the mark bits with Marker Nodes, for marking logically deleted nodes. When deleting a node,
instead of marking its next pointer, we splice in a Marker Node. Eliminating marker bit masking or
the use of java’s Atomic Markable Reference class achieves faster traversal time.

5.5 Singleton Methods

134: add(key, data) :
135: while true do
136: pred, n← find(key)
137: if n.key = key
138: desc← n.transaction
139: if desc 6= null . Another transaction
140: if desc.t = removeT
141: mark n.next . Complete

singleton remove
142: else
143: help(desc.t, n, new Stack())

144: else if ¬n.next.isMarked()
145: return false . Item already exists
146: else
147: newNode← new Node(key, data, null)
148: newNode.next← n
149: if pred.next.cas(n, newNode, false, false)
150: return true . Successfully added item

151: remove(key) :
152: while true do
153: pred, n← find(key, this)
154: if n.key = key
155: res ←

labelNode(removeT, key, n, true)
156: if res = n . Labeled n with removeT
157: mark n; . Logically remove n
158: return true
159: else . key doesn’t exist
160: return false . Failed to remove

161: contains(key) :
162: return get(key) 6= null

163: get(key) :
164: while true do
165: pred, n← find(key)
166: if n.key 6= key . key doesn’t exist
167: return null
168: data← n.data
169: desc← n.transaction
170: if desc = null . n is unlabeled
171: return data
172: t← desc.t
173: if t = removeT
174: return null
175: if t.status = Pending
176: op← t.getOp(n.opIndex)
177: exist← (op = Add ∧ ¬n.res)
178: ∨(op 6= Add ∧ n.res)
179: return exist ? data : null
180: else
181: help(n, t, new Stack())
182: deleted← n.next.isMarked()
183: return deleted ? null : data

Figure 5.4: Singleton methods

In addition to supporting transactions, our implementation enables the use of singleton methods
(e.g. add, remove) on the data structure. These methods perform a single non-transactional
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operation and are transaction-aware, meaning they do not interrupt ongoing transactions. The
singleton methods are lock-free, however the get and contains methods can be made wait-free if
they do not help with the physical deletion of nodes (in the find method). These singleton methods
do not incur the overhead of creating a transaction object, however when needed they do help
transactions. To support the remove method we use a simplified shared transaction object removeT
to notify transactions that this node is currently being removed by a singleton remove operation.
Once a node is labeled by removeT it is logically deleted from the data structure, and will be marked
by other operations and later physically removed.
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Chapter 6

A LOFT Register

A transactional Register supports transactional read and write operations on a single memory location.
Operations on the register are restricted to be inside a transaction. A Transactional Register has a
pointer r to a Register. The Register itself also serves as a TNode structure, and it consists of the
following fields: (1) a transaction pointer (the label), (2) the previous data stored in it prev, which
is used to cancel an operation, (3) the current data stored in it data, (4) the index of the transactional
operation performed on it i and (5) a boolean isF irst stating if the register was created by the first
operation in the transaction (information needed for un-labeling). We define any two operations
on the register as conflicting, hence expanding the non-commutative definition of [?] which only
requires that read and write operations conflict. 1 We implement the labeling of an operation
in transaction t by pointing r to a new register with a transaction field set to t. We describe the
register’s implementation of the transactional API:

labelOp(t, i, helpStack): This method labels an operation op with index i in transaction t. We
first check the transaction label of the register reg. If it belongs to a different transaction then help is
called for that transaction and we return null to retry. If it belongs to t then we verify that op wasn’t
already labeled by checking reg’s index. If it is larger than i, then a later operation was already
labeled, which means that op was labeled as well and we return null to continue. If reg.index = i

then op is currently labeled and we return reg as its TNode. If all previous validations passed, we
create a new Register labeled with t. We set its data field to the operation’s new data for a write
operation or the data in the current register for a read operation. prev is initialized to the data in
the current register and i is set to the operation’s index. Finally, we try to cas r to point to the new
register we created and if successful return it.

unlabelOp(t, i, n): We validate that r points to a Register labeled with t. If so, and n belongs
to the first operation in t performed on the register (which holds the data prior to t’s labeling), then

1These additional conflict resolutions reduce performance, but we did not see a simple correct, and efficient way to
avoid them for the LOFT register design.
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184: labelOp(t, i, helpStack) :
185: reg ← r
186: opName, data← t.getOp(i)
187: if reg.t 6= null ∧ reg.t 6= t
188: help(t, reg, , helpStack)
189: return null
190: if reg.t = t ∧ reg.index > i
191: return null . later operation already labeled
192: if reg.t = t ∧ reg.index = i
193: return reg . operation is already labeled
194: firstOp← reg.t 6= t . 1st operation in t on r
195: prev ← reg.data
196: if opName = Read
197: data← reg.data
198: else . Write operation
199: data← op.data

200: newReg ←
new Register(data, prev, index, t, firstsOp)

201: if r.cas(reg, newReg)
202: return newReg

203: return null

204: unlabelOp(t, i, n) :
205: if n = null
206: return
207: reg ← r
208: if reg.t 6= t
209: return
210: if n.firstOp
211: prev ← n.prev
212: data← n.prev
213: unlabeledReg ←

new Register(data, prev,−1, null, false)
214: r.cas(reg, unlabeledReg)

215: completeOp(t, i, n) :
216: reg ← r
217: if reg.t 6= t
218: return
219: t.setResult(i, n.data)
220: if n == reg
221: reg.t← null . remove label

Figure 6.1: LOFT register API implementation

we create a new unlabeled Register. We initialize its data and prev fields to n.prev, and try to cas
r to this new Register.
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completeOp(t, i, n): We validate that r points to n. If so, we create a new unlabeled Register
and initialize its data field to n.data and prev field to null. We then cas r to this new Register.
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Chapter 7

A LOFT Queue

Our Transactional Queue is based on Michael-Scott’s concurrent lock-free queue [?] implemented
as a linked list and two pointers: head and tail. tail is a pointer to the last node in the queue and
head is a pointer to a Head structure. This structure is composed of (1) a pointer to a node preceding
the first node in the queue (initialized with a dummy node), and (2) a pointer to a transaction
object of a dequeuing transaction (or null, if no such transaction exists). Each node in the list is
implemented similarly to nodes in the LOFT Set implementation (excluding the mark bit on the next
pointer). A node contains a transaction descriptor (label) and it also serves as a TNode structure.
The queue supports the enqueue and dequeue operations. We define two operations as conflicting if
they are both dequeues or both enqueues and define an enqueue operation and a dequeue operation
to be conflicting when the queue is empty. This fits the non-commutative definition of [?] which
determines conflicting operations to be operations that do not commute.

Enqueue operations in a transaction t add labeled nodes to the end of the list (successors of
the node tail points to). This allows concurrent transactions to help t before performing their own
enqueue operations. The tail pointer is updated only after t’s status is set to Done. Dequeue
operations in a transaction t verify that head is labeled with t (its transaction pointer points to t) and
if so, they start traversing the list looking to label the first unlabeled node (was not dequeued by a
previous operation). Concurrent transactions notice head’s label and help t finish before performing
their own dequeues. An important invariant of the queue is that the node pointed to by tail is a
successor of the node pointed to by head. We now describe the queue’s implementation of the
LOFT API:

labelOp(t,i,helpStack): For an enqueue operation op, the labelEnq procedure tries to add the
new item as the last node in the linked list. This is done by verifying that tail.next is null or is labeled
by t. If so, labelOp traverses through the next pointers to the end of the list, adds a new node n

containing the new item and returns n. n is labeled with t, and its result is set to true since the
enqueue was successful. It is possible that op was already labeled, which is detected by checking
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222: labelOp(t, i, helpStack) :
223: op← t.getOp(i)
224: if op.name = Enqueue
225: return labelEnq(t, i, op, helpStack)
226: else
227: return labelDeq(t, i, op, helpStack)

228: unlabelOp(t, i, n) :
op← t.getOp(i)

229: if n = null
230: if op.name = Dequeue
231: first← head
232: newHead← first.node
233: if first.t = t . Operation only labeled

head
234: head.cas(first, new Head(newHead, null))

235: return
236: if op.name = Enqueue
237: return unlabelEnq(t, i, op)
238: else
239: return unlabelDeq(t, i, op)

240: completeOp(t, i, n) :
241: if op.name = Enqueue
242: return completeEnq(t, i, n)
243: else
244: return completeDeq(t, i, n)

Figure 7.1: LOFT queue API implementation

the index field found in the transaction descriptor of every labeled node. If an index larger/equal to
i is detected, then op was already labeled. If a different transaction is currently enqueuing, i.e. the
tail.next is labeled with a different transaction, we help it complete and return null to retry.

For a dequeue operation the labelDeq operation tries to label head with a pointer to the transaction
t. If it was already labeled by a different transaction t′ we help t′ complete and return null to retry.
If we successfully label head or it was already labeled with t we traverse the list searching for the
first unlabeled node n. We label n with a transaction descriptor pointing to t and result set to true

(marking it as a successful dequeue) and return n. If all nodes in the queue are labeled, we find
the first node enqueued by t and update its label with the index of the dequeue operation. If t did
not enqueue nodes or all enqueued nodes were already dequeued by preceding dequeues, then this
dequeue is a (failing) dequeue on an empty queue that should return null. To reflect this, we add a
dummy node at the end of the list. The dummy node is labeled with t and its result is set to false

(no item to dequeue). We then return dummy. By inserting the dummy node to the list we prevent
concurrent enqueues from executing so that we can guarantee the linearizability of this unsuccessful
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dequeue. Otherwise, a concurrent transaction can enqueue items and complete before t completes,
thus changing the result of t’s dequeue. For the same reason, if during the traversal we encounter a
concurrent enqueue by a different transaction we help it complete and return null to retry.

245: labelEnq(t, i, op, helpStack) :
246: last← tail
247: next← last.next
248: if last 6= tail ∨ t.status 6= Pending
249: return null
250: if next = null . No transaction is enqueuing
251: return addNode(t, i, op.data, last, true)

252: nextT ← next.t
253: if nextT = null
254: tail.cas(last, next) . Fix tail
255: return null
256: if nextT.t 6= t . Another transaction enqueuing
257: help(nextT.t, next, helpStack)
258: return null
259: while next 6= null do . Find last enqueued node
260: last← next
261: next← next.next
262: lastDesc← last.t
263: if lastDesc = null ∨ lastDesc.opIndex > i
264: . Operation already labeled
265: return null
266: if lastDesc.t 6= t . Another transaction
267: help(lastDesc.t, last, helpStack)
268: return null
269: if lastDesc.opIndex = i . Operation labeled
270: return last
271: return addNode(t, i, op.data, last, true) . Add

labeled node to end of queue

272: labelDeq(t, i, op, helpStack) :
273: first← head
274: if t.status 6= Pending
275: return null
276: if first.t = null
277: newHead← new Head(first.node, t)
278: if ¬head.cas(first, newHead) . Label
279: return null
280: first← newHead

281: if first.t 6= t . Another transaction
282: help(first.t, null, helpStack)
283: return null
284: prev ← first.node
285: next← prev.next
286: while next 6= null do . Look for node
287: desc← next.t
288: if desc = null . Found node to dequeue
289: nextDesc← new Desc(t, i, true)
290: if next.t.cas(null, nextDesc)
291: return next . Labeled node
292: return null . Retry
293: if desc.t 6= t . Another transaction
294: help(desc.t, next, helpStack)
295: return null . Retry
296: nextOp← t.getOp(desc.i).name
297: if nextOp = Dequeue
298: if desc.i > i
299: return null
300: if desc.i = i
301: return next
302: if nextOp = Enqueue
303: . Override existing descriptor
304: desc.i← i
305: return next
306: prev ← next . Keep looking
307: next← prev.next

308: return addNode(t, i, null, last, false)
309: . Empty queue - enqueue dummy node

Figure 7.2: LOFT queue label methods

completeOp(n,t,DSop): For an enqueue operation the completeEnq method fixes the tail to
point to the node n given as parameter when n is the last node enqueued by t. It then removes the
labels of all nodes enqueued by t. Thus, these nodes become visible to subsequent transactions. The
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310: completeEnq(t, i, n) :
311: desc← n.t
312: if desc = null ∨ desc.t 6= t
313: return
314: if desc.i 6= i ∨ n.data = null
315: . Overridden enqueue or dummy node
316: fixTail(n)
317: return
318: last← tail
319: if isTailCorrect(last, t) . Tail updated
320: n.t.cas(desc, null) . Clear n’s label
321: return
322: if n.next = null . n is last enqueued node
323: tail.cas(last, n) . Update tail to n
324: next← last.next
325: while next 6= null ∧ next 6= n.next do
326: . Iterate from previous tail to new one
327: desc← next.t
328: if desc 6= null ∧ desc.t = t
329: ∧¬isDummy(next)
330: next.t.cas(desc, null)
331: . Clear label
332: next← next.next

333: completeDeq(t, i, n) :
334: t.setResult(i, n.data)
335: first← head
336: if isDummy(n)
337: completeEnq(t, i, n)

338: if first.t = null ∨ first.t 6= t . Head unlabeled
339: return
340: if isLastDequeuedNode(n, t)
341: newHead← new Head(first.node, null)
342: head.cas(first, newHead) . Update head

Figure 7.3: LOFT queue complete methods

tail pointer can also be updated If n is an enqueued dummy node or a node later dequeued. This is
done to preserver the invariant that tail is a successor of head. Otherwise, we might advance head
to be a successor of tail (in completeDeq). When all enqueue operations of t are completed, then
the tail points to the last node enqueued by t as expected.

For a dequeue operation completeOp only needs to update head to point to the last node
dequeued by t, which makes all dequeued nodes inaccessible from head. This update happens only
when n is the last TNode dequeued by t (otherwise, completeOp does nothing). If so, we cas head
to a new Head which points to n and has an empty transaction pointer (no label). We do not clear
the labels (transaction descriptors) of dequeued nodes as they are no longer accessible from head.
A special case where completeOp has to perform another action even when n is not necessarily the
last node dequeued by t is when n is a dummy node. A dummy node is inserted at the end of the list
in labelOp after the tail node. Thus, when we later update head it will point to a node which is a
successor of tail, hence the invariant that tail is a predecessor of head is not preserved. To preserve
the invariant we fix the tail by calling completeEnq which points tail to n (Line 316).

unlabelOp(n,t,DSop): For an enqueue operation the unlabelEnq method needs to remove the
nodes enqueued after the tail. It cases tail.next to null (assuming tail.next is labeled by t). Thus,
all the nodes enqueued by the transaction are no longer accessible and the list returns to the same
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343: unlabelEnq(t, i, n) :
344: desc← n.t
345: if desc = null ∨ desc.t 6= t
346: return
347: last← tail
348: next← tail.next
349: if tail 6= last
350: return
351: nextDesc← next.t
352: if nextDesc = null
353: return
354: if nextDesc.t = t
355: last.next.cas(next, null)
356: . Remove all of t’s enqueued nodes

357: unlabelDeq(t, i, n) :
358: if n.data = null . Dummy node
359: unlabelEnq(t, i, n)
360: desc← n.t
361: else if desc 6= null ∧ desc.t = t
362: n.t.cas(desc, null) . remove n ’s label
363: first← head
364: newHead← first.node
365: if first.t 6= t
366: return
367: if isLastDequeuedNode(n, t)
368: head.cas(first, newHead(newHead, null))
369: . clear head label

Figure 7.4: LOFT queue un-label methods

state as before the transaction.
To un-label t’s dequeue operations we need to remove all labels added to the head node and

other existing nodes by t. So, the unlabelDeq removes the label of the node n given as parameter.
If n is also the last node labeled by a dequeue operation in t, we cas head to a new Head pointing
to the same node with an empty transaction label (clearing its label). When n is the last node
dequeued then it is guaranteed that all previous dequeues were already unlabeled and so clearing
head’s label allows for subsequent transactions to perform their dequeue operations. Once again
a special consideration should be given to dummy nodes. When n is a dummy node we call
unlabelEnq which physically removes it from the list (by casing tail.next to null) rather than un-
labeling it, as it should not be in the queue.

370: isDummy(n) :
371: return n.data = null

372: isTailCorrect(last, t) :
373: next← last.next
374: if next = null
375: return true
376: desc← next.desc
377: if desc = null ∨ desc.t 6= t
378: return true

379: isLastDequeuedNode(n, t) :
380: next← n.next
381: if next = null
382: return true
383: desc← next.desc
384: if desc = null ∨ desc.t 6= t
385: return true
386: op← t.getOp(desc.i)
387: if op.name = Enqueue
388: return true
389: return false

Figure 7.5: LOFT queue aux methods
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Chapter 8

Measurements

We compared the performance of our lock-free LOFT set (both with sorted operations and non-sorted
operations, see Section 2.5) to the one described in TDSL [?]. TDSL employs a fine-grained lock-
based approach for adding addresses to read and write sets, based on the underlying semantics of the
data structure. We also evaluated a transaction-friendly skip list [?] running on top of a TL2 STM
[?], implemented in the Synchrobench micro-benchmark suite [?]. This implementation reduces
conflicts by deferring the work to a background thread that maintains the skip list, thus making it
throughput-oriented. All implementations are in Java.

Each experiment consisted of two warm-up runs for JIT and 5 runs whose results were averaged.
In Each run all threads executed operations/transactions for 10 seconds with keys uniformly selected
from a predefined range. Each run was preceded with an initial insertion of range/2 randomly
selected keys. We considered two different workloads: (1) a read− oriented workload consisting
of 90% contains operations, 5% add operations, and 5% remove operations; (2) a write−oriented

workload consisting of 10% contains operations, 45% add operations, and 45% remove operations.
We ran our experiments on a machine with 4 AMD Opteron(TM) 6376 2.3GHz processors, each
with 16-core processors (64 threads overall).

8.1 The LOFT Set Performance

Methodology We experimented with transactions comprised of various operations executed
on a collection of four sets. Similar to the measurements made in [?], each transaction is assigned a
random number of operations to perform from the range [2, 7]. Each operation is selected according
to the designated workload, and the set on which it will be applied is randomly selected. We examine
two different scenarios: one with a small key range (103) causing high contention and the other with
a large key range (106) inducing low contention. For each scenario we ran the two workloads and
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Figure 8.1: Throughput and aborts graphs of transactions over sets for high contention scenario.

present the results in Figures 8.1- 8.2.

Aborts The graphs in Figures 8.1- 8.2 present the abort rate with the workload distributions
and the key range specified above. The abort rate of the Friendly Skip List over TL2 was omitted
as it was much higher than that of TDSL. Sorted LOFT transactions were also omitted since their
abort rate is 0, as there are no cyclic helping conflicts, hence no transaction gets rescheduled. We
can see that for all scenarios and workloads the abort rate of LOFTtransactions is close to 0 (for each
dependency cycle, a single transaction is aborted), while the abort rate of TDSL can reach 1000%
when contention is high .

Throughput The graphs in Figures 8.1- 8.2 present the average throughput (Million transactions
executed per second) with the workload distributions and the key range specified above. We can
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Figure 8.2: Throughput and aborts graphs of transactions over sets for low contention scenario.

see that for a high contention scenario (shorter lists) our transactions are faster in write-oriented
workloads, as the high contention induces many aborts in TDSL (up to 10 aborts per transaction) and
the Friendly Skip List, while our solution hardly aborts. However, in the read-oriented workload our
transactions performance is similar to that of TDSL since contains operations inside our transactions
have to set a transaction label on the relevant node, or possibly create a node if it does not exist.
This leads to more CAS operations performed on the data structures, compared to TDSL, offsetting
the advantage of reduced aborts. We still outperform the friendly skip list significantly. In both
workloads the sorted LOFT transactions outperform the non-sorted ones, and also TDSL (for many
threads). The sorting of operations eliminates cyclic helping conflicts, thus there is no need for
re-executions. For the low contention scenario, our algorithm outperforms the other algorithms for
both the read and write oriented workloads. While all algorithms abort less, TDSL still aborts more
frequently than LOFT which requires more traversals over the list and incurs smaller throughput.
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We see that sorting the operations does not increase throughput, as there are fewer conflicts and
fewer helping cycles to avoid using sorting.

8.2 The LOFT Set Singleton Performance

Figure 8.3: Throughput graphs of set singleton operations . Each row contains a different key range

Methodology As singletons (stand-alone operations) are the basis of a transactional data structure,
we strove to have as little impact as possible to their performance. We therefore compared our
singleton operations to those of TDSL and to the java implementation of a concurrent skip list
map. We examined the same two contention scenarios, each with the two workloads and present the
results in Figure 8.3.

Throughput We see in Figure 8.3 that in the high contention scenario all algorithms perform
roughly the same and scale well, with our implementation out-performing the other algorithms
in the write-oriented scenario. For the low contention scenario, our results are close to those of
TDSL. However, the concurrent skip list achieves better results. These results show that supporting
transactions has some overhead on singleton operations, however it is likely that improving the
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skip-list index will result in better performance, which is comparable to that of the highly tailored
concurrent algorithm.

8.3 The LOFT Queue Performance

Figure 8.4: Throughput graphs of transactions over queues.

Methodology We experimented with transactions comprised of enqueue and dequeue operations
executed on a collection of four queues. Each experiment consisted of two warm-up runs for JIT
and 5 runs whose results were averaged. In Each run all threads executed transactions for 10 second.
Each run was preceded with an initial insertion of 500000 elements to each queue. Similar to the
measurements made in Section 8.1, each transaction is assigned a random number of operations to
perform from the range [2, 7]. Each operation is selected uniformly, and the queue on which it will
be applied is randomly selected. We present the results in Figure 8.4.

Throughput The graphs in Figure 8.4 present the average throughput (Thousand transactions
executed per second). A queue is inherently not a very scalable data structure, as there is much
contention over accessing its head and tail pointers. Additionally, since operations in a transaction
are performed on multiple queues, there are many conflict cycles which trigger many aborts. Consider
a scenario where two transactions enqueue to one queue and dequeue from another queue in the
opposite order. In the TDSL implementation both threads abort their transaction, while our implementation
aborts only one of the transactions, and schedules it for an upcoming execution. The results
show that the TDSL queue implementation hardly succeeds to complete transactions for multi-
threaded executions. Performing operations of multiple threads to multiple queues induces aborts
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to almost all transactions, and only a handful of transactions successfully commit. In contrast, our
implementation commits thousands of transactions even for 64 threads.
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Chapter 9

Correctness

This section contains the Linearizability proof of the proposed LOFT framework, specifically using
LOFT sets.

Linearization Points We define the Linearization points of a transaction and the transactional
set’s singleton methods:

Definition 1. We define the Linearization point of a transaction t to be the update of its status to
Done (Line 20)

Definition 2. We define the Linearization point of a contains and get singletons to be one of the
following Lines:

• For a false result for contains or a null result for get: (1) saving n.transaction in Line 169
and it points to removeT, (2) the find method returns a node n s.t. n.key 6= key (Line 165),
(3) checking desc.t’s status is Pending (Line 175) and the operation op added n, and (4) a
true return value when checking if n is marked (Line 183).

• For a true result for contains or a non-null result for get: (1) a false return value when
checking if n is marked (Line 183), (2) saving n.transaction in Line 169 and it is null, and
(3) checking desc.t’s status is Pending (Line 175) and the operation op did not add n.

Definition 3. We define the Linearization point of an add singleton to be one of the following Lines:

• An unsuccessful add: checking if n is marked returns false (Line 144).

• A successful add: the cas in Line 149 succeeds.

Definition 4. We define the Linearization point of a remove singleton to be one of the following
Lines:
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• A successful remove: the cas in Line 131 succeeds (labeling n).

• An unsuccessful remove: the call to find in Line 153 returns a node n s.t. n.key 6= key.

Other Definitions

Definition 5. we define opi to be the operation with index i in some transaction t.

Definition 6. For two operations opi and opj in transaction t we say that opi precedes opj if i < j.

Definition 7. For two operations opi and opj in transaction t we say that opj follows opi if opi
precedes opj .

Definition 8. An operation op1 in transaction t1 is conflicting with an operation op2 in transaction
t2 if they do no commute [?].

Definition 9. For an operation op in a transaction t performed on a data structure ds we say that
op is labeled if all threads executing conflicting operations belonging to different transactions must
help t complete before preceding with their own execution.

9.1 Linearizability Proof

We prove the Linearizability of the LOFT framework. We start by specifying the requirements from
the LOFT data structures. Each LOFT data structure must satisfy the following claims:

Claim 10. A labelOp method called with parameter op returns a TNode n 6= null only if op is
labeled.

Claim 11. The TNode n returned from a labelOp method called with operation op contains op’s
result and the information needed to complete or un-label op.

Claim 12. After an operation op in a transaction t becomes labeled, op’s result is unchanged until
completeOp is called on it.

Claim 13. A labelOp method called with parameter op noticing a labeled conflicting operation
op′ ∈ t′ must call the transaction engine’s help method with t′ and retry its operation.

Claim 14. completeOp called with TNode n, transaction t and an index i of an operation op ∈ t

completes op according to its result, makes op’s effect visible and removes op’s labeling.

Claim 15. unlabelOp called with TNode n, transaction t and an index i of an operation op ∈ t

reverts any change performed by op to the data structure and removes op’s labeling.

Claim 16. Concurrent and subsequent calls to completeOp with the same parameters leave the data
structure in an equal state.

Claim 17. Concurrent and subsequent calls to unlabelOp with the same parameters leave the data
structure in an equal state.
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Claim 18. Concurrent and subsequent calls to labelOp with the same parameters do not result in
an inconsistent state of the data structure.

Claim 19. The data structure does not change the transaction’s status.

We continue with the linearizability proof of the LOFT framework.

Claim 20. For a Pending transaction t, the labelOp method is called with parameter opj after
operations preceding it were labeled.

Proof. We prove by induction:

• Base: for j = 0 no operation preceded opj and the Claim holds.

• Step: we assume the claim holds for j−1 and prove it for j. The labelOp method is called with
opj when t.index = j. t.index is initialized to 0, and is incremented by 1 each time, meaning
its value had to be j − 1 before it was incremented to j. In order for t.index to be incremented
to j, a call to labelOp with parameter opj−1 must return a non-null node, which happens only
if opj−1 is labeled (Claim 10). In addition, from the assumption labelOp with parameter opj−1
is called after all operation preceding it were labeled. Thus, all operations preceding opj were
labeled.

Claim 21. A transaction t’s status is changed to Done only after all operations in t are labeled.

Proof. The update of t’s status to Done (t’s linearization point) by thread P happens only in the
end of the executeTX method (Line 20) since a transaction’s status is only changed in the transaction
engine code and not in the data structures code (Claim 19). This code is reached when t.index =

t.size or if t’s status was already changed to Done by another thread (Line 16). If t.index = t.size,
then the last operation in t (opt.size−1) was passed to labelOp which returned a non-null TNode.
Thus, t’s last operation was labeled (Claim 10), and from Claim 20 this means that all operations
preceding it were also labeled. Hence, all operations in t were labeled. Thus, our claim holds.

Definition 22. A helping cycle C = t1 → t2 → . . . → tn → t1 consists of n transactions,
each calling the help method with the next transaction as the parameter, to remove the label of a
conflicting operation.

Definition 23. A helping cycle C is considered resolved if a conflicting operation op which caused
some transaction t in C to call help is no longer labeled.

Claim 24. A helping cycle C is resolved only after one of the transactions in the cycle changes its
status to Replaced.

Proof. We assume that C is resolved and none of the transactions in C changes status to Replaced.
For C to be resolved there exists a conflicting operation opi ∈ ti which required transaction
ti−1 ∈ C to call help with transaction ti ∈ C, and opi is no longer labeled. An operation
becomes unlabeled in unlabelOp or completeOp. unlabelOp can be called by: (1) replace which
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is executed only for transactions with Replaced status, and from the assumption ti’s status is not
Replaced; or (2) help called with a mislabeled node, which is not the case because then ti−1
would have been able to continue labeling its operations and not be part of C. This means that
opi+1’s label is removed by completeOp, however completeOp is only called for a transaction with
status Done, which happens after all operations are labeled. However, ti+1 is in the help cycle C,
which means that there exists a conflicting operation opi+2 ∈ ti+2 preventing ti+1 from labeling
one of its operations. Thus, opi+1’s label is not removed, and C cannot be resolved.

We now prove that C is resolved when we change the status of a transaction replaceT = ti ∈ C

to Replaced. ti’s status is changed to Replaced in resolveCycle. Before we change ti’s status
we save its predecessor nextT = ti−1 ∈ C in ti’s transaction object. After changing ti’s status
to Replaced we call replace which removes the labels of ti’s operations and then execute ti−1.
Thus, the conflicting operation causing ti−1 to help ti is no longer conflicting, and ti−1 can proceed
with its next operations which makes C resolved.

Claim 25. Once a transaction object’s status is set to Done it does not change.

Proof. For a transaction object t, its status is initialized with Pending and is never set to Pending
again. This means that after t’s status is changed to Done it does not change back to Pending.
This only leaves the Replaced status, which is set in resolveCycle if t is part of a helping cycle
(Line 46). The resolveCycle method validates that all transactions in the cycle are still Pending
(Line 39) so for the method to change t’s status to Replaced t’s status cannot be Done prior to this
validation. Thus, we assume t’s status is changed to Done by another thread T1 between Lines 39-
46. t’s status is changed to Done only in the executeTx method after all of its operations are labeled.
For t’s operations to successfully be labeled, it must finish helping all other transactions performing
conflicting operations. However, t is part of a helping cycle which according to Claim 24 is resolved
only after t’s status changes to Replaced (Line 46), in contradiction to our assumption. Thus, our
claim holds.

Claim 26. Once a transaction object’s status is set to Replaced it does not change.

Proof. For a transaction object t, its status is initialized with Pending and is never set to Pending
again. This means that after t’s status is changed to Replaced it does not change back to Pending.
This only leaves the Done status, which is set in executeTX if t’s status is not Replaced (Line
20). Thus, when a thread notices a status of Replaced it does not change it. We assume that a
thread T changed a Replaced status to Done. This means that T read a status different from
Replaced in Line 9 and the status was then changed to Replaced by another thread T2 before
T changed the status to Done in Line 20. From Claim 25 the status T read in Line 9 cannot be
Done because this status can not change (and we know T2 changed it to Replaced). Hence, the
status T read was Pending. For T to reach Line 17 while t is still Pending it must finish the
loop which labels all of t’s operations (otherwise it would break in line 16). This means that all of
t’s operations are labeled. However, if t’s status is later set to Replaced by T2, it means that t is
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part of a helping cycle, which is resolved only after changing t’s status to Replaced. Thus, the
labeling of one of t’s operations could not be completed since there exists a conflicting operation
of another transaction. Thus, T could not have finished the labeling loop and this contradicts our
assumption and the claim holds.

Claim 27. unlabelOp and completeOp will not be called with the same parameters.

Proof. we will prove that unlabelOp cannot be called after completeOp with the same parameters
and vice versa:

unlabelOp is called with a transaction object t and TNode n either by replace when t’s status
is Replaced or by help when n is a mislabeled node. If t’s status is Replaced then from claim
26 this status will not change and so completeOp cannot be called with n and t as it is only called
after setting t’s status to Done. If n is a mislabeled node, then it is not part of t’s nodes array and
thus completeOp will not be called with n as parameter. Thus, completeOp cannot be called after
unlabelOp.

Similarly, if completeOp is called with a transaction object t and TNode n, then t’s status is
set to Done and n ∈ t.nodes. From Claim 25 t’s status will not change, hence unlabelOp won’t
be called with t and n by replace as t’s status must be Replaced prior. unlabelOp will also not
be called with t and n by help as n is not a mislabeled node (it is part of t’s nodes array). Thus,
unlabelOp cannot be called after completeOp.

Observation 28. completeTransaction is called for a transaction t only after setting t’s status to
Done.

Claim 29. For a transaction t comprised of operations op1, . . . , opn completeTransaction completes
all of t’s operations s.t. their effect is visible to other threads, and they are no longer labeled.

Proof. completeTransaction is called after setting t’s status to Done (Observation 28), and from
Claim 21 this means that completeTransaction is called after op1, . . . , opn are labeled. completeTransaction
then calls completeOp with each of the TNodes belonging to op1, . . . , opn and from claim 14
this means that op1, . . . , opn are completed according to their result, which does not change until
completeOp is called (Claim 12). In addition, the effect of each operation is visible to other
threads, and they are no longer labeled. We notice that completeOp can be called by other threads
concurrently but from Claim 16 this leaves the data structures in an equal state. Thus, executeTx
returns only when t’s operations are completed, and our claim holds.

Claim 30. All operations of a transaction t seem to take effect on their data structure (as observed
by other threads) only after t’s linearization point.

Proof. We assume in the form of a contradiction that there exists an operation op ∈ t s.t. op’s
effect is visible to a different thread P prior to t’s linearization point. For P to observe op’s
result, op’s label must be removed. Otherwise, from Claim 13 P must call help with t and retry
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its operation. op’s label is removed in 2 cases: (1) unlabelOp was called with op as parameter and
removed any changes labelOp performed to the data structure (Claim 15), thus op’s effect on the
data structure is not visible to P which contradicts our assumption. (2) completeOp was called with
op as parameter and completed op’s effect on the data structure. completeOp is called only in the
completeTransaction which from Observation 28 is called only after t’s status is set to Done (t’s
linearization point) which contradicts out assumption. Thus, our claim holds.

Claim 31. A call to the executeTX method with transaction object t which status will not become
Replaced returns after all of t’s operations are labeled and completed.
Proof. The executeTX method iterates over all unlabeled operations in t (Line 8) and calls labelOp
for each operation. For the iteration to finish, either t.index reaches t.size or t’s status is no longer
Pending. For t.index to reach t.size, a call to labelOp for each unlabeled operation op ∈ t must
return a non-null node n which from Claim 10 means op is now labeled. It is possible that labelOp
is called concurrently by other threads but from Claim 18 it does not cause an inconsistent state of
the data structures. When the iteration finishes, we check the status of t. Since it is not Replaced,
t’s status is Pending or Done, and we call completeTransaction to complete all of its operations
(Claim 29) and return.
Claim 32. A call to the executeTX method with a transaction object t returns after all of t’s
operations are completed and visible to other threads.

Proof. We prove by induction on the number of replace invocations generated by executeTX on
transaction objects containing the same operations as t.

Base: for 0 replace invocations we learn that t’s status was not Replaced, otherwise the
replace method would have been invoked. Thus, from Claim 31 the claim holds.

Step: We assume that for i replace invocations the executeTX method with transaction object t
returns after all of t’s operations are completed and visible to other threads, and prove for i+1. Since
there are i+ 1 invocations of replace, then the executeTX method must invoke the replace method.
This method calls unlabelOp for each of t’s operations which from Claim 15 removes their labeling.
Then, a call to executeTX is made with a new transaction object newT containing t’s operations
and another transaction nextT . Since nextT is a transaction with an operation conflicting with
one of t’s operations, it does not contain t’s operations. Thus, all other i invocations of replace
on transaction objects containing the same operations as t are generated from the call to executeTX
with newT . From the assumption, the executeTX method with transaction object newT returns
after all of newT ’s operations are completed, hence t’s operations are completed as t and newT

contain the same operations. Thus, the claim holds.
Claim 33. All operations of a transaction t seem to happen atomically to other threads, i.e. no
thread sees the effect of some operations of transaction t and not the effect of other operations in t,
and can proceed with its operations.
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Proof. We assume in the form of a contradiction that a thread P sees the effect of an operation
op1 ∈ t and does not see the effect of an operation op2 ∈ t. For P to see the effect of op1, op1 must
be completed which happens only after calling completeOp with op1 as parameter. completeOp is
called in completeTransaction which from Observation 28 happens after t’s status is set to Done.
From claim 21 t’s status is set to Done only after all operations in t are labeled. Thus, op2 must
be labeled or completed. Since P does not see the effect of op2, then it is not completed, hence it
is labeled. From Claim 13 P must call help with t as parameter, which calls executeTX and returns
only after all of t’s operations are completed (Claim 32). Thus, op2 is completed and P sees its
effect prior to proceeding with its own operations which contradicts our assumption, and so our
claim holds.

Claim 34. The result of each operation in a transaction t matches the state of the data structures at
t’s linearization point.

Proof. From Claim 12 an operation’s result does not change until completeOp is called on it.
completeOp is called in completeTransaction which from Observation 28 is called after t’s status is
set to Done (t’s linearization point). In addition, t’s status is set to Done after all operations in t are
labeled (Claim 21. Thus, all operations are labeled and their results do not change, hence the state
at t’s linearization point corresponds to the results of t’s operations.

Theorem 35. The transaction’s engine execute method executes all operations given as input
atomically, according to the data structures state at t’s linearization point.

Proof. The execute method creates a transaction object t containing the operations and calls executeTX
with t as parameter and an empty help stack. This method completes all of t’s operations (Claim
32) atomically (Claim 33), according to the data structures state at t’s linearization point (Claim
34).

9.2 The LOFT Set Linearizability Proof

We prove the claims required from the LOFT Set for the linearizability proof. We begin with some
definitions:

Definition 36. A node n is a successor of a node n′ if there exists a path of zero or more next

pointers from n′ to n. Similarly, a node n is a predecessor of a node n′ if n′ is a successor of n.

Definition 37. A node n is reachable if it is a successor of the head node.

Definition 38. We define a node to be logically in the list if it is reachable, its transaction pointer
is empty and its next pointer is unmarked.

Definition 39. We define a node to be labeled with transaction t if its transaction descriptor points
to t.
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Claim 40. An operation op in transaction t is labeled if there exists a node n with key op.key which
is labeled with t.

Proof. From definition an operation op is labeled if all conflicting operations must help t before
completing. For the set data structure two operations conflict if they are performed on the same key
as they require manipulating the same node. Thus, when a node n is reachable and labeled with
transaction t, all other transactions performing operation on the same key must help t as the find
method will return n (Claim 44 and its transaction descriptor points to t, hence help will be called
with t as parameter in labelNode (Line 123. Thus, op is labeled.

We recall that a node n in the list serves also as a TNode. All the information required from a
TNode is present in the node’s fields.

Claim 41. The labelNode method returns a node n 6= null only if n is labeled with transaction t.

Proof. labelNode method returns a node n 6= null either in Line 122 after checking that n is labeled
with transaction t, or after successful cas operations of n’s transaction descriptor to one pointing to
t (Lines 131 and 128).

Claim 42. A labelOp method called with parameter op returns a node n 6= null only if op is
labeled.

Proof. The labelOp method returns n 6= null in one of 2 cases. We show that for each case op is
labeled:

1. labelOp calls labelNode which returns n 6= null (Line 61). According to Claim 41 this happens
only when n is labeled with transaction t. n has a key equal to op’s key, and was returned from
the find method so it is reachable from head. Thus, op is labeled.

2. We add newNode to the list (Line 67 with its transaction descriptor pointing to t and key
equal to op’s key. newNode is the successor of pred (following the successful cas) and pred

was returned from find so it is reachable from head and hence newNode is also reachable.
newNode is reachable and labeled with t, hence op is labeled (Claim 40).

Observation 43. An operation op becomes labeled only during the labelOp method when labeling
a node n containing op’s key with transaction t. This happens either when adding a new node (Line
67), or in the labelNode method (Lines 128 and 131) called from labelOp.

Claim 44. The find method called with key returns two nodes pred and n s.t. pred.key < key,
n.key ≥ key and at some point between the invocation of find to its completion pred.next = curr

Proof. We prove the Claim holds for each iteration of the while loop: In the first iteration of the
while loop pred = head and by definition head.key = −∞ and thus pred.key < key. In Line
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105 n ← pred.next and if the return statement in Line 112 is executed in the first iteration then
n.key >= key. Thus, the Claim holds for the first iteration.

For all other iterations i s.t. i > 1, predi is equal to ni−1 for which ni−1.key < key (otherwise
the while loop would have ended in iteration i − 1). In addition, ni = ni−1.next = predi.next

(Lines 107 and 114). If the return statement in Line 112 is executed in iteration i then ni.key >=

key. Thus, the Claim holds for iteration i > 1.

Claim 45. A node n with an unmarked next pointer is reachable.

Proof. Proof by structural induction on the list:

Base: In the initial state of the list, there are only 2 nodes head and tail, both with unmarked next

pointers. head is a trivial successor of head, so it is reachable. We defined head.next = tail so
tail is also a successor of head, and thus reachable.
Step: We assume that all nodes with unmarked next pointers are reachable. We show that for every
operation affecting reachability of nodes in the list the Claim still holds:

• We add a new node n to the list (Line 67). This means that the CAS in Line 67 succeeds.
For the CAS to succeed pred’s next pointer has to be unmarked, so from the assumption pred

is a successor of head. pred’s next pointer now points to newNode so newNode is also a
successor of head and the Claim holds for newNode. n and its successors are still reachable
(through newNode), so the Claim still holds for them as well. pred’s predecessors state hasn’t
changed, so the Claim holds for them as well.

• We remove a node n from the list (Line 109) when n’s next pointer is marked (Line 108. This
is done by CAS-ing its predecessor pred to its successor succ and so the Claim for it still holds.
All predecessors of n are still reachable (no next pointer in their path was changed). The CAS
in Line 109 also validates that pred is still unmarked, so from the assumption it is a successor
of head. Thus, succ and all of its successors remain reachable from head (through pred).

Claim 46. For a node n 6= tail which is reachable, its next pointer points to a node n′ s.t. n.key <

n′.key

Proof. Proof by structural induction on the list:
Base: In the initial state of the list, there are only 2 nodes head and tail. We defined head.key =

−∞, tail.key =∞ so head.key < tail.key, and the Claim holds.
Step:

• We add a new node n to the list (Line 67). The newNode’s next pointer points to curr

which satisfies curr.key > newNode.key (Claim 44 + Line 62). From Claim 44 we learn that
pred.key < newNode.key. If the CAS in Line 67 indeed succeeds, then pred is unmarked and
from Claim 45 is reachable, which makes newNode and curr also reachable. Thus, the Claim
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still holds for pred, newNode and curr. The next pointers of other nodes weren’t changed,
so the Claim still holds for them as well.

• We remove a node n from the list (Line 109) by CAS-ing its predecessor pred to its successor
succ. The only next pointer of a reachable node to change is that of pred which now points to
succ. From the assumption pred.key < n.key < succ.key so the Claim still holds for pred.

Claim 47. A reachable node n has a key larger than all of its predecessors

Proof. Prove by induction on i - the distance of n from head (number of next pointers traversed).
Base: for i = 1 we get that n = head.next, so it is reachable and from Claim 46 we get that
n.key > head.key. head is n’s only predecessor so the Claim holds. Step: we assume the Claim
holds for i−1 and prove for i. n is reachable so there exists some reachable node n′ s.t. n = n′.next.
n’s distance from head is i so n′’s distance is i − 1 and from the assumption we get that n′ has a
key larger than all of its predecessors. From Claim 46 we get that n.key > n′.key and so n has a
key larger than all of its predecessors and the Claim holds.

Claim 48. If the node n returned from the find method has a key s.t. n.key > key, then no item
with key exists in the list.

Proof. From Claim 44 the find method returns two items pred and n s.t pred.key < key and
n.key ≥ key. From Claim 47 all of pred’s predecessors have a key smaller than pred.key so all of
n’s predecessors have a key lower than key. From Claim 47 n’s successors have a key larger than
n.key and so larger then key. If n.key > key, then n.key 6= key and all other nodes have a greater
or smaller then key and the Claim holds.

Observation 49. A transaction t labels a node n only when n’s transaction pointer is null, as all
cas operations of n’s transaction pointer are from null to t.

Claim 50. A node n with a marked next pointer is labeled.

Proof. The marking of a node happens in the following Lines:

1. In completeOp when marking n (Line 95): completeOp is called on nodes labeled with t.
Clearing a node’s label happens in completeOp (Line 97) only if n should not be marked, but
it is supposed to be marked. From Claim 49 no other transaction can label n. Thus n remains
labeled with t when it is marked.

2. In unlabelOp when marking n (Line 83): unlabelOp is called on nodes labeled with t. Clearing
a node’s label happens in unlabelOp (Line 97) only if n existed prior to t, but it was marked
since it did not exist, so. Meaning From Claim 49 no other transaction can label n. Thus n

remains labeled with t when it is marked.

3. In labelNode when marking a node n s.t. n’s is labeled with removeT (Line 119). We mark the
node and do not change its transaction pointer, and completeOp is never called with that node
as it is not part of a transaction, so the transaction pointer cannot be cleared.
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4. In the singleton remove, when it is successful in removing n (Line 157). The marking happens
after the labelNode method returns success which happens only after it set n’s transaction to
removeT . completeOp is never called with that node as it is not part of a transaction, so the
transaction pointer cannot be cleared.

Claim 51. The TNode newNode returned from a labelOp method called with operation op contains
op’s result and the information needed to complete or un-label op.

Proof. We notice that each operation on the set requires adding a labeled node or labeling an existing
node. For some operations we even add a dummy node just for labeling. Thus, the information we
need in order to complete or unlabel op is whether op was performed successfully. i.e. an add
operation is performed successfully when no other node with the same key is logically in the list.
On the other hand, contains, remove and get operations are performed successfully when a node
with the same key is logically in the list. We store this information in the transaction descriptor’s
result field.

From the description above we notice that op’s result equals this result field for all operations
except get, which requires newNode’s data (the data associated with op’s key), or null if result
is false. newNode’s data is stored in newNode’s data field and does not change (no API for
changing a node’s data). Thus, the descriptor’s result field combined with newNode’s data field
contain op’s result.

We next show that the descriptor’s result field is indeed correct. This field is updated in several
places in the code. We show that it is correct for all operations:

1. In Line 128 we label n with a descriptor with result field set to false. This happens when a node
with key is reachable and we call labelNode to label it. The labelNode method reaches Line 128,
which means that shouldExist is false and n’s next pointer is unmarked. shouldExist is false
when it is required that n does not logically exist in the list for the operation to succeed. This
is required for remove, contains, and get operations. n’s next pointer is unmarked, and it was
unlabeled in Line 116 meaning that there was a point in which n was unmarked and unlabeled so
it logically exists in the list. Thus, the result saved in its descriptor indeed indicates whether op
was performed successfully.

2. In Line 64, we set desc’s result to ¬shouldExist. We get to this Line when the find method
returns a node n s.t. n.key 6= key and from Claim 48 no node with key is logically in the list.
If no node with key exists then the to determine the result we simply need to check whether the
operation required for such a node to exist (shouldExist). Thus, we update the result accordingly
and it indeed indicates whether op was performed successfully.

3. In Line 131, we set the desc’s result to true. This happens when the operation requires that
n logically exists in the list (shouldExist) and we successfully cas its transaction pointer to t.
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This cas succeeds when n is unlabeled, thus from Claim 50 it is unmarked. From Claim 45 n is
reachable and is logically in the list. Thus, op was indeed performed successfully.

Claim 52. After an operation op in transaction t becomes labeled, op’s result is unchanged until
completeOp is called on it.

Proof. From definition an operation op is labeled if there exists a node n with the operation’s key
which is labeled by t. Thus, other transactions trying to label n check it is unlabeled before and if
it is they do not change it until it is unlabeled (Claim 49), which only happens in completeOp. In
addition the find method removed a node only if it is marked, which happens only in completeOp.
Thus, since an operation’s result is determined using the logical state of a node n with its key and
no other transaction changes this logical state until completeOp is called then the result remains
unchanged.

Claim 53. completeOp called with node n, transaction t and parameters DSop of operation op

completes op according to its result.

Proof. From Claim 52, we learn that op’s result is unchanged until completeOp is called on it. We
show that for each operation the completeOp completes it correctly:

• For an add operation with result true, n was added to the list since no node with key is logically
in the list. Thus, we clear its label making it logically in the list. Otherwise, if op’s result is false
then n is an existing unmarked node with key labeled by t. n’s state should not be changed as
it was labeled only to ensure atomicity of all operations in t, so we clear its transaction pointer
making it logically in the list again.

• For a remove operation with result false n is a dummy node added to the list by t since no node
with key is logically in the list. Thus, n should not be logically in the list, and we mark its next
pointer making it logically not in the list. Otherwise, op’s result is true, meaning n is an existing
unmarked node with key labeled by t. n should be removed, so we mark its next pointer making
it logically not in the list.

• For contains and get operations with result false n is a dummy node added to the list by t since
no node with key is logically in the list. Thus, n should not be in the list, and we mark its next
pointer making it logically not in the list. Otherwise, op’s result is true, meaning n is an existing
unmarked node with key labeled by t. n’s state should not be changed as it was only labeled to
ensure linearizability, so we clear its label.
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Claim 54. A call to the unlabelOp method with transaction t, operation op and node n reverses
labelOp’s effect on n.

Proof. unlabelOp performs its operation only if n is not null (Line 72) and it is labeled by t, meaning
its descriptor points to t (Line 77). These conditions are met only if labelOp was called with op and
returned n (Claim 10). unlabelOp checks if n existed prior to its labeling by op. n existed if (1)
op was an unsuccessful Add operation which then labeled the already existing node n or (2) op was
a successful remove, contains or get operation which labeled the existing node n. If n existed, we
remove its label (added by labelOp). Otherwise, n was inserted to the list by labelOp and so it is
logically deleted by marking its next pointer. In both cases the effect of labelOp is reversed and the
claim holds.

Claim 55. Concurrent and subsequent calls to completeOp with the same parameters leave the data
structure in an equal state.

Proof. The completeOp method decides whether to mark a node or un-label it according to its
parameters. Marking a node several times has the same effect as marking it a single time. Un-
labeling a node is done using a cas of its transaction descriptor to null. Since it won’t be labeled
with this descriptor again this cas will only succeed once and after that won’t have any effect. Thus,
for the same parameters to completeOp it will perform the same operation which leaves the data
structure in an equal state if called several times.

Claim 56. Concurrent and subsequent calls to labelOp do not result in an inconsistent state of the
list.

Proof. The labelOp either labels a node with key or adds a new node with key and labeled with t.
Both of these operations can be performed on several nodes (when a race occurs). However, only
the first node is saved in t, and this is one we perform completeOp on. Operations on all other nodes
are reverted in unlabelOp either by marking newly added nodes or clearing the transaction pointer
for nodes logically in the list. Thus, the Claim holds.

Claim 57. A labelOp method called with parameter op noticing a labeled conflicting operation
op′ ∈ t′ must call the transaction engine’s help method with t′ and retry its operation.

Proof. As described above two operations on a set conflict if they operate on the same key. If
op′ is labeled, then from Claim 40, there exists a reachable node n with op′’s key. Thus, when
labelOp is called with op and calls the find method with op’s key, it will return n (Claim 44) as
op.key = op′.key since they conflict. When a node with op’s key is returned from find, it calls the
labelNode method which will reach Line 123 (all prior validations will pass) and call help with t′.
Thus, our claim holds.
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Claim 58. Concurrent and subsequent calls to unlabelOp with the same parameters leave the data
structure in an equal state.

Proof. Similarly to completeOp, the unlabelOp method decides whether to mark a node or un-label
it according to its parameters. Marking a node several times has the same effect as marking it a
single time. Un-labeling a node is done using a cas of its transaction descriptor to null. Since it
won’t be labeled with this descriptor again this cas will only succeed once and after that won’t have
any effect. Thus, for the same parameters to unlabelOp it will perform the same operation which
leaves the data structure in an equal state if called several times.

Claim 59. The data structure does not change the transaction’s status.

Proof. The code for the set does not change the transaction status in any of its methods.

Set Singletons We next prove that all singleton methods return valid results.

Theorem 60. The add singleton method returns true ⇐⇒ no other node with key is logically in
the list and it successfully added a new node with key.

Proof. The add singleton method returns true in Line 150. This happens when the node n returned
from find has a key satisfying n.key 6= key and the cas in Line 149 succeeds. From Claim 44
the find method returns two items pred and n s.t pred.key < key and n.key ≥ key. Since
n.key 6= key when the new node is added, we get that n.key > key. If the cas succeeds then
pred’s next pointer is unmarked and from Claim 45 we learn that pred is reachable. Furthermore, if
the cas succeeds then no other node was inserted between pred and curr, thus no other node with
key is reachable (otherwise from Claim 46 it would have been inserted between pred and n ) and
therefore no node with key is logically in the list. If the cas in Line 149 fails then newNode was
not added to the list and we retry (and not return).

The add singleton method returns false in Line 145. This happens when the node n returned
from find has a key satisfying n.key = key, it is unlabeled and it is unmarked, thus it is logically
in the list. Hence, there exists a node with key which is logically in the list and the add operation
should fail.

Theorem 61. The remove singleton method returns true ⇐⇒ a node with key which is logically
in the list is removed by this method.

Proof. The remove singleton method returns true in Line 158. This happens when the node n

returned from find has a key satisfying n.key = key and the labelNode method returns n (Line
155). labelNode returns n when called from remove (with shouldExist = true and transaction
removeT ) only when n is successfully labeled with removeT (Line 131). If the labeling succeeds

52



then n’s next pointer is unlabeled and unmarked (Claim 50) and from Claim 45 we learn that n is
reachable (and logically in the list). If the cas in Line 131 fails, meaning n is labeled by a concurrent
transaction, we retry the operation.

The remove singleton method returns false in Line 160. This happens when the node n returned
from find has a key satisfying n.key 6= key. From Claim 44 the find method returns two items pred
and n s.t pred.key < key and n.key ≥ key. Since n.key 6= key , we get that n.key > key. Thus
no node with key is logically in the list (or it would have been a successor of pred and a predecessor
of n). Hence, there does not exists a node with key which is logically in the list and the remove
operation should fail.

Theorem 62. The get singleton method returns non-null data ⇐⇒ a node n with key is logically
in the list and n.data = data .

Proof. The get singleton method returns non-null data in the following cases:

• Line 171: n was returned from find and it is unlabeled. From Claim 50 we learn that a marked
node marked is labeled, so n is unmarked and from Claim 45 it is reachable and we can return its
data.

• Line 179 n was returned from find and it is labeled by t with status Pending. We position the
get operation’s Linearization point prior to the transaction’s, so we check whether n logically
existed prior to t by checking the operation op performed by t and its result. n existed prior to t

if op was an unsuccessful add operation or a successful remove, contains or get operation. If n
logically existed then we return its data.

• Line 183: n was returned from find and it is labeled by desc.t with status Done. We help
complete t and then check whether its next pointer is marked. If it is unmarked, then it is
logically in the list and we can return its data.

The get singleton method returns null in Lines:

• Line 167: n was returned from find. From Claim 48 this means that no item with key logically
exists in the list and so we can return null.

• Line 179: Similar to the non-null case: if exist is false, this means that the transaction t added n

and it is was not logically in the list before the transaction and so we return null.

• Line 183: Similar to the non-null case, if n is marked then it is not logically in the list and we
return null.

Theorem 63. The contains singleton method returns false ⇐⇒ a node n with key is logically in
the list.
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Proof. The contains method returns false ⇐⇒ the get method called with the same key returns
non-null data. From Claim 62 get returns non-null data ⇐⇒ a node n with key is logically in
the list with data = n.data. So, the Claim holds.
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Chapter 10

Conclusions

We proposed a framework for performing lock-free transactions on data structures. The transactions
are linearizable, ensuring all operations appear to happen simultaneously, with no intermediate state
visible to other transactions. Our framework consists of: (1) a transaction engine which receives
a group of operation and performs them atomically, and (2) lock-free data structures extended to
support the LOFT API. To exemplify our framework we implemented a LOFT set, a LOFT queue, and
a LOFT register supporting the required API. The transaction engine employs a helping mechanism
to obtain lock-freedom, and an advanced lock-free contention management for handling cyclic
helping conflicts. The contention manager reorders the conflicting transactions execution allowing
all transactions to complete with minimal delay.

We evaluated the performance of LOFT transactions against that of TDSL and a TL2 STM. We
examined different contention and workload parameters. Measurements show that our proposed
solution outperforms general software transactional memory (TL2), and in most scenarios it also
outperforms lock-based transactional data structures (TDSL), while providing lock-free progress
guarantee and a reduced number of aborts. While TDSL may abort the same transaction over ten
times on average, LOFT transactions abort rate is close to zero, even when contention is high.

Finally, we provide a correctness proof for our LOFT algorithm, which defines the requirements
from LOFT data structures, and proves that all operations inside a transaction are performed atomically.
We believe this work provides a solution for performing lock-free transactions on data structures
efficiently. Future work may provide additional LOFT data structures, and also formally define an
appropriate programming interface.
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