
ספריות הטכניון
The Technion Libraries

בית הספר ללימודי מוסמכים ע"ש ארווין וג'ואן ג'ייקובס
Irwin and Joan Jacobs Graduate School

©
All rights reserved to the author

 This work, in whole or in part, may not be copied (in any media), printed,
 translated, stored in a retrieval system, transmitted via the internet or

 other electronic means, except for "fair use" of brief quotations for
 academic instruction, criticism, or research purposes only.

 Commercial use of this material is completely prohibited.

©
כל הזכויות שמורות למחבר/ת

אין להעתיק (במדיה כלשהי), להדפיס, לתרגם, לאחסן במאגר מידע, להפיץ באינטרנט, חיבור זה או
כל חלק ממנו, למעט "שימוש הוגן" בקטעים קצרים מן החיבור למטרות לימוד, הוראה, ביקורת או

מחקר. שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט.

Multi-Threaded Coordination

Methods for Constructing

Non-blocking Data Structures

Research Thesis

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Anastasia Braginsky

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Multi-Threaded Coordination

Methods for Constructing

Non-blocking Data Structures

Research Thesis

In Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

Anastasia Braginsky

Submitted to the Senate of the Technion —
Israel Institute of Technology

Iyar 5775 Haifa May 2015

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

The Research Thesis Was Done Under The Supervision of Prof. Erez Petrank
in the Faculty of Computer Science at the Technion

Acknowledgements

First and foremost, I wish to thank my advisor, Prof. Erez Petrank for his guid-
ance, support, patience and fruitful conversations about my work, during all the
stages of this research. Erez gave me the freedom and confidence to explore my
own ideas and always was around to keep me on track with wise guidance. All
these qualities made my years as a PhD student so enjoyable. An encouraging, co-
operative and truly interested advisor is something that every PhD student wants,
whereof I am one of the privileged.

I am grateful to my co-authors Dr. Alex Kogan and Nachshon Cohen for being
a great collaborators and for their important role in the research.

Through this years, I was fortunate to be teaching assistant in charge in Oper-
ation Systems course. I have to thank the entire course staff for being such a great
team to work with and specially Dr. Leonid Raskin for being a good friend and
excellent lecturer to work with. I thank Mika Shapira for being a great teaching
coordinator, who was always flexible enough for my needs.

This dissertation is dedicated to my parents Tatiana and Gennady Braginsky,
for everything they gave me and and made possible for me. I would like to thank
you for setting high goals for me. I would also like to thank my parents in law
Valentina and Zalman Pevzner, for helping to take care of our beautiful daughter,
Sarah, while I was finishing this dissertation.

But above all, I want to thank my dear husband Alexander Pevzner, for being
such a devoted spouse, for bringing light and laugh into my life. Especially, I am
grateful to Alex for reminding me to enjoy the journey thereof. Dear Alex, I could
not have done this without you.

The generous financial help of the Technion and the Ministry of Science is
gratefully acknowledged.

i©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Publication List

1. A. Braginsky and E. Petrank. Locality-Conscious Lock-Free Linked Lists.
Proc. ICDCN 2011 [5]

2. A. Braginsky and E. Petrank. Lock-Free B+tree. Proc. SPAA 2012 [6]

3. A. Braginsky, A. Kogan and E. Petrank. Drop the Anchor: Lightweight
Memory Management for Non-Blocking Data Structures Proc. SPAA 2013

[4]

4. A. Braginsky, N. Cohen and E. Petrank. CBPQ: High Performance Lock-
Free Priority Queue. Submitted. Not-yet published.

ii©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Dedicated with love to my dear parents

Tatiana and Gennady

iii©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Contents

Abstract 1

1 Introduction 3
1.1 Overview . 3
1.2 Background . 4

1.2.1 Non-blocking synchronization 4
1.2.2 Linearizability . 5
1.2.3 Non-blocking primitives . 6
1.2.4 Universal constructions . 7
1.2.5 Ad hoc data structures . 7
1.2.6 Memory management . 9

2 Locality-Conscious Lock-Free Linked Lists 11
2.1 Introduction . 11
2.2 Preliminaries and Data Structure 12
2.3 Using a Freeze to Retire a Chunk 14
2.4 The List Operations: Search, Insert and Delete 15

2.4.1 The insert operation . 15
2.5 The Freeze Procedure . 18

2.5.1 The initiation of a freeze . 20
2.5.2 The stabilization phase . 20
2.5.3 The decision and the recovery 21
2.5.4 Managing the external freeze activities 23

2.6 The Details of the Additional Chunk-level Methods 25
2.6.1 The search operation . 25
2.6.2 The delete operation . 27
2.6.3 Counter Functionalities . 30

2.7 The Upper-Level List Operations 31
2.8 Supporting functionalities . 36
2.9 Linearization Points . 36
2.10 The intuition behind the design considerations 38
2.11 Lock-Freedom . 39

v©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Contents

3 A Lock-Free B+tree 46
3.1 Introduction . 46
3.2 Preliminaries and Data Structure 48

3.2.1 The B+tree . 49
3.2.2 The structure of the proposed B+tree 49
3.2.3 Memory Management . 50
3.2.4 The Basic B+tree Operations 51

3.3 Splits and Joins with Freezing . 51
3.4 Balancing the B+tree . 53

3.4.1 Node Split . 53
3.4.2 Nodes Join . 54
3.4.3 Two Invariants . 56
3.4.4 Extensions to the Chunk Mechanism 57

3.5 Implementation and Results . 57
3.6 Linearization Points . 59
3.7 B+tree supporting methods . 60
3.8 Code and Detailed Explanations for Split, Merge and Borrow 62

3.8.1 Node Splits . 62
3.8.2 Merges . 64
3.8.3 Borrow . 69

3.9 Redirection of the call for an update 69
3.10 Root boundary conditions . 71

3.10.1 Splitting the root . 71
3.10.2 Root Merge . 72

3.11 Minor Modifications to the Chunk Interfaces 74
3.11.1 The addition of replace interface to the list 74
3.11.2 The insert and delete operations 75
3.11.3 Freeze Functionality Code 76

4 Drop the Anchor : Lightweight Memory Management for Non-
Blocking Data Structures 82
4.1 Introduction . 82
4.2 Related Work . 84
4.3 An Overview of Drop the Anchor 85
4.4 Detailed Description . 87

4.4.1 Auxiliary fields and records 87
4.4.2 Anchor maintenance . 88
4.4.3 Node reclamation . 89
4.4.4 Recovery procedure . 89
4.4.5 The refined reclamation procedure 92

4.5 Performance Evaluation . 93
4.6 Pseudo-code . 96

4.6.1 Correctness argument . 96

vi©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Contents

5 CBPQ: High Performance Lock-Free Priority Queue 107
5.1 Introduction . 107
5.2 A bird-Eye Overview . 109
5.3 The Full CBPQ Design . 110

5.3.1 Data Structures . 110
5.3.2 Operations Implementation 111
5.3.3 Split and Merge Algorithms 112

5.4 Optimizations . 118
5.5 Performance Evaluation . 120
5.6 Correctness . 122
5.7 Pseudo-code . 124

6 Discussion and Conclusions 128

References 130

vii©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

List of Figures

2.1 The entry structure. 13
2.2 The chunk structure. 13
2.3 The list structure. 14
2.4 The copy recovery in list of chunks. 33
2.5 The merge recovery in list of chunks. 34
2.6 The specification of (simple) supporting functions. 45

3.1 The structure of a chunk. The allocated grey entries present the ordered linked list. 50
3.2 The state transitions of the freeze state of a node. The initial states are presented

in the boxes with the double border. 52
3.3 The empirical results. 58
3.4 The diagram presenting the merging of the root. The initial B+tree is marked in

grey. Node R

o

is an old root that initially had two children C1 and C2. Node C2

is frozen as a master. Node C1 is frozen as a slave for C2. 73

4.1 Transition diagram for possible states of the thread t 85
4.2 Recovery phases. Nodes marked with ’x’ are deleted, i.e., the delete-bit of their

next pointer is turned on [22]. Shaded nodes are frozen, i.e., the freeze-bit of their
next pointer is turned on. 90

4.3 Drop the Anchor vs. Hazard Pointers for lists with the initial size of 100k keys,
the mixed workload results. 94

4.4 Drop the Anchor vs. Hazard Pointers for lists with the different initial sizes and
the recovery performance impact. 95

4.5 Drop the Anchor vs. Hazard Pointers for lists with the initial size of 100k keys,
the read-only workload results. 101

5.1 Overview of the CBPQ data structure for N = 5 111
5.2 Throughput in delete and mixed workloads. 120
5.3 CBPQ vs. Lock-Free and Lock-Based Mound in insert workload. 120

viii©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Abstract

Shared-memory multiprocessors concurrently execute multiple threads of compu-
tation that communicate and synchronize through shared memory. Typically, this
communication and synchronization is done via concurrent data structures, whose
efficiency is crucial to performance. Furthermore, new challenges arise in design-
ing scalable concurrent data structures that can perform well with an increasing
number of concurrent threads. Non-blocking data structures are scalable and pro-
vide a progress guarantee. If several threads attempt to concurrently apply an
operation on the structure, it is guaranteed that one of the threads will eventu-
ally make progress. Consequently, the popular mutual exclusion synchronization
protocol cannot be used in non-blocking data structures.

The first goal of this dissertation is to address the design of high-performance,
concurrent, non-blocking data structures for shared memory multi-processor plat-
forms. Our intention is that the non-blocking data structure will become the
primary choice for a concurrent data structure. To this end, we first present a
high performance linked list. We extend state-of-the-art lock-free linked lists by
building linked lists with special attention to locality of traversals. These linked
lists are built of sequences of entries that reside on consecutive chunks of memory.
When traversing such lists, subsequent entries typically reside on the same chunk
and are thus close to each other, e.g., in same cache line or on the same virtual
memory page. Such cache-conscious implementations of linked lists are frequently
used in practice, but making them lock-free requires care. The basic component
of this construction is a chunk of entries in the list that maintains a minimum and
a maximum number of entries. This basic chunk component is an interesting tool
on its own and is used to build the other lock-free data structures that we present
(Chapter 2).

Another high-performance, non-blocking data structure presented in this dis-
sertation is a priority queue. Priority queues are an important algorithmic com-
ponent and are ubiquitous in systems and software. With the rapid deployment
of parallel platforms, concurrent versions of priority queues are becoming increas-
ingly important. In this dissertation, we present a novel, concurrent, lock-free
linearizable algorithm for priority queues that significantly outperforms all known
(lock-based or lock-free) priority queues. Our algorithm employs recent advances,
including lock-free chunks and the use of the efficient fetch-and-increment atomic
instruction. Measurements demonstrate a performance improvement by a factor

1©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Abstract

of up to 2 over existing approaches to concurrent priority queues (Chapter 5).
The second goal of this dissertation is to expand the coverage of existing lock-

free variants for the data structures whose lock-free implementations have not yet
been discovered. This is because the lock-free data structures provide a progress
guarantee and are known for facilitating scalability, avoiding deadlocks and live-
locks, and providing guaranteed system responsiveness. In this dissertation we
present a design for a lock-free balanced tree, specifically, a B+tree. The B+tree
data structure has an important practical applications, and is used in various
storage-system products. To the best of our knowledge, this is the first design of
a lock-free, dynamic, and balanced tree that employs standard compare-and-swap
operations (Chapter 3).

The third and final dissertation goal is to support the efficient memory man-
agement for non-blocking data structures. Efficient memory management of dy-
namic non-blocking data structures remains an important open question. Existing
methods either sacrifice the ability to deallocate objects or reduce performance no-
tably. In this dissertation, we present a novel technique, called Drop the Anchor,
which significantly reduces the overhead associated with the memory management
while reclaiming objects even in the presence of thread failures. We demonstrate
this memory management scheme on the common linked list data structure. Us-
ing extensive evaluation, we show that Drop the Anchor significantly outperforms
Hazard Pointers, the widely used technique for non-blocking memory management
(Chapter 4).

All the above-mentioned algorithms were evaluated empirically and shown to
provide high throughput and performance. They all utilize our new method of
thread coordination for the case when threads need to be redirected from an
obsolete part of the data structure to a new one. We denote this technique freezing.
The freezing technique supports the restructuring of the lock-free data structures,
in order to notify threads to move to another part of the data structure, usually
because the part they are currently using is obsolete. This is done by setting
a special freeze-bit on data or pointer words in the obsolete part, making the
data unsuitable for updating. A thread that fails in its attempt to use a frozen
pointer or data realizes that this part of the data structure is obsolete and restarts
its operation. For performance optimization we later batch the freeze-bits into
separate freeze-words (Section 2.3).

2©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1

Introduction

1.1 Overview

Processor technology has advanced to a point where the processor clock speed, or
the running frequency, can no longer be improved. This once driving factor of the
computational throughput of a processor is now kept at a steady rate. Instead of
increasing the processor clock speed, the processor vendors have shifted their focus
towards providing multiple computational units as part of the same processor,
and named the new family of central processing units multicore processors. These
computer systems rely on the concept of shared-memory, in which every processor
has the same read and write access to the part of the computer called the main
memory.

This shift in processor technology has resulted in a plethora of novel and orig-
inal research works in recent decades. The data structures can now be seen from
a different angle, as a space for different processors to communicate, in order to
read and update the data simultaneously. The driving force behind parallelism is
the quest for performance. Each separate computation unit is called a thread. The
initial idea behind the parallelism is: the more threads that can access the data in
parallel and perform their operations simultaneously, the better the performance
will be. However, the idea doesn’t always make it into practice, because those
accesses now need to be synchronized in order to keep the structure correct, where
the synchronization may decrease the performance.

A popular way to synchronize thread accesses is to use mutual exclusion, where
only one thread can access the entire (or part of) data structure. Other threads,
needing the same (or nearby) access, are delayed until the first thread finishes.
This simplifies programming, but has many disadvantages, mostly because the
thread that has the access delays all the others that need the same data. This
dissertation focuses on the non-blocking data structures (NBDS), in which no
thread can delay the progress of others.

The dissertation addresses three aspects of non-blocking programming: (1)
Performance – we believe that non-blocking algorithms are not yet performing at
full capacity. We suggest more efficient NBDSs for the existing lock-free algorithms

3©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1: Introduction

for the linked list and the priority queue. Our linked list and priority queue
outperform the existing equivalents by a factor of up to 2. (2) Coverage – we
would like to extend the coverage of the existing non-blocking variants for the lock-
based concurrent data structure. To this end, we suggest a non-blocking variant
for a balanced search tree, for which a non-blocking algorithm was unknown until
we presented our work (to the best of our knowledge). The lock-free B+tree
shows scalability and performance improvement over the lock-based invariant. (3)
Memory Management – if they are to be adopted for widespread use, the non-
blocking data structures need an efficient and dynamic memory management. We
suggest a novel technique that manages the memory much faster than the previous
techniques, without loss of any of their capabilities. Finally, all of our works
employ a frezing technique for thread coordination, to be explained in Section 2.3.
This technique allows many threads to be notified that part of the data structure
they are working on is obsolete.

The rest of the introduction is devoted to describing the background and our
contributions.

1.2 Background

1.2.1 Non-blocking synchronization

Concurrent data structures are more difficult to design than sequential ones, be-
cause threads executing concurrently may interleave their steps in many ways,
each with a different and possibly unexpected outcome. A straightforward way
to limit such interleavings is to use a mutual exclusion lock. However, locking
may introduce a host of problems related both to performance and to software
engineering. A single lock or just a few of them might cause a major bottleneck to
the access of a data structure. Thus it is better to reduce the lock granularity, i.e.,
reduce the number of instructions executing while holding a lock – fine-grained

locking. Concurrent data structures based on fine-grained locking are commonly
used, but suffer from deadlock potential, priority inversion, the convoying effect,
and other problems. The problems in the lock-based implementations arise be-
cause, if the thread that currently holds the lock is delayed, then all other threads
attempting to take the lock are also delayed. This is called blocking. To solve
this problem, several variants of progress guarantees have been proposed. They
typically provide progress guarantees by precluding mutual exclusion. The non-
blocking properties guarantee that a stalled process cannot cause all the other
processes to stall indefinitely. The tradeoff they explore is the range of assurances
which may be provided to groups of conflicting non-stalled processes.

Lock-freedom: An algorithm is lock-free if and only if some operation com-
pletes after a finite number of steps have been executed system-wide on the struc-
ture. This guarantee of system-wide progress is usually satisfied by making sure
that if one process fails to make progress, then another process is guaranteed to
make progress. This is a very different approach to that taken by lock-based algo-

4©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1: Introduction

rithms, in which a process will either spin or block until the contending operation
is completed [26, 30].

Wait-freedom: Although lock-freedom guarantees system-wide progress it
does not ensure that individual operations eventually complete since, in theory,
an operation may continually be deferred while its process yields to a never-ending
sequence of contending operations. In some applications a fairer condition such as
wait-freedom may be desirable. An algorithm is wait-free if every operation on the
structure completes after it has executed a finite number of steps. This condition
ensures that no operation can experience permanent live-lock and, in principle, a
worst-case execution time can be calculated for any operation [26].

In the past, it was decided that it is difficult to implement efficient wait-free
algorithms on commodity hardware since fair access to memory is usually not
guaranteed. Extensive, sophisticated, algorithmic-based synchronization was usu-
ally required to ensure that no process is starved. This was typically achieved by
requiring each process to announce its current operation in a single-writer mem-
ory location. Processes which successfully made forward progress were required
to periodically scan the announcements of other processes and help their opera-
tions to complete. Over time, the scanning algorithm checks every process in the
system. However, Kogan and Petrank recently showed a methodology for creating
fast wait-free data structures from lock-free data structures [34]. The methodology
employs the lock-free algorithm, unless a rare case of starvation is encountered.
If that happens, the algorithm switches to run in wait-free mode. Shortly there-
after, Timnat and Petrank presented a practical wait-free simulation for lock-free
data structures [51]. Nowadays, the greatest interest is therefore in the creation
of lock-free data structures, as efficient wait-free data structures can be created
from them almost automatically.

Obstruction-freedom: Herlihy et al. have suggested a weak non-blocking
property called obstruction-freedom, which they believe can provide many of the
practical benefits of lock-freedom, but with reduced programming complexity and
the potential for more efficient data-structure designs [29]. Since efficiently allow-
ing operations to help each other to complete is a major source of complexity in
many lock-free algorithms, and excessive helping can generate harmful memory
contention, obstruction-freedom can reduce overheads by allowing a conflicting
operation to instead be aborted and retried later. More formally, an algorithm
is obstruction-free if and only if every operation on the structure completes af-
ter executing a finite number of steps that do not contend with any concurrent
operation for access to any memory location.

1.2.2 Linearizability

Besides performance, algorithms can also be evaluated by a behavior metric: does
the algorithm behave as expected when it is deployed in an application? One
property which is commonly considered desirable in concurrency-safe algorithms
is linearizability [31] (a variation on serializability). This property is defined in

5©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1: Introduction

terms of requests to and responses from a compliant operation: if the operation
is implemented as a synchronous procedure, then a call to that procedure is a
request and the eventual return from that procedure is a response. An operation
is linearizable if and only if it appears to execute instantaneously at some point
between its request and response. Linearizability ensures that operations have
intuitively "correct" behavior. Concurrent invocations of a set of linearizable
operations will have a corresponding sequence which could be executed by just
one processor with exactly the same outcome. Another way of thinking of this
condition is that it requires us to be able to identify a distinct point within each
operation’s execution interval, called its linearization point, such that if we order
the operations according to the order of their linearization points, the resulting
order obeys the desired sequential semantics.

1.2.3 Non-blocking primitives

An early paper by Herlihy demonstrates that various classic atomic primitives, e.g.
fetch-&-add ((F&I)) and test-&-set, have differing levels of expressiveness [25].
Specifically, a hierarchy is constructed in which primitives at a given level cannot
be used to implement a wait-free version of any primitives at a higher level. Only a
few of the well-known primitives discussed in the paper are universal in the sense
that they can be used to solve the n-process consensus problem in its general
form. One such universal primitive is compare-&-swap (CAS), which is usually
used to build the non-blocking algorithms, together with atomic reads and writes.
Originally implemented in the IBM System/370, many modern multiprocessors
support this operation in hardware.

Rather than implementing the read-modify-write instructions directly, some
processors provide separate load-linked and store-conditional (LL/SC) operations.
Unlike the strong LL/SC operations sometimes used when describing algorithms,
the implemented instructions must form non-nesting pairs and SC can fail "spu-
riously" [27]. Methods for building read-modify-write primitives from LL/SC are
known: for example, how to use them to construct atomic single-word sequences
such as CAS. Such constructions, based on a simple loop that retries a LL/SC
pair, are non-blocking under a guarantee that there are not infinitely many spu-
rious failures during a single execution of the sequence. In [42] Michael presents
lock-free and wait-free implementations of LL/SC that require 64-bit CAS in 64-bit
programs.

The design of efficient non-blocking algorithms is much easier if more expressive
operations such as DCAS (double CAS) [11], MCAS (multiple-word CAS) [23] are
supported. DCAS (MCAS) takes two (multiple) not necessarily contiguous mem-
ory locations and writes new values into them only if they match pre-supplied
"expected" values. Unfortunately, only the obsolete Motorola 680x0 family of
processors supports DCAS directly in hardware. As far as we know, MCAS is not
implemented in hardware. Harris and Fraser describe how to implement MCAS us-
ing a single-word CAS command [23]. In addition, there is a so called WCAS (wide

6©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1: Introduction

CAS), a double-width CAS operation which acts on an adjacent pair of memory
locations. This instruction is supported by the majority of modern multiprocessor
architectures, while it requires more extensive synchronization by hardware than
that required for the single-word CAS instruction. Of course, atomic reads and
writes are also used.

It should be noted that non-universal (F&I) instructions can be a very ef-
fective means of attaining better performance, can be applied to the operation
with a single point of memory contention. This in comparison with stronger, but
less performant compare-and-swap (CAS) atomic primitive instructions, as also
noted in [17, 43]. A use of the (F&I) instruction has provided nice performance
improvements over the CAS instruction for incrementing of a contended counter
on a modern x86 system [43]. There, the elimination of the retries incurred by the
CAS implementation led to a 4-to-6 times performance improvement.

1.2.4 Universal constructions

Universal constructions are a class of lock-free and wait-free techniques that can
be straightforwardly applied to a wide range of sequential programs to make them
safe in parallel-execution environments. Indeed, most of these constructions are
intended to be applied automatically by a compiler or run-time system. For exam-
ple, Herlihy describes a universal construction for automatically creating a non-
blocking algorithm from a sequential specification [27]. This requires a snapshot
of the entire data object to be copied to a private location where shadow up-
dates can safely be applied: these updates become visible when the single "root"
pointer of the structure is atomically checked and modified to point at the shadow
location. Although Herlihy describes how copying costs can be greatly reduced
by replacing only those parts of the object that are modified, the construction
still requires atomic update of a single root pointer. This means that concurrent
updates will always conflict, even when they modify disjoint sections of the data
structure. Many follow-up studies further extended the idea of the universal con-
struction. They made it more efficient, but all these constructions are typically
not efficient and scalable enough to be used in practice.

1.2.5 Ad hoc data structures

Although there are many universal constructions and programming abstractions
that seek to facilitate the implementation of complex data structures, practical
concerns have caused most designers to resort to building non-blocking algorithms
directly from machine primitives, e.g., CAS, F&I, and LL/SC. Consequently, a
large body of work describes ad hoc designs for data structures such as stacks,
queues, lists, skip-lists, hash-tables, and unbalanced binary search trees. In this
dissertation we work mainly with ad hoc data structures. Here we present related
work for the lock-free singly-linked list (which has received much attention and has
many implementations), for the search tree, and for the priority queue. Additional

7©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1: Introduction

data structures will be presented when required, close to the relevant section.
Linked Lists: The first design of lock-free linked lists was presented by Val-

ois [52]. He maintained auxiliary nodes in between the list’s normal nodes, in
order to resolve intererence among concurrent operations. A different lock-free
implementation of linked lists was given by Harris [22]. His main idea was to
mark a node before deleting it in order to prevent concurrent operations from
changing its next-entry pointer. Harris’s algorithm is simpler than Valois’s, and
his experimental results are generally better. Michael [41] proposed an extension
to Harris’s algorithm that did not assume garbage collection but reclaimed entries
of the list explicitly. To this end, he developed an underlying mechanism of hazard
pointers that was later used for explicit reclamation in other data structures as
well. An improvement in complexity was achieved by Fomitchev and Rupert [18].
They use a smart retreat upon CAS failure, rather than the standard restart from
scratch.

The high performance, lock-free, linked list that we propose also does not
traverse the list from the beginning upon the CAS failure. In addition, our list
attains high performance by employing locality and by using skips (over chunks of
the list) during traversal. More details about this list can be found in Chapter 2.
The first implementation of a wait-free linked list was independently proposed by
Timnat et al. [50].

Trees: Previous works on lock-free trees include Fraser’s construction [19] of
a lock-free balanced tree. Their construction is simplified significantly by building
on an underlying transactional memory system. Fraser also presents a construc-
tion of a lock-free tree based on multiple-word CAS [19], but this construction
offers no balancing and in the worst case may require a linear complexity for the
tree operations. Ellen et al. [16] presented the first lock-free tree using single-word
CAS, but their tree offers no balancing. Bender et al. [3] described a lock-free im-
plementation of a cache-oblivious B-tree from LL/SC operations. For comparison,
our B+tree construction uses single-word CAS operations. Moreover, a packed-
memory cache-oblivious B-tree is not equivalent to the traditional B+tree data
structure. First, it only guarantees amortized time complexity (even with no con-
tention), as the data is kept in an array that needs to be extended occasionally by
copying the entire data structure. Second, it does not keep the shallow structure
and it is less suitable for file systems. Finally, a full version of this paper has
not yet appeared and details of the lock-free implementation are not specified.
As part of this thesis we present the first lock-free, linearizable, dynamic B+tree
implementation supporting searches, insertions, and deletions. It is dynamic in
the sense that there is no (static) limit to the number of nodes that can be al-
located and put in the tree. The construction employs only reads, writes, and
(single-word) CAS instructions. Searches are not delayed by rebalancing opera-
tions. The construction employs the lock-free chunk mechanism that fits naturally
with a node of the B+tree that is split and joined, keeping the number of elements
within given bounds, and thus maintaining the balance of the tree. More details

8©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1: Introduction

about the B+tree can be found in Chapter 3. After our work was published, the
research around non-blocking unbalanced binary search has continued [7, 44, 45].
An AVL tree with lock-free look up was presented in [13].

Priority Queues: Various constructions for the concurrent PQ exist in the
literature. Hunt et al. [32] used a fine-grained lock-based implementation of a con-
current heap. Dragicevic and Bauer presented a linearizable heap-based priority
queue that used lock-free software transactional memory (STM) [14]. Their algo-
rithm was intended to improve performance by splitting critical sections into small
atomic regions, but the overhead of the STM resulted in low performance. A qui-
escently consistent skip-list based priority queue was first proposed by Lotan and
Shavit [37] using fine-grained locking, and was later made lock-free [19]. Another
skip-list based priority queue was proposed by Sundell and Tsigas [49]. While this
implementation is lock-free and linearizable, it required reference counting, which
compromises disjoint-access parallelism and degrades performance.

Liu and Spear [36] introduced two concurrent versions of a data structure
called mounds (one is lock-based and the other is lock-free). The mounds data
structure is a rooted tree of sorted lists that relies on randomization for balance.
It supports O(log(log(N))) insert operations and O(log(N)) deleteMin opera-
tions. Mounds perform well in practice (with high probability) and their insert
operation is currently the most performant among concurrent implementations of
the PQ. Linden and Jonsson [35] presented a skip-list based PQ. Deleted elements
are first marked as deleted in the deleteMin operation. Later, they are actually
disconnected from the PQ in batches when the number of nodes marked as deleted
exceed a given threshold. Their construction outperforms previous algorithms by
30� 80%. Recently, Calciu et al. [8] introduced a new lock-based, skip-list-based
PQ that uses elimination and flat combining techniques to achieve high scalability
at high thread counts. Their elimination mechanism is of independent interest
and can be added to our mechanism to achieve even better performance. We have
proposed a lock-free data structure for a high performance priority queue. It is
called CBPQ for Chunked Based Priority Queue and it outperforms the presented
above implementations; details are provided in Chapter 5.

1.2.6 Memory management

Many non-blocking algorithms in the literature are presented in pseudo-code which
assumes that automatic garbage collection is provided as a run-time service. This
ignores the problem that many languages do not provide this support and, fur-
thermore, that none of the general-purpose garbage collectors are non-blocking.
To deal with this, a range of non-blocking memory-management techniques have
been suggested. Some works attempt to describe a lock-free garbage collector;
however, a truly full lock-free garbage collector has not yet been achieved (to the
best of our knowledge). Apart from garbage collection, another problem related
to memory reclamation is the ABA problem. Affecting almost all lock-free algo-
rithms, it was first reported in the documentation of CAS on the IBM System

9©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 1: Introduction

370 [33]. It occurs when a thread reads a value A from a shared location, and
then other threads change the location to a different value, say B, and then back
to A again. Later, when the original thread checks the location, e.g., using read
or CAS, it erroneously proceeds under the assumption that the location has not
changed since the last reading because the compared values are the same. As a
result, the thread may corrupt the object or return a wrong result. So in addition
to the lock-free GC, many safe memory reclamation methodologies for specific
data structures have been presented. Valois [52], followed by Michael and Scott
[40], use reference counts to ensure that an object (fixed-size memory segment)
is not reused while any thread still holds a pointer to it [52]. As there may be
an arbitrary delay between obtaining a reference to an object and incrementing
the reference count, objects reclaimed via reference counts must retain their type
forever. Detlefs et al. solve this by using DCAS to increment the counter while
simultaneously checking that the object remains globally accessible [12]. How-
ever, maintaining the reference counts can be quite costly in all reference counting
schemes. This is particularly true for operations which read many objects: up-
dates to reference counts may cause read-only objects to become a contention
bottleneck. Michael [41] proposed the hazard pointer (HP) method, which focuses
on local references: each thread maintains a list of pointers (HPs) of the nodes
the thread may later access; when a node is removed from the data structure, the
HP lists of all threads must be checked before the node is reclaimed. However,
the cost of updating a hazard pointer when traversing objects can be high. On
modern processors, a memory barrier must be executed after updating a hazard
pointer: implementing this barrier may increase execution time by around 25%

(according to Fraser [19]). A similar scheme, called Pass the Buck, was indepen-
dently proposed by Herlihy et al. [28]. In its original form, it uses unbounded tags
and is based on the double-width CAS atomic primitive, a CAS operation that
can atomically update two adjacent memory words. This operation is available in
some 32-bit architectures but only in very few of the current 64-bit architectures.
More recently, Herlihy et al. [28] showed how to remove the tags from their
method, to allow the later scheme to be implemented using single-width CAS.

We present a novel technique, called Drop the Anchor, which significantly re-
duces the overhead associated with memory management while reclaiming objects
even in the presence of thread failures. We demonstrate this memory management
scheme on the common linked-list data structure. Using extensive evaluation, we
show that Drop the Anchor significantly outperforms Hazard Pointers, the widely
used technique for non-blocking memory management. Our memory management
technique is discussed in Chapter 4.

10©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2

Locality-Conscious Lock-Free
Linked Lists

2.1 Introduction

In this chapter we further extend the linked list’s design to allow cache-conscious
linked lists. Our implementation partitions the linked list into sub-lists that re-
side on consecutive areas in the memory, denoted chunks. Each chunk contains
several consecutive list entries. For example, setting each chunk to be one virtual
page, causes list traversals to form a page-oriented memory access pattern. This
partition of the list into sub-lists, each residing on a small chunk of memory is
often used in practice (e.g., [20]), but there is no lock-free implementation for such
a list. Breaking the list into chunks can be trivial if there is no restriction on
the chunk size. In particular, if the size of each chunk can decrease to a single
element, then clearly, each chunk can trivially reside in a single memory block,
Michael’s implementation will do, but no locality improvement will be obtained
for list traversals. The sub-list’s chunk that our design provides maintains upper
and lower bounds on the number of elements it has. The upper bound simply
follows from the size of the memory block on which the chunk is located, and
a lower bound is provided by the user. If a chunk grows too much and cannot
be held in a memory block, then it is split (in a lock-free manner) creating two
chunks, each residing at a separate location. Conversely, if a chunk shrinks below
the lower bound, then it is merged (in a lock-free manner) with the previous chunk
in the list. In order for the split to create acceptable chunks, it is required that
the lower bound (on the number of objects in a chunk) does not exceed half of
the maximum number of entries in the chunk. Otherwise, a split would create two
chunks that violate the lower bound.

A natural optimization of search for such a list is to quickly jump to the next
chunk (without traversing all its entries), if the desired key is not within the key-
range of this chunk. This gives us additional performance improvement since the
search progress is done in skips, where the size of each skip is at least the chunk’s
minimal boundary. Furthermore the retreat upon CAS failure, in the majority of

11©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

the cases is done by returning to beginning of the chunk, rather than the standard
restart from the beginning of the list.

To summarize, the contribution of this chapter is the presentation of a lock-free
linked list, based on single word CAS commands, were the keys are unique and
ordered. The algorithm does not assume a assume no lock-free garbage collector.
The list design is locality conscious. The design poses a restriction on the keys
and data length. For 64bit architecture the key is limited to 31 bit, and the data
is limited to 32 bit.

2.2 Preliminaries and Data Structure

A linked list is a data structure that consists of a sequence of data records. Each
data record contains a key by which the linked list is ordered. We denote each
data record an entry. We think of the linked list as representing a set of keys,
each associated with a data part. Following previous work [19, 22], a key cannot
appear twice in the list. Thus, an attempt to insert a key that exists in the list
fails. Each entry holds the key and data associated with it. Generally, this data is
a pointer, or a mapping from the key to a larger piece of data associated with it.
Next, we present the underlying data structure employed in the construction. We
assume a 64-bit platform in this description. A 32-bit implementation can easily
be derived, by either cutting each field in half, or by keeping the same structure,
but using a wide compare-and-swap, which writes atomically to two consecutive
words.

The structure of an entry: A list entry consists of a key and a data fields,
and the next pointer (pointing to next entry). These fields are arranged in two
words, where the key and data reside in the first word and the next pointer in the
second. Three more bits are embedded in these two words. First, we embed the
delete bit in the least bit of the next pointer, following Harris [22]. The delete
bit is set to mark the logical deletion of the entry. The freeze bits are new in this
design. They take a bit from each of the entry’s words and their purpose is to
indicate that the entire chunk holding the entry is about to be retired. These three
flags consume one bit of the key and two bits from the next pointer. Notice that
the three LSBs of a pointer do not really hold information on a 64-bit architecture.
The entry structure is depicted in Figure 2.1. In what follows, we refer to the first
word as the keyData word, and the second word as the nextEntry word.

We further reserve one key value, denoted by ? to signify that the entry is
currently not allocated. This value is not allowed as a key in the data structure.
As will be discussed in Section 2.4, an entry is available for allocation if its key is
? and its other fields are zeroed.

The structure of a chunk: The main support for locality stems from the
fact that consecutive entries are kept on a chunk, so that traversals of the list
demonstrate better locality. In order to keep a substantial number of entries on
each chunk, the linked list makes sure that the number of entries in a chunk is

12©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

������
�

����	

������

����	

����	�

����	

���	�����	�
���	

��	� ��� ���	�
������������� �

��	�����
������

Figure 2.1: The entry structure.

key: 9
del. bit: 1

key: 5
del. bit: 0

key: 1
del. bit: 1

key: 12
del. bit: 0

key: 8
del. bit: 0

key: ┴
del. bit: 0

. . .

head

counter

64 bit (word)

new

64 bit (word)

mergeBuddy

 64 bit (word)

3 LSBs
freezeState

entriesArray[MAX]

…

nextChunk

64 bit (word)

Figure 2.2: The chunk structure.

always between the parameters min and max. The main part of a chunk is an
array that holds the entries in a chunk and may hold up to max entries of the
linked list. In addition, the chunk holds some fields that help manage the chunk.
First, we keep one special entry that serves as a dummy header entry, whose next
pointer points to the first entry in this chunk. The dummy header is not a must,
but it simplifies the algorithm’s code. To identify chunks that are too sparse,
each chunk has a counter of the number of entries currently allocated in it. In
the presence of concurrent mutations, this counter will not always be accurate,
but it will always hold a lower bound on the number of allocated entries in the
chunk. When an attempt is made to insert too many entries into a chunk, the
chunk is split. When it becomes too small due to deletions, it is merged with
a neighboring chunk. We require max > 2·min+1, since splitting a large chunk
must create two well-formed new chunks. In practice max will be substantially
larger than 2·min to avoid frequent splits and merges. Additional fields (new,
mergeBuddy and freezeState) are needed for running the splits and the merges
and are discussed in Section 2.5. The chunk structure is depicted in Figure 2.2.

The structure of entire list: The entire list consists of a list of chunks.
Initially we have a head pointer pointing to an empty first chunk. We let the
first chunk’s min boundary be set to 0, to allow small lists. The list grows and
shrinks due to the splitting and merging of the chunks. Every chunk has a pointer
nextChunk to the next chunk, or to null if it is the last chunk of the list. The keys
of the entries in the chunks never overlap, i.e., each chunk contains a consecutive
subset of keys in the set, and a pointer to the next chunk, containing the next
subset (with strictly higher keys) in the set. The entire list structure is depicted in
Figure 2.3. We set the first key in a chunk as its lowest possible key. Any smaller
key is inserted in the previous chunk (except for the first chunk that can also get
keys smaller than its first one.)

13©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Entry with
key 100

Entry with
key 159

Entry with
key 123

H
E
A
D

Chunk
1

Chunk's
head

Entry with
key 5

Entry with
key 90

nextChunk

…

Chunk
2

Chunk's
head

nextChunk

…

counter:
6

counter:
10

Entry with
key 26

new, mergeBuddy,
freezeState

new, mergeBuddy,
freezeState

Figure 2.3: The list structure.

Hazard pointers: Whole chunks and entries inside a chunk are reclaimed
manually. Note that garbage collectors do not typically reclaim entries inside an
array. To allow safe (and lock-free) reclamation of entries manually, we employ
Michael’s hazard pointers methodology [39, 41]. While a thread is processing an
entry - and a concurrent reclamation of this entry can foil its actions - the thread
registers the location of this entry in a special pointer called a hazard pointer.
Reclamation of entries that have hazard pointers referencing them is avoided.
Following Michael’s list implementation [41], each thread has two hazard pointers,
denoted hp0 and hp1 that aid the processing of entries in a chunk. We further add
four more hazard pointers hp2, hp3, hp4, and hp5, to handle the operations of the
chunk list. Each thread only updates its own hazard pointers, though it can read
the other threads’ hazard pointers.

2.3 Using a Freeze to Retire a Chunk

In order to maintain the minimum and maximum number of entries in a chunk, we
devised a mechanism for splitting dense chunks, and for merging a sparse chunk
with its predecessor. The main idea in the design of the split and merge lock-
free mechanisms is the freezing of chunks. When a chunk needs to be split or
merged, it is first frozen. No insertions or deletions can be executed on a frozen
chunk. To split a frozen chunk, two new chunks are created and the entries of
the frozen chunk are copied into them. To merge a frozen chunk with a neighbor,
the neighbor is first frozen, and then one or two new chunks are allocated and
the relevant entries from the two merging chunks are copied into them. Details of
the freezing mechanism appear in Section 2.5. We now review this mechanism in
order to allow the presentation of the list operations.

The freezing of a chunk comprises three phases:
Initiate Freeze: When a thread decides a chunk should be frozen, it starts setting
the freeze bits in all its entries one by one. During the time it takes to set all these
bits, other threads may still modify the entries not yet marked as frozen. During
this phase, only part of the chunk is marked as frozen, but this freezing procedure
cannot be reversed, and frozen entries cannot be reused.
Stabilizing: Once all entries in a chunk are frozen, allocations and deletions can
no longer be executed. At this point, we link the non-deleted entries into a list.
This includes entries that were allocated, but not yet connected to the list. All

14©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

entries that are marked as deleted are disconnected from the list.
Recovery: The number of entries in the stabilized list is counted and a decision
is made whether to split this chunk or merge it with a neighbor. Sometimes,
due to changes that happen during the first phase, the frozen chunk becomes a
good one that does not require a split or a join. Nevertheless, the retired chunk
is never resurrected. We always allocate a new chunk to replace it and copy the
appropriate values to the new chunk. Whatever action is decided upon (split, join,
or copy chunk) must be carried through.

Any thread that fails to insert or delete a key due to the progress of a freeze,
joins in helping the freezing of the chunk. However, threads that perform a search,
continue to search in frozen chunks with no interference.

2.4 The List Operations: Search, Insert and Delete

We now turn to describe the basic linked list operations. The high-level code for
an insertion, deletion, or search of a key is very simple. Each of this operations
starts by invoking FindChunk method to find the relevant chunk. Then they call
SearchInChunk, or InsertToChunk, or DeleteInChunk according to the desired
operation, and finally, the hazard pointers hp2, hp3, hp4, and hp5 are nullified,
to release the hazard pointers set by the FindChunk method and allow future
reclamation. The main challenge is in the work inside the chunk and the handling
of the freeze process, on which we elaborate below.

Turning to the operations inside the chunks, the delete and search methods
are close to the previous design [41], except for the special treatment of the chunk
bounds and the freeze status. However, the insert method is quite different, be-
cause it must allocate an entry in a shared memory (on the chunk), whereas
previously, it was assumed that the insert allocates a local space for a new entry
and privately prepares it for insertion in the list.

For the purpose of handling the entries list in the chunk, we maintain five
variables that are global and appear in all the code below. These variables are
global for each thread’s code, but are not shared between threads, and all of
them follow Michael’s design [41]. The first three per-thread shared variables
are (entry** prev), (entry* cur), and (entry* next). The other two are the two
pointers (entry** hp0) and (entry** hp1) that point to the two hazard pointers
of the thread. All other variables are local to the method that mentioned them.

2.4.1 The insert operation

The InsertToChunk method inserts a key with its associated data into a chunk.
It first attempts to find an available entry and allocate it with the given key. If
no available entry exists, a split is executed and the operation is retried. If an
entry is obtained, the InsertEntry method is invoked to insert the entry into the

15©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

list. The insertion will fail if the key already exists in the chunk. In this case
InsertToChunk clears the entry to free it for future allocations.

The InsertToChunk code is presented in Algorithm 1. It starts by an attempt
to find an available entry for allocation. A failure occurs when all entries are in use
and in this case a freeze is initiated. The Freeze method gets the key and data as
an input, and also an input indicating that it is invoked by an insertion operation.
This allows the Freeze method to try to insert the key to the newly created chunk.
When successful, it returns a null pointer to indicate the completion of the
insertion. It also sets a local variable result to indicate whether the completed
insertion actually inserted the key or it completed by finding that the key already
existed in the list (which is also a legitimate completion of the insertion operation).
If the insertion is not completed by the Freeze method, then it returns a pointer
to the chunk on which the insertion should be retried.

Connecting the entry to the list is done by InsertEntry. If the entry gets
allocated and linked to the list, then the chunk counter is incremented only by
the thread that linked the entry itself. If the key already existed in the list, then
ClearEntry attempts to clear the entry for future reuse. However, a rare scenario
may foil clearing of the entry. This happens when the other occurrence of the key
(which existed previously in the list) gets deleted before our entry gets cleared.
Furthermore, a freeze occurs, in which the semi-allocated entry gets linked by other
threads into the new chunk’s list. At this point, clearing this entry is avoided, and
ClearEntry returns false. In such a scenario, clearing the entry fails and the
insert operation succeeds.

At the end of InsertToChunk, all hazard pointers are cleared and we return
with a code specifying if the insert was successful, or the key previously existed in
the list.

The allocation of an available entry is executed using the AllocateEntry method,
depicted in Algorithm 2. An available entry contains ? as a key and zeros oth-
erwise. An available entry is allocated by assigning the key and data values in
the keyData word in a single atomic compare-and-swap (CAS) that assumes this
word has the ? symbol and zeros in it. An entry whose keyData has the freeze
bit set cannot be allocated as it is not properly zeroed. Note also that once an
entry is allocated, all the information required for linking it to the list is available
to all threads. Thus, if a freeze starts, then all threads may create a stabilized
list of the allocated entries in a chunk. The AllocateEntry method searches for an
available entry. If no free entry can be found, null is returned.

Next, comes the InsertEntry method, which takes an allocated entry and at-
tempts to link it to the linked list. The InsertEntry code is presented in Algorithm
3. The input parameter entry is a pointer to an entry that should be inserted. It
is already allocated and initiated with key and data.

Before searching for the location to which to connect this entry, we memorize
this entry’s next pointer. Normally, this should be a null, but in the presence
of concurrent executions of InsertEntry (which may happen during a freeze), we

16©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 1: Insert a key and its associated data into a chunk
Bool InsertToChunk (chunk* chunk, key, data) {
1: current = AllocateEntry(chunk, key, data); // Find an available entry
2: while (current == null) { // No available entry. Freeze and try again
3: chunk = Freeze(chunk, key, data, insert, &result);
4: if (chunk == null) return result; // Freeze completed the insertion.
5: current = AllocateEntry(chunk, key, data); // Otherwise, retry allocation
6: }
7: returnCode = InsertEntry(chunk, current, key);
8: switch (returnCode) {
9: case success_this:

10: IncCount(chunk); result = true; break; // Increase the chunk’s counter
11: case success_other: // Entry was inserted by other thread
12: result = true; break; // due to help in freeze
13: case existed: // This key exists in the list. Reclaim entry
14: if (ClearEntry(chunk, current)) // Attempt to clear the entry
15: result = false;
16: else // Failure to clear the entry implies that a freeze thread
17: result = true; // eventually inserts the entry
18: break;
19: } // end of switch
20: *hp0 = *hp1 = null;
21: return result;
}

Algorithm 2: Entry allocation
entry* AllocateEntry(chunk* chunk, key, data) {
1: keyData = combine(key, data); // Combine into the structure of a keyData word
2: expEnt = combine(?, 0);
3: foreach entry e // Traverse entries in chunk
4: if (e!keyData == expEnt)
5: if (CAS(&(e!keyData), expEnt, keyData)) return e; // Try to allocate
6: return null; // No free entry was found
}

must make sure later that the entry’s next pointer was not modified before we
atomically wrote it in Line 10. After saving the current next pointer, we search
for the entry’s location via the Find method. If the key already exists in the list,
InsertEntry checks whether the returned entry is the same as the one it is trying to
insert (by address comparison). The result determines the return code: either the
key existed and we failed, or the key was inserted, but not by the current thread.
(This can happen during a freeze when all threads attempt to stabilize the frozen
list.) Otherwise, the key does not exist, and Find sets the global variable cur
with a pointer to the entry that should follow our entry in the list, and the global
variable prev with the pointer that should reference our entry. The Find method
protects the entries referenced by prev and cur with the hazard pointers hp1 and
hp0, respectively. There is no need to protect the newly allocated entry because
it cannot be reclaimed by a different thread.

If any to-be-modified pointer is marked as frozen, we make sure that its re-

17©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 3: Connecting an allocated entry into the list
returnCode InsertEntry (chunk* chunk, entry* entry, key) {
1: while (true) {
2: savedNext = entry!next;
3: // Find insert location and pointers to previous and current entries (prev, cur)
4: if (Find(chunk, key)) // This key existed in the list
5: if (entry == cur) return success_other; else return existed;
6: // If neighborhood is frozen, keep it frozen
7: if (isFrozen(savedNext)) markFrozen(cur); // cur will replace savedNext

8: if (isFrozen(cur)) markFrozen(entry); // entry will replace cur

9: // Attempt linking into the list. First attempt setting next field
10: if (!CAS(&(entry!next), savedNext, cur)) continue;
11: if (!CAS(prev, cur, entry)) continue; // Attempt linking
12: return success_this; // both CASes were successful
13: }
}

placement is marked as frozen well. An allocation of an entry can never occur on a
frozen entry. However, once the allocation is successful, the new entry may freeze
and still InsertEntry should connect it to the list. Finally, two CASs are used to
link the entry to the list. Whenever a CAS fails, the insertion starts from scratch.

2.5 The Freeze Procedure

We now provide more details about the freeze procedure. The freezing process
occurs when the number of entries in a chunk exceeds its boundaries. At this point,
splitting or merging happens by copying the relevant keys (and data) into a newly
allocated chunk (or chunks). This process comprises three phases: initiation,
stabilization and recovery.

A thread will initiate a freeze when the min or max are exceeded or when there
is an external request to freeze the current chunk in order for it to serve in a merge
procedure with a neighbor. Once a freeze process has started, other threads may
join and help the freeze since they need the resulting chunks to proceed in their
activities. We distinguish between an external freeze (imposed upon a chunk by
a sparse neighbor) and a regular freeze, using the freeze state field in the chunk.
The main goal is to avoid the possibility that one thread plans to use this chunk
for merging with a small neighbor, while another thread is splitting it because it
is full. We let one type of freeze terminate before executing a different one.

The code for the Freeze method is presented in Algorithm 4. The input param-
eters are the chunk that needs to be frozen, the key, the data, and the event that
triggered the freeze: insert, delete, enslave (if the freeze was called to prepare
the chunk for merge with a neighboring chunk), or none (if the freeze is called
while clearing an entry). The freeze will attempt to execute the insertion, deletion,
or enslaving and will return a null pointer when successful. It will also set an
input boolean flag to indicate the return code of the relevant operation. When

18©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 4: The main freeze method.
chunk* Freeze(chunk* chunk, key, data, triggerType tgr, Bool* res) {
1: CAS(&(chunk!freezeState), no_freeze, internal_freeze);
2: // At this point, the freeze state is either internal_freeze or external_freeze

3: MarkChunkFrozen(chunk);
4: StabilizeChunk(chunk);
5: if (chunk!freezeState == external_freeze) {
6: // This chunk was marked external_freeze before Line 1 executed.
7: master = chunk!mergeBuddy; // Get the master chunk
8: // Fix the buddy’s mergeBuddy pointer.
9: masterOldBuddy = combine(null, internal_freeze);

10: masterNewBuddy = combine(chunk, internal_freeze);
11: CAS(&(master!mergeBuddy), masterOldBuddy, masterNewBuddy);
12: return FreezeRecovery(chunk!mergeBuddy, key, data, merge, chunk, tgr, res);
13: }
14: decision = FreezeDecision(chunk); // The freeze state is internal_freeze

15: if (decision == merge) mergePartner = FindMergeSlave(chunk);
16: return FreezeRecovery(chunk, key, data, decision, mergePartner, trigger, res);
}

unsuccessful, it will return a pointer to the new chunk on which the operation
should be retried.

The Freeze method starts with an attempt to atomically change the freeze
state from no_freeze to internal_freeze. This freeze state of the chunk
is normally no_freeze and is switched to internal_freeze when a freeze
process of this chunk begins. But it can also be external_freeze when a
neighbor requested a freeze on this chunk to allow a merge between the two.
Thus, an external freeze can start even when no size violation is detected in this
chunk. The location of the freeze state field is in the three LSBs of the merge
buddy pointer (see Figure 2.2). In the discussion below we assume we are dealing
with an internal freeze. An external freeze is discussed separately in Section 2.5.4.

Whether or not the modification succeeds, we know that the freeze state
can no longer be no_freeze. It can be either internal_freeze or exter-

nal_freeze. The Freeze method then calls MarkChunkFrozen to mark each
entry in the chunk as frozen and StabilizeChunk to finish stabilizing the entries
list in the chunk. At this point, the entries in the chunk cannot be modified
anymore. Freeze then checks if the freeze is external or internal.

An external freeze can occur when a freeze is concurrently executed on the
next chunk, and it has already enslaved the current chunk as its merge buddy. In
this case, we cooperate with the joint freeze and joint recovery. When the state of
the freeze is external, then the current chunk must have its mergeBuddy pointer
already pointing to the chunk that initiated the merge, denoted the master chunk.
To finish this freeze, we make sure that the master chunk has its merge buddy
properly pointing back at the current chunk. The master chunk’s mergeBuddy
pointer must be either null or already pointing to the buddy we found. Thus
it is enough to use one CAS command to verify that it is not null. Finally, we

19©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 5: Freezing all entries in a chunk
void MarkChunkFrozen(chunk* chunk) {
1: foreach entry e {
2: savedWord = e!next;
3: while (!isFrozen(savedWord)) { // Loop till the next pointer is frozen
4: CAS(&(e!next), savedWord, markFrozen(savedWord));
5: savedWord = e!next; // Reread from shared memory
6: }
7: savedWord = e!keyData;
8: while (!isFrozen(savedWord)) { // Loop till the keyData word is frozen
9: CAS(&(e!keyData), savedWord, markFrozen(savedWord));

10: savedWord = e!keyData; // Reread from shared memory
11: }
12: } // end of foreach
13: return;
}

execute the recovery phase on the master chunk and return its output. We do not
need to check the decision about the freeze of the buddy. It must be a merge.

If the freeze is internal, then we invoke FreezeDecision to see what should be
done next (Line 14). If the decision is to merge, then we find the previous chunk
and “enslave” it for a joint merge using the FindMergeSlave method. Finally, the
FreezeRecovery method is called to complete the freeze process. Next, we explain
each of the stages.

2.5.1 The initiation of a freeze

After changing the chunk’s state, the initiation invokes MarkChunkFrozen, which
goes through the chunk’s entries one by one and marks them as frozen by setting
the freeze bit first on the nextEntry word and then on the keyData word. The
setting of these flags is atomic and it is retried repeatedly until successful. By
the end of this process all entries (including the free ones) are marked as frozen.
The freeze bit of the head entry is set last and at this point in time we consider
the initiation phase to be completed. The pseudo code of MarkChunkFrozen is
presented in Algorithm 5.

2.5.2 The stabilization phase

After all the entries in the chunk are marked as frozen, new entries cannot be
allocated and existing entries cannot be marked as deleted. However, the frozen
chunk may contain allocated entries that were not yet linked, and entries that were
marked as deleted, but which have not yet been disconnected and reclaimed. The
stabilization operation disconnects all deleted entries and links all allocated ones.
The pseudo-code of the StabilizeChunk method appears in Algorithm 6. It starts
by running Find on the maximal possible key value. This is done because the
Find method (described in Section 2.6.1) always disconnects all entries that are
marked as deleted (even when frozen). Such entries do not need to be reclaimed

20©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 6: Freeze stabilization.
void StabilizeChunk(chunk* chunk) {
1: maxKey = 1;
2: Find(chunk, maxKey); // Implicitly remove deleted entries
3: foreach entry e {
4: key = e!key; eNext = e!next;
5: if ((key != ?) && (!isDeleted(eNext))) //This entry is allocated and not deleted
6: if(!Find(chunk,key)) InsertEntry(chunk, e, key); //This key is not yet in the list
7: } // end of foreach
8: return;
}

(when marked as frozen), but they should not be copied to the new chunk. Next,
StabilizeChunk attempts to connect entries. It goes over all entries and searches
for ones that are disconnected, but neither reclaimed nor deleted. Each such entry
is linked to the list by invoking InsertEntry, which will only fail if the key already
exists in a different entry in the chunk’s list. In this case, this entry should indeed
not be connected to the stabilized list.

2.5.3 The decision and the recovery

After stabilizing the chunk, everything is frozen, the list is completely connected,
and nothing changes in the chunk anymore. At this point, we need to decide
whether or not splitting or merging is required. Recall that the decision to freeze
is initiated in the presence of many concurrent updates. It is possible that one
thread could not find an entry to allocate and initiated a freeze for the purpose
of splitting the chunk, but many other threads deleted entries concurrently and
when the chunk actually stabilized, there was no need to split. There may even
be a need for a merge. Thus, we make the decision on which operation to execute
only after the chunk has stabilized and cannot change anymore.

At this point, we count the number of entries in the frozen chunk, and decide if
a split or a merge is required according to the count. If the resulting count equals
min we run a merge, and if it equals max, we run a split (in the recovery phase).
The resulting count can never exceed the bounds, because there is no space to
allocate more than max entries in the chunk, and since the chunk counter that is
maintained during the run holds a lower bound on the actual number of entries
and can never reach a value below min. If the resulting count is higher than
min and lower than max, then no operation is required. Nevertheless, the frozen
chunk is never resurrected. Otherwise, correctness cannot be guaranteed when a
long-sleeping thread wakes to find a chunk that was resurrected. Instead, we copy
the chunk to a new chunk in the (upcoming) recovery stage.

The FreezeDecision method is presented in Algorithm 7. It computes the num-
ber of entries and returns the recovery code: split, merge, or copy.

The recovery procedure allocates a chunk (or two) and copies the relevant
information into the new chunk (or chunks). If a merge is involved, the previous

21©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 7: Determining the freeze action.
recovType FreezeDecision (chunk* chunk) {
1: entry* e = chunk!head!next;
2: int cnt = 0;
3: while (clearFrozen(e)!=NULL) { cnt++; e=e!next; } // Going over the chunk’s list
4: if (cnt == min) return merge;
5: if (cnt == max) return split;
6: return copy;
}

chunk in the list is first frozen (externally) and both chunks bring entries for the
merge. Several threads may perform the freeze procedure concurrently, but all of
them will make the same recovery decision about the freeze, as the frozen stabilized
chunk looks the same to all threads. A thread that performs the recovery creates a
local chunk into which it copies the relevant entries. At this point all threads create
the same new chunk (or chunks). But now, each thread performs the operation
with which it initiated the freeze on the new chunks. It can be an insert, delete, or
enslave. Performing the operation is easy because the new chunks are local to this
thread and no race can occur. (Enslaving a chunk is simply done by modifying
its freeze state from no_freeze to external_freeze and registration of the
merge buddy.) But the success of making the local operation visible in the data
structure is determined by whether the thread succeeds in creating a link to its
new chunks in the frozen chunk, as explained next.

After creating the new chunks locally and executing the original operation on
them, there is an attempt to atomically insert the address of its local chunk into
a dedicated pointer in the frozen chunk (new). When two chunks are created,
the second one is locally linked to the first one by the nextChunk field. If the
insertion is successful, then this thread has also completed the the operation it
was performing (insert, delete, or enslave). If the insertion is unsuccessful, then
this means that a different thread has already completed the installation of new
chunks and this thread’s local new chunks will not be used (i.e., can be reclaimed).
In this case, the thread must try its operation again from scratch.

The code for the recovery is presented in Algorithm 8. If a merge occurs, the
merging chunk is supplied as a parameter. According to the number of (live)
entries on the frozen chunk there are three ways to recover from the freeze.

Case I: min< count < max. In this case, the required action is to allocate a
new chunk and copy all of the entries that reside on the frozen chunk’s list to the
new chunk (which is only locally visible and requires no synchronization). We do
not specify the copying routine (in this case, as well as in the other cases) since the
copy is from a frozen chunk that does not change, to a local chunk. This means
that no concurrency is involved and the implementation is simple. The new chunk
becomes the replacement of the old chunk when the pointer new in the old chunk
points to it. An upper-level routine that handles the chunked list ListUpdate is
then invoked to replace the frozen chunk with the chunk that is referenced by new.

22©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

The new chunk that holds the input key (after the freeze is completed) is then
returned.

Case II: count == min. In this case we need to merge the old chunk with
its previous chunk supplied through mergeChunk. We assume that the supplied
chunk has already been frozen by an external freeze before the recovery is executed.
Finally, we assume that the freeze states are properly set to internal on the old
chunk and external on the previous chunk (so that no thread can interfere with
the freeze process), and the mergeBuddy pointers on these two chunks point to
each other.

We start by checking the overall number of entries in these two chunks, to
decide if the merged entries will fit into one of two chunks. We then allocate a
second new chunk, if needed, and perform the (local) copy to the new chunk or
chunks. When copying into two new chunks, we split the entries evenly, and return
the smallest key in the second chunk as the separating key. As before, we try to
create a link from the old chunk to the new chunk or chunks. Next, the new chunk
that holds the input key is determined according to the separating key, and finally,
the ListUpdate method is called to replace the frozen chunk in the list with the
two new chunks. This completes the recovery for the merge case.

Case III: count == max. In this case we need to split the old chunk into
two new chunks. The basic operations of this case resemble those of the previous
cases. We allocate a new chunk, perform the split locally, attempt to link the new
chunks to the old one, update the list, and return the chunk holding the key.

2.5.4 Managing the external freeze activities

An external freeze can occur when a freeze is concurrently executed on the next
chunk, and it has already enslaved the current chunk as its merge buddy. In
this case, we cooperate with the joint freeze and joint recovery Lines 5-13 of the
Freeze method. When the state of the freeze is external, then the current chunk
must have its mergeBuddy pointer already pointing to the chunk that initiated
the merge, denoted the master chunk. To finish this freeze, we make sure that the
master chunk has its merge buddy properly pointing back at the current chunk.
The master chunk’s mergeBuddy pointer must be either null or already pointing
to the buddy we found. Thus it is enough to use one CAS command to verify that
it is not null. Finally, we execute the recovery phase on the master chunk and
return its output. We do not need to check the decision about the freeze of the
buddy. It must be a merge.

23©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 8: The freeze recovery.
chunk* FreezeRecovery(chunk* oldChunk, key, input, recovType, chunk* mergeChunk,

triggerType trigger, Bool* result) {
1: retChunk=null; newChunk2=null; newChunk1=Allocate(); // Allocate a new chunk
2: newChunk1!nextChunk = null’;
3: switch (recovType) {
4: case copy:
5: copyToOneChunk(oldChunk, newChunk1); break;
6: case merge:
7: if ((getEntrNum(oldChunk)+getEntrNum(mergeChunk))�max) {
8: // The two neighboring old chunks will be merged into two new chunks
9: newChunk2 = Allocate(); // Allocate a second new chunk

10: newChunk1!nextChunk = newChunk2; // Connect two chunks together
11: newChunk2!nextChunk = null’;
12: separatKey=mergeToTwoChunks(oldChunk,mergeChunk,newChunk1,newChunk2);
13: } else mergeToOneChunk(oldChunk,mergeChunk,newChunk1);
14: break;
15: case split:
16: newChunk2 = Allocate(); // Allocate a second new chunk
17: newChunk1!nextChunk = newChunk2; // Connect two chunks together
18: newChunk2!nextChunk = null’;
19: separatKey = splitIntoTwoChunks(oldChunk, newChunk1, newChunk2); break;
20: } // end of switch
21: // Perform the operation with which the freeze was initiated
22: switch (trigger) {
23: case delete: // If key will be found, decrement counter has to succeed
24: *result = DeleteInChunk(newChunk1, key);
25: if (newChunk2 != null) *result = *result k DeleteInChunk(newChunk2, key);
26: break;
27: case insert: // input should be interpreted as data to insert with the key
28: if((newChunk2!=null)&&(key<separatKey)) result=InsertToChunk(newChunk2,key,input);
29: else *result = InsertToChunk(newChunk1, key, input);
30: break;
31: case enslave: // input should be interpreted as pointer to master trying to enslave
32: if (newChunk2!=null) newChunk2!mergeBuddy=combine(input, external_freeze);
33: else newChunk1!mergeBuddy = combine(input, external_freeze);
34: } // end of switch
35: // Try to create a link to the first new chunk in the old chunk.
36: if (!CAS(&(oldChunk!new), null, newChunk1)) {
37: RetireChunk(newChunk1); if (newChunk2) RetireChunk(newChunk2);
38: // Determine in which of the new chunks the key is located.
39: if (key<separatKey) retChunk=oldChunk!new; else retChunk=FindChunk(key);
40: } else { retChunk = null; }
41: ListUpdate(recovType, key, oldChunk); // User defined function
42: return retChunk;
}

If the freeze is internal, then we invoke FreezeDecision to see what should be
done next (Line 14). If the decision is to merge, then we find the previous chunk
and “enslave” it for a joint merge using the FindMergeSlave method (explained
below). Finally, the FreezeRecovery method is called to complete the freeze pro-
cess.

Let us now explain the FindMergeSlave method, which is presented in Algo-

24©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 9: Setting a chunk partner for a merge.
chunk* FindMergeSlave(chunk* master) {
1: while (true) { // Find a slave and set its freeze state & mergeBuddy pointer
2: slave = listFindPrevious(master); // upper-level funciton returning previous chunk.
3: // Set slave’s mergeBuddy pointer and freeze state (both reside on the same word).
4: expected = combine(null, no_freeze);
5: new = combine(master, external_freeze);
6: if (!CAS(&(slave!mergeBuddy), expected, new)) {
7: if (slave!mergeBuddy == new) break; // Someone else has set it right.
8: Freeze(chunk,0,master,enslave,&result); //The slave is under a different freeze, help
9: } else break;

10: } // end of while
11: MarkChunkFrozen(slave);
12: StabilizeChunk(slave);
13: // slave is externally frozen - make sure the master’s mergeBuddy points to the slave.
14: expected = combine(null, internal_freeze); // Combine two values in one word
15: new = combine(slave, internal_freeze);
16: CAS(&(master!mergeBuddy), expected, new);
17: return slave;
}

rithm 9. This method finds the previous chunk, sets its freeze state and merge-
Buddy pointer, initiates its freeze, stabilizes it, and sets the current mergeBuddy
to point at the obtained chunk. This method starts by invoking the (upper-level)
listFindPrevious method in order to find the chunk that precedes the current
chunk. Sometimes, because of concurrent activity, listFindPrevious does not find
its input chunk in the list (since it was already frozen and disconnected from the
list of chunks). In this case, it cannot identify the previous chunk, and instead,
it just returns the mergBuddy pointer, which properly points to its slave for the
merge (that was already completed in a concurrent manner).

We denote the previous chunk a slave as it joins the merge initiated by the
input chunk, which is the master. After identifying the slave, we attempt to
atomically modify its freeze state and merge buddy to indicate an external freeze
joint with the master chunk. Once the slave is marked with an external freeze,
the two chunks are destined for a joint freeze and no chunk can come between
them. (New chunks are only added as a result of a split.) If the change in the
slave state fails, a search for a new slave is attempted, after making sure that the
current one is out of the way, by participating in completing its current freeze.
Next, we ensure that the master’s chunkBuddy pointer points to the slave and
then a pointer to the slave is returned to the caller.

2.6 The Details of the Additional Chunk-level Methods

2.6.1 The search operation

The search operation, implemented in the searchInChunk method of Algorithm 10,
uses the Find method, described hereafter. The searchInChunk method starts by

25©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 10: Searching for data associated with the key
Bool SearchInChunk (chunk* chunk, key, *data) {
1: if (Find(chunk, key)) { data = cur!data; result = true; } else result = false;
2: *hp0 = *hp1 = null; return result;
}

Algorithm 11: Find the location of an entry in the chunk’s list
Bool Find (chunk* chunk, key) {
1: try_again: prev = &(chunk!head); // Restart point
2: cur = *prev;
3: while (clearFrozen(cur) != null) { // Ignore freeze bit when comparing to null

4: *hp0 = cur; // Progress to an unprotected entry
5: if (*prev != cur) goto try_again; // Validate progress after protecting
6: next = cur!next;
7: if (isDeleted(next)) { // Current entry is marked deleted
8: if (isFrozen(cur)) markFrozen(next); // next replaces cur; save freeze bit
9: // Disconnect current: prev gets the value of next with the delete bit cleared

10: if (!CAS(prev, cur, clearDeleted(next))) goto try_again;
11: RetireEntry(cur); // CAS succeeded - try to reclaim
12: cur = clearDeleted(next);
13: } else {
14: ckey = cur!key;
15: if (*prev!=cur) goto try_again; // Check new insert between them or new delete
16: if (ckey � key) return (ckey == key);
17: prev = &(cur!next);
18: tmp = hp0; hp0 = hp1; hp1 = tmp; // All private. hp0, hp1 are ptrs to hazard ptrs
19: cur = next;
20: }
21: }
22: return false;
}

call for Find, which protects its output with hazard pointers. The SearchInChunk
method finishes by clearing the hazard pointers and returning.

Finding the location in the chunk’s list: the Find method. We now present
the Find method, invoked by several other methods. The pseudo-code for Find
appears in Algorithm 11. This method finds the location of a given key in the list.
It returns false if the key does not exist in the list, or trueotherwise. It also
sets in a global (indirect) pointer **prev to the entry that contains the highest key
value between all keys smaller than the input key, and in a global pointer *cur, the
entry with the minimal key value that is larger or equal to the input key. Finally,
if the key is found, the entry that follows cur is returned in a global pointer *next.
Find is very similar to the Find method presented in [41] up to changes needed
for dealing with the freeze bit.

The Find method protects the entries that it uses and returns using hazard
pointers so they are not being concurrently reclaimed. This holds upon return
from Find so the calling method may assume that the referenced entries could not

26©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

be reclaimed and re-allocated, until the calling method clears the thread’s hazard
pointers.

If the traversal of Find finds an entry that is marked for deletion (i.e., the
delete bit is set on its next pointer), then it disconnects the entry from the list and
attempts to recycle it. Recycling is executed via RetireEntry, which is explained
later in Section 2.6.2. Disconnecting and recycling a deleted entry is a service of
Find to the structure of the list that will be assumed in the rest of this chapter.
The key of a deleted entry is not checked, and cannot influence the search for the
input key.

Any failing CAS causes a restart of the search. Also, in general, whenever we
replace a pointer by another, e.g., in Line 8, we first make sure that if the old
pointer was marked as frozen, then the replacement pointer is marked as frozen
as well. This way the freeze bits of an entry are preserved everywhere.

2.6.2 The delete operation

The deletion algorithm (inside a chunk) is similar to the well-known one for lock-
free linked lists [22, 41]. The deletion operation is partitioned into a logical dele-
tion, which marks the entry as deleted by setting the delete bit (LSB) in the entry’s
next pointer. Next, the physical deletion disconnects the entry from the list and
reclaims its space. The difference between our deletion method and the standard
one is the need to check if the chunk’s counter has reached the lower threshold
min and call Freeze when it does. Additionally, we do not let the delete bit be
set on a frozen entry. A delete can only occur before an entry gets frozen. Notice
that Freeze can also help this deletion and we check if help happened any time
Freeze is invoked. Finally, we need to maintain the counter of entries allocated
in the chunk. In order to make sure that the counter holds a lower bound on
the number of entries in the presence of concurrent updates, we decrement the
counter before we delete the entry. If the delete fails, we increment the counter to
account for the failure. A failure to decrement the counter can only happen when
the lower bound has been reached. In this case, we initiate a freeze, which returns
with a new chunk (containing the range of values that includes our input key).
The decrement attempt is then repeated and this loop repeats until the decrement
succeeds on the current chunk.

The deletion algorithm (inside a chunk) is presented in Algorithm 12. It starts
by decrementing the counter, Find is invoked to find the entry holding the key. If
the key does not exist in the list, then the counter is incremented, hazard pointers
zeroed and false is returned to the caller. Otherwise, we attempt a CAS to mark
the entry as deleted. The CAS assumes that the freeze bit and the delete bit are
not set at the deletion time (for proper counter measurement, we should know
exactly who sets the delete bit). If the CAS fails due to a freeze bit, then a freeze
action must be executed, then either freeze succeeded to promote this deletion or
the delete should restart on the newly obtained chunk. Otherwise, the CAS failed
due to some other thread deleting the entry, or a pointer modification. In this

27©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 12: The pseudo-code of deletion of an entry in a chunk
Bool DeleteInChunk (chunk* chunk, key) {

1: try_again:
2: while (!DecCount(chunk)) { //If too few entries in chunk; call freeze
3: chunk = Freeze(chunk, key, 0, delete, &result);
4: if (chunk == null) return result; // If Freeze succeeded to proceed with deletion, return
5: } // end of decrement counter while
6: while (true) {
7: if (!Find(chunk, key)) {
8: IncCount(chunk); *hp0 = *hp1 = null; return false; // No such entry was found
9: }

10: // Mark entry as deleted, assume entry is not deleted or frozen
11: clearedNext = clearFrozen(clearDeleted(next));
12: if (!CAS(&(cur!next), clearedNext, markDeleted(clearedNext))) {
13: if (isFrozen(cur!next)) { // CAS failed due to freeze
14: IncCount(chunk); chunk = Freeze(chunk, key, 0, delete, &result);
15: if (chunk == null) return result; // If Freeze succeeded to delete, return
16: goto try_again;
17: } else continue;
18: }
19: // Remove entry
20: if (isFrozen(cur)) markFrozen(next); // next replaces cur; retain freeze bit
21: if (CAS(prev, cur, next)) RetireEntry(addr); else Find(chunk, key);
22: *hp0 = *hp1 = null; return true;
23: }

}

case, we should search for the entry again before deleting it. The Find method
will not return this entry again if it has already been deleted. Furthermore, it will
disconnect it from the list and reclaim it before returning.

After marking the entry as deleted, we attempt to disconnect it from the list.
If the freeze bit is set, we keep it set. If the disconnect succeeds, we reclaim the
entry via RetireEntry. Otherwise, we call Find, which repeatedly attempts to
disconnect an entry that is marked deleted, until the disconnection is achieved.
Finally, we clear the hazard pointers that are set by the Find method, to allow
future reclamation of the involved entries.

Entry reclamation Special care is required for reclaiming an entry in the pres-
ence of hazard pointers. First, it must be clear that the reclamation is not being
executed on an entry that has a hazard pointer, and second, if an entry cannot
be reclaimed right now, it will be properly scheduled for future reclamation (in
a non-blocking manner). We follow the scheme presented by Michael in [41]. In
this scheme, an entry can be reclaimed only by the very same thread that discon-
nects it from the list. There can only be one such thread, as the disconnection is
executed with a CAS.

Each thread has its own list of to-be-retired entries. After successfully dis-
connecting an entry, the thread invokes RetireEntry (depicted in Algorithm 13),
which pushes the given entry into the list of entries waiting to be reclaimed, and

28©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 13: The reclamation code employs Michael’s reclamation scheme
void RetireEntry (entry* entry) {

1: addToRetList(entry); // Add the entry to the (local) list of to-be-retired entries
2: HandleReclamationBuffer(); // Scan the list and reclaim the entries if possible

}
void HandleReclamationBuffer() {

1: plist = initializeList(); // Local list for recording current hazard pointers
2: hprec = getHPhead(); // Obtain head of hazard pointers array (HPA)
3: //Stage 1: Save current hazard pointers in plist (locally)
4: while (hprec != null) {
5: for (i=0; i<2; ++i) { // 2 hazard pointers per thread
6: hptr = hprec!HP[i];
7: if (hptr != null) insertList(plist, hptr);
8: }
9: hprec = getNextHPrecord(hprec);

10: }
11: // Stage 2: Reclaim to-be-retired entries that are not protected by a hazard pointer
12: tmplist = popAllRetList(); // Copy all local to-be-retired entires and clear RetList
13: entry = popList(tmplist);
14: while (entry != null) {
15: if (lookUp(plist, entry)) pushRetList(entry); // Entry protected, push back to RetList
16: else { if (!isFrozen(entry)) ClearEntry(entry); } // Reclaim unprotected (non-frozen) entry
17: entry = popList(tmplist);
18: }
19: freeList(plist);

}

then attempts to reclaim all entries in the list via the HandleReclamationBuffer
method. The HandleReclamationBuffer method compares the entries in the to-
be-retired list with the ones in the hazard pointers array (HPA) and reclaims the
entries that do not appear in the HPA. Our adaptation to this scheme does not
reclaim entries marked as frozen even when no hazard pointer points to them.
The HandleReclamationBuffer method is invoked on every RetireEntry call, in
order to make sure that an entry is reclaimed as soon as possible, when no more
hazard pointers point to it. Michael’s reclamation scheme, slightly modified to
support our notations, is depicted in Algorithm 13. For further discussion on the
reclamation scheme we refer the reader to the RetireNode method and the Scan

method in [41].
The actual clearing of an entry in our list means zeroing the entry and assigning

? as key’s value. This is executed in the ClearEntry method depicted in Algorithm
14. This method is invoked either in case of a trial to insert a key that already
existed in the chunk’s list (InsertToChunk, Line 14) or by HandleReclamation-
Buffer when a deleted and disconnected entry is found to be safe for reuse (in
Line 16 there). We do not reclaim an entry when it is found frozen, because this
reclamation is not needed anymore, and it complicates the code to reclaim it.

The entry clearance is executed by two CAS operations. When the keyData
word is cleared, the entry might immediately be re-allocated. Therefore, we first
zero the nextEntry word, and only then put ? on the keyData word. An entry

29©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 14: The pseudo-code for clearing an entry and reclaiming it’s space/
Bool ClearEntry (chunk* chunk, entry* entry) {
1: savedKeyData = clearFrozen(entry!keyData);
2: savedNext = clearFrozen(entry!next);
3: newKeyData = combine(?, 0);
4: if(CAS(&(entry!next), savedNext, 0))
5: if(CAS(&(entry!keyData), savedKeyData, newKeyData))
6: return true; // Both CASes were successful
7: Freeze(chunk, 0, 0, none, &result); // A CAS failure indicates a freeze, help freeze
8: // Check whether the entry to be reclaimed was linked back by the freeze
9: if (Find(chunk,entry!key))

10: if (entry == cur) return false; // cur is global initiated by Find

11: return true;
}

that is marked frozen is not reclaimed and this is ensured by the atomic CAS. We
claim that a CAS can only fail when the entry’s freeze bit is marked. If the chunk
is not being frozen, a cleared entry is handled only by the current thread. The
reason is that the entry is already disconnected from the list and no other thread
has a hazard pointer to it, neither can it find the entry at this point. Furthermore,
only one thread holds it in his to-be-retired list. Therefore, the clearing can only
fail when a freeze process is executing.

When ClearEntry is called from HandleReclamationBuffer the freeze cannot
resurrect it. The entry is deleted, and after executing the freeze procedure to
make sure that it is completed, we know that the entry cannot exist in the newly
created chunk anymore. However, when ClearEntry is called by InsertToChunk,
the entry is not deleted and a freeze process may resurrect it (as discussed in the
description of InsertToChunk). In this case, ClearEntry discovers the resurrection
and returns false.

2.6.3 Counter Functionalities

Here we present the lock-free counter functionalities we use in the InsertInChunk
and DeleteInChunk methods.

It may happen that a thread fails or stops just before or after updating the
counter, thus an accurate count for the number of entries in the chunk cannot be
expected (in a lock-free execution). Our counter only ensures that the counter
value is always less or equal to the real number of entries in the chunk’s list, which
is what we actually need for keeping the number of entries in the chunk between
min and max. Recall that max is the number of entries in a chunk, and so even
if the counter did not exist, no more than max entries could be allocated on a
chunk. In order to make sure that the number of entries does not go below min,
we maintain the counter as a lower bound on the actual number of entries. If the
counter drops below min, we try to merge the chunk with a neighboring chunk.
Since the counter is a lower bound on the actual entry number, we may find that
no merging is really needed after the freeze.

30©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 15: The increment and the decrement of the chunk’s counter
void IncCount (chunk* chunk) {

1: while (TRUE) {
2: counter = chunk!counter;
3: if (CAS(&(chunk!counter),counter,counter+1)) return;
4: }

}
Bool DecCount (chunk* chunk) {

5: while (TRUE) {
6: counter = chunk!counter;
7: if (counter == MIN) return FALSE; // comparison with minimal, MIN-1 illegal
8: if (CAS(&(chunk!counter),counter,counter-1)) return TRUE;
9: }

}

To ensure that the counter is a lower bound on the number of entries, we
apply a couple of rules. First, the counter is only incremented after an entry is
successfully allocated. This means that the counter does not supersede the number
of entries in the chunk (max). Second, we decrement the counter before we delete
an entry. So that if the executing thread halts between the counter decrement
and the deletion, we know that the counter is smaller than the actual number of
entries. It is never larger than it.

The code for handling the counter appears in Algorithm 15. The increment is
straightforward and it always succeeds. The decrement method returns a failure
if an attempt is made to reduce the counter below the min value.

2.7 The Upper-Level List Operations

Let us now specify the upper-level list handling. When operations, such as split
or merge, are executed on a chunk, they may sometimes cause a split or a merge
of chunks. In this case, the list of chunks needs to be updated. Note that the list
of chunks need not handle inserts or deletes. It only handles splits and merges
that follow inserts and deletes of entries inside the chunks.

We start by presenting the ListUpdate() method. This method is called after a
chunk has finished the freeze and recovery phases, at Line 49 of FreezeRecovery()
method. The ListUpdate() gets as input the recovery type (split, merge, or
copy), an (arbitrary) key located or should be located on the frozen chunk, and a
pointer to the frozen chunk. At this point, the list on the frozen chunk is stabilized
and cannot be changed anymore. The new field in the frozen chunk points to a
new chunk that contains some of the entries copied from the frozen chunk, and,
when a second new chunk is required (for split or a merge that ended up with
two new chunks), then the nextChunk field of first new chunk points to the new
chunk with the higher key values, copied from the frozen chunk. We also make
the new chunks sequence to be finished with a special nullpointer - null’, in
order to distinguish between nullthat comes at the end of the upper-level list.

31©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 16: Update chunk list at the end of a freeze.
void ListUpdate(recovType, key, chunk* chunk) {
1: while (true) {
2: if (chunk!new!nextChunk == null’) // // There is only one new chunk (ref’d by new)
3: // Memorize the next pointer of the last chunk in the linked sub-list of the new chunks,
4: expected = chunk!new!nextChunk; // for the further update
5: else expected = chunk!new!nextChunk!nextChunk; // There are two new chunks
6: if (FindChunk(key) != chunk) return; // Find the frozen chunk (and set next and prev).
7: // Mark the next pointer of the frozen chunk as swapped.
8: if (!CAS(&(chunk!nextChunk), next, markSwapped(next))) continue;
9: if (!HelpSwap(expected)) continue;

10: return;
11: } // end of while

}
Bool HelpSwap(chunk* expected) {

12: if (cur!new!nextChunk == null’) { // There is only one new chunk (ref’d by new)
13: addr = &(cur!new!nextChunk); // address to insert pointer to next.
14: } else { // There are two new chunks (last ref’d by nextChunk of new)
15: addr = &(cur!new!nextChunk!nextChunk);
16: }
17: if (!CAS(addr, expected, next)) return false;
18: if (cur!mergeBuddy == null) { // For copy and split, there is one old chunk
19: if (!CAS(prev, cur, cur!new)) return false; else RetireChunk(chunk);
20: } else { // For merge, there are two old chunks
21: if (!CAS(pre_prev,cur!mergeBuddy,cur!new)) return false; else

RetireChunk(chunk);
22: } // end of if there is one old chunk
23: return true;
}

This is needed in order to synchronize the concurrent insertions of the chunks into
upper-level list.

In addition, the least-significant bit of the nextChunk pointer holds a swapped

bit, which is very similar to the delete bit that marks the logical delete of an entry.
The swapped bit, when set, signifies that the chunk is about to be swapped with
new chunks, and its nextChunk pointer cannot be modified anymore.

The code for ListUpdate() is presented in Algorithm 16. First, we memorize
the value of nextChunk field of last new chunk, to be used later. After, we search
for the frozen chunk by invoking the FindChunk() method on the input key (in
the range of the old chunk). If FindChunk() returns a chunk different from the
frozen chunk, then it means that some other thread has already removed the frozen
chunk from the list of chunks, and we can just return. The search for a chunk
always succeeds since each chunk has a range of keys and one of these ranges
contains the input key. The FindChunk() method is presented later in this section
(in Algorithm 17). This method also sets the global variables pre_prev, prev,
cur and next to point at the previous to the previous chunk (or null), previous
chunk (or head), currently found chunk that is also returned; and the next chunk
(or null, if none exists) in the list. One important property of FindChunk() is
that it takes care of any encountered chunk that is marked "swapped" by replacing

32©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Chunk A
H
E
A
D head 5 … …

nextChunk Chunk B (frozen)

head 50 … …

nextChunk

Chunk C

head 50 … …

nextChunk

(Initial)

new

(Mark&Copy)

(Swap)

new

new

Chunk A
H
E
A
D head 5 … …

nextChunk Chunk B (frozen)

head 50 … …

nextChunk

Chunk C

head 50 … …

nextChunk

new

new

new

Chunk A
H
E
A
D head 5 … …

nextChunk Chunk B (frozen)

head 50 … …

nextChunk

Chunk C

head 50 … …

nextChunk

new

new

new

Figure 2.4: The copy recovery in list of chunks.

it with the new chunks that should replace it.
Next, we attempt to mark the frozen chunk as swapped, by setting the least-

significant bit on the nextChunk pointer. On failure, we start from scratch. After
the nextChunk pointer is marked, it can not be modified anymore. Now, we
attempt to link the new chunks into the list instead of the frozen chunk (and
possibly a merge buddy in case of a merge). It is done in a supporting HelpSwap()
method, also presented at Algorithm 16. In HelpSwap() we start by making the
new chunk point to the next chunk in the chunk list. If a nextChunk field of new
chunk is not null, then we have two chunks to insert and we make its nextChunk
pointer point to the next chunk. Otherwise, we just have a single chunk to insert,
which is pointed by new. In this case, we make its nextChunk pointer point at the
next chunk in the list. The expected value is the one read before the FindChunk.
If this setting of the nextChunk pointer fails, then we retry. Once the pointer to
the next chunk is properly installed in the new chunks, we continue into linking
it (or them) to the chunk list. In no merge is involved, we attempt to modify the
previous chunk’s pointer to point into the chunk referenced by new. If a merge
is involved, then both the frozen chunk and its merge buddy (which is the chunk
preceding the frozen chunk) need to be replace by the new chunks. HelpSwap()
method make use of per thread global variables pre_prev, prev, cur and next

and assumes the cur is marked as need to be swapped out.
We assume that the chunk list starts with a dummy record pointed by the

global variable head, and which also has a nextChunk field that can never be
marked as swapped. We depict these steps for the copy case of in Figure 2.4.

33©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Chunk A (slave, frozen)
H
E
A
D

new

head 5 … …

nextChunk

Chunk B (master, frozen)

head 50 … …

nextChunk

Chunk C

head 5 … …

nextChunk Chunk D

head 80 … …

nextChunk

Chunk E

head 99 … …

nextChunk

(Initial&Mark)

Chunk A (slave, frozen)
H
E
A
D head 5 … …

nextChunk

Chunk B (master, frozen)

head 50 … …

nextChunk

Chunk C

head 5 … …

nextChunk Chunk D

head 80 … …

nextChunk

Chunk E

head 99 … …

nextChunk

(Copy&Swap)

new new

new new

new new

new new

Figure 2.5: The merge recovery in list of chunks.

The only difference for the split case is that we have two new chunks to insert,
instead of one. The merge case is depicted in Figure 2.5.

The FindChunk() method. We now proceed with describing the Find-
Chunk() method, which is similar to the Find() method. The code for this method
is presented in Algorithm 17. We use four global variables per thread. The cur

variable points to the chunk that is currently being inspected. The prev vari-
able points to the chunk that precedes the one pointed by cur. (It may point
to head.) The pre_prev variable points to the chunk that precedes the chunk
pointed by prev, if one exists. Finally, the next pointer points to the chunk that
comes after the currently inspected one. Another hazard pointers are also here to
provide the correct reclamation of the chunks. We assume another array of hazard
pointers separate from one used for entries reclamations. Chunk’s hazard pointers
are hp2, hp3, hp4, hp5 we need them to protect next, cur, prev, prev_prev

respectively. After initiation of the global variables and some hazard pointers we
continue going over the list till the null pointer is encountered at the end of the
list. For each inspected chunk we check whether it is marked as swapped. If it
is, we replace it with the new chunks, similarly to the code of ListUpdate. If we
help in merge that involves swapping out current chunk and the previous chunk
we restart from the beginning of the list. This is done for simplicity of the pre-
sented code, since we can recover from the same place as well. We then check the
next chunk and repeat swapping until we reach an unmarked chunk. When we
have a current chunk that is not marked as swapped, we check whether we found
the chunk holding a range of keys that contains the given key. If we are at the
last chunk of the list, then it is the right one, as it is associated with all larger

34©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Algorithm 17: Find the chunk whose associated range of keys contains the input
key.

chunk* FindChunk (key) {
1: try_again:
2: pre_prev = null; prev = &(head!nextChunk); cur = *prev;
3: hp3* = cur; if (*prev != cur) goto try_again;
4: while (clearSwapped(cur) != NULL) {
5: next = cur!nextChunk;
6: hp2* = next; if ((*prev != cur) || (*next != cur!nextChunk)) goto try_again;
7: if (isSwapped(next)) { // Perform swap for a logically-marked swap.
8: if (!HelpSwap()) goto try_again;
9: if (cur!mergeBuddy != null) goto try_again; // prev & cur were swapped out

10: cur = cur!new;
11: hp3* = cur; if (*prev != cur) goto try_again;
12: } else { // current chunk does not need to be swapped out
13: if (next == null) return cur;
14: nextKey = next!head!next!key;
15: if ((*prev != cur) || (*next != cur!nextChunk)) goto try_again;
16: if (nextKey > key) return cur; // Next chunk’s key range is too high.
17: pre_prev = prev; // Continue to next chunk
18: prev = &(cur!nextChunk);
19: tmp=hp5; hp5=hp4; hp4=hp3; hp3=hp2; hp2=tmp; // promote the hazard

pointers
20: cur = next;
21: }
22: } // end of while
}

Algorithm 18: Find previous chunk- High Level Method.
chunk* listFindPrevious (chunk* chunk) {
1: if (FindChunk(chunk!head!next!key) != chunk)
2: return chunk!mergeBuddy;
3: else return prev;
}

keys. Otherwise, we check the smallest key in the next chunk. If the input key is
smaller, then the current chunk is returned. Otherwise, we continue to check the
next chunk. Implicitly, this means that a chunk is associated with the range of
keys that start in its smallest key (of its first entry) and end in the smallest key
of the following chunk. The last chunk in associated with a range whose highest
value is 1.

One last method to be specified that handles the list of chunks is the listFind-
Previous method, predented at Algorithm 18 that finds the previous chunk to the
input one, for use of the merge procedure. If it doesn’t find its input chunk in
the list, then this input chunk must have already been frozen and disconnected
from the list of chunks. In this case, a previous chunk is not well defined, and this
routine just returns the mergBuddy pointer of the input chunk.

35©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

2.8 Supporting functionalities

Several trivial low-level methods were not specified. For completeness, we provide
a short specification for them in Figure 2.6. These functions are all local, and
involve no concurrency (or contention) issues.

2.9 Linearization Points

When designing a concurrent data structure, it is important to spell out the lin-
earization points for the different operations. This is done in this section. In
particular, we specify the linearization points of the insertion, deletion and search
operations.

The linearization point of insertion. We partition the insertion lineariza-
tion point determination into two cases. If the insertion operation is successful,
i.e., no other entries with same key are found, then the linearization point is the
successful execution of the CAS instruction at Line 11 of InsertEntry, where we
actually modify the previous entry to point at the newly inserted entry. This
modification creates the linearization point, whether it is executed by the thread
executing the insert or by a different thread that is helping it (during a freeze).
However, when this modification is executed on a new local chunk that a thread
is preparing to replace a frozen chunk, then the modification of the local chunk
is not considered a linearization point. Instead, the linearization point of the in-
sert becomes the point in which this chunk is successfully linked to the the frozen
chunk (Lines 19 or 21 of the HelpSwap() method).

If the insertion is not successful, i.e., an entry with the same key is found in
the list, then the linearization point is the linearization point of the successful
Find that is invoked at Line 4 of InsertEntry. The linearization point of the Find
method is specified below. And again, a special case is the one in which the freeze
recovery is the one to find the key and decide on a failure. In this case, the finding
of the key happens on a frozen chunk and it has a special linearization point: it
is the time in which the chunk C is stabilized. This point is formally defined (as
SP (C)) below.

The linearization point of deletion. Again, we start by considering the
successful case, in which the entry is found in the list, then the linearization point
is the successful mark of the entry with the deletion bit. This happens at the
successful execution of the CAS instruction at Line 12 of DeleteInChunk. Note
that sometimes we need to wait until a chunk is frozen and only then can we
attempt a deletion on a new chunk; however, the actual delete only happens when
we manage to set the delete bit on an unfrozen entry containing the key. When
this modification of the delete bit is executed on a new local chunk that a thread
is preparing to replace a frozen chunk, then the modification of the local chunk is
not considered a linearization point. Instead, the linearization point of the delete
becomes the point in which this chunk is successfully linked to the the frozen

36©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

chunk (Lines 19 or 21 of the HelpSwap() method).
When the deletion operation is not successful, i.e., an entry with the input

key is not found, then the linearization point is the linearization point of the
unsuccessful Find that is called on Line 7 of DeleteInChunk. And again, a special
case is the one in which the freeze recovery is the one to not find the key and
decide on a failure. In this case, the unsuccessful search of the key is executed
on a frozen chunk and it has a special linearization point: the time in which the
chunk C is stabilized. This point is formally defined (as SP (C)) below.

The linearization point of search is the linearization point of the Find
method invoked at Line 1 of the SearchInChunk method.

The linearization point of the Find method is the most delicate one. The
Find method may traverse a chunk while it is being frozen. At the same time, the
freeze may terminate concurrently, and inserts and deletes may occur on a new
chunk that is not accessed by the find. Therefore, the find may fail to find a key
that is inserted before it terminates. We, therefore, set the linearization point of
Find to be the minimum between its standard linearization point and the time
in which a stabilizing operation terminates on the chunk. Thus, the linearization
point of a Find may happen earlier than the actual time when the find locates (or
fails to locate) the input key. The point at which the chunk stabilizes satisfies that
a new chunk does not exist yet, but on the other hand, no changes can occur on
the accessible entries in the chunk’s list from this point and on. This discussion
is formalized below.

Consider a Find operation on a chunk C, we define the stabilization point of the
find operation on C, denoted SP (C) to be 1 if the freezeState of C is no_freeze

at the time that the Find method returns. Otherwise, SP (C) is defined to be the
time in which the first stabilization of C terminates. Namely, among all threads
executing the StabilizeChunk method on chunk C, SP (C) is determined to be
the minimum time in which one of them started executing Line 7 (i.e., the return
from the stabilization method). Now that we have defined SP (C), we consider
the normal operation of Find, set linearization points to it, and then select the
minimum between them and SP (C).

Again, we separate for successful and unsuccessful cases. When the Find is
successful, i.e., it returns a non-NULL cur pointer, the linearization point of Find
happens when the cur pointer successful passes the validation check in Line 15
in the Find method. (Note that the validation is successful when the condition
in Line 15 is evaluated to false.) And as explained earlier, if SP (C) happens
earlier, then SP (C) is the linearization point.

The unsuccessful case is more involved. Consider an execution of Find with
input key k. There are two failure possibilities.

1. The first possibility is that an entry with k existed in the list but was marked
as deleted. In this case the execution of Find disconnects it and the lin-
earization point is the successful removal of the entry from the list, i.e., the
successful CAS in Line 10 of Find.

37©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

2. The second possibility is that the entry with k did not exist in the list when
Find searched for it (even not with a deletion mark). In this case, we set the
linearization point of the failing Find to be when the pointer to the entry
with the smallest key higher than k was loaded into the local variable cur in
Lines 2, 12 or 19 of the Find method.

Again, the above two linearization points are set only if they happen before
SP (C). Otherwise, SP (C) is the linearization point.

2.10 The intuition behind the design considerations

In this section we explain the main idea behind the algorithm, which form the
intuition for a correctness proof of this chapter. Various parts of the algorithm
are not new. The use of hazard pointer is similar to previous work, and the
synchronization operations are used in a standard manner. The main deviation
from previous work is the use of the freeze process to avoid many of the concurrency
problems that naturally arise without it. The main problem is that when many
concurrent operations are run on a chunk, it is not easy to determine how many
entries reside on it, and whether it requires a split or a merge or none. An
attempt to decide on a split and then reverse the decision may run into serious
synchronization difficulties. We therefore choose the freeze method to stabilize it
and make all threads work in harmony on it afterwards.

When a thread fails to find space for allocation, or when the size of the the
chunk appears to be too low for a delete, a freeze is initiated. The freeze process
is not atomic. While entries are marked as frozen, more inserts and deletes may
happen and the need for a split or a merge may change during the freeze process.
However, the freeze process is irreversible. The thread that started it will go on
marking entries as frozen whenever it gains CPU access, and other threads that
fail to insert or delete will join and help freezing the chunk. When all entries in
the chunk are frozen, no more updates can occur on this chunk the continuation
of the recovery for this chunk is completely determined from that point on. Thus,
even if many threads attempt to build new chunks to replace the frozen one, they
will all build exactly the same replacements and it does not matter which thread
will do the final action of swapping the old chunk out of the list replacing it with
the newly prepared chunks. It doesn’t even matter if some of the work is done
by one thread and some by others, they are all guaranteed to create the same
structure. Only after finishing with the replacement of the old chunk, will the
threads re-attempt the operation that failed. The only difference in the results
of newly created chunks can be in result of promoting the insertion, deletion or
enslaving during the freeze recovery.

To summarize, there are two main strategies. The first says that once an entry
is marked frozen it will not be modified again. Furthermore, when all entries in a
chunk are marked as frozen, all entries in the chunk will not be modified anymore,
making the chunk data stable. This ensure that two threads cannot disagree on

38©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

the frozen state of an entry. When a thread sees the entry marked as frozen, it
knows that no other thread will see it not-frozen in the future of the execution.
The second strategy says that once a chunk is stable, any thread can decide on
what needs to be done with this chunk and any thread can actually do it. All
threads must reach the same decisions exactly and they must all attempt to put
exactly the same values in exactly the same format of new chunks. Therefore, it
does not matter which of these thread does what. The outcome is determined
when the chunk gets stable, and all races become benign.

From these two design points many of the invariants follow. For example, a
thread can get inactive for as long as it wishes. When it wakes up, the chunk
it is accessing may be frozen, but hazard pointers ensure that the chunk has not
been reclaimed, and any attempt of this thread to modify the chunk will reveal
the fact that all entries are frozen. The thread will then try to take part in the
freeze process and will quickly discover the chunks that replaced the frozen one
and apply its modifications to them.

2.11 Lock-Freedom

In this section we outline the proof of lock-freedom for the construction. We start
with the operations inside a chunk and then discuss the high-level list operations.
The proof is based on the following invariants, which can be verified to be correct
by looking at the pseudo-code.

1. Once an entry becomes frozen it never resurrects to a non-frozen state again

2. An entry cannot be marked as deleted when it is marked as frozen

In order to show the lock-freedom of the entire implementation, let us start by
claiming that the Find() method (Algorithm 11) is lock-free, because this method
is used by all other operations.

Lemma 2.1. The Find() method (presented in Algorithm 11) is lock-free.

Sketch of proof: The Find() method is very much the same as the one pre-
sented by Michael in [41], which was proven to be lock-free. Our Find() method
is that of Michael, adapted to allow for freezing. Therefore, we skip the proof
that our Find() method is lock-free in the presence of concurrent insertions or
deletions, but focus on how it interacts with a simultaneous freezing of the chunk.
The Find() method may be restarted in Lines 5 and 15 due to the failure of the
hazard pointers’ verification check. It also may be restarted due to the CAS failure
in Line 10 (when helping to remove deleted entry). From the perspective of the
concurrent freeze, those restarts happen only if the previous entry of the chunk’s
linked list got marked as frozen after a pointer to the current entry was copied
to cur. In this case Find() restarts, but the task of marking entries as frozen has
made progress by at least one entry. As we show later in Lemma 2.6, a successful

39©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

freeze of the entire chunk implies the progress of at least one insert or delete op-
eration. This analysis holds for all CAS instructions that may fail due to progress
in freeze marking, and in particular it holds for the three CAS instructions in the
Find() method.

Let us now look at insert and delete operations.

Lemma 2.2. The InsertToChunk() method (presented in Algorithm 1) is lock-free.

Sketch of proof: Obviously, the entry allocation (AllocateEntry() method, Al-
gorithm 2) is lock-free, because there are no loops or other backward brunches in
the code. Inspecting the InsertToChunk() method’s code we can see that, if the
AllocateEntry() method fails, then freeze is invoked and, according to Lemma 2.6,
being involved in any freeze activity results in the progress of some thread.

When the InsertToChunk() method succeeds in allocating an entry, it invokes
the InsertEntry() method. The InsertEntry() method looks for a suitable location
for the entry in the list, via the Find() method, which is lock-free (Lemma 2.1).
Later the InsertEntry() method uses two CAS instructions to insert the entry.
The first CAS, in Line 10 of InsertEntry(), may fail only due to yet undetected
freeze activity and the InsertEntry() method’s loop is restarted. But on the next
iteration of the InsertEntry() method’s loop, the shared data is reread and the set
freeze bit is detected; therefore this bit will not foil this CAS. If the same CAS fails
again, it must be because the insertion of the new entry was executed by another
thread and progress was obtained. The second CAS, in Line 11 of InsertEntry(),
can also fail only because of a freeze or a successful insertion of a new entry by
another thread.

After invoking the InsertEntry() method, the InsertToChunk() method’s code
is straight forward, with no loops or other backwards branches. Therefore it is
lock-free.

Lemma 2.3. The DeleteInChunk() method (presented in Algorithm 12) is lock-

free.

Sketch of proof: The deletion task is a variation of the Harris’s deletion algo-
rithm [22], known to be lock-free. The DeleteInChunk() method differs from the
conventional lock-free delete task of Harris in the decrementing of the counter,
which counts the number of the entries on the chunk. If the decrementing of the
counter fails, then a freeze is invoked, which by Lemma 2.6 results in some thread’s
progress.

Now let us turn to a deletion task that succeeds in decrementing the counter.
Another backwards branch of the DeleteInChunk() method can happen when set-
ting the deletion bit fails, because a freeze bit has been concurrently set. This
happens in Line 12 of the DeleteInChunk() method. Similarly to the analysis
above, before branching back, a freeze activity is performed, which by Lemma 2.6
must result in some thread’s progress.

40©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Other than those potential backward branches, the deletion operation pre-
sented in the DeleteInChunk() method (Algorithm 12) is the same as conventional
one and thus it is lock-free.

We next show that marking entries as frozen and stabilization tasks are lock-
free.

Lemma 2.4. The MarkChunkFrozen() and StabilizeChunk() methods (presented

in Algorithm 5 and Algorithm 6 respectively) are lock-free.

Sketch of proof: Two CAS instructions can cause a backwards branch in the
task that marks entries as frozen. Let us investigate when the CAS in Line 4 of the
MarkChunkFrozen() method can fail. This CAS tries to change the word which
holds the next pointer p of an entry e. The CAS fails when p’s value changes
concurrently between Lines 2 and 4, as may occur in three cases: (1) when a new
entry is inserted just after e (which implies progress with an insertion operation);
(2) when entry e was marked as deleted (which implies progress with a deletion
operation), or (3) when another task marked p as frozen (which implies progress
with the marking task). There is progress in all three cases. Similarly, the second
CAS, in Line 9 of MarkChunkFrozen() method, changes the keyData word of an
entry e. This second CAS can fail if, between Lines 7 and 9, e was allocated
(which implies progress for an insertion), reclaimed (which cannot happen twice
unless insertion makes progress), or marked as frozen by another task (which
implies progress for this task as well). Therefore, the task that marks entries as
frozen is lock-free, because every repetition of the code execution involves some
progress in the system. The lock-freedom of the stabilization task follows from
the lock-freedom of the Find() method and the InsertEntry() method discussed
earlier Lemmas 2.1 and 2.2.

For the next lemmas it is worth noting that there are exactly five tasks that can
be executed inside a chunk: (1) insert, (2) delete, (3) search/find, (4) mark entries
as frozen, and (5) stabilization. We next claim that freezing imply progress.

Lemma 2.5. Assuming the freezing of a single chunk is lock-free, at least one

insert or delete task progresses after at most k consecutive freezes of the adjacent

chunks, where k is number of chunks in the list at the time when the first freeze

starts.

Sketch of proof: A freeze might be triggered by one of the following four cases:

1. A thread executes an insert of a key and finds no available space to insert a
new entry on a chunk.

2. A thread executes a delete and is unable to decrease the counter or set the
delete bit of the entry.

3. A thread needs to freeze a master and thus it helps to freeze the preceding
chunk in the list in an attempt to find a slave for the master.

41©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

4. A thread reclaims an entry in chunk C and finds that C is in process of being
frozen (Algorithm 14, Line 7).

We define a freeze-purpose of a freeze execution to be one of: insert, delete,
enslaving, and reclamation, according to the trigger that started it. In the first
and the second cases, presented above, a threads starts or helps the freeze in order
to be able to insert or to delete a key. The freeze-purposes are insert in the first
case and delete in the second case. In the third case, establishing master-slave
relationship ensures the finish of a freeze of a single chunk. When the freeze is
finished, an insert or a delete can occur on the new chunk, or the new chunk
can serve as a slave to another master. The freeze-purpose in the third case is
enslaving. Enslaving signifies progress, because (as explained in last paragraph
of this proof) at most finite number of the enslaving actions cause an insert or a
delete. In the last case, the freeze is triggered to finish reclamation of an entry in
order to complete an unsuccessful insert or a successful delete. The freeze-purpose
here is reclamation.

In Lines 22-34 of the FreezeRecovery() method, a thread that executes the
freeze recovery tries to perform the freeze-purpose as part of this freeze. If the
freeze-purpose is insert, then the thread adds its key and data to the local new
chunk. Otherwise, if the freeze purpose is delete, the thread removes the key
it is required to remove from the new chunk. In both the insert and the delete
cases, the operation can make progress even when the operation returns false

upon completion, due to the existence or non-existence of the relevant key (e.g.,
an insertion may return false because the key is already in the list).

If the freeze purpose is enslaving, then, as part of the freeze, the thread marks
the new locally created chunk as the master’s slave by marking its freeze state
as external_freeze. Thus, if this new chunk is successfully inserted into the
chunked list, it immediately results in an established master-slave bond, having
a master and a slave chunks which point to each other. We explain later how
enslaving implies progress. A thread that needs to freeze a chunk in order to
reclaim an entry in the old chunk makes no progress during the freeze recovery.
This case is discussed in the last paragraph of the proof. Each thread prepares
its local chunk privately with the trigger purpose reflected in the local chunk that
it creates. But eventually, only one thread t manages to connect its local chunk
to the list replacing the frozen old chunk. We claim for the progress of thread t.
This is obvious for insertions and deletions, and we need to discuss enslaving and
reclamations. We start with the enslaving case.

If the freeze purpose is enslaving, the thread needs to freeze the previous chunk,
in an attempt to create a slave for the master, but even if enslaving succeeds,
enslaving by itself does not imply progress. The enslaving is required in order
to establish the master-slave bond. After creating the bond, the thread needs to
create the new chunks and connect the new chunks into the list, replacing the
master and the slave. A thread t that manages to connect its new local chunk into
the list has its freeze-purpose reflected in the new chunk. This can be a thread

42©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

that succeeded in enslaving or a different thread. If the freeze-purpose is insert
or delete, the progress was made. But what if, in turn, t’s freeze-purpose was
enslaving? It is possible to imagine a chain of chunks where the last chunk is
sparse and frozen, and is helping the previous chunk to freeze, in order to get it
enslaved etc. Then, the previous chunk is sparse and frozen, and in turn helps
the chunk that precedes it to freeze in order to get it enslaved. All chunks in
such a chain must be sparse. In theory, this chain of events can continue until the
beginning of the list. In this case we can see the insert or the delete operation
make progress only after k freezes, where k is number of chunks in the list at
the time when first freeze started. The k is a finite number, that can only be
decreased. As increasing of the number of the chunks in such a chain of sparse
chunks can only happen when sparse chunk becomes full, which implies progress
with an insert operation.

The thread t that needs to proceed with freezing a chunk in order to reclaim
an entry on the freezing chunk only helps the freeze in order to verify whether the
entry to be reclaimed has finally found its way to the new chunk, due to deletion
of another entry concurrently holding the same key. Thread t needs to help in
freezing one single chunk, t is not required to freeze the next chunks if such a
need occurs in freeze. Finishing the freeze for reclamation is directly followed
by finishing of an entry reclamation, which is the last step in either a successful
deletion or an unsuccessful insert. Thus, thread t makes progress in any case.

Lemma 2.6. The entire freezing process is lock-free.

Sketch of proof: We have already seen that the first two stages of the freeze,
i.e., marking all entries as frozen and the process of stabilization of the chunk
are lock-free (Lemma 2.4). The last freezing stage is the freeze recovery. When
looking at the code of the Freeze() and the FreezeRecovery() methods we see that
these methods have no backward branches and contain no loops so they are lock-
free. Finally, in order to cover all freeze activities, it remains to show that the
FindMergeSlave() method is lock-free. The only possible repetition in this method
is the CAS in Line 6 of the FindMergeSlave() method, where there is an attempt
to enslave the previous chunk. This CAS can only fail if the previous chunk is
frozen. If the CAS of Line 6 fails, we first finish the freeze of the previous chunk.
Therefore, freezing of a single specific chunk makes no progress only if a freeze of
a previous chunk is required to be enslaved for a merge. Endless repeating the
freeze of the chunks is impossible according to Lemma 2.5. From Lemma 2.5 the
maximal number of consecutive freezes that may execute without progress is k.
Where k is the number of chunks in the list when first one of the consecutive
freezes starts. Thus, once a freeze is started, a progress (an insert or a delete)
must occur in the system within k consecutive freezes. The freeze method returns
to its caller only after the freeze is accomplished, including the enslaving chain
of multiple chunks, if needed. Therefore, the end of a freeze implies progress for
some insert or delete operation.

43©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Lemma 2.7. All operations on the entire list of chunks are lock-free

Sketch of proof: The upper-level list of chunks operations include only finding
the chunk and invoking the chunk’s operation. Once the relevant chunk is found
there are no restarts from the beginning of the upper-level list of chunks. Since the
chunk’s operations where proven to be lock-free in the previous lemmas, it remains
to prove the lock-freedom for the HelpSwap(), ListUpdate() and FindChunk()
methods. The HelpSwap() method is straight forward with no backward branches,
and thus it is lock-free. In the ListUpdate() method, we have two backward
branches, one in Line 8 and another one in Line 9. Denote the frozen chunk that
is replaced by C.

In Line 8, we try to set the swapped bit on the nextChunk pointer of C. Failure
occurs in two cases. The first case is when another new chunk was inserted just
after C. Insertion of a chunk after C happens only upon a freeze having been
made on the chunk following C. The second case is when some other thread has
already set the swapped bit of C. In the first case, the freezing being completed
on the next chunk implies progress (Lemma 2.6). In the second case we advance
the list update, as what we attempted to execute was done by some other thread.
In Line 9 of the ListUpdate method we try to replace C by swapping the next
pointer of the chunk preceding C. This attempt can fail either if (1) some new
chunk was inserted just after C, or if (2) some new chunk was inserted just before
C. In both cases, similarly to the previous analysis, a new chunk is inserted into
the upper-level chunk list only after some freeze completes. As shown in Lemma
2.6 every completion of a freeze implies progress.

44©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 2: Locality-Conscious Lock-Free Linked Lists

Function’s Signature Explanations
word combine (Xbits x, Y bits
y);

Concatenates two strings of bits into one machine word, when x comes goes to
the most-significant bits, and y to the least-significant bits.

bool isFrozen (entry* p); Checks if the frozen bit (second LSB) is set in a given pointer p and returns
true or false accordingly.

entry* markFrozen (entry* p); Returns the value of a pointer p with the frozen bit set to one; it doesn’t matter
if in initial p this bit was set or not.

entry* clearFrozen (entry* p); Returns the value of a pointer p with the frozen bit reset to zero; it doesn’t
matter if in initial p this bit was set or not.

bool isDeleted(entry* p); Checks if deleted bit (LSB) is set in given pointer p.
entry* markDeleted (entry* p); Returns the value of a pointer p with the deleted bit set to one; it doesn’t

matter if in initial p this bit was set or not.
entry* clearDeleted (entry* p); Returns the value of a pointer p with the deleted bit reset to zero; it doesn’t

matter if in initial p this bit was set or not.
bool isSwapped (chunk* c); Checks if swapped bit (LSB) is set in given pointer to a chunk c.
chunk* markSwapped (chunk*
c);

Returns the value of a pointer c with the swapped bit set to one; it doesn’t
matter if in initial c this bit was set or not.

chunk* clearSwapped (chunk*
c);

Returns the value of a pointer c with the swapped bit set to zero; it doesn’t
matter if in initial c this bit was set or not.

void copyToOneChunk (chunk*
old, chunk* new);

Goes over all reachable entries in the old chunk linked list and copies them to
the new chunk linked list. It is assumed no other thread is modifying the new

chunk, and that the old chunk is frozen, so it cannot be modified as well.
key mergeToTwoChunks
(chunk* old1, chunk* old2,
chunk* new1, chunk* new2);

Goes over all reachable entries in the old1 and old2 chunks linked lists (which
are sequential), finds the median key (which is returned) and copies the bellow-
median-value keys to the new1 chunk linked list and the above-median-value
keys to the new2 chunk linked list. In addition it sets the new1 chunk’s pointer
nextChunk to point to the new2 chunk. It is assumed that no other thread
modifies the new1 and new2 chunks, and that the old chunks are frozen and
thus cannot be modified as well.

void mergeToOneChunk (chunk*
old1, chunk* old2, chunk* new);

Goes over all reachable entries on the old1 and old2 chunks linked lists (which
are sequential and have enough entries to fill one chunk’s linked list) and copies
them to the new chunk linked list. It is assumed that no other thread modifies
the new chunk and that the old chunks are frozen and thus don’t change.

key splitIntoTwoChunks (chunk*
old, chunk* new1, chunk*
new2);

Goes over all reachable entries on the old chunk linked list, finds the median
key (which is returned) and copies the bellow-median-value keys to the new1
chunk and the above-median-value keys to the new2 chunk. In addition it sets
the new1 chunk’s pointer nextChunk to point at the new2 chunk. It is assumed
that no other thread is modifying the new1 and new2 chunks, and that the old
chunk is frozen and cannot be modified.

int getEntrNum (chunk* c); Goes over all reachable entries in Chunk c, counts them, and returns the number
of entries. Chunk c is assumed to be frozen and thus cannot be modified.

void Allocate(); Allocates a new chunk as a zeroed memory chunk. The freeze state is set to
no_freeze.

Figure 2.6: The specification of (simple) supporting functions.

45©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3

A Lock-Free B+tree

3.1 Introduction

The growing popularity of parallel computing is accompanied by an acute need
for data structures that execute efficiently and provide guaranteed progress on
parallel platforms. Lock-free data structures provide a progress guarantee: if
the program threads are run sufficiently long, then at least one of them must
make progress. This ensures that the program as a whole progresses and is never
blocked. Although lock-free algorithms exist for various data structures, lock-free
balanced trees have been considered difficult to construct and as far as we know
a construction for a lock-free balanced tree is not known.

In recent decades, the B-tree has been the data structure of choice for main-
taining searchable, ordered data on disk. Traditional B-trees are effective in large
part because they minimize the number of disk blocks accessed during a search.
When using a B-tree on the computer memory, a reasonable choice is to keep a
node on a single cache line. However, some studies show that a block size that
is a (small) factor of the processor’s cache line can deliver better performance if
cache pre-fetching is employed by the hardware [9, 46]. Further details about the
B-Tree structure and the B+tree variant appear in Subsection 3.2.1.

This chapter presents the first lock-free, linearizable, dynamic B+tree imple-
mentation supporting searches, insertions, and deletions. It is dynamic in the sense
that there is no (static) limit to the number of nodes that can be allocated and
put in the tree. The construction employs only reads, writes, and single-word CAS
instructions. Searches are not delayed by rebalancing operations. The construc-
tion employs the lock-free chunk mechanism proposed in the previous chapter.
The chunk mechanism provides a lock-free linked list that resides on a consecutive
chunk of memory and maintains a lower- and upper-bound on the number of ele-
ments. The chunks are split or joined with other chunks to maintain the bounds
in the presence of insertions and deletions. This lock-free chunk mechanism fits
naturally with a node of the B+tree that is split and joined, keeping the number
of elements within given bounds, and thus maintaining the balance of the tree.

Our construction follows some basic design decisions that reduce the complexity

46©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

of the algorithm. First, a node marked by the need to join or split is frozen, and no
more operations are allowed on it. It is never resurrected, and one or two nodes are
allocated to replace it. This eliminates much of the difficulty with threads waking
up after a long idle period and encountering an old node that has been split or
joined. In general, a node begins its lifespan as an infant, proceeds to become
a normal node, and remains so until frozen for a split or a join, after which it
is eventually reclaimed. This monotonic progress, reflected in the node’s state,
simplifies the design. The replacement of old nodes with new ones is challenging
as data may be held in both the old and the new nodes simultaneously. To allow
lock-freedom, we let the search operation dive into old nodes as well as new ones.
But to ensure linearizability, we only allow new nodes to be modified after the
replacement procedure is completed. Additionally, we take special care in the
selection of a neighboring node to join with, to ensure that it cooperates correctly.
Finally, we enforce the invariant that two join nodes always have the same parent.
Our construction follows important lock-free techniques that have been previously
used. In particular, we mark pointers to signify deletion following Harris [22],
we assign nodes with states similarly to Ellen et al. [16]. We also extend these
techniques in ways that are useful for future work, e.g., we gradually move a node
to the frozen state, by marking its fields one by one as frozen.

This design of the lock-free B+tree is meant to show the feasibility of a lock-free
balanced tree. It is quite complex and we have not added (even straightforward)
optimizations. We implemented this design (as is) in C and ran it against an
implementation of a standard lock-based B+tree [47]. The results show that the
lock-based version wins when no contention exists or the contention is very low.
However, as contention kicks in, the lock-free B+tree behaves much better than the
lock-based version. The lock-free tree is highly scalable and allows good progress
even when many threads are executing concurrently. Similarly to the lock-free
algorithm of the linked-list, a wait-free variant of the search method (denoted
contains) can be defined here as well and in the same manner. Again, to keep
things simple, we do not spell it out.

Note that a balanced tree has a better worst-case behavior compared to reg-
ular trees. Ignoring concurrency, each operation has a worst-case complexity of
O(log n) in contrast to a worst-case complexity of O(n) for an imbalanced tree.
Furthermore, in the presence of concurrent threads, we prove that progress must
be made at worst-case within O(T log n + T 2

) computational steps, where T is
number of the concurrent running threads and n is number of keys in the B+tree.
(This means bounded lock-freedom with bound O(T log n+ T 2

).) Such guarantee
can only be achieved with balanced trees, as computing a similar bound on the
worst-case time to make progress in a non-balanced tree would yield O(Tn)1.

Previous work on lock-free trees include Fraser’s construction [19] of a lock-free
balanced tree that builds on a transactional memory system. Our work does not

1Actually, we do not know how to show a lock-free bound which is lower than O(T 2n) for non-balanced
concurrent trees.

47©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

require any special underlying system support. Fraser also presents a construction
of a lock-free tree that uses multiple-word CAS [19], but this construction offers
no balancing and at worst may require a linear complexity for the tree operations.
Recently, Ellen et al. [16] presented a lock-free tree using a single-word CAS, but
their tree offers no balancing. Bender et al. [3] described a lock-free implemen-
tation of a cache-oblivious B-tree from LL/SC operations. Our construction uses
single-word CAS operations. Moreover, a packed-memory cache-oblivious B-tree
is not equivalent to the traditional B+tree data structure. First, it only guarantees
amortized time complexity (even with no contention), as the data is kept in an
array that needs to be extended occasionally by copying the entire data structure.
Second, it does not keep the shallow structure and is thus not suitable for use with
file systems. Finally, a full version of [3] paper has not yet appeared and some
details of lock-free implementation are not specified.

In Section 3.2 we set up some preliminaries and present the B+tree representa-
tion in the memory together with the basic B+tree algorithms. In Section 3.3 we
describe the B+tree node’s states and recall the lock-free chunk functionality from
the previous chapter. Balancing functions are presented in brief in Section 3.4,
and the implementation and results are described in Section 3.5. In Section 3.6
we describe the linearization points. Supporting B+tree methods are presented
in Section 3.7. Balancing code and all relevant details are presented in Section
3.8. In Section 3.9 the redirection and help methods are presented. Boundary
conditions by which the root needs to be exchange are presented in Section 3.10,
and minor modifications required of the original chunk mechanism are presented
in Section 3.11.

3.2 Preliminaries and Data Structure

This section presents the data structures used to implement the lock-free B+tree,
starting with a review of the lock-free chunk mechanism presented in the previous
chapter. A chunk is a (consecutive) block of memory that contains entries. Each
entry contains a key and a data field, and the entries are stored in the chunk as
a key-ordered linked list. A chunk consumes a fixed amount of space and has two
parameters, determining the minimum and maximum entries that may reside in
it. The chunk supports set operations such as search, insert and delete. When
an insert of a new entry increases the number of entries above the maximum, a
split is executed and two chunks are created from the original chunk. Similarly,
when a delete violates the minimum number of entries, the chunk mechanism joins

this chunk and another chunk, obtained from the data structure using the chunks
(in particular the B+tree). Therefore, the B+tree implements a method that the
chunk can call to obtain a partner to join with. A different B+tree method is
called by the chunk mechanism when the split or join are completed to ask that
the tree replaces the frozen nodes with new ones. The chunk also supports an
additional replace operation that allows replacing the data of an entry with a new

48©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

value atomically without modifying the entry’s location in the list. This operation
is useful for switching a descendant without modifying the key associated with it.
All operations are lock-free.

3.2.1 The B+tree

A B+tree [10] is a balanced tree used to maintain a set of keys, and a mapping from
each key to its associated data. Each node of the tree holds entries, each entry has
a key and an auxiliary data. In contrast to a B-tree, only the leaves in a B+tree
hold the keys and their associated data. The data of the keys in the internal nodes
is used to allow navigating through the tree. Thus, data in an internal node of the
tree contains pointers to descendants of the internal node. The B+tree structure
simplifies the tree insertions and deletions and is commonly used for concurrent
access. In our variant of a B+tree, key repetition is not allowed.

Each internal node consists of an ordered list of entries containing keys and
their associated pointers. A tree search starts at the root and chooses a descendant
according to the values of the keys, the convention being that the entry’s key pro-
vides the upper bound on the set of keys in its subtree. Each node has a minimum
and maximum number of possible entries in it. In our B+tree the maximum is
assumed to be even and is denoted d. The minimum is set to d/2� 3. For d � 10

this ensures the balance of the tree, and specifically that the number of nodes
to be read before reaching a leaf is bounded by a logarithm of the tree size. All
insertions and deletions happen at leaves. When an insert violates the maximum
allowed number of entries in the node, a split is performed on that node. When a
delete violates the minimum allowed number of entries, the algorithm attempts to
join two nodes, resulting in borrowing entries from a neighboring node or merging
the two nodes, if moving entries is not possible.

Splitting and joining leaves may, in turn, imply an insert or a delete to the
parent, and such an update may roll up until the root. We ignore the minimum
number of entries on the root, in order not to enforce a minimal number of entries
in the tree. Note that splits and joins always create nodes with a legitimate number
of entries. In practice, the minimum value is sometimes set to be smaller than
d/2� 3 to avoid frequent splits and joins.

3.2.2 The structure of the proposed B+tree

For simplicity, our construction assumes the key and the data fit into a single word.
This is the assumption of the chunk mechanism and it makes the allocation of a
new entry easier. In practice, this means a word of 64 bits, with a key of 32 bits and
data of 32 bits.2 An architecture that provides a double-word compare-and-swap
would allow using a full word for each of the fields, removing the restrictions, and

2Since a data field cannot hold a full pointer, we assume a translation table, or some base pointer to
which the 32-bit address is added to create the real memory address. In the first case, this limits the
number of nodes to 232 nodes, and in the second case, it limits the entire tree space to 4GB, which is
not a harsh constraint.

49©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

key: 9

del. bit: 1

key: ŏ

del. bit: 0

key: 5

del. bit: 0

key: 1

del. bit: 1

key: 12

del. bit: 0

key: 8

del. bit: 0

key: ŏ

del. bit: 0
. . . head

counter

64 bits (word)

new

64 bits (word)

entriesArray[MAX]
…

creator

64 bits (word)

nextNew

64 bits (word)

 joinBuddy freezeState

64 bits (word) 3 LSBs

Figure 3.1: The structure of a chunk. The allocated grey entries present the ordered linked list.

simplifying the construction. The key values are taken from a finite set, bounded
from above by a value that we denote 1. The tree is represented by a pointer to
the root node, initially set to an empty root-leaf node.

Our B+tree node is built using the chunk structure of the previous chapter.
The chunk’s maximum and minimum number of entries are set to d and d/2 � 3

to satisfy the B+tree node requirement (except for the zero minimum bound on
the root). In addition to a chunk, the tree node contains two additional fields to
support its management: a height field indicating the distance from the leaves and
a root flag indicating whether the node is a root.

We briefly review the fields of a chunk (see Figure 3.1). A detailed discussion
appears in the previous chapter. The main part of the chunk is an array that
contains all the entries. The counter field counts the number of entries in a chunk.
It is accurate during sequential execution and is always guaranteed to hold a
lower bound on the real count, even in the presence of concurrent executions.
The pointers new, joinBuddy, nextNew and creator point to nodes involved in the
rebalancing, to be described below in Section 3.4. The split and join of a chunk
requires a freeze of all operations on it, which imposes the freeze state of a chunk
to be declared using freezeState field. The freezing mechanism will be explained
later, in Sections 3.3 and 3.4.

3.2.3 Memory Management

To avoid some of the ABA problems, lock-free algorithms typically rely on garbage
collection or use the hazard pointer mechanism of Michael [41]. To simplify the
current presentation, we assume the existence of garbage collection for the nodes.
This means that nodes are never reused unless they become unreachable from all
threads. An extension of the same scheme to a use of hazard pointers is possible.3

3In the implementation we measured, we implemented hazard pointers inside the chunk and did not
reclaim full nodes at all during the execution.

50©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

3.2.4 The Basic B+tree Operations

The B+tree interface methods: SearchInBtree(), InsertToBtree(), and Delete-
FromBtree() are quite simple. The code of the basic B+tree operations is pre-
sented in Algorithm 21 (relegated to Section 3.8). An insert, delete, or search
operation first finds the leaf with the relevant key range, after which the appro-
priate chunk operation is run on the leaf’s chunk. It either simply succeeds or a
more complicated action of a split or a join begins. Some care is needed when the
suitable leaf is a new one (an infant), whose insertion into the B+tree is not yet
complete. In that case, we must help finish the insertion of the new node before
continuing to perform the operation on it. Further explanations on the freezing
of a node, on the infant state, etc. appear in Section 3.3.

3.3 Splits and Joins with Freezing

Before it is split or joined, a node’s chunk must be frozen. The complete details
appear in the previous chapter. The freezing is executed by the chunk mechanism
when its size limits are violated. This happens obliviously to the containing data
structure, in this case, the B+tree. Here we provide an overview on the chunk’s
freeze required to understand the B+tree algorithm. To freeze a node, i.e., to freeze
the chunk in it, all the chunk’s entries are marked frozen (one by one) by setting
a designated bit in each entry. After all the entries are marked frozen, no changes
can occur on this node. A thread that discovers that a node needs to be frozen, or
that a freeze has already begun, helps finish freezing the node. However, search
operations do not need to help in freeze and can progress on the frozen nodes.
Since changes may occur before all entries are marked frozen, the final state of
the frozen node may not require a split or a join at the end of the freeze. Still a
frozen node is never resurrected. After the freeze has been marked and the node
can no longer be modified, a decision is made on whether it should be split, or
joined with a neighboring node, or just copied into a single new node. If a join is
required, then a neighboring node is found by the B+tree. This communication
between the chunk and the B+tree is implemented using a predetermined method
FindJoinSlave() that the tree supplies and the chunk mechanism uses. Then the
neighboring chunk is frozen too. To recover from the node freeze, one or two nodes
are allocated, and the live entries in the frozen node (or nodes) are copied into the
new node (or nodes). Thereafter, a B+tree method CallForUpdate() is called to
let the tree replace the frozen nodes with the new ones. We focus in what follows
on issues specific to the B+tree, i.e., finding a neighbor, replacing the frozen nodes
with the new ones in the B+tree, and maybe rolling up more splits or joins.

Each tree node has a freezeState field, holding one of eight possible freeze states.
Three bits are used to store the state. The freeze state is also a communication
link between the B+tree and the chunk mechanism, and so it can be read and
updated both by the B+tree and by the chunk. When a new node is created to
replace a frozen node, and until it is properly inserted into the B+tree, its freeze

51©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

INFANT

NORMALFREEZE <SLAVE FREEZE, master>

COPY SPLIT <REQUEST_SLAVE, slave> <JOIN, slave>

The insertion of the
new node to the tree

is finished

Number of entries in the
chunk reached minimal or

maximal boundary

At the end,
num of entries

is proper

Need to split
the node

The node needs to join with the chosen
slave-neighbor

Previously chosen slave-neighbor was
frozen for another reason. Try to join

with newly chosen slave-neighbor
Successful cooperation with the slave-

neighbor, start the join

Special case: two left most nodes try to
enslave each other. Node with smaller
keys is enslaved, breaking symmetry

The node was chosen as
a slave for joining with

its master-neighbor

Figure 3.2: The state transitions of the freeze state of a node. The initial states are presented
in the boxes with the double border.

state is marked as infant. No insertions or deletions are allowed on an infant
node until the node’s freeze state becomes normal. Any thread that attempts
an operation on such a node must first help move this node from the infant to
the normal state. A node that is properly inserted into the B+tree and can be
used with no restrictions has a normal freeze state. When an insert or a delete
operation violates the maximum or minimum number of entries, a freeze of that
node is initiated and its freeze state becomes freeze. After the freezing process
stabilizes and the node can no longer be modified, a decision is reached about
which action should be taken with this node. This decision is then marked in its
freeze state as explained below.

When neither split nor join is required (because concurrent modifications have
resulted in a legitimate number of entries), the freeze state of the node becomes
copy, and the node is simply copied into a newly allocated node. By the end
of the copy, the parent’s pointer into the old node is replaced (using the chunk’s
replace operation) with the pointer to the new node, and the new node becomes
normal. When a split is required, the node’s frozen state changes to split and
all its live entries are copied into two new infant nodes. These nodes are then
inserted into the tree in place of the frozen node, after which they can become
normal. A join is more complicated since a neighbor must be found and enslaved

for the purpose of the join. Since only three bits are required to store the freeze
state, we can use the freeze state to also store a pointer to a join buddy and modify
the state and the pointer together atomically.4 The join process starts by looking
for a neighbor that can be enslaved for the join and then the freeze state of the join
initiator is changed into request_slave together with a pointer to a potential
join buddy in the joinBuddy word. Thus, the freeze state is actually modified
into a pair <request_slave, slave>. At the enslaved node, its state is then
modified from normal into the pair <slave_freeze, master>, where master is

4An 8-alignment of a node can be assumed in modern systems and the three redundant least-
significant bits can hold the freeze state

52©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

a pointer to the node that initiated the join. (Upon failure, we try to resolve the
contention and try again.) When the connection between the join initiator (the
master) and the join slave is finalized, the freeze state of the master is modified
into <join, slave>, where slave points to the determined join buddy node. The
node that is typically chosen for a join is the immediate left sibling of the current
node, except for the leftmost node, which chooses its immediate right sibling for
the join. A special boundary condition appears when the two leftmost children
of a node try to enslave each other. In order to break the symmetry in this case,
we take special care to identify this situation and then choose the leftmost sibling
among the two to be the slave. Figure 3.2 presents the state transition diagram
for the freezeState field.

3.4 Balancing the B+tree

The basic methods for the tree operations have been discussed in Section 3.2.4.
We now give a high-level description of how to balance the tree following a split
or a join of a node, and discuss the interface between the chunk mechanism and
the tree operations. As we said, upon a violation of the node size constraints,
the chunk mechanism first freezes the node to prevent it from being modified and
decides on the rebalancing action (split, join, or copy). In case of a join, the
chunk mechanism invokes the B+tree method FindJoinSlave(), which finds such
a join buddy. Later, the chunk mechanism creates new node(s) and copies the
relevant information into them. When this part is completed, the chunk calls
B+tree method CallForUpdate(). This method lets the B+tree algorithm replace
the frozen node (or nodes) with the newly created node (or nodes) in the tree. The
CallForUpdate() method actually redirects the calls according to whether a split,
a copy, or a join occurred. Let us examine each of these cases. The pseudo-code
for CallForUpdate() is presented in Section 3.9.

Before diving into the details, note that in general, upon creation of a node due
to a split, a join, or a copy, the new node’s freeze state is initiated to infant, its
root flag is initiated to false, its height value is copied from the original node’s
height value, and its counter is initiated to the exact number of entries copied into
it. Also, the creator pointer of a new node is initiated to point to the old node,
initiated the split, join, or copy operation.

3.4.1 Node Split

After the chunk mechanism executes a split, the original node N is frozen, and
N ’s new field points to the new node N1 holding the lower half of the keys from
the old node N . The field N1.nextNew points to the second new node N2 holding
the higher half of the keys from the old node N . The two new nodes’ freeze
states are initiated to infant so that no updates can occur on these nodes until
they are inserted into the tree. Given that the chunk split already completed,
the CallForUpdate() method invokes the InsertSplitNodes() method, algorithm of

53©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

which we describe below. The code with all the details is provided in Section 3.8
(Algorithm 22).

Replacing split node N starts by searching for its parent P in the tree. If the
parent cannot be found, then the input node is no longer in the tree. This happens
if the new node N1 was properly inserted by some other thread, and the node N

was disconnected in the process. In this case, the splitting process continues with
inserting N2. Otherwise, and having found the parent, we modify it to point to
the new node N1. This is done by inserting a new entry to P . The new entry
contains the maximal key from N1 as key and the pointer to N1 as data. If the
insert fails, it means that someone else has inserted this entry to the chunk and it
is fine to continue. Therefore, we do not check if the insert succeeded. Note the
possibility that the parent’s chunk insert will create a split in the parent, which
will recursively cause a split and roll it up the tree.

After the first new node is in place, we replace the pointer in the parent node,
that points to the frozen node N , with the pointer to the second new node N2.
Again, this can only fail if another thread has done this earlier. In order to replace
the pointer on the correct parent, we search for the parent (in the tree) of the split
node once again. The second parent search may yield a different parent if the
original parent was concurrently split or joined. After making the parent point
to the two new nodes N1 and N2, it remains to set their state to normal and
return. The splitting process is completed.

If the original node N was determined to be the root, then a new root R with
two new children N1 and N2 is created. Next, the B+tree’s root pointer is swapped
from pointing to N to point to R. The details of the root’s split code are relegated
to Section 3.10.1.

3.4.2 Nodes Join

Establishing master-slave relationship: We assume that the join is initiated
by a sparse node N , denoted master. The chunk mechanism has frozen the node
N and it has determined that this node has too few entries. To complete the
join, the chunk lets the B+tree find the slave. The B+tree establishes a master-
slave relationship and later the chunk mechanism joins the entries of both nodes.
The B+tree’s FindJoinSlave() method is responsible for establishing master-slave
relationship and returns the slave for the given master. Its code is presented
in Algorithm 23 in Section 3.8.2. The master-slave relationship establishing is
described below.

The search for the neighboring node starts by finding the master’s parent node
P together with the pointers to the master’s and its neighbor’s entries. The parent
node search fails only if the node N has already been deleted from the tree, in which
case a slave has already been determined and this step is completed. Otherwise,
the parent and a potential slave node M were found. The left-side neighbor is
returned for all nodes except the left-most node, for which a right-side neighbor
is returned. In order to establish the relationship, we first change N ’s freeze state

54©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

from <freeze, null> to <request_slave, M>. This CAS operation may
fail if N ’s freeze state has been already promoted to join, in which case N ’s final
slave has already been set. This CAS operation may also fail if another slave was
already chosen due to delay of this CAS command. In this case, we just use that
slave.

After finding a potential slave, we attempt to set its freeze state to <slave_freeze,
N> and freeze it. For this purpose the SetSlave() method is invoked from the Find-
JoinSlave() method. The SetSlave() method’s code and details are presented in
Algorithm 24 in Section 3.8.2. The SetSlave() method’s algorithm is described in
the next paragraph. After succeeding in setting the slave’s freeze state, we change
the master’s state from <request_slave, M> to <join, M>, to enable the
actual join attempts.

In order to enslave the slave M , we first attempt to CAS M ’s freeze state from
<normal, null> to <slave_freeze, N>. After the CAS of the freeze state
in the slave is successful, slave is frozen and we may proceed with the join. But
M ’s freeze state isn’t necessarily normal: if it is not, then M is either still an
infant or it is already frozen for some other reason. In the first case, we help M

to become normal and retry to set its freeze state. In the second case, we help
to complete M ’s freeze. After the freeze on M is complete, M is frozen forever
and is not suitable to serve as a slave. Therefore, M ’s enslaving has failed and the
process of finding another slave must be repeated. A special case occurs when the
potential slave M has a master freeze state as well and is concurrently attempting
to enslave N for a join. This case can only happen with the two leftmost nodes
and if we do not give it special care, an infinite run may result, in which each of the
two nodes repeatedly tries to enslave the other. In order to break the symmetry,
we check explicitly for this case, and let the leftmost node among the two give up
and become the slave, with a slave_freeze state and a pointer to its master
(which was originally meant to be enslaved for it). Finally, we finish M ’s enslaving
by freezing M . After the freezing of the slave M is done, we continue with the
join.

Merge: If the number of entries on the master and the slave is less than d,
chunk mechanism creates a new single chunk to replace the master and the slave.
We denote this operation merge. In this situation, the InsertMergeNode() method
is called (via CallForUpdate()) by the chunk mechanism in order to insert the new
node into the tree. At this point, a master-slave relationship has been established,
both M and N have been frozen, and a new node N1 has been created with the
keys of both M and N merged. The code with all the details for the merge is
presented in Algorithm 25 in Section 3.8.2.

The merge starts by checking which of the original nodes (master N or slave
M) has higher keys. We denote this node by N

high

and the other node by N
low

.
Next, we look for N

high

’s parent. If the parent is not found, then N
high

must have
already been deleted and we need to handle the node with the lower keys, N

low

.
Otherwise, we replace the parent’s pointer to N

high

, with a pointer to the new

55©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

node N1. Next, we handle the pointer to N
low

at the parent by attempting to
delete it. Finally, we turn the new node’s freeze state to normal.

Special care is given to the root. We would like to avoid having a root with a
single descendant, and that might happen when the two last descendants of a root
are merged. In this case, we make the new merged node become the new root.
(See the MergeRoot() method in Section 3.10.2.)

Borrow: If the keys of two join nodes cannot fit a single node, they are copied
into two new nodes. This operation is called borrow. The code and all the details
for the borrow process is presented in Algorithm 26 in Section 3.8.3. Recall that
in the borrow case four nodes are involved: the master N , the slave M , the new
node with the lower keys N1 and the new node with the higher keys N2. As in
merge case, we start by finding the high and low keys’ nodes, N

high

and N
low

,
among the master and the slave.

We then take the following steps: (1) Insert a reference to N1 to the parent
node (with the maximal key on the N1 as the key); (2) Change the parent entry
pointing to N

high

to point to N2; (3) Delete the parent entry pointing to N
low

.

3.4.3 Two Invariants

We mention two correctness invariants that may expose some of the correctness
arguments behind the algorithm and help the reader understand the course of the
algorithm.

Keys duplication. During the balancing operations described above, we
sometimes make duplicates of keys appear in the tree, but at no time will a key
appear to be absent. For example, after the first new node is inserted to the parent
as part of the split, there are keys that reside simultaneously in two different nodes:
all keys in the first new node are also still available in the old split node, which
is still in the tree. Similarly, as part of the merge, when an old frozen node with
higher keys is replaced with the new node, there are keys that appear twice: all
keys in the old frozen node with lower keys now also appear in the new node.
Recall that a search in our B+tree is allowed to navigate through the tree and
return the result, based on the data found on the frozen node.

This does not foil searches in the tree. Old searches may access keys in the
old frozen node(s), but new searches can only access the new infant node(s).
Furthermore, none of these nodes can be modified until the rebalance process
terminates. The new node is an infant, which temporarily precludes modifications,
and the old node is frozen, which precludes modifications permanently.

We should also note that the tree doesn’t grow too big because of duplication.
An invariant that we keep is that there can only be two copies of a key in the tree.
Thus, even though we may increase the size of the tree during the balancing, the
increase will be at most by a factor of two. The factor-two increase is theoretical.
In practice, the increase in the tree size is negligible. More about correctness and
progress guaranties can be found in Section 5.6.

Master-slave bond. We take special care to guarantee that the master and

56©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

the slave keep the same parent up to the end of their join. Initially, the master and
the slave are children of the same node P . However, there is always the chance
that the parent node P is split so that these two children nodes do not have a single
common parent anymore. This can subsequently lead the algorithm to make the
tree structure inconsistent. Therefore, we enforce an invariant that the master and
slave nodes must remain on the same parent. Namely, we do not allow the parent
entries that point to a master and to its slave be separated into different nodes due
to a parent’s split or borrow, until new nodes replace the frozen master and slave.
To this end, we take special care when the values of a frozen parent are divided
into two new parents, and make sure that two such entries reside on a single new
parent. Ensuring this variant is executed both on the parent splitting algorithm
as well as on the children joining algorithm. First, at the parent side we check
whether the descendants form a master and a slave and if they do, they are not
placed on different new nodes. But the descendants may later enter a master and
slave relationship, after this check was executed. Therefore, on the descendants’
side, after declaring the intent of a master to enslave its neighbor (setting the
master’s state to request_slave), we check that the master’s parent is not
in a frozen state. If it is, we help the parent to recover before continuing the
descendants’ join. This ensures that the parent split (or borrow) does not occur
obliviously and concurrently with its descendants’ join (or borrow).

3.4.4 Extensions to the Chunk Mechanism

The chunk interface requires some minor modifications, over presented in previous
chapter, to properly serve the B+tree construction in this chapter. Probably the
most crucial modification arises from the need to deal with an ABA problem that
arises during insertions and deletions of entries to the chunk of an internal node
in the tree. The concern is that an insert or a delete may succeed twice due to
a helper thread that remains idle for a while. Consider, for example, a merge
and a subsequent delete of an entry at the parent node. Suppose that one thread
executes the delete, but a second thread attempts this delete later, after the same
key (with a different descendant) has been entered to the parent again. Thus, a
delete should only succeed when the entry still points to the frozen node. As for
inserts, we need to avoid reentering a pointer to a child node that has actually been
frozen and deleted while the updating thread was stalled. To solve such problems,
we add versioning to the nextEntry word in the chunk’s linked-list. This eliminates
the ABA problem, as a delayed CAS will fail and make us recheck the node that
we attempt to insert or delete and discover that it has already been frozen. The
extensions to the chunk mechanism are described and discussed in Section 3.11.

3.5 Implementation and Results

We have implemented the lock-free B+tree presented in this chapter as well as the
lock-based B+tree of [47] in the C programming language. The lock-free design in

57©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Speedup (relative to one thread performance) for 100 000
operations

0

1

2

3

4

5

6

7

8

9

1 4 8 16 24 32 40

Number of threads

S
pe

ed
 U

p

Lock
Free

Lock
Based

Total Time Ratio for different number of threads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10000 100000 1000000

N

Th
e

R
at

io

1 thread

4
threads

8
threads

16
threads

32
threads

64
threads

Figure 3.3: The empirical results.

this chapter can be optimized in many ways. However, we have implemented it as
is with no further optimizations. The operations of the lock-based B+tree progress
in a top-down direction. During the descent through the tree, lock-coupling [2] is
employed, i.e., a child is locked before its parent is unlocked. Exclusive locks on
the nodes are used for insert and delete operations, and shared locks are used for
search operations. Deadlock-freedom is guaranteed by a proactive approach to
rebalancing that splits full nodes or join sparse ones, while going down the path
to the leaves.

We ran the experiments on the sun fire machine with an UltraSPARC T1
8-core processor, each core running 4 hyper-threads, running Solaris 10. Overall,
the eight cores, with quad hyper-threading simulates the concurrent execution of
32 threads. In both implementations the size of a B+tree node was set to the
machine’s virtual page size, i.e., 8KB. In each test we start with a tree with N

random keys in the range [0, 218] already inserted to it, and during the test, we
apply N operations on it. If the test runs T threads, then each executes N/T

operations. The parameter N was varied among 10

4, 105 and 10

6. The operations
consisted of insertions, deletions and searches in parallel, out of which 20% were
insertions, 20% were deletions, and the remaining 60% were searches. All the
threads start simultaneously at the beginning and we measure the time it takes
to complete all operations by all threads.

The left graph of Figure 3.3 depicts the ratio between the time it took to
complete the runs on the lock-free implementation as compared to the lock-based
implementation. A result higher than 1 means that the lock-free implementation
is slower. Clearly, the lock-free implementation outperforms the lock-based im-
plementation when contention is not low. Note that contention increases as the
tree gets smaller and as the number of threads increases. Also, the results show
that the average cost of an operation increases as the tree gets larger, because
rebalancing may ascend to higher levels. Such costs are heavier for the lock-free
tree, but this overhead is offset by lock-freedom efficiency when contention kicks
in. The right graph of Figure 3.3 depicts the speedup, which clearly shows that
the lock-free algorithm is more scalable.

58©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

The weaker performance of the lock-free tree for low contention can be amelio-
rated by simple optimizations. For example, during the split, each thread helping
the split copies the entries from the old node to a newly created private node and
only one of these new nodes eventually replaces the old node and joins the tree.
While threads can cooperate to perform copying, we decided to avoid it in this
version because it complicates the design.

3.6 Linearization Points

When designing a concurrent data structure, it is important to spell out the lin-
earization points for the different operations. This is done in this section. The
B+tree methods all have a similar pattern of operation: they traverse the B+tree
to find the relevant leaf node, and then call the appropriate chunking methods on
the leaf’s chunk. Thus the linearization points of the B+tree are typically based
on the linearization points defined for the chunk in the previous chapter.

Search linearization point: The linearization point of the search operation
is exactly the linearization point of the leaf’s chunk search, as in the previous
chapter. In particular, if the leaf is not frozen, then the linearization point follows
that of the underlying linked-list in the leaf’s chunk, and if the leaf is frozen
then the linearization point is set to be the point in which the chunk became
frozen. As the freezing mechanism is not instantaneous, we need to define a point
in the freezing process more accurately for the linearization point. We follow
the previous chapter and set the linearization point to be the point in the freeze
process by which all the frozen bits have been set and also the internal list of the
freezing node has been stabilized. Define this point as the freezing point. The
freezing process of a chunk is explained in Section 3.11 and more thoroughly in
the previous chapter. Formally, consider the linearization point of the search of
the linked-list that is inside the chunk of the leaf (as defined by Harris [22]). If
the chunk’s linked-list search linearization point occurs before the freezing point,
then that is also the linearization point of the overall tree search. If the chunk’s
linked-list linearization point happens after the freezing point, then we define the
overall tree search linearization point to be the later point between the freezing
point and the point in which the search started. The latter maximum makes sure
that the linearization point happens during the execution of the search.

Justifying this choice for non-frozen node is straightforward. As for frozen
nodes, we note that the frozen node may be replaced with a new node during the
search execution and various actions may be applied on the new node. But at the
freezing point, we know that the values of the frozen node exist only in the frozen
node and are properly represented by the view of the frozen node.

The delicate case is when the search starts after the freezing point and still gets
to the frozen leaf and completes the search there. In this case, since the search
ends up in this leaf, we know that a new node that replaces this leaf (following the
end of the freeze) has not yet been modified while the search traversed the tree,

59©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 19: Finding the relevant leaf node, given a key.
Node* FindLeaf (key) {
1: node = btree!root;
2: while (node!height != 0) { // Current node is not leaf
3: Find(&(node!chunk),key); node=cur!data; //entry’s data field is a pointer to the child
4: }
5: return node; // current node is leaf
}

because the rebalancing operation has not yet terminated at that point. Therefore
the new node has definitely not been modified when the search started, and the
frozen values represent correctly the state of the tree at that point in time.

Insert and delete linearization points: Unlike the analysis of the search
operation, frozen nodes are not hazardous for the insert’s and delete’s initial tree
traversing. If an insert or delete arrive at a frozen leaf, than the InsertToChunk() or
the DeleteInChunk() methods will redirect the operation (after helping the frozen
node) to a non-frozen leaf node. Intuitively, the insert operation is assumed to
be finished when a leaf including the new key is reachable from the root via data
pointers. Similarly, the delete operation is assumed to be finished when a leaf
excluding an old key is reachable from the root via data pointers. In a worst-case,
this may require more than just handling a freeze.

There are three cases possible here. First, if the insert or delete operation
doesn’t cause a rebalancing activity (split, merge, borrow, or copy), than the
linearization point is simply determined to be the leaf’s chunk linearization point.
Second, if a rebalancing (by freezing) occurs and if the thread performing the insert
or delete operation has its operation executed in the node that replaces the frozen
node, then the linearization point of the operation becomes the linearization point
of the insert operation of the new node to the parent of the frozen node (replacing
the frozen node with the new one). Note that this definition may be recursive
if the parent requires rebalancing for the insertion. The third case is when the
result of this operation is not reflected in the node that replaces the frozen one.
In this case, we again define the linearization point recursively, setting it to be the
linearization point of the re-attempted operation on the new node that replaced
the frozen one.

3.7 B+tree supporting methods

Before detailing the full B+ tree code in the following sections, we first describe
in detail the supporting methods, FindLeaf() and FindParent(), which are used
by other B+ tree methods. FindLeaf() finds the relevant leaf in which a given key
may reside. This method is invoked by main B+tree’s interfaces: SearchInBtree(),
InsertToBtree() and DeleteFromBtree().

The FindLeaf() method is specified in Algorithm 19. Note that this search
never fails, because each key may only belong to one leaf of the tree, depending

60©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 20: Find a parent of a node, given a key located on it and a pointer
to the child

Node* FindParent (key, Node* childNode, Entry** prntEnt, Entry** slaveEnt) {
1: node = btree!root;
2: while (node!height != 0) { // Current node is not leaf
3: Find(&(node!chunk), key);
4: if (childNode == cur!data) { // Did we find exactly the entry pointing to the child?
5: *prntEnt = cur;
6: if(slaveEnt!=null) { // Look for the child’s neighbor, is the current entry the leftmost?
7: if(prev==&(node!chunk!head)) *slaveEnt=next;
8: else *slaveEnt=EntPtr(prev);
9: } // end of if child neighbor was needed

10: if (node!freezeState == infant) helpInfant(node); // Help infant parent node
11: return node;
12: } // end of if child was found
13: node = cur!data;
14: } // end of while current node is not leaf
15: return null; // Current node is leaf, no parent found
}

on the keys and pointers in the internal nodes. An appropriate leaf can always
be returned, even if the key does not exist in it. The procedure starts from the
root and ends when a leaf is found. At each step, it uses the Find() operation of
the chunk mechanism to locate the appropriate pointer for the next descent. The
Find() method of the chunk mechanism sets a global pointer *cur to the entry
with the minimal key value that is larger than or equal to the input key. This is
exactly the entry whose pointer should be followed when descending the tree.

The second supporting method is FindParent(). When a split or a join occurs,
we may need to find the parent of the current node in order to modify its pointers.
Furthermore, we may need to find an adjacent node as a partner for a join, when
a node becomes too sparse. The FindParent() method is presented in Algorithm
20. It is given a pointer to the child node, but also a key that exists on the child
node, which allows navigation towards the child on the tree. It either finds the
parent node, or returns null if the child can no longer be found in the tree (i.e., it
was removed from the tree before this search was completed). A leaf node cannot
be a parent; therefore we return null if we reach a leaf. Otherwise, we stop when
we find an entry in a node whose descendant is the input node. At that point
we know we found the parent node. The discovered entry in the parent node is
returned, using the parameter prntEnt.

FindParent() may also provide a neighbor to be enslaved for a join. FindPar-
ent() looks for this neighbor when the parameter slaveEnt is not null. It always
returns a pointer to the left neighbor (of the child node), unless the child is the
leftmost child of its parent and then it returns the right-side neighbor. Techni-
cally, due to the uses of this method, it doesn’t simply return the pointer to the
neighbor. Instead, it returns a pointer to the parent entry that points to the
neighbor, using the parameter slaveEnt. To find this neighbor, we further exploit

61©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 21: Search, Insert, and Delete – High Level Methods.
(a) BOOL SearchInBtree (key, *data) {
1: Node* node = FindLeaf(key);
2: return SearchInChunk(&(node!chunk), key, data);
}
(b) BOOL InsertToBtree (key, data) {
3: Node* node = FindLeaf(key);
4: if (node!freezeState == infant) helpInfant(node); // Help infant node
5: return InsertToChunk(&(node!chunk), key, data);
}
(c) BOOL DeleteFromBtree (key, data) {
6: Node* node = FindLeaf(key);
7: if (node!freezeState == infant) helpInfant(node); // Help infant node
8: return DeleteInChunk(&(node!chunk), key);
}

the method Find() of the chunk mechanism. The Find() method sets a global
pointer *cur to the entry with the minimal key value that is larger than or equal
to the input key. But the Find() method also sets two more pointers: **prev and
*next. The global (indirect) pointer **prev points to the entry that precedes the
entry pointed to by *cur

5. The entry that follows the one pointed to by *cur
is returned in a global pointer *next (if such an entry exists). When Find() is
used properly, the left neighbor of the child node will be point to from the global
**prev pointer initiated by Find(), unless the child node is the leftmost child, in
which case prev will point to the head entry. If it does point to the header, then
we just return the pointer next.

If we find a parent, we also check whether its freeze state is infant; if it is,
we help the infant parent to become a normal node before returning it. In most
cases, the FindParent() is used to find a parent and then to apply insert, delete
or replace operations on its chunk. Those operations are not allowed to be done
on an infant parent.

3.8 Code and Detailed Explanations for Split, Merge and
Borrow

The code for the B+tree interfaces is presented in Algorithm 21 and was described
in Section 3.2.4. Here we describe the code and all the details for the balancing
B+tree operations.

3.8.1 Node Splits

After the chunk mechanism executes a split, the original node N is frozen, and
N ’s new field points to the new node N1, which holds the lower half of the keys
from the old node N . The field N1.nextNew points to the second new node N2,

5Eventually, **prev pointer points to the inner field next of the entry that precedes the entry pointed
to by *cur. We use EntPtr() to convert it to a normal pointer to the previous entry.

62©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 22: The split of a non-root node. The input parameter - sepKey - is
the highest key in the low-values new node.

void InsertSplitNodes (Node* node, sepKey) {
1: Entry* nodeEnt; // Pointer to the parent’s entry pointing to the node about to be split
2: Node* n1 = node!new; // Pointer to the new node that holds the lower keys
3: Node* n2 = node!new!nextNew; // Pointer to the new node that holds the higher keys
4: maxKey = getMaxKey(node); // Get maximal key on the given frozen node
5: if ((parent = FindParent(sepKey, node, &nodeEnt, null)) != null) {
6: InsertToChunk(parent!chunk,sepKey,n1); //Fails only if someone else completes before us
7: }
8: if ((parent = FindParent(maxKey, node, &nodeEnt, null)) != null) {
9: ReplaceInChunk(parent!chunk, //Fails only if someone else completes before us

10: nodeEnt!key, combine(nodeEnt!key, node), combine(nodeEnt!key, n2));
11: }
12: // Update the states of the new nodes from infant to normal

13: CAS(&(n1!<freezeState, joinBuddy>), <infant, null>, <normal, null>);
14: CAS(&(n2!<freezeState, joinBuddy>), <infant, null>, <normal, null>);
15: return;
}

which holds the higher half of the keys from the old node N . The two new nodes’
freeze states are initiated to infant so that no updates can occur on these nodes
until they are inserted into the tree.

The split of the root is relegated to Section 3.10.1. The code for completing
the split of a (non-root) node is presented in Algorithm 22. The InsertSplitN-
odes() method is invoked by the CallForUpdate() method. The InsertSplitNodes()
method receives a pointer to the frozen node whose split needs to be completed,
and the sepKey parameter. The sepKey parameter holds the middle key that "sep-
arates" the two new nodes. The sepKey key and all lower keys have been placed
in the first new node (n1), and all keys higher than sepKey have been placed in
the second new node (n2).

The split starts by searching for the parent (in the tree) of the split node, using
sepKey for navigating in the tree. If the parent cannot be found, then the input
node is no longer on the path for sepKey in the tree. This happens if the new node
with the low level key was properly inserted by some other thread. Otherwise,
and having found the parent P , we modify the parent to point to the new nodes.
We want to insert a new link to the first new node (with the low level keys) into
P . This is done by inserting a new entry to the parent node. If the insert fails,
it means that someone else has inserted this entry to the chunk and it is fine to
continue. Therefore, we do not check wether the insert succeeded.

Note that after the first new node is inserted to the parent, there are keys
that reside simultaneously in two different nodes: all keys in the first new node
are also still available in the old split node, which is still in the tree. This does
not foil searches in the tree. Old searches may access keys in the old node, but
new searches can only access the new node. Furthermore, none of these nodes
can be modified until the split process terminates. The new node is infant, which

63©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

temporarily precludes modifications, and the split node is frozen, which precludes
modifications permanently.

After the first new node is in place, we replace the pointer in the parent node,
which points to the frozen node, with the pointer to the second new node (Line
9). Again, this can only fail if another thread has done this earlier. The Repla-
ceInChunk() method finds the entry with key and data as in its third argument
and replaces it with key and data as in its last argument. (The combine() method
syntactically combines the key and the data values into a single word.) In order to
invoke ReplaceInChunk() on the correct parent, we search for the parent (in the
tree) of the split node, using the maximal key of that node for navigating in the
tree. The second parent search may yield a different parent if the original parent
was concurrently split or joined. After making the parent point to the two new
nodes, it remains to set their state to normal and return. The split is done.

Note that the chunk insert in Line 6 might create a split in the parent, which
will recursively call CallForUpdate(), and the splits may roll up the tree.

3.8.2 Merges

Establishing master-slave relationship: We assume that the merge is initiated
by a node N , denoted master. The chunk mechanism has frozen the node N and
it has determined that this node has too few entries. But the merge can not
be completed by the chunk mechanism because the slave is required. Thus, we
start by establishing a master-slave relationship, in order to share the entries with
this node. To this end, the chunk mechanism calls the FindJoinSlave() method,
presented in Algorithm 23. This method returns the slave for the given master.

The FindJoinSlave() method starts by calling the FindParent() method, which
returns a pointer to the master’s parent node together with the pointers to the
master’s and its potential slave’s entries. The parent node search fails only if the
node N has already been deleted from the tree, in which case a slave has already
been determined and can be retrieved from the joinBuddy field of N . Otherwise,
the parent and a potential slave node M were returned by FindParent(). In
order to establish the relationship we first change N ’s freeze state from <freeze,
null> to <request_slave, M>. (Recall that the joinBuddy field and the
freeze state field are located in one word.) If this is not our first try, the field may
hold a previous slave pointer (old_slave) that we could not enslave. In this case,
we change the value of N ’s freeze state from <request_slave, old_slave> to
<request_slave, M>, where M is the new potential slave. The CAS operation
in Line 10 may fail if N ’s freeze state has already been promoted to join or became
slave_freeze due to swapping the master-slave roles as it will be explained
below. In these cases N ’s final slave has already been set in the joinBuddy field
of N . The CAS operation in Line 10 may also fail if another slave was already
chosen due to delay of this CAS command. In this case, we just use that slave
(Line 15).

For correctness, we enforce the invariant that the parent entries that point to

64©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 23: The code of finding a node partner for a join in the lock-free
B+tree.

Node* FindJoinSlave(Node* master) {
1: Node* oldSlave = null;
2: start: anyKey = master!chunk!head!next!key; // Obtain an arbitrary master key
3: if ((parent = FindParent(anyKey, master, &masterEnt, &slaveEnt)) == null)
4: // If master is not in the B+tree; its slave was found and is written in the joinBuddy

5: return master!<*,joinBuddy>;
6: slave=slaveEnt!data; // Slave candidate found in the tree
7: // Set master’s freeze state to <request_slave,slave>; oldSlave isn’t null

8: if (oldSlave==null) expState=<freeze,null>; // when the code is repeated
9: else expState=<request_slave,oldSlave>;

10: if (!CAS(&(master!<freezeState, joinBuddy>), expState, <request_slave, slave>)) {
11: // Master’s freeze state can only be request_slave, join or
12: // slave_freeze if the roles were swaped
13: if (master!<freezeState,*> == <join,*>) return master!<*, joinBuddy>;
14: }
15: slave = master!<*, joinBuddy>; // Current slave is the one pointed by joinBuddy
16: // Check that parent is not in a frozen state and help frozen parent if needed
17: if ((parent!<freezeState,*> != <normal,*>) && (oldSlave == null)) {
18: Freeze(parent, 0, 0, master, none, &result); oldSlave = slave; goto start;
19: }
20: // Set slave’s freeze state from <normal, null> to <slave_freeze, master>
21: if (!SetSlave(master,slave,anyKey,slave!chunk!head!next!key)) {
22: oldSlave=slave; goto start;
23: }
24: // We succeed to get the slave update master
25: CAS(&(master!<freezeState, joinBuddy>), <request_slave, slave>, <join, slave>);
26: if (master!<freezeState,*> == <join,*>) return slave; else return null;
}

the master and the slave always reside on the same node. Namely, we do not allow
entries that point to a master and to its slave be separated into different nodes due
to a parent’s split or borrow, until new nodes replace the frozen master and slave.
To this end, we take special care when the values of frozen parent are divided
into two new parents, and make sure that two such entries reside on a single new
parent. A standard race occurs because after checking whether the descendants
form a master and a slave and deciding that they are not, the descendants may
later enter a master and slave relationship. A standard solution is to also check
at the descendants’ side. Namely, after declaring the intent of a master to enslave
its neighbor (setting the state to request_slave), we check that the master’s
parent is not in a frozen state. If it is, we help parent to recover before continuing
the descendants’ join (Lines 17, 18). This ensures that the parent split (or borrow)
does not occur obliviously to and concurrently with its descendants’ merge (or
borrow).

After finding a potential slave, we attempt to set its freeze state to <slave_freeze,
N> and freeze it. This is done in the SetSlave() method presented in Algorithm
24 and explained in the next paragraph. If this action is not successful, we will try
from scratch and look for another potential slave. After succeeding in setting the

65©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 24: Setting the slave’s freeze state for a join in the lock-free B+tree.
Bool SetSlave(Node* master, Node* slave, masterKey, slaveKey) {
1: // Set slave’s freeze state from <normal, null> to <slave_freeze, master>
2: while

(!CAS(&(slave!<freezeState,joinBuddy>),<normal,null>,<slave_freeze,master>)){
3: // Help slave, different helps for frozen slave and infant slave
4: if (slave!<freezeState,*>==<infant,*>) { helpInfant(slave); return false; }
5: elseif (slave!<freezeState,*>==<slave_freeze,master>) break; //already done
6: else { // The slave is under some kind of freeze, help and look for new slave
7: // Special case check: two leftmost nodes try to enslave each other, break the symmetry
8: if (slave!<freezeState, *> == <request_slave, master>) {
9: if (masterKey<slaveKey) { //Current master is left sibling and should become a slave

10: if (CAS(&(master!<freezeState,joinBuddy>),<request_slave,slave>,
11: <slave_freeze,slave>)) return true; else return false;
12: else // Current master node is right sibling and the other node should become a slave
13: if (CAS(&(slave!<freezeState,joinBuddy>), <request_slave,master>,
14: <slave_freeze,master>)) return true; else return false;
15: } // end case of two leftmost nodes trying to enslave each other
16: Freeze(slave, 0, 0, master, enslave, &result); // Help in different freeze activity
17: return false;
18: } // end of investigating the enslaving failure
19: } // end of while
20: MarkChunkFrozen(slave!chunk); // Slave enslaved successfully. Freeze the slave
21: StabilizeChunk(slave!chunk);
22: return true;
}

slave’s freeze state, we change the master’s state from <request_slave, M>,
to <join, M> to enable the actual join attempts.

The SetSlave() method attempts to CAS the freeze state of the slave M from
<normal, null> to <slave_freeze, N>. If the CAS of the freeze state
in the slave is successful, we may proceed with the join. But M ’s freeze state
isn’t necessarily normal: if it is not, then M is either still an infant or it is
already frozen for some other reason. In the first case, SetSlave() helps M to
become normal and retries to set M ’s freeze state. In the second case, it helps
to complete M ’s freeze. After finishing the freeze on M , M is frozen forever and
is not suitable to serve as a slave. Therefore, failure is returned by SetSlave() and
another slave must be found. A special case occurs when the potential slave M

has a master freeze-state as well and is concurrently attempting to enslave N for
a join. This case can only happen with the two leftmost nodes and, if special care
is not taken, an infinite run may result, in which each of the two nodes repeatedly
tries to enslave the other. In order to break the symmetry, we check explicitly for
this case, and let the leftmost node among the two give up and become the slave,
with a slave_freeze state and a pointer to its master (which was originally
meant to be enslaved for it). The FindJoinSlave() checks for this case in its last
line. If it is successful in turning the freeze state of the master into join, then all
is well. Otherwise, and given that SetSlave() completed successfully, then it must
be the case that the master has become a slave. In this case, no slave is returned,

66©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 25: The merge of two old nodes to one new node
void InsertMergeNode (Node* master) {
1: Node* new = master!new; // Pointer to the new node.
2: Node* slave = master!<*, joinBuddy>;
3: maxMasterKey = getMaxKey(master); // Both master and slave are frozen
4: maxSlaveKey = getMaxKey(slave);
5: if (maxSlaveKey < maxMasterKey) { // Find low and high keys among master and slave
6: highKey=maxMasterKey; highNode=master; lowKey=maxSlaveKey; lowNode=slave;
7: } else {
8: highKey=maxSlaveKey; highNode=slave; lowKey=maxMasterKey; lowNode=master;
9: }

10: if ((parent = FindParent(highKey, highNode, &highEnt, null)) != null) {
11: highEntKey = highEnt!key; // Change the highest key entry to point on new node
12: ReplaceInChunk(parent!chunk, // If fails, the parent chunk was updated by a helper
13: highEntKey, combine(highEntKey,highNode), combine(highEntKey,new));
14: } // If high node cannot be found continue to the low
15: if ((parent = FindParent(lowKey, lowNode, &lowEnt, null)) != null) {
16: if (parent!root) MergeRoot(parent, new, lowNode, lowEnt!key);
17: else //lowNode is the expected data
18: DeleteInChunk(&(parent!chunk),lowEnt!key,lowNode);
19: } // If also low node can no longer be found on the tree, then the merge was completed
20: // Try to update the new node state from infant to normal

21: CAS(&(new!<freezeState, joinBuddy>), <infant, null>, <normal, null>);
22: return;
}

and the returned null value tells the calling method (in the chunk mechanism)
to treat the master as the slave.

Finally, we finish the SetSlave() by freezing the slave in Line 20, so that the
join can continue. The method MarkChunkFrozen() marks all entries of a node
frozen by setting a designated bit in each entry. After the entries are marked
frozen, the StabilizeChunk() method ensures that no changes occur on this node.
At this point the slave has been enslaved and frozen.

Merge: The InsertMergeNode() method is called (via CallForUpdate()) by
the chunk mechanism in order to insert the new node into the tree. At this point,
a master-slave relationship has been established, both M and N have been frozen,
and a new node has been created with the keys of both M and N merged. (The
case in which there are two new nodes is handled by a similar method called
InsertBorrowNodes(), described in Section 3.8.3.) The code for completing of the
merge is presented in Algorithm 25.

The InsertMergeNode() method’s input parameter is a pointer to the master,
this master’s slave can be found in the joinBuddy field on the master. The Insert-
MergeNode() method starts by checking which of the original nodes (master and
slave) has higher keys. Denote this node by highNode. Note that the master and
the slave are frozen and thus immutable. Next, FindParent() is invoked on high-
Node. If the parent is not found, then highNode must have already been deleted
and we need to handle the old node with the lower keys, lowNode. Otherwise,

67©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 26: The merge of two old nodes to two new nodes. The input parameter
- sepKey - is the highest key in the low-values new node.

void InsertBorrowNodes (Node* master, sepKey) {
1: Node* n1 = node!new; // Pointer to the new node that holds the lower keys
2: Node* n2 = node!new!nextNew; // Pointer to the new node that holds the higher keys
3: Node* slave = master!<*, joinBuddy>;

4: maxMasterKey = getMaxKey(master); // Both master and slave are frozen
5: maxSlaveKey = getMaxKey(slave);
6: if (maxSlaveKey<maxMasterKey) { //Find low and high keys nodes among master and slave
7: highKey = maxMasterKey; oldHigh = master; lowKey = maxSlaveKey; oldLow = slave;
8: } else { highKey=maxSlaveKey; oldHigh=slave; lowKey=maxMasterKey; oldLow=master; }

9: if (lowKey < sepKey) sepKeyNode = oldHigh; // sepKey located on the higher old node
10: else sepKeyNode = oldLow; // sepKey located on the lower old node

11: if ((insertParent = FindParent(sepKey,sepKeyNode, &ent, null)) != null) {
12: // Insert reference to the new node with the lower keys
13: InsertToChunk(insertParent!chunk, sepKey,n1);
14: }
15: if ((highParent =FindParent(highKey,oldHigh,&highEnt, null))!=null) { //Find the parent
16: ReplaceInChunk(highParent!chunk,highEnt!key, //of the old node with the higher
17: combine(highEnt!key,oldHigh), //keys and change it to point to the new
18: combine(highEnt!key,n2)); //node with the higher keys
19: }
20: if ((lowParent =FindParent(lowKey, oldLow,&lowEnt, null)) != null) { //Delete,
21: DeleteInChunk(&(lowParent!chunk),lowEnt!key, //currently duplicated,
22: oldLow); // reference to the old low node
23: }
24: // Try to update the new children states to normal from infant

25: CAS(&(n1!<freezeState, joinBuddy>), <infant, null>, <normal, null>);
26: CAS(&(n2!<freezeState, joinBuddy>), <infant, null>, <normal, null>);
27: return;
}

we adapt the parent’s reference to highNode, to point to the new node. Next, we
handle the pointer to lowNode at the parent by attempting to delete it. Finally,
we turn the new node’s freeze status to normal.

Special care is given to the root. We would like to avoid having a root with a
single descendant, which can occur when the two descendants of a root are merged.
In this case, we make the merged node become the new root. If merged node parent
is found to be root, the MergeRoot() method is invoked from InsertMergeNode()
instead of deleting the pointer to lowNode at the parent. This is so, because
deleting an entry from the root may lead us to having a single root descendant.
(See the MergeRoot() method in Section 3.10.2.)

Note that after the highNode has been replaced with the new node, the keys
in the two nodes are repeated (the old lower frozen node and the new node), but
any search will find the keys at the same state in both places, as when the merge
began. The concurrent insertions and deletions will help the two nodes due to
freezing or infancy (similar to the split case).

68©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

3.8.3 Borrow

In this Section we present the details of the borrow case, in which the keys in two
join nodes are copied into two new nodes. The code for the InsertBorrowNodes()
method responsible for the borrow is presented in Algorithm 26. As in merge case
the InsertBorrowNodes() method is invoked from CallForUpdate() when a need
for the borrow is encountered. The input parameters are a pointer to the master
node and a separation key, which is the highest key on the new node that contains
the lower keys. Recall that in the borrow case four nodes are involved: the master,
the slave, the new node with the lower keys (in the code denoted n1) and the new
node with the higher keys (in the code denoted n2). We start by finding the high
and low keys’ nodes, among master and slave (Lines 4-8), similar to the merge.

Next we are going to insert the new entry pointing to to the new node with the
lower part of the keys. When we search for the parent for that, we carefully choose
the child we supply for the search. The key of the new parent entry will be the
separation key. This is the highest key on n1 and therefore resides on the n1 node.
The data will be the pointer to n1. The separation key separates the two new
nodes after the borrow. It may previously have been located either on the (old)
high or the low keys’ frozen node. It is important to supply to the FindParent()
method the child on which the separation key was originally located. The check
is done in Lines 9, 10.

We then follow these steps: (1) Insert a reference to n1 to the parent node
(2) Change the parent entry pointing to the high keys’ frozen node to point to
n2 (3) Delete the parent entry pointing to the low keys’ frozen node. During
this execution, some entries will be duplicated. Namely, keys will appear twice in
the tree, once in the old node and again in the new node (both times with same
associated data). But none of the keys will appear to be absent, and therefore
search correctness is maintained (similarly to the split and merge cases). Finally,
we update the new nodes’ freeze states.

3.9 Redirection of the call for an update

The B+tree interfaces (discussed in Section 3.2.4) start by finding the relevant leaf
of the tree and then executing the search, insert, or delete on the leaf’s chunk
. The insert or delete operations can cause the chunk to reach the minimal or
maximal boundaries, after which the node will be marked frozen, stabilized, and a
new node or nodes will be created according to the final (frozen) number of entries.
Finally, the chunk mechanism invokes the CallForUpdate() function, which inserts
the new nodes into the B+tree instead of the old frozen node or nodes, to complete
the rebalancing. The CallforUpdate() method is presented in Algorithm 27. It
gets as input the pointer to the node that needs to be replaced, its freeze state
and the separation key. Note that the freeze state was already determined by
the chunk mechanism and is not going to be changed anymore. In addition, we
assume the existence of a global pointer to the B+tree named btree, which can be

69©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 27: Interface for updating the B+tree on frozen node recovery
void CallForUpdate (freezeState, Node* node, sepKey) {
1: Node* n1 = node!new; // Pointer to the new node that holds the lower keys.
2: Node* n2 = node!new!nextNew; // Pointer to the new node that holds the higher keys.
3: switch (freezeState) {
4: case copy:
5: if (node!root) { CAS(&(n1!root), 0, 1); CAS(&(btree!root), node, n1); }
6: else if ((parent=FindParent(node!chunk!head!next!key,node,&nodeEnt,null))
7: !=null)
8: ReplaceInChunk(parent!chunk,combine(nodeEnt!key,node),
9: combine(nodeEnt!key,n1));

10: CAS(&(n1!<freezeState, joinBuddy>), <infant, null>, <normal, null>);
11: return;
12: case split:
13: if (node!root) SplitRoot(node,sepKey,n1,n2); else InsertSplitNodes(node,sepKey);
14: return;
15: case join:
16: if (n2 == null) InsertMergeNode(node); // If there is only one new node, then merge,
17: else InsertBorrowNodes(node, sepKey); // otherwise call the borrow operation.
18: return;
19: }
}

used by all the threads and provides the access to the shared B+tree structure.
The global btree pointer is used here and also in other methods later.

The CallforUpdate() method actually redirects the calls according to the freeze
state that it gets. Notice that for the copy case, we do not have a special method
because we only need to replace the pointer to the old node with pointer to new
one (using the chunk replace operation).

When a node is in an infant freeze state, its insertion or its sibling insertion
to the B+tree is not yet complete. The insertion or deletion operations cannot be
performed on an infant node, and it must be helped to become normal before
executing. Not only operations, but also balancing activities (split, join, copy),
must be held until the insertion is completed. Thus, the helpInfant() method is
called from various methods.

The code of helpInfant() is presented in Algorithm 28. First, we find the
creator of the given infant node. The creator initiated the freeze due to which this
infant node was inserted into the B+tree. The creator’s freeze state reveals what
the reason was for the freeze. To finish the freeze operation we often need the
separation key, which is the highest key on the node with lower keys in creation

time. But the highest key on the node with lower keys can be different now due to
concurrent completion of the freeze activity. Thus we compute the key and then
we check that the node with lower keys is still an infant. If it is not, we finish
by changing the higher new node’s freeze state to normal (if the node exists).
If the node with the lower keys is still an infant, than we have found the correct
separation key.

If the infant has been inserted into the B+tree due to a copy, its insertion is

70©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 28: Helping the infant node.
void helpInfant (Node* node) {

1: creator = node!creator; creatorFrSt = creator!<freezeState, *>;
2: Node* n1 = creator!new; // Ptr to the new node that holds lower keys from creator
3: Node* n2 = creator!new!nextNew; // Ptr to the new node, holding higher keys from creator
4: sepKey = getMaxKey(n1); // n1 is never null

5: if ((n1!<freezeState,*>) != infant) { // Check low is still infant
6: if (n2) CAS(&(n2!<freezeState, joinBuddy>), <infant, null>, <normal, null>);
7: return;
8: }
9: // If this is root split, only children’s state correction is needed

10: if ((creator!root) && (creatorFrSt == split)) {
11: CAS(&(n1!<freezeState,joinBuddy>), <infant, null>, <normal, null>);
12: CAS(&(n2!<freezeState,joinBuddy>), <infant, null>, <normal, null>);
13: return;
14: }
15: switch (creatorFrSt) { // Can be only copy, split or join

16: case copy:
17: CAS(&(node!<freezeState, joinBuddy>), <infant, null>, <normal, null>); return;
18: case split:
19: InsertSplitNodes(creator, sepKey); return;
20: case join:
21: if (n2 == null) // If freeze state is join and there is one new node, help in merge
22: InsertMergeNode(creator);
23: else InsertBorrowNodes(creator, sepKey); // help in borrowing
24: return;
25: } // end of switch
}

almost done. It is completed by changing infant’s freeze state to normal. This
operation can be unsuccessful only if it is concurrently completed by someone else.

In the cases of split and join, we simply call the relevant method. Due
to possible multiple invocations, the InsertSplitNodes(), InsertMergeNode() and
InsertBorrowNodes() methods are idempotent. Making them such allows us to
help the operation in its entirety, so that by its end, the insertion of the new
nodes is complete.

3.10 Root boundary conditions

3.10.1 Splitting the root

The code for splitting the root in method SplitRoot() is provided in Algorithm
29. The SplitRoot() method is called by CallForUpdate(), Line 13, when there is
a request to split a node whose root bit is set. The SplitRoot() method’s input
parameters are a pointer to the old root, pointers to the new nodes that hold the
lower and higher keys of the old root, and the highest key in the new low-value
node. The SplitRoot() method starts by allocating a new root, making it point to
the new nodes N1 and N2 . The nodes N1 and N2 are created by the chunk’s split
of the old root. The thread that succeeds in replacing the B+tree root pointer

71©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 29: The code of the split of the root in the lock-free B+tree.
29.1 void SplitRoot (Node* root, sepKey, Node* n1, Node* n2) {

1: Node* newRoot = Allocate(); // Allocate new root with freeze state set to infant

2: newRoot!<freezeState, joinBuddy> = <normal, null>; newRoot!root=1;
3: newRoot!height = root!height+1; // Update new root fields
4: // Construct new root with old root’s new nodes. Son with higher keys is pointed with 1

key entry
5: addRootSons(newRoot, sepKey, n1, 1, n2);
6: CAS(&(btree!root), root, newRoot); // Try to replace the old root pointer with the new
7: // If CAS is unsuccessful, then old root’s new nodes were inserted under other new root,
8: CAS(&(n1!<freezeState,joinBuddy>), <infant, null>, <normal, null>);
9: CAS(&(n1!<freezeState,joinBuddy>), <infant, null>, <normal, null>);

10: return;
}

Algorithm 30: Check if the merge of the root is needed and perform if needed
30.1 void MergeRoot (Node* root, Node* posibleNewRoot, Node* c1, c1Key) {

1: rootEntNum=GetEntNum(root!chunk,&firstEnt,&secondEnt); // Count the entries in
the list (do not use counter)

2: if(rootEntNum > 2) { DeleteInChunk(&(root!chunk), c1Key, c1); return; }
3: // rootEntNum is 2 here, check that first entry points to the frozen low node second on

infant new possible root
4: if((firstEnt!data == c1) && (secondEnt!data == posibleNewRoot)) {
5: CAS(&(posibleNewRoot!root), 0, 1); // Mark as root
6: CAS(&(btree!root), root, posibleNewRoot); // Try to replace the old root pointer

with the new
7: // If CAS is unsuccessful, then old root was changed by someone else
8: }
9: return;

}

from the old root to a new root (allocated by this thread), inserts the actual new
root. Other allocated root’s candidate are freed.

The actual root split occurs in a single CAS instruction. The split of the
root doesn’t prevent any other threads from going through the root (to perform
operations on other nodes). In Algorithm 29 we use the method addRootSons(),
which is local and sequential. It simply installs the new entries and we do not
present its code. SplitRoot() uses this method to install two entries to the new
root’s chunk. The first entry holds the highest key in N1 as key and a pointer to
N1 as data; the second entry holds the 1 key and a pointer to node N2.

3.10.2 Root Merge

Special care is required for handling the root merge. The root needs to be merged
when the number of its children is reduced from two to one, that is, when its
last two children are merged. To maintain tree balance, we do not allow a root
node pointing to one single descendant. The MergeRoot() method (presented in
Algorithm 30) is called on every merge of the root’s children from the Insert-

72©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Root Ro

20 �

Node C1

10 20

Node C2

 30 �

New node Rn, to
replace C1 and C2

 10 20 30 �

B+tree structure root's pointer

new

Figure 3.4: The diagram presenting the merging of the root. The initial B+tree is marked in
grey. Node R

o

is an old root that initially had two children C1 and C2. Node C2 is frozen as a
master. Node C1 is frozen as a slave for C2.

MergeNode() method. A pictorial view of the root merge can be seen in Figure
3.4. We have an old root R

o

having two children C1 and C2, while node C2 was
found as having too few entries and node C1 was chosen as C2’s slave. Node R

n

is created due to C2’s chunk merge and it needs to replace C1 and C2. In Merg-
eRoot() method, as with every merge, the parent’s entry pointer pointing to C2

is first changed to point to R
n

, after which C2’s parent is checked to determine
whether it is the root.

Before an entry is deleted from the root node (due to a merge of the root’s
children), MergeRoot() is invoked and checks whether the root should be merged
instead of just deleting one of its entries. If so, we recheck that root merge is
needed and then set the root bit on new node R

n

. Finally, we try to replace
the pointer to the root. The MergeRoot() method’s first input parameter is the
current root; its second input parameter is the pointer to the new node, reference
to which was already inserted into the root by replacing the old son pointer. This
is the possible new root. The third input parameter is a pointer to the old low-
value root child, which must be removed from the parent during a regular merge.
We denote it c1. The key is the key located on the root’s entry, whose data should
point to the old low-value root child (c1).

We check whether the root has too few children by counting all reachable, non-
deleted entries on the non-frozen root (the entries are pointing to the children on
the root). This is done via the GetEntNum() method, which goes over the list and
counts non-deleted entries. In addition, GetEntNum() copies the first and second
entries that it finds to the given entry’s pointers. If GetEntNum() finds more
then two entries, the remaining reference to the frozen low node is deleted and
we return to InsertMergeNode(). Otherwise we verify that the last two children

73©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 31: The replacing the key-data world value in the entry.
31.1 Bool ReplaceInChunk (chunk* chunk, key, exp, new) {

1: while (true) {
2: if (!Find(chunk, key)) return false;
3: if (!CAS(&(cur!keyData), exp, new)) { // assume no freeze bit set in exp - no

replace on frozen entry
4: if (isFrozen(&(cur!keyData))) { // if CAS failed due to freeze help in freeze and try

again
5: chunk = Freeze(chunk, key, exp, new, replace, &result);
6: if (chunk == null) return result; // Freeze completed the replace

operation
7: continue;
8: }
9: return false; // CAS failed due to unexpected key or data, return false

10: } // end of if CAS wasn’t successful
11: return true; // CAS was successful, return true

12: } // end of while
}

are indeed those we received as input and try to replace the pointer to the root if
necessary.

3.11 Minor Modifications to the Chunk Interfaces

In this section we present some minor changes to the chunk list interfaces as they
appeared in the previous chapter. These changes are necessary to our B+tree
implementation.

3.11.1 The addition of replace interface to the list

Because the replace operation is not a standard interface for lists, it didn’t appear
in the previous chapter. It is, however, required for the implementation of the
B+tree we present it here. It allows the value of data in the key-data word of
an entry, to be changed (replaced), without the need to remove the entire entry
from the list and insert it back again. It is used to replace the data only (i.e., the
pointer to the descendant), making the entry point to another node in the B+tree.

The ReplaceInChunk() method gets as input the key, the expected key and
data (in a single word), and the new key and data values where only the data is
different (also in a single word). The code appears in Algorithm 31. It starts by
finding the entry e that holds the input key and then uses a CAS to atomically
replace the key-data value, assuming e currently holds the expected key-data value,
that is given in the input. If the ReplaceInChunk() method fails to find the key
in the list or to find the expected data, it returns with a false. If the entry is
frozen, ReplaceInChunk() first needs to help finishing the freeze process. It is a
caller’s responsibility to assure the replace doesn’t wrong the order of the list and
to provide the expected value without a frozen bit set.

74©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

3.11.2 The insert and delete operations

Insert: For the insert operation we add a versioning mechanism in order to ensure
that splits are executed one at a time. We avoid the ABA problem and ensure that
an insert executed by the InsertSplitNodes() method is done exactly once. The
change is relevant only to insertions of internal nodes. When an insert determines
that it is working on a leaf chunk, it works as usual (as presented in the previous
chapter). The problematic case comes from the following scenario. Assume a
process P is executing a split of a node A, replacing A with two new nodes B1

and B2 . When the split is almost done, P invokes the insertion of a new entry
pointing to B1 into A’s parent C. Assume P is delayed just before the insert
operation and in the meantime B1’s entry is inserted by a helper and then even
deleted. If P wakes up and continues with previous insert, the frozen node B1 can
be erroneously inserted again into the B+tree.

In order to solve this problem and a similar delete problem we describe below,
we include another field in the nextEntry word. The nextEntry is a pointer to the
next entry in the chunk’s list with its two LSB bits used for deleted and frozen
bits. It is reasonable to assume that a chunk will not include more than 1024
entries. So we can use the entry indexes inside chunk’s entries array, instead of
the pointers. Thus, in the nextEntry word, we leave 10 bits for next entry index,
2 bits for deleted and frozen bits, and the remaining bits (52) can be used to
present a version number, which will be updated each time entry’s next pointer is
updated.

The check is performed in InsertEntry() method of chunk. This methods gets
the possible new entry location using Find() method and prev and curr global
pointers as explained in Section 3.7. After getting the possible new entry location
(as part of it the version number of prev), we should check whether the data
pointed by the new entry is still not a frozen node. Then we will be able to insert
the new entry only if the version of prev wasn’t changed. This solves the ABA
problem because, after a node (referenced from the data field) is removed from
the tree, it is always frozen.

Delete: The delete operation that we use in the given B+tree is also slightly
different from the one described in the previous chapter. When delete concludes
it is working on a leaf chunk, it works as usual (similarly to the previous chapter).
Otherwise, when delete is used on a chunk of an internal node, delete ensures that
only the entry with given key and data is deleted. Usually a delete operation in
a list is based only on a key. In our case delete should get not only the expected
key, but also the expected data (i.e., a pointer to the descendant) that should be
associated with this key. If the key is found, but the data is different, then the
delete operation fails in the same way as when the key is not found. To avoid any
kind of ABA problem and to ensure that delete (as part of a join) is applied only
once, we use the versioning of the pointers. When an entry with an expected key
and data is found, we also record the version of its nextEntry word where we are
going to set the deleted bit. Next we check if data is pointing to the frozen node;

75©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 32: Freeze stabilization.
32.1 void StabilizeChunk(chunk* chunk) {

1: maxKey = 1; Find(chunk, maxKey); // Implicitly remove deleted entries
2: foreach entry e {
3: key = e!key; eNext = e!next;
4: if ((key != ?) && (!isDeleted(eNext))) // This entry is allocated and not deleted
5: if (!Find(chunk, key)) InsertEntry(chunk, e, key); // This key is not yet in the list
6: } // end of foreach
7: return;

}

Algorithm 33: Freezing all entries in a chunk
33.1 void MarkChunkFrozen(chunk* chunk) {

1: foreach entry e {
2: savedWord = e!next;
3: while (!isFrozen(savedWord)) { // Loop till the next pointer is frozen
4: CAS(&(e!next), savedWord, markFrozen(savedWord));
5: savedWord = e!next; // Reread from shared memory
6: }
7: savedWord = e!keyData;
8: while (!isFrozen(savedWord)) { // Loop till the keyData word is frozen
9: CAS(&(e!keyData), savedWord, markFrozen(savedWord));

10: savedWord = e!keyData; // Reread from shared memory
11: }
12: } // end of foreach
13: return;
}

if it is, we set the deleted bit if the version number is still the same.
This change is needed in order to ensure that a node is not removed twice from

its parent, due to a delayed merge helper. Assume a process P is proceeding with
a merge of nodes A and B. It invokes the deletion of A’s entry on A’s parent
C. Let’s assume that the key leading to node A is k. Assume P is delayed just
before the delete operation, and in the meantime A’s entry is deleted and key k is
again inserted with an entry pointing to some new node N . If P continues with an
unchanged version of delete, node N can be erroneously deleted from the B+tree.
With the new delete version, node N cannot be deleted since the pointer to node
N is not the expected data that should be the pointer to A.

3.11.3 Freeze Functionality Code

For self-containment, in this section we present the code of the freeze related
functions initially presented in the previous chapter. We avoid repeating the
explanations of the code and only highlight the differences.

Initially, in the previous chapter, the Freeze() method for a chunk consisted of
the following 5 steps: (1) change the freeze state to frozen; (2) mark all the entries
as frozen and stabilize the chunk using MarkChunkFrozen() and StabilizeChunk();
and (3) decide whether the chunk should be split, joined, or copied, using the

76©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 34: Determining the freeze action.
34.1 recovType FreezeDecision (chunk* chunk) {

1: entry* e = chunk!head!next; int cnt = 0;
2: while (clearFrozen(e) != null) { cnt++; e = e!next; } // Going over the chunk’s list
3: if (cnt == min) return merge; if (cnt == max) return split; return copy;

}

FreezeDecision() method. (If the chunk is to be merged, an additional step of
finding the slave using the FindJoinSlave() method is required.) The two final
steps are (4) creating new chunks according to the decision made and attaching
them to the old chunk using FreezeRecovery(); and (5) calling the CallForUpdate()
method to insert the new chunk(s) in place of the old one.

The MarkChunkFrozen(), StabilizeChunk() and FreezeDecision() methods used
for the chunk lists and B+tree are exactly the same as in the previous chapter.
The modifications to the Freeze() and FreezeRecovery() methods (relative to their
origin in the previous chapter) are mostly due to changes in the freeze states. For
the chunk list we used fewer freeze states (only three), but for the B+tree node
we use eight. In this chapter the parameters for Freeze() and FreezeRecovery()
methods are nodes instead of chunks; both are very similar. Finally, in B+tree we
have a design point that requires master and slave parent entries to be located on
the single parent node (explained in Section 3.4).

The FreezeRecovery() method presented in Algorithm 36 is similar to one pre-
sented in the previous chapter. In the previous chapter the FreezeRecovery()
method has the following structure. First, the required new node or nodes are
prepared (first switch statement). Then (second switch statement), the thread
proceeding with the freeze recovery tries to promote its initial purpose. In other
words, the thread carrying on the freeze recovery of frozen node N , does it in
order to progress with the initial purpose (i.e., a delete, insert, replace, etc. on
N). Finally, the threads proceeding with FreezeRecovery() compete to attach new
node(s) to the old frozen one. The thread that succeed to attach also promotes
its initial purpose.

In the B+tree freeze recovery an additional check is carried between the first
and second switch-statements. Recall that we keep an invariant (for simplicity
and correctness), by which the parent entries that point to the master and the
slave always reside on the same node. Namely, we do not allow entries that point
to a master and its slave to be separated into different nodes due to a parent’s
split or borrow, until new nodes replace the frozen master and slave. It is this case
that we test for between the first and second switch. This check is relevant only if
we have two new non-leaf nodes. If the last entry on newNode1 or the first entry
on newNode2 is pointing to a frozen node that has a merge buddy, then we move
both of these entries into newNode2, so that they reside together. Apart from
the previously mentioned alteration, the FreezeRecovery() method for the B+tree
differs slightly from the one in the previous chapter in: updating the creator field,

77©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

taking care to promoting the replace operation, and the way of determining which
new node is going to replace the frozen one. All these changes are to ensure that
the chunk will work properly as a node in the tree.

Algorithm 35: The main freeze method.

35.1 chunk* Freeze(Node* node, key, expected, data, triggerType tgr,
Bool* res) {

1: CAS(&(node!<freezeState,mergeBuddy>), <normal, null>, <freeze, null>);
2: // At this point, the freeze state is neither normal nor infant

3: switch (node!<freezeState,*>) {
4: case copy: decision = copy; break; // If the freeze state is already specifically set to

split,
5: case split: decision = split; break; // copy or merge, only freeze recovery is needed
6: case merge: decision = merge; mergePartner=node!<*,mergeBuddy>; break; //

mergePartner is already set
7: case request_slave: decision = merge; mergePartner = FindJoinSlave(node);
8: if (mergePartner != null) break; // If partner is null node was turned to

slave_freeze, continue
9: case slave_freeze: decision = merge; mergePartner = node!<*,mergeBuddy>;

10: // Swap between node and mergePartner, so node is always the master and
mergePartner is the slave

11: tmp = mergePartner; mergePartner = node; node = tmp;
12: MarkChunkFrozen(mergePartner!chunk); StabilizeChunk(mergePartner!chunk); //

Verify slave is frozen
13: CAS(&(node!<freezeState,mergeBuddy>), // Slave is set, verify master is in

merge state
14: <request_slave, mergePartner>, <merge, mergePartner>);
15: break;
16: case freeze: MarkChunkFrozen(node!chunk); StabilizeChunk(node!chunk);
17: decision = FreezeDecision(node!chunk);
18: switch (decision) {
19: case copy: CAS(&(node!<freezeState,mergeBuddy>), <freeze,

null>, <copy, null>,); break;
20: case split: CAS(&(node!<freezeState,mergeBuddy>), <freeze,

null>, <split, null>,); break;
21: case merge: mergePartner = FindJoinSlave(node);
22: if (mergePartner==null) { // The node become slave, its merge

body is master. The node need to be
23: mergePartner = node; node = node!<*,mergeBuddy>; //

the master and mergePartner - the slave
24: CAS(&(node!<freezeState,mergeBuddy>),
25:

<request_slave,mergePartner>,<merge,mergePartner>);
26: } break;
27: } // end of switch on decision
28: } // end of switch on freeze state
29: return FreezeRecovery(node, key, expected, data, decision, mergePartner, trigger, res);

}
The Freeze() method presented in the previous chapter works the same here, as

78©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

presented in Algorithm 35. But because here we have the possibility to determine
the freeze decision from the freeze state of a node, we use it for some optimization.
If the reason for the freeze is already known, located in freezeState field, and we
can figure out all needed data for the freeze recovery, we skip some steps and invoke
FreezeRecovery() method. This is done in the switch statement. A thread that
enters the freeze case of the switch statement behaves according to the Freeze()
method in the previous chapter, with modification that inside the freeze case
statement we set the freeze state according to its new possible values. The new
freeze state values didn’t exist in the previous chapter. A final nuance is to check
whether the FindJoinSlave() method returned a null value when the slave and
master swapped their roles.

79©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

Algorithm 36: The freeze recovery.
Node* FreezeRecovery(Node* oldNode, key, expected, input, recovType, Node*
mergePartner, triggerType trigger, Bool* result) {

1: retNode=null; sepKey=1; newNode1=Allocate(); newNode1!creator=oldNode; newNode2=null;
2: switch (recovType) {
3: case copy: copyToOneChunkNode(oldNode, newNode1); break;
4: case merge:
5: if ((getEntrNum(oldNode)+getEntrNum(mergePartner))�max) { // Borrow, two new nodes
6: newNode2 = Allocate(); newNode1!nextNew = newNode2; // Connect two new nodes together
7: newNode2!creator=oldNode; sepKey=mergeTo2Nodes(oldNode,mergePartner,newNode1,newNode2);
8: } else mergeToOneNode(oldNode,mergePartner,newNode1); break; // Merge into single new node
9: case split:

10: newNode2 = Allocate(); newNode1!nextNew = newNode2; // Connect two new nodes together
11: newNode2!creator=oldNode; sepKey=splitIntoTwoNodes(oldNode,newNode1,newNode2); break;
12: } // end of switch
13: // If there are two new non-leaf nodes check and do not separate master and slave entries
14: if ((newNode2 != null) && (newNode2!height != 0)) {
15: leftNode = (Node*)(getMaxEntry(newNode1))!data; leftState = leftNode!<freezeState,*>;
16: rightNode = (Node*)newNode2!chunk!head!next!data; rightState = rightNode!<freezeState,*>;
17: if ((rightState == <request_slave, *>) && ((leftState == normal) k (leftState == infant) k

(leftState == freeze) k
18: (leftState == copy) k (leftState == <slave_freeze, rightNode>))) {
19: moveEntryFromFirstToSecond(newNode1, newNode2); sepKey = (getMaxEntry(newNode1))!key;
20: } else if (rightState == <merge, leftNode>) {
21: moveEntryFromFirstToSecond(newNode1, newNode2); sepKey = (getMaxEntry(newNode1))!key;
22: } else if ((rightState == infant) && (leftState == <slave_freeze, *>)) {
23: if (rightNode!creator == leftNode!<*,mergeBuddy>)
24: { moveEntryFromFirstToSecond(newNode1, newNode2); sepKey = (getMaxEntry(newNode1))!key; }
25: }
26: }
27: switch (trigger) { // Perform the operation with which the freeze was initiated
28: case delete: // If key will be found, decrement counter has to succeed
29: *result = DeleteInChunk(newNode1!chunk, key);
30: if (newNode2 != null) *result = *result k DeleteInChunk(newNode2!chunk, key); break;
31: case insert: // input should be interpreted as data to insert with the key
32: if ((newNode2 != null) && (key<sepKey)) *result = InsertToChunk(newNode2!chunk, key, input);
33: else *result = InsertToChunk(newNode1!chunk, key, input); break;
34: case replace:
35: if ((newNode2!=null)&&(key<sepKey)) *result=ReplaceInChunk(newNode2!chunk,key,expected,input);
36: else *result = ReplaceInChunk(newNode1!chunk, key, expected, input); break;
37: case enslave: // input should be interpreted as pointer to master trying to enslave, only in case of copy

38: if (recovType == copy) newNode1!<freezeState,mergeBuddy> = <slave_freeze, (Node*)input>;
39: } // end of switch
40: // Try to create a link to the first new node in the old node.
41: if (!CAS(&(oldNode!new), null, newNode1)) {
42: // Determine in which of the new nodes the destination key is now located.
43: if (key<=sepKey) retNode=oldNode!new; else retNode=oldNode!new!nextNew;
44: }
45: if (newNode1!<freezeState,*> == <slave_freeze, *>) {
46: m = newNode1!<*,mergeBuddy>; // If the new chunk is enslaved, correct its master to point on it
47: CAS(&(m!<freezeState,mergeBuddy>),<request_slave, oldNode>,<request_slave, newNode1>);
48: }
49: CallForUpdate(recovType, oldNode, key);
50: return retNode;
}

80©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 3: A Lock-Free B+tree

81©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4

Drop the Anchor : Lightweight
Memory Management for
Non-Blocking Data Structures

4.1 Introduction

Non-blocking data structures [26, 30] are fast, scalable and widely used. In the last
two decades, many efficient non-blocking implementations for almost any common
data structure have been developed. However, when designing a dynamic non-
blocking data structure, one must address the non-trivial issue of how to manage
its memory. Specifically, one has to ensure that whenever a thread removes some
internal node from the data structure, then (a) the memory occupied by this node
will be eventually deallocated (i.e., returned to the memory manager for arbitrary
reuse), and (b) no other concurrently running thread will access the deallocated
memory, even though some threads might hold a reference to the node.

Previous attempts to tackle the memory management problem had limited suc-
cess. Existing non-blocking algorithms usually take two standard approaches. The
first approach is to rely on automatic garbage collection (GC), simply deferring
the problem to the GC. By doing this, the designers hinder the algorithm from
being ported to environments without GC [15]. Moreover, the implementations
of these designs with currently available (blocking) GC’s cannot be considered
non-blocking.

The second approach taken by designers of concurrent data structures is to
adopt one of the available non-blocking memory management schemes. The most
common schemes are probably the Hazard Pointers technique by Michael [41] or
the similar Pass the Buck method by Herlihy et al. [28]. In these schemes, each
thread has a pool of global pointers, called hazard pointers in [41] or guards in [28],
which are used to mark objects as "live" or ready for reclamation. When a thread
t reclaims a node, t adds the node to a special local reclamation buffer. Once in a
while, t scans its buffer and for each node it checks whether some other thread has

82©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

a hazard pointer1 to the node. If not, that node can be safely deallocated. Special
attention must be given to the time interval after a thread obtains a reference
to an object and before it registers this object in a hazard pointer. During this
time, the object may be reclaimed and reallocated. Thus, by the time it gets
protected by a hazard pointer, it could have become a completely different entity.
This delicate point enforces validation of the object’s state after assigning it with
a hazard pointer.

Although these techniques are not universal (i.e., there is no automatic way
to incorporate them into a given algorithm), they are relatively simple. More-
over, a failure of one thread prevents only a small number of nodes (to which the
failed thread has references in its hazard pointers) from being deallocated. The
major drawback of these techniques, however, is their significant runtime over-
head, caused mainly by the management and validation of the global pointers
required before accessing each internal node for the first time [24]. Along with
that, expensive instructions, such as memory fences or compare-and-swap (CAS)
instructions [24, 28, 41], are required for correctness of those schemes. Moreover,
if the validation fails, the thread must restart its operation on the data structure,
harming the performance further.

Another known method for memory management uses per-thread timestamps,
as in [22], which are incremented by threads before every access to the data struc-
ture. When a thread removes a node, it records the timestamps of other threads.
Later, it can deallocate the node once all threads increase their timestamps beyond
the recorded values. Although this method is very lightweight, it is vulnerable to
thread delays and failures. In such cases, memory space of an unbounded size may
become impossible to reclaim [41].

In this chapter, we concentrate on the linked list, one of the most fundamen-
tal data structures, which is particularly prone to the shortcomings of previous
approaches [24]. The presented technique eliminates the performance overhead
associated with the memory management without sacrificing the ability to deal-
locate memory in case of thread failures. The good performance of our technique
stems from the assumption that thread failures are typically very uncommon in
real systems, and if they do occur, this is usually indicative of more serious prob-
lems than being unable to deallocate some small part of memory. Our approach
provides a flexible tradeoff between the runtime overhead introduced by memory
management and the size of memory that might be lost when some thread fails.

Our memory management technique builds on a combination of three ideas:
timestamps, anchors and freezing. As in [22], we use per-thread timestamps to
track the activity of each thread on the data structure. Similarly to [41], we use
global pointers, which we call anchors. Unlike [41], however, a thread drops the
anchor (i.e., records a reference in the anchor) every bunch of node accesses, e.g.,
every one thousand nodes it traverses. As a result, the amortized cost of anchor
management is spread across multiple node accesses and is thus very low. To

1In this dissertation we will use the term "hazard pointers", but guard pointers are equally relevant.

83©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

recover the data structure from a failure of a thread t, we apply freezing [5]. That
is, using t’s anchors, other threads mark nodes that t may hold a reference to, as
frozen. Then they copy and replace the frozen part of the data structure, restoring
the ability of all threads to deallocate memory. The recovery operation is relatively
expensive, but it is required only in the uncommon case in which a thread fails to
make progress for a long while. Thus, the overall cost of the memory management
remains very low.

We have implemented our scheme in C and compared its performance to the
widely used implementation of the linked list based on Hazard Pointers (HP) [41].
Our performance results show that the total running time, using the anchor-based
memory management, is about 250–500% faster the one based on HP. We also
discuss how to apply our technique on other data structures, where the use of
other approaches for memory management is more expensive.

4.2 Related Work

Memory management can be fairly considered as the Achilles heel of many dynam-
ically sized non-blocking data structures. In addition to the techniques mentioned
in the introduction (that use per-thread timestamps [22] or global pointers [28,
41]), one can also find an approach based on reference counting [12, 21, 48, 52].
There, the idea is to associate a counter with every node, which is updated atom-
ically when a thread gains or drops a reference to the node. Such atomic updates
are typically performed with a fetch-and-add instruction, and the node can be
safely removed once its reference count drops to zero. This approach suffers from
several drawbacks, such as requiring each node to keep the reference count field
even after the node is reclaimed [48, 52] or using uncommon atomic primitives,
such as double compare-and-swap (DCAS) [12]. The major problem, however,
remains performance [24, 41], since even when applying a read-only operation on
the data structure, this approach requires atomic reference counter updates on
every node access.

In a related work, Hart et al. [24] compare several memory management tech-
niques, including hazard pointers, reference counters, and so-called quiescent-
state-based reclamation. In the latter, the memory can be reclaimed when each
thread passes through at least one quiescent state [38], in which it does not hold
any reference to shared nodes, and in particular, to nodes that have been removed
from the data structure. In fact, the timestamp-based technique [22] discussed
in the introduction can be seen as a special case of the quiescent-state approach.
Hart et al. [24] find that when using hazard pointers or reference counters, expen-
sive atomic instructions, such as fences and compare-and-swaps (CAS) executed
for every traversed node, dominate the performance cost. Quiescent-state recla-
mation usually performs better, but it heavily depends on how often quiescent
states occur. Moreover, if a thread fails before reaching the quiescent state, no
memory can be safely reclaimed from that point.

84©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

running idle

stuck recovered

t starts an operation

t finishes an operation

someone suspects
that t has failed

t (re)starts an
operation

recovery from t's

failure is completed

Figure 4.1: Transition diagram for possible states of the thread t

Dragojevic et al. [15] consider how hardware transactional memory (HTM)
can help to alleviate the performance and conceptual difficulties associated with
memory management techniques. In contrast to [15], our algorithm does not rely
on special hardware support, such as HTM.

The freezing idea was previously used in the context of concurrent data struc-
tures by Braginsky and Petrank in their recent work on chunk-based linked lists [5].
There, list nodes are grouped into chunks for better cache locality and list traver-
sal performance. The freezing technique is used in [5] for list restructuring to
notify threads that the part of the data structure they are currently using is obso-
lete. This is done by setting a special freeze-bit on pointers belonging to nodes in
the obsolete part, making the pointers/nodes unsuitable for traversing. A thread
that fails to use a frozen pointer realizes that this part of the data structure is
obsolete and it restarts its operation, usually after helping to accomplish the list
restructuring procedure that froze that part.

4.3 An Overview of Drop the Anchor

As mentioned in the introduction, our technique relies on three building blocks,
namely timestamps, anchors, and freezing. A thread t manages a monotonically
increasing timestamp in the following way. When t starts its operation on a list
data structure, it reads the timestamps of all threads and sets its timestamp to
the maximal value it read plus one. When t finishes its operation, it simply marks
its timestamp as idle.

The timestamp of t is associated with two flags, stuck and idle. These flags
specify one of the following states of the timestamp (and of the corresponding
thread): running (both flags are turned off, meaning that t has a pending operation
on the data structure), idle (only the idle flag is on, meaning that t does not have
any pending operation on the data stucture), running, but stuck, which we call for
brevity simply stuck (only the stuck flag is on, meaning that t with a pending
operation is suspected by other thread(s) to be stuck) and recovered (both flags
are turned on, meaning that other threads have frozen and copied the memory
that might be accessed by t). The transition between these states is captured in
Figure 4.1. Normally, t moves between running and idle states. Once some thread
suspects t to be stuck, t’s timestamp is marked as stuck. The only way for t to
return to the running state is to go through the recovered state (cf. Figure 4.1).

85©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

The timestamps are also used to mark the insertion and deletion times of list
nodes. That is, each node in the list has two additional fields, which are set as
follows. When t decides to insert (remove) a node into (from) the list, it sets
the node’s insertion (deletion, respectively) timestamp field to be higher by one
from the maximal timestamp value that it observes among the timestamps of all
threads.

The nodes deleted by t are stored in t’s special reclamation buffer, which is
scanned by t once in a while (as in [41]). During each scan, and for each deleted
node n, t checks whether the deletion time of n is smaller than the current times-
tamps of other threads (plus an additional condition described later), and if so,
deallocates the node. This check ensures that all threads have started a new list
operation since the time this node was removed from the list, and therefore, no
thread can be viewing this node at this time.

If threads did not fail, this would be everything needed to manage the memory
of non-blocking lists by a traditional epoch-based approach [22]. Unfortunately,
thread failures may happen. In the design described so far, if a thread fails dur-
ing its operation on the list, no additional node can be deallocated, since the
timestamp of the failed thread would not advance.

To cope with the problem of thread failures, we use two additional concepts,
namely anchors and freezing. Anchors are simply pointers used by threads to
point to list nodes. In fact, hazard pointers[41] can be seen as a special case
of anchors. The difference between the two is that the anchor is not dropped
(set) before accessing every internal node in the list, but rather every ten, one
hundred, or several thousands of node accesses (the frequency is controlled by the
anchor_threshold parameter). As a result, the amortized cost of anchor man-
agement is significantly reduced and spread across the traversal of (controllably)
many nodes in the list data structure. The downside of our approach, however, is
that when a thread t is suspected of being stuck, other threads do not know for
sure which object t may access when (and if) it revives. They only know a range
of nodes where t might be, which includes the node pointed by t’s anchor plus
additional nodes reachable from that anchored node. The suspecting threads use
this range to recover the list from the failure of t. Specifically, they freeze all nodes
in the range by setting the special freeze-bit of all pointers in these nodes2. Next,
they copy all frozen nodes into a new sub-list. Finally, they replace the frozen
nodes with the new sub-list and mark t’s timestamp as recovered. This mark tells
other threads that the list was recovered from t’s failure. In other words, threads
may again deallocate nodes they remove from the data structure, disregarding t’s
timestamp.

The recovery procedure is relatively heavy performance-wise and has certain
technical issues, but in return, the common path, i.e., the traversal of the data
structure, incurs virtually no additional operations related to memory manage-

2The freeze-bit is one of the least significant bits of a pointer, which are normally zeroed due to
memory alignment.

86©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

1 struct GlobalMemoryManagementRec{
2 uint128_t timeStampAndAnchor;
3 uint64_t lowTimeStamp;
4 };
5
6 struct LocalMemoryManagementRec{
7 list_t reclamationBuffer;
8 uint64_t minTimeStamp;
9 uint32_t minTimeStampThreadID;

10 uint32_t minTimeStampThreadCnt;
11 };

Listing 4.1: Auxiliary records

ment. Since the recovery is expected to be very infrequent, we believe (and show
in our performance measurements) that the complication associated with the re-
covery procedure pays off by eliminating the overhead in the common path. In the
next section, we provide technical details of the application of this general idea
into the concrete non-blocking implementation of the linked list.

4.4 Detailed Description

4.4.1 Auxiliary fields and records

We use the singly linked list of Harris [22] as a basis for our construction. To
support our scheme, each thread maintains two records where it stores information
related to the memory management. The first record is global, i.e., it can be read
and written by any thread (not just the owner of the record), and used to manage
the thread’s timestamp and anchor. The second record is local, and is used during
object reclamations and for deciding whether the recovery procedure is necessary.

The structure of the records is given in Listing 4.1. The global record contains
two fields, timestampAndAnchor and lowTimeStamp. The timeStampAndAnchor

field contains the timestamp, the anchor, and the idle and stuck bits of the
thread, combined into one word so that all can be modified atomically. The width
and the actual internal structure of the field depends on the underlying machine. In
certain settings of 64-bit Linux-based architectures, the virtual memory addressing
requires 48 bits; the two least significant bits in a pointer are typically zeroed due
to memory alignment. Moreover, most existing architectures support wide-CAS
instruction, which operates atomically on two adjacent memory words (i.e., 128
bits). In such settings, we allocate 64 bits for the timestamp and 64 bits for the
anchor pointer, including two bits for two flags, which specify the state of the
thread (i.e., running, idle, stuck and recovered). In the settings where only 64 bits
can be a target for a CAS instruction, one can use 48 bits or fewer for the anchor
pointer and, respectively, 16 bits for timestamp. However, different allocation
techniques can be used to require fewer bits for the pointer.

When a thread t accesses the list, it reads the timestamps of all threads
in the system and sets its own timestamp to one plus the maximum among

87©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

all the timestamp values that were read. It writes its new timestamp in the
timeStampAndAnchor field, simultaneously setting the idle bit to zero. When t

completes its operation, it simply turns the idle bit on (leaving the same times-
tamp value). The exact details of the manipulation of this field are provided in
subsequent sections.

In addition to the timeStampAndAnchor field, the global record contains a field
called lowTimeStamp. This field is set by t to the minimal timestamp observed
by t when it starts an operation on the list. As described in Section 4.4.4, the
lowTimeStamp field is used by other threads when they try to recover the list from
the failure of t (to identify nodes that were inserted into the list before t started
its current operation).

The local record has four fields. The description of their role is given in Sec-
tion 4.4.3.

Along with adding auxiliary records for each thread, we also augment each
node in the linked list with two fields having self-explanatory names, insertTS
and retireTS. These fields are set to the current maximal timestamp plus one
when a node is inserted into or deleted from the list, respectively.

4.4.2 Anchor maintenance

Anchor maintenance is carried out when threads traverse the list, looking for a
particular key. The simplified pseudo-code for this traversal composes the find

method given in Section 5.7.Recall that this method is used by all list operations
in [22].

A thread counts the number of list nodes it has passed through and updates its
anchor every anchor_threshold nodes (where anchor_threshold is some
preset number). The anchor points to the first node in the list that can be accessed
by the thread (which is the node pointed by prev in the find method). Anchor
updates are made in the auxiliary setAnchor function also shown in Section 5.7.
An anchor update may fail for thread t

i

if some other thread t
j

has marked the
timeStampAndAnchor field of t

i

as stuck, as explained in Section 4.4.4.
It is important to note that the actual update of the anchor is done with

CAS (and not with a simple write operation) to avoid races with concurrently
running threads that might suspect t

i

being stuck and try to set the stuck bit
in t

i

’s timeStampAndAnchor. From a performance standpoint, however, the write
operation of a hazard pointer, made on accessing every node, requires an expensive
memory fence right after it [24, 41]. In contrast, the CAS in our approach is
performed only every anchor_threshold node accesses, and its amortized cost
is negligible.

We note that the find function is allowed to traverse the frozen nodes of the
list. A node is frozen if the second least significant bit in its next pointer is turned
on (while the first least significant bit is used to mark the node as deleted [22]). If
there is a need to update the next pointer of the frozen node, the update operation
fails (as in [5]) and retries after invoking the helpRecovery method (pseudo-code

88©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

can be found in Section 5.7). As its name suggests, the latter method is used to
help the recovery process of some stuck thread. This method is also called when
a thread fails to update its anchor in setAnchor.

Finally, we note that at any time instant, list operations have references to at
most two adjacent list nodes. (Recall that for the linked list data structure two
hazard pointers are required [41]). As we require that a stuck thread will be able
to access nodes only between its current anchor and (but not including) the next
potential anchor, the anchor_threshold parameter for the linked lists has to
be at least 2.

4.4.3 Node reclamation

When a thread t
i

removes a node from the list, it calls the retireNode method,
which sets the deletion timestamp of the node (i.e., the retireTS field) to the
current maximal timestamp plus one. Then, similarly to [41], the retireNode

method adds the deleted node to a reclamation buffer. The latter is simply a
local linked list (cf. Listing 4.1) where t

i

stores nodes deleted from the list data
structure, but not deallocated yet. When the size of the buffer reaches a predefined
bound (controlled by the retire_threshold parameter), t

i

runs through the
buffer and deallocates all nodes with the retire timestamp smaller than the current
minimal timestamp (plus an additional condition elaborated in Section 4.4.4).
Note that if the deletion time of a node n is smaller than the timestamp of a
thread t

j

, t
j

started its last operation on the list after n was removed from the
list; thus, t

j

will never access n. Obviously, if this holds for any t
j

, it is safe to
deallocate n.

When t
i

finds that some thread t
j

exists such that the timestamp of t
j

is
smaller than or equal to the timestamp of one of the nodes in t

i

’s reclamation
buffer, t

i

stores the ID of that thread (i.e., j) in the minTimeStampThreadID field
of its local memory management record (cf. Listing 4.1) and t

j

’s timestamp in the
minTimeStamp field of that record. It also sets the minTimeStampThreadCnt field
to 1. It is important to note that if several threads have the same minimal times-
tamp, t

i

will store the smallest ID in minTimeStampThreadID. This will ensure
that even if several threads are stuck with the same timestamp, all threads will
consider the same thread in the recovery procedure.

On later scans of the reclamation buffer, if t
i

finds that the thread t
j

(whose
ID is stored in t

i

’s minTimeStampThreadID) still has the same timestamp, t
i

will
increase the minTimeStampThreadCnt counter. Once the counter reaches the pre-
defined recovery_threshold parameter, t

i

will suspect that t
j

has failed and
will start the recovery procedure described in Section 4.4.4.

4.4.4 Recovery procedure

The recovery procedure is invoked in one of the following three cases. First, it is
invoked by a thread t

i

that tries to deallocate an object n from its reclamation

89©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

121 0 0
TS anchor I S

5 0 0
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

41

41

40

41

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

40

(a) The state of the list before the recovery is
invoked

121 0 0
TS anchor I S

5 0 0
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

41

41

40

41

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

40

(b) Phase 1

121 0 0
TS anchor I S

5 0 0
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

41

41

40

41

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

40

(c) Phase 2

121 0 0
TS anchor I S

5 0 0
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

41

41

40

41

121 0 0
TS anchor I S

5 0 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

40

(d) Phase 3

41

121 0 0
TS anchor I S

130 1 1
TS anchor I S

129 0 0
TS anchor I S

thread 0 thread 1 thread 2

3

head

12 20 x 40 42 x 43

25 x 27 x

41

40

(e) Phase 4

Figure 4.2: Recovery phases. Nodes marked with ’x’ are deleted, i.e., the delete-bit of their next
pointer is turned on [22]. Shaded nodes are frozen, i.e., the freeze-bit of their next pointer is
turned on.

90©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

buffer, but repeatedly finds a running thread t
j

whose timestamp remains smaller
than or equal to the timestamp of n (cf. Section 4.4.3). The second case is when
a thread t

i

tries to modify the next pointer of one of the nodes in the list, but
finds that this node is frozen (cf. Section 4.4.2). Finally, the third case happens
when a thread tries to update its anchor by modifying its timeStampAndAnchor

field, but finds that some other thread turned the stuck bit on in this field
(cf. Section 4.4.2). In two last cases t

i

invokes the helpRecovery method. There,
t
i

scans through global records of the threads, looking for a thread t
j

with the
stuck bit in t

j

’s timeStampAndAnchor field turned on.
The recovery procedure consists of four phases (the code can be found in Section

5.7). We explain these phases using the example in Figure 5.4. Assume that at
some point in time the list data structure is in the state depicted in Figure 5.4(a),
and thread t0 decides to recover the list from the failure of thread t1. Before
invoking the first phase of the recovery procedure, t0 stores locally the current
value of t1’s timeStampAndAnchor field. Then, in the first phase of the recovery
procedure, t0 attempts to modify t1’s timeStampAndAnchor field by turning the
stuck bit on using CAS operation (cf. Figure 5.4(b)). If this operation fails, t0
rereads t1’s timeStampAndAnchor field and checks whether it was marked as stuck
by some other thread. If not, it aborts the recovery procedure (since either t1
is actually alive and has modified its timeStampAndAnchor field, or some other
thread, i.e., t2, has finished the recovery of t1 and, as we will see later, turned
both stuck and idle bits on). Otherwise, if the CAS operation that turns the
stuck bit on succeeds, or if it fails, but t1 is marked as stuck by another thread,
t0 proceeds to the second phase.

In the second phase of the recovery procedure, t0 freezes and copies all nodes
that t1 might access if t1 revived and traversed the list until realizing at the next
anchor update that its anchor is marked as stuck. To identify such nodes, t0
extracts t1’s anchor pointer out of the value stored in t1’s timeStampAndAnchor

field (which points to node 25 in our example in Figure 5.4(a)). Then, t0 starts
setting the freeze-bit in the next pointers of reachable nodes, starting from node
25. It copies the frozen nodes (with the freeze-bit set off) into a new list. Note that
some of the nodes may already be deleted from the list (e.g., node 25, 27 and 42

in Figure 5.4), but not disconnected or reclaimed yet. Such nodes are frozen, but
they do not enter the new copied part of the list. The thread t0 keeps freezing and
copying until it passes through anchor_threshold nodes having an insertion
timestamp smaller than the value of t1’s lowTimeStamp field. In our example in
Figure 5.4, let us assume that these are nodes 25, 27, 40, 41 and 42. Note that
for traversing those nodes, t0 had to update its own anchor to be the same as t1’s
anchor in order to handle t0’s failure during the recovery procedure. At the end
of the second phase the list looks as depicted in Figure 5.4(c). The pseudo-code
for how we freeze the nodes and create the copies can be found in Section 5.7.

In the third phase, t0 attempts to replace the frozen nodes with a locally copied
part of the list. To this end, it runs from the beginning of the list data structure

91©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

and looks for the first (not-deleted) node m whose next pointer either points to
the not-deleted frozen nodes or it is followed by a sequence of one or more deleted
nodes such that the next pointer of the last node in the sequence points to a
not-deleted frozen node (in Figure 5.4(c), m is the node 12). If such m were not
found by reaching the end of the list data structure, t0 would finish this phase, as
it would assume that some other thread has replaced the frozen part of the list
with the new list created by that thread. Otherwise, t0 attempts to update m’s
next pointer to point to the corresponding copied node in the new list. If it fails,
it restarts this phase from the beginning. Otherwise, t0 inserts all nodes between
m and the first frozen node (i.e., node 20 in Figure 5.4(c)) into its reclamation
buffer in order to deallocate them later, bringing the list to the state exhibited in
Figure 5.4(d). The code of the procedure for replacing frozen nodes can also be
found in Section 5.7.

One subtlety that is left out of the code for lack of space, is the verification that
the new local list indeed matches the frozen nodes being replaced. It is crucial to
ensure that if a thread running the recovery procedure gets delayed, it does not
replace another frozen part of the list when it resumes. To this end, we record the
sources of the new nodes, when they are copied, and CAS the new list into the
data structure only if it replaces the adequate original nodes that can be found in
the recorded sources.

In the final, fourth phase, t0 sets the idle bit in the t1’s timeStampAndAnchor
field, marking t1 as recovered. Additionally, t0 promotes t1’s timestamp, recording
the (logical) time when t1 was recovered (cf. Figure 5.4(e)). Note that t0 does not
need to check whether its CAS has succeeded, since if it hasn’t, some other thread
has performed this operation. We denote a timestamp of a thread with idle and
stuck flags turned on as recovery timestamp.

4.4.5 The refined reclamation procedure

Thread t1, considered stuck, might actually have a pointer to a node n which
is already not a part of the list. For instance, in the state of the list shown in
Figure 5.4(a), t1 might be stopped while inspecting node 25 (or 27). If this node
is currently in the reclamation buffer of some other thread t

k

(i.e., t0 or t2), and
if t

k

does not consider t1 after the recovery is done (i.e., t
k

only checks that node
25’s retireTS is smaller than the timestamp of any running thread), t

k

might
deallocate node 25 and t1 might erroneously access this memory if and when it
revives. Note that node 27 may already be unreachable from the node pointed by
t1’s anchor by the time of t1’s recovery, if, e.g., the next pointer of node 25 was
updated while t1 was inspecting node 27. In this case, node 27 will not be frozen
and copied at all. In order to cope with such situations, before deallocating a node
we require its retire timestamp (retireTS) to be larger than the timestamp of any
thread in the recovered state (in addition to being smaller than the timestamp of
any running thread). This way we prevent nodes removed from the list before
some thread got recovered from being deallocated, as the thread being recovered

92©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

might hold a pointer to such node. When (and if) the recovered thread becomes
running again, it will be possible to reclaim those nodes. To summarize, when
a thread wants to deallocate a node n, it checks that n is not frozen (i.e., the
freeze-bit in its next pointer is not set) and that the following condition holds:

MAX({timestamp of t
x

| t
x

is recovered}) < n.retireTS < MIN({timestamp of
t
x

| t
x

is running})

It should be noted that when calculations of the retire timestamp and the recov-
ery timestamp are done simultaneously (by different threads), the retire timestamp
can erroneously be higher than the recovery timestamp, and wrong reclamation
can happen. Therefore, when calculating the retire timestamp for a node, we re-
quire a thread to pass twice over the timestamps of the threads verifying that no
thread was marked stuck or recovered concurrently. If such thread(s) is found, the
node is inserted into the reclamation stack as frozen.

For simplicity of presentation, in the algorithm described above frozen nodes
are not reclaimed. Such nodes can only appear if threads fail and such a solution
may be acceptable. However, frozen nodes can be easily reclaimed for recov-
ered threads that have resumed operation. A recovered thread can reclaim nodes
according to the recovery timestamps. Also, a frozen node that appears in a recla-
mation stack can be reclaimed using its retireTS field and the lowTimeStamp

field of all stuck threads. Details are omitted.

4.5 Performance Evaluation

We have implemented the non-blocking linked list data structure of Harris [22]
with several memory management techniques. First, we have implemented the
Hazard Pointers technique following the pseudo-code presented in [41], but with
the additional memory fence instruction added just after the write of a new value
to the hazard pointer of a thread [24]. Second, we have implemented our new Drop
the Anchor technique presented in this paper. Finally, we have also implemented
a simple technique, where nodes removed by a thread t from the list are added to
t’s reclamation stack and reclaimed later once 64 nodes are collected in the recla-
mation stack. We refer to this implementation as delayed reclamation. We note
that this scheme is incorrect in a sense that it allows threads to access deallocated
memory, but we used this implementation to represent a memory management
scheme with a minimal performance impact. All our implementations were coded
in C and compiled with -O3 optimization level.

We have run our experiments on the machine with two AMD Opteron(TM)
6272 16-core processors, operated by Linux OS (Ubuntu 12.04). We have varied
the number of threads between 1 and 40, slightly above the number of threads that
can run concurrently on this machine (32). If not stated otherwise, each test starts
by building an initial list with 100k random keys. After that, we measure the total
time of 320k operations divided equally between all threads. The keys for searches

93©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

Total time for different number of threads using
different memory reclamation techniques

0

50

100

150

200

250

300

4 8 12 16 20 24 28 32 36 40

Number of threads

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

HP (with fence instruction)

Anchor every 2 nodes

Anchor every 10 nodes

Anchor every 100 nodes

Delayed Reclamation

(a) The total running time comparison for 20%
inserts, 20% deletes and 60% searches.

Relative performance ratio compared to delayed
reclamation

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

4 8 12 16 20 24 28 32 36 40

Number of threads

O
ve

rh
ea

d
in

 s
ec

on
ds

HP Ratio

Anchor 2 Ratio

Anchor 10 Ratio

Anchor 100 Ratio

(b) Memory management overhead referred to
delayed reclamation for 20% inserts, 20% deletes
and 60% searches.

Figure 4.3: Drop the Anchor vs. Hazard Pointers for lists with the initial size of 100k keys, the
mixed workload results.

and insertions are randomly chosen 20-bit sized keys. For deletion operations,
we ensure that randomly chosen keys actually exist in the list in order to make
the reclamation process substantial. The values of recovery_threshold and
retire_threshold were always 64. All threads are synchronized to start their
operations immediately after the initial list is built and we measure the time it
takes to complete all operations by all threads. We run each test 10 times and
present the average results. The variance of all reported results is below 1.5% of
the average.

Figures 4.5 and 4.3 show the measurements of the total time required to com-
plete our benchmark using the HP memory management, the delayed reclamation
and the Drop the Anchor method. For the latter, we have used three versions with
different values for the anchor_threshold value. Specifically, in the first ver-
sion the anchor is dropped every second node (which is the lowest legitimate value
for anchor_threshold in the case of the linked list), in the second version the
anchor is dropped every 10 nodes, and in the third – every 100 nodes. We show
the results for read-only workload where all operations are searches (Figure 4.5(a))
and for the mixed workload, where 20% of all operations are insertions, 20% are
deletions, and the remaining 60% are searches (Figure 4.3(a)).

Our measurements show that in the mixed workload the Drop the Anchor-
based implementation is faster in about 150–250% than the HP-based one, even
if the anchor is dropped every second node. When increasing the anchor_th-

reshold parameter from 2 to 100, we get even higher improvement of 300–450%
over the performance of HPs.

In read-only workload we can see even better performance improvement (400%
on average) due to anchors usage compared to HP usage (cf. Figure 4.5(a)).
Finally, we can see that for substantial amount of threads, the Drop the Anchor-
based linked list performance is very close to the linked list implementation based
on the simple delayed reclamation. This suggests that the amortized cost of the
memory management in the Drop the Anchor technique is very small.

94©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

Total time for different list sizes

0

20

40

60

80

100

120

140

25000 50000 75000 100000 125000 150000
Initial list sizes

R
un

ni
ng

 ti
m

e
(s

ec
on

ds
)

Hazard Pointers

Anchor every 10
nodes

(a) Drop the Anchor vs. Hazard Pointers when
16 threads are run on lists with different initial
sizes. In the Anchor-based implementation, the
anchor is dropped every 10 nodes.

Recovery performance impact

0

50

100

150

200

250

300

4 8 12 16 20 24 28 32 36 40

Number of threads

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

HP (with fence instruction)

Anchor every100 nodes with
recovery

Anchor every 100 nodes

(b) The impact of the recovery on the perfor-
mance of lists with the initial size of 100k keys.

Figure 4.4: Drop the Anchor vs. Hazard Pointers for lists with the different initial sizes and the
recovery performance impact.

Additionally, Figures 4.5(b), 4.3(b) present the relative performance ratio of
each memory management technique, explained above, compared to delayed recla-
mation. When the ratio is close to 1 it means that the memory management
technique adds almost no overhead over the delayed reclamation. The HP mem-
ory management shows 400–550% slowdown, where Anchor-based implementation
shows 7–10% slowdown for anchors dropped every 100 nodes, and 200–250% slow-
down for anchors dropped every 2 nodes, all compared to delayed reclamation
results.

In another set of experiments, we measure the impact of the initial size of the
list on the performance of the HP-based and Drop the Anchor-based implemen-
tations, while the number of threads is constant (16) and the workload is mixed.
The results are depicted in Figure 4.4(a)(a). It can be seen that the running time
of both implementations increases linearly with the size of the list as threads need
to traverse more nodes per operation on average. The slope of the HP-based im-
plementation is much steeper, however, suggesting that the overhead introduced
by fences is much more significant than the cost of the anchor management.

In Figure 4.4(b)(b) we can see the performance impact of the recovery pro-
cedure in the Drop the Anchor technique. We use the version of the technique
with the anchor_threshold value equals 100 for more significant impact. We
explicitly delay one of the threads, thus causing this thread to be considered as
stuck and recovered by other threads. The stuck thread returns to run after 2

seconds and the presented total time is measured until all threads finish their
runs. The results show that the recovery procedure has 15–50% impact on the
performance, even when the anchor_threshold value is high. In any case,
the Anchors-based implementation’s performance (with the delay and recovery) is
much better than the HP-based one.

95©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

4.6 Pseudo-code

In this section, we provide the implementation of the Drop the Anchor technique
applied to the non-blocking linked list data structure. The implementation is pro-
vided in a pseudo-code, which follows closely the syntax of C. We start with the
find method of the list (cf. Listing 4.2), which is used internally by all three meth-
ods of the list interface, namely search, insert and remove. The find method
traverses list nodes looking for a node holding the given key. The description of
this method is given in Section 4.4.2.

In Listing 4.3 we provide the details of the setAnchor method. As its name
suggests, this method is called by a thread when it needs to update its anchor.
The reader is referred to Section 4.4.2 for the description of this method. Next,
in Listing 4.4 we give the implementation of the helpRecovery method called by
a thread when it realizes that some recovery procedure is in progress.

Listing 4.5 shows the code of the recover method, which handles all four
phases of the recovery procedure (cf. Section 4.4.4). The non-trivial phases of the
recovery procedure are detailed in separate listings. Specifically, Listing 4.6 details
the second phase of the recovery, where a recovering thread freezes all nodes that
the thread being recovered might have a pointer to. Along with that, Listing 4.7
shows the details of the third phase of the recovery procedure, where a recovering
thread replaces the frozen part of the list with the sub-list created during the
second phase of the recovery.

4.6.1 Correctness argument

In this section we give the arguments and the proofs of correctness. We start
by outlining the assumed memory model and defining linearization points for the
modified list operations. Then we argue that any internal node deleted after the
last recovery was finished (or deleted any time if no thread has been suspected
being stuck) will be eventually reclaimed (we call this property eventual condi-

tional reclamation). Next, we argue that our technique guarantees the safety of
memory references. In other words, no thread t accesses the memory that has been
reclaimed since the time t obtained a reference to it. Finally, we argue that our
technique is non-blocking, meaning that whenever a thread t starts the recovery
procedure, then after a finite number of t’s steps either t completes the recovery,
or some other thread completes an operation on the list. In addition, we show
that the system-wide progress with respect to the list operations is preserved,
that is after a finite number of completed recovery procedures there is at least one
completed list operation.

Model and linearizability

Our model for concurrent multi-threaded computation follows the linearizability
model of [31]. In particular, we assume an asynchronous shared memory system

96©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

1 Bool find(int key) { // Global Node ⇤⇤prev, ⇤cur, are used
2 int ckey, nodesAfterAnchor;
3
4 try_again:
5 prev = &head; // Global head points to the first node
6 cur = ⇤prev; nodesAfterAnchor = 0;
7
8 while (cur != NULL) {
9 if (nodesAfterAnchor % anchor_threshold == 0) {

10 if (!setAnchor(prev)) { // save prev as anchor
11 helpRecovery(); // idle or stuck bit is set
12 goto try_again;

13 }
14 }
15 nodesAfterAnchor++;
16 Node ⇤next = cur�>next;
17
18 if (isDeleted(next)) { // current node is deleted, try to
19 // finish deletion, but don’t change frozen pointers
20 if (!CAS(prev, cur, clearDeleted(next))) {
21 if (isFrozen(⇤prev)) // if try failed due to freeze,
22 helpRecovery(); // first help recovery
23 goto try_again; // retry
24 }
25 retireNode(cur);
26 cur = clearFrozen(clearDeleted(next));
27 } else {
28 ckey = getKey(cur);
29 if (ckey >= key)
30 return (ckey == key); // compare search key
31 prev = &(cur�>next);
32 cur = clearFrozen(next);
33 }
34 }
35 return FALSE;
36 }

Listing 4.2: List traversal with find. The code related to the new memory management
technique is underlined.

1 Bool setAnchor (Node⇤⇤ prev) {
2 Node⇤ newAnchor = nodePointer(prev);
3
4 // globalMMRecords is an array of
5 // GlobalMemoryManagementRecords
6 uint128_t localTsAndAnchor =
7 globalMMRecords[<my ID>].timeStampAndAnchor;
8
9 if (isSuspected(localTsAndAnchor)

10 return FALSE;
11
12 // extract the current time stamp
13 uint64_t localTs = extractTimestamp(localTsAndAnchor);
14
15 // combine the current time stamp,
16 // the new anchor and the IDLE and STUCK flags
17 uint128_t newTsAndAnchor =
18 <localTs | newAnchor | FALSE | FALSE>;
19
20 return

21 CAS(&(globalMMRecords[<my ID>].timeStampAndAnchor),
22 localTsAndAnchor, newTsAndAnchor);
23 }

Listing 4.3: The setAnchor function

97©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

1 void helpRecovery() {
2 uint128_t localTsAndAnchor =
3 globalMMRecords[<my ID>].timeStampAndAnchor;
4
5 if (isStuck(localTsAndAnchor)) {
6 // I was suspected to be stuck
7 recover(<my ID>, localTsAndAnchor);
8 setTimeStamp(); // Reset my timestamp
9 return; // Continue after finishing self�recovery

10 }
11
12 // Otherwise, find who is stuck
13 // (a thread with bit IDLE reset and bit STUCK set)
14 for (int i = 0; i < threadNum; i++) {
15 uint128_t currTsAndAnchor =
16 globalMMRecords[i].timeStampAndAnchor;
17
18 if (!isIdle(currTsAndAnchor) &&
19 isStuck(currTsAndAnchor)) {
20 recover(i, currTsAndAnchor); // Help
21 return;
22 }
23 }
24 return;
25 }

Listing 4.4: The helpRecovery function

where n deterministic threads communicate by executing atomic operations on
some finite number of shared variables. Each thread performs a sequence of steps,
where in each step the tread may perform some local computation or invoke a
single atomic operation on a shared variable. The atomic operations allowed in
our model are reads, writes, or compare-and-swaps (CAS). The latter receives a
memory address of a shared variable v and two values, old and new. It sets the
value of v to new only if the value of v right before CAS is applied is old ; in this
case CAS returns true. Otherwise, the value of v does to change and CAS returns
false. We assume that each thread has an ID, denoted as tid, which is a value
between 0 and n� 1. In systems where tid may have values from arbitrary range,
known non-blocking renaming algorithms can be applied (e.g., [1]). In addition,
we assume each thread can access its tid and n.

The original implementation of all operations of the non-blocking linked list
by Harris [22] is linearizable [31]. We argue that after applying Drop the Anchor
memory management technique, all list operations remain linearizable. Recall that
all list operations invoke the find method, which returns pointers to two adjacent
nodes, one of which holds the value smaller than the given key. For further details,
see [22]). Denote this node as prev. Furthermore, recall that list operations may
invoke find several times. For instance, insert will invoke find again if the next
pointer of prev has being concurrently modified (in particular, in our case, frozen).
Thus, we define the linearization points for a list operation op with respect to the
prev returned from the last invocation of find by op. If this prev node is not
frozen (i.e., the freeze-bit of its next pointer is not set), the linearization point of
op is exactly as in [22]. However, if this prev node is frozen, we set the linearization

98©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

1 void recover(int tID, uint128_t tsAndAnchor) { // tID � id of the thread we are going to recover; tsAndAnchor � the recorded
2 // value of tID’s timeStampAndAnchor field
3
4 // Phase 1: mark as stuck
5 if (!DWCAS(&globalMMRecords[tID].timeStampAndAnchor, tsAndAnchor, markSuspected(tsAndAnchor)) {
6 if (&globalMMRecords[tID].timeStampAndAnchor != markSuspected(tsAndAnchor)) {
7 // CAS failed and not because the same timestamp was marked stuck.
8 // So some progress was made by the thread to be recovered (tID) or other thread finished to recover it.
9 return;

10 }
11 tsAndAnchor = markSuspected(tsAndAnchor);
12 }
13
14 Node ⇤anchor = getAnchor(tsAndAnchor);
15 if (anchor != NULL) {
16 // Phase 2: Mark part of the list as frozen and create a copied list of not�deleted nodes
17 Node ⇤newList = freezeNodes(tID, tsAndAnchor);
18
19 // Phase 3: Replace frozen nodes
20 if (newList != NULL) {
21 replaceFrozenNodes(tID,tsAndAnchor, newList);
22 }
23 }
24
25 // Phase 4: Set recovery timestamp and mark as recovered
26 uint128_t newTsAndAnchor = < calcMaxTimeStamp()+1 | anchor | TRUE | TRUE >;
27 // if the following double�wide CAS is not successful, some other thread succeeded to complete this phase
28 DWCAS(&globalMMRecords[tID].timeStampAndAnchor, tsAndAnchor, newTsAndAnchor);
29
30 return;
31 }

Listing 4.5: The recover function

point of op at the time instance defined as following. Consider the sequence of
frozen nodes read by the corresponding find operation starting from a frozen node
m and including the (frozen) node prev (where m and prev might be the same
node). The linearization point of op is defined at the latest of the two events:
(a) the corresponding find traversed m (i.e., read the next pointer of the node
previous to m in the list) and (b) the latest time at which some node between
(and including) m and prev was inserted or marked as deleted. The intuition is
that when find returns a result from a frozen part of the list, this part no longer
reflects the actual state of the list at the moment prev node is read. Thus, we have
to linearize the corresponding operation at some earlier time instance, at which
the nodes read by find are still consistent with the actual keys stored in the list.

Eventual conditional reclamation

Lemma 4.1. Let T
s

and T
f

be the time when a thread t starts and finishes,

respectively, the call to retireNode(node) and T
r

> T
f

is the time when t finishes

to scan its reclamation buffer. Then at least one of the following events occurs in

the time interval [T
s

, T
r

]:

1. Some thread remains running throughout [T
f

, T
r

], and its timestamp changes

at most once in [T
f

, T
r

].

2. Some thread becomes recovered at some point in time in [T
s

, T
r

].

99©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

1 Node ⇤freezeNodes(int tID, uint128_t tsAndAnchor) {
2 Node ⇤localListHead = NULL;
3 int cnt = 0;
4 uint64_t maxTimeStamp = calcMaxTimeStamp();
5 uint64_t lowTimeStamp =
6 globalMMRecords[tID].lowTimeStamp;
7 Node ⇤current = getAnchor(tsAndAnchor);
8
9 // update my anchor to enable list recovery from my

10 // failure at the time I try to recover the list from
11 // the failure of tID
12 if (<myID> != tID && !setAnchor(current)) {
13 // failure here means that the recovery I work on
14 // is done, and some other threads suspects me
15 // being failed
16 return NULL;
17 }
18
19 // iterate and freeze all the nodes, starting from the
20 // anchor until anchor_threshold "old enough"
21 // nodes are found, or the end of the list is reached
22 while (cnt<anchor_threshold && current!=null) {
23 Node ⇤savedNext = current�>next;%
24 // loop till the next pointer is frozen
25 while (!isFrozen(savedNext)) {
26 CAS(&(current�>next), savedNext,
27 markFrozen(savedNext));
28 savedNext = current�>next;
29 }
30
31 if (current�>insertTS < lowTimeStamp) {
32 // this node is "old enough" (tID must traverse it)
33 cnt++;
34 }
35
36 if (!isDeleted(current�>next)) {
37 // create a local copy of the frozen node
38 Node ⇤newNode = (Node ⇤)malloc(sizeof(Node));
39 newNode�>key = current�>key;
40 newNode�>insertTS = maxTimeStamp + 1;
41 newNode�>next = clearFrozen(current�>next);
42
43 <connect newNode to the local list using
44 localListHead>
45 }
46
47 // prepare to the next iteration
48 current = clearDeleted(clearFrozen(current�>next));
49 } // end of while, enough entries are frozen or list ended
50
51 return localListHead;
52 }

Listing 4.6: The freezeNodes function

100©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

1 void replaceFrozenNodes(int tID,
2 uint128_t tsAndAnchor, Node ⇤newList) {
3 while (1) {
4 Node ⇤⇤prev = NULL;
5 Node ⇤curNext = NULL;
6 Node ⇤newNext = NULL;
7
8 // Special version of find, which looks for the last not
9 // deleted node that is previous to a not deleted

10 // frozen node. It updates my anchors while running
11 // through the list.
12 if (!findInRecovery(tID, tsAndAnchor, newList,
13 &prev, &curNext, &newNext)) {
14 // We did not find a place to insert the copied
15 // nodes, since the recovery was finished by
16 // another thread. Delete the local list of
17 // copied nodes.
18 deleteCopiedList(newList);
19 return;
20 }
21
22 if (CAS(prev, curNext, newNext)) {
23 // We have replaced all frozen nodes in the list.
24 return;
25 } // if CAS fails, try again
26
27 } // end of the while
28 }

Listing 4.7: The replaceFrozenNodes function

Total time for different number of threads using different
memory reclamation techniques

0

50

100

150

200

250

4 8 12 16 20 24 28 32 36 40

Number of threads

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

HP (with fence instruction)

Anchor every 2 nodes

Anchor every 10 nodes

Anchor every 100 nodes

Delayed Reclamation

(a) The total running time comparison for
searches only.

Relative performance ratio compared to delayed
reclamation

0

1

2

3

4

5

6

7

4 8 12 16 20 24 28 32 36 40

Number of threads

O
ve

rh
ea

d
in

 s
ec

on
ds

HP Ratio

Anchor 2 Ratio

Anchor 10 Ratio

Anchor 100 Ratio

(b) Memory management overhead referred to
delayed reclamation for searches only.

Figure 4.5: Drop the Anchor vs. Hazard Pointers for lists with the initial size of 100k keys, the
read-only workload results.

101©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

3. The memory allocated to node is reclaimed by the time T
r

.

Sketch of proof: During the execution of retireNode(node), t reads times-
tamps of all threads and sets the retireTS field of node to the maximal value it
has read, plus one. When t runs through its reclamation buffer, it checks the recla-
mation condition (cf. Section 4.4.4) with respect to n.retireTS. If the condition
holds, then t reclaims the memory allocated to node, satisfying the third clause
of the Lemma. If the condition does not hold, then we have two cases. First,
there might be a running thread t

x

whose timestamp is smaller than n.retireTS.
Assuming a timestamp does not overlap, the timestamp of any thread holds mono-
tonically increasing values. This follows from the way the timestamp of each thread
is calculated. Thus, t

x

must stay running in [T
f

, T
r

], since if it becomes idle af-
ter T

f

and becomes running again, its timestamp will be equal to or larger than
n.retireTS. From the same reason, t

x

may update its timestamp in [T
f

, T
r

] at
most once (with a value which t

x

started to calculate before T
f

). Thus, the first
clause of the Lemma holds.

The second case where the memory of n is not reclaimed by the time T
r

occurs when there is some recovered thread t
x

whose timestamp is larger than
n.retireTS. But then this timestamp must be updated after T

s

(since otherwise
the value of n.retireTS would be larger) and before T

r

, meaning that t
x

must be
recovered at some point in [T

s

, T
r

], satisfying the second clause of the Lemma.

Based on the lemma above, we prove that when a thread removes a node
from the list, as long as that tread keeps applying (delete) operations on the list
and particularly "bad" things do not happen to other threads (e.g., they are not
suspected to be failed), the memory of that node will be eventually reclaimed.

Lemma 4.2. Let T
s

be the time when a thread t starts the call to retireNode(node).

Then node will be eventually reclaimed as long as t keeps removing nodes from the

list and there is no thread that is stuck or recovered at or after T
s

.

Sketch of proof: First, we note that just like in [41], every thread is solely
responsible for reclaiming nodes in its reclamation buffer. Thus, in order for n to
be eventually reclaimed, t must scan its reclamation buffer once in a while and
this will happen only if t will keep removing nodes from the list.

Next, consider a node n that was removed from the list by a thread t and placed
by t into its reclamation buffer at some time in [T

s

, T
f

], as defined in Lemma 4.1.
According to Lemma 4.1, there are two cases when the memory allocated to n

will not be reclaimed by the time T
r

. The first case occurs when some thread is
recovered at some time in [T

s

, T
r

], for which this Lemma holds. In the second case,
there is a thread t

x

that is in the running state throughout [T
f

, T
r

]. Then one of
the following two events will occur with respect to t

x

’s execution: (a) t
x

will either
finish or keep restarting its current operation, promoting its timestamp before
some thread will suspect that t

x

might be stuck. Thus, eventually its timestamp

102©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

will become larger than n.retireTS at some time instant T 0. Thus, given the
condition in Section 4.4.5 holds for all other threads, t will reclaim n on the first
scan of its reclamation buffer started after T 0 (or even earlier, if T 0 occurs during
the reclamation buffer scan by t). (b) t

x

will not update its timestamp after T
r

and before it gets suspected being stuck. Since we assume that t
i

keeps removing
nodes from the list, it will eventually suspect t

x

(and recover it). Thus, the Lemma
holds.

Note that even if some thread t
x

gets stuck or recovered after T
s

as above, it
may have impact only on nodes being removed before (or concurrently to) t

x

’s
recovery.

Safety of memory references

First, we prove that access to any node that can be reached from t’s anchor (for
any thread t) is safe, i.e., such node cannot be reclaimed.

Lemma 4.3. No node reachable from an anchor of some thread can be reclaimed.

Sketch of proof: Consider a thread t
a

. Assume at some point in time t
a

’s
timestamp is T

h

and t
a

’s anchor refers a node N . If N is still in the list, it is
not yet disconnected, thus N can not be reclaimed and it is safe to access N . So
assume N is deleted, disconnected from the list and exists in the reclamation buffer
of thread t

d

with reclamation timestamp T
r

. Note that if t
a

is running or stuck
T
r

> T
h

, otherwise t
a

wouldn’t find it. If t
a

is in running or stuck state, N can not
be reclaimed because there is a timestamp less than N ’s reclamation timestamp.
If t

a

is in idle state, its anchor pointer must be null. If t
a

is in recovered state,
its timestamp T

h

states the time when t
a

was recovered. Assuming N is deleted,
the deletion must happen before the freeze of node N , because frozen node can
not be marked as deleted. Therefore T

h

� T
r

and N can not be reclaimed because
there is a recovered timestamp larger than N ’s reclamation timestamp.

Let’s look on a node N which is not an anchor, but reachable the t
a

’s anchor.
Again, let’s assume N is deleted, disconnected from the list and exists in the recla-
mation buffer of thread t

d

with reclamation timestamp T
r

(because the opposite
case is trivial). Note that if t

a

is running or stuck T
r

� T
h

, otherwise T
r

< T
h

,
meaning that N was removed from the list before t

a

has started, it contradicts the
assumption that N is reachable from the anchor. Similarly to the previous case,
if t

a

is in recovered state, it implies that T
h

� T
r

and N can not be reclaimed
because there is a recovered timestamp larger than N ’s reclamation timestamp.

Using the lemma above, we show that with the Drop the Anchor memory
management, no thread will access a reclaimed memory.

Lemma 4.4. No thread t accesses the memory that has been reclaimed since the

time t obtained a reference to it.

103©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

Sketch of proof: A thread t can accesses nodes only in three occasions:

1. The nodes reachable from the list’s head, as part of proceeding with specific
operation

2. The nodes reachable from the thread’s anchor, as part of recovery of a stuck
thread

3. The frozen nodes, as part of recovery help or when a stuck thread itself wakes
up

In first case, thread t can access nodes in the "live" list because t’s timestamp
must be greater then reclamation timestamp of any reachable node if it got dis-
connected from the list concurrently with t’s progress. In second case, the safety
of thread t accesses was proved in Lemma 4.3. Finally, we currently do not reclaim
the frozen part, therefore it is always safe to access the frozen memory.

Progress guarantees

The original implementation of all operations of the non-blocking linked list by
Harris [22] is lock-free [31] . We argue that after applying Drop the Anchor
memory management technique, all list operations remain lock-free. We say that
a thread t

i

starts the recovery of a thread t
j

when t
i

sets the stuck bit on in t
j

’s
timestampAndAnchor field. Similarly, we say a thread t

i

completes the recovery of
a stuck thread t

j

when t
i

sets the idle bit on in t
j

’s timestampAndAnchor field.

Lemma 4.5. If a thread t
i

starts the recovery of t
j

at T
s

, then the recovery of t
j

will be completed at T
f

> T
s

(by possibly another thread t
k

) and/or infinitely many

list operations will be linearized after T
s

.

Sketch of proof: Consider the four phases of the recovery procedure (cf. Sec-
tion 4.4.4). At the time T

s

, t
i

completes the first phase by marking t
j

as stuck.
Then, at the second phase of the recovery, t

i

runs over the list starting from the
node pointed by t

j

’s anchor and freezes each node. It was proved at [5] that
freezing activity is lock free (obviously freezing can fail only if next pointer was
modified after read and before freeze). If there are no infinitely many changes
to the list (i.e., infinitely many nodes are not removed or inserted), t

j

will either
reach the end of the list or will traverse enough nodes to stop (for exact details, cf.
Section 4.4.4). In both cases, t

i

will finish the second phase in a finite number of
steps. (Note that t

i

may never finish this phase if the list gets changed infinitely
many times, but this will satisfy the Lemma).

In the third phase of the recovery, t
i

runs over the list looking for the node that
precedes the frozen part of the list. Here, again, if the list is not changed infinitely
many times during this phase, t

i

will either find the relevant node, or reach the
end of the list. Thus, after a finite number of steps, t

i

will finish the third phase.

104©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

The last fourth phase consists of a CAS operation that does not require a retry
in case of a failure. Thus, this phase will be completed by t

i

in a constant number
of steps.

To summarize, if the list does not change indefinitely many times after T
s

, t
i

will finish recovery of t
j

after a finite number of steps at the time T
f

> T
s

.

Next, we show that despite recovery operations, the system-wide progress is
preserved, i.e., threads never keep recovering one another forever without com-
pleting list operations.

Lemma 4.6. Consider n + 1 recovery operations completed at times T1 < T2 <

... < T
n+1. Then there must be at least one list (delete) operation linearized in the

time interval [T1, Tn+1].

Sketch of proof: Observe that a thread t might start a recovery of another
thread only when t completes a delete operation on the list. Consider n + 1

recovery operations completed at times T1 < T2 < ... < T
n+1. There must be

at least one thread t
i

that started at least two recovery operations at T
k

and
T
m

2 [T1, Tn+1]. But then based on the observation above, t
i

has completed at
least one delete operation between the time T

k

and T
m

.

105©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 4: Drop the Anchor : Lightweight Memory Management for
Non-Blocking Data Structures

106©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5

CBPQ: High Performance Lock-Free
Priority Queue

5.1 Introduction

Priority queues serve as an important basic tool in algorithmic design. They are
widely used in a wide variety of applications and systems such as simulation sys-
tems, job scheduling (computer systems), networking (e.g., routing and realtime
bandwidth management), file compression, artificial intelligence, numerical com-
putations, and more. With the proliferation of modern parallel platforms, the
need for a high-performance concurrent implementation of the priority queue has
become acute.

A priority queue supports two operations: insert and deleteMin. The ab-
stract definition of a priority queue (PQ) provides a set of key-value pairs, where
the key represents a priority. The insert() method inserts a new key-value pair
into the set (the keys don’t have to be unique), and the deleteMin() method re-
moves and returns the value of the key-value pair with the lowest key (i.e., highest
priority) in the set.

Lock-free (or non-blocking) algorithms [26, 30] guarantee eventual progress of
at least one operation under any possible concurrent scheduling. Thus, lock-free
implementations avoid dead-locks, live-locks, and priority inversions. Typically,
they also demonstrate high scalability, even in the presence of high contention.

In this paper we present a design of a high performance lock-free linearizable
priority queue (PQ). The design builds on a combination of two ideas. First, we
use the chunk linked list [5] as the underlying data structure. This replaces the
standard use of heaps, skip lists, linked lists, or combinations of them. Second,
we use the fetch-and-increment (F&I) instruction to obtain better performance
for the deleteMin operation. This replaces the stronger, but less performant
compare-and-swap (CAS) atomic primitive.

The deleteMin operation is a bottleneck for concurrent implementations of
concurrent PQs, because it creates a single point of contention, and concurrent
deleteMin invocations cause a performance degradation [35]. It is exactly at such

107©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

a point of contention that a F&I instruction is of great advantage over a use of a
CAS instruction, as also noted in [17, 43].

In order to build a data structure that can use a F&I instruction, we employed
the chunk linked list from [5], where each node (denoted chunk) in the list is an
array of M elements. When the relevant chunk is found, an index of a location
into which a new element can be inserted can be calculated concurrently using a
F&I instruction. Following [5] the chunks are concurrently split or merged with
other chunks to maintain predetermined size boundaries. This is done using a
freezing mechanism, which notifies threads that old parts of the data structure
(which they are currently accessing) have been replaced by new ones. We denote
the obtained PQ design a Chunk-Based Priority Queue (CBPQ).

Various constructions for the concurrent PQ exist in the literature. Hunt et.
al. [32] used a fine-grained lock-based implementation of a concurrent heap. Drag-
icevic and Bauer presented a linearizable heap-based priority queue that used
lock-free software transactional memory (STM) [14]. A quiescently consistent
skip-list based priority queue was first proposed by Lotan and Shavit [37] us-
ing fine-grained locking, and was later made non-blocking [19]. Another skip-list
based priority queue was proposed by Sundell and Tsigas [49]. While this im-
plementation is lock-free and linearizable, it required reference counting, which
compromises disjoint-access parallelism and degrades performance.

Liu and Spear [36] introduced two concurrent versions of data structure called
mounds (one is lock-based and the other is lock-free). The mounds data structure
is a rooted tree of sorted lists that relies on randomization for balance. It sup-
ports O(log(log(N))) insert operations and O(log(N)) deleteMin operations.
Mounds perform well in practice (with high probability) and their insert oper-
ation is currently the most performant among concurrent implementations of the
PQ. Recently, Linden and Jonsson [35] presented a skip-list based PQ. Deleted
elements are first marked as deleted in the deleteMin operation. Later, they are
actually disconnected from the PQ in batches when the number of nodes marked
as deleted exceed a given threshold. Their construction outperforms previous al-
gorithms by 30�80%. Very recently, Calciu et al. [8] introduced a new lock-based,
skip-list-based PQ that uses elimination and flat combining techniques to achieve
high scalability at high thread counts. We didn’t manage to compare their scheme
to ours in time for this submission, yet, their own measurements seem to suggest
a smaller improvements over previous work than our own. In addition, their elim-
ination mechanism is of independent interest and can be added to our mechanism
to achieve even better performance.

We implemented CBPQ in C++ and compared its performance to the Linden’s
and Jonsson’s PQ [35] and to the lock-free and the lock-based implementations of
the Mounds PQ [36]. We evaluated the performance of our design using targeted
micro-benchmarks: one micro-benchmarks runs only insert operations, a second
micro-benchmark runs only deleteMin operations, and a third micro-benchmark
runs a mix of insert and deleteMin operations, where each occurs with equal

108©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

probability. Measurements show that the CBPQ deleteMin operations run up to
4 times faster than deletions of the Linden’s and Jonsson’s PQ, which outperforms
the deletions of Mound. Mounds have the fastest insert operations, outperform-
ing the CBPQ insert by a factor of up to 2. But for a mix of deleteMin and
insert operations CBPQ outperforms Mounds by a factor of up to 3, and Linden’s
and Jonsson’s PQ by a factor of 1.5–2.

The rest of the paper is organized as follows. In Section 5.2 we provide a short
overview of the CBPQ design. In Section 5.3 we present the full CBPQ algorithm.
We discuss optimizations in Section 5.4 and report measurements in Section 5.5.
In Section 5.6 we describe the linearization points and show lock-freedom.

5.2 A bird-Eye Overview

The CBPQ data structure is composed of a list of chunks. Each chunk has a
range of keys associated with it, and all CBPQ entries with keys in this range are
located in that chunk. The ranges do not intersect and the chunks are sorted by
the ranges values. To improve the search of a specific range, an additional skip-list
is used as a directory that allows navigating into the chunks, so inserting a key to
the CBPQ is done by finding the relevant chunk using a skip-list search, and then
inserting the new entry into the relevant chunk.

The first chunk is built differently from the rest of the chunks since the first
chunk has the smallest keys and it therefore supports all deleteMin operations.
We do not allow inserts to the first chunks. An insert of a key that is in the range
of the first chunk goes through special handling and is discussed below. The other
chunks (excluding the first) are used for insertions only.

The first chunk consists of an immutable ordered array of elements. To delete
the minimum, a thread simply needs to atomically fetch and increment a shared
index to the array of the first chunk. All other chunks consist of arrays with keys
in the appropriate range, but are not ordered. So an insert can simply find a
chunk using the skip list chunk directory, and then add the new element to the
first empty slot in the array, again, simply by fetching and incrementing the index
of the first available empty slot in the array.

When an insert operation finds that it needs to insert a key to the first chunk
it registers this key in a special buffer. Then, a new first chunk with a new sorted
array is created from the remaining keys in the first chunk, all keys registered in
the buffer, and if needed, more keys from the second chunk. Typically, we let
a thread wait for a limited time before making everybody cooperate on creating
a new first chunk. During this limited wait, the buffer fills with more keys that
justify the cost of the new first chunk construction. The creation of a new first
chunk is also triggered when there are no more elements to delete in the first
chunk. The creation of a new first chunk is made lock-free by letting any thread
take part in the construction, and never making a thread wait for other threads
to complete a task.

109©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

When an internal chunk becomes full due to insertions, it is split into two
half-full chunks using the lock-free freezing mechanism of [5]. The full description
of the algorithm is provided in Section 5.3 below.

5.3 The Full CBPQ Design

The CBPQ contains a set of keys (each associated with some value) that are
partitioned into ranges with up to M keys in each. Each range is located in a
chunk and the chunks themselves are ordered in a linked list. (In Section 5.4
below, we also add a skip-list to expedite finding a chunk with a desired range.)
Each chunk has an array in which the contained keys are stored. The first chunk

holds the range with the lowest M keys in the set, which are also ordered. From
the first chunk’s creation, its range is immutable, no keys can be added, and only
deletions can be performed on it, by increasing the array index. The insertions are
usually done on the remaining internal chunks, each holding an unordered set of
the keys in its associated range. Insertions are done by increasing the array index
and writing the key-value pair. When a key needs to be inserted into the range
of the first chunk, it is instead placed in a special chunk called buffer. This buffer
is pointed to by the first chunk and it holds all the keys that need to be inserted
into the first chunk. Upon creation of a new first chunk (when it is empty or when
enough keys have accumulated in the buffer), the buffer keys are inserted into the
new first chunk.

5.3.1 Data Structures

Each chunk in CBPQ has a status word, which will be atomically updated and that
signifies the chunk state; an array index (which we denote just index); and a frozen

index. A chunk can be created in insert, delete, or buffer states, indicating
that it was created for further insertions, for deletions, or for serving as a buffer
for keys to be inserted into the first chunk, respectively. When a chunk has to be
replaced by a new chunk, the old chunk enters the freezing state, indicating that
it is in the process of being frozen. The frozen state indicates that the chunk
is frozen and thus, obsolete. In this work we disregard memory management;
the chunks are statically allocated and a frozen chunk is never reused. The frozen
index is used only for freezing the first chunk, as will be explained in Section 5.3.3.
In Listing 5.1, we give the Status and Chunk classes that we use. The relevant
state, index, and frIndex fields are all held in a single machine word that is
called the Status.

In addition to the status, each chunk consists of an array of keys (entries in
the Chunk class), which holds the key-value pairs contained in the chunk. The
entries are machine words, where bits can be differently divided between key and
value. For simplicity, in what follows we will refer to the keys only. Each chunk
has an immutable maximal value of a key that can appear on it, defined when the
chunk is created (max in Chunk). A chunk holds keys less than or equal to its max

110©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

 1

First Chunk
<Sate: DELETE, Index: 1>

MAX: 20

Internal Chunk
<Sate: INSERT, Index: 3>

MAX: 40

Internal Chunk
<Sate: FREEZING, Index: 2>

MAX: �

5 9 11 15 20 22 29 40 22 55 61 61

Deletions only Insertions of 20 < k � 40

First Chunk Pointer

Buffer Chunk
<Sate: BUFFER, Index: 2>

12 8 10

Insertions of 40 < k � �

Insertions of
k � 20

Figure 5.1: Overview of the CBPQ data structure for N = 5

1 class Status{
2 uint29_t frIndex;
3 uint3_t state;
4 uint32_t index;
5 }; // 64 bits, machine word
6
7 class Chunk{
8 Status status;
9 uint64_t entries[M];

10 uint32_t max;
11 uint64_t frozen[M/63+1];
12 Chunk ⇤next, ⇤buffer;
13 };

Listing 5.1: Status and Chunk records

value and greater than the max value of the previous chunk (if it exists). This
max field is not relevant for the buffer chunk. Any chunk (except the buffer) uses
a pointer to the next chunk (the next field). Finally, only the first chunk uses a
pointer to a buffer chunk (the buffer field). The meaning of the frozen array
in the Chunk is related to the freeze action and will be explained in Section 5.3.3.
Finally, the CBPQ is a global pointer head to the first chunk. Fig. 5.1 illustrates
the CBPQ scheme.

5.3.2 Operations Implementation

Insert: The insert pseudo-code is presented in the insert() method in List-
ing 5.2. In order to insert a key into CBPQ, we first need to find the relevant
chunk – C. Because chunks are ordered in their ranges, a simple search can be
used, skipping the chunks with smaller maximums (Line 5). If an insert must
be performed to the first chunk, the insert_to_buffer() method is invoked, as
explained in the next paragraph. Otherwise, C is not first. After C is found, its
index is atomically increased (Line 13). The aIncIdx() method wraps an F&I

instruction and returns the status with the new value of the chunk index. The
index is increased regardless of the state of the chunk. The number of bits required
to represent the chunk size (M) is much smaller than the number of bits in the
index. Thus, an overflow does not happen. If C is not frozen and the increased
index does not point beyond the chunk’s capacity, we simply write the relevant key

111©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

to the array entry (Lines 17-21). The write is followed by a memory fence in order
to ensure it will be visible to any other thread that may freeze C concurrently.
As long as no freeze of the index was detected, the insert is finished. Otherwise
(if the index was increased too much or a freeze was detected), the freeze is com-
pleted and C is split (Lines 23, 24), as will be explained later. After the chunks
restructure, the insert is restarted.

Insert to the first chunk: The first chunk is immutable from its creation
and is used only for deletions. However, it is still responsible for the range of
the lowest keys. Such keys are inserted into the buffer pointed to from the first
chunk. The pseudo-code of an insertion to the buffer chunk is presented in the
insert_to_buffer() method in Listing 5.2. It starts by allocating a new buffer
holding the relevant key, if needed (Line 37). The create_buffer() method
returns true if the new buffer was successfully connected to the first chunk, or
false if another thread had connected another buffer. In the latter case, a new
pointer to the buffer is inserted into curbuf. The create_buffer() method’s
pseudo-code can be found in Appendix 5.7, Listing 5.6. Keys are inserted to the
buffer in a manner similar to their insertion to the internal chunk: the index is
increased and the key is placed. If this cannot be done because the buffer is full
or frozen, the insert_to_buffer() method returns false (after the first chunk’s
freeze and recovery) to signal that the insert operation has to be retried. The
insert to buffer operation cannot end until the new key is included in the first
chunk and considered for deletion. So after a key is successfully inserted into a
buffer, the freeze and merge of the first chunk is invoked. However, if the first
chunk is already frozen, the insert to the first chunk can safely return (Line 53),
because no deletion can now happen until the new key is taken into the new first
chunk. After the first chunk is replaced, the insertion is considered done. The
freeze and merge will be explained later.

Delete minimum: The deletion is very simple and usually very fast. It goes
directly to the first chunk, which has an ordered array of minimal keys. The first
chunk’s index is atomically increased. Unless the need to freeze the first chunk is
detected, we can just return the relevant key. The pseudo-code for the deletion
operation is presented in the deleteMin() method in Listing 5.2.

5.3.3 Split and Merge Algorithms

Freeze: For splitting or merging chunks, a freeze is first applied on the chunks, in-
dicating that new chunks are replacing the frozen ones. A frozen chunk is logically
immutable. Then, a recovery process copies the relevant entries into new chunks
that become active in the data structure. Threads that wake up after being out of
the CPU for a while may discover that they are accessing a frozen chunk and they
then need to take actions to move into working on the new chunks that replace
the frozen ones. In [5], the freezing process of a chunk was applied by atomically
setting a dedicated freeze bit in each machine word (using a CAS loop), signifying
that the word is obsolete. Freezing was achieved after all words were marked in

112©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

1 void insert(int key) {
2 Chunk⇤ cur = NULL, ⇤prev = NULL;
3 while(1) {
4 // set the cur and prev pointers according to the key
5 getChunk(&cur, &prev, key);
6
7 if (cur==head) { // first chunk
8 if (insert_to_buffer(key, cur, head)) return;
9 else continue;

10 }
11
12 // atomically increase the index in the status
13 Status s = cur�>status.aIncIdx();
14 int idx = getIdx(s);
15
16 // insert into not full and non�frozen chunk
17 if (idx<M && !s.isInFreeze()) {
18 cur�>entries[idx] = key;
19 memory_fence;
20 if (!cur�>entryFrozen(idx)) return;
21 }
22
23 freezeChunk(cur);
24 freezeRecovery(cur, prev); //restructure the CBQP
25 // retry after restructure
26 }
27 }
28
29
30
31 bool insert_to_buffer(int key, Chunk⇤ cur, Chunk⇤ curhead) {
32 Chunk ⇤curbuf = cur�>buffer;
33 bool result = true;
34
35 // PHASE I: key insertion into the buffer
36 if(curbuf==NULL) // the buffer is not yet allocated
37 if (create_buffer(key,cur,&curbuf))
38 goto phaseII; // the key was added in creation
39
40 // atomically increase the index in the status
41 Status s = curbuf�>status.aIncIdx();
42 int idx = getIdx(s);
43 if (idx<M && !s.isInFreeze()) {
44 curbuf�>entries[idx] = key;
45 memory_fence;
46 if (!curbuf�>entryFrozen(idx)) result = false;
47 else result = true;
48 } else { result = false; }
49
50 // PHASE II: first chunk is merged with the buffer
51 // before this insert ends
52 phaseII:
53 if (curhead�>status.isInFreeze()) return result;
54 freezeChunk(cur);
55 freezeRecovery(cur, NULL);
56 return result;
57 }
58
59
60
61 int deleteMin() {
62 Chunk⇤ cur, next;
63 while(1){
64 cur = head;
65 // atomically increase the index in the status
66 Status s = cur�>status.aIncIdx();
67 int idx = getIdx(s);
68 // delete from not full and non�frozen chunk
69 if (idx<M && !s.isInFreeze())
70 return curr�>entries[idx];
71
72 // First freeze, then remove frozen chunk from CBPQ
73 freezeChunk(cur);
74 freezeRecovery(cur, NULL); // retry after restructure
75 }
76 }

Listing 5.2: Common code path: insertion of a key and deletion of the minimum

113©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

this manner. Such a freezing process may be slow, applying a CAS instruction on
each obsolete word, sometimes repeatedly. In the context of CBPQ it turns out
that we can freeze a chunk in a faster way.

Assuming a 64-bit architecture, we group each 63 entries together and assign
a freeze word of 64 bits to signify the freeze state of all 63 entries. MSB of the
freeze word simply says that the word is set. Then, we associate a bit for each of
the 63 entries. This bit signifies whether the key in the associated entry has been
copied into the chunks that replace the current frozen chunk. For example, an
insert operation may increment the array index reserving a location for the insert,
but then be delayed for a long while and wake up to find that the chunk has been
frozen and entries have been copied. If the entry content was not available during
the copying of the old chunk to the new one, then this entry has not been copied,
and the inserting thread should be able to determine that via the specific freezing
bit that is associated with the frozen chunk entry.

All freeze bits are located separately from the data holding words, with a simple
mapping from them to their freeze bits. In the CBPQ Chunk class, the data words
are the M array entries that can be used to store the CBPQ keys. All freeze words
are combined in the frozen array, which appears in Listing 5.1 as an array in the
Chunk class.

During the freezing process, the 63 entries are read. If a zeroed entry is found,
then the insert operation on it was not completed and we do not need to copy
it into the new chunk. This processing happens in the freezeKeys() routine
(Appendix 5.7, Listing 5.5). To update a freeze word, one needs to simply read
the 63 entries, decide which of the entries is nullified, and create a word of bits
signifying which of the entries are relevant for the copy and which are not. After
creating such a freeze word, a CAS is used to try and place this word in the freeze
array. Each freeze word is updated only once, due to MSB being set only once.
All this allows the freezing process to be completed using fewer CAS instructions.

Following the pseudo-code in Listing 5.3, here is how we execute the freeze for
a chunk C. In the first phase of the operation, we change C’s status, according
to the current status (Lines 6-28). Recall that the status consists of the state,
the index and the frozen index. If C is not in the process of freezing or already
frozen, then it should be in a buffer, an insert or a delete state, with a zeroed
frozen index and an index indicating the current array location of activity. For
insert or buffer chunks, we need only change the state to freezing; this is done
by setting the bits using an atomic OR instruction (Line 11). The frozen index is
only used for the first chunk, in order to mark the index of the last entry that was
deleted before the freeze. Upon freezing, the status of the first chunk is modified
to contain freezing as a state, the same index, and a frozen index that equals
the index if the first chunk is not exhausted, or the maximum capacity if the first
chunk is exhausted, i.e., all entries have been deleted before the freeze (Line 14).
Let us explain the meaning of the frozen index.

As the deletion operation uses a F&I instruction, it is possible that concurrent

114©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

1 void freezeChunk(Chunk⇤ c) {
2 int idx, frozenIdx = 0; Status localS; // locally copied status
3 // PHASE I : set the chunk status if needed
4 while(1){
5 // read the current status to get its state and index
6 localS = c�>status; idx = localS.getIdx();
7
8 switch (localS.getState()){
9 case BUFFER : // in insert or buffer chunks

10 case INSERT : // frozenIdx was and remained 0
11 c�>status.aOr(MASK_FREEZING_STATE);
12 break;
13 case DELETE :
14 if (idx>N) frozenIdx=M; else frozenIdx=idx;
15 Status newS; // set: state, index, frozen index
16 newS.set(FREEZING, idx, frozenIdx);
17 // CAS to the new state, it can be prevented
18 // by a delete updating the index
19 if (c�>status.CAS(localS, newS)) break;
20 else continue;
21 case FREEZING: // in process of being freezed
22 frozenIdx = localS.frIndex; break;
23 case FROZEN : // c was frozen by someone else
24 c�>markPtrs(); // set next chunk and buffer
25 return; // pointers as deleted
26 }
27 // break the loop reaching this line, continue only
28 break; // if CAS from DELETE state failed
29 }
30 // PHASE II: freeze the entries
31 freezeKeys(c, frozenIdx);
32 // move from FREEZING to FROZEN state using atomic OR
33 c�>status.aOr(MASK_FROZEN_STATE);
34 c�>markPtrs(); // set the chunk pointers as deleted
35 }

Listing 5.3: Freezing of a chunk

115©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

deletions will go on incrementing the index of the first array in spite of its status
showing a frozen state. However, if a thread attempts to delete an entry from
the first chunk and the status shows that this chunk has been frozen, then it will
not use the obtained index. Instead, it will help the freezing process and then
try again to delete the minimum entry after the freezing comlpetes. Therefore,
the frozen index indicates the last index that has been properly deleted. All keys
residing in locations higher than the frozen index must be copied into the newly
created first chunk during the recovery of the freezing process. If all keys in the
frozen first chunk have been deleted, then no key needs to be copied and we simply
let the frozen index contain the maximum capacity M , indicating that all keys
have been deleted from the first chunk.

In Line 19 the status is updated using a CAS to ensure that concurrent updates
to the index due to concurrent deletions are not lost. If C is already in the
freezing state because another thread has initiated the freeze, we can move
directly to phase II. If C is in the frozen state, then the chunk is in an advanced
freezing state and there is little left to do. It remains to mark the chunk pointers
buffer and next so that they will not be modified after the chunk has been
disconnected from CBPQ. These pointers are marked (in Line 24 or Line 34) as
deleted (using the common Harris delete-bit technique [22]). At this point we can
be sure that sleeping threads will not wake up and add a link to a new buffer
chunk or a next chunk to C and we may return.

The second phase of the freeze assumes the frozen index and state has been
properly set and it executes the setting of the words in the frozen array in
method freezeKeys() (Line 31) as explained above. The pseudo-code of the
freezeKeys() method can be found at Appendix 5.7, Listing 5.5. With the sec-
ond phase done, it remains to change the state from freezing to frozen (using
the atomic OR instruction in Line 33) and to mark the chunk’s pointers deleted as
discussed above. The atomic OR instruction is available on the x86 platform and
works efficiently. However, this is not an efficiency-critical part of the execution
as freezing happens infrequently, so working with a simple CAS loop to mark the
pointers would be fine.

CBPQ recovery from a frozen chunk: Once the chunk is frozen, we pro-
ceed like [5] and replace the frozen chunk with one or more new chunks that hold
the relevant entries of the frozen chunk. This is done in the freezeRecovery()

method, presented in Listing 5.4. The input parameters are: cur – the frozen
chunk that requires recovery, and prev – the chunk that precedes cur in the
chunk list or NULL if cur is the first chunk. The freezeRecovery() method is
never called with a cur chunk being the buffer chunk. The first phase determines
whether we need to split or merge the frozen chunk, Lines 6-7. If cur is the first
chunk (which serves the deleteMin operation), a merge has to be executed; as
the first chunk gets frozen when there is need to create a new first chunk with
other keys. If it is not the first chunk, then an internal chunk (which serves the
insert operation) must have been frozen because it got full and we need to split

116©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

1 void freezeRecovery(Chunk⇤ cur, Chunk⇤ prev) {
2 bool toSplit = true; Chunk ⇤local=NULL, ⇤p=NULL;
3
4 while(1) {
5 // PHASE I: decide whether to split or to merge
6 if (prev==NULL||(prev==head && prev�>status.isInFreeze()))
7 toSplit = false;
8
9 // PHASE II: in split, if prev is frozen, finish its recovery first

10 if (toSplit && prev�>status.isInFreeze()){
11 freezeChunk(prev); // ensure prev freeze is done
12 if (getChunk(&prev, &p)){ // search the previous to prev
13 // the frozen prev found in the list, p precedes prev
14 freezeRecovery(prev, p); // invoke recursive recovery
15 }
16 // prev is already not in the list; re�search
17 // the current chunk and find its new predecessor
18 if (!getChunk(&cur, &p)) {
19 return; // the frozen cur is not in the list
20 } else {prev = p; continue;}
21 }
22
23 // PHASE III: apply the decision locally
24 if (toSplit) local = split(cur);
25 else local = mergeFirstChunk(cur);
26
27 // PHASE IV: change the PQ accordingly to the
28 // decision, if decision was wrong � repeat
29 if (toSplit) {
30 if (CAS(&prev�>next, cur, local)) return;
31 } else {
32 // When modifying the head, check if cur second or first
33 if(prev==NULL)
34 if(CAS(&head, cur, local)) return

35 else if(CAS(&head, prev, local)) return;
36 }
37
38 // for the retry check for new location
39 if (!getChunk(&cur,&p))
40 return; // the frozen cur is not in the list
41 else prev = p;
42 }
43 }

Listing 5.4: CBPQ recovery from a frozen chunk

it into two chunks. There is also a corner case in which a merge of the first chunk
happens concurrently with a split of the second chunk. This requires coordination
that simply merges relevant values of the second chunk into the new first chunk.
So if cur is the second chunk and the first chunk is currently freezing, then we
know we should work on a merge.1

In order to execute the entire recovery we will need to place the new chunks in
the list of chunks following the previous chunk. We therefore proceed by checking
if the previous chunk is in the process of freezing and if it is, we help it finish
the freezing process and recover. Namely, we freeze it, we look for its predecessor
and then invoke the freeze recovery for it (Lines 10-21). This may cause recursive
recovery calls until the head of the chunk list, Line 14. During this time, there is

1It is possible that we miss the freezing of the first chunk and start working on a split of the second
chunk. In this case a later CAS instruction, in Line 30, will fail and we will repeat the recovery process
with the adequate choice of a merge.

117©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

a possibility that some other thread has helped recovering our own chunk and we
therefore search for it in the list, Line 18. If we can’t find it, we know that we are
done and can return.

In the third phase we locally create new chunks to replace the frozen one
(Lines 24,25). In the case of a split, two new half-full chunks are created from
a single full frozen chunk, using the split() method. The first chunk, with the
lower-valued part of the keys, points to the second chunk, with the higher-valued
part. In the case of a merge, a new first chunk is created with M ordered keys
taken the from the frozen buffer and from the second chunk. This is done using the
mergeFirstChunk() method (Appendix 5.7, Listing 5.7). If there are too many
frozen keys, a new first chunk and new second chunk can be created. The new
first chunk is created without pointing to a buffer. The buffer will be allocated
when needed for insertion.

In phase IV, the thread attempts to attach its local list of new chunks to the
chunk list. Upon success the thread can return. Otherwise, the recovery is tried
again, but before that, cur is searched for in the chunk list. If it is not there, then
other threads have completed the recovery and we can safely return. Otherwise, a
predecessor has been found for cur in the search and the recovery is re-executed.

5.4 Optimizations

A Skip-List Optimization: The CBPQ algorithm achieves very fast deletions.
Previous work required complexity O(logn), whereas the CBPQ deletions are exe-
cuted in O(1) (average) complexity, and hence CBPQ deletions are more efficient.
However, as described in Section 5.3, insertions use linear search on the chunk
list, which is slow compared to the logarithmic randomized search used in both
the Mounds PQ and the skip-list-based PQ. Measurements showed that most of
the insertion time is spent on reaching the relevant chunk. In order to improve the
search time for the relevant chunk, we added a simple lock-free skip-list from [30]
to index the chunks. We have made only two changes to the skip-list from [30].
We first turned it into a true dictionary, that holds a value in addition to the key.
In our setting the key is the max value of a chunk and the value is a pointer to
the chunk. Next, we modified it to return the value (associated with the key) as
a result of a search for a key k. If k is in the set, then its associated value is
returned. Otherwise, the value associated with (i.e., a pointer to the chunk whose
max value is) the largest key smaller than k is returned.

Deletions are not affected by the skip-list. It is only used during insertions.
When a key needs to be inserted, the relevant chunk is found using the skip-list.
As the chunk list is modified by splits and merges, we modify the skip-list to reflect
the changes, but we do not bother to keep a perfect synchronization between the
currently available chunks and the chunks pointed by the skip-list as explained
below.

Updates to the skip-list are executed as follows. After finding the appropri-

118©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

ate chunk, the insert operation is executed as specified in the previous section.
When a chunk restructuring is needed, we start by executing a split or a merge
as described in Section 5.3.3. Next, we let the (unique) thread that succeeded to
insert its local new chunk into the chunk list and make it the replacement chunk
(Lines 30,34 or 35 in the freezeRecovery() method) make the necessary updates
to the skip-list. It removes the frozen, obsolete chunks from the skip-list and it
adds the new chunks.

Since the skip-list is not tightly coupled with the insertions and deletions of
chunks from the chunk list, it is possible that the skip-list will lead to a frozen
chunk, or that it will not find a desired chunk. If, during execution of an insert

operation, a search of the skip-list leads to a frozen chunk, a recovery of that
chunk is invoked, the chunk is removed from the skip-list, and the search can be
restarted. In contrast, if we can not find the chunk we need through the skip-list
search, we choose a chunk that is closest to it and that precedes it in the skip-list.
Next, we simply proceed by walking linearly on the actual chunk list to find the
chunk we need.

An Effective Backoff Optimization: When an insert operation needs to
insert a key to the first chunk, it initiates a freeze of the first chunk. It starts by
putting its item in a buffer, and then it checks if the freezing of the first chunk
was initiated. If yes, it simply returns, knowing that the item will be inserted
during the recovery from the freeze. Otherwise, it starts the freeze of the first
chunk. Frequent freezing of the first chunk create a downgrade in performance.
We found out that it is worth waiting a bit before executing the freeze. This lets
several insert operations put their items into the buffer and complete fast, before
the freezing begins. When the freezing begins, the buffer is blocked for further
insertions and all current items in the buffer are processed.

We implemented this pause by adding a delay after a successful modification
of the first chunk state to freezing (Line 19, Listing 5.3). Note that insertions
to the buffer may continue, because the buffer itself becomes blocked (frozen)
only after the freezing of the first chunk actually starts. Such a delay allows
many fast insertions into first chunk. They insert their items into the buffer and
return immediately (Line 53, Listing 5.2). A good wait-time turned out to be 5

microseconds.
The problem of frequent insertions into the first chunk is not common with

a workload executing random insertions only (with no deletes). In fact we mea-
sured a probability of 0.15% (about once every 600 inserts) for insertion to hit
the first chunk. However, when we run a mix of (random) inserts and deletes, the
probability of insertion to the first chunk increases significantly into 15%. The
reason for this is that the deletes always remove the lowest keys, making the range
of the first chunk cover the minimum possible value up to the current minimum
in the PQ. Since this range increases with time and the insertions choose a uni-
formly distributed key, the chances of hitting the range of the first chunk increase
substantially during the run.

119©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

5.5 Performance Evaluation

We implemented the CBPQ and compared it to the Linden’s and Jonsson’s PQ [35]
(LJPQ) and to the lock-free and lock-based implementation of Mounds. We chose
these implementations, because they are the best performing priority queues in
the literature and they were compare to other PQ implementations in [35, 36].
We thank the authors of [36] and [35] for making their code available to us. All
implementations were coded in C++ and compiled with a -O3 optimization level.

Mixed�workload�after�1�000�000�keys

0

1

2

3

4

5

6

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

M
ill
io
n�
op

er
at
io
ns
�p
er
�s
ec
on

d

LJPQ

LF�Mound

CBPQ

LB�Mound

(a) Mixed throughput for a PQ with 1M keys

Mixed�workload�after�100�000�keys

0

1

2

3

4

5

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads
M
ill
io
n�
op

er
at
io
ns
�p
er
�s
ec
on

d

LJPQ

LF�Mound

CBPQ

LB�Mound

(b) Mixed throughput for a PQ with 100K keys

Deletions�workload�after�20�000�000�keys

0

2

4

6

8

10

12

14

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

M
ill
io
n�
op

er
at
io
ns
�p
er
�s
ec
on

d

LJPQ

LF�Mound

CBPQ

LB�Mound

(c) Deletion throughput for a PQ with 20M keys

Deletions�workload�after�10�000�000�keys

0

2

4

6

8

10

12

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

M
ill
io
n�
op

er
at
io
ns
�p
er
�s
ec
on

d

LJPQ

LF�Mound

CBPQ

LB�Mound

(d) Deletion throughput for a PQ with 10M keys

Figure 5.2: Throughput in delete and mixed workloads.

Insertion�workload�after�1�000�000�keys

0

5

10

15

20

25

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

M
ill
io
n�
op

er
at
io
ns
�p
er
�s
ec
on

d

LJPQ

LF�Mound

CBPQ

LB�Mound

(a) Insert-only throughput for a PQ with 1M
keys

Insertions�workload�after�100�000�keys

0

5

10

15

20

25

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

M
ill
io
n�
op

er
at
io
ns
�p
er
�s
ec
on

d

LJPQ

LF�Mound

CBPQ

LB�Mound

(b) Insert-only throughput for a PQ with 100K
keys

Figure 5.3: CBPQ vs. Lock-Free and Lock-Based Mound in insert workload.

120©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

We ran our experiments on a machine with two AMD Opteron(TM) 6272
16-core processors, overall 32 cores. The machine was operated by Linux OS
(Ubuntu 14.04) and the number of threads was varied between 1 and 32. The chunk
capacity (M) was chosen to be 928, so one chunk occupies a virtual page of size
4KB. The CBPQ implementation included the skip-list and backoff optimizations
of Section 5.4. The performance was evaluated using targeted micro-benchmarks:
insertion-only or deletion-only workloads and mixed workloads where deletions and
insertions appear with equal probability. The keys for insertions were uniformly
chosen at random among all 24-bit sized keys. We ran each test 10 times and
report average results. Error bars on the graphs show 95% confidence level.

A Mixed workload: In Figure 5.2(a) we report the throughput of operations
during one second, on a PQ that contains 1M entries before a measurement starts.
It turns out that the CBPQ outperforms LJPQ by a factor of 1.5 � 2. When
comparing the CBPQ to the lock-based version of Mounds (which outperforms
the lock-free version of Mounds), we see an improvement by a factor of 3 when
many threads are active. The results of the measurements with a smaller number
of keys can be seen in Figure 5.2(b) and they show that the CBPQ outperforms
LJPQ by 20� 80% for shorter chunk lists. When running the CBPQ on a single
thread, the obtained throughput was low. We suspect that the reason for that is
that the added delay does not achieve a concurrency benefit, and only delays the
execution.

Deletion-only workload: In order to make the deletion measurement rele-
vant with deletion-only workload, we ensured that there are enough keys in the PQ
initially so that deletions actually deleted a key and never operated on an empty
PQ. As the CBPQ performs the deletes very fast, we upload the heap with 10M or
20M entries to ensure that all deletes operate on non-empty PQ. In a deletion-only
workloads we see a huge performance improvement for the CBPQ. Results for the
deletion-only workload are reported in Figure 5.2(c) for 20M and Figure 5.2(d)
for 10M keys. The CBPQ deletion throughput is up to 4 times higher than LJPQ
throughput, and up to 10 times higher than the lock-based Mounds throughput.

Insertion-only workload: As in the mixed workload, we start with a PQ
that initially has 100K or 1M random keys in it. During the test, we let a varying
number of concurrent threads run simultaneously for 1 second, and we measure
the throughput. Figures 5.3(a) and 5.3(b) show the results. In both cases, the
CBPQ throughput is about 3 times worse than that of Mound, for large numbers
of threads. This follows from the difference in complexity. Inserts have complexity
O(log(log(N))) for the Mounds and O(log(N)) for the CBPQ. Note that for smaller
amount of threads, the advantage of Mounds deteriorates significantly. In spite of
the advantage Mounds has with inserts, CBPQ significantly outperforms Mounds
on a mixed set of operations. The CBPQ implementation outperforms LJPQ for
inserts-only workloads. Note that CBPQ’s skip-List contains only N/M entries
(N being the number of items in the PQ), and not N like LJPQ.

121©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

5.6 Correctness

Let us first specify the CBPQ operations linearization points, and next show that
CBPQ is lock-free. As a rule, CBPQ’s linearization points happen only during
modifications of non-frozen chunks that are either in an insert or a delete state.
When an operation accesses a frozen chunk C, it recovers C, but a linearization
point will not happen during the freeze or recovery.

First, we define the straightforward deleteMin operation’s linearization point.
It is set to the increase of the index on a non-frozen first chunk. In the deleteMin()
method the linearization point is set to Line 66 (Listing 5.2), conditioned on the
event that later in Line 69 the index is not detected as larger than the chunk
capacity and the chunk is not detected as frozen. If the chunk is frozen, or the
index is too high, then the operation will restart after the recovery and Line 66
will be executed again.

We divide the discussion for the insert operation’s linearization point into
two different cases. The first case is that the entry is inserted into the first chunk
and the second case is that the entry is inserted into a non-first chunk. We start
with the latter and select the linearization point of an insert to a non-first chunk
to be at the write of a key-value pair into the appropriate array entry of the non-
frozen chunk. In the insert() method this linearization point happens in Line 18,
conditioned on the event that later in Line 20 the chunk is not detected as frozen.

An insertion into the first chunk is more complicated. First, the entry is put
in the buffer chunk, then, the first chunk freezes, and then the buffer freezes,
and during the recovery of the first chunk, the entry is added to it. We let the
linearization point for this insertion be the point in which the first chunk freezes,
given that the entry was successfully added to the buffer before the buffer froze.
Formally, we condition on the entry being inserted into the buffer in Line 44
of the insert_to_buffer() method, and later in Line 46 it turns out that this
entry has been properly admitted into the buffer before the buffer itself was frozen.
Otherwise, if this entry was not admitted, its insertion will be retried after the first
chunk (and the buffer) are recovered. Given the above condition, the linearization
point is set to the time in which the first chunk’s state becomes freezing. This
happens with a successful CAS in Line 19 of the freezeChunk() method. If
more than one insertion into the first chunk participate in the same freeze, then
their linerization points happen simultaneously, as explained above, at the point
in time when the first chunk became freezing. To set the order between these
simultaneous inserts we use the increasing order of their keys. Their linearization
points can be defined happening in the above mentioned order, in the first chunk
freezing time, following one another with no other operation happening in between.

Lock-Freedom: In order to show that CBPQ is lock-free, we first consider
each of the operations insert and deleteMin and then consider the freezing
mechanism.

The insert operation has only two cases in which a backward branch occurs.
One is in Line 9 of the insert() method in which the insertion to the buffer

122©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

returns failure. This can only happen if the buffer is frozen. The second case is
when reaching Line 23, meaning that we fail to insert a key to a non-first chunk,
because it is frozen. The deleteMin operation needs to restart only when reaching
Line 73 of the deleteMin() method, where it discovers that the first chunk is under
freeze.

We note that in each of the above cases, we find a chunk that needs to be frozen
and we then invoke the freezeChunk() and the freezeRecovery() methods in
order to replace the chunk with a new one. We will later show that the freezing
mechanism guarantees progress, and we assume it now.

We start with a general claim saying that during the lifetime of a chunk some
progress must be made.

Claim 5.1. For any chunk C, during the time interval that starts with inserting

C into the chunk list and ends freezing C progress must occur by some thread in

the system.

Proof. C’s initial states can be one of insert, delete, and buffer. If C is
created in the insert state, which means that C is not first chunk, then N/2

insertions to C must complete before triggering C’s freeze. If C is created in the
delete state, then either N deletions from C complete before C needs a freeze or
at least one key is inserted into the associated buffer. In the latter case, when the
state of C changes to the freezing state, a linearization point for an insert to the
first chunk occurs, as specified above. Finally, if C is created in the buffer state,
we get a very similar behavior. C can be frozen only after at least one key has
been inserted into it. In addition, the buffer freeze happens only after first chunk
freezes as part of the mergeFirstChunk() method and again, the first chunk’s
change to the freezing state is the linearization point for an insert into the first
chunk, which means progress.

Recall that, the insert and deleteMin operation follow the backward branch
only when a freeze is encountered. Let C be the chunk that was frozen and into
which we wanted to insert the entry, or from which we wanted to delete an entry.
Let C 0 be the new chunk that replaced it during the execution of the recovery.
Therefore, the insert or deleteMin operations started on C will retry on C 0.
According to Claim 5.1 another retry can happen only if some progress occurred
on C 0 by some thread in the system.

We now move to proving that the freezing mechanism maintains lock-freedom.
From code inspection of the freezing process, the only backward jumps (that may
hinder progress) appear in two places: (1) when the first chunk’s state is changed
from delete to freezing in Line 19 of Listing 5.3 (CAS failure, because the
expected status word has been changed) and (2) when an insertion of a new chunk
to the chunk list (as part of recovery) fails since the expected previous chunk
pointer has been concurrently modified. See Lines 30, 34 and 35 in Listing 5.4. In
addition, there is also a recursion where freezeRecovery() calls itself in Line 14.
The recursion can not lead to infinite help without progress, because the recursion

123©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

depth is bounded by the chunk list size. The list size growth also implies a progress
of some insertions. In addition, because of the Claim 5.1, new chunks can not be
repeatedly added to and removed from the list (causing infinite help loop) without
some threads having a progress. All the above implies that new chunks can not
repeatedly be added to the list without a progress.

Let’s start with the first backward jump. Here, the status word has been
modified by a concurrently operating thread. This word contains three fields: the
state, the index, and the frozen index. A delete state can only change to a
freezing or a frozen state which means an advance in the freezing process and
then failing of the CAS cannot happen again in this loop due to a state change.
If the index has been modified concurrently, and then a deleteMin operation has
been linearized concurrently, which implies progress. Finally, the frozen index can
only change simultaneously with the state change and this case is similar to the
change of the state discussed first.

Moving to the second case, we know that the next pointer of the previous chunk
has been modified concurrently. This can happen if a new chunk has been added
to the chunk list after the previous one or the previous chunk has been frozen.
The first can only happen if another thread has added a new chunk to replace
the one that we are currently trying to recover. This means that the recovery is
done, and then searching for this chunk in Line 39 of Listing 5.4 will not find the
chunk and hence return from this function. Return from the freezeRecovery()

method is the end of the freeze activity and thus, a progress of a freeze. The
second (failure to insert a new chunk because the previous chunk is frozen) means
that the previous chunk is going to be recovered and replaced by a new chunk.
After that, either the insertion CAS succeeds, or a newer chunk was inserted again,
and thus, according to the Claim 5.1, before the previous chunk is frozen again,
progress must occur in the system.

5.7 Pseudo-code

In this section, we provide the remaining CBPQ implementation details. The
main interfaces as insert() and delMin() methods were presented in Listing 5.2;
here we present the rest of the code. The implementation is provided in a pseudo-
code, which follows closely the syntax of C. We start with the freezeKeys()

routine (cf. Listing 5.5), which is used internally by freezeChunk(). To update a
freeze word, one needs to simply read the 63 entries, decide which of the entries
is nullified, and create a word of bits signifying which of the entries are relevant
for the copy and which are not. After creating such a freeze word, a CAS is used
to try and place this word in the freeze array.

We continue to the create_buffer() method (cf. Listing 5.6), which is used in
the insert_to_buffer() method and which returns true if the new buffer (with
the given key) was successfully connected to the first chunk, or false if another
thread had connected another buffer. In any case, at the end, the output parameter

124©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

1 int freezeKeys(Chunk chunk, int frIdx) {
2
3 // go over parts of the entries which are held by one freeze word
4 for(int k=0; k<PARTS_IN_CHUNK�1; ++k){
5 uint64_t frWord=INIT_FR_WD; // init to 0s with MSB set to 1
6 uint64_t mask = 1;
7 // prepare a mask for one frozen word; if frIdx is higher than
8 // VALS_PER_WORD, then the entire part of the entries is skipped
9 for(int i=frIdx; i<VALS_PER_WORD; ++i, mask<<=1){

10 int curval = curr�>vals[i+k⇤VALS_PER_WORD]; // read the entry
11 if(curval != EMPTY_ENTRY) // EMPTY_ENTRY==0
12 // the value exists, mark the relevant entry (in local variable)
13 frWord |= mask;
14 }
15
16 // put local variable into the chunk. After this cas, surely MSB is set
17 atomicCAS(&chunk�>meta.frozen[k], 0, frWord);
18
19 // compute frIdx with respect to the next loop, which looks at entries
20 // k⇤VALS_PER_WORD... (k+1)⇤VALS_PER_WORD�1 as k grows
21 // by one in each iteration, frIdx decreases by VALS_PER_WORD
22 frIdx �= VALS_PER_WORD;
23 frIdx = (frIndex<0)?0:frIdx;
24 }
25 }

Listing 5.5: Freezing the entries

1 bool create_buffer(int key, Chunk chunk, Chunk⇤ curbuf) {
2 Chunk ⇤buf = alloc();
3 buf�>vals[0] = key; // buffer is created with the intended value
4 bool result = CAS(&chunk�>buffer,NULL,buf);
5 ⇤curbuf = buf; // update the buffer pointer (ours or someone’s else)
6 return result;
7 }

Listing 5.6: Creating the buffer chunk

curbuf holds the pointer to the buffer created by this or other thread.
Finally, in Listing 5.7 the mergeFirstChunk() method is presented. This

method creates a new first chunk with frozen entries of the old first chunk, buffer,
and other chunks if needed. Two arrays for keys are allocated locally, array keysC

holds the entries to be copied and array keysN is used for attaching additional
entries from other frozen chunks. Once enough entries are accumulated in array
keysC it is passed to the initFirstFromArray() method, which sorts the array
and creates a new first chunk (with second if needed). The new first chunk (or its
new descendant) points back to the list, to the first not frozen chunk. Pointer to
the new first chunk is returned.

125©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

1 Chunk⇤ mergeFirstChunk(Chunk cur) {
2 int keysC[2⇤M]={0}, int keysN[M]={0};
3 int lenC=0, lenN=0, frEntNum=0;
4 Chunk⇤ nextNF = NULL; // next not frozen chunk
5
6 fillFromFrozen(cur, keyC, &lenC);
7
8 if(ifBufferExists(cur)) { // freeze buffer chunk
9 freezeChunk(cur�>buffer);

10 fillFromFrozen(cur�>buffer, keyN, &lenN);
11 }
12
13 mergeArray(keyC, lenC, keyN, lenN);
14 lenC+=lenN;
15 nextNF = cur�>next;
16
17 while(lenC < M){ // not enough entries, freeze 2nd chunk
18 if (!cur�>next) break;
19 freezeChunk(cur�>next);
20 fillFromFrozen(cur�>next, keyN, &lenN);
21
22 mergeArray(keyC, lenC, keyB, lenB);
23 lenC+=lenN;
24 cur = cur�>next;
25 nextNF = cur�>next;
26 }
27
28 if (lenC == 0) // no more entries remain in the PQ
29 return initializePQ{};
30
31 return initFirstFromArray(keyC, lenC, nextNF);
32 }

Listing 5.7: Creating the new first chunk

126©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 5: CBPQ: High Performance Lock-Free Priority Queue

127©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 6

Discussion and Conclusions

The goal of this dissertation is to advance the state of the art for concurrent data
structures in three dimensions. The first goal is to design lock-free algorithms for
involved data structures to which lock-free algorithms did not previously exist,
such as a B-tree. The second goal is to improve system support for lock-free data
structures and especially memory management support. Finally, the third goal is
to improve performance for important basic data structures such as the linked list
and the priority queue.

Interestingly, two basic technical constructions turned out useful for several
higher level algorithms. First, the lock-free chunk mechanism, that is able to
merge and split, has been used with the linked-list, the B-tree, and the priority
queue. Second, the freezing mechanism, that lets new constructs replace obsolete
ones during the execution, was used with the linked-list, the B-tree, the priority
queue, and the lock-free memory management support.

First, in this dissertation, we have presented a chunking and freezing mecha-
nisms that build a cache-conscious lock-free linked list. Our list consists of chunks,
each containing consecutive list entries. Thus, a traversal of the list stays mostly
within a chunk’s boundary (a virtual page or a cache line), and therefore, the
traversal enjoys a reduced number of page faults (or cache misses) compared to a
traversal of randomly allocated nodes, each containing a single entry. Maintaining
a linked list in chunks is often used in practice (e.g., [20]) but a lock-free imple-
mentation of a cache-conscious linked list has not been available heretofore. The
building blocks of this list, i.e., the chunks and the freeze operation, are used for
building additional data structures in this dissertation.

Second, we presented a lock-free dynamic B+tree, which builds on CAS syn-
chronization. The construction is composed of a chunk mechanism that provides
the low-level node implementation, including splitting and joining a node, and
then a higher level mechanism which handles the operations at the tree level. The
two mechanisms and their interface are lock-free. To the best of our knowledge,
this is the first design of a lock-free balanced search tree for a general platform. Re-
sults indicate better handling of contention and higher scalability when compared
to the lock-based version of the B+tree. We have also proven the correctness (with

128©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

Chapter 6: Discussion and Conclusions

respect to linearizability) of the algorithm and its and lock-freedom property.
Third, we presented a new method for memory management of non-blocking

data structures called Drop the Anchor. Drop the Anchor is a novel combination of
the time-stamping method (which cannot handle thread failures) with the anchors
and freezing techniques that provide a fallback allowing reclamation even when
threads fail. Non-blocking algorithms must be robust to thread failures and so
coping with thread failures in the memory manager is crucial. We have applied
Drop the Anchor for the common non-blocking linked list implementation and
compared it with the standard Hazard Pointers method. Measurements show that
Drop the Anchor drastically reduces the memory management overhead, while
robustly reclaiming objects in all executions.

We believe our technique can be applied for other non-blocking data struc-
tures. Specifically, assume a data structure represented by a directed graph,
where vertices correspond to internal nodes and edges correspond to pointers be-
tween these nodes. When recovering a thread t, we need to freeze and copy the
sub-graph containing all internal nodes at the distance that depends on the an-

chor_threshold parameter, from the node pointed by t’s anchor. Essentially,
although the copying operation might be expensive and even involve the whole
data structure, the scalability bottleneck associated with the memory fences will
be removed from the common node access step.

Finally, we presented a novel concurrent, linearizable, and lock-free design of
the priority queue data structure, called CBPQ. CBPQ cleverly combines the
chunk linked list and the performance advantage of the F&I atomic instruction.
We implemented CBPQ and measured its performance against high performance
skip-list based PQ [35] and the Mounds [36] (lock-free and lock-based), which are
the best performing priority queues available. Measurements with a mixed set of
insert and delete operations show that CBPQ outperforms Mounds by a factor of
3 and high performance, skip-list based PQ by a factor of 2.

129©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

References

[1] H. Attiya and A. Fouren. Adaptive and efficient algorithms for lattice agreement and
renaming. SIAM J. Comput., 31(2):642–664, 2001.

[2] R. Bayer and M. Schkolnick. Concurrency of operations on b-trees. Acta Informatica, 1977.

[3] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kuszmaul. Concurrent cache-oblivious
b-trees. PODC, 2005.

[4] A. Braginsky, A. Kogan, and E. Petrank. Drop the anchor: Lightweight memory manage-
ment for non-blocking data structures. In Proc. SPAA, 2013.

[5] A. Braginsky and E. Petrank. Locality-conscious lock-free linked lists. In Proc. ICDCN,
2011.

[6] A. Braginsky and E. Petrank. Lock-free b+tree. In Proc. SPAA, 2012.

[7] T. Brown, F. Ellen, and E. Ruppert. A general technique for non-blocking trees. In PPOPP,
2014.

[8] I. Calciu, H. Mendes, and M. Herlihy. The adaptive priority queue with elimination and
combining. DISC, 2014.

[9] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. Fractal prefetching b+-trees:
Optimizing both cache and disk performance. SIGMOD, 2002.

[10] D. Comer. The ubiquitous b-tree. 1979.

[11] D. Detlefs, C. H. Flood, A. Garthwaite, P. A. Martin, N. Shavit, and G. L. Steele. Even
better dcas-based concurrent deques. DISC, 2000.

[12] D. Detlefs, P. A. Martin, M. Moir, and G. L. Steele. Lock-free reference counting. Distributed
Computing, 15(4):255–271, 2002.

[13] D. Drachsler, M. Vechev, and E. Yahav. Practical concurrent binary search trees via logical
ordering. PPOPP, 2014.

[14] K. Dragicevic and D. Bauer. Optimization techniques for concurrent stm-based implemen-
tations: A concurrent binary heap as a case study. In Proc. IPDPS, 2009.

[15] A. Dragojevic, M. Herlihy, Y. Lev, and M. Moir. On the power of hardware transactional
memory to simplify memory management. In Proc. ACM PODC, pages 99–108, 2011.

[16] F. Ellen, P. Fatourou, E. Ruppert, and F. Breugel. Non-blocking binary search tree. PODC,
2010.

130©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

References

[17] P. Fatourou and N. D. Kallimanis. A highly-efficient wait-free universal construction. SPAA,
2011.

[18] M. Fomitchev and E. Rupert. Lock-free linked lists and skip lists. In PODC, 2004.

[19] K. Fraser. Practical lock-freedom. In PhD dissertation, University of Cambridge, 2004.

[20] L. Frias, J. Petit, and S. Roura. Lists revisited: Cache-conscious stl lists. J. Exp. Algorith-
mics 14, 2009.

[21] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas. Efficient and reliable lock-
free memory reclamation based on reference counting. IEEE Transactions on Parallel and
Distributed Systems, 20(8):1173–1187, 2009.

[22] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In PODC, pages
300–314, 2001.

[23] T. L. Harris, K. Fraser, and I. Pratt. A practical multi-word compare-and-swap operation.
In DISC, 2002.

[24] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Performance of memory
reclamation for lockless synchronization. Journal of Parallel and Distributed Computing,
67(12):1270–1285, 2007.

[25] M. Herlihy. Impossibility and universality results for walt-free synchronization. 1988.

[26] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–149,
1991.

[27] M. Herlihy. A methodology for implementing highly concurrent data objects. ACM Trans.
Program. Lang. Syst., 1993.

[28] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblocking memory management
support for dynamic-sized data structures. ACM Trans. Comput. Syst., 23(2):146–196,
2005.

[29] M. Herlihy, V. Luchangco, and M. Moir. The repeat offender problem: A mechanism for
supporting dynamic-sized, lock-free data structures. 2002.

[30] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Pub. Inc., 2008.

[31] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[32] G. Hunt, M. Michael, S. Parthasarathy, and M. Scott. An efficient algorithm for concurrent
priority queue heaps. In Information Processing Letters, 1996.

[33] IBM and I. System/370. Extended architecture, principles of operation. Publication no.
SA22-7085, 1983.

[34] A. Kogan and E. Petrank. A methodology for creating fast wait-free data structures. In
PPOPP, 2012.

[35] J. Linden and B. Jonsson. A skiplist-based concurrent priority queue with minimal memory
contention. In OPODIS, pages 206–220, 2013.

131©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

References

[36] Y. Liu and M. Spear. Mounds: Array-based concurrent priority queues. In Proc. ICPP,
2012.

[37] I. Lotan and N. Shavit. Skiplist-based concurrent priority queues. In Proc. IPDPS, 2000.

[38] P. E. McKenney and J. D. Slingwine. Read-copy update: Using execution history to solve
concurrency problems. In Proc. Parallel and Distributed Computing and Systems, pages
509–518, 1998.

[39] M. Michael. High performance dynamic lock-free hash tables and list-based sets. SPAA,
2002.

[40] M. Michael and M. L. Scott. Correction of a memory management method for lock-free
data structures. Technical Report TR599; CS Dept. Univ. of Rochester, 1995.

[41] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Systems, 15:491–504, 2004.

[42] M. M. Michael. Practical lock-free and wait-free ll/sc/vl implementations using 64-bit cas.
ICDCS, 2004.

[43] A. Morrison and Y. Afek. Fast concurrent queues for x86 processors. In Proc. PPOPP,
2013.

[44] A. Natarajan and N. Mittal. Fast concurrent lock-free binary search trees. PPOPP, 2014.

[45] R. Oshman and N. Shavit. The skiptrie: low-depth concurrent search without rebalancing.
PODC, 2013.

[46] J. Rao and K. A. Ross. Cache conscious indexing for decision-support in main memory.
1999.

[47] O. Rodeh. B-trees, shadowing, and clones. 2008.

[48] H. Sundell. Wait-free reference counting and memory management. In Proc. IEEE IPDPS,
2005.

[49] H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for multi-thread
systems. In Journal of Parallel and Distributed Computing, 2005.

[50] S. Timnat, A. Braginsky, A. Kogan, and E. Petrank. Wait-free linked lists. OPODIS, 2012.

[51] S. Timnat and E. Petrank. A practical wait-free simulation for lock-free data structures.
In PPOPP, 2014.

[52] J. D. Valois. Lock-free linked lists using compare-and-swap. In Proc. ACM PODC, pages
214–222, 1995.

132©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

References

133©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

 ג

 מתפצלים B+ בעץ הצמתים. הסטנדרטיתCAS החומרה בפקודת שמשתמש חסמים-וחסר ,מאוזן

 לצורך (לעיל שתוארו) בגושים להשתמש היה טבעי לכן .העץ של האיזון על שמירת לצורך ומתאחדים

 .חסימות-חסרי הצמתים מימוש

 .חסימות-חסרי מבנים עבור יעיל הזיכרון בניהול לתמוך היא זו תזה של והאחרונה השלישית המטרה

 לניהול הקיימות השיטות .וחשובה פתוחה שאלה הוא דינמיים חסימות-חסרי מבנים של יעיל זיכרון ניהול

 .משמעותי באופן הביצועים את מפחיתות או אובייקטים לשחרר היכולת את מקריבות חסימות-חסר זיכרון

 התקורה את להפחית מאפשרתה "Drop the Anchor" הנקראת חדשנית שיטה מציגים אנו ,זו בעבודה

 שנכשלים החוטים בנוכחות אפילו אובייקטים בשחרור ותומכת ,משמעותי באופן הזיכרון לניהול הקשורה

 הרשימה של הפופולארי הנתונים מבנה על זיכרון לניהול הזו השיטה את מדגימים אנו .לרוץ ומפסיקים

 משמעותי באופן משפר "Drop the Anchor" כי מראים אנו ,מקיפה ביצועים הערכת תוך .המקושרת

 שלנו השיטה של הנכונות -"Hazard Pointers".ב שימוש שהיא היום המקובלת השיטה לאומת הביצועים את

 .פורמאלי באופן הוכחה

 את מנצלים כולם .יעילים וביצועים גבוהה תפוקה ומספקים אמפירי באופן הוערכו ל"הנ האלגוריתמים כל

מבנה של מיושן מחלק מנותבים להיות צריכים שחוטים למקרה חוטים לתיאום שלנו החדשה הטכניקה

 תומכת ההקפאה טכניקת (freezing). ההקפאה טכניקת - זו לטכניקה קוראים אנו .חדש לחלק הנתונים

 של אחר לחלק לעבור לחוטים להודיע באיך מתמקדת והיא ,חסימות-חסרי נתונים מבני של מחדש בארגון

-סיבית הגדרת ידי על נעשה הדבר .מיושן הוא כעת משתמשים הם בו שהחלק בגלל כלל בדרך ,הנתונים מבנה

 ללא אותם שהופך מה ,המיושן בחלק המצביעים או המילים כל על מיוחדת (freeze-bit) הקפאה

 מבנה של זה שחלק מבין קפוא נתון או במצביע להשתמש בניסיונו שנכשל חוט .לעדכון מתאימים

 שיפרנו עדיפויות תור של באלגוריתם הביצועים לשיפור .פעולתו את מחדש ומפעיל מיושן הוא הנתונים

 (freeze-words) ההקפאה-למילים ההקפאה-סיביות כל את אוספים אנו ושם ההקפאה טכניקת את

 .להקפאה הדרושות האטומיות הפקודות כמות את מקטינים אנו כך ,הנפרדות

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

 ב

 כתוצאה .מתקדם דבר של בסופו החוטים אחד כי מובטח ,המבנה על כלשהי פעולה במקביל ליישם מנסים

 .חסימות-חסרי נתונים במבני לשימוש ניתן אינו הדדית מניעה של הפופולארי הסנכרון פרוטוקול ,מכך

 חסימות-וחסרי ילייםמקב נתונים מבני לעצב היא ,הראשונה המטרה .מטרות שלוש זו דוקטורט לעבודת

 למבנה העיקרית הבחירה יהיו חסימות-חסרי נתונים שמבני לכך שואפים אנו .במיוחד גבוהים ביצועים בעלי

 מקושרת לרשימה גבוהים ביצועים בעל אלגוריתם מציגים אנו ,ראשון דבר ,כך לשם. המקביליים נתונים

 ידי על ,בספרות הקיים חסימות-סרתח מקושרת לרשימה האלגוריתם את מרחיבים אנו .חסימות-חסרת

 שלנו מקושרתה רשימהה (locality). המקומיות לעקרון מיוחדת התייחסות עם מקושרות רשימות בניית

 ,כאלה רשימות על עוברים כאשר(chunks). זיכרון של רצופים בגושים שנמצאים ערכים של מרצפים בנויה

 ,בזיכרון במיקומם גם לזה זה קרובים הם ולכן ושג באותו נמצאים כלל בדרך בערכם הקרובים הערכים

 מקושרות לרשימות יישומים .הווירטואלי זיכרון דף אותו על או המטמון שורת באותה נמצאים ,לדוגמא

 .קפדני טיפול דורש חסימות-לחסרי הפיכתם אבל ,בפרקטיקה קרובות לעתים מופיעים במטמון המתחשבים

 של מרבי ומספר מינימאלי מספר על ששומר ברשימה ערכים של שגו הוא זו בנייה של הבסיסי המרכיב

 בפני מעניין כלי הוא זהה הבסיסי המרכיב .חסימות-חסרת בדרך ואיחוד לפיצול ניתנים הללו הגושים .ערכים

 .מציגים שאנו אחרים חסימות-חסרי נתונים מבני לבנייתבהמשך העבודה שימשש ,עצמו

 תור .עדיפויות תור הוא זו בתזה המוצג ,גבוהים ביצועים ובעל חסימות-חסר כן גם ,אחר נתונים מבנה

 החומרה של המהירה הפריסה עם .תוכנה מערכות בהרבה המופיע חשוב אלגוריתמי מרכיב הוא עדיפויות

 מציגים אנו, זו בתזה .ויותר יותר לחשובות הופכות עדיפויות תורי של מקביליות גרסאות ,המקבילית

 של הביצועים על משמעותי באופן גוברים שביצועיו עדיפויות לתורי חדש סימותח-חסר אלגוריתם

 שימוש ועל (לעיל שתוארו) בגושים שימוש על מתבסס שלנו האלגוריתם .האחרים הידועים התורים

על פקודת עדיפה fetch-and-increment פקודת .היעילה fetch-and-increment האטומית החומרה בפקודת

compare-and-swap (CAS) מקום אותו את לעדכן צריכים חוטים הרבה בהם במצבים בטיפול לשימוש

 לראות אפשר ביצועים מהשוואת , כמו למשל הוצאת איבר העדיף ביותר מתור עדיפויות.המשותף בזיכרון

 .מקביליים עדיפויות לתורי אחרות הקיימות גישות פני על ,שתיים פי עד של בפקטור שיפור

 למבני הקיימות חסימות-חסרי גרסאות של הכיסוי את להרחיב היא ,הזו העבודה של ייההשנ המטרה

 מספקים חסימות-חסרי נתונים שמבני משום מועילה כזו ההרחבה .כזו גרסא להם אין שעדיין נתונים

 ההתקדמות-ומחוסר מקיפאון להתרחב ולהימנע ביכולתם וידועים (scalability) התקדמות הבטחת

(livelock) ,שהוא עץ חסימות-חסר מאוזן לעץ עיצוב מציגים אנו זו דוקטורט בעבודת. מובטחת היענות ומתן

B עץ .+Bשכיח בו השימוש ,מידע של גדולים בלוקים וכותבות שקוראות במערכות יעילה לעבודה + מיועד

 ,דינמי עץ של הראשון המבנה זה ,ידיעתנו למיטב .קבצים ובמערכות נתונים במסדי

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

 א

 תקציר

 יכולות אינן כבר ,תדירותו או ,מעבד של השעון מהירות שבה לנקודה התקדמה המעבדים יצור טכנולוגיית

 התפוקה של תמדתהמ עליה אפשרו שבעבר ,המעבד של ובתדירותו השעון במהירות עליה .להשתפר

 ספקי ,מעבד של השעון מהירות את להגדיל קוםבמ .קבוע בקצב נשמרים הם כעת ,המעבד של החישובית

 .המעבד מאותו כחלק הנקראות ליבות, חישוב יחידות כמה כיום ומספקים המיקוד את שינו המעבדים

 לקריאה גישה אפשרות יש ליבה לכל שבו ,המשותף זיכרון של הרעיון על מסתמכים ליבות מרובי מעבדים

 .הראשי הזיכרון הנקרא מהמחשב לחלק ולכתיבה

 לראות ניתן כעת .האחרונים בעשורים ומקורי חדשני מחקר של לשפע הביא המעבד בטכנולוגית זה שינוי

 נתונים ולעדכן לקרוא המאפשרת ,שונות לליבות לתקשורת כמרחב ,שונה מזווית הנתונים מבני את

 נקראת נפרדת חישוב יחידת כל .ביצועים לשיפור השאיפה הוא המיקבול מאחורי המניע הכוח .זמנית-בו

 .זמנית-בו שלהם הפעולות את ולבצע במקביל לנתונים לגשת יוכלו חוטים שיותר שכמה היא המטרה .חוט

 מבנה תקינות על לשמור מנת על מסונכרנים להיות צריכים השונים החוטים של העדכונים ,זאת עם

 .הנתונים

 למבנה לגשת אחד לחוט רק שרתהמאפ ,הדדית במניעה להשתמש היא החוטים לסנכרן הפופולארית הדרך

 .מסיים הראשון שהחוט עד מעוכבים ,נתונים לאותם הזקוקים ,אחרים חוטים .(ממנו לחלק או) נתונים

 של גישות מעכב הראשון שהחוט בגלל בעיקר ,רבים חסרונות לה יש אבל ,תיכנות את מפשטת זו שיטה

 אין םהשב ,חסימות-חסרי במבנים מתמקדת זו דוקטורט עבודת .נתונים לאותם הזקוקים החוטים שאר כל

 .אחרים של התקדמותם את לעכב יכול חוט

 באמצעות ומסתנכרנים מתקשרים חוטים. הביצועים לשיפור הנוכחית הבחירה הינם ליבות מרובי מעבדים

 של היעילות .מקביליים נתונים מבני באמצעות יםמתבצע והסנכרון התקשורת ,כלל בדרך .המשותף הזיכרון

 נתונים מבני בעיצוב מתעוררים חדשים אתגרים ,כן על יתר .לביצועים קריטית היא אלה נתונים נימב

 (scalable). במקביל חוטים של וגדל הולך מספר עם גם לעבוד להרחבה שיכולים הניתנים מקביליים

 חוטים הכמ אם .התקדמות הבטחת מספקים וגם להרחבה ניתנים הם חסימות-חסרי מקביליים נתונים מבני

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

 פטרנק ארזפרופסור נחייתמחקר נעשה בהה

 למדעי המחשבפקולטה ב

 מותי.דיבה בהשתלנעל התמיכה הכספית ה משרד המדעולאני מודה לטכניון

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

 לצורך מרובים חוטים בין לתיאום שיטות

 חסימות-חסרי נתונים מבני בנית

 חיבור על מחקר

 לשם מילוי חלקי של הדרישות לקבלת תואר

 דוקטור לפילוסופיה

ברגינסקיאנסטסיה

מכון טכנולוגי לישראל –הוגש לסנט הטכניון

 2015 מאי חיפה תשע"ה אייר

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

 לצורך מרובים חוטים בין לתיאום שיטות

 חסימות-חסרי נתונים מבני בנית

ברגינסקיאנסטסיה

©
 T

ec
hn

io
n

- I
sr

ae
l I

ns
tit

ut
e

of
 T

ec
hn

ol
og

y,
 E

ly
ac

ha
r C

en
tra

l L
ib

ra
ry

