
ספריות הטכניון
The Technion Libraries

בית הספר ללימודי מוסמכים ע"ש ארווין וג'ואן ג'ייקובס
Irwin and Joan Jacobs Graduate School

©
All rights reserved to the author

 This work, in whole or in part, may not be copied (in any media), printed,
 translated, stored in a retrieval system, transmitted via the internet or

 other electronic means, except for "fair use" of brief quotations for
 academic instruction, criticism, or research purposes only.

 Commercial use of this material is completely prohibited.

©
כל הזכויות שמורות למחבר/ת

אין להעתיק (במדיה כלשהי), להדפיס, לתרגם, לאחסן במאגר מידע, להפיץ באינטרנט, חיבור זה או
כל חלק ממנו, למעט "שימוש הוגן" בקטעים קצרים מן החיבור למטרות לימוד, הוראה, ביקורת או

מחקר. שימוש מסחרי בחומר הכלול בחיבור זה אסור בהחלט.

RELAX: Recovering Lazily
From Failed Execution With

Persistent Memory

Almog Zur

RELAX: Recovering Lazily
From Failed Execution With

Persistent Memory

Research Thesis in Partial Fulfillment of the Requirements
for the Degree of Master of Science in Computer Science

Almog Zur

Submitted to the Senate of the Technion — Israel Institute of
Technology

Adar, 5783, Haifa, March, 2023

This Research Thesis was Done under the Supervision of Prof. Erez Petrank, in the Faculty
of Computer Science.

The author of this thesis states that the research, including the collection, processing
and presentation of data, addressing and comparing to previous research, etc., was done
entirely in an honest way, as expected from scientific research that is conducted according to
the ethical standards of the academic world. Also, reporting the research and its results in
this thesis was done in an honest and complete manner, according to the same standards.

The generous financial help of the Technion is gratefully acknowledged.

Contents

1 Abstract 1

2 Introduction 3

3 Preliminaries and System Model 7
3.1 Persistent Memory . 7
3.2 Explicit Write-Backs . 7
3.3 Durable Linearizability . 8

4 Mirror Overview 9

5 Related Work 13

6 RELAX 17
6.1 Overview . 17
6.2 RELAX’s interface . 17
6.3 Recovering a patomic Field . 18
6.4 Tracking Recovery . 20
6.5 Memory Allocation And Management . 24
6.6 Recovering the Persistent Roots . 26

7 Correctness Argument 27

8 Evaluation 31
8.1 Experimental Setup . 31
8.2 Results . 32

9 Conclusions 41

Bibliography 43

List of Figures

6.1 RELAX System overview . 18
6.2 A problematic scenario . 19

8.1 Varying number of threads - Average throughput at 80% reads. Average size for list is
128 keys, for all other data structures it is 8 M keys. Error bars represent 95% confidence
intervals. 33

8.2 Varying number of threads normalized - Average throughput normalized according to
Mirror. 80% reads. Average size for list is 128 keys, for all other data structures it
is 8 M keys. Higher normalized throughput means RELAX performs better relative
to Mirror. In addition, performance of RELAX compared to Izraelevitz. Displays
RELAX’s average throughput for all data structures normalized to Izraelevitz. 34

8.3 Varying size - Average throughput, at 80% reads and 8 threads. Error bars represent
95% confidence intervals. 35

8.4 Varying updates ratio - Average throughput with average size of 128 keys for list and
8 M keys for all other data structures. all tests run using 8 threads. Error bars represent
95% confidence intervals. 36

8.5 recovery - Estimated throughput during recovery over 100 seconds with uniform distri-
bution. Measured using 8 threads, with an update ratio of 20% and a default size of
128M keys. 38

8.6 Zipfian distribution recovery - Estimated throughput during recovery over 100 seconds
with Zipfian distribution. Measured using 8 threads, with an update ratio of 20% and
a default size of 128M keys. Keys randomized according to zipfian distribution 39

8.7 Memory manager comparison - Average throughput of Mirror with the new memory
manager divided by the original Mirror’s average throughput for each data structure.
Varying number of threads, with 80% reads. Average size for list is 128 keys, for all
other data structures it is 8 M keys. 39

List of Tables

1
Abstract

Recent non-volatile main memory technology (such as Intel’s Optane) gave rise to an abun-
dance of research on building persistent data structures, whose content can be recovered
after a system crash. Such data structures employ infrequent (yet, costly) flush instruc-
tions to write back crucial data from the cache to the non-volatile memory. The main focus
of previous work has been to minimize the overhead incurred by maintaining a consistent
state in the non-volatile memory. In this thesis we focus on the next important goal in this
domain: shortening recovery time. We start with the Mirror construction, which is one
of the most effective general construction for efficient persistent lock-free data structures
available today, and we extend it with a lazy recovery procedure. The resulting system has
almost zero recovery time, with an overhead that quickly descends following a crash event.
We implemented the proposed methodology on a hash table, a skip list, a binary tree,
and a linked list. The evaluation shows that following a crash, even large data sets with
millions of nodes become responsive immediately. The overhead of lazy recovery slows the
structure for a couple of seconds until it regains maximal performance. We show that lazy
recovery is especially efficient for hierarchical data structures such as trees and imbalanced
key distributions such as zipfian.

1

1. Abstract

Abbreviations

NVMM Non Volatile Main Memory
DRAM Dynamic Random Access Memory
CAS Compare And Swap
DWCAS Double Width Compare And Swap
SMR Safe Memory Reclamation

Notations and Units

2

2
Introduction

Durable data structures form building blocks for constructing reliable systems, but their
durability usually comes with a performance overhead. To improve efficiency, many storage
systems employ in-memory data structures, which alleviate the secondary storage perfor-
mance bottleneck. With the advent of non-volatile main memories (NVMM), which offer
durable and byte-addressable access, at speeds comparable to main memory (DRAM), a
new era of durable in-memory data structures has emerged [15, 19–21, 26, 42, 54]. Such
durable data structures obtain performance that is much closer to the speed of in-memory
volatile data structures than to traditional storage systems, allowing durability at a much
lower cost.

Designing durable data structures is non-trivial, because the cache is still volatile in
current systems, and their content is lost upon a crash. During execution, the hardware
regularly evicts cache lines in an unpredictable order which may leave the NVMM in an
arbitrarily inconsistent state; some updates may already be written-back and others may
still be volatile and can potentially be lost in case of a system failure. Special write-back
instructions are provided by the hardware, enabling the programmer to control the order
of data movement from the cache to the memory, but these instructions bear a high cost.
Designing algorithms with a minimal number of flush executions turns out to be difficult
and error-prone. This made general constructions, which allow the user to easily transform
a data structure into a durable data structure attractive.

To transform volatile data structures into durable data structures new techniques were
developed. One such technique is logging the actions of the data structure, allowing for
the recovery of lost actions. Another technique is fine-grained durability control, minimiz-
ing the use of the aforementioned write-back instructions as much as possible while still
guaranteeing correctness. Furthermore, the use of NVMM and DRAM simultaneously as
done in Mirror [21] further reduces the overhead by frequently accessing DRAM, which is
currently still faster than NVMM. This allows Mirror, a general construction, to compete
with hand-crafted persistent data structures.

While there has been significant progress in making durable data structures efficient,
shortening the length of the recovery phase, i.e., the time interval after a crash in which
the data structure cannot execute operations, has not received much attention. In fact, a
trade-off has implicitly been placed between obtaining high-performance and achieving a
fast recovery after a crash. Three avenues are typically used to build durable data structures:
ad-hoc constructions, durable transactions, and general transformations. An ad-hoc durable
data structure is built for a specific data structure, such as a linked-list or a skip-list.
Significant wisdom is exercised to obtain an efficient structure with a minimal number of

3

2. Introduction

persist instructions. Zuriel et al.’s construction [58] of set data structures is arguably the
most efficient today, but it suffers from a long recovery, whereas the slower durable data
structures of David et al. [15] obtains faster recovery time. As ad-hoc data structures are
hard to get right for non-experts, programmers sometimes turn to transactions or general
transformations. Durable transactions are known to yield low performance, but provide
moderate recovery time. The recovery time usually does not depend linearly on the size
of the data structure, but only on the size of a log of recorded modifications, which is
typically of moderate size. Finally, general transformations, which are the focus of this thesis
present a similar trade-off. General transformations take a non-durable concurrent data
structure and generate a similar data structure (with the same operations) that is durable.
The simplest and least efficient general transformation of Izraelevitz et al. [33] generates
durably linearizable data structures by inserting flush and fence instructions at every load
and update. This yields data structures with low performance, but very short recovery
time. Advanced transformations like NVTraverse [19] and TIPS [37] incur a long recovery
in which one needs to traverse the data structure or a substantial log before execution can
resume. A state-of-the-art general transformation that generates highly efficient durable
data structures is the Mirror transformation [21], yet data structures generated by Mirror
require a long recovery time, which is linear in the size of the data structure.

A failure accompanied by a long recovery time, may render data inaccessible for a long
period, defeating the purpose of storing the data in durable storage in the first place.
Mirror [21] obtains high performance by storing a duplicate of the data structure on the
DRAM, where loads are executed at high speed. Unfortunately, Mirror needs to copy the
entire data structure from NVMM to DRAM during recovery, causing a long recovery, and
inaccessible data following a crash.

In this thesis, we present RELAX (REcovering LAzily from failed eXecutions). RELAX
extends the Mirror transformation to generate data structures that provide the best of both
worlds. On one hand, the generated data structures enjoy performance that is almost equiv-
alent to the one obtained by the original Mirror transformation. On the other hand, the
generated data structures are able to execute almost immediately after a crash. This is
achieved by allowing recovery to run lazily, concurrently with standard data structure op-
erations. Lazy recovery allows immediate access to the data post-crash, at the cost of
lengthening the recovery process. During RELAX’s recovery, while the necessary informa-
tion is being concurrently copied from NVMM to DRAM, the data structure performs at
a reduced performance. Once all nodes are recovered, the data structure returns to full
speed.

Mirror provides functionality by extending the std::atomic type of the standard C++
library with the patomic type. The simplest version of RELAX offers a fully general version
of the patomic type, similarly to Mirror. However, this simple general method incurs a non-
trivial overhead on normal (non-crashing) execution, as shown in the evaluation. Therefore,
we study optimizations that fit standard operating systems and widely used data structures
that speed the generated data structures and obtain the desired performance. For example,
when generating a recursive data structure (such as a skip-list or a binary search tree) on
standard operating systems (such as Linux or Windows), RELAX can reduce recovery time
to a few milliseconds with performance almost equal to Mirror with an overhead of 0− 5%.
All versions of RELAX are presented in section 6.2

Like Mirror, RELAX can be applied to all lock-free data structures to create durable
ones. We believe that similar techniques can be applied to other transformations, but
much care must be put into performance and correctness. Extending the recovery design
to be lazy and concurrent with program operations is non-trivial. Since recovery operates
concurrently with the data structure operations, in a lock-free manner, extra care is needed
to ensure both high performance and correctness. This is true especially for Mirror, where
two consistent copies of the data structure are maintained, one in DRAM and one in NVMM,

4

as in Mirror.

Contribution And Organization
The main contribution in this thesis is in obtaining the best of both worlds: RELAX gener-
ates durable data structures with both low durability overhead, and a short recovery time.
The technical challenge is due to concurrency: concurrent lazy recovery and concurrent ex-
ecuting threads need to execute concurrently correctly, while aiming at high performance.
Finally, we provide multiple solutions according to the various guarantees available with
existing operating systems, and according to the shape of the target data structures.

The rest of this thesis is organized as follows. Chapter 3 discusses the setting, presents
correctness definitions. Chapter 4 presents an overview of the Mirror algorithm, which
is integral to an understanding of RELAX. Chapter 5 discusses related work. Chapter 6
provides a detailed description of the RELAX construction and its correctness is argued
in Chapter 7. The experimental evaluation for different data structures is presented in
Chapter 8. Finally, Chapter 9 concludes.

5

3
Preliminaries and System
Model

In this chapter, we define our assumptions about the underlying hardware and discuss
related assumptions.

3.1 Persistent Memory

We consider a system of n processes p1, p2, ..., pn acting asynchronously with a shared mem-
ory system. This memory system is composed of three parts: (a) a volatile DRAM (b) a
non-volatile main memory (NVMM) which is somewhat slower than the DRAM and (c) a
volatile cache which is much faster than the DRAM, and stores recent accesses from the
DRAM and NVMM.

Each process may access the DRAM or NVMM in byte granularity, which first goes
through the cache. A write may stay in the cache for an unknown period of time, before
being implicitly written back to the DRAM or NVMM. A process may also decide to
explicitly force the cache to transfer a particular write to the DRAM or NVMM. After a
crash, only the memory in the NVMM remains valid, while both the DRAM and caches
are lost. For the sake of generality we assume the content of the DRAM after a crash is
arbitrary.

Like Mirror, we use the Px86 persistency model [48] with the full-system crash model by
Izraelevitz [33]. The persistency model does not impact the proof of RELAX’s extensions,
because RELAX’s extensions operate between crashes without any persistence instructions,
as any action of RELAX need not persist after a crash.

3.2 Explicit Write-Backs

A process can force an explicit write-back using a combination of two instructions. The
first is flush which instructs the cache to evict a particular address to memory. This
instruction however, is non blocking in its most efficient implementation, which means
that a write followed by a flush might not be immediately persisted. To address this issue
a fence instruction needs to be executed. The fence instruction guarantees write and flush
operations cannot be reordered beyond the fence, i.e., no further instructions can become
visible to other threads before write-back to non-volatile memory is completed. The specific
instructions for each processor can be found in the respective manual (Intel [29,30], AMD [1],
ARM [2]), see further details in [49,50].

7

3. Preliminaries and System Model

3.3 Durable Linearizability
We consider programs that execute data structure operations. Every operation’s invocation
and response are considered events which are related to the calling process. An invocation
happens just before the first instruction is executed, and a response occurs just after the final
instruction of the operation is completed. A crash is another event, that is not associated
with any particular process, and resets all volatile memory. During a crash event the
persistent memory is not affected. A history is defined as a finite series of events. A
linearizable history is one where any operation can be considered to take effect instantly at
a single point in time, between its invocation and response while satisfying the specifications
of the sequential data structure [28].

Izraelevitz et al. extended linearizability to system-wide crash events [33]. A history
is durably linearizable [33] if, after removing all crash events from the history, it remains
linearizable. This means that any operation that completed before a crash must be visible
after the crash along with some of the operations still in execution during the crash. In
addition, if an operation survives a crash, then all operations it depends on must also
survive the crash. To satisfy durable linearizability, the execution model may allow a
recovery operation, which is called right after a crash. Note that a crash may also happen
during recovery time (of a previous crash).

RELAX applies to lock-free data structures, which are a good fit for persistence. A data
structure is lock-free if one of its threads must make progress, even in worst-case scheduling
scenarios. In particular, threads must be able to make progress even if one or more threads
stop responding. Since a thread may stop executing at any time, and execution cannot be
disrupted, a lock-free data structure provides a consistent data structure state throughout
its execution, which matches persistence very well. Whenever a crash occurs, a lock-free
data structure must be in a consistent state, and so it can be recovered, if its state is well-
represented in NVMM. Persistent lock-free data structures can be found in various papers,
e.g., [15, 19–21,33,58].

8

4
Mirror Overview

Our lazy recovery algorithm extends Mirror [21]. For the sake of completeness, this chapter
provides a brief overview of the Mirror construction.

The Mirror library is a general construction that provides durability automatically. It
is easy to use, and it eliminates the need of a programmer to comprehend the complexities
that arise when designing algorithms for non-volatile main memory.

The Mirror library extends the std::atomic library [5], adding support for per-
sistence on non-volatile main memory, by overloading existing operations, e.g., com-
pare_exchange_strong, load, store, etc. To use the library, only the following is required.
Every field within a persistent object simply needs to be converted to patomic. The alloca-
tor wrapper needs to be used in every allocation, and a tracing operation must be provided.
The purpose of the tracing mechanism is to be able to trace all the reachable data from the
persistent roots after a crash and persist only reachable data. Mirror supports up to 8-byte
fields, though support can be extended to larger fields using a layer of indirection, making
the persistent field point to the larger field and changing fields by switching pointers.

When a crash occurs, a recovery operation is invoked, which traces all nodes in the
data structure and copies each one to the DRAM, to allow further operation execution on
the data structure. The recovery process is lengthy, and it is assumed that crashes occur
infrequently. Still, we would like to be able to return to normal operation much earlier,
even if crashes are infrequent, as recovering from a crash can take a long time. RELAX,
proposed in this paper, employs lazy recovery to achieve this desired goal.

In the underlying construction, each persistent object has two replicas: volatile and
persistent. Persistence is achieved by the persistent replica that resides on NVMM and is
always flushed for persistence. The volatile replica resides in DRAM. By placing it in the
DRAM, reading this replica becomes more efficient. Indeed, during normal execution, Mir-
ror reads all data from the volatile replica. To ensure consistency between replicas, writes
are carefully executed on both the volatile and the persistent replicas. The Mirror library
maintains consistency between the two replicas while concurrent writes and reads occur,
by implementing the patomic type with two fields: an std::atomic value that contains
the actual value, and a corresponding std::atomic sequence number. Linearizability [28]
is guaranteed by a careful write procedure, that makes sure the volatile replica update is
delayed by at most one value behind the non-volatile update. The sequence number is used
to signify how many updates occurred on the related field. Each time a value is updated,
the associated sequence number is increased monotonically, and ABA problems are avoided.

To support both replicas, Mirror’s allocator implements two operations. The first, called
init, mmaps a persistent and a volatile memory region. The second, called alloc, which

9

4. Mirror Overview

is an allocator wrapper, guarantees the allocation of an object on both regions.
Next we will explain Mirror’s writing operation, which delicately updates both replicas

to preserve durable linearizability. The write is first done on the NVMM, the persistent
replica, and then on the DRAM, which is the volatile replica. Every write is executed
using the CAS operation. As store and fetch_add may never fail, they keep calling the
CAS operation until they succeed. The pseudo-code of the CAS is taken from the original
paper [21] and presented in Figure 4.1. Let v be a variable located on both replicas. First,
it needs to verify that the value in the persistent replica is equal to the value in the volatile
replica, both in terms of the sequence number and the value itself (lines 5-16). Since reading
both the value and the sequence number is not atomic, the sequence number is read twice
to guarantee that the value is indeed related to this sequence number. After verifying that
both the volatile and persistent values are equal (after line 29), a new value can be written
to the persistent replica. The new value will contain the new value itself and a sequence
number that is increased by 1 compared to the last written sequence number. Every write
is executed with the DWCAS instruction, double-width-compare-and-swap, which swaps
two adjacent locations atomically in line 40. Upon success, the same value is written to
the volatile replica in line 44, and the write is finished. Upon failure, another thread has
attempted to write the value v to the volatile memory. In any case, the operation can be
completed.

In case of a failure in writing the value to the persistent memory, the thread that failed
in writing v helps the thread that succeeded by writing the successful value in the volatile
replica in line 47 and returns false.

The last case is where the value read in the volatile replica is different than that read
from the persistent replica. This case means that there is another ongoing concurrent
operation, and the current thread needs to help it (line 19).

10

Algorithm 4.1: Patomic Compare_exchange_strong Implementation

template < typename T >
bool patomic<T>:: compare_exchange_strong (T& expected , T newVal) {

patomic<T>∗ rep_p_addr = REP_V_2_REP_P(this) ;
while (true) {

rep_p_seq = rep_p_addr−>seq ; // Read rep_p
rep_p_val = rep_p_addr−>val ;
rep_p_seq_again = rep_p_addr−>seq ;

rep_v_seq = this−>seq ; // Read rep_v
rep_v_val = this−>val ;
rep_v_seq_again = this−>seq ;

// Res tar t i f seq and v a l i n c o n s i s t e n t
i f (rep_p_seq_again !=rep_p_seq | |

rep_v_seq_again !=rep_v_seq)
continue ;

// Help to complete another ongoing wr i t e
i f (rep_p_seq == rep_v_seq+1) {

FLUSH(rep_p_addr) ;
FENCE () ;
b e f o r e = {rep_v_val , rep_v_seq } ;
a f t e r = {rep_p_val , rep_p_seq } ;
DWCAS(this , be fore , a f t e r) ;
continue ;

}

// Make sure we have the same ve r s i on s
i f (rep_p_seq != rep_v_seq) continue ;

// I f va lue on rep_p i s not expected , f a i l
i f (rep_p_val != expected) {

expected = rep_p_val ;
return fa l se ;

}

// Update rep_p
be f o r e = {rep_p_val , rep_p_seq } ;
a f t e r = {newVal , rep_p_seq+1};
bool r e s = DWCAS(rep_p_addr , be fore , a f t e r) ;
FLUSH(rep_p_addr) ;
FENCE () ;
i f (r e s) {

DWCAS(this , be fore , a f t e r) ;
} else {

i f (be f o r e . va l == expected) continue ;
DWCAS(this , {rep_v_val , rep_v_seq } , be f o r e) ;

}
return r e s ;

}
}

11

5
Related Work

Many existing durable constructions can be roughly divided into data-structure specific
implementations or general constructions. General constructions are normally less efficient
but easier to integrate and can be used with a wider variety of algorithms.

The general constructions usually use a logging mechanism to be able to fully re-
cover from a system failure. To provide crash consistency across system failures, gen-
eral constructions for persistent applications are usually built upon transactional in-
terfaces. These interfaces rely on having two versions of the data, usually by main-
taining some sort of a logging mechanism, e.g., journaling, undo/redo/shadow logging,
etc. [3, 7–10, 12, 14, 22–25, 31, 32, 35–37, 40–42, 44, 51, 55]. Logs are used for recovering to a
consistent state, as they are usually persisted before the actual change is made to the data
itself. A large effort has been invested to improve logging techniques over the years.

Haria et al. [26] provide a library of C++ data structures which relies on shadow paging.
Only one fence is used per operation, but not guaranteeing durable linearizability [33], as it
allows for a stale version of the data structure to reappear after a crash, unlike in RELAX.
During recovery, they rely on garbage collection to clean up allocated memory from an
incomplete FASE, based on reachability analysis. This recovery method, as mentioned in
Section 6.5, requires a long downtime after a crash.

Pronto [42] adds durability to volatile data structures by using Asynchronous Semantic
Logging (ASL) to convert each operation on a volatile data structure into a failure-atomic
operation. It creates periodic, persistent snapshots of the data structure on NVMM. To
recover, Pronto replays semantic log entries recorded after the latest snapshot. During
evaluation Pronto did not recover immediately unlike RELAX. It displayed a recovery time
of 7 seconds for 32GB of data.

Xu et al. [57] presents Clobber, which logs the minimal set of writes that guarantees a
consistent state after recovery. Upon a system crash, the recovery restores all the overwrit-
ten inputs, and re-executes the transaction until it completes, for every thread. Clobber,
however, provides ACID semantics, which are weaker than durable linearizability [33], and
have only one copy in the non-volatile main memory, providing slower reads than RELAX.

FlatStore, designed by Chen et al. [6] proposes a persistent key-value storage engine.
They decouple the role of a key-value store into a persistent log structure and a volatile
index for fast indexing. After reboot, FlatStore loads the volatile index to DRAM, which
might require a significant time, same as in Mirror [21]. In case of a crash, FlatStore
sequentially scans its log to recover all the volatile data structures.

PMThreads [56] does not use a log, but uses two copies of the data in order to provide
transparent failure-atomicity for lock-based parallel programs. The application writes to a

13

5. Related Work

volatile buffer, which is eventually written to the active copy in the persistent memory. As
these updates happen periodically, it only guarantees buffered durable linearizability [33],
which is weaker condition than the one that RELAX provides.

Using a log, however, is very expensive due to the redundant writes one need to execute
to the persistent memory. Updating a copy, on the contrary, might reduce some of these
writes, but it might also degrade the performance as the updates to the active copy are
eventually serialized.

Another trend of general constructions eliminates the need to execute extra writes re-
lying on lock-freedom. Updates to a lock-free data-structure always leave it in a consistent
state.

Izraelevitz et al. [33] presented a general technique that provides durable linearizability
for any lock-free data structure. The construction requires inserting a flush and a fence for
every shared read and write, which is not practical in terms of performance, as demonstrated
in chapter 8. Recovering however, requires minimal time.

Zuriel et al. [58] eliminated the need to persist every shared read and write by not
persisting any pointers, for set data structures, which improved performance tremendously.
Recovering after a crash, however, requires traversing the entire heap and looking for valid
nodes in the persistent memory, which might be very slow.

Friedman et al. [19] introduced NVTraverse, which is another general technique for
constructing durable lock-free data structures. It provides an automatic way to insert
flushes and fences for data structures that have a special traversal form. After a crash, it
requires traversing the entire data structure and trimming all the virtually deleted nodes
before new threads start to operate, unlike RELAX.

AutoPersist [52] uses another approach. It transparently and dynamically ensures that
all reachable data from predefined durable roots will eventually reside in the NVMM. On
recovery, it relies on tracing all the reachable object by the garbage collector, and cannot
start working immediately, as RELAX can.

TIPS [37] uses logging to provide durable linearizability for any key-value store scheme.
In addition, the DRAM contains a hashtable cache that accelerates reads. When recovering
from a crash TIPS must process the entire log. During evaluation a recovery time of 9
seconds was measured, compared to RELAX’s milliseconds.

Log-Free Concurrent Data Structures [15] provides hand-tuned techniques for construct-
ing an efficient durable lock-free data structure. Durable linearizability is achieved using
the link-and-persist technique. Updates are accumulated and persisted together using a
link-cache, and a sync must be called in every operation in order to keep it durably lineariz-
able. While David et al. [15] provide techniques for building durable data structures, those
techniques require hand-tuning from an expert user. Complexity-wise, their recovery time
is linear at the amount of active memory areas, or the size of the data structure, compared
to RELAX’s recovery which is O(1) for all data structures.

RELAX’s challenges resemble challenges of concurrent garbage collection algorithms
that attempt to move an object while other threads are attempting to modify it (e.g., [17,
38, 46, 47, 53]). However, challenges for concurrent relocating garbage collectors are more
complex because RELAX can copy each field before the program accesses it, and it just
needs to make sure that all concurrent threads comply. In contrast, garbage collection must
allow concurrent modifications of objects while the objects are being moved.

RELAX’s challenge of ensuring data availability before access is reminiscent of a paging
mechanism needing to page in data before it is accessed. While page-level recovery has the
advantage of sequential access, it also has two main drawbacks. From a performance per-
spective, copying an entire page implies also copying un-allocated data unnecessarily, which
may reduce performance. From a correctness perspective, RELAX coordinates concurrent
recovery by multiple threads using the same version field that Mirror uses. Synchronizing
data structure operations against copying is a further challenge for a page with no semantic

14

fields and correctness is more involved. Without full blocking, a field could be recovered
and further modified by one thread, before a second delayed thread overrides the new values
with older values from recovery time.

15

6
RELAX

6.1 Overview
In this chapter, we present the RELAX transformation. RELAX extends Mirror [21] with
a responsive recovery algorithm, so that data structures created with RELAX can imme-
diately start execution after a crash.

RELAX is composed of two parts. It inherits the patomic type from Mirror, with
updates discussed in the next few sections. Following a crash, Mirror copies the entire data
structure from non-volatile to volatile space. Thereafter, the data structure is in a consistent
state and regular execution can proceed. In order to provide swift recovery, RELAX starts
executing with most of the data structure stored only in the NVMM. While executing,
RELAX tracks which data has been recovered. Recovered data is accessed in DRAM,
whereas unrecovered data is first copied from NVMM to DRAM before being accessed. A
tracking mechanism is used to track which fields have been recovered to the DRAM. The
process can be seen in figure 6.1.

We start in section 6.2 by specifying how a programmer can take a lock-free data struc-
ture and use RELAX to make it persistent. Next, we present the basic algorithm for recov-
ering a single patomic field in Section 6.3. We then discuss how to ensure each patomic is
lazily recovered transparently and efficiently before it is first accessed after a crash in Sec-
tion 6.4. We discuss the memory management system we used in Section 6.5 and describe
a way to convert it into a persistent safe memory reclamation scheme in Section 6.5.1. We
argue about correctness in Chapter 7.

6.2 RELAX’s interface
The Mirror library requires the programmer to convert all fields they wish to persist into
patomic. Mirror also requires the programmer to provide a traversal function that traverses
all the data structure nodes that are reachable from the roots. This traversal function is
used in the recovery process to copy all reachable data from NVMM to DRAM. RELAX
does not need to traverse the data structure during recovery, and therefore, it eliminates
the need to provide a traversal function.

Mirror provides the patomic type which extends the standard C++ library’s
std::atomic type. RELAX provides a similar type denoted BitsetPatomic which works
for the general case (similarly to Mirror) with no extra assumptions. However, the most
general case bears a noticeable overhead. While the recovery process allows the data struc-
ture to respond almost immediately, the normal execution (when no failures occur) becomes

17

6. RELAX

Figure 6.1: RELAX System overview

Figure 6.1 displays the process of loading an unrecovered patomic field. When a patomic
is already recovered, steps 2 and 3 can be skipped and the value can be directly returned.

slower as can be seen in the evaluation in chapter 8. During this section we will start the
description with the general case and no assumptions made. Later we also study two practi-
cal assumptions that enable performance optimizations. We study each of the assumptions
separately, and then also the case where both assumptions hold.

The first assumption is that the data structure is recursive. Namely, it consists of nodes,
connected using pointers. We also assume that the programmer is willing, when declaring
persistent patomic fields, to distinguish between pointers and data (non-pointers) fields.
This assumption on the data structure and on being able to identify persistent pointer fields
allows effective optimizations that will be described below.

The second assumption that allows optimizing performance is that the operating system
zeros a memory space when it is mmap’ed. This assumption is common in practice due
to security concerns, and in particular, it holds for Linux and Windows [39, 43]. The
initialization assumption implies that after a crash, the region of volatile memory to which
we copy the data structure is initiated with zeros. Its content is not arbitrary. Using this
assumption simplifies the algorithm and allows optimizations unavailable for the general
case.

6.3 Recovering a patomic Field
RELAX uses the same patomic API as Mirror. The patomic type supports all C++’s
atomic operations, but RELAX also extends this type with a (private) recoverField
method. After a crash, RELAX internally makes sure that the recoverField method
is called on each individual patomic before it is accessed. The goal of the recoverField
method is to make sure that the patomic’s NVMM version has been copied to DRAM after
the crash.

In the original Mirror setting, all fields are copied from NVMM to DRAM after a
crash (before starting to execute operations) and therefore all fields are ready for access.
Unlike Mirror, RELAX starts operation immediately after a crash, allowing recovery to

18

6.3. Recovering a patomic Field

run concurrently with data structure operations. This means that data needs to be copied
concurrently with the execution and there are multiple threads trying to complete operations
and copy data from the NVMM to DRAM at the same time. Therefore, recovery needs a
more involved concurrent algorithm, which we present below. In Section 6.3.1 we describe
how to recover a field when recovery is needed, and in Section 6.4 we describe how to decide
whether a field needs to be recovered (i.e., has not been previously recovered).

6.3.1 The Algorithm

We note first that RELAX cannot use a simple memcpy to copy data from NVMM to
DRAM. As concurrent operations are executing, one thread can run memcpy to copy the
NVMM value to DRAM, and then update the field value in both NVMM and DRAM. But
a concurrent thread, running a bit slower, may overwrite the new value with the older value
from NVMM due to its own slower memcpy execution, leading to an incorrect execution.

A seemingly simple solution to the above problem could be to use a DWCAS [30] in
the copying process and relying on the sequence number (included in each patomic field)
to prevent a delayed DWCAS attempt on a field that has already been copied and mod-
ified after the crash. But this solution is not linearizable (not correct) if the content of
the DRAM after a crash is arbitrary. In particular, it is possible that after a crash, the
value and sequence number of a field on the DRAM coincidentally are set to some value
and sequence number that confuse a slow recovering thread into rolling-back DRAM val-
ues. An example of such a scenario is depicted in Figure 6.2. The upper square represents
the content in the NVMM and the lower square represents the content in the DRAM. A
process, p1, attempts to recover a field, and in preparation to copy, it reads the content
NV1 from the NVMM and V1 from the DRAM. the process p1 stops right before executing
a DWCAS to rewrite the DRAM field. At that time, another process p2 recovers the same
field and completes, copying NV1 to DRAM. Then, p2 continues execution, writing new
content to both the NVMM and DRAM. At some point, p2 writes the content con to both
NVMM and DRAM and by coincidence con equals V1. Finally, p1 wakes up and wants to
write the content it read, NV1, to the DRAM. It uses DWCAS, which sees con = V1 in
the DRAM, allowing DWCAS success, overwriting DRAM with NV1. As the original V1 is
arbitrary, it can exactly match both value and version number that confuse the erroneous
DWCAS. Subsequently, any process that tries to read from the patomic field will see NV1
instead of p2 ’s con. This scenario shows that correctness is not obtained because either
the semantics of the data structure are violated by introducing a new value with no cor-
responding operation, or the order of operations of the same thread are reversed, violating
linearizability.

Figure 6.2: A problematic scenario

The main problem in the above example is that the DRAM content of the field following
the crash matched an actual subsequent field content in the execution. Recall that the
content of each patomic field consists of (val, seq) pairs where val is the value written by
the application and seq is a separate number signifying how many times the field value was
modified. To eliminate the above problem, we use seq to prevent such scenarios. To this

19

6. RELAX

end, we make sure that the sequence numbers in the DRAM field content after a crash
will not appear in a subsequent NVMM content within a very long time after the crash.
This would ensure V1, that includes the sequence number will not equal con. To avoid
unnecessary updates, we only update the NVMM sequence (NV MM.seq) if NV MM.seq
could reach DRAM.seq in at most 263 updates. If this can occur, we modify NV MM.seq ←
DRAM.seq + 1, which guarantees it would take at least 263 updates to reach either the
original DRAM sequence or the original NVMM sequence. This guarantees that sequence
numbers do not repeat, and so contents do not repeat ensuring recoverField will not write
old data to the DRAM.

The RELAX recoverField algorithm is presented in Algorithm 6.2. The algorithm
starts (lines 1 − 2) by reading the value and sequence number from the DRAM and then
from the NVMM. If both values and sequence numbers match, the data is in a stable
state and no recovery is needed. If not, in Line 4 we check whether the DRAM starts
with a sequence number that might be reached from the NVMM sequence number in less
than 263 updates. As previously discussed, and illustrated in Figure 6.2, this could lead to
overwriting valid modifications. In Line 4.1, if there is a potential sequence number collision
we modify the NVMM’s sequence number to be higher than the DRAM’s sequence number,
specifically higher by 1, which is SD + 1 in our case. If SD = SNV then the above problem
will not occur and we do not have to take action, thus we can directly continue to Line 5.
Once we ensure that the DRAM sequence value does not reach the NVMM sequence due to
its arbitrary initial content, we modify the DRAM field to equal the content of the NVMM
in Line 5, concluding recovery and allowing threads to rely on the DRAM’s content when
executing the data structure’s operations.

Algorithm 6.2: RecoverField
RecoverField (address):
1 : read (VD, SD) from DRAM(address)
2 : read (VNV , SNV) from NVMM(address)
3 : if (VNV , SNV) = (VD, SD) return
4 : if 0 < (SD − SNV) mod 264 ≤ 263

4.1 : if CAS(NV MM(address).seq , SNV , SD + 1) fail, goto 1
4.2 : SNV = SD + 1
5 : DWCAS(DRAM(address) , (VD, SD) , (VNV , SNV))

if DWCAS fails, goto 1

6.4 Tracking Recovery

In this section we describe how to tell whether a patomic field has already been restored
since the last crash, or whether one needs to execute recoverField before accessing it. We
could avoid tracking field recovery by calling recoverField before any load and store of a
patomic field, but such a solution degrades performance significantly.

A natural solution to tracking field recovery is to use a flag for each patomic field
signifying whether it was already recovered. We start with a simple solution that does not
perform optimally, and then discuss assumptions that allow performance optimizations. To
distinguish the different versions of the algorithm, we name patomic differently for each
version.

20

6.4. Tracking Recovery

6.4.1 Using a Markbit Separate Table.
The simplest solution for storing the recovery flags, is to use an external markbit table, with
a single bit per potential field address, signifying whether a recovery was already applied to
this field. In this simple case we replace the name patomic with BitsetPatomic. Given an
address of a BitsetPatomic field, we query its associated mark bit in the markBit table,
which represents the recovery flag. We can then call recoverField if the associated flag in
the markbit table is unmarked. After calling recoverField we mark the markbit table to
avoid redundant repeated calls to recoverField.

A problem with this approach is that the markbit table must be initialized before the first
usage, which is costly, and defies the attempt to make a quick recovery. A straightforward
initialization of an array takes O(n) time1, and must occur before execution can begin.
To resolve this problem, we employ an array with O(1) initialization time, for which a
concurrent lock-free variant was recently proposed by Jayanti and Shun [34]. However, this
method uses auxiliary arrays to initialize the array when accessing an individual cell. These
auxiliary arrays contain in total two indices for each word in the main array. As a result,
this method adds a space overhead, as each 64 bits in the markBit table, associated with
64 patomic variables, require at least 16 bytes. Which translates to 1 byte in a markbit
table for every 64 bytes of data. This method offers an O(1) initialization, but trades off
memory overhead. Locality is also harmed, due to the need to access an external array
during a load, which harms performance. In what follows we attempt to improve over the
simple markBit table (that employs the O(1) initialization scheme) by looking at realistic
assumptions that can be made with standard data structures and systems.

6.4.2 Recursive Data Structures.
Our second method works with recursive data structures, which are widely used in practice.
Recursive data structures consist of nodes connected by pointers (e.g, linked lists, trees, skip
lists, but not arrays). A recursive data structure has (a small number of) root pointers from
which all other nodes can be reached. Given that the data structure is recursive, we can
improve the maintenance of the recovery flag (the mark bit). We place the bit that signifies
whether a node has been recovered (copied from NVMM to DRAM) in the pointer to
the node. Assume first that there is a single pointer pointing to each node (such as in a
linked-list or a tree, but not a skip list). In this subsection we present an algorithm that
works for this case, and we deal with multiple incoming pointers later in Subsection 6.4.3
below. The idea is that a pointer to an object will tell whether the referent is already
recovered or not. A traversal of the data structure can make sure that all traversed nodes
are recovered by examining the pointers on the way and recovering any node that is not
yet recovered, before accessing it. For this method we denote persistent pointers with the
type MarkablePatomicPointer and other non-pointer atomic fields use the type patomic.

This algorithm requires that the programmer provides a simple recoverNode method.
This method receives a pointer to a node, and it calls recoverField for each field in
the node. This method can be automatically generated when the programming language
provides a reflection operation that can generate a list of fields for a given object, and it is
trivial for the programmer to write such a method.

To place a flag on a pointer, we note that objects are often word-aligned (8-bytes-
aligned), which leaves the three least-significant bits (LSBs) of each pointer permanently
zeroed. We use the third LSB to mark whether the referenced object has been recovered.
After a crash we recover the roots of the data structure by copying them to DRAM and
setting their mark bit to signify that the objects they reference have not been recovered.

1Initialization time is O(n) when n is the size of the NVMM memory space, which is higher – and
potentially much higher – than the data structure size.

21

6. RELAX

From then on, the program can only reach an object through recovered pointers, which are
marked if pointing to unrecovered objects. Thus when dereferencing a marked reference
(via the load method of the MarkablePatomicPointer field) the load method will recover
the referenced node (via the recoverNode method) and reset the mark bit of the reference
itself. Thus the recoverNode will be called before accessing any unrecovered nodes.

Lock-free data structures (which we make persistent by the RELAX transformation)
often make use of LSBs of a pointer to mark objects for deletion (e.g., [18,27,45]). But the
algorithms we are aware of only use the first two LSBs for this purpose, and this is why
we propose to use the third LSB for marking the recovery of a referent. The advantage
of keeping the recovery bit in the pointer to an object is that we often have to read this
pointer to access the object, and so the pointer is still in the cache when we check whether
the referenced object has been recovered. This reduces the excessive number of cache misses
and the space overhead that the general bitmap solution imposes.

To implement this approach, we extend the patomic<T*> class of the Mirror construc-
tion to MarkablePatomicPointer<T> which inherits from patomic<T*>. Pointer fields
in the data structure should be declared as MarkablePatomicPointer, whereas non-pointer
fields should be declared as patomic. MarkablePatomicPointer<T> is a patomic of a
pointer and has all of its methods, with two methods modified: recoverField and load.
The load method is changed to check for the mark bit of the pointer, and if marked, the load
uses recoverNode to recover the referenced node and unmark the MarkablePatomicPointer
pointer before continuing to execute with it. The code for recoverField is presented in
Algorithm 6.3. This is similar to the recoverField code for patomic, but with two impor-
tant changes. First, when copying the address from the NVMM replica to its corresponding
DRAM replica as is, the DRAM replica of the pointer is marked as pointing to unrecov-
ered data by setting the third LSB. Null pointers are not marked, since their referent is
vacuously recovered. This can be seen in Line 4, where we write (mark(VNV), SNV) to the
DRAM. Second, Line 3 from Algorithm 6.2 is removed, since now we expect VD and VNV

to be different.
The code for load appears in Algorithm 6.4. When loading a pointer from DRAM, we

check if it is marked. If the pointer is marked, we recover the referenced object using the
object’s recoverNode method (supplied by the programmer), which calls recoverField for
every field within the object. We then unmark the pointer in DRAM and return it. Since
unmarking is local to the DRAM, we do not change the sequence number.

Algorithm 6.3: RecoverField For MarkablePatomicPointer
RecoverField (address):
1 : read (VD, SD) from DRAM
2 : read (VNV , SNV) from NVMM
3 : if 0 < (SD − SNV) mod 264 ≤ 263

3.1 : if CAS(NV MM(address).seq , SNV , SD + 1) fail, goto 1
3.2 : SNV = SD + 1
4 : DWCAS(DRAM(address) , (VD, SD) , (mark(VNV), SNV))

if DWCAS fails, goto 1

6.4.3 Recursive Data Structures with Multiple Pointers Pointing to a
Node

The algorithm described in Subsection 6.4.2 above, that recovers nodes along a traversal,
does not work smoothly with data structures in which a node has more than one reference
(e.g, a skip list). An already recovered node may have one pointer that signifies the recovery,
i.e., the pointer that was traversed and that caused the recovery, yet this node may have an

22

6.4. Tracking Recovery

Algorithm 6.4: MarkablePatomicPointer Load Algorithm
Load (address):
1 : read (V) from DRAM
2 : if marked(V)
2.1 : read (S) from DRAM
2.2 : unmark(V)->recoverNode()
2.3 : DWCAS(DRAM(address), (V, S) , (unmark(V), S))

if DWCAS fails, goto 1
2.4 : V = unmark(V)

3 : return V

additional pointer that is still marked, erroneously signifying that the referent has not been
recovered. Such nodes with multiple parents can cause a repeated cascading recovery, with
a destructive effect on performance. To understand how this can happen, consider a node
n which is referenced by two different pointers, p1 and p2. Initially, both p1 and p2 are
marked, and n is not recovered. When n is first accessed, say through p1, n is recovered and
p1 is unmarked. Subsequently, many descendants of n may be recovered. However, when
a thread accesses n through p2, it observes a marked pointer, so n has to be recovered,
via the recoverNode method, which marks all the pointers in the object to erroneously
signifies that also the descendants are unrecovered. Thus any node that was previously
reached from n will be recovered again proceeding in a cascading manner, even if recovery
was already executed. For this reason, using pointers to keep the recovered status of the
referenced objects is not applicable for data structures with more than a single reference
per node.

We overcome the repeated recovery problem by employing both the marking of pointers
(i.e., using MarkablePatomicPointer for persistent pointers) as well as an external markbit
table as in Section 6.4.1 that signifies for each node (rather than field in the previous section)
whether it has already been recovered. When loading, if the pointer is unmarked (which
it usually is, except for the first access), then the load can proceed with no overhead. If
the pointer is marked, then we read the markbit table to verify that the object has not
been recovered from a different pointer, and if it is indeed not recovered, then we invoke
recoverNode before accessing it and clear its mark bit in the markBit table. Whether the
node needed recovery or was already recovered, we remove the mark from the pointer. This
use of both pointer marking and external marking ensures that a node will not be recovered
for each pointer, and it eliminates the cascading issue. The performance issue due to the
external markBit table becomes minimal since it is only examined when reading a marked
pointer, and a pointer is marked only on the first time it is read after a crash. The other
downside of using an external markbit table still remains, as the memory cost of storing the
bits is significant. Nevertheless, note that the space overhead is slightly reduced because
we keep a bit per object and not a bit per field (depending on objects alignment, typically
by a factor of 4).

6.4.4 Adding a Zeroing Property of Standard Operating Systems.
We now consider a second assumption. Suppose that we have a recursive data structure with
potentially multiple pointers referencing it. But suppose that we can further assume (as
mentioned in the end of Section 6.2) that the mmap system call resets the allocated memory
to 0. This is usually done due to security concerns, e.g., in Linux and Windows [39, 43].
Since the DRAM space is allocated by mmap following a crash, this volatile space is known
to be zeroed before we recover objects. Thus, objects that are not zeroed must have been
recovered. This can be used instead of an auxiliary markBit table to save space overhead

23

6. RELAX

and improve performance. Specifically, pointers do not have to be re-marked, avoiding the
cascade effect. Note that each persistent field in Mirror has a sequence, which can be kept
non-zero to easily tell between fields that have been recovered and fields that have not.

6.4.5 Using the Zeroing Property in the General Case
The zeroing assumption for the DRAM space can be more generally be used to improve the
general solution of Section 6.4.1. To this end, we can use the most significant bit (MSB)
of the sequence number to signify whether the value of this field has been recovered. Since
the DRAM is initialized to 0, the sequence number read from an unrecovered addresses is
also 0. Thus the MSB will be 0. If we maintain the MSB of the sequence number to be 1
(by using only the 63 least significant bits of the sequence) we can always know whether an
address has been recovered by checking only the DRAM copy of that address.

6.4.6 Summary
In summary, an external markbit table can allow us to track the status of each patomic
but comes with a memory overhead and a high performance cost due to the loss of locality.
This is how the BitsetPatomic tracks recovery. If the data structure is recursive with a
single incoming pointer per persistent node, then we can use a mark bit in the pointer to
the node. This employs the MarkablePatomicPointer type. If a node can have multiple
incoming pointers, then we can use MarkablePatomicPointer, but must add an external
bitset table to signify whether a node has been recovered. This approach mixes the markable
pointers and bitset approaches, and thus we named it the HybridPatomicPointer. If we
can further assume that the DRAM is zeroed then the bitset becomes unnecessary, which
translates to just mark the pointers. That is the ZMarkablePatomicPointer approach.
Finally, If we can assume the DRAM is initialized to zero but the data structure is not
recursive, then we propose to put the mark bit in the sequence number, which we name
PseudoBitsetPatomic.

6.5 Memory Allocation And Management
The Mirror transformation, which we extend, uses a memory management solution that foils
a quick recovery. Mirror mmaps memory in the NVMM, and uses a safe memory reclamation
(SMR) scheme called ssmem [16] as a memory manager to allocate memory in the DRAM. As
ssmem operates in DRAM, all the memory manager’s metadata – used to track allocation
– are erased during a crash and must be rebuilt during recovery.

When a crash occurs, Mirror traces all live data in the non-volatile memory and re-
allocates all nodes in the DRAM using ssmem. This already takes time linear in the data
structure size. Moreover, Mirror needs all objects in DRAM to be mirrored in NVMM.
Namely, to be copied in the same order, so that address translation between the two mirrored
spaces can be executed with a single addition. Therefore, after traversing the data structure
objects in the NVMM and re-allocating each one in DRAM, Mirror copies the data structure
space of the DRAM to a newly mapped area in NVMM, which is again, linear in the data
structure size. That completes the recovery process and execution can resume. This solution
is valid, but costly. Also, it incurs a large initial cost and therefore cannot work with lazy
recovery.

To allow a quick recovery, we let the ssmem allocator allocate memory (and its metadata)
in the NVMM. To ensure that the modified memory manager does not provide unfair
advantage to RELAX, we also integrated this memory management scheme into the Mirror
library, ensuring that the comparison is not biased by the memory manager. This change
improves the performance of Mirror for most data structures (specifically, the skip list, the

24

6.5. Memory Allocation And Management

binary search tree, and the linked-list) and degrades performance some some (specifically,
the hash and the array) as shown in the evaluation.

We remark that the solution we adopt does not fully solve the persistent safe mem-
ory reclamation problem. What we use is a patch for measuring RELAX. A full solution
is an open problem, and a major project that is orthogonal to the efforts in this paper.
Lock-free algorithms require that the underlying memory manager is a safe memory recla-
mation scheme (SMR), i.e, a memory manager that can handle concurrency, which requires
higher complication to make concurrent reclamation safe. An efficient durable safe memory
reclamation remains a challenge for future work. To make the above solution complete,
one needs to go through the (substantial sized) code of ssmem, and determined where to
install flushes and fences. This requires a deep understanding of the ssmem code and a
deep understanding of durable linearizability. We believe the current paper (among others)
can motivate SMR researchers to work on adequate persistent SMRs. We also remark that
there exist some initial solutions for persistent SMRs that build on a substantial garbage
collection during recovery [4]. These solutions, like Mirror, require a long downtime after
a crash (to execute the garbage collection) and therefore do not apply to this work. In the
following subsection we propose a design that could be used for a project on persistent safe
memory reclamation.

6.5.1 A Persistent SMR

Let us shortly present a design idea for a possible persistent SMR, based on the ssmem
volatile SMR. The ssmem library employs arrays of retired objects called free sets. Each
thread retires objects and records their address in the free set array. Once the free-set array
is completed, it is added to a local list of free sets, and a vector clock is added, describing
the time the free set was completed. When the list size increases, free sets can be moved
to a global free set list accessed by all threads.

When allocating, if the current vector clock is strictly larger than the vector clock of a
free set then all threads have advanced since the objects in the free set were retired and it
is safe to reallocate them. We propose to flush each free set array when it is completed.
This can be done by flushing each cache line in the array, and then blocking on a fence
instruction to wait for the flushing to complete. In addition, we propose to use a durable
list (or queue) [20,58] to hold pointers to the competed free sets. This persists all completed
free sets and allows using them after a crash. The allocator uses a free set to allocate. We
do not propose to add persisting instructions for that and we assume that the allocator
free set must be discarded as it is not clear which objects exactly were allocated before
the crash. This free set can be considered as lost memory. In addition, it is possible that
the free set currently being filled up by each thread is lost after a crash, because it is not
persisted prior to being completed. All other objects handled by the memory reclamation
scheme were persisted before the crash, since free sets are persisted when completed and
when added or removed from the free set list.

The above design lets each thread lose at most two free sets during each crash. This
could be harmless if crashes are seldom. But to solve this continuous memory leak, a
concurrent garbage collection can be executed after a certain number of crashes, which
could depend on the size of the free set, the number of threads, and the amount of memory
available. The main additional cost of this scheme is small. It requires persisting the free
set and persisting additions and removals from the free set list. When we measured this cost
in regular execution of our skiplist workload we got a statistically insignificant difference.

25

6. RELAX

6.6 Recovering the Persistent Roots
The roots to the persistent RELAX data structures are stored in the beginning of the
NVMM space. We assume that once stored, the roots are immutable. Since a root can point
to a sentinel node, which can be modified, this assumption does not lose generality. After a
crash, the only blocking step that needs to be executed before the program resumes, is the
recovery of the data structures roots, which happens almost instantaneously. Thereafter,
application threads can start executing.

26

7
Correctness Argument

Theorem 7.1. Given a lock-free linearizable data structure, RELAX generates a durably
linearizable data structure with operations whose linearizability guarantees the same seman-
tics as the original data structure.

The proof of the main theorem follows from a technical claim and a correctness argument
that follows. The technical claim in Claim 1 below asserts that the tracking mechanism
works well.

Claim 1. Whenever a data structure generated by RELAX invokes the tracking mechanism
to check whether a field (or a node) has been recovered since the most recent crash, the
tracking mechanism returns a positive result only if some thread returned from the method
recoverField) or recoverNode (on this field (node) since the most recent crash.

When a data structure generated by RELAX checks whether a field (or a node) has
already been recovered, it will not receive a false positive. The core of the proof is the
fact that in all tracking methods a field is marked as recovered only after recoverField
has returned. The rest of the proof for this claim needs to go on a case by case analysis
over the different versions and to verify that the tracking method does not initially mark
fields. This is a tedious proof that follows in a straightforwards manner from the various
tracking methods. Since this paper is not focused around formal claims, we do not provide
the details of this proof. We focus on the more challenging correctness arguments below.

It remains to show the correctness of Theorem 7.1 given Claim 1. We first note
that any access to any field by a data structure generated by RELAX happens only af-
ter recoverField has completed recovering the field. This happens because loading (or
modifying) a field first checks whether the field has been recovered, and if not, it invokes
recoverField on this field prior to accessing it. Therefore, in what follows we assume that
a field is accessed only after its recovery is complete. The main thing to verify is that the
execution of recoverField, potentially concurrently (or sequentially) by several threads on
the same field, while this field is also potentially accessed by additional concurrent threads
satisfies correctness.

Since RELAX extends Mirror, we proceed by reducing the correctness of RELAX to
the correctness of Mirror concentrating on RELAX extensions. Mirror’s correctness relies
on the following two invariants. First, the NVMM sequence number of a specific patomic
variable is always equal or greater by one than its DRAM replica’s sequence number. In the
latter case, there is at least one ongoing operation that modifies the field, and the NVMM’s
replica is only one step ahead of the DRAM for this field. Second, the NVMM’s replica can

27

7. Correctness Argument

only be updated if the sequence numbers of a given patomic variable for both replicas are
equal, meaning that the DRAM is up-to-date.

To argue the correctness of data structures generated by RELAX, we start by showing
that the concurrent execution of recoverField does not violate Mirror’s invariants. For the
general system (that does not assume zeroing of the DRAM following a crash, as in modern
operating systems) we need to assume that one thread is not ”stuck” for an extremely long
time. By extremely long time, we mean that it is not stuck for a time that allows other
threads to execute 263 modifications on the same field. (Something equivalent to thousands
of years on current architectures.) Namely, we show that the following claim holds.

Claim 2. Consider a patomic variable P on which at least one thread finished executing
recoverField, returning from Line 3 or successfully completing Line 5 of Algorithm 6.2.
Assume that no thread is halted during its recovery execution while other threads execute
263 modifications of this field. Then, Mirror’s first and second invariants hold.

Mirror’s first invariant :
either NV MM(P).seq = DRAM(P).seq or NV MM(P).seq = DRAM(P).seq + 1.

Mirror’s second invariant :
NV MM(P) is modified only if NV MM(P).seq = DRAM(P).seq

Let us explain how recoverField of Algorithm 6.2 fulfills these claims. We first argue
that when recoverField finishes for the first time, it must hold that at some point previ-
ously after the crash NV MM(P) = DRAM(P). From claim 1 and the fact any access to
P must first go through the tracking mechanism or execute recoverField we can conclude
that for the data structure to access P there must be some call to recoverField that
returned. Before this call to recoverField (which finished for the first time) finishes, no
other call to recoverField can return. Thus only other calls to recoverField may modify
P .

Assume that this first completion of recoverField returned from Line 3. If during the
execution of this call to recoverField there were no modifications to P then DRAM(P) =
(VD, SD) = (VNV , SNV) = NV MM(P). Otherwise, since as mentioned only calls to
recoverField can change P and no other call to recoverField completed Line 5, then
the only possible modification is Line 4, which changes NV MM(P). Since recoverField
first reads DRAM(P) and it cannot change, and because (VNV , SNV) = (VD, SD), when
NV MM(P) was read it holds that NV MM(P) = DRAM(P). The second possibility is
that the first completion of recoverField returned after completing Line 5. If no other
thread modified NV MM(P) while the execution was running lines 2-5 then it holds from
the DWCAS that NV MM(P) = DRAM(P). Otherwise, Like in the previous case, the
only possible modification during the execution of this call of recoverField is from Line
4.1. In particular this means that DRAM(P) is unmodified and therefore for this execu-
tion it holds that DRAM(P) = (VD, SD). Since a modification occurred then some other
execution of recoverField must have executed line 4.1. Let us look at the execution of
recoverField that first completed Line 4.1. When it completed Line 4.1 that was the first
modification to P since the crash. After this modification any call to recoverField will
either read the old value of NV MM(P), try to execute Line 4.1 and fail the CAS because of
stale data, or it will read the new value which would cause the call to skip lines 4.1-4.2 since
now NV MM(P).seq = SD + 1. This means that until DRAM(P) is changed there cannot
be other successful executions of Line 4.1. We will denote the execution that first succeeded
in Line 4.1 as β and the execution that first succeeded in Line 5 as α. Since β executed its
modification between lines 2-5 of α, α must have read the old value of NV MM(P), thus
it has the same values of VD, SD, VNV , SNV as β. Thus it must have also tried executing
Line 4.1. It did not fail, otherwise it would have returned to Line 1. Only one execution
of recoverField completed Line 4.1 successfully so we can conclude that α and β are the
same execution. This means that no other execution of recoverField could modify P .

28

This means that (VNV , SNV) = NV MM(P) and so after completing Line 5 it holds that
NV MM(P) = DRAM(P).

Any execution of Mirror’s CAS implementation (which RELAX does not change) by a
generated data structure increments NV MM(P).seq only if it equals DRAM(P).seq and
it increments DRAM(P).seq only if NV MM(P).seq = DRAM(P).seq + 1. Thus, modi-
fications of P by the data structure maintain Mirror’s invariants. It remains to show that
modifications of P by other concurrent recoverField operations do not violate Mirror’s
invariants.

Consider the first field modification that violates Mirror’s first invariant, mentioned
in claim 2. We will later discuss the second invariant. A thread executes a field
modification only after a field recovery has completed. Thus, consider the case where
some thread completed the recovery of the field P and other threads are still executing
recoverField. Our goal is to show that all modifications of any executing recoverField
will not violate the invariant. Let us first consider the modification of Line 4.1. Since
at least one thread finished executing one recoverField, then at the point where that
thread completed recoverField, the sequence was equal in NVMM and DRAM. In
this case, for the modification by Line 4.1 to succeed thereafter, it is required that
0 < (SD−SNV) mod (264) < 263. Since until this execution the invariant holds it must be
that NV MM(P).seq ∈ DRAM(P).seq, DRAM(P).seq + 1. Since SNV is read after SD,
it would take 263 increments of NV MM(P) between Line 1 and 2 for this condition to be
fulfilled. This contradicts the assumption of claim 2. Alternatively, it is possible the thread
read the original post-crash values of P , and then halted for some time before trying to
perform Line 4.1. In this case it would take at least 263 increments of NV MM(P).seq for
it to reach its original value, which again contradicts the assumption of claim 2. Therefore,
even after modifications of P by the data structure are allowed, a successful modification
in Line 4.1 of Algorithm 6.2 can happen only by the thread that manages to execute this
line first after the crash. All other threads will either fail executing the CAS in Line 4.1
and return to Line 1 or continue directly to Line 5.

We now consider whether a recoverField execution can succeed in its modification in
Line 5 (after another thread has completed execution of recoverField). In Line 5, the
DRAM values are modified to reflect the thread’s view of the NVMM values of this field.
One benign case is that both values read by this thread are the result of modifications the
data structure operations executed after recovery of this field was complete. In this case,
like in Mirror, there is no harm in updating the DRAM to match the NVMM. Since the
invariant is first broken by this call to recoverField, the invariant holds when the DRAM
and NVMM are read in Lines 1-2. Because a DWCAS is used, Line 5 can succeed only if
DRAM(P) = (VD, SD). In addition, (VNV , SNV) is read after (VD, SD) and NV MM(P)
can only be newer than (VNV , SNV). The above gives us the following:

1. SNV ∈ {SD, (SD + 1)}

2. NV MM(P).seq ∈ {SD, (SD + 1)}

3. NV MM(P).seq ≥ SNV

(1) is true because of the invariant during the execution of Line 2. (2) is true because
of the invariant during the execution of Line 5 and the fact that DRAM(P) = (VD, SD).
(3) is true because NV MM(P) must contain a newer value than SNV Combined we get
that NV MM(P).seq ∈ {SNV , (SNV + 1)}. Thus invariant 1 holds after Line 5 where
DRAM(P) = (VNV , SNV)

The only time Mirror’s first invariant may be invalidated is if the process successfully up-
dated the DRAM after reading the original post-crash value of DRAM(P). Since recovery
has already succeeded once, and initialized DRAM(P) = NV MM(P), the fact this value

29

7. Correctness Argument

repeated means it again became (VD, SD) through the execution of the data structure. But
since Mirror only increments sequence numbers by 1 at each operation, that would mean at
least 263 operations on P were executed since the success of recovery. This is because either
NV MM(P) was updated during Line 4.1 and the sequence after recovery was SD + 1 or it
did not fulfill the condition of Line 4 and then for the original NV MM(P).seq to reach SD

would require at least 263 steps. Since our execution of recoverField which first violates
the invariant must have started execution before recovery, then this violates our assumption
that no process halts for longer than 263 operations on P .

As for second invariant from claim 2, we proved above that as long as the two invariants
hold, Line 4.1 of recoverField cannot be executed after recovery. Since recoverField
cannot modify NV MM(P) after recovery, and the data structure maintains Mirror’s second
invariant, as long as Mirror’s first invariant is maintained it is impossible that Mirror’s
second invariant is invalidated.

Therefore, the first call to recoverField will synchronize the NVMM and DRAM. Any
subsequent calls will be harmless, and at most can assist the normal execution of the data
structure in updating the DRAM to replicate the NVMM.

30

8
Evaluation

8.1 Experimental Setup
We evaluated our code on an Intel machine possessing two Xeon Gold 6234 processors, each
with 8 cores, running at 3.3GHz. The machine has 366 GB of DRAM and 1.5 TB of NVMM
(Intel OptaneTM DC memory), organized as 12 × 128 GB DIMMS. There is an L1 cache
for each core with 32 KB, an L2 cache with 1 MB, and an L3 cache that is shared between
all cores in the processor and can contain 25 MB. The operating system is Ubuntu 18.04.6,
and code was written in C++ and compiled using g++ (GCC) version 9.4.0. We used
the App-Direct Mode configuration. For persisting objects, we used the clwb and sfence
instructions for flush and fence, respectively. The clwb(address) instruction was used to
allow different write-backs to occur in parallel.

We measured performance results using the YCSB workload [11], where key-value pairs
are 4 B each. Nodes are cache-aligned to 128 B. Each reported result is the average of 5
repetitions, lasting 10 seconds. Unless stated otherwise, we used a uniform random key
distribution from the range of [0, r − 1] for varying range size. Every data structure was
initialized with r/2 keys and then measured with a varying ratio of reads vs. writes. Inserts
and removals were drawn with the same probability.

We evaluated in three different ways: varying number of threads, varying ratio of writes
vs. reads and varying keys range. When not varying, the default setting was 8 threads, a
ratio of 20% writes, and r = 16M for all structures but the linked list, which had r = 256. In
a different experiment, meant to show the process of recovery, we estimated the throughput
of the program with respect to time, by logging a timestamp every 50, 000 operations and
counting the number of timestamps every 2 seconds. Our evaluation, similarly to Mirror
included a sorted linked-list [27], A hash-table with a Harris et al.’s [27] sorted linked-list in
every bucket, a lock-free BST by Aravind et al. [45], a lock-free Skip-List [18] and a lock-
free array used as a constrained set where the range of keys is known in advance. Large
linked-lists are inefficient and seldom seen in real applications, so we test the throughput
of a small list, compared to the rest of the data structures.

We tested four versions of RELAX. First is where recovery is tracked using an external
markbit table (§ 6.4.1), denoted Bit Table. Second is where the recovery status is stored in
the sequence number (§ 6.4.5), denoted Bit In Sequence. Third uses mark pointers to track
recovery (§ 6.4.4), denoted Bit In Pointer. Finally, the combination of marked pointers
with a markbit table (§ 6.4.3) is denoted Combination.

Since we wanted to test all of the data structures with all of the versions, in parts of data
structures that do not satisfy our recursive assumption (array and the hash table array)

31

8. Evaluation

we used the appropriate tracking system, using Bit Table when the initialization of the
memory space is unknown and Bit In Sequence when the memory space is initialized to be
0

8.2 Results

8.2.1 Scalability
In Figure 8.1 we report the average throughput of the program, running with a varying
number of threads. To better demonstrate the differences, Figure 8.2 represents the nor-
malized results relative to Mirror. When running more than 8 threads the program executes
on two separate processors, crossing the NUMA boundary and increasing memory latency,
resulting in a loss of performance.

We can see in the graphs that both Bit In Pointer and Combination have very low
overhead. For the List data structure, the overhead is less that 2.65%. For Skiplist, the
overhead is up to 2.83% and for the Bst, it is up to 3.6%. For Hash and Array, the
measurements are quite noisy, as apparent in the large confidence intervals on the graph.
Still, we can see that the confidence intervals of Bit In Pointer, Combination, and Mirror
overlap. The Bit In Sequence approach has higher overhead, but still below 12.72% for List,
below 3.89% for Skiplist, and below 6.03% for Bst. For Hash and Array, again the confidence
intervals overlap, except for 14 and 16 threads, where the maximum overhead is 4.46%.

Unsurprisingly, Bit Table has the highest overhead, reaching 60.88% for a list with a
single thread. Still, for Skiplist the overhead is always less than 13.89%, and for Bst, Hash,
and Array, always less than 30.81%, even in this setting where we make no assumption
about the data structure.

While the overhead of Bit Table seems high, it is fair to compare it to existing general
constructions offering near-instant recovery in the literature. As discussed in the introduc-
tion (§ 2, the only such general construction is Izraelevitz et al. [33], which is also depicted
in the graph. As can be seen, Bit Table is 2x - 25x faster, and with better scalability,
compared to Izraelevitz. Due to this huge difference, we do not discuss this further in the
rest of the section.

8.2.2 Varying Size
Next, Figure 8.3 presents measurements of average throughput with varying average sizes of
the data structure. We see that the overhead tends to reduce as the size of the data structure
increases. This is most visible in the Skiplist, where at 8 K nodes the Bit In Pointer Skiplist
operates 9.86% worse than Mirror, and at 8 M nodes the difference diminishes to 2.83%.
Large data structures cause more cache misses, making the cost of recovery checks smaller
in proportion. We note that lazy recovery is most crucial for large data structures, where
the cost of recovery can introduce a long time during which the system is unresponsive; for
such use cases, the overhead of RELAX is quite small.

8.2.3 Varying Updates Ratio
In Figure 8.4 we measured the average throughput with different ratios between lookups and
updates to the data structure. We see that the overhead decreases when the update ratio
increases. Updates are generally more costly, since they need to modify both the NVMM
and the DRAM, while reads access the DRAM only. Therefore, the relative overhead of
RELAX tend to reduce when the update percentage is higher. For example, in the Bst
measurement, the overhead of Bit In Pointer reduces from 5.92% for 100% reads to 0.47%
for 100% writes.

32

8.2. Results

Figure 8.1: Varying number of threads - Average throughput at 80% reads. Average size for list is
128 keys, for all other data structures it is 8 M keys. Error bars represent 95% confidence intervals.

33

8. Evaluation

Figure 8.2: Varying number of threads normalized - Average throughput normalized according to
Mirror. 80% reads. Average size for list is 128 keys, for all other data structures it is 8 M keys. Higher
normalized throughput means RELAX performs better relative to Mirror. In addition, performance
of RELAX compared to Izraelevitz. Displays RELAX’s average throughput for all data structures
normalized to Izraelevitz.

34

8.2. Results

Figure 8.3: Varying size - Average throughput, at 80% reads and 8 threads. Error bars represent
95% confidence intervals.

35

8. Evaluation

Figure 8.4: Varying updates ratio - Average throughput with average size of 128 keys for list and
8 M keys for all other data structures. all tests run using 8 threads. Error bars represent 95%
confidence intervals.

36

8.2. Results

8.2.4 Recovery
Figure 8.5 shows the effect of recovery on the throughput of RELAX compared to Mirror.
To fully demonstrate the benefits of fast recovery we use large data structures, with 128 M
nodes. RELAX allows all data structure operations to execute (with non-zero throughput)
after 0.1ms. In the Mirror implementation, recovery time of Skiplist, Bst, and Hash data
structure takes 27s, 20.23s and 14s, respectively, which can severely impact the users of the
system.

Both the Skiplist and Bst show better than linear recovery, which can be attributed
to the highly skewed probability of encountering each node. Given a random query, the
probability of passing through a node in the top layers is much higher than the probability
of reaching a specific node at a lower level. This means that Mirror spends a lot of time
at the beginning, recovering nodes that are seldom accessed. By the time that Mirror has
started operating, RELAX is already running at more than 65% throughput for Skiplist
and more than 89% throughput for the Bst.

Unlike the Bst and Skiplist, the probability of visiting a specific node in the Hash
data structure is the same for all nodes, making lazy recovery less effective. In particular,
RELAX’s Hash shows a linear recovery until recovery is mostly complete due to the uniform
distribution of the keys. Moreover, the array of the Hash offers high locality for copying,
which allows Mirror to recover quickly, resulting in the shortest Mirror’s recovery time
among the three data structures.

In many real-world applications, the distribution of keys is not uniform, but rather
Zipfian. We show recovery results for this case in Figure 8.6. It demonstrates that when
the keys are biased, even the Hash shows a better than linear recovery, suggesting better
efficiency compared to Mirror for the first 15.03s, when it reaches more than 40% of the
throughput.

We also note that table-based implementations, Combination and Bit Table, show slower
recovery time. This is due to the need to access the mark table during recovery.

We excluded linked-list and arrays from this measurements. Linked-list are infeasible
for 128 M nodes. For arrays, Mirror is able to recover 1 billion keys in 2.4 seconds, making
the benefits of RELAX less apparent.

8.2.5 Memory Manager
We compared RELAX and its various versions with the original Mirror, and with a modified
Mirror that uses our memory management and allocation. The new memory manager can
be slower due to being in the NVMM, or faster due to its simple allocator. In addition,
the allocated memory is positioned differently, which can influence performance both ways.
We tested the differences between the two versions of Mirror, presented in Figure 8.7. The
differences are noticeable and can have both positive or negative impact, depending on
the data structure. Even at 0% updates there are major differences between the versions.
This can be caused by the differences in the memory layout (e.g., [13]). Since a persistent
SMR memory manager is an orthogonal problem to our problem of creating persistent data
structures, and RELAX could use any such memory manager, we believe that the more
interesting measurement is the overhead of RELAX compared to Mirror with the new
memory manager, and that is what is measured in this section. By using the new memory
manager we simplified the recovery process of the original Mirror by copying the data
structure only to DRAM. The original Mirror’s recovery time is longer than its recovery
time with the new memory manager since it includes more steps or a more complicated
interaction with the memory manager.

37

8. Evaluation

Figure 8.5: recovery - Estimated throughput during recovery over 100 seconds with uniform dis-
tribution. Measured using 8 threads, with an update ratio of 20% and a default size of 128M
keys.

38

8.2. Results

Figure 8.6: Zipfian distribution recovery - Estimated throughput during recovery over 100 seconds
with Zipfian distribution. Measured using 8 threads, with an update ratio of 20% and a default size
of 128M keys. Keys randomized according to zipfian distribution

Figure 8.7: Memory manager comparison - Average throughput of Mirror with the new memory
manager divided by the original Mirror’s average throughput for each data structure. Varying
number of threads, with 80% reads. Average size for list is 128 keys, for all other data structures it
is 8 M keys.

39

9
Conclusions

In this paper we presented RELAX, a simple transformation from linearizable lock-free
data structures to durably linearizable lock-free data structures. The data structures gen-
erated by RELAX minimize the downtime after recovery, while still preserving the high
performance of the data structures. RELAX extends Mirror. It can work in the most
general manner with all linearizable lock-free data structures, but with some performance
degradation. For recursive data structure on widely-used modern operating systems op-
timizations can be applied to almost entirely eliminate performance overheads, obtaining
the best of both worlds: high performance with minimal downtime after a crash. RELAX
employs a lazy recovery, that executes concurrently with program execution. So while the
original Mirror required a noticeable downtime to recover from a crash (copying the entire
data structure to DRAM), RELAX almost immediately enables execution of data structure
operations with moderate throughput, by lazily copying only relevant parts of the data
structure that were not yet recovered. Upon concurrent completion of the recovery, the
data structure returns to serving requests at full speed. Evaluation shows that RELAX
indeed provides immediate response after a crash, and that the overhead over the original
Mirror during normal (non-crashing) execution is very low.

41

Bibliography

[1] AMD. (2021) Amd64 architecture programmer’s manual. [Online]. Available:
https://www.amd.com/system/files/TechDocs/24594.pdf

[2] ARM. (2018) Arm architecture reference manual armv8. [Online]. Available:
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf

[3] N. Ben-David, G. Blelloch, M. Friedman, and Y. Wei, “Delay-free concurrency on
faulty persistent memory„” 2019.

[4] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Makalu: Fast recoverable alloca-
tion of non-volatile memory,” 2016, pp. 677–694.

[5] C++. (2011) Std::atomic library. [Online]. Available: https://en.cppreference.com/w/
cpp/atomic

[6] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, FlatStore: An Efficient
Log-Structured Key-Value Storage Engine for Persistent Memory, 2020, p. 1077–1091.

[7] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Optimistic crash consistency.” Association for Computing Machinery, 2013, p. 228–
243.

[8] J. Coburn, A. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and S. Swanson,
“Nv-heaps: Making persistent objects fast and safe with next-generation, non-volatile
memories,” in asplos, 2011.

[9] N. Cohen, M. Friedman, and J. R. Larus, “Efficient logging in non-volatile memory by
exploiting coherency protocols,” vol. 1. ACM, 2017, p. 67.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee,
“Better i/o through byte-addressable, persistent memory,” 2009, p. 133–146.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with ycsb,” 2010.

[12] A. Correia, P. Felber, and P. Ramalhete, “Romulus: Efficient algorithms for persistent
transactional memory.” ACM, 2018, pp. 271–282.

43

https://www.amd.com/system/files/TechDocs/24594.pdf
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf
https://en.cppreference.com/w/cpp/atomic
https://en.cppreference.com/w/cpp/atomic

Bibliography

[13] C. Curtsinger and E. D. Berger, “Stabilizer: Statistically sound performance
evaluation,” SIGARCH Comput. Archit. News, vol. 41, no. 1, p. 219–228, mar 2013.
[Online]. Available: https://doi.org/10.1145/2490301.2451141

[14] Z. Dang, S. He, P. Hong, Z. Li, X. Zhang, X.-H. Sun, and G. Chen, “Nvalloc: Rethink-
ing heap metadata management in persistent memory allocators,” 2022, p. 115–127.

[15] T. David, A. Dragojevic, R. Guerraoui, and I. Zablotchi, “Log-free concurrent data
structures,” 2018.

[16] T. David, R. Guerraoui, and V. Trigonakis, “Asynchronized concurrency: The secret
to scaling concurrent search data structures,” 2015.

[17] C. H. Flood, R. Kennke, A. Dinn, A. Haley, and R. Westrelin, “Shenandoah: An
open-source concurrent compacting garbage collector for openjdk,” in Proceedings of
the 13th International Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools, 2016, pp. 1–9.

[18] K. Fraser, “Practical lock-freedom,” 2003.

[19] M. Friedman, N. Ben-David, Y. Wei, G. Blelloch, and E. Petrank, “Nvtraverse: In
nvram data structures, the destination is more important than the journey,” 2020, pp.
377––392.

[20] M. Friedman, M. Herlihy, V. Marathe, and E. Petrank, “A persistent lock-free queue
for non-volatile memory,” vol. 53, no. 1. ACM, 2018, pp. 28–40.

[21] M. Friedman, E. Petrank, and P. Ramalhete, “Mirror: Making lock-free data structures
persistent,” 2021, pp. 1218––1232.

[22] K. Genç, M. D. Bond, and G. H. Xu, “Crafty: Efficient, htm-compatible persistent
transactions,” 2020, pp. 59–74.

[23] K. Genç, M. D. Bond, and G. H. Xu, “Crafty: Efficient, htm-compatible persistent
transactions,” 2020, p. 59–74.

[24] E. Giles, K. Doshi, and P. J. Varman, “Softwrap: A lightweight framework for trans-
actional support of storage class memory,” in Symposium on Mass Storage Systems
and Technologies (MSST), 2015, pp. 1–14.

[25] V. Gogte, S. Diestelhorst, W. Wang, S. Narayanasamy, P. M. Chen, and T. F. Wenisch,
“Persistency for synchronization-free regions,” p. 46–61, 2018.

[26] S. Haria, M. D. Hill, and M. M. Swift, MOD: Minimally Ordered Durable Datastruc-
tures for Persistent Memory, 2020, p. 775–788.

[27] T. L. Harris, “A pragmatic implementation of non-blocking linked-lists.” Springer,
2001, pp. 300–314.

[28] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent
objects,” vol. 12, no. 3, pp. 463–492, 1990.

[29] Intel. (2021) Intel architecture instruction set extensions programming reference. [On-
line]. Available: https://software.intel.com/content/www/us/en/develop/download/
intel-architecture-instruction-set-extensions-programming-reference.html

44

https://doi.org/10.1145/2490301.2451141
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html

Bibliography

[30] ——. (2022) Developers intel64 and ia-32 architectures software manuals combined.
[Online]. Available: https://software.intel.com/content/www/us/en/develop/articles/
intel-sdm.html

[31] P. Intel. (2018) Persistent memory programming. [Online]. Available: https://pmem.io

[32] J. Izraelevitz, T. Kelly, and A. Kolli, “Failure-atomic persistent memory updates via
justdo logging,” p. 427–442, 2016.

[33] J. Izraelevitz, H. Mendes, and M. L. Scott, “Linearizability of persistent memory ob-
jects under a full-system-crash failure model.” Springer, 2016, pp. 313–327.

[34] S. Jayanti and J. Shun, “Fast arrays: Atomic arrays with constant time initialization,”
in 35th International Symposium on Distributed Computing (DISC 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[35] J. Jeong and C. Jung, PMEM-Spec: Persistent Memory Speculation (Strict Persistency
Can Trump Relaxed Persistency), 2021, p. 517–529.

[36] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch, “High-performance
transactions for persistent memories,” 2016, pp. 399–411.

[37] R. M. Krishnan, W.-H. Kim, X. Fu, S. K. Monga, H. W. Lee, M. Jang, A. Mathew, and
C. Min, “Tips: Making volatile index structures persistent with dram-nvmm tiering,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021, pp. 773–787.

[38] P. Lidén and S. Karlsson, “The z garbage collector,” 2018.

[39] Linux. (2021) mmap(2) — linux manual page. [Online]. Available: https:
//man7.org/linux/man-pages/man2/mmap.2.html

[40] M. Liu, M. Zhang, K. Chen, X. Qian, Y. Wu, W. Zheng, and J. Ren, “Dudetm:
Building durable transactions with decoupling for persistent memory.” ACM, 2017,
pp. 329–343.

[41] Q. Liu, J. Izraelevitz, S. K. Lee, M. L. Scott, S. H. Noh, and C. Jung, “ido: Compiler-
directed failure atomicity for nonvolatile memory.” IEEE, 2018, pp. 258–270.

[42] A. Memaripour, J. Izraelevitz, and S. Swanson, “Pronto: Easy and fast persistence for
volatile data structures,” 2020, p. 789–806.

[43] Microsoft. (2021) CreateFileMappingA function (winbase.h). [On-
line]. Available: https://docs.microsoft.com/en-us/windows/win32/api/winbase/
nf-winbase-createfilemappinga

[44] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz, “Aries: A transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-
ahead logging,” ACM Trans. Database Syst., p. 94–162, 1992.

[45] A. Natarajan and N. Mittal, “Fast concurrent lock-free binary search trees.” ACM,
2014.

[46] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard, “Stopless: a real-time garbage
collector for multiprocessors,” in Proceedings of the 6th international symposium on
Memory management, 2007, pp. 159–172.

45

https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https:// pmem.io
https://man7.org/linux/man-pages/man2/mmap.2.html
https://man7.org/linux/man-pages/man2/mmap.2.html
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga

Bibliography

[47] F. Pizlo, E. Petrank, and B. Steensgaard, “A study of concurrent real-time garbage
collectors,” in Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, R. Gupta
and S. P. Amarasinghe, Eds. ACM, 2008, pp. 33–44.

[48] A. Raad, J. Wickerson, G. Neiger, and V. Vafeiadis, “Persistency semantics of the
intel-x86 architecture,” Proc. ACM Program. Lang., no. POPL, 2019.

[49] ——, “Persistency semantics of the intel-x86 architecture,” 2019.

[50] A. Raad, J. Wickerson, and V. Vafeiadis, “Weak persistency semantics from the ground
up: Formalising the persistency semantics of armv8 and transactional models,” 2019.

[51] J. Seo, W.-H. Kim, W. Baek, B. Nam, and S. H. Noh, “Failure-atomic slotted paging
for persistent memory,” 2017, p. 91–104.

[52] T. Shull, J. Huang, and J. Torrellas, “Autopersist: An easy-to-use java nvm framework
based on reachability,” 2019, p. 316–332.

[53] G. Tene, B. Iyengar, and M. Wolf, “C4: The continuously concurrent compacting
collector,” in Proceedings of the international symposium on Memory management,
2011, pp. 79–88.

[54] S. Venkataraman, N. Tolia, P. Ranganathan, R. H. Campbell et al., “Consistent and
durable data structures for non-volatile byte-addressable memory.” vol. 11, 2011, pp.
61–75.

[55] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persistent memory,”
vol. 39, no. 1. ACM, 2011, pp. 91–104.

[56] Z. Wu, K. Lu, A. Nisbet, W. Zhang, and M. Luján, “Pmthreads: Persistent memory
threads harnessing versioned shadow copies,” 2020, p. 623–637.

[57] Y. Xu, J. Izraelevitz, and S. Swanson, “Clobber-nvm: Log less, re-execute more,” 2021,
p. 346–359.

[58] Y. Zuriel, M. Friedman, G. Sheffi, N. Cohen, and E. Petrank, “Efficient lock-free
durable sets,” 2019.

46

מה מראש מבטיחות שלא הפעלה מערכות שקיימות וכיוון אפשריות, הרצה סביבות שיותר לכמה המערכת
הנחה אפשרי. ערך כל להכיל יכול הרגיל הזיכרון קריסה שלאחר להניח בחרנו קריסה, לאחר בזיכרון יהיה
שמוודא מיוחד העתקה אלגוריתם דורשים מקביליות של הרגילים והאתגרים העותקים ריבוי עם ביחד זו,

בזיכרון. הערך חזרת מניעת ידי על הנתונים מבנה ריצת נכונות את
בזמן שמאותחל במערך שמשתמשת לחלוטין כללית שיטה ראשית, עיקריות. מעקב שיטות 4 פיתחנו
מרחב כי לנו ידוע אם שנית, הועתקו. לא עדיין ואילו הועתקו שדות אילו אחרי לעקוב מנת על קבוע
אזי אבטחה, מסיבות רבות הפעלה למערכות שנפוצה תכונה הריצה, בתחילת ל0 מאותחל הרגיל הזיכרון
על השדה מצב את לבדוק יכולים אנחנו כך מטמון. שורת באותה שהועתקו השדות את לסמן יכולים אנחנו
הנתונים מבנה כי לנו ידוע אם המערכת. תקורת את משמעותית להקטין וכך לזיכרון, ולא למטמון גישה ידי
לעבוד יכולים אנחנו אז חיפוש, עץ או מקושרת רשימה כגון מצביעים, ידי על המחוברים מצמתים מורכב
שאפילו הוא זו בשיטה היתרון אליו. במצביע צומת כל של ההעתקה מצב אחרי ולעקוב הצומת ברזולוצית
כלל. תקורה יוצרים לא הערכים שאר וכל המצביע, ערך את רק לקרוא ניתן אלא למטמון לגשת צריך לא
העתקות שימנע נוסף מנגנון צריך ולכן יחיד, צומת עבור מצביעים מספר להיות שיכולים הוא החיסרון
המאותחל מערך ומשלבת המצביעים דרך במעקב משתמשת פיתחנו אותה השלישית השיטה מיותרות.
מורכב הנתונים ומבנה במקרה מתאימה הרביעית השיטה מיותרות. העתקות למנוע מנת על קבוע בזמן
בשיטה קריסה. לאחר ל0 מאותחל הזיכרון כי ידוע לכך ובנוסף מצביעים ידי על המחוברים מצמתים
מצב את לאחסן ורק הנוסף המנגנון את לחסוך מנת על הסביבה על שלנו בידע משתמשים אנחנו הרביעית

אליו. המצביע על הצומת של ההעתקה
השיטה , Mirror פני על 10− 30% של לתקורה גורמת הראשונה השיטה כי מצאנו שביצענו בניסויים
אחוזים של לתקורה גורמות והרביעית השלישית השיטות בעוד 5 − 10% של לתקורה גורמת השנייה
שבהם חיפוש עץ כגון היררכיים, נתונים במבני במיוחד שימושי העצל המנגנון כי מצאנו בנוסף בודדים.
. Zipfian בהתפלגות לדוגמה אחידה, אינה המפתחות התפלגות וכאשר העליונים, לצמתים גישות יותר יש
כמעט לתפוקה וחוזר במהירות החשובים החלקים את מחזיר העצל המנגנון אחידות אינן הגישות כאשר

נמוכה. חשיבות בעלי צמתים להעתיק נאלץ Mirror ש בעוד מלאה

ii

. תקציר

האפשר. ככל עמידות מערכות לבנות שואפים אנחנו לכן מחשבים. מערכות על מסתמכים כולם בימינו
על הסתמכות דרשו עמידים נתונים מבני בעבר עמידים. נתונים מבני הם עמידות למערכות הבניין אבני
עם עמיד אחסון שמספק עמיד, בזיכרון לבחור ניתן כיום משמעותית. תקורה שהציבו קשיחים, כוננים
מבני כמו יותר מתנהגים עמיד זיכרון על שמסתמכים עמידים נתונים מבני הביצועים. מאובדן שבריר
על שמסתמכים העמידים הנתונים מבני לעומת שלהם ובביצועים בממשק אקראית גישה בזיכרון נתונים

. SSD טכנולוגית כגון בבלוקים אחסון מכשירי
נאבד. תוכנם קריסה בעת ולכן עמידים אינם המטמונים שכן טריוויאלי, אינו עמיד בזיכרון השימוש
תקין. לא במצב העמיד הזיכרון את להשאיר שיכול צפוי, לא בסדר לזיכרון תוכנם את מעבירים המטמונים
פינוי לזיכרון. מהמטמון מידע יזום באופן לפנות ניתן לזיכרון המטמונים של הפינוי בסדר לשלוט מנת על

בו. השימוש את למזער צריך ולכן רב זמן לוקח זה
ודורש עמיד, זיכרון על שמסתמכים עמידים נתונים מבני עיצוב על מקשה לנכונות ביצועים בין זה איזון
למבנה עמיד לא נתונים מבנה להמיר שמאפשרות כלליות בניות הנקראות שיטות קיימות מומחה. ידע
מנת על מומחה בידע צורך אין שנבנו שלאחר כיוון שימושיות כלליות בניות מומחה. ידע ללא עמיד נתונים

ביצועים. אובדן של במחיר עמידים, נתונים מבני לבנות
רישום או טרנסקציות כגון בשיטות כלליות, בניות של הביצועים את לשפר איך על רב מחקר נעשה
אחסון ולכן עמיד, מזיכרון יותר מהיר עדיין רגיל שזיכרון העובדה על מסתמכת נוספת שיטה פעולות.

השאר. האטת של במחיר מהפעולות חלק להאיץ מאפשר רגיל בזיכרון הנתונים מבנה של עותק
הרשומות הפעולות בשחזור מדובר אם בין הקריסה, לאחרי מהעבודה חלק משאירות הנ"ל השיטות כל
לא הנתונים מבנה קריסה לאחר מכך כתוצאה שנמחק. הרגיל לזיכרון חזרה הנתונים מבנה העתקת או
עבודות למזערו. ברצוננו ולכן עמידים, נתונים מבני של בשימושיות לפגוע יכול זה המתנה זמן מיד. נגיש
וזמן סבירים ביצועים בין לבחור יש כיום ולכן עמידים נתונים מבני של זה אספקט על התמקדו לא כה עד

נמוך. תגובה
הנתונים למבני מיידית כמעט גישה שמאפשרת , RELAX שלנו המערכת את מציגים אנחנו כך לצורך
כללית בנייה , Mirror גבי על נבנתה RELAX רגילה. ריצה בזמן גבוה הספק על שמירה תוך קריסה, לאחר

ממנעולים. חופשי עמיד נתונים למבנה ממנעולים חופשי נתונים מבנה להמיר המאפשרית
וקריאת הרגיל, בזיכרון העמיד הנתונים מבנה שיקוף ידי על בתחום, מהגבוהים ביצועים מספקת Mirror
מבני נכונות על שומרת Mirror שלו. לשיקוף וגם הנתונים למבנה גם וכתיבתו הרגיל מהזיכרון נתונים
הארוך ההמתנה זמן הוא Mirror של העיקרי החיסרון הגרסאות. שתי של מתוחכם עדכון ידי על הנתונים

הרגיל. לזיכרון אותו ולהעתיק הנתונים מבנה על לעבור יש שבו קריסה, לאחר
ישר הנתונים למבנה גישה מאפשרת וכך השדה, ברזולוצית עצל באופן ההעתקה את מבצעת RELAX
מרכזיים: אתגרים שני יש RELAX ל ירודים. הביצועים שבה ההחלמה תקופת הארכת במחיר הקריסה, לאחר
בעת שונים חוטים בין קונפליקטים למנוע מנת על מיוחד העתקה באלגוריתם משתמשת RELAX ראשית,
חוזרת. העתקה למנוע מנת על הועתקו כבר שדות אילו על מעקב מבצעת RELAX שנית, ההחלמה. תקופת
למגוון בהתאמה מעקב, שיטות מספר פיתחנו ולכן רגילה ריצה בזמן התקורה לרוב גורמת זו מעקב שיטת
את להתאים מנת על רגילה. ריצה בזמן הביצועים את למקסם מנת על נתונים ומבני הרצה סביבות

i

המחשב. למדעי בפקולטה פטרנק ארז פרופ' בהנחיית נעשה המחקר

והשוואה התייחסות והצגתם, עיבודם הנתונים, איסוף כולל המחקר, כי מצהיר זה חיבור מחבר
האתיות המידה אמות לפי המבוצע מדעי ממחקר כמצופה ישרה, בצורה כולו וכו',נעשה קודמים למחקרים
לפי ומלאה, ישרה בצורה נעשה זה בחיבור ותוצאותיו המחקר על הדיווח כן, כמו האקדמי. העולם של

מידה. אמות אותן

בהשתלמותי. הנדיבה הכספית התמיכה על לטכניון מודה אני

כושלת מריצה עצלה התאוששות
עמיד זיכרון בעזרת

התואר לקבלת הדרישות של חלקי מילוי לשם מחקר על חיבור
המחשב במדעי למדעים מגיסטר

צור אלמוג

לישראל טכנולוגי מכון — הטכניון לסנט הוגש

2023 מרץ חיפה, ה׳תשפ״ג, אדר

כושלת מריצה עצלה התאוששות
עמיד זיכרון בעזרת

צור אלמוג

