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1 Introduction heavy computations and do not immediately converge.

In this paper, we suggest a novel approach that we call
contrasted statistical processing. Statistical processing is
performed similarly to the already mentioned approach.

Statistical processing is a well-known approach for detect-
ing targets in a cluttered environment. In this approach,

certain statistical parameters are calculated within a region However. instead of comparing the statistical parameter ob-
of interest(ROI) and then are used to determine a detection | - oI paring the : P
tained within the search window with the threshold of the

threshold. A small sliding window, having a size similar to ; . . !
the size of the searched target, scans the background whiIeStatlonarlty region, we calculate its contrast. The back

e . e ) round i nned with n n nine sliding window:
the same statistical parameter is computed within the win- ground is scanned with not one but nine sliding dows

; having sizes similar to the sizes of the target. Each time, the
dOW. and compared with th_e global threShO"?'- If the thresh- statistical parameter is computed in the central window as
old is exceeded, a target is declared to exist in the center

o f th i . ind K well as in the eight peripheral windows. The contrast of the
position of that specific computation window. To keep a giaiistical parameter is calculated and compared with a sta-

constant false alarm rat€FAR) and to handle the nonsta- siical contrast threshold. A decision regarding the exis-
tionarity of the clutter, the ROI is shifted along the scan- tance or the absence of a target is reached. The suggested
ning region and the threshold is updated according to the gpproach overcomes both the nonstationarity of the back-
new ROI. Usually, the size of the ROI window is larger ground and its nonlocality. Since the nine windows are
than the size of the target; however, it should not be t00 close to one another, the influence of the background’s non-
large or the nonstationarity of the background cannot be stationarity or nonlocality is minor. For a given threshold
handled. Different types of statistical processing that use determined by a desired probability of detection, smaller
various statistical parameters were introduced, for instance,false alarm probabilities are obtained with the presented
in Refs. 1-3. Among the statistical parameters introduced approach.

there were the Doyle, the probability of ed¢@OB), and Section 2 presents the metrics. The locality problem is
the cooccurrence matrix. These metrics were ostensibly discussed in Sec. 3, computer simulations are shown in Sec.
used for predictions of human target detection perfor- 4, and conclusions are presented in Sec. 5.

mance; however, they can also be used for automatic target . .
detection. 2 Metrics for Target Detection

~ The main problem of the statistical processing approach |n this paper, we address two main types of statistical pro-
is the nonstationarity of the background. Even though the cessing parameters: the Doyle and the POE. However, the

ROI window is a small window in comparison with the approach is general and can be applied for any other type of
overall scan region, the background is not stationary. In statistical processing.

addition, even if the background is more or less stationary, The common statistical processing is the Doyle
since it is random, the statistical parameter has a wide va-operator, which computes the local differences existing
riety of values even within the stationarity region. We term between the target and its background. There are several
this problem the nonlocality of the background. Several versions for this statistical parameter:

techniques tried to solve those problems by new approaches

such as fuzzy logié. However, those techniques involve  Spoye=[ (1~ pp) >+ k(o= o) 212, )
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Fig. 1 Scanning processing windows.

or
2]1/2 (2)
where w; and uy, are the averages of the target and its
background,s; and o, are the standard deviation of the
target and its background, akds a weighting coefficient.
Another important statistical parametés POE. This
parameter correlates the input images with a high-pass filter
(HPP such as the Sobel filter and then counts the number
of pixels passing a certain threshold Th:

SDoer: [(log ui—log Mb)2+ k(logo;—log o)

SPOl::XE; stepl f(x,y)* HPR(x,y)—Th], (3)

where* denotes a correlation operation and &gjis the
step function equal to 1 fox>0 and zero otherwise.

The suggested method is based upon scanning the inpug

image with nine windows, as seen in Fig. 1. Designating
the index of the central window by zero and by increasing
indices of the eight peripheral windows, the suggested al-
gorithm can be written as

_Sy(0)—(1/8=7_,Sy(n)

SG = U= s, (n)

: (4)
where SG is the statistical contrast of type (the Doyle,
the POE, the cooccurrence matrix, or any other parameter
and S, is the statistical parameter of type calculated
within the n’th window. Note that the expression
(1/8)E§:lSp(n) is a zero-order approximation f@,(0).

In this way, S,(0) is approximated by the average of its
surrounding. A more general expression should be

S,(0)—5,(0)
50

whereép(O) is the approximation fo&,(0) done accord-
ing to the eight windows surrounding the central scanning

S

©)
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window. Obviously, using the average as the approxima-
tion method is not necessarily the optimal approach. In-
stead one may derive the optimal linear prediction equa-
tions for the statistical parameter of type Assuming that

8
$5(0)= 2, anSy(n),

n=

6

and defining the mean square criterion of optimization for
the error(wheree is the notation for the error an8{} is
the ensemble average

n=8 2
e= E{ {sp(O)— 21 a,Sy(n) ]—>min 7)
yields the following equations set:
R(n,m)Xxa(n)=r(n), (8)

where Rg(n,m) is a matrix whosen,m element (kn,m
<8) equalsE{S,(n)S,(m)}, a(n) is the vector of the de-
sireda,, coefficients, and(n) is a vector whos@ element
equals E{S;(0)S,(n)}. The coefficient vector then be-
comes

a(n)=Rq(n,m) " 1xr(n). 9
Note that due to the way that tt%, parameters were de-
fined, they are not stationary. The element&gfn,m) and

of r(n) can be recursively calculated during the scanning
process of the region of interest:

R¥(n,m)=R¥ V(n,m)+ s (n)s®(m),

(10
r®(n)=r*Y(n)+ps*0)s(n),

where the coefficienB is a weighting coefficient determin-
ng the adaptation process convergence rate to its steady
state.

Instead of deriving the optimal prediction equations, one
can derive the predictor-corrector Kalman fittequations,
which are quite similar except that they are expressed re-
cursively:

8

8§70 =871(0)+ 2, aSy(n), (11)

whereS{9(0) andS{}(0) are the predictions foB,(0) in
thek andk—1 iteration steps, respectively.

3 Locality Problem

We term the difference between the true statistical param-
eters of the background and the statistical parameters evalu-
ated within the scanning window the locality problem.

To derive the first-order statistics of the statistical pa-
rameterS,, one must know the statistics of the background
itself. The IR backgrounds can usually be represented as a
first-order Markov process having the autocorrelation func-
tion of®”’
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E{zizi b= 02pl, 12 8

7.
where p is the correlation coefficient between two areas El6 2
seen by two sequential instantaneous field of viwOV) 6r Gz

(0<p<1l), andk is the distance between two different

IFOVs. Assume for instance, that our statistical parameter
is the Doyle parameter. For this case, one must find the 4|
average and the standard deviation of the pixels within the

scanning window. Since the window is size-limitddcal), 3t
the average and the standard deviation extracted from the
window will differ from their real values in the stationarity 2

region of the background. The true computation of the stan-
dard deviationo, and of the average gray levgl, should

be done by 0 . . s .
0 0.2 04 0.6 0.8 1
P
NW
_ 217
Iu’Z NW 1 9
(13 8
N
Z_Ei:W]_(Zi_Mz)Z 7r
O-Z NW ) 6 §

whereN,, is the number of pixels in the stationary region,
and z is the pixel gray-level value. Since we do not have
information about the size of the stationary region, we ex-
amine the relation between the variance and the average to
be obtained in the case of prediction by a smaller scanning
window. We denote byi, and byad, the prediction for the
average and for the standard deviation respectively, using

N w H O
T T T T

smaller window having onIW pixels: 00 5 n 80 80 700
N
N
L= 2i-1% Fig. 2 Behavior of E{d%} as a function of N and p.
z N 1
(14)
o itz i)’ o 1 . .
e E{o7)= 2 (E[Z]+ELAf]-2Ezif))
0'2 N
Note that those equations may be corrected for sivat = g2— _; E (2N—2k)pk—N|. (16)
produce unbiased estimates. This may become especially S\ =]

important if the nine windows are not identical in shape and

size, as the estimates will have different biases. For the Figure 2 presents the dependenceﬁ{ﬁi} on N for p
following analysis we will restrict ourselves to the case =q.7 andggzg and its dependence gnfor N=7.
whereN is not too small and the nine windows are identi- A trade-off exists here for the desired window siXe

cal. . A _ On one hand, one wishes to decreds® avoid the non-
Since bothi, and 6, depend on the random varialde

stationarity of the background. On the other hand, decreas-

we can compute their expectancy value. For pixels in the ing N too much destroys the quality of prediction. One of

same line one can write

1
E{ﬂg}:NTEi 2 E{zz}

1 R
22 2 ol =1 3 (2N—2K)pk-N|.
! J k=1

(15

Using Eq.(15) one can easily obtain

the advantages of the contrasted approach is that it over-
comes the locality problem by observing not the value of
the statistical parameter itself but the difference from its
surrounding.

4 Computer Simulations

In the following simulations, the suggested approach was
tested. In the simulations, we assumed a scanning window
having a rectangular shape with the minimal possible di-
mensions that yet bound the target. The performances of
the suggested technique with windows of varied dimen-
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Fig. 3 Results obtained for a stationary image with a Doyle-like statistical processing type: (a) input
pattern, (b) output obtained after applying a conventional Doyle like processing, (c) output obtained
after applying the contrasted approach, and (d) plot of the probability of false alarm as function of the

applied threshold.

sions were not tested. In addition, we assumed that thewhere o is the standard deviation of the generated image
range between the sensor and the various parts of thez(i,j).

scenes is the same.

Figure 3a) presents a stationary background with an

To simulate the presented approach, an IR backgroundairplane target inserted within it. A processing window
was synthesized using the first-order statistical Markov having a size of 15 pixels was slid over the input image.

model with variousp and 05 parameters. lterative equa-
tions were usétio fulfill Eq. (12):

2(i,j)=pz(i—1,))+pz(i, - 1)—p?2(i—1,j-1)

+w(i,j),

wherez(i,j) is the simulated IR backgroung,is the cor-
relation coefficient, anav(i,j) is a 2-D sequence of inde-
pendent and identically distributedi.i.d.) zero-mean
Gaussian variables with common variance of

o2=0?(1-p??,
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The statistical processing that we have investigated first
was a Doyle-like parameter. Since the target had low gray
levels(in comparison to the gray levels of the background
and the processing window is a bit longer than target’s
dimensions, the following statistical processing will result
in a high value for the target and in lower values for the
background:

A N
Mz Zh-17Zn
=T oN N .
PG, [Enzl(zn_znzlzn)z]uz

S

Figure 3b) presents the image obtained after applying this
statistical processing. In Fig.(®, one can see the image
obtained after applying the contrasted statistical processing.
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One can see that in both Figs(bg and 3c) high values
were obtained in the center, which corresponds to the loca-
tion of the target. Figure (8) presents a plot of the prob-
ability of false alarm as function of the threshold level in
percentages of the difference between the maximum and
the minimum obtained values. The upper curve corresponds
to the probabilities obtained for the conventional statistical
processing and the lower curve corresponds to the con-
trasted statistical processing. These probabilities were ob-
tained from Figs. @) and 3c) by applying a threshold and
counting the number of pixels passing this threshold value.
One can see the improvement obtained in using the con-
trasted approach.

Figure 4a) presents an airplane placed on a center of a
nonstationary background generated by a linear combina-
tion of several Markov processes. Once again, the Doyle-
like approach was applied. The results obtained in Fig). 4
correspond to conventional statistical processing. The
higher values are located in the center, which corresponds
to the position of the target. For this case, a threshold of
13% of the difference between the obtained maximal and
minimal values is required in order to detect the target. For
this threshold the false alarm probability is 13.14%. Figure
4(c) presents the contrasted statistical processing which re-
sults in a 5.2% probability of false alarm, with a threshold
that is 42% of the difference between the maximal and the
minimal values. This threshold is required to obtain the
detection of the target. Obviously here as well, higher val-
ues are obtained in the center, which corresponds to the
location of the target. Indeed, the results are much im-
proved since lower probabilities of false alarm are obtained
for thresholds required for detection.

In Fig. 5, the POE statistical processing was applied
over the nonstationary background of Figa} The thresh-
old Th of Eq.(3) for obtaining the edge image was 70% of
the average level in the central processing windake
zero number windoyv The image obtained by the conven-
tional statistical processing is presented in Figy 5and the
image obtained by the contrasted processing is seen in Fig.
5(b). In both, the higher values are seen in the center, which
correspond to the location of the target. The curve express-
ing the probability of false alarm as a function of the
threshold(percentages of the difference between the maxi-
mal and the minimal obtained valyespplied over the pro-
cessed image is seen in Figch The upper curve corre-
sponds to the conventional processing approach and the
lower curve corresponds to the contrasted processing. One
can see the improvement—for similar threshold values
much lower probabilities of false alarm are obtained.

Figures 6 and 7 present the potential of the suggested
approach with real IR3 to 5-um spectral bandimages.
Figure Ga) presents an IR image containing a target in the
center of the image. A Doyle-like processing was applied. 10 20 30 40 50 B0
Figure Gb) is the result of conventional processing and Fig. ©
6(c) of the contrasted processing. Figur@)6once again
presents the false alarm probability as function of the ap- Fig. 4 Results obtained fgr a nonstationary image with a Doyle-like
plied threshold, in percentages of the difference betweenstatlstlcal processing type: (a) input pattern, (b) output obtained after

. - = Tapplying a conventional Doyle-like processing, and (c) output ob-
the maximal and the minimal values. The upper curve in tained after applying the contrasted approach.

N W e )N 0 W
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Fig. 5 Results obtained for a nonstationary image with a POE sta-
tistical processing type: (a) output obtained after applying a conven-
tional POE processing, (b) output obtained after applying the con-
trasted approach, and (c) plot of the probability of false alarm as
function of the applied threshold.
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(d)

Fig. 6 Results obtained for a real IR image with a Doyle-like statis-
tical processing type: (a) input pattern, (b) output obtained after ap-
plying a conventional Doyle-like processing, (c) output obtained af-
ter applying the contrasted approach, and (d) plot of the probability
of false alarm as function of the applied threshold.
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Fig. 7 Results obtained for a real IR image with a POE statistical
processing type: (a) input pattern, (b) output obtained after applying
a conventional POE processing, (c) output obtained after applying
the contrasted approach, and (d) plot of the probability of false alarm
as function of the applied threshold.

Fig. 6(d) corresponds to the conventional approach and the
lower curve to the contrasted approach. One can see the
improvement.

Figure {a) presents similar image while the target is
located in the lower middle region of the input scene. A
POE processing was applied. Figur@)7presents the re-
sults obtained using the conventional approach. Figlze 7
corresponds to the contrasted approach. One can see that
much higher values were obtained using the contrasted ap-
proach in the region where the target is supposed to be
located. Figure (@) presents a plot of the probability of
false alarm as function of the threshold in percentages of
the difference between the maximal and the minimal val-
ues. The upper curve in Fig(d) corresponds to the con-
ventional approach and the lower curve to the contrasted
approach. Once again, a significant improvement is
revealed—much lower probabilities of false alarm are ob-
tained for equal thresholds.

To avoid confusion, let us note that the presented false
alarm methodology does not particularly indicate the de-
crease of detection clusters but rather the decrease in their
sizes. In many automated detection configurations where
computation complexity plays a major role, the clustering
operation is skipped and then the detection is done, as pre-
sented, per pixel in the output plane. However, in more
redundant applications, the number of clusters, rather than
their dimensions, is an important parameter. For instance,
returning again to Fig. 7 and applying a threshold which
equals min-0.65° (max—min), where min and max are the
minimal and the maximal values of the output plane respec-
tively. This results in one cluster in the suggested approach,
which appears on the location of the target, and three clus-
ters in the conventional approach, which does not appear at
the correct position of the target. Note that since in the
conventional approach more false pixels pass the threshold,
they merge a cluster whose location does not coincide with
the position of the true target.

This is not the case of Fig. 6. Here for the same thresh-
old a single cluster appears in both cases. In the conven-
tional case, the cluster is only bigger.

To further justify the suggested approach, additional test
scenes were input. Figuréa8 presents the input. A Doyle-
like processing was applied with a processing window size
of 30 pixels. The output obtained after applying the con-
ventional approach is presented in Figb8and the con-
trasted technique may be seen in Fi¢c)8After applying
the same 65% threshold the number of clusters in the con-
ventional approach was 14 while in the contrasted approach
it was 8. In addition, the clusters in the contrasted approach
were smaller. Similar processing was applied to the scene
of Fig. 9. In this case, the conventional processing resulted
with 7 clusters while the contrasted approach yields only 3.
Following the same path in Fig. 10 yields 3 clusters for the
conventional approach and 2 smaller clusters for the con-
trasted.

A POE processing with Th of 70% was applied over
the scene of Fig. @ and resulted in the conventional
and contrasted outputs presented in Figgaland 11b)
respectively. Applying a threshold equal to min
+0.65 (max—min) vyields 4 and 2 clusters in the
conventional and contrasted approaches, respectively.

Optical Engineering, Vol. 39 No. 10, October 2000 2615
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Fig. 8 Results obtained for a real IR image with a Doyle processing
type: (a) input pattern, (b) output obtained after applying a conven- Fig. 9 Results obtained for a real IR image with a Doyle processing
tional processing, and (c) output obtained after applying the con- type: (a) input scene, (b) output obtained after applying a conven-

trasted approach. tional approach, and (c) output obtained after applying the con-

trasted approach.

5 Conclusions improved probability of false alarm since it further en-

This paper presented a new approach based on a contradtanced the relationship between the statistical property ob-
computation of a desired statistical property. Prediction and tained in the processing windows of the target and the
a prediction-correctionKalman equations were applied background, respectively. This overcomes both the nonsta-
over the calculated statistical property, while the statistical tionary and the locality problem of IR backgrounds ex-

contrast was evaluated. The suggested approach enabled goosed to a statistical processing type algorithm. Computer

2616 Optical Engineering, Vol. 39 No. 10, October 2000
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10 20 30 40 50
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Fig. 10 Results obtained for a real IR image with a Doyle statistical
processing type: (a) input pattern, (b) output obtained after applying
a conventional processing, and (c) output obtained after applying
the contrasted approach.

. . - 7.
simulations demonstrated the capabilities of the suggested
approach on synthesized as well as real backgrounds. The
obtained results were compared favorably with the conven-

tional statistical processing approach.

(b)

Fig. 11 Results obtained for a real IR image with a POE statistical
processing type: (a) output obtained after applying a conventional
POE processing and (b) output obtained after applying the con-
trasted approach.
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