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Global Segmentation and Curvature
Analysis of Volumetric Data Sets Using
Trivariate B-Spline Functions

Octavian Soldea, Gershon Elber, Member, IEEE, and Ehud Rivlin, Member, IEEE

Abstract—This paper presents a method to globally segment volumetric images into regions that contain convex or concave (elliptic)
iso-surfaces, planar or cylindrical (parabolic) iso-surfaces, and volumetric regions with saddle-like (hyperbolic) iso-surfaces, regardless
of the value of the iso-surface level. The proposed scheme relies on a novel approach to globally compute, bound, and analyze the
Gaussian and mean curvatures of an entire volumetric data set, using a trivariate B-spline volumetric representation. This scheme
derives a new differential scalar field for a given volumetric scalar field, which could easily be adapted to other differential properties.
Moreover, this scheme can set the basis for more precise and accurate segmentation of data sets targeting the identification of
primitive parts. Since the proposed scheme employs piecewise continuous functions, it is precise and insensitive to aliasing.

Index Terms—Gaussian and mean curvature, symbolic computation, global analysis, segmentation.

1 INTRODUCTION

THE availability in recent years of a broad variety of range
and volumetric images has presented new problems and
challenges for the scientific community. In this context,
segmentation is still a major conundrum and central research
topic [8], [9], [32], [30], [46]. For example, in [8], the authors
employed segmentation processes in order to reconstruct
planar surfaces occluded by objects in range images. In [46],
surface segmentation is employed in tasks of identification
and searching of objects in a database of three-dimensional
objects. In [32], range image segmentation is used in tasks of
classification of objects, a process thatis also known as generic
recognition. In [9], the role of segmentation for reconstruction
of volumetric parts from range data is discussed. In [30], a
finite element segmentation technique is employed in the
visualization and analysis of a heart captured in a sequence of
volumetric images.

In [29], Marshall et al. presented a segmentation process
that detects primitives such as planes, spheres, cylinders,
cones, and tori from range data images. In this context,
volumetric segmentation can be employed as well. A
potential application of volumetric segmentation for use in
identifying cylinders is illustrated in this work.

Most of the curvature computation literature deals with
3D meshes, which are typically obtained from 3D scanners. In
contrast, volumetric images are commonly obtained from
devices such as CTs, MRIs, and SEMs. Segmentation of
volumetric images represents a new research field with
immense and unexplored potential for computer vision
applications. Our scheme represents a novel approach to
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volumetric segmentation, employing a global analysis of the
input data, and can be employed in classical segmentation of
3D images as well.

One way of handling the segmentation problem is by
computing or estimating differential geometrical properties
of the analyzed objects; see, for example, [3], [9], [18], [39],
[43]. Among the differential properties that are widely
used, Gaussian and mean curvatures take center stage,
being fundamental prescriptions of an intrinsic surface
property [26].

In this paper, we present a technique to globally and
simultaneously compute the Gaussian and mean curvatures
for (all iso-surfaces of) volumetric images. Given a volu-
metric data set f(u,v,w), we are able to compute K (u,v,w)
and H(u,v,w), the scalar fields that represent the Gaussian
and mean curvatures of the iso-surface at (u, v, w), as well as
other differential characteristics. The introduced computa-
tional capability opens the way for a more precise and
robust global curvature-based segmentation of volumetric
data sets. To the best of our knowledge, all contemporary
algorithms compute the curvature properties in discrete
locations only. In the presented approach, we are able to
globally, continuously, and simultaneously compute curva-
ture property functions over the entire volume.

The presented scheme offers additional advantages in its
improved accuracy in detecting boundaries of curvature-
based segmented regions. Another of its benefits is its ability
to perform global curvature analysis that is insensitive to
aliasing as well as ignorant of a specific iso-level. This is in
contrast to other methods that use discrete approaches.

This paper is organized as follows: In Section 2, we
describe the current state-of-the-art in segmentation and
curvature computation work. In Section 3, we provide some
necessary mathematical background and, in Section 4, we
describe the mechanism for evaluating the Gaussian and
mean curvatures used in our presented approach. In
Section 5, segmentation of the volume as well as curva-
ture-based iso-surface extractions are considered using the
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introduced scheme. A few advantages over traditional
voxel-based schemes are also presented. In Section 6, several
examples of our algorithm applied to volumetric and
3D scanned images are portrayed and, finally, in Section 7,
we conclude.

2 RELATED WORK

Below, we provide an overview of the current state-of-the-art
in curvature estimation over two-manifolds. The interest of
the scientific community in segmenting 3D images has
resulted in a plethora of techniques for surface segmentation.
We describe several surface related works in Section 2.2.
Several volumetric related studies that analyzed volumetric
data sets are described in Section 2.3.

2.1 Evaluating Curvature

Being orientation independent of surface characteristics,
curvature values are appropriate for registration and
matching tasks. An example of curvature evaluation
employed in tasks of registration and matching can be
found in [45].

A significant part of contemporary research on curva-
ture analysis focuses on polygonal meshes. In [34], a
3 x 3 symmetric matrix is defined by integrating the
normal curvature around each vertex P. The neighborhood
points of P are used in order to approximate several
normal curvatures (in the directions of these neighbors).
Thus, the integration becomes an angular discrete summa-
tion of normal curvature values. Two of the eigenvalues of
the computed 3 x 3 symmetric matrix provide the princi-
pal curvatures.

The abundance of papers that deal with curvature
estimation methods, employing polygonal meshes and also
other representations, spurred interest in comparing the
accuracies obtained by these methods [14]. In [14], the authors
compared five methods of computing the curvature on
surfaces. The first three methods are analytic and work in
three steps: fit a surface to the values around the point of
interest, evaluate the second derivatives, and compute the
mean and Gaussian curvatures. The fitting of surfaces
methods are different in each algorithm and are based on a
least squares error with orthogonal polynomials, a linear
regression with a biquadratic surface, and a B-spline
approximation. Two other methods are based on measuring
the change in the normal in the neighborhood of the analyzed
point. These two methods employ an averaging over several
normal curvature values in a number of directions, where the
evaluation of the normal curvatures are discrete (numeric)
computations. Flynn and Jain [14] concluded that the three
analytic solutions are almost the same and are slightly better
than the two discrete methods.

When the input data has a very high level of noise,
techniques for computing the sign of the curvatures can be
employed. In [33], the authors proposed a tensor voting
scheme for inferring the sign and the direction of the principal
curvatures from noisy 3D data. This method does not require
local surface fitting, partial derivative computations, or
normal vectors evaluation—tasks that are considered to be
noise-sensitive when processing 3D data images. A first stage
of voting provides orientation information represented by
estimated tangents and normals, local structures being
represented by ellipsoids. The ellipsoids are employed in a

second stage in order to detect the sign and directions of the
principal curvatures, by voting, at each local structure.

2.2 Segmenting Range Images

Segmentation tasks often rely on edge-based techniques. In
[41], the authors employed an edge growing method to
segment range data images. The technique is based on
employing noise adaptive masks, thus making this method
suitable for noisy images.

A common problem strongly related to segmentation is
the identification and fitting of surfaces of known types. In
[29], the authors presented a segmentation process that
detects primitives such as planes, spheres, cylinders, cones,
and tori from range data images. The algorithm begins by
selecting several arbitrary seeds points in the data and an
iterative process that grows regions. At certain iterations,
part of the detected regions are selected for further growing.
Although during the iterative process the regions are
allowed to overlap, at the end, the segmentation algorithm
provides separate regions that are recovered as primitives.

Most segmentation research is based on curvature and
differential characteristics evaluation. In [38], the authors
proposed an evaluation scheme for a range image segmen-
tation system. The segmentation system partitions the data
into regions based on the signs of the Gaussian and mean
curvatures. Morphology and threshold-based techniques
are used to improve the quality of the results. The influence
of several parameters is extensively studied and a frame-
work for comparing implementations is suggested.

Unlike the segmentation computation literature, which is
vast, studies that deal with comparison between segmenta-
tion methods are rare, mainly due to that fact that one is
required to build a uniform platform for comparison and
selection of methods from the literature. In [20], the authors
presented a comparison of four algorithms for image
segmentation of range images obtained from 3D laser
scanners. One such algorithm, also published in [13], is
based on curvature estimation. Gaussian and mean curva-
tures at each point in the resulting image are evaluated
from a B-spline surface that locally approximates the
geometry. The construction of the B-spline surface is
achieved using a window of neighbors around the analyzed
point. Interestingly enough, the conclusion of the authors in
[20] is that, although this particular algorithm is the most
time-expensive scheme, it also provides the best results.

2.3 Analyzing Volumetric Data Sets

Moving forward into the domain of volumetric data sets,
we see that segmentation also comes into play in volumetric
analysis. In [27], the authors presented an algorithm for the
segmentation of volumetric images that works in four
stages. In the first step, an intensity histogram of the voxels
is computed. Based on the histogram, several thresholds are
established. The thresholds define regions that are revealed
in the second step. Once these are known, a seed point is
selected and given as input to a region-growing algorithm.
The boundaries obtained here are considered inaccurate. In
the third step, rays are cast from each boundary voxel
toward all the 26 neighboring voxels and a reconstruction
and classification heuristic is applied. Finally, in the fourth
step, a technique of contrast enhancement is applied toward
the final volumetric rendering.
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A comprehensive work on the theory of curvature
evaluation on volumetric data sets, from a mathematical
point of view, can be found in [31]. A systematic development
of the theory of computing the curvature of volumetric
images can be found in [16]. The author in [16] presented
methods for computing the curvature of piecewise linear
two-manifold surfaces (triangulated surfaces) and three-
manifold graphs of trivariate functions. In the two-dimen-
sional case, the neighbors of each node of the triangulated
surface define an approximation of the surface that is
modeled as a bivariate polynomial. The bivariate polynomial
is characterized by several coefficients that are employed in
the computation of Gaussian and mean curvatures. In the
three-dimensional case, the computation of the curvatures of
the three-dimensional graphs of trivariate functions consists
of a generalization of the two-dimensional case. The bivariate
polynomial represents a good local approximation of the
surface at any point of the triangulation given in the input.
Similarly to the bivariate polynomial case, the trivariate
polynomial represents a good approximation of the space at
any point of the three-dimensional graph given in the input.
However, both computations are performed at discrete
points only, as dictated by the triangulations or the graphs
in the input. The author in [16] presented several examples of
synthetic objects that were color-coded to follow curvature
values. Moreover, several measurements of the errors of the
approximation were presented using the root mean square
between exact analytic and approximated values over each
point of interest of several synthetic images.

Being able to view only the outside boundaries of objects, in
general, the human eye experiences difficulties in fully
comprehending the geometry of a volumetric image. Ways
to provide visual cues are used in nonphoto realistic
rendering. For example, in [22], curvature evaluation is
employed in computing strokes textures of volumetric
images. Moreover, in [17] and [25], volumetric rendering
processes employ transfer functions. The transfer functions
that are used there associate color cues to voxels based on
principal curvature values.

Weinkauf and Theisel [42] used a global curvature
analysis approach and presented a technique for evaluating
the curvature and torsion of 3D vector fields. Several
differential characteristics of the 3D vector fields are used
for computing iso-surfaces, which finally are employed
toward the analysis and visualization of the input images.
The importance of [42] could also be found in detecting and
analyzing critical points of vector fields.

In [35] and [36], Thirion and Gourdon presented a
technique for estimating curvature values of iso-intensity
surfaces from volumetric data sets. The estimation of
curvature properties requires the approximation of deriva-
tives in the input images and, in [35] and [36], this is
performed by applying a discrete local Gaussian filter [4] over
the volumetric image. Moreover, in [35] and [36], the authors
defined four types of possible registration curves, taking into
consideration the local minimum or maximum of the largest
or next-to-largest curvature along lines of curvature. The
curves on the surface in which the largest principal curvature
is at a local maximum are called crest lines. The authors
claimed that the crest lines are the most stable ones of the four
types of curves they considered. They foresee registration and
pattern recognition as the main applications of crest lines.

3 BACKGROUND

Consider f(u,v,w), a C? trivariate function. In this section,
we briefly present the mathematical background necessary
to compute the Gaussian and mean curvatures of an iso-
surface f(u,v,w) = fo. We express the main differential
components as in [35] and [36].

Given a bivariate function g(u, v), denote by g, and g, the
two partial derivatives of g(u,v) in the u and v directions,
respectively. Similarly, for any trivariate function h(u, v, w),
let h,, h,, and h,, be the partial derivatives of h(u,v, w) with
respect to the u, v, and w directions.

From the implicit function theorem, there exists a scalar
function S(u,v) that dictates that the parametric surface
S(u,v) = (u,v, S(u,v)), which is a local parametrization of
an iso-surface level f(u,v,S(u,v)) = fo, fo constant. Then,
by differentiating with respect to u, we have

fu(ua v, S(u: U)) + fw(u> v, S(“v U))Su =05

further, one can deduce that S, = — ff—, and S, = (1,0, — Jff—)
Here, we assumed that f, # 0. We show in Appendix A
(see http://computer.org/tpami/archives.htm for more
information) how we handle the case in which f,, = 0.

Let E,F,G and L,M,N be the coefficients of the first
and second fundamental forms of iso-surface f(S) = fo,
respectively, and let n =S, xS, be the unnormalized

normal to S at (u,v). Then,

f 212 E
petEeE O

w w w

E=(8,8,)=1+8=1+

Similarly, other differential terms can be computed as well:

fufs _F
F=(8,8) =" =5, 2)
P G
G =(8,8) =" =7 (3)
fiefiefl D
D:EG—F2:42’:—27 (4)
L= <Suu7ﬁ>
_ 2fuf'wfuw - fgfwtb B fi;fuu _ ‘Z; (5)
= 13% 3 - 5% '%7
M= <Sumﬁ>
_ fufwfuw + f’ufwfuw - fo’Ufww — fzf’“ — M (6)
- Dif? D
and
N = <S1m7ﬁ>
_ 2f1,¥fwfvw - fgfwﬂl B fifm’ — ]v (7)
Dif2 Dif

where 7 is the normalized surface normal. Thus, the
Gaussian curvature of an iso-surface of f(u,v,w) is the
equivalent of
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LN - M?> LN — M

K -
D D2f8
—— - ~ (8)
LN - M? K
o ﬁQfQ o lAijQ"

The values in (1) to (8) are w-biased and sensitive to a
vanishing f,,. Processing further, we have:
K = 2fufofuwfow + 2fufuwfufow + 2f0 fofoufuw
= 2futfwfuwfor = 2Fo fufuufow = 2Fufo fuv Fuw + FoFuu oo
= fifoofuw + £ fufunw = Fi iy = £ Fiw = Fafi) 1 D
£

3

(9)

The details involved in the development of (9) can be found in
Appendix A (see http:/ /computer.org/tpami/archives.htm
for more information). Further, K is now symmetric with
respect to u, v, or w. K(u,v,w) is define(i> for the entire
parametric domain of f(u, v, w_)> Denote by V f = (% , % , %)
the gradient of f, and assume V fis never zero. Then, given a
(up, vg, wp) location, theiso-surface of f(u, v, w) at (ug, vo, wp) is
well-defined. Having a well-defined iso-surface at (ug, vo, wy),
K (ug,vo, wy) is also well-defined, as D? = <§> f, v f) never
vanishes. Itis important to note that K is a rational expression
of piecewise polynomials, provided f is a piecewise poly-
nomial.

In a similar way to the computation of K in (8) and (9), a
formula for H, the mean curvature, can be derived as

H= (2fu,f1!fu1: + qufwfmu + 2f1).fwfvu: - ( 3 + fi)fuu

B (0
(£ ) o (524 £ i)/ (2DY) = S5

Note that H? is a rational expression of piecewise
polynomials as well.

4 CURVATURES OF ISO-SURFACES OF TRIVARIATE
B-SPLINE FUNCTIONS

We propose to use trivariate B-spline functions for represent-
ing objects due to their properties of variation diminishing.
These properties assure good approximations to shapes.
Moreover, trivariate B-spline functions are piecewise poly-
nomial. Thus, if f(u, v, w) is the trivariate B-spline function in
the input, the resulting K (u, v, w) and H(u,v,w) curvatures
are rational expressions of piecewise polynomial functions.
The fact that the input and the output are (rational)
expressions of piecewise polynomial functions represents a
type of closure. In other words, the whole range of operators
that apply to B-spline functions can also be applied to the
input as well as the output functions. Furthermore, trivariate
B-spline functions have good continuity properties and an
analysis of the continuity properties of the resulting Gaussian
and mean curvatures is provided in this section.

Let B;;-(t) be the ith B-spline blending function of
degree k defined over knot sequence 7 [5]. Now, consider
the trivariate B-spline function,

f(ua v, ’U}) =
Ny My My

>3 pijaBisr, (W) Bjk,r, () Big, (W),

i=0 j=0 1=0
(11)

with x = (ny + 1)(ny + 1)(ny + 1) scalar coefficients p; ;;,
B-spline basis functions B; 1, -, (u), Bj,.r,(v), and By, -, (w),
degrees k,, k,, and k,, and knot sequences 7, 7, and T,
respectively. Hereafter, we will employ B;(t) or B;;(t) to
denote B; ;. - (t) whenever the degree or the knot vector can be
inferred from the context. Given a regular, piecewise constant
volumetric data set, one can treat it as a piecewise constant
B-spline trivariate. Moreover, a piecewise trilinear B-spline
trivariate will also interpolate this volumetric data set by
simply using the voxels” data values as the p; ;,; coefficients of
the trivariate. For higher order trivariate functions, the result
is only an approximation, when p;;; are the coefficients.
Hence, in practice, two options are available. One option is to
solve an interpolation problem, fitting f(u,v,w) to the
original piecewise constant data. Alternatively, a second
option consists of providing a bound on the error of the
approximation, when using the voxels” data values as the
pij coefficients. Although interpolation is sometimes pre-
ferred, it could be less stable.

Consider 7; € 7, a single interior knot in the u direction
such that 7; < 7,41, and similarly for 7; € 7,, 7; < 741 and
T € Ty, T <Ti41. Then, in each nontrivial polynomial
subdomain D; j; : [r, Ti41) X [75,Tj41) X [11,7141) of the para-
metric space of f, the Gaussian curvature, K, is a rational
function in p;;; and in (u,v,w), where u € [, 7Ti11),
ve [Tj, Tj+1),andw € |11, 7i41). In this section, we will describe
how to efficiently compute the Gaussian curvature K (u, v, w),
in two steps. First, in Section 4.1, we evaluate the numerator
and the denominator of K asa trivariate Bézier representation
in each subdomain, D; ;. In a second step that is briefly
described in Section 4.2, we merge the rational form of K inall
the polynomial subdomains into a simple B-spline trivariate
function representation, over the entire domain of f(u, v, w).

4.1 Evaluation of K and H as Bézier Forms

We seek to define K using the coefficients p; ;; of f(u, v, w) for
a single subdomain D; j; and compute the numerator and the
denominator of the Gaussian curvature following (9). The
expression for K as a function of p; j; was obtained with the
aid of the Maple [6] symbolic manipulation program, also
available at [2]. We use a symbolic interpolation process to
convert the rational result to a Bézier form. In a similar way to
K, H? can be evaluated as well.
Let

0in(t) = (?) (1—t)" ¢

be the Bernstein-Bézier basis function of degree n. Consider
f for one subdomain D, ;,;. Let )(u,v,w) be one of the
differential components, defined over D, j;, as presented in
(D-(7), (9), and (10). f and ¢

are both polynomials.
Let 0,, 0,, and o,, be the degrees of ¢)(u, v, w) in u, v, and w,
in one D; j; domain, respectively, following Table 1, and let
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TABLE 1
Degrees of Differential Components
Component Degree Degree Degree Degree
in p; i
inu in v inw coeffi-
cients
fu,v,w) ku k. Fuw 1
fu(u7 v, w) k -1 k'v k‘w 1
folu, v, w) ku ky — 1 K 1
fu(u, v, w) ky, ky Fow — 1 1
S (u, v, w) k, —2 ko Fur 1
foo(u, v, w) ku by, —2 kuw 1
Juw (4, v, w) ky ke o — 2 1
f?Lqr(u7U7 ’LU) ky — 1 ky — 1 - 1
Juw(u, v, w) ko — 1 k., Fw — 1 1
fvw(u,v,w) ku k'u - 1 kw — 1 ]
D=
fo+fo+fa 2k, 2%k, 2Ky 2
D?* =
(£24 2+ 12)° dk, ak, Ak, 4
E=fi+fs 2k, 2k, 2k 2
F = fufv Zku —1 qu; -1 ka 2
G=fi+fo 2k, 2%k, 2k, 2
L= 2f2ufwfuw
_fufww
_fifuu 3ku -2 3ku 3k‘w -2 3
M = fufwfvw
+fofufuw
_fufvfww
7fz2fuv 3ku,1 3’91;*1 3kw72 3
N = 2fy fuw fow
7f3fww
—fofo 3ky | 3ky —2 | 3ky — 3
K =LN — M? 6ky —2 | 6ky —2 | 6ky — 6
K=K/f3 Ao —2 | dky—2 | 4k — 4
H=FEN —-2FM + GL 5k 5ky Skw — 5
H=H/2f} 3k 3k 3k 3
~2
H 6ku 6k, 6k 6
D3 —
(f2+f2+12)° 6k, 6k, 6k 6
O Oy Oy
O(u,v,w) = Gij10i.0,(1)0j0,(v)0r0, (w),  (12)
i=0 j=0 I=0

be a Bézier polynomial function of the same degree. We
seek a Bézier representation for the polynomial function of
1 and find it by the uniqueness of the polynomial
representation and symbolic interpolation constraints at
O = (0, + 1)(0, + 1)(0p + 1) unique parameter values.

In brief, pre-evaluate K (u;,v;,w;) for all i€ {0..0,},
j € {0..0,},and! € {0..0, },sothatweend up with O equations
in p; ;; only. Here, u;,v;, and w; € [0..1] for all ¢ € {0..0,},
j€{0..0,}, and [ € {0..0, }, representing interpolation argu-
mentvalues. Once a specific fis given, the p; j; coefficients of f
are substituted in the equations. The values of K at these
O locations are used to formulate an interpolation problem,
yielding the g; ;; coefficients in (12). The details of this process
follow.

Consider three sequences of interpolation argument
values u;,v;, and w; € [0..1] for all i € {0..0,}, j € {0..0.},
and [ € {0..0,,}. Moreover, we assume that

U # uj, (13)

for any i # j and 4, j € {0..0,}; the same holds for v and w
sequences.

Assume that f(u, v, w) is a piecewise polynomial function
of degrees k,, k,, k,,. Table 1 summarizes the degrees of the
different differential terms leading to K and H 2 following
(1)-(10). With the aid of Maple [6], we represent the
differential components in Table 1 as polynomial functions
in u,v,w and p;;;. For example, D ~, is a polynomial of
degrees 2k,,2k,, 2k, in (u,v,w), respectlvely Further
because V f is a linear polynomial in p;;;, D (Vf7 Vf}
is a quadratic function in p; j;. While, in general, the degrees
of the terms grow larger as we progress, K is obtained from
K by dividing by f2. Thus, the degrees of K are smaller than
those of K (see (9)).

Consider a given trivariate f with known coefficients
i1, which could be substituted into )(u, v, w). The problem
of deriving ¢;;; in (12) could be mapped to a system of
equations with O unknowns and O constraints:

0(ui, v, w) = (7 + i, 75 + v, 1+ wy),

where i =0,...,0,, j=0,...,0, 1 =0,...,04, and v;, vj,
and w; € [0..1]. Note, p;;; are now specified. System (14)
is modeled as follows: Let © € Mp.on, @ € Moy, and
¥ € Moyi, where M;,; denotes a matrix of size i by j.
Let r=1{(o, +1)(0, + 1) + j(o, + 1) + i. Consequently, the
s'th element of the r'th row, O, € ©, equals

0,5 = ba0,(1i)05.0,(V)0-,0, (wi),

where s =~(o, +1)(0, + 1)+ (0, + 1) + a. Similarly, let
the s'th element of @ be Q; = q,, 5., and the r'th element of
U be ¥, = (1; + u;, 7j + v;, 71 + wy, ). Then, (14) is equiva-
lent to

(14)

(15)

Q=" (16)

V¥, is symbolically pre-evaluated once into O polynomial
equations in p; j;, as in the right side of (14). Given a specific
f, all the ¥, functions are evaluated by substituting in the
pij,; coefficients of f.

We discuss below several options for choosing interpola-
tion points. Moreover, we provide a justification of the fact
that © is nonsingular in Appendix C (see http://computer.
org/tpami/archives.htm for more information).

4.1.1 Greville Abscissas Interpolation Points

A first possible option for Choosmg interpolation points is
u==+, v = %, and w; = -, where i € {0..0,}, j € {0..0,},
and! € {0..0, }. In other words we evaluate 0(z, y, z) at three-
dimensional independent parametric points of the form,

i g1
PN B
Oy Oy Oy

points that are also known as node points or Greville
abscissas [12]. The functions,

050, (1), 050, (v), and 0, (w),

form a basis for the polynomials of degree o,, 0,, and o,, in
u, v, and w, respectively.

(17)
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The diagonal elements of matrix © are larger than any
other element in the same column or row due to the fact that
0,(2) > 0;4(z) forany = € [0, 1] [5]. Hence, this interpolation
scheme provides more stability when the linear system of

equations is solved, as
Q=06"'v. (18)

4.1.2 Chebyshev Abscissas Interpolation Points
A better option for choosing interpolation points is

(2i+1)7 2+ )7
(ZH ) 1+cos( J )

(B
2 U= 2
2

1+cos

,and

1+ cos
w=—""7

Q2+
0y+1
?

where ¢ € {0..0,}, j€{0..0,}, and [ € {0..0,}. In other
words, we evaluate 6(zx,y, ) at three-dimensional indepen-
dent parametric points of the form,

1+ cos ((201111) ) 1+ OS((?{]}TI)W) 1 + cos ((iluil}ﬂ>
2 ’ 2 ’ 2 ’

(19)

points that are also known as Chebyshev abscissas [7]. The
condition numbers of the matrices (z,y, z) evaluated at
Chebyshev abscissas are from twice up to 60 times lower
than their counterparts evaluated at Greville abscissas, for
the degrees we use: 6, 8, 9, 10, 12, and 18.

When interpolating at equidistant points, the approx-
imation graph can have a disturbing course between the
interpolation points (see Runge phenomenon [7]). In
contrast, interpolation via Chebyshev points is the best
choice for minimizing numerical errors and coping with
Runge phenomenon.

© is also independent of the input and, hence, one can
precisely precompute © and © ' once. Nevertheless, the
direct inversion of © is not trivial. In the following, we
analyze the reasons for which the inversion of © is not
trivial. Moreover, we propose several possible solutions to
the interpolation problem based on © and ©~'.

Let y; be a sequence of numerical values, j € {0,1,...,r}.
The Vandermonde matrix is a matrix of the form

yg y(l) y6

0 1 r

Van(yo, Ylyen ey yr) — v nn - Y
y?- y} T

There is a strong relationship between © and the
Vandermonde matrices. We show this relationship in
Appendix C (see http:/ /computer.org/tpami/archives.htm
for more information).

It is known that Vandermonde matrices have large
condition numbers and this fact implies that the computation
of their inverse is numerically unstable. Moreover, multi-
plying matrices with increasing condition numbers would
typically yield results with increased numerical errors. A
good presentation of the numerical problems that appear
when using matrices with large condition numbers can be
found in [21]. If not enough, herein the size of matrices © and

67! is very large; in the thousands. For example, in the case
when we compute the denominator ofK andk; = kj =k =3,
we have o; = 0j =01 = 12 and O, 8 € ]\[2 197x2, 197 In Ap—
pendix C, we discuss in detail ways to compute © ' ina more
stable manner. In Appendix D (see http://computer.org/
tpami/archives.htm) for more information, we present a
computation scheme that has lower memory complexities
than (16), a computation scheme that improves the time
complexity as well.

The direct computation of @' is time consuming and
presents high numerical errors. In Appendix D (see http://
computer.org/tpami/archives.htm for more information),
we present a method of computing © ' employing the
inverses of three matrices that are significantly smaller
compared to ©'. The inverted matrices are further used in
a system decomposition described in Appendix D.

In order to alleviate the difficulty of direct computation
of 71, we decompose (16) into smaller subsystems based
on matrices 6", §°, and 6. In Appendix D (see http://
computer.org/tpami/archives.htm for more information),
we present a computation scheme that is more efficient as
well as having less memory requirements than the ones
used in (16).

The most important factor in the accuracy of the
computations relies on choosing the interpolation points.
In the case of Gaussian curvature computation for £ = 3 and
double precision, K is computed with an accuracy of five
significant decimal digits in the mantissa using the solution
presented in Appendix D (see http://computer.org/tpami/
archives.htm for more information) with an interpolation on
Chebyshev points. Under the same conditions, one can only
achieve an accuracy of three significant decimal digits when
working on Greville’s interpolation abscissas. We tested the
accuracy on a machine that follows the IEEE numeric
standards for floating point representation with 64 bits.

4.2 Merging into a B-Spline Form

Recall in (11) that the input of our scheme consists of
X pij. coefficients and that we want to compute the Gaussian
and the mean curvatures as trivariate functions. Our aim now
is to merge the y Bézier trivariates in (11), each defined for a
different domain D;;;, into one large B-spline trivariate
function that is defined over the entire domain of f(u, v, w).
Herein, we consider the univariate case and describe how to
merge several Bézier curve segments into one B-spline curve
with C? continuity. The motivation for the C° examples stems
from considering the curvature continuity of cubic splines.
The extension to the trivariate case is a simple generalization
that takes place in each of its three axes, independently.

Let {7;} be a sequence of knots with the support domain
[Th ... Tot1). Assume O(x) = 27 0 @0 1(x) is a Bézier curve of
degree k that defines the B-spline polynomial segment
between 7; and ;1. Construct a new knot sequence ¢t = {¢,}
with a multiplicity of k knots at each interior knot {7;}. Then,
the coefficients of the merged B-spline curve defined over {¢;}
for « € [7, Tj41), such that 7,1 > 7; equated with g;, are

k (J+D)k
0(x) = > qbix(z) = > piBira(x (20)
i=0 I=jk

where p; = ¢; for any ¢ € {0..k} where | = jk +i.
While (20) offers one simple way of merging several Bézier
segments into a single C° continuous curve, one can clearly
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repeat the process for arbitrarily prescribed continuity. The
prescribed continuity is directly governed by the multiplicity
of the interior knots. For cubic B-spline trivariate functions,
whichare C?,in general, the curvature function is continuous;
hence, the assumed C" continuity in this example.

5 SEGMENTATION OF VOLUMETRIC DATA SETS
USING K AND H

This section presents several segmentation mechanisms for
volumetric data sets using the scalar Gaussian curvature
function we have just computed. The segmentation using
the mean curvature is similar to the Gaussian one.
Furthermore, several issues of augmenting and speeding
up the evaluation process are also discussed.

Consider the Gaussian curvature of an iso-surface repre-
sented by a trivariate B-spline function. Given a scalar
B-spline trivariate function f(u,v,w) (11), we are able to
symbolically compute (9), and represent the trivariate function
K (u,v,w) as a scalar B-spline trivariate function that globally
represents the Gaussian curvature of any iso-surface of
f(u,v,w), for all possible locations and, hence, iso-levels. In
other words, K (u,v,w) is a rational form, provided f is. If f
can be represented as a B-spline volumetric function, so can
K. For example, if fis a tricubic polynomial, the numerator of
K is a trivariate function of degrees 6 or 10, respectively,
whereas its denominator has degrees 8 or 12, respectively, in
each direction (see Table 1). With this approach, we are able to
globally and simultaneously analyze all the regions in the
entire volume for which the iso-surfaces assume certain
Gaussian curvature values. K (u, v, w) could be fixed as either
a Bézier or a B-spline trivariate function, two forms that can
yield bounds on the values that K can assume at a certain
arbitrary subdomain D;;; by simply examining the coeffi-
cients of the function at that subdomain. Further, with the
subdivision capability of these representations, one can easily
construct a divide-and-conquer algorithm to robustly con-
verge at locations with specific values of K. These properties
allow one to segment volumes in regions of interest
(characterized by certain Gaussian curvature values) directly
and without the need for an exhaustive sampling search.
Moreover, this search, being symbolic and global, is immune
to aliasing, is precise to within machine precision, and is
independent of specific iso-values.

One of the most difficult problems in volumetric image
processing is handling the size of the data. As stated earlier, if
fis a atricubic, the numerator of K is a trivariate function of
degree 10 in u, v, and w, whereas its denominator has
degree 12. Asa consequence, the two trivariates that represent
the numerator and the denominator of K (u, v, w) increase the
needed data size by a factor of (%)3 for a tricubic, in each
axis. For contemporary volumetric data sets, such anincrease,
of more than two orders of magnitudes, could be devastating.
A remedy might be found in breaking the input volume into
pieces and examining K(u,v,w) incrementally in each
polynomial subdomain instead of the entire domain of
f(u, v, w).Inother words, we evaluate the Gaussian curvature
for each polynomial subdomain D;;; as a K ;(u,v,w)
function described in Section 4.1, process it, and immediately
purge this K ;; for D; j;. No merging stage, as described in
Section 4.2, is actually conducted for this segmentation
application. At every point of time, only one K;;;(u,v,w)
for one domain D; j; is allocated.

We now start with a simple segmentation example,
considering the solution for K(u,v,w) = K. This problem
could be solved simply by applying the traditional
Marching Cubes [28] algorithm to K. For example, if
Ky =0, one is simultaneously extracting all the parabolic
manifolds in the volume, regardless of their iso-values.

As part of the volumetric segmentation process, one can
employ a geometric constraint solver for multivariate
rational B-spline functions [11]. There are many methods
that attempt to solve multivariate algebraic constraints.
These methods include homotopy methods, symbolic
Groebner basis, interval arithmetic methods, and subdivi-
sion methods (which) was used in our (work). An overview
of various constraint solvers can be found in [19]. The
specific solver is beyond the scope of this work, however,
any such solver could be employed here once the curvature
field is formulated as an algebraic constrain.

Specifically, the solver can seek the simultaneous solu-
tion of

fo constant,
K constant.

{f(u,v,w) = va
K(u7 v, ’LU) = K07

Equality as well as inequality constraints can be given to the
solver. Hence, one can also solve for

{ f(u,'u,w) = fo
| K (u, v, w)| < Ko,

fo constant,
K positive constant.

The solver has two phases. In the first phase, it
recursively subdivides the parametric domain of the
trivariate(s) in u, v, and w into voxels of certain set
dimensions and tries to find an approximated solution
point in each voxel. For each approximated solution that is
found in the first stage, a second phase is applied. In this
second phase, the solver improves the solution point set
using a multivariate Newton-Raphson [7] iterative method.

Assume we are interested in processing and segment-
ing several iso-levels, fy, fi,..., f,. For each polynomial
subdomain D; ;;, we compute the gradient of f(u,v,w) as
a trivariate Bézier, v Jiji(u,v,w) = (%,%,%) We further
process subdomain D;;; only if ||V f;;(u,v,w)| presents
magnitudes greater than a certain threshold in D; j;. This
test is conducted by examining the magnitude of the
control points of v fiju and allows us to process only
subdomains that contain information above a certain noise
level. Again, note that the gradient does not depend on a
certain iso-level value. For subdomains that are found to
contain a sufficiently large gradient, we simultaneously
solve, for example, for |K|<e¢ and f=f;, i=0,1,...,n
using the abovementioned multivariate solver [11]. While
solving for K =0 is potentially simpler, as only the
numerator of K needs to be processed, the approaching
K =0 was found to be unstable and too noise-sensitive
when real noisy data was provided. In order to solve for
|K| < ¢, we have to intersect the solutions of K —eD* < 0
with the ones of K +eD? >0 (recall (9)), where € > 0 is
some low positive constant. This scheme is demonstrated
in Algorithm 1 for the example that seeks the parabolic
regions in an iso-surface.
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Algorithm 1:
Input:
f(u,v,w): a trivariate volumetric data set;
fo: desired iso-level;
e: level of Gaussian curvature below which, we
assume it is a parabolic domain;
ng: gradient’s noise level;
Output:
iso-surface fy, with a prescribed curvature property;
Algorithm:
SegmentVolume(f, fo, €, ng);
Begin
if (min(f) < fo and max(f) > fo)
if (f is not a single polynomial)
fa, fo <= subdivided f in an interior knot
along u, v, or w;
SegmentVolume(f,, f,€ n0);
SegmentVolume(fs, fo, €, no);
else
Vf <« gradient of f; |
#f (3 u, v, w such that |V f|| > no)
K < Gaussian scalar field of f;

solve for f=rh ;
K<€
purge K;

t —
purge V f;
fi
fi
End

The scalar field of K spans the entire volume of f. Hence,
one can sample K at any location (u, vy, wp) in the domain.
Specifically, given an iso-surface f; € f, one can sample K
along f and color iso-surface f, with color-coded curvature
values.

Consider a fixed set S of close iso-surfaces. Two or more
close iso-surfaces pass through almost the same trivariate
cells. Thus, the time that is required for computing the
trivariate functions in the cells that are passed by any subset of
closeiso-surfaces of S'isalmost the same. While other schemes
require for each iso-surface at each point a new execution of a
certain algorithm of curvature evaluation or approximation,
our scheme implies only an evaluation of a trivariate B-spline
function representing the curvature property.

An efficient scheme for generating iso-surfaces can be
found in [23]. This algorithm is designated for cases when one
wishes to generate many iso-surfaces in a huge volume.
Although this algorithm could be reformulated for working
with objects represented by trivariate B-spline functions, the
problem of surface generation is beyond the goal of this work.

6 EXPERIMENTAL RESULTS

In all examples presented in this section, we compute the
Gaussian and mean curvatures over each subdomain D, ;;,
evaluate or compute solutions for curvature constraints with

Fig. 1. Color coding for K or H only based segmentation. Blue means
negative values, green means zero values, and red means positive
values.

Fig. 2. Color coding for K and H based segmentation.

the multivariate solver, and then immediately purge the
trivariate representing K and H over D, j;, as described in
Algorithm 1. As presented in Section 4.2, it is possible to
compute the whole trivariate B-spline function K for all the
domain of f. The memory requirements for K for a 40° tricubic
volumetric function are around 40% x 8 x (11% + 13?) bytes
~ 1.7 gigabytes, where 40° is the number of D; ;; subdomains,
8 bytes are assumed for each double precision number, and in
each subdomain thereare 11% + 133 coefficients in the rational
Bézier representation of K. Hence, the explicit representation
of K and H for the entire domain is expected to be rarely
computed using contemporary hardware.

We present a few examples of segmenting volumetric and
3Drange data sets using the proposed curvature computation
scheme. The examples presented were processed with the aid
of the IRIT Solid Modeling system [10]. In the figures in which
either K or H are represented alone, the colors are coded as in
Fig. 1, where red corresponds to a positive value, green to a
zero value, and blue to a negative value. In the case of
Gaussian curvature the colors red, green, and blue indicate
convex or concave (elliptic) iso-surfaces, planar or cylindrical
(parabolic) iso-surfaces, and volumetric regions with saddle-
like (hyperbolic) iso-surfaces, respectively. In images in
which only H is represented, the colors represent the square
of the mean curvature where the sign of the mean curvature
differentiates between red and blue. In the figures in which K
and H are presented simultaneously, the color coding is
provided, as seen in Fig. 2. Here, we employ the same
convention that the colors represent the square of the mean
curvature and the sign differentiates between the red-violet
column and the white-blue one. Table 2 shows several
interpretations for different combinations of X and H.

TABLE 2
Interpretations for Different Values of Combinations of Values of K and H
H<O0 H=0 H>0
K < 0 | hyperbolic saddle-like | hyperbolic - minimal surface | hyperbolic saddle-like
K=0 concave parabolic planar - minimal surface convex parabolic
K>0 concave elliptic impossible convex elliptic
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Fig. 3. A synthetic volumetric image of a cylinder and six spheres. Red,
green, and blue regions represent volumetric regions with elliptic,
parabolic, and hyperbolic iso-surfaces, respectively, having positive,
zero, and negative Gaussian curvature values. The colors follow the
coding described in Fig. 1.

The images are presented in two sections of this paper.
The first, Section 6.1, includes synthetically generated
images and, in the second, Section 6.2, we include scanned
volumetric and 3D range data.

In Figs. 8,9, and 12, the colors in parts a and b represent the
values of the Gaussian and mean curvatures, respectively,

(@)

and follow the coding described in Fig. 1. The colors in part c
follow the coding described in Fig. 2 and Table 2.

6.1 Synthetic Images

Fig. 3 is a synthetic volumetric image of a cylinder and six
spheres where the Gaussian curvature of a certain pre-
selected constant iso-level was computed and colored using
thisnew curvature analysis scheme. The trivariate volumetric
image has 40 x 40 x 40 coefficients. It took 25 minutes and
3.5minutes to compute the numerator and denominator of X,
respectively.

In [17], the authors present a data set that contains several
objects that have similar sizes and shapes to the objects in
Fig. 3. The time required for computation of one iso-level is
similar in [17] to our scheme. It is around 30 minutes.

Fig. 4 shows an image of two cylinders with a sphere.
The segmentation scheme produces two cylinders. This
example shows the applicability of segmentation to detect
objects that have cylindrical form. The curvatures in this
image were computed by interpolating over Chebyshev
(see Section 4.1.2) points. The trivariate volumetric image
has 40 x 40 x 40 coefficients.

Fig. 5 shows an image of several cylinders. Figs. 5a and 5b
show different cylinders detected as different iso-levels

(©)

Fig. 4. A volumetric image of a synthetically generated image of two cylinders and a sphere. In (a), an iso-level constant of f is shown. In (b) and (c),
the iso-level of K = 0 is shown. (b) and (c) represent the same image viewed from different points of view. (b) and (c) show the selection of two
cylinders and underline the applicability of volumetric segmentation in primitives detection applications.

(@)

©

Fig. 5. A volumetric image of a synthetically generated image of two cylinders. In (a) and (b), different iso-levels constants of f reveal different
cylinders. In (c), the iso-level of K = 0 is shown. (c) shows the detection of both cylinders in the volumetric image regardless of their iso-levels in f
and underlines the applicability of volumetric segmentation in primitives detection applications.
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(a) (b)

Fig. 6. A synthetic volumetric image of two centers of potential field. Red, green, and blue regions represent volumetric regions with elliptic,
parabolic, and hyperbolic iso-surfaces, respectively, having positive, zero, and negative Gaussian curvature values. The colors follow the coding
described in Fig. 1. (b) consists of the volumetric image shown in (a) where the constant iso-surface of K = 0 was superimposed. The iso-surface of
K =0 is colored in green. This iso-surface globally prescribes the parabolic regions of all iso-surfaces, simultaneously.

(a) (b) (© (d)

Fig. 7. A synthetic volumetric model of a physical potential field generated by an axis and six centers. (a) is an iso-constant level of f while (b), (c),
and (d) are constant K surfaces generated by the potential field distribution of which one iso-constant level is shown in (a). Red, green, and blue
regions represent volumetric regions with elliptic, parabolic, and hyperbolic iso-surfaces, respectively, having positive, zero, and negative Gaussian
curvature values. The colors follow the coding described in Fig. 1.

(@) (b) (©

Fig. 8. A volumetricimage of an engine block. In (a), red, green, and blue regions represent volumetric regions with elliptic, parabolic, and hyperbolic iso-
surfaces, respectively, having positive, zero, and negative Gaussian curvature values. In (b), red, green, and blue regions represent regions with
preponderant positive, zero, and negative mean curvature values. The colors represent the square of the mean curvature where the sign of the mean
curvature differentiates between red and blue. In (c), the image is segmented with eight colors; each one represents a region classified after the values of
K and H; for example, red means both K > 0 and H > 0, and greenmeans K = H = 0. The colors in (a) and (b) represent the values of the Gaussian
and mean curvatures, respectively, and follow the coding described in Fig. 1. The colors in (c) follow the coding described in Fig. 2 and Table 2.

constants of f. Fig. 5¢ shows the iso-level of K = 0. It also
shows the detection of both cylinders in the volumetric image
regardless of their iso-levels in f and underlines the
applicability of volumetric segmentation in primitives detec-
tion applications. This example, similarly to Fig. 4, shows the
applicability of segmentation to detect primitives that have

cylindrical form. The curvatures in this image were com-
puted interpolating over Chebyshev (see Section 4.1.2 points.
The trivariate volumetric image has 80 x 80 x 80 coefficients.

Fig. 6a is a synthetic volumetric image of two centers of a
potential field of a nonphysical model, where the Gaussian
curvatures of three different preselected constant iso-levels
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(@)

(b) (©)

Fig. 9. A volumetric image of an iron protein molecule. The colors in (a) and (b) represent the values of the Gaussian and mean curvatures,
respectively, and follow the coding described in Fig. 1. The colors in (c) follow the coding described in Fig. 2 and Table 2.

(@)

(b)

Fig. 10. (a) represents an iso-surface at level zero of K of the iron protein in Fig. 9a. This iso-surface globally fixes the parabolic regions of all iso-
surfaces, simultaneously. (b) consists of the volumetric image shown in (a), with the constant iso-level of f from Fig. 9a superimposed on it.

were computed and colored using thisnew curvature analysis
scheme. Let the centers of this potential field be C; and Cb.
Then, f(P)=||P—Ci||-||P— Cs|| for any P = (u,v,w),
which is a point in the volumetric domain. The trivariate
volumetric image has 40 x 40 x 40 coefficients. Fig. 6b
consists of the volumetric image shown in Fig. 6a with the
constant iso-surface of K = 0 superimposed on it. The iso-
surface of K = 0 is colored in green. This ability to robustly
derive the zero set of K, or any other differential form, is a
direct consequence of our global rational representation of
K(u,v,w) for the given function f(u,v,w), either in a one
B-spline form or in piecewise Bézier form. It took 18 and two
hours to compute the numerator and denominator of K,
respectively. While the peak memory consumption was
around 100 megabytes of memory at the initialization stages,
less than 20 megabytes of memory were required during the
effective computation.

Fig. 7a represents an iso-constant level of a volumetric
model of a physical potential field generated by an axis and six
centers. Let C;, i € {1..6} be the six centers of a gravitational
potential field. The axis generates the gravitational potential
field fy(P) 100 and each center contributes

100

— istance from P to axis /
the gravitational potential field f;(P) = =l
{1..6} and for any P = (u,v,w), which is a point in the

volumetric domain. Here, f(u,v,w)= fy(u,v,w)+ 3.0,

where 7 €

fi(u,v,w). Figs. 7b, 7c, and 7d, are volumetric images of the
constant iso-surfaces of K = —0.00125,0.0, and 0.00125, re-
spectively, computed for f(u, v, w). The trivariate volumetric
image has 120 x 120 x 120 coefficients. It took 166 and
19 hours to compute the numerator and denominator of X,
respectively. While the peak memory consumption is around
100 megabytes of memory at the initialization stages, less than
20 megabytes of memory were required during the effective
computation.

6.2 Real Volumetric and 3D Range Images

Fig. 8 portrays three volumetricimages of an engine block (see
[40] for details) where the Gaussian and square of the mean
curvatures of a certain preselected constant iso-level were
computed using this new scheme. In Fig. 8a, the colors are
computed using the Gaussian curvature. In Fig. 8b, the colors
are computed using the mean curvature. Fig. 8c represents a
combination of the first two segmentations where eight kinds
of regions are detected, following the coding described in
Fig. 2 and Table 2. The trivariate volumetric images of this
engine block have 256 x 256 x 110 coefficients. It took 11 and
a half, and seven and a half hours to compute the numerator
and denominator of K, respectively. Around 100 megabytes
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Fig. 11. A digital camera photo of several objects on a table.

of memory were required to compute and analyze the volume
using the Gaussian curvature.

Fig. 9 portrays three volumetric images of an iron protein
molecule (see [37] for details) where the Gaussian and square
of the mean curvatures of a certain pre-selected constant iso-
level were computed using this new scheme. In Fig. 9a, the
colors are computed using the Gaussian curvature. In Fig. 9b,
the colors are computed using the mean curvature. Fig. 9¢c
represents a combination of the first two segmentations
where eight kinds of regions are detected, following the
coding described in Fig. 2 and Table 2. The trivariate
volumetric image has 68 x 68 x 68 coefficients. The compu-
tation of the numerator of K required one and a half hours
while its denominator computation took 16 minutes. The
computation of the numerator of H necessitated 41 minutes.
The computation of the numerator of H? required 4 hours and
45 minutes while its denominator’s computation took
48 minutes. Around 120 and 150 megabytes of peak memory
were detected when computing and analyzing the volume
using the Gaussian and mean curvatures, respectively.

Fig. 10a shows the zero level set of K(u,v,w) = 0, of the
iron protein model shown in Fig. 9. This ability to robustly
derive the zero set of K, or any other differential form, is a
direct consequence of our global rational representation of
K(u,v,w) for the given function f(u,v,w), either in a one
B-spline form or in piecewise Bézier form. Fig. 10b consists of
the volumetric image shown in (a) but with the constant iso-
level of f from Fig. 9a superimposed on it. The computation of
the numerator of K required 32 hours while its denominator’s
computation took 4 hours.

(a)

(b)
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Fig. 11is a digital photo of several objects on a table. Fig. 12
shows the scanned images of the objects that appear in Fig. 11.
The objects were scanned using a 3D Cyberware scanner [1]
and the Gaussian and square of the mean curvatures of a
certain preselected constant iso-level were computed using
our new scheme. In Fig. 12a, the colors are computed using
the Gaussian curvature. In Fig. 12b, the colors are computed
using the mean curvature. Fig. 12¢ represents a combination
of the first two segmentations where eight kinds of regions are
detected, following the coding described in Fig. 2 and Table 2.
Figs. 12a, 12b, and 12c were obtained from a range image on
which we ran a Gaussian filter before computing curvatures.

7 CONCLUSIONS

In this work, we have presented a scheme to globally segment
and derive curvature properties of volumetric data sets. The
schemeis global, immune to aliasing, and capable of detecting
curvature properties regardless of iso-level values. We map a
given scalar field f(u,v,w) to other differential scalar fields
such as K (u, v, w) and H(u,v,w). The scalar fields K (u,v,w)
and H?(u,v,w) are used to separate convex or concave
(elliptic) iso-surfaces, planar or cylindrical (parabolic) iso-
surfaces, and volumetric regions with saddle-like (hyper-
bolic) iso-surfaces, regardless of the value of the iso-surface
level. The proposed scheme enables the identification of eight
kinds of regions (the case K > 0and H = Oisimpossible),and
this allows a more reliable identification of primitive parts.

We performed a large variety of experiments on 3D as
well as volumetric data. The accuracy of the segmentation
can be evaluated in the images presented in Section 4.

In Section 6, we also provided insight about the time and
memory consumption required by our system. The main time
consuming steps are the evaluations required at the inter-
polation stages, which represent more that 90 percent of the
overall time computation. Speeding up the algorithm execu-
tion is a future objective. While the peak memory consump-
tion is around 100 megabytes of memory at the initialization
stages, less than 20 megabytes of memory are required during
the effective computation of each example. The memory
consumption is reasonable on today’s computers.

Although the problem has a continuous nature, as in
many other volumetric processing problems, the proposed

©

Fig. 12. Three curvature colored images of several objects on a table that appearin Fig. 11. The colors in (a) and (b) represent the values of the Gaussian
and mean curvatures, respectively, and follow the coding described in Fig. 1. The colors in (c) follow the coding described in Fig. 2 and Table 2.
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solution is clearly parallelizable. We believe that employing
concurrent or parallel variants of the algorithms, and/or
implementing the curvature evaluation schemes on dedi-
cated hardware could greatly speed up this process.
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