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Local Invariants For Recognition

Ehud Rivlin and Isaac Weiss

Abstract—Geometric invariants are shape descriptors that re-
main unchanged under geometric transformations such as pro-
jection or changing the viewpoint. A new method of obtaining lo-
cal projective and affine invariants is developed and implemented
for real images. Being local, the invariants are much less sensitive
to occlusion than global invariants. The invariants’ computation
is based on a canonical method. This consists of defining a canoni-
cal coordinate system by the intrinsic properties of the shape, in-
dependently of the given coordinate system. Since this canonical
system is independent of the original one, it is invariant and all
quantities defined in it are invariant. The method was applied
without the use of a curve parameter. This was achieved by fitting
an implicit polynomial to an arbitrary curve in a vicinity of each
curve point. Several configurations are treated: a general curve
without any correspondence and curves with known correspon-
dences of one or two feature points or lines. Experimental results
for different 2D objects in 3D space are presented.

Index Terms—Objeét recognition, invariants, image matching,
geometry.

I. INTRODUCTION

GEOMETRIC invariants are shape descriptors which remain
invariant under geometrical transformations such as pro-
jection or viewpoint change. They are important in object rec-
ognition because they enable us to obtain a signature of an
object which is independent of external factors such as the
viewpoint. In this paper we treat projective (viewpoint) and
affine invariants in various geometrical configurations.

The subject of invariants has recently gained in importance
and recognition in the vision community. Projective invariants
were a very active mathematical subject in the latter half of the
19th century. However, in vision only one projective invariant,
the cross ratio [6], was used until recently.

Projective invariants of curves and surfaces were first intro-
duced in vision by Weiss [1988]. In that paper we described
both algebraic and differential methods for obtaining invari-
ants and pointed out their usefulness for object recognition. A
comprehensive review of recent developments in the field is
given by Weiss [17].

One can distinguish between two kinds of invariants: global
and local. Global invariants describe a shape as a whole so
they require knowledge about the whole shape. Examples of
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global invariants of Euclidean and affine transformations are
moment invariants [12] and Fourier descriptors {4]. Global
projective invariants were described by Weiss [15]. They have
been applied successfully in [7] to industrial objects. Affine
invariants of implicit polynomials were used in [13], {10]. Like
any global descriptors, these quantities are quite susceptible to
occlusion. Although attempts to overcome the problem were
made [5], they involved an exhaustive search.

Local invariants are more immune to occlusion. They have
been treated by Weiss [15], [16], [18]. So-called mixed
(hybrid) invariants were developed in [14}, [1}, and [3]. In this
paper we develop both local and mixed invariants using a new
approach that is simpler and more robust to noise than previ-
ous methods.

Local invariants are defined at each point of a shape sepa-
rately, which makes them less sensitive to occlusion. Recogni-
tion can be done through an invariant “signature” of the shape.
For instance, in the Euclidean case, it is common to plot the
curvature against the arc length, both of which are local
Euclidean invariants. Such plots or “signatures” of curves can
then be matched even if part of a curve is missing due to oc-
clusion. No search is involved. We obtain such signatures in
the projective and affine cases.

One can build an object recognition system that uses invari-
ant signatures of curves, rather than the curves themselves, for
storage in a visual database and matching. Because of the in-
variance, the matching does not require a search for the correct
point of view. This is possible because of a general property
that determines the uniqueness and completeness of the invari-
ants.

The uniqueness and completeness property of differential
invariants can be described as follows. Given a plane curve
and a transformation group, there are two independent invari-
ants 1;(¢), I(t) of the transformations at each point ¢ of the
curve. These two invariant functions contain all the informa-
tion about the curve, except for the transformation to which
they are invariant. Accordingly, given two invariants for each
curve point, we can reconstruct the original curve up to a
transformation belonging to the group.

More accurately, the following theorem holds [8, p. 144]:
All differential invariants of a (transitive) transformation in
the plane are functions of two invariants of the lowest order
and their derivatives.

This uniqueness property can be used in a method of build-
ing an invariant signature that describes a given curve
uniquely, up to the relevant transformation. The method ap-
plies to all kinds of local invariants. At each point of the given
curve we calculate two invariants, I;, 1. We plot these num-
bers as a point in an “invariant plane” whose coordinates rep-
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resent the two independent invariants. In effect we plot one in-
variant against the other. In this way the given curve maps into
an invariant signature curve in the invariant plane. The signa-
ture uniquely identifies the curve regardless of the modifying
transformation such as a different viewpoint. Various methods
can be used to find /;, /,. Examples for the projective and af-
fine cases are described by Weiss [18], [19].

Global invariants are often associated with algebraic meth-
ods, and no differentiation is needed (although integration may
be used for finding moments). Local invariants involve some
form of differentiation. Larger transformation groups need
higher orders of differentiation; projective invariants need a
higher order of differentiation than affine, which in turn need a
higher order than Euclidean invariants.

We deal here mainly with curves. General curves can be
treated in several ways. Two main approaches exist in geome-
try for curve representation: the explicit and the implicit one.
In the explicit method a curve is represented as functions of
some parameter along the curve, e.g., x(#), y(¢). In the implicit
approach a curve is represented by a relation f (x, y) = 0, with-
out a parameter. The advantage of the implicit approach is that
it does not require introduction of a parameter, which is not in
fact part of the geometry of the curve itself. The relation be-
tween x, y is sufficient to completely characterize the curve.
The explicit method makes it easier to obtain closed form for-
mulas for general curves.

In finding invariants, the parameter is undesirable for the
following reasons. The essence of finding invariants is the
elimination of unknowns from the system, such as the un-
known quantities describing the point of view. The parameter
is also in general unknown since it can be chosen in an arbi-
trary way. It has to be eliminated so that the invariants will not
depend on it. The more unknowns we have to eliminate, the
more information we have to extract from the image, which
translates in the explicit method to higher, and less reliable,
derivatives. From the viewpoint of fitting the curve to a set of
data points, the implicit method minimizes the fitting errors in
perpendicular to the curve, while the explicit method tries to
also minimize errors in fitting the parameter along the curve,
which is geometrically unnecessary and only adds to error ac-
cumulation. We will return to this subject.

Most previous work on local invariants [21] was done using
the explicit approach. An implicit approach was used in [9] but
it did not provide all the invariants and was cumbersome to
implement. We present here a simple way of deriving local in-
variants in the implicit approach, without a curve parameter.
The approach is based on transforming the shape to a canoni-
cal (intrinsic) system of coordinates, rather than obtaining
closed form formulas for the invariants. The canonical method
is very general and was first introduced for vision invariants by
Weiss [16]. [18] in an explicit representation.

Several kinds of situations will be treated here. The first in-
volves general plane curves without any correspondence in-
formation. These require the highest number of derivatives so
their signatures are the hardest to obtain. Next, shapes consist-
ing of a curve and one known feature point will be treated. For
the feature (or reference) point it is assumed that a correspon-
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dence can be established between two images. This enables us
to eliminate some of the transformation parameters and reduce
the amount of information needed from the curve itself, i.e.,
the order of the derivatives. Similarly, a curve and two refer-
ence points reduce this amount even further. The references
mentioned earlier treated these situations with the explicit ap-
proach, using derivatives with respect to a curve parameter.
We will treat them here without a parameter. We will also treat
curves with reference lines, which have not been previously
treated, to our knowledge.

In the remainder of this section we briefly summarize the
notions of projective and affine transformations. Further de-
tails are in [17] and [11].

The formation of an image of a plane curve on a planar
film, using a “pinhole’” camera, can be described as a 2D pro-
jective transformation:

=1
=

1
xT,, + YT, T,

=

y

1

where T is a nonsingular 3 X 3 constant matrix, with eight sig-
nificant parameters.

Affine transformations are a subgroup of the projective
ones. If the object is far away from the camera, the affine
transformation can be used as a good approximation to the
projective one. The affine transformations are linear, and they
preserve parallelism in the plane. The affine group contains the
smaller subgroup of Euclidean transformations (rotation and
translation), along with scaling (in the x and y directions) and
shear.

The elements of the matrix 7 can be identified as

aff, aff, trans,
T=| affy affy trans,
proj,  proj, 1

The elements marked aff; represent rotation, scaling, and
shear. Together with the translation elements trans,, trans,
they represent the affine group. The proji, proj, elements rep-
resent tilt and slant, which are nonlinear transformations.

In an affine transformation the proj; elements above vanish
so the transformation is linear:

X (affl aﬁ}) X trans,
= + .
y affs affs \y trans,

The terms defined above should be distinguished from
similar, commonly used terms such as perspective projection
or perspective camera. These latter refer to a projection from a
3D object to a 2D image, while the traditional terms used here

refer to transformations from nD to nD. In this paper we deal
only with transformations in the plane.

II. FINDING LOCAL INVARIANTS—A CANONICAL APPROACH

Our goal here is to find two local invariants /;, I, at each
curve point, so we can plot one against the other. There are
several ways to derive such invariants, but the canonical
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method is probably the simplest and most intuitive. It is also
the most general since it can be applied to any other forms of
invariants. It was first used for vision invariants by Weiss [16],
[18].

The basic idea is to transform our coordinate system to a
canonical one, i.e., a standard system which is defined by the
intrinsic characteristics of the shape itself. Since this system is
intrinsic, all quantities measured in it are independent of the
initial system and are therefore invariants. One can give a
simple example as follows: Given an image of a rod, we can
calculate its length, which is a Euclidean invariant, by applying
the formula for Euclidean distance. An alternative way is to
transform the coordinate system to a canonical one, in which
the rod lies along the x axis and the origin is at one end of the
rod. Then the x coordinate of the other end is the rod’s length.
We see that by moving to a canonical coordinate system we
have obtained the invariant length without an explicit formula.
This canonical system was determined by the properties of the
shape rather than by some external factors.

An important differential example is finding Euclidean in-
variants of curves. We can move the coordinate system so that
the x axis is tangent to the curve y(x) at some point that we
choose on it, i.e., y = ¥’ = 0 there. The second derivative (y"')
at this point is now equal to the curvature and is invariant since
we obtain the same canonical system regardless of which sys-
tem we started with. We see that by determining some of the
properties of the system, the others are also determined and
become invariant.

We generalize this approach to larger transformation
groups. In general, the unknown factors in a transformation
can be eliminated by using the same kind of transformation,
with the same number of factors, to go over to the canonical
coordinates. The Euclidean invariants can be obtained by us-
ing a Euclidean transformation to obtain a Euclidean canonical
system, etc.

The general projective transformation can be decomposed
into simpler transformations: translation, rotation, skewing,
scaling (making up the affine group), tilt, and slant. We will
use these to move to canonical coordinates step by step. At
each step some of the viewpoint parameters will be eliminated
until we are left with a coordinate system independent of the
original viewpoint and defined by the shape itself.

There are two basic requirements that the canonization
process has to meet: it has to be invariant, i.e., produce a result
that is independent of the original system, and it has to be lo-
cal, i.e., it should be based on curve properties that can be ex-
tracted from a small neighborhood around each point.

The Euclidean example above meets these requirements.
The requirement of tangency is an invariant one, because the

tangency property is unchanged under a projective transfor- *

mation. The locality requirement is also met, because the tan-
gency means that the first derivative y” vanishes. A derivative
is a local property and can be obtained independently at each
curve point. We will later deal with the problem of obtaining
the derivatives.

For the Euclidean case we used the tangent to obtain a can-
onization process that met our requirements of invariance and

locality. We can generalize the method by using an osculating
curve, which is a generalization of the tangent. A tangent is a
line having at least two points in common with the curve in an
infinitesimal neighborhood, i.e., two “points of contact.” This
can be expressed as a condition on the first derivative. Simi-
larly, a higher order osculating curve can be defined as having
more (independent) contact points with the original curve, in-
finitesimally close to each other. The condition on the deriva-
tives can be written as

k

gdtT(f*(x’Y)—f(X,y))=0, k=0..n (1)

with " being the osculating curve, f the given curve, and n the
order of contact. Since the derivatives vanish, this condition is
invariant to the parameter t. (We will derive the osculating
curve without this parameter.) Since it has a geometric inter-
pretation with points of contact, the condition is also projec-
tively invariant. And since it is defined infinitesimally, it is
also local. Thus all the independence requirements set forth are
met.

In the following we will use an osculating implicit curve f '
satisfying the above condition. This curve will be chosen as
the simplest one that meets our needs; its shape is thus known.
Thus it will be easier to handle than the original f which can be
any function extracted from the image. According to our needs
we find either a cubic or a conic which osculates the original
curve. We then transform the coordinates so that this cubic or
conic takes on a particularly simple, predetermined form, i.e.,
we eliminate all its coefficients. In this new (canonical) system
all quantities are invariants and we pick the ones that best suit
our needs.

We will describe the correspondenceless case in full and
summarize the other cases.

II. LOCAL PROJECTIVE INVARIANTS
WITHOUT CORRESPONDENCE

We use the osculating curve method to eliminate all the
projective unknowns and obtain two local invariants at any
curve point. The outline of our method is as follows:

e Repeat the following steps for each pixel that belongs to
the curve to obtain two independent invariants at that
point of the curve:

— Define a window around the pixel and fit a suit-
able curve fto it. f should fit the data as accurately
as possible. All the following stages are performed
analytically.

— Find an osculating curve f * which osculates the
above fitted curve f with a known order of contact,
at the point at which we want the local invariants.
(This is an invariant operation.)

— Derive a canonical coordinate system by de-
manding that in it the osculating curve has a sim-
ple, predetermined form (e.g., vanishing first de-
rivatives). This ensures that the canonical system is
based invariantly on the intrinsic properties of the
shape itself and is not dependent on the given co-
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ordinate system. Thus we will obtain a unique co-
ordinate system regardless of the original system.
By doing so we eliminate all the unknown quanti-
ties of the original system (e.g., the viewpoint).
— Transform the fitted curve f to this new system.
Since the system is canonical, all shape descriptors
defined in it are independent of the original coor-
dinate system and are therefore invariants. Pick
two independent local quantities in this system,
e.g., certain derivatives, as our invariants Iy,1,.
¢ Plot one invariant against the other to obtain an invariant
signature curve. This is based on the completeness and
uniqueness property discussed above.

In the following sections we will describe the above steps in
more detail.

A. Curve Fitting

The first step of the algorithm above involves fitting a curve
to the given data points. Since we are dealing with imperfect
data, some modeling approximation needs to be made.

The basic assumption we make is that the data represent a
smooth differentiable function. Therefore it can be expanded
locally in a Taylor series whose higher terms are negligible. It
is thus natural to fit a polynomial curve, representing the
meaningful terms of the Taylor expansion. However, there is
room for exploring other kinds of fitted curves. The fit is not
necessarily invariant, but we assume that the fitting error is
smaller than the noise, which is also not invariant, so there is
harm. This kind of issue is further discussed in [13].

Two main parameters of the fit are the order of the poly-
nomial fit and the size of the fitting window around the point
of interest. These should be chosen so as to guarantee a good
fit, but the final result should not depend on them. The final
result is a function of the first derivatives of the fitted curve,
and these are independent of the curve order and of the win-
dow size as long as the fit is good.

To determine the order of the polynomial curve, we need to
know the minimum number of coefficients needed or the
amount of information that needs to be obtained from the im-
age. To find invariants, we have to eliminate the information in
the image which is specific to the coordinate system. In the ex-
ample given earlier of the rod that can only move or rotate in
the plane, we can measure the coordinates of the rod’s two
ends. From these four quantities we can eliminate three, re-
lated to the three unknown parameters of the transformation
(translations and rotation). This leaves one Euclidean invari-
ant, the length.

Similar enumeration applies to other transformations. In the
projective case, we want to eliminate eight parameters of the
transformation, so the number of coefficients to be obtained
from the image should exceed eight. Since we need two inde-
pendent invariants at each pixel, we need 10 independent
quantities. A cubic has nine coefficients, but we also have the
position of the point on the cubic for a total of 10 quantities.
Thus it is sufficient from purely geometrical considerations to
fit a cubic to our data. However, other considerations push us
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towards a higher order curve.

We can see here the advantage over the explicit method that
requires differentiation of x(¢), y(t) with respect to the curve
parameter ¢. The elimination argument above applies to this
unknown parameter, i.e., this parameter has to be eliminated
along with the coordinates, so that the invariants will be inde-
pendent of it. This increases the amount of data that needs to
be extracted from the image, e.g., the orders of the derivatives.
In Wilczynski’s method, the eighth derivatives of both x and y
were needed, a total of 18 quantities. This reduced the reli-
ability of the invariants. Thus avoiding the parameter from the
outset reduces the number of quantities we need to obtain from
the image and improves reliability.

We now expand in more detail on the merits of the implicit
relative to the explicit representation.

From a purely mathematical viewpoint, namely, for a
noiseless curve, the two methods are quite similar. They re-
quire the same minimal number of data points to obtain the
same order of derivative, and it is not hard to transform from
one representation to the other (locally). For instance, given
nine points, we can pass through them either an implicit cubic
or two explicit eighth-order polynomials. Both will provide an
eighth derivative. However, in real life we have hundreds of
noisy pixels, and fitting a shape to them is only an approxima-
tion. Fitting thus implies making some assumptions about the
noise or modeling the noise. The explicit and implicit methods
differ greatly in their suitability for dealing with different noise
models.

In the explicit method, we have the two separate functions
x(1), y(t). This is most suitable to a noise model that assumes
independent errors in the x and y directions. That is, the noise
error can be decomposed into two independent components
along the axes. With the same noise model, the error can also
be decomposed into a component perpendicular to the curve
and one tangent to it, namely, going along the parameter ¢.
This kind of noise model is not particularly useful for our pur-
pose because we are not interested in errors of fitting ¢ along
the curve. These errors have no geometric meaning since the
parameter f is not part of the geometry of the curve; it was in-
troduced only for convenience. This parameter, along with the
fitting error along it, will later have to be eliminated when
finding the invariants.

The implicit method, on the other hand, does not have a pa-
rameter in the first place so it does not have fitting errors along
the parameter. It is suited to a noise model which considers an
error only perpendicular to the curve. In theory, there may be a
way to use the explicit representation too with this noise
model, but that would be rather complicated and unnatural. In
any case, the implicit method has half as many variables to fit
as the explicit one does because it does not have to describe
the dependence on the parameter. In other words, it has fewer
noisy variables with which to deal.

The practical importance of this can be seen if we look into
the way that errors propagate in the calculation of invariants.
The invariant equations are nonlinear, and errors in variables
do not cancel out even if the variables themselves cancel out.
In the explicit method, the parameter is eliminated in the
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course of finding invariants, but the errors associated with it do
not cancel out. In many situations these errors can be quite
large. The implicit method does not have to deal with a pa-
rameter or any errors along it to begin with, so there are fewer
errors. In a sense, the implicit method eliminates the parameter
at an earlier stage than does the explicit method, namely, at the
curve fitting stage rather than at the invariant finding stage.
This way the nonlinear accumulation of errors in 7 at the later
stage is eliminated.

Another important difference is the “conditionality’” of the
problem. In the fitting process, one has to solve a system of
equations for the coefficients, and the condition number of the
system is a measure of the stability of the solution to small er-
rors in the data. This condition number is related to the ratio of
the biggest eigenvalue to the smallest one. Generally speaking,
big disparities in the magnitudes of the quantities in the equa-
tion lead to high condition number and poor stability. A poly-
nomial with powers of eight has much more disparity of
magnitudes among its values than does a cubic, whose highest
power is three. Therefore fitting the cubic has a much lower
conditionality and is thus much more robust. Again, in an ideal
world without round-off and noise errors, this would not make
a difference, but in the real world it can be a crucial difference.

It may be argued that r can be avoided by using x as a pa-
rameter, but this does not address the other problems above: it
is the wrong noise model (no error allowed along x) and has
high conditionality.

Similar arguments apply to the case of the semidifferential
invariants, to be discussed later.

The other important fitting parameter is the size of the win-
dow. It was found by Weiss [20] that the wider the window,
the more reliable the fitting becomes. This is because a larger
window averages out random noise better. Thus we need to
find a function that fits the data over a large window. This
means using a higher order Taylor approximation of the data
curve, namely, a higher order implicit polynomial. As men-
tioned before, the order and the window size have no influence
on the invariants as long as the fit is good. This is due to the
fact that the invariants are functions of local derivatives. The
higher window size and curve order are needed to ensure a
good fit, in the sense of good noise suppression.

In practice we have found it convenient to use a quartic
implicit polynomial, although a cubic would be enough in the
noiseless case. In the sequel we will deal with the fitted quartic

fx, Y)y=ap+ax+axy + a;x2
+agxy + a5y2 + a(,)c3 + a7x2y + agxy2 )
3 4 3 2.2 3 4
+agy” +apx +anxy+apx’y +apxy +auy =0

with the cubic being the special case in which the coefficients
ao, ..., d14 vanish.

Once the curve order and window size have been chosen,
the fitting itself can be done by standard methods. Simple least
square fitting is quite ill-conditioned because of the relatively
large number of unknowns. The Singular Value Decomposi-
tion method is very successful in overcoming this problem,
and we obtain a quite reliable fit.

We have thus obtained a local algebraic (parameterless)

representation for the data around some curve point. We will
now find its invariants (analytically).

B. Deriving a Canonical Coordinate System

We will find the canonical system in stages, eliminating
more unknowns at each stage. As a convention, we denote the
new coordinates after each canonization step by X,y and drop
the bars before going to the next step, and similarly for other
quantities.

Eliminating the Euclidean Unknowns. First we will detail
the Euclidean canonization stage, in which the unknown
translation and rotation are eliminated. These transformations
are the smallest subgroup of interest here, therefore this stage
is common to all our canonizing schemes.

The first step is eliminating translation, done by moving the
origin to our curve point. Our pixel xo, ¥ does not necessarily
lie on the fitted curve but it is close to it. Thus, we find a point
Xg, 3o which does lie on the curve, i.e., we solve (2) for J,,
given xo. This is easy to do with Newton’s method because y,
is a close initial guess. We now translate the origin to xo, 3.
(We could simplify the solution by first translating so that
xo =0 and then solving for J,.

We now transform the curve coefficients to the new system
and obtain new &,. This is done by expressing the old coordi-

nates in terms of the new, x =x—Xx,, y=y— )'zo, substituting
in (2) and rearranging. In this new system we have @, =0
which can be seen by simply substituting the point (0, 0) in
equation (2). We now drop the bars from Y, a;.

The next step is to rotate the coordinates so that the x axis
will be tangent to the curve. It is easy to see that in the rotated
system we must have @, = 0 (because dfix, y)/dx = 0). To sat-

isfy this condition we again express the old coordinates in
terms of the new, with the rotation factor u,

x=(x+u,y)v  y=(F+ux)p 3)

L 1/2
Here v is a normalization factor (1+ur2) that makes the

transformation orthogonal. Now g, is transformed to
a,=a —uaqa,.
To make this vanish we thus have to rotate by the amount
u, =ala,.

Since translation and rotation make up the Euclidean trans-
formations, we have reached a Euclidean canonical system. All
quantities defined in it are Euclidean invariants. The curvature
at xo is now simply the second derivative, d*y/dx>. The arc
length is ldxl since dy = 0.

Eliminating the projective unknowns. Of the eight pa-
rameters of the general projectivity we have already eliminated
three by translation and rotation, so our osculating curve
should have five coefficients, while passing through the origin
and being tangent to the x axis. Following [9] we choose the
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“nodal cubic” (Fig. 1)
f= Cox + c1y3 + oy + c;xzy + c4y2 +xy=0. “4)

This curve intersects itself at the origin so it has two tangents
there, one lying along the x axis. The other tangent is called
the “projective normal.” Our treatment of the nodal cubic dif-
fers from Halphen’s and yields the full range of invariants.
(We also had the advantage of a symbolic manipulation pro-
gram.)

S

Fig. 1. Osculating nodal cubic (left), folium of Descartes (right).

Our goal is now to transform the coordinates so that this
nodal cubic takes on the simple coefficient-free form

Py exy=0. 5)

1t is known [2] as a folium (leaf) of Descartes. In a nutshell, we
obtain it as follows. We skew the coordinates so that the pro-
jective normal becomes perpendicular to the x axis, thus pro-
viding a canonical y axis. This eliminates c,. We scale the axes
to eliminate ¢y, ¢, obtaining an affine canonical system with
new C,,C;. These are now affine invariants. We tilt and slant
to eliminate them too, obtaining the projective canonical sys-
tem.

We will now find the nodal cubic f* using the osculation
condition, i.e., the equality of the first n derivatives of f and f '
(1). The first derivative (and the Oth) vanish because of the
tangency to the x axis. To determine the five coefficients ¢; we
need five more derivatives to be equal, i.e., up to the sixth one.
The condition of equal derivatives ensures the locality of the
treatment and also its invariance, as discussed earlier.

To go further, we need to calculate the derivatives d"y/dx"
of the fitted curve. This is done analytically from f(x, y). To do
it we use the fact that all the total derivatives of f vanish, since
f vanishes identically, equation (2). The first total derivative,
for example, is

df9fc7fdy0
dxaxaydx'

This is a linear equation for dy/dx. It is superfluous because we
have already demanded its vanishing (tangency). However,
each successive differentiation gives one linear equation for
one higher y™, in terms of lower derivatives. The calculation is
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tedious, and we used a symbolic manipulation program to cal-
culate up to y® in terms of a;.

Setting a, = 1 and denoting

1 d"
d, >(0)
V dx"
we have
dh=-a (6)
dy =~ ag— dha, )
dy=—ay— dyar— dgzas“ dsa, 8)
ds = —dyay — dzzas — dyay — 2dydsas— asdy 9
d6 = —d%alz - d3a|, - d; ag— 2d2d3as
—dy a7— auds + (—2dyds— d3)as. (10)

Given these derivatives we find the coefficients ¢, of the
nodal cubic as follows. We write the nodal cubic as

6
Y=Y dyx”
n=0

and substitute it in the cubic expression, (4). Collecting terms
with the same power x" we obtain five equations for the five ¢;

in terms of d,,. Their solution is
co=—d, (1n

4 2 3 2 2,22
dy (dyd - di ) +d;(-d;d, +2dyd,dg - 2] ) +3d;d;d; - 3dyddydy

a= 7 6
d2d5 —3d2d3d4 <(-2d2d3

d3(dydg - d,ds) +d; (dydf —3d;d)+5d,d3d, - 3d3 1)
C. =
: d3ds ~3didyd, +2d3d]

. d3dg +d}(-5dyds - d} ) +13d,d5d, ~7dy )
} d3ds -3didyd, +2d,d}

o d3dg +d}(-4dyds - d3)+10d,d3d, - 5d .
¢ dids-3d}dyd, +2d2d} '

Having found the coefficients ¢;, we set out to eliminate
them. First, we orthogonalize the axes, i.e., skew the system so
that the two nodal tangents become perpendicular. This will
eliminate the term with ¢, in the nodal cubic. Our skewing
transformation is

x=X+uy
with u,= —c4 being the skewing factor. y remains unchanged.

Substituting the above equation in the cubic (4) and rearrang-
ing we obtain new coefficients

¢ = -coci + c3c2 —CyCy ) (15)
T, =3cqct —2cic, +0y (16)
C3 =3 —3coCy - amn
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We again drop the bars from c; and x.

One advantage of the orthogonalization is that it makes it
possible to decouple the next transformations, i.e., slantings
and scalings in the x and y directions. We can now proceed
with these transformations in any order to eliminate the re-
maining c;.

We next scale the axes with the scaling factors s, 5,:

x=i/sx, y=¥/s, (18)

where

2303 . _ 323
sy =cg el sy = e
Substituting this in the orthogonalized cubic we obtain

4P+ 5 4Gy +y =0 (19)

Cyp=—,

These quantities are local affine invariants because we have
reached an affine canonical system. We have used all possible
affine transformations (translation, rotation, skewing, scaling)
to eliminate all the possible affine transformation factors and
arrive at the above form of the cubic so the remaining coeffi-
cients are uniquely defined regardless of which system we
started with.

A projective canonical system is obtained by eliminating the
last two coefficients using slants, which are purely projective,
in the x and y directions. To do that, we drop the bars from the
last cubic form (20) and express x, y there in terms of new co-
ordinates, the projective canonical X,y:

r=— = y=— L
l+0,x+0.y I+o,X+0,y

(20)
with the x- and y-slant factors

OCy=—C3, Oy = —C3.
This finally brings us to Descartes’ folium (5).

This concludes the elimination of the cubic coefficients and
brings us to the projective canonical system. This system was
defined invariantly by the curve’s intrinsic properties such as
the shape of the osculating nodal cubic which is independent
of the original coordinate system.

C. Projective Invariants

We now have an invariant canonical system and affine in-
variants, but still no projective invariants. To obtain them, we
transform the original fitted curve £, equation (2), to our ca-
nonical system. We collect all the transformations that were
performed during the canonization process. We have already
translated and rotated f (with the factors xo, yo, #,), and we will
perform the rest of the transformations making up the projec-
tivity (with factors u,, Oy, 0y, s, 5,) on f. The coefficients of f
will transform to new ones a;, which are now all invariants be-
cause they represent a fitted curve defined in the invariant
system. The only remaining question is how to select functions
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of the invariants Z; which best suit our needs.

As mentioned before, the condition of locality dictates that
we use derivatives of the curve rather than some arbitrary
function of a;. The first six derivatives at x, are already de-
termined by the canonization process (as

dy, ...,ds=0,0,-1,0,0,1,0).

Thus we need the seventh and eighth derivatives. These can be
obtained in this particular system similarly to (6) through (10).
With the above values of d, we have (dropping the bars)

d7=a13—a7+ 23.5 (21)

(22

These quantities are our local projective invariants. They can
serve as our Iy, I, in this case.

In conclusion, we have started with a curve fitted to data
points around xg, yo, and after a series of transformations of
this curve we have arrived at local invariants which are inde-
pendent of the fitting details or the point of view. We can re-
peat the process for other points to obtain an invariant signa-
ture. No correspondence was needed.

dg =—-ay—an+ 233 - a4d7.

D. Affine Normal and Canonical System

We have obtained affine canonical system as a by-product
of the projective one. However, there is a more direct and
simpler way. We only touch on it here, full details are given by
Weiss [19]. Instead of the nodal cubic we use a conic passing
through our point x, (24). We draw a conic diameter through
that point, an affine invariant operation. This line is termed the
daffine normal. Through affine transformation we make this
line perpendicular to the tangent and reduce the conic to a
simple unit circle or hyperbola, thus obtaining an affine ca-
nonical system.

E. Experimental Implementation

The above method was implemented to extract local invari-
ants from a set of real images. Each image was processed to
obtain a contour curve for the relevant object, using standard
techniques of edge detection and thinning. We used a window
about 50 pixels wide around each contour point and fitted an
implicit curve there, minimizing the square distances with Sin-
gular Value Decomposition. The coefficients of this fitted
curve were used to calculate the invariants.

Fig. 2 shows two views of a hanger. Effects of perspective
distortion can be seen. Fig. 3 presents the hanger under occlu-
sion. Fig. 4, Fig. 5, and Fig. 6 show the local invariants for the
above-mentioned figures. A good match of the signatures is

_observed. The match is demonstrated in Fig. 7 where the two
"signatures from the different viewpoints are superimposed and

almost overlap. The match is between the hanger in Fig. 4 and
in Fig. 6, where it is partially occluded. Note that the number
of points and their locations along the signature are different in
the two signatures due to the different size and viewpoint.
However the signature curve is invariant to this.
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The matches between the signatures were done by observa-
tion. Devising an automated matching method is an open

problem in vision and deserves research in its own right. We * ' 7 "t o
mention here only one possibility. A method for automatic
matching of the signatures was successfully used by Wolf- *°[
son [22], for the Euclidean case (curvature vs. arc length): . °
draw a circle of radius € around a point in one signature, and 0 i PO
measure how much of the other signature enters inside that Ml g
circle. This gives a measure of the local overlap between the ;| "
two signatures, taking into account the noise level € Then ¢
move the circle along all points of the signature and repeat the ok
process for each point. Add up the local similarity measure-
ments to obtain a global measure of the similarity.
o f
w40 7‘4 V‘z 0 ; ;

Fig. 5. The projective invariant signature for the second hanger image.
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Fig. 3. The hanger under partial occlusion Fig. 6. The projective invariant signature for the occluded hanger image.
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perimposed on the signature of the unoccluded hanger.



234 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 17, NO. 3, MARCH 1995

Fig. 8. Two views of a coat rack. The vertical lines in the curved piece of
metal were used for invariants extraction.

20 T T T T

“fixinvi.mitl* o
“fixinvf.mit2~ +

o °
-
“10 F / 4
Ca

«*”

4
-20 F 4 4

*
L2

30 F o+ 4

~40 I 1 L L
-4 -2 ) 2 4

Fig. 9. The invariant signatures for the coat rack. The signatures are presented
one on top of the other.
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Fig. 10. The invariants signature for the second object (the coat rack) is pre-
sented on top of the signature of the first object (the hanger).

Fig. 8 shows a different object, a coat rack, from two differ-
ent views. We tested the parts of the rack on which a coat
hangs. These parts are somewhat similar in character to the
hanger (under projectivity) but are still distinct from it. Ac-
cordingly, the signature has some similarity to the previous
one but it is different enough to distinguish the hanger from the
coat rack.

The invariant signatures are presented (one on top of the
other) in Fig. 9 . The local invariants obtained from Fig. 8 are
compared with those of the first hanger (Fig. 2). The result of
this comparison is presented in Fig. 10.

IV. LOCAL INVARIANTS WITH SOME CORRESPONDENCE

While the previous process does not require correspon-
dence, it leads to fitting rather high order curves which may be
sensitive to noise. This problem is discussed by Weiss [20],
and it is shown that one way of overcoming it is using a wide
window.

Another approach to increasing robustness is to use some
reference features, e.g., points or lines for which the corre-
spondence is known. For example, a silhouette of an airplane
can contain both curved parts and straight lines. We can use
this information to eliminate some of the parameters of the
projective or affine transformation, so there will be a need for
fewer curve descriptors for the elimination of the remaining
ones. Invariants involving both derivatives and reference
points were found by Barrett et al and Van Gool et al [14].
However, they still use a curve parameter ¢ which also has to
be eliminated, and this reduces the robustness of their method.

The “parameterless” method described above is perfectly
suited for this situation, and again leads to saving in the num-
ber of data quantities needed from the image and increased re-
liability. Here we use a canonical method similar to the corre-
spondenceless case in order to find local invariants while
avoiding the curve parameter. This makes the method more
robust as there are fewer unknowns to eliminate. In addition to
reference points used by previous methods, we are able to
make use of reference lines, or combinations of points and
lines.

The first stage is similar to the previous case: fit a high or-
der curve over some window around some xq, yo and then
translate and rotate until the origin is at xy, yo and the x axis is
tangent to the curve. We need a smaller window than before
and a lower order curve because we need lower derivatives.

Again we obtain an osculating curve that will help us find
the canonical system. However, we do not need the nodal cu-
bic; the conic, with three parameters, will suffice in all cases:

f‘ =¢(x, y) = cox’ + c1y2 +cxy+y=0. (23)

The exact process of finding the conic and the canonization
process differs for each case. However, the principles of in-
variance and locality must be maintained. In the following we
will describe briefly the process for the different possible
combinations. Each known feature point or line reduces the
number of derivatives needed by two, because it eliminates
two transformation factors.

¢ A Curve and One Feature Point: We draw a line join-
ing the given reference point x;, y, with the curve point
X0, yo (Fig. 11). This is obviously a projectively invariant
operation. We use this line as our new y axis. As before
we skew the system so that this line becomes perpendicu-
lar to x. We thus obtain an orthogonal system which we
can scale and slant as before.
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To do this, we obtain an osculating conic to our fitted
curve f. We need only fourth order contact, rather than
sixth as before.

After fitting the conic, our goal will be to go over to a
canonical system in which this conic is a unit parabola
x*+y=0, and the distance between the curve point and
the reference point is unity (right-hand side of Fig. 11).

e A Curve and One Feature Line: We convert to the
previous case by finding the polar point of the given line
with respect to the osculating conic. Polarity of a point
and a line is an invariant relation. Given a point, we can

given

point y=1

—

coni¢ /./'/

unit
parabola

Fig. 11. Osculating conic (left), the canonical conic and a point (right).

Fig. 12. Polar line and point.

draw from it two tangents to the conic, creating two
points at which these tangents touch the conic. The line
joining these two points is the polar line of the given
point with respect to the conic (Fig. 12).

The conic is found in the same way as in the previous
case, requiring osculation in the fourth derivatives. We
are now in the same situation as in the previous case,
having a conic and a point, and we can proceed to find
invariants as before.

e A Curve and Two Feature Points: This case requires
only the second derivative to determine the osculating
conic, rather than the fourth as before. First find the conic
that osculates the fitted curve with second order contact
and also passes through the two reference points. This
uniquely determines the conic. Then find the line that
passes through the two reference points. This brings us to
the same situation as before, namely, a conic plus a line,
but with two fewer derivatives.

e A Curve and Two Feature Lines: This case too re-
quires only the second derivative to determine the oscu-
lating conic, rather than the fourth as in the one point
case. We first find the conic that osculates the fitted
curve with second order contact and is also tangent to the
two reference lines. We then find the intersection point of
the reference lines. This brings us to the case of a conic
plus a point that we dealt with earlier, but with two fewer
derivatives.

e A Curve, a Point, and a Line: As before we require that
the conic osculate the fitted curve up to second order
contact. In addition we require that the reference line be
polar to the reference point with respect to the conic.
This provides sufficient conditions to determine the
conic. Achieving this will bring us again to the situation
of a conic plus a point, to be brought to a canonical sys-
tem as before, again with two fewer derivatives.

In what follows we describe the above processes in detail,
as well as some experimental results for some of the cases.

A. Transforming to a Euclidean Canonical System

In all of the above processes the reference points and lines
need to be transformed to the Euclidean canonical system. For
a feature point x,,y, the transformation is

% = (0 = xo— uyy = YOI + ul)'? 24

¥, = O — yo + ux — x))/(1 + u?)2. (25)

(This involves the inverse of the rotation of the curve f, equa-
tion (3), because points transform with the inverse of a curve
transformation.)

The reference (feature) line by + byx + by is translated and
rotated as

EO = b()+ b]X()+ bzy() (26)
b =b, —ub, 1))
by =b,+uby. (28)

We again drop the bars from all quantities.

B. A Curve and One Feature Point

We first find the first four derivatives of f using (6) through
(8). From that we find the coefficients of the osculating conic
in the same way we used for the nodal cubic. The result is

co=-dy 29)
¢y = — (dody — d3*)/d; (30)
Cyr= —d*_;/dz. (3 1)

To orthogonalize the system, we want to obtain x; = 0. This is

achieved by skewing, with the skewing factor u, = xi/y;. The
orthogonalization changes the conic coefficients to

T =y + coul + cyu (32)
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¢, =Cy + 2¢oU,.

(33)

We drop the bars from c;. The reference point coordinates are
now (0, ;).

For the affine case we need only scaling (19).

It is easy to obtain a distance of unity between the origin
and the reference point by scaling the y axis with s,=+ 1/y;.
(The sign is set to be the same as the sign of ¢;.) Scaling in the
x direction is done by requiring co= 1, which is achieved by

Substituting the scaling transformation (19) in the conic (24)
we obtain (dropping bars)

x*+ C—ly2 +£2—xy+y =0.
s, 5,
The two remaining coefficients, ¢i/s, and cy/s,, are affine in-
variants. (The conic now is not a unit parabola but has these
two invariant coefficients.)

For projective invariants, we first have to slant the shape in
the x and y directions. (This has to be done before scaling).
The terms with ¢, ¢; are eliminated using the transformation
(21) with the x, y slant factors being 6, = —c;, 6,= —c;.

As in the affine case we use the reference point for scaling,
but now its distance has changed because of the slant. The new
distance is now y "= y/(1 — 6,y;). We want to scale y.so that
this distance is unity, so s, =+ 1/y” (again with the sign of co).

At this point the conic is reduced to cox” + y/s, = 0. To ob-
tain a unit parabola and get rid of ¢, we scale in the x-direction
with

Se= (cosy) .

We have thus obtained the projective canonical system. To
obtain the invariants, we have to transform the original fitted
curve fto this system. Again all the transformed a; are invari-
ants, but we need the ones that are local in nature and inde-
pendent of the fitting details, namely, derivatives. Since we
have used up the first four derivatives we need the fifth and
sixth (two fewer than in the correspondenceless case). To ob-
tain them we substitute in (9), (10) the canonical values
dy, ...,ds=0,0,-1,0, 0 and obtain

ds=aj;;—ag (34)

dg = ag — a3 — ayds. (335)

These are our local projective invariants.

C. A Curve and One Feature Line

The conic is found in the same way as in the previous case,
requiring osculation in the fourth derivatives. The polar line is
found as follows.

Given a point xl" in homogeneous coordinates, we can write

the coefficients b; of its polar line with respect to a homogene-
ous conic

C = co(x")2 + cl(y")z + cthy" + yhz" =0

as
bo= ; y N (36)
by = %q =2cox} + ¢yt (37)
b, = i,, =2c,yf +cpxf + 2t (38)
L am

X1

(C is first differentiated and then the point coordinates xl" are
substituted in the right-hand side.) In our case we know the
line b; and the conic C in the above equation, so we have a set
of linear equations for the point x{' . Solving it we obtain

xt =—b,+ by (39)
¥ ==2cobo (40)
2" = bicy — 2eoby + (deocy —c2)bo. (41)

Going back to regular coordinates we have the polar point in

our Euclidean canonical system
_hfh b/ h
xl_xl/zl’ )’1—)’1/21-

We are now in the same situation as in the previous case,
having a conic and a point in a Euclidean canonical system,
and we can proceed to find invariants as before.

D. A Curve and Two Feature Points

We need here the formula for the conic coefficients given in
terms of the second derivative and the reference points:

C0=—dz (42)
co(x1x§y1 “xlzxz)’z)' )’1("2)’2 “x1)’2)
Ci = 2 2 (43)
XN Y = XN
2.2 .22 2_ .2
—Col X5y — X7y )+ -
o= o( 201 — X 2) N2 =02 44)

2 2
X2 Y1 Y2 = X1 Y2

with xi, yq, X2, y; being the reference point coordinates in the
Euclidean canonical system.

The first line above is the same condition on ¢y as in all
previous cases. The next two lines are obtained by substituting
the reference points in the conic (24) and solving for c,, c,.

The affine invariants are calculated from c; as in the previ-
ous case. The projective invariants are now the third and
fourth derivatives, two lower than before. Substituting d,= -1

in (6) we obtain for these
dy =—ag+ay (45)
dy=-ajp+a7—as—ads (46)

which are our local projective invariants.
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E. A Curve and Two Feature Lines

The only new thing here is finding the conic. The tangents
to a conic satisfy the equations of the “line conic,” which is the
dual of a regular conic. When representing the conic in matrix
notation, the line conic matrix is the inverse of the point conic
matrix. The inverse matrix of the one in (24) is

cl=l 0 o ;cz

—c; 2¢p c% - 4co0
¢p is determined as before by the second derivative d,. The ref-

erence lines satisfy the equations bC™'b’ = 0, from which ¢, c;
can be found. We obtain the conic

Co= —dz (47)
(b6 —b{*b5 )1 2+ 2co(bybobg* ~ b3bybg )
¢ = (48
2 bybobi? ~ b! b, b )
2 _ 2,2
¢ = b ~2c,bgby +4cybyb + c3b; “9)

4cob§
with b;, b’; being the- coefficients of the two reference lines in
the Euclidean canonical system.
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Fig. 14. The invariant signatures for the two images of the hanger and the
coat rack presented on top of each other.
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The affine and projective invariants are as in the previous
case.

The images of the hanger and the coat rack were used to
derive local signatures using two feature lines. The signatures
obtained from the coat rack image are presented in Fig. 13. A
comparison of the two signatures for the hanger and the coat
rack is presented in Fig. 14.

The curve and two feature lines method was used to achieve
affine invariants for the same objects. The results of the invari-
ants computation are presented in Fig. 15.

ey e

Fig. 15. The two affine invariant signatures for the hanger and the coat rack.

F. A Curve, a Point, and a Line

We require that the conic osculate the fitted curve up to
second order contact. In addition we require that the reference
line be polar to the reference point with respect to the conic.
This provides sufficient conditions to determine the conic.
Achieving this will bring us again to the situation of a conic
plus a point, to be brought to a canonical system as before,
again with two fewer derivatives.

As before, the osculation condition leads to co= —d,. Set-
ting zl" =1, the first of the polar equations, (37), leads to
y1= bo, and the line coefficients have to be normalized so that
this equation is satisfied. This leads to the change

E; = byyi/by, b2 = by/bg

and we drop the bars. With this, the remaining two polar equa-
tions are

2cpri+ ei=by 2en+ e+ 1=by

which are satisfied by the conic coefficients

¢1 = ((ba= 1y; + 2c0X7 = byx /2 y7) (50)

€2 =—(2cox; - by)ly;. (S1)

The affine and projective invariants are calculated as in the
previous two cases.

V. CONCLUSIONS

We have presented a method for finding local projective
and affine invariants and applied it to real images. Local in-
variants are useful for recognition even when part of the shape
is missing or occluded. They will enable us to look for a match
in a database when only a partial shape is given. This is in
contrast te- global methods such as algebraic invariants and
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moments. Our method of deriving these invariants consists of
defining a canonical coordinate system by the intrinsic proper-
ties of the shape, independently of the given coordinate sys-
tem. Since this canonical system is independent of the original
one, it is invariant and all quantities defined in it are invariant.
The canonical method is general and can be used locally or
globally, implicitly or explicitly. We used the implicit curve
representation since it enabled us to avoid fitting errors asso-
ciated with the curve parameter.

We have applied the method to find local invariants of a
general curve without any correspondence and curves with
known correspondences of one or two feature points or lines.
Experimental results for both cases are presented. Our experi-
ments with real images have shown that by using our local
implicit method we can find an invariant signature which is
both insensitive to occlusion and relatively reliable. We have
also demonstrated that these signatures, while unchanged un-
der different viewpoints, do change for images of different
objects. That is, they have enough descriptive power to distin-
guish between many different kinds of objects. Therefore they
can be used for an automated object recognition system that
can distinguish and identify objects regardless of the point of
view from which they are observed.
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