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A navigating agent can relate in three basic ways fo an
object: Avoidance (e.g., if the object is a threat or an obstacle)},
interception (e.g., if the object is prey or food), and reference
(e.g., if the object can be used as a landmark). We illustrate
these classes of object functionalities for the case in which the
agent is a simple corridor-cleaning robot thai uses the walls
(and wall-ficor junctions) as references in following the corri-
dor, treats independently moving objects as threats and large
stationary objects as obstacles, and treats small stationary ob-
jects as “‘prey” (trash to be swept up). © 1995 Academic Press, Ine.

1. INTRODUCTION

Objects can be categorized in terms of functionality-—
i.e., usefulness to a given agent in carrying out specific
purposes or tasks. There has been considerable recent in-
terest in function-based object recognition {16, 20-26].
Much of this work has dealt with cases in which the object
functions as a “machine,” i.e., a device for transferring
force—for example, a chair, which can support a sitter (by
transferring the sitter's weight to the floor); a cup, which
can contain & liquid; and a knife, which can be used to cut
into surfaces. Hawever, there are many other important
classes of functionalities; for example, if the agent is ani-
mate, some of the objects in its environment can function
as food (“prey™) or as threats (“predators™; note that this
is a “pegative” type of functionality).

In this paper we consider some basic classes of function-
alities that objects can have for a navigating agent. Such an
agent can relate in three basic ways to an object: Avoidance
{e.g., if the object is a threat or an obstacle), inferception
{e.g., if the object is prey or food), and reference {e.g,, if
the object can be used as a landmark). We illustrate these
classes of object functionalities for the case in which the

. agent is a simple corridor-cleaning robot that uses the walls
{and wall-floor junctions) as references in following the
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of Sandy German in preparing this paper.

corridor, treats independently moving objects as threats
and large stationary objects as obstacles, and treats smail
stationary objects as “prey” {trash to be swept up). The
robot is called “Sisyphus,” because its work is never done
(it moves endlessly back and forth along the corridor).

Sisyphus’® behaviors, and the object functionalities that
it must be able to recognize in order to carry out these
behaviors, are listed in Section 2. In Section 3 we describe
Sisyphus’ visual modules, and in Section 4 we show how
Sisyphus uses these modules to perform the necessary rec-
ognition tasks. Section 5 presents experimental results, and
Section 6 discusses some basic control structure issues that
arise in designing agents of this type. Finally, Section 7
discusses how this work could be extended to handle func-
tionalities that involve dynamic aspects of navigation.

Issues of functionality also arise in connection with the
domain in which navigation takes place. For example, the
parts of a generic building can be described in terms of
their functions——e.g., a hallway is a channel for motion
beween rooms and must be wide enough for two people
to pass [9]. A possible way to represent such geveric models
is by using frames, as in {27}. These high-level aspects of
navigational functionality are beyond the scope of this
paper.

2. SISYPHUS

Sisyphus is an agent equipped with visual sensors whose
purpose is to clear corridor floors. The control aspects of
this problem will be discussed in Section 6, where Sisyphus
ts modeled using a Discrete Event Dynamic System
(DEDS) formalism {8, 13], and properties of its behavior
are proved. In this and the next three sections we discuss
primarily the recognition tasks performed by Sisyphus. In
particular, in Section 3 we describe the visual modules used
by Sisyphus to perform these recognition tasks. In Section
4 we demonstrate the feasibility of the recognition tasks
in the context of Sisyphus’ behaviors and environment.
We define Sisyphus’ environmnent to be a single corridor,
thus avoiding problems related to planning a path through
a building. Such path planaing could be based in part on
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recognition of specific locations; the achievability of this
recognition task is also demonstrated.

In this corridor environment, Sisyphus must be able to
carry out the following behaviors:

* Moving along the corridor

* Turning around when an end of the corridor is reached

» Avoiding obstacles (i.¢., large objects)’

+ Cleaning up litter (i.e., sufficiently small objects)

* Stopping {temporarily) if an independently moving ob-
ject is present (such an object might be a threat).

Evidently, this means that Sisyphus must be able to rec-
ognize

* The corridor’s walls and its ends
* Large objects (and free space)

* Small objects

+ Independently moving objects

+ Specific locations or landmarks.”

The definitions of “large” and “small” depend on Sisy-
phus’ size, as well as on its capabilities of locomotion and
manipulation. In addition, object *“*size” must be defined
relative to the corridor coordinate system; for example,
we are concerned with how far a large object extends above
the floor or out from a wall at a height below the top
of Sisyphus, but we may not care about other aspects of
its size.

We do not attempt to cover the motion planning aspects
of Sisyphus’ tasks (avoiding loops, etc.), and we do not
discuss the kind of cleaning equipment that Sisyphus has.
We assume that keeping to the middle of the corridor is
good enough for solving the coverage problem (the clean-
ing equipment includes extensors, ete.}, Evidently, when
Sisyphus perceives an obstacle, some planning has to be
done to avoid the obstacle and clean in its vicinity.

In Section 3 we describe a set of visual modules that
Sisyphus can use in these simple recognition tasks, in See-
tion 4 we show how the modules are used to perform those
tasks, and in Section 5 we present experimental results.

3. VISUAL MODULES

A set of visual modules that can be used by Sisyphus to
carry out its recognition tasks will now be described. The
tasks could be carried out using data obtained from senses
other than vision, but here we are interested in achieving
recognition, using vision only.

' A possible additionai behavier might be pushing aside intermediate-
size objects, but note that they may not be movable.

2 This task is based on the localization algorithm described in [3, 15].
We limit curselves to the localization aspect of the problem; path planning
and positioning are not treated here.
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3.1, Computing Normal Flow

A series of normal flow fields [w*(x, y, £), v"(x, v, 1)] will
be used as visual input for many of Sisyphus’ recognition
tasks. If f(x, y, £} 1s the image intensity function as it changes
through time, and (u, v) is the image velocity as a projection
of the 3-D motion, then

futfiv+fi=10

or

(fxe fy) ' (u! U) = —fo

where the subscripts denote partial differentiation and **-”
denotes the inner product of vectors.

From this equation it follows that we can compute the
projection of the optic flow (i, v) on the image gradient
direction (f,, f,) at every image point. This normal flow
f. is given by

] f .

We assume that the normal flow is computed in real time.
We also assume that f,, f, # 0 at a large number of pixels,
e.g., that some amount of texture is present in the scene.

We further assume that Sisyphus is equipped with iner-
tial sensors that provide information about its rotation.
(Even when Sisyphus attempts to move in a straight line,
it may undergo slight rotations because of unevenness of
the floor.) Since the rotation is known, its effect on the
flow can be subtracted using a process known as derotation.
Indeed, if f, is the value of the normal flow at (x, v) and
the rotation of the sensor is (4, B, C), then the rotational
flow at (x, y) is given by ’

u, = Axy — B(1 + x%) + Cy
v, =A(1 + y?) — Bxy — Cx.

If we let (i, v) = (v, v) — (4,, v,), then the normal flow
f. = (u, vy - (f., f;) 1s due to translation only. We may
thus assume that Sisyphus is translating.

3.2. Computing Time to Collision

Let Sisyphus be moving along its optical axis (i.e., in the
direction in which it is looking) with velocity V (see Fig.
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FIG. 1. The camera moves along the corridor with velocity V,

1). Let the image point p(x, y) be the projection of scene
point P(X, Y, Z). After time dt, P'(X, Y, Z — V,dt) projects
to p'(x', y'). Using perspective projection and assuming
unit focal length, we have
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Thus we can obtain the velocity of image point p(x, y) as

u=limx’_xzzx
di—»0  dt ZzZ

' — %
=lim¥_—2Y=2y
v dtf{lJ dt Zy

Let the unit image gradient vector at p(x, y) be (n,, n,).
Then by the equation in Section 3.1 we have

fu=un, +un,

=Kxn +K n
Z X Zyy

174
- (xn, + yn,)

sa that

Ve fn
Z xn.+yn)

Thus, the quantity Z/V is computable everywhere on
the image (wherever features allowing the estimation of
normal flow exist). This quantity represents the time to
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collision for the given scene point p(x, y, z); it is a scaled
version of the distance to that point. When Z/V is small,
we have a potential hazard.

3.2.1. Detecting Anomalies on the Floor. Let the cor-
ridor geometry be as shown in Fig. 2. We assume that the
floor is horizontal, the optical axis of the camera lens is
parallel to the floor, and the distance of the center of the
camera {nodal point) above the floor is known. As a result,
the plane of the floor has an equation which is known in
the coordinate system of the camera. Let this equation be
Z = pX + gY + ¢ Expressing this equation in image
coordinates (x, y) vields 1 — px — gy = ¢/Z or Z =
c/(1 ~ px — qy). Assuming that Sisyphus moves along its
optical axis with velocity V, at a point (x, ¥) which is the
image of a feature on the floor, we have

u=Y, XV -px- 9y).
Z C

_ V. _yV(Q -px—qy)

v Zy ——""—C .

Suppose that at an image point which corresponds to a
point on the floor we measure a normal flow value f,, along
some direction (n,, r,). As we saw, we should then have

o= (s, ny) - (u, v).

If this condition is not satisfied, we have detected an anom-
aly. The distance to an anomaly can be computed as de-
scribed before, and the height of the anomaly above the
floor can be computed from its angular extent, as in Fig. 3.

In principle Sisyphus might also be concerned about
protrusions from the walls (see for example Fig. 7 in Sec-
tion 35: the sink and the fire extinguisher). Keeping to the
center solves part of the problem. A full solution should
handle these protrusions in a similar way. Knowing the
equations of the walls we have expectations. Anomalies,
deviations from what is expected, should be detected and
trigger the appropriate procedure for recognizing a poten-
tial obstacle.

3.3, Estimating Object Dimensions

When Sisyphus sees an anomaly on the floor it can use
its own height and the visual angle to infer the distance to
the anomaly, as in Fig. 3. Given the distance, the visual
angles subtended by the object provide estimates of its
height and width.

3.4. Steering

In an ordinary corridor, the walls intersect the floor
along two parallel lines which can be detected using line
detectors. There may be additional lines on the walls or
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FIG. 2. Corridor geometry.

the floor, but those at which the walls meet the floor can
be identified from knowledge of the floor plane and the
distance between the walls.

Let Sisyphus have height k& and be distance { from a wall
(see Fig. 2). In the image, points at distance z; on one of
the parallel lines will have (x;, y;} values given by

{see Fig. 2), where fis the distance of Sisyphus from the
origin. The angle « between the line (the base of the wall)
and the x axis in the image is then given by

v(5-2)

(see Fig. 2). To steer Sisyphus so it does not hit a wall, {
must be prevented from becoming too small. As [/ gets
smaller, the angle a (or B, for the other wall) between the
wall and the x axis gets bigger. When Sisyphus is closer to

(&)
arctan { — | = arctan
Ay

Y
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A

d

FIG. 3. Estimation of object height.

the left wall we have o > B (see Fig. 4). When it is moving
along the corridor axis, @ and 8 are equal. Note that this
method of obstacle avoidance (avoiding the walls) works
even if the environment is not textured; indeed, the lines
where the walls meet the floor can be detected more reli-
ably in an untextured environment (see Fig. 7 in Section 5).

4. RECOGNITION TASKS

Sisyphus must perform the following recognition tasks
to implement its behaviors:

1. Recognize the main cleaning area, i.e., the walls, floor,
and ends of the corridor

2. Recognize independently moving objects

3. Recognize object size categories

4. Recognize specific places {localization).
We should point out that these behaviors also involve

motor tasks whose analysis is beyond the scope of this
paper. We consider here only the recognition tasks.

4.1, Recognizing the Corridor Walls and Fnds

These tasks can be accomplished using the following
three visual modules:

(a) Computing time to collision

(b) Detecting anomalies

{c) Steering.

left right middle

FIG. 4. Steering,
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FIG. 5. Neormal flow inconsistent with the FOE must arise from inde-
pendent motion.

Using (a) we can identify the contiguous part of the scene
that is the farthest away (maximum time to collision). This
can ordinarily be used to define Sisyphus’ direction of
motion. Using (b) we find anomalies, if any. The motion
can continue as long as no unexpected anomalies are de-
tected. Finally, (¢) allows Sisyphus to center itself along
the main axis of the corridor. Clearly, there exists a great
amount of redundancy in these modules, and this contri-
butes to the robustness of recognition. For example, con-
sider a situation where it i1s hard to detect the place where
the wails and the floor meet, because they are strongly
textured. In this case we should be able to get a reliable
output from the time to collision module.

Recognizing the end of the corridor is done similarly. If
we can detect no free space along the main axis of the
corridor, we must be at a dead end. We can use the steering
module to determine that we are on the main axis; then
we use the other modules to check for “no free space.”

4.2, Recognizing Independently Mouving Objects

This task can be accomplished using the following three
visual modules:

FIG. 6. If uis the normal flow at point A, then point A could move
anywhere between B and C and the normal flow at the new position is
constrained if there is no acceleration.

RIVLIN AND ROSENFELD

(a) Computing normal fiow
{b) Computing time to collision
(c) Detecting anomalies.

Since Sisyphus is translating {or its flow field can be
derotated; see Section 3.1}, its flow field is characterized
by a Focus of Expansion (FOE). Each normal flow mea-
surement constrains the FOE to lie in a half plane; by
intersecting these half-planes, the FOE can be localized as

FIG. 7. Steering in a real corridor.
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lying in a relatively small area {5, 6]. If the normal flow at
a given point A is inconsistent with the location of the
FOE (asin Fig. 5}, point A cannot be a static environmental
point, but must belong to an independently moving object.
By moving the camera, Sisyphus can move the FOE to
various image positions and thus completely detect any-
thing moving independently. It can be shown that moving
the FOE to the four corners of the image is sufficient to
detect all independent motions [1].

The normal flow measurement module can also detect
the existence of image regions having high accelerations;
such accelerations are often characteristic of animate mo-
tion. If at time ¢ we measure the normal flow at point A
as in Fig. 6, the point should move to somewhere along
segment BC, because the actual motion cannot be arbi-
trarily large. Thus, a measurement of normal flow at time
¢ + dt on BC that is not consistent signals a potential area
of high acceleration.

If we know Sisyphus’ velocity, detection of any normal flow
value higher than a threshold value should indicate an inde-
pendently moving object. If Sisyphus is stationary, detecting
independently moving objects is trivial. Here we are paying
the price of siower performance to achieve robust detection
of independent motion (and hence greater safety).

Triggering a (temporary) stop when independent motion
or high acceleration is detected should be time to collision
dependent. There is no sense in stopping Sisyphus when
something is moving slowly very far away. The time to
collision module can check this. An example of the detec-
tion of independent motion in a corridor containing a mov-
ing human being will be shown in Section 5 (Fig, 10).

43. Recognizing Object Size Categories

For this task we use two visual modules:

(a} Computing time to collision
(b} Detecting anomalies.
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Estimating the distance to, and hence the dimensions of,
an anomaly was discussed in Section 3.3. For any (static)
object that can be distinguished from its background, the
time to collision module can be used to estimate its distance
(since Sisyphus’ velocity is known), and from this informa-
tion its dimensions can be estimated.

This recognition task triggers the PICK and OBS behav-
lors as described in Section 6. For Sisyphus a small object
is to be picked up and a large one is to be avoided.

4.4. Recognizing a Specific Location

For this task we use the localization algorithm described
in [3, 15]. Basically two “reference views” of the specific
location are needed. Localization can then be achieved by
interpolation between these views; see Section 5.2.

5. EXPERIMENTS

We describe some experimental results obtained with
these recognition tasks. All the experiments were done
using a CCD camera in a corridor at our laboratory.

5.1. Recognizing the Main Cleaning Area

We implemented the steering visual module needed for
the task. The module detects the corridor sides (where the
walls meet the floor) using a version of the Hough trans-
form which takes advantage of knowledge of the eaviron-
ment to limit the range of the search. The results obtained
by this module in different steering situations are presented
in Fig. 7.

5.2, Recognizing a Specific Location

A set of images was taken in a corridor. We used the
place recognition algorithm described in [3, 15] to do local-
ization. Because of the deep structure of the corridor, per-
spective distortions are noticeable. Nevertheless, the align-
ment results yield an accurate match in large portions of the

FIG. 8. Two reference views of a corridor.
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FIG. 9. Matching the corridor model with two images of the corridor. The right image was obtained by a relatively large motion forward {(about

half of the corridor length) and to the right,

image. Figure 8 shows two reference views of the corridor.
Figure 9 (left) shows an overlay of a linear combination
of these reference views of an image of the corridor. It
can be seen that the parts that are relatively distant align
perfectly. Figure 9 (right) shows the matching of the corri-
dor model with an image obtained by a relatively large
motion (about half of the corridor length}. Because of
perspective distortions the relatively near features no
longer align {e.g., the near door edges). The relatively far
edges, however, still match.

5.3. Recognizing Independently Moving Objects

Using the input from the normal flow module we imple-
mented the independently moving object detection algo-
rithm described in Section 4.2. Results obtained for an
independent motion in the corridor (while the camera is
translating forward) are shown in Fig. 10. The indepen-
dently moving features are displayed as black dots.?

5.4. Recognizing Object Size Categories

Objects, in particular potential obstacles, were detected
using the time to collision visual module. The results ob-
tained by this module for forward translation toward a
chair are presented in Fig. 11. If we can detect an object
we can compute its size, as explained in Section 4.3. For
example, knowing the height of the camera (and its focal
length), the size of the waste basket in Fig. 12 was com-
puted.

An interesting issue involves the dimensionality of the
object; it can be inferred using qualitative shape informa-
tion. We shall show now how to use rough metric properties
to infer the dimensionality of an object. Qur geal is to find

? This recognition task too can benefit by using senses other than vision.
The use of a pyroelectric sensor for this task is demonstrated in [4].

out whether the object we are locking at is a 1-D, 2-D, or
3-D object. This categorization of the world into “‘sticks,
plates, and blobs™ can be useful to Sisyphus in various
ways.*

To determine the dimensionality of the object we com-
pute its thinness ratio 7, defined [7] for an object of area
A and perimeter P by’

_4rA

r="17.

The isoperimetric inequality [2] states that, for a simple
closed curve Cof length L in the plane, the area A enclosed
by C satisfies

L? —47A =0

with equality holding if C is a circle. Hence the maximum
thinness value is 1. It can be shown [11] that the thinness
ratio of a regular n-gon is

il T
T=—cot—
n n

which increases monotonically to 1 as the number of
sides increases.

41n [12], a recognition system is described that is based on a set of
generalized blob models including sticks. plates, and blobs which, in
three-space, are modeled as straight lines, circular disks, and spheres,
respectively. Using geometric and relational constrains the system trigs
to achigve a consistent labeling of the scene. Cur intention is completely
different. We want to determine only the dimensionality of an object—
i.e., is it a stick, a plate, or a blob.

5 On the limitations of this definition see [17].
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FIG. 10. Detecting independently moving objects. The arrows repre-
sent normal flows, Normal flow measurements that were inconsistent
with the FOE were climinated. Thresholding the normal flow values gave
the same results. Black dots indicates piaces where independent motion
was discovered,

We use the fact that line-like objects (sticks) will have
a thinness ratio close to zero to define a 1-D object {stick)
as an object with a lower than threshold thinness value,
which does not change when we change our aspect (view
angle). The distinction of a 2-D object from a 3-D one is
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less obvious. We define a 2-D object to be an object having
a 1-D thinness property from some aspects. To find if an
object is a plate we check its thinness and then move to
check it again (a motion in a plane normal to the plate is
the best).

A 3-D object is one with a higher than threshold thinness
value that does not change significantly when we move
around it. To remove the effects of a nonsmooth boundary
we check the way in which the thinness value changes
when we change resolution. We expect 1-D objects to keep
their thinness values until they eventually disappear; 2-D
objects will have lower thinness values as the resolution
goes down, and 3-D objects will become circular and will
tend to increase their thinness.

We compute the above qualitative shape information
for a segmented object by performing the following steps:
compute the object’s thinness ratio, change resolution and
compute the thinness ratio for every level in the pyramid;
then move {exploration) and repeat the above computa-
tion. If the thinness ratio is lower than a threshold for all
the steps above, the object is a 1-I object. If the thinness
ratio is lower than a threshold for some of the steps above,
and the change in the resolution was accompanied by a
decrease in the thinness, it is a 2-D object. If the thinness
ratio is higher than a threshold for some of the steps above,
and the change in the resolution was accompanied by an
increase in the thinness, it is a 3-D object.

Figure 13 shows the thinness ratio for a 1-D object at
different resolutions. The ratio does not change with the
resolution. Figure 14 shows the different thinness values
obtained when looking at a plate from two different as-
pects. The way the thinness values change as we change
resolution for a 3-D object is shown in Fig. 15. The algo-
rithm we describe might fail. For example when we look
at a 2-D plate from an aspect normal to it, a small motion
will not reveal any significant changes in the thinness, and
the thinness value might be high (7/4 for a square). A
table which consists of a plate on four sticks will get a
2-D/1-D definition, while a “solid” table (or a box on the
floor) will get a 3-D definition. However, the algorithm is
expected to be robust when combined with other processes
that extract shape from motion.

6. CONTROL STRUCTURE ISSUES

6.1. Modules

The architecture of Sisyphus directly reflects the rela-
tionship between behaviors, recognition tasks (corre-
sponding to the different classes of object functionalities),
and visual modules, A hierarchical view of this architecture
is shown in Fig. 16.

Existing system architectures for visual recognition are
modular; part of every system is devoted to general-pur-
pose recovery iasks, which have been considered in the
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FIG. 11. Computing time to collision. Norma! flows for the forward translation are presented in the second picture. The time to collision results
are indicated using squares, where the size of the square is proportional to the time to collision value. The results of thresholding the time to
collision are presented on the lower left,

literature in a modular fashion. Thus, most object recogni- in an environment, it is more appropriate to use an open
tion systems have been based on a modular architecture. labyrinthic design.

As a result, the systems were often too general and not In a labyrinthic design [19], the recognition system can
well suited for specific recognition tasks. When we study be viewed as a collection of processes or modules which
task-dependent recognition in terms of an agent operating perform particular recoguition subtasks. These modules

a

Image

f

h Robot

e D ‘
FIG. 12, Estimation of obstacle height. The distance is computed using the visual angle (330 cm for the wastebasket’s base line). Knowing the
focal length f (730 pixels), and 81 (82 pixels), we can compute S (S1:8 = f: D). For the image shown we obtained § = 37 cm (the real size of the
wastebasket is 39 cm).
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FIG. 13. A 1-D object: low thinness value (0).136)} that does not change when we go up in the resolution pyramid (1:16, 0.141).

are connecied dynamically to sensory modules or to other
kinds of inputs. A configuration of modules that suits one
agent will not necessarily suit another, but a labyrinthic
design can suit every agent. The modules can work in
parallel and can be simple or complex. We do not impose
any restrictions on the order in which perceptual processes
operate. Low-level processes can be guided by high-level
considerations and vice versa.

We differentiate between low- and high-level modules;
the former get their inputs directly from the sensory data,
and the latter get some of their inputs from the low-level
modules, as well as (possibly) directly from the sensory
data. In this sense the low- and high-level modules are just
simple and complex modules, respectively. The modules
are controlled in a mixed top-down/bottom-up manner.

0.2. States and Transitions

We can use a state transition system [10] to describe
agents as Discrete Event Dynamic Systems (DEDS). In

this section we give such a description of Sisyphus, and we
use the formalism to prove some safety properties about
Sisyphus. In our description of Sisyphus, for every behavior
(corresponding to a class of functionalities), we indicate
the appropriate recognition tasks that are needed. These
recognition tasks can be executed in parallel.

We assume that Sisyphus has three basic behaviors:

* M&C (“move and clean™)

* S&W (“stop and wait,” when an independently mov-
ing object is within some distance)

+ PASS (“bypass an obstacle”).

These behaviors are based on the following recogni-
tion tasks:

MCA-—detiect the main cleaning area

DE—detect a dead end

OBJD-—detect potential obstacles and their dimensions
IMQ—detect independently moving objects.

FIG. 14. A 2-D object: moving from the center (left picture) to the left {right picture), the thinness ratio changes from (.20 to 0.16, The change
in resolution was accompanied by decreasing thinness values until the object disappeared.
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FIG. 15. A 3-D object: thinness values do not change when a motion takes place. A change in the resolution increased the thinness values from

0.21 (left image} to 0.48 (right image, 1:16).

We also need to specify the recognition tasks involved
in each behavior and those that trigger switches from be-
havior to behavior. A behavior transition diagram is de-
picted in Fig. 17. Each node in the diagram represents a
distinct behavior. To accomplish a behavior we need to
carry out recognition tasks which are not shown in the
diagram. The arcs represent the recognition tasks that trig-
ger changes in behavior. These tasks run in parallel with
whatever tasks are taking place during the behaviors. Since
two or more events may happen simultaneously, a priority
scheme is needed to arbitrate; larger numbers indicate
higher priorities.

The default behavior of the system is M&C. Under
M&C recognition of the main cleaning area (MCA) is
carried out. The following recognition tasks are carried out
in parallel with the M&C behavior: independently moving
object detection (IMO), object detection (OBJD), and
dead-end detection {DE). The highest priority is given to
IMO, which runs in parallel with all other activities and

o
?’Qg‘-‘?’ MA&C sawW PICK oBs sToP
. /
O
R
KT : =
&
6\5*5
‘1\09 vmi s vMs

- computing normal flow

- time to coVlision/hazard map
- detecting ancmalies

- detecting size

- steering

FIG. 16. The architecture of Sisyphus: a hierarchical view.

triggers the S&W behavior. Similarly OBID triggers the
PASS behavior, and DE triggers the S&W behavior.®
We model Sisyphus using the state transition formalism.
In this formalism, every event is composed of two parts:
enabling conditions and actions. We specify the enabling
conditions of an event e by using a state formula,” denoted
enabled {e), and a sequential program, denoted action 4(¢);
enabled 4(e) specifies the enabling condition of e, and ac-
tion 4{¢) must always terminate when executed in any state
satisfying enabled 4(¢). We assume, without loss of general-
ity, that action 4{e) is deterministic. We assume three visual
modules are running. The first one detects independently
moving objects. The second and the third detect obstacles,
the main cleaning area, and independently moving objects,
using different algorithms.® Sisyphus is moving in the
M&C (move and clean) behavior; when it detects an inde-
pendently moving object it switches to S&W (stop and
wait). When an obstacle is detected Sisyphus goes to the
PASS behavior (bypassing the obstacle). Sisyphus and the
three visual modules are modeled as different processes.
Processes VML, 2, 3 are environment dependent. Their

®In CSP notation, the transition diagram of Fig. 17 can be expressed
as follows:

M&C = [mca : MCAfimo = IMOllobjd : OBJiD||dead-end = DE]
PICK = [imo = IMOQlclear : CLEAR]

GBS = [imo . IMO|clear = CLEAR]

S&W = [nobody : NOBODY]

7 A state formula is a formula in Variables, that evaluates to triue or
Jalse at each state s € States ,. When we say that a state satisfies a state
formula we mean that the state formula evaluates to true at that state.
A state formula can have parameters, that is, variables which are not
state variables.

8 The first can use a threshold on velocities, the second can use time
to collision, and the third can detect anomalies.
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FIG. 17. Switching between behaviors: Sisyphus’ behavior-transition
diagram. Each node represents a distinct behavior; the arcs are recogni-
tion tasks,

states are changed “internally.” Process 5 model the state
of Sisyphus. § changes states by VM1, 2, 3, and this is why
it will be constantly enabled.

VM1 state variables, initial conditions, and events:

S, = {moving, nobody} Initially nobody.
vml,:

enabled = §, = moving

action = S; «— nobody, S,

vl

enabled = 5, = nobody

action = §; « moving; S,; S,

VMi, i = 2.3 state variables, initial conditions, and
events:

S; = {moving, nobody, obst, clear} Initially nobody.
vmi,:

enabled = $; = moving

action = 8; «— nobody; S,

viniy,:

enabled = §; = nobody V' §; = obst \/ S; = clear
action = S; «— mouing; S;; S.

vimi,:

enabled = §; = nobody

action = §; « obst; §,

vmig:

enabled = 8, = obst

action = 8; « clear; S;

S state variables, initial conditions, and events:
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S = {m&es&w, pass} Initially mé&ec, an integer count ini-
tially 0;

S,

enabled = true

gction = if § = m&c then § « s&w; count++

Sb:

enabled = true

action = count —: 1f § = s&w and count=0 then § — m&¢
S

enabled = true

action = if § = mé&c then § « pass

Sd:

enabled = true

action = if S = pass then § «— méc

S.:

enabled = true

action = if § = pass then § « s&w; count++;

To illustrate the usefulness of this notation, we use it to
prove the following safety property of Sisyphus: Whenever
VM2 identifies an independently moving object, Sisyphus
will enter an S& W state and will stay there as long as VM2
detects IMO. Denoting the VM2 state by §; and Sisyphus’
state by S, we want to prove Invariant(A,) where 4y =
Invariani(S, = moving = § = S&W). To prove this invari-
ant we will use the rule stating that for a given system A
that satisfies inv(Q), it satisfies inv(P) if ¢ = P holds. We
show that Invariant(A,), Invariant{A,), and because A,
Ay = Ag, Invariani(Ap) holds,

We define A to be Ay = (count } 0= § = S&W). We
define A, to be 4; = (5, = moving = count {} 0). To prove
Invariant(A,), Invariant(A,)} we will use the following in-
variance rule:

inv(P) is satisfied by system A if the following hold:

1. Initialy = P
2. For every cvent e of A: P = wp(P, e)°

We start with A, . Initially it holds (vacuously), We need
to show that for every event e of the system A4, = wp(A;,
¢). The only event that concerns us is vim2,,, but there the
action part changes the count. A; holds initially {again
vacuously). The only evenis that can change count are S,,
S, 5. Both §, and S, set § to S&W; S, is conditioned on
count = 0. So inv{Ay) is proved. The ease of the proof is
a result of the system’s simplicity. Introducing counter or
weighting schemas, adding states, or changing the level of
atomicity would complicate the proof.

7. CONCLUDING REMARKS

Sisyphus is a simple illustration of a navigating agent
for which objects can function as references (the corridor

? The notation wp denotes the weakest precondition. P is the weakest
precondition of € wrt Siff Pis the largest set of states where the execution
of S terminates with ¢ holding, The definition follows [18].
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walls and ends), as things to be avoided (independently
moving objects and obstacles), or as things to be “inter-
cepted” (litter). (Sisyphus does not actually attempt to
avoid independently moving objects, since this would re-
quire real-time motion control capabilities; instead, it sim-
ply “freezes” when such an object is detected. This behav-
ior will result in avoidance, if we assume that the moving
object will itself try to avoid Sisyphus.) A more detailed
description of Sisyphus can be found in [14].

The functional classification of objects as things to be
intercepted, avoided, or used as references appears to
be adequate for an agent that navigates effortlessly in
a simple environment and does not dynamically interact
with objects. If we consider the dynamical aspects of
navigation, or if the environment is more complex, these
three classes of functionalities no longer constitute an
adequate list. For example, in the case of a “real”
navigating vehicle in a corridor we would need to be
concerned with the vehicle’s drive mechanism and how
it interacts with the floor (which might have slippery
spots or irregularities). Vehicles that have more versatile
capabilities of locomotion can interact with the surfaces
that they move on in a variety of ways (e.g., climbing),
and they may also use other objects as aids to locomotion
(e.g., a ladder, a bridge, . . .). We have also used a
highly simplified classification of objects, primarily on
the basis of their sizes and ‘“dimensions’”; we have not
considered mechanical properties such as rigidity or mov-
ability, which would be very relevant to their roles as
potential obstacles (e.g., consider a cloud of dust, a
clump of tall grass, . . .). In general, objects can be
classified, from a navigational standpeint, in terms of
how they impede (or facilitate) the motion of an agent
that has given locomotive capabilities. We are formulating
a general theoretical framework for navigation tasks
which will be described in a future paper.
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