
432 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 17, NO. 3, AUGUST 2004

Image-Based Wafer Navigation
Michael Lifshits, Roman Goldenberg, Ehud Rivlin, Michael Rudzsky, and Mike Adel

Abstract—Microscopic imaging is used in most core technology
processes where integrated circuit (IC) digital images reveal im-
portant information. We present a new method for navigation on
wafers that is based on localization of microscopic eye-point im-
ages using a previously acquired wafer map. It is fast enough for
in-line microscopy and robust to visual changes occurring during
the manufacturing process, such as contrast variation, rescaling,
rotation, and partial feature obliteration. The method uses geo-
metric hashing, a highly efficient technique drawn from the object
recognition field. This approach proved to be highly reliable when
tested on typical wafer images.

Index Terms—Geometric hashing, image-based navigation,
image matching, integrated circuits manufacture, integrated
circuits measurements, navigation, pattern matching.

I. INTRODUCTION

METROLOGY and inspection play an ever more critical
role in process control of semiconductor manufac-

turing. Broadly speaking, these applications may be broken
down into defect detection, classification and review, and crit-
ical dimension (CD) and overlay metrology [1]. Both e-beam
and optical methods rely on optical imaging-based wafer
navigation solutions. High wafer throughput is an important
requirement for metrology and inspection systems due to the
high value and enormous quantity of wafers being manufac-
tured. Usually, imaging is the first, but can also be the only
step in the “see–measure–control” sequence in semiconductor
manufacturing. Therefore, the need for rapid nondestructive
imaging-based techniques is growing [2], [3]. According to
the ITRS [4], there is also a clear requirement for a paradigm
shift in the role of metrology from off-line sampling to in-line
control, as real-time integrated metrology is essential for man-
ufacturing complicated devices.

Development of innovative metrology methods, designed
to give faster and more detailed and useful information
which would help establish more automated process control,
is required. Various types of semiconductor manufacturing
equipment call for rapid and precise wafer positioning so that
operations such as lithography, cutting, and inspection can be
performed to extremely tight tolerances. For example, the speed
and accuracy of wafer scanners, optomechanical machines that

Manuscript received March 3, 2003; revised June 20, 2004. This work was
conducted as part of the Wafer Fab Cluster Management (WFCM) Consortium
supported by the Chief Scientist Office, Israeli Ministry of Industry and Trade,
under the “MAGNET” program.

M. Lifshits, R. Goldenberg, E. Rivlin, and M. Rudzsky are with the Com-
puter Science Department, Technion, Haifa 3200, Israel (e-mail: protezhe@
cs.technion.ac.il; romang@cs.technion.ac.il; ehudr@cs.technion.ac.il;
rudzsky@cs.technion.ac.il).

M. Adel is with the Optical Metrology Division, KLA-Tencor, Migdal
Haemek 23100, Israel (mike.adel@kla-tencor.com).

Digital Object Identifier 10.1109/TSM.2004.831939

perform the exposure part of the photolithography, are largely
determined by the performance of a wafer stage, the part of
the wafer scanner that positions a wafer under the lens system.
In this paper, we refer to the act of directing a tool from one
point on the wafer to another as “navigation on the wafer.”
The problem of navigation while maintaining the exact wafer
coordinates on the stage is essential to achieve increased yield,
improved quality, and consequently, reduced manufacturing
cost.

Let us consider a metrology/inspection application as an ex-
ample of navigation on the wafer. The required measurement
or inspection is to be performed on specific features printed at
known positions on a wafer. In order to perform a metrology or
inspection step one must first arrive at that feature. Without feed-
back, the stage cannot identify whether it has arrived at the exact
location and, therefore, may miss the feature due to less than
ideal environmental conditions such as vibrations, which con-
tribute to stage inaccuracies. Moreover, if multiple movements
are made, position errors will continue to accumulate. Modern
metrology and inspection applications require highly accurate
positioning of the feature to be measured in the field of view of
the tool. Thus, dead reckoning is not sufficient for wafer navi-
gation, and sensory feedback is required.

Current metrology techniques commonly adopt the fol-
lowing solution. An additional large and easier to track
feature is selected as an “acquisition target” near the desired
metrology/inspection feature. First, the nearby area is searched
for the acquisition target using a low magnification level; then,
the location of the feature to be measured/inspected is detected
by knowing its relative position. The measurement or inspec-
tion is performed using the highest magnification available.
This process is time consuming and nonrobust as the correla-
tion-based matching techniques used for pattern localization
are highly sensitive to possible changes in the visual appearance
of the feature. Such changes occur during the manufacturing
process and may include nonlinear contrast variation, color
inversion, rescaling, rotations, and partial feature obliteration
[5]. In this paper, we propose a different solution for wafer
navigation, which is fast enough for in-line microscopy and
robust to in-process variations. The same methodology can be
used to identify known defects and perform many other tasks
essential for semiconductor manufacturing.

Furthermore, one of the most time-consuming tasks associ-
ated with automated metrology and inspection applications is
recipe setup. For an operator to “train” the tool during the recipe
setup process to identify the acquisition features and record their
relative location to the features under test traditionally requires
the placement of a product wafer on the stage of the tool. An at-
tractive alternative to this procedure under consideration today
is the option of “waferless” recipe setup which relies on the
availability of acquisition and test feature location information

0894-6507/04$20.00 © 2004 IEEE



LIFSHITS et al.: IMAGE-BASED WAFER NAVIGATION 433

Fig. 1. Example of the real eye point within a wafer map.

from reticle layout data, eliminating the need for the wafer/oper-
ator interaction during the train step. This is of particular value
in “high-mix” manufacturing environments such as semicon-
ductor foundries where a large proportion of operator and tool
time is expended on the recipe setup process. The wafer nav-
igation methodology disclosed in this publication may readily
lend itself to enhancing the “waferless” setup option as will be
described.

Our algorithm uses advanced image processing techniques
and geometric hashing [6]–[10], a known object recognition
scheme, to perform image-based navigation on the wafer. As in
the object recognition framework, image-based navigation aims
to recognize the image at a current location or, in other words, to
find a match in a set of images known in advance. Rapid and pre-
cise matching is achieved by finding a correspondence between
geometric features extracted from the images. The algorithm ex-
hibits high tolerance to run-time process variations as it is scale,
rotation, and translation invariant. Moreover, the geometric na-
ture of the features used by the algorithm makes it insensible to
illumination changes, which is essential for wafer navigation.

The paper is organized as follows: Section II describes the
navigation problem as an object recognition task. In Section III,
our basic approach for wafer navigation is presented and an
important enhancement to the basic algorithm is discussed.
Section IV concentrates on various options available for
feature selection and their influence on navigational system
performance. Robust and efficient verification is described in
Section V. Experimental results obtained using a wafer navi-
gation system based on the proposed algorithm are presented
and analyzed in Section VI. In the same section, we provide a
systematic evaluation of the overall system performance and
accuracy. Section VII is devoted to conclusions and future work
directions.

II. NAVIGATION PROBLEM AS AN OBJECT RECOGNITION TASK

Object recognition is a known problem in the computer vi-
sion field. Recognition is achieved by finding the correspon-
dence between a given object and a set of predefined objects. In
the model-based object recognition approach, the descriptions
of previously known objects are prepared in terms of various
properties, such as shape, color, etc. These descriptions are re-
ferred to as “models.” A given query object is then matched to
one of these models.

We refer to a partial image of the wafer (e.g., the current
field of view of the microscope imaging system) as the wafer

Fig. 2. Wafer map constructed by the combination of many adjacent partial
wafer images.

“eye point.” Positioning on the wafer is defined in the following
manner: given an eye point of the wafer, determine its exact
coordinates on the wafer map. Thus, the process of wafer
navigation can be carried out by repetitive vision-based posi-
tioning. Accordingly, map-based navigation can be interpreted
as model-based object recognition as follows. Suppose that we
already have a description of the wafer structure—a wafer map
(the process of its construction will be explained in the next
section). The wafer map can be divided into many adjacent
parts to be identified during navigation. These correspond to
a model set in the object recognition framework and the eye
point plays the role of a query object. Matching the current eye
point to one of the previously constructed parts of the wafer
map during navigation is essentially the same as associating a
query object to one of the known models in object recognition.
An example of the wafer eye point and corresponding part of
the wafer map is shown in Fig. 1(a).

Various approaches have been applied to vision-based local-
ization. For an extensive survey on the developments in this area,
we refer the reader to [11]. In our case, in order to handle the
enormous amounts of geometric structures contained in wafer
images, we choose to address the positioning problem using
a highly efficient technique from the object recognition field
called geometric hashing [6]–[10]. Matching between a cur-
rent eye point and the wafer map is achieved by spatial corre-
spondence of geometric features extracted from the images. The
technique successfully deals with various visual transformations
observable in semiconductor manufacturing such as two-dimen-
sional (2-D) rotations, translations, and uniform scale.

III. NAVIGATION ALGORITHM

A. Constructing a Wafer “Model’s” Database for Navigation

Before one can begin navigation on the wafer, he or she must
construct the wafer map. This can be performed in two different
ways (for an example of a wafer map, see Fig. 2).



434 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 17, NO. 3, AUGUST 2004

Fig. 3. Every four adjacent small tiles/models are merged into a single
four-times-larger model. For example, the first model (marked with small
circles) consists of tiles 1, 2, 5, and 6, the second model (marked with angled
straight lines) consists of tiles 2, 3, 6, and 7, and so on. Note that tiles 5 and 6
will be part of the 5, 6, 9, and 10 larger model.

1) From the combination of multiple partial images of the
wafer lying near each other: In this case, small adjacent wafer
images are first obtained and then integrated into one big map.
Small images are captured by a microscope imaging system
moving above the wafer surface according to some grid struc-
ture. The process is similar to tiling the whole map with small
square tiles (images).
2) From a wafer layout: Every wafer is first designed and

thus has a corresponding layout file describing the 2-D shapes
on the different layers of a chip by a limited set of graphics
primitives. One has to parse this file and build the wafer map
based on the primitives in it. We used the Caltech intermediate
layout file format (CIF).

This resembles the approach of optical die-to-die and
die-to-database comparisons with the reference frame. After
a large scale wafer map is constructed, it is decomposed into
many models, which will be recognized during navigation. The
process is similar to separating a mosaic back into its single
tiles. The resulting models are formed by small images, which
may be similar to the ones used to build the wafer map. As
a final step of the preprocessing, the representations of each
model (or small partial image) are inserted into a database.
When analyzing a current eye point during navigation, the
database is searched for the most suitable model among all the
precompiled ones. The map coordinates of the matched model
are well known.

In order to assure that any selected eye point will fall en-
tirely into one tile/model, we replace every four original adja-
cent small tiles with a single four-times-larger one and use it in-
stead (see Fig. 3). As soon as the large model containing the eye
point is detected, the navigation task can be completed easily
using a local search. Needless to say, this modification uses re-
dundant information, as almost all of the original small models
are contained in the new four larger ones (see Fig. 3). This does
not, however, increase the number of models.

Fig. 4. Determining the hash table entries when points 2 and 5 define a basis.
Models are allowed to be rotated, translated, and scaled.

B. Navigation Algorithm

Our algorithm uses geometric hashing, introduced by
Lamdan and Wolfson [12], which is based on the indexing ap-
proach described in [13]. The algorithm solves the problem of
navigation by applying object recognition in the following way.
We assume a set of predefined geometric models ,
defining a wafer map, and a query eye-point image , formed
from one of the models. The task is to find the corresponding
model given the query eye-point .

It is assumed that the models are defined by a set of geo-
metric features (e.g., corner points) and that the same features
can be extracted from the query eye-point image. A model can
undergo similarity transformations to form the eye point: it can
be rotated, translated, and uniformly scaled. One way to make
feature points invariant under this class of transformations is to
represent them in the coordinate frame formed from the points
themselves. For example, we may arbitrarily choose an ordered
pair of model points to form a basis and describe the rest of the
features in this coordinate frame. As there are multiple ways to
choose a basis, we are faced with a combinatorial problem of
finding the right one to match a model to the eye point.

The algorithm copes with this problem by shifting the com-
putational burden to the off-line learning stage. Instead of going
over all feasible eye point/model bases couples and trying to
match them, all possible model representations are prepared in
advance and stored in a hash table for efficient access. Thus, a
query eye point projected onto an arbitrarily chosen basis has a
matching model representation already stored in the hash table.

Let be the feature points of the eye-point
and be the corresponding feature
points of the matching model stored in the hash table. Let us
denote the transformation model to form the eye point by T;
then, , or for . Consider an
ordered points pair of . A vector with
another vector rotated by 90 form the basis of a 2-D coordinate
frame. The coordinates of any other point for

, in this frame agree with

where we denote an end point of the rotated vector
by . These coordinates will remain unchanged

when any linear transformation is applied to the model points.



LIFSHITS et al.: IMAGE-BASED WAFER NAVIGATION 435

Fig. 5. Outline of the navigation process. Wafer map that is constructed from 40 model images is shown on the top. Voting results for the eye point shown in the
middle are plotted on the left. Enlarged image of the winning model (25) with its feature points marked with black dots is presented on the right.

Application of a linear transformation on the model trans-
forms the point to

so the point has the same coordinates in the frame
formed by the ordered basis pair . Thus, we further
refer to coordinates as invariant coordinates.

Assuming that the model contains feature points,
there are different bases for that model. To form a
transformation-invariant model representation, the invariant
coordinates are computed using each one of these
bases for every other model point. The
corresponding entry is stored in the hash table with
index . For example, consider the left side of Fig. 4. An
invariant representation of a chair model comprising five dots
is inserted into the database. An eye point containing the chair
was rotated and scaled (in Fig. 4, middle). During navigation,
when a pair of dots , is used as the basis of a reference
frame in the eye point (Fig. 4, right side), the entry (“Chair,”

) is repeatedly addressed in the hash table at indexes
, corresponding to the invariant coordinates of all the

other points. As a result, this entry gets a sufficient number of
votes and the eye point is correctly matched to the model of the
chair.

Wafer navigation involves two stages: the off-line prepro-
cessing stage, when most of the time-consuming work to
compute the invariant model representations is done, and the
fast on-line navigation stage, which uses the data prepared by
the first stage to perform the matching and navigation. The
efficiency of the second stage determines the actual navigation
time. We now provide detailed description of the stages.

1) Preprocessing Stage
In the preprocessing stage, all models are processed indi-

vidually, while their transformation-invariant representations
are constructed and stored in a hash look-up table. For each

model and for every feasible basis (composed of ordered
features pair), it is necessary:

a) to compute the invariant coordinates of all the re-
maining feature points in terms of the basis ;

b) to use the computed coordinates as an index to the hash
table and to store an entry ( ; ).

The complexity of this stage is per model, where
is the number of points contained in the model. However,
since this stage is executed off-line, its complexity is of little
significance.
2) Navigation Stage

In the navigation stage, the invariant coordinates are com-
puted from the eye-point features and are used as indexing
keys to access the hash table and vote for the possible model
matches. The model that scores the highest number of votes
indicates the correspondence of the current eye point with that
model. An example of a typical navigation process is pre-
sented in Fig. 5. Given an eye point with feature points,
the following steps are performed.

a) Choose a feasible pair of feature points as a basis .
b) Compute the invariant coordinates of all the remaining

feature points in terms of this basis .
c) Use each computed invariant coordinate to index into

the hash table and vote for all s retrieved from
this bin.

d) Build a histogram for all s according to the
number of received votes.

e) Establish a hypothesis of correspondence between an
eye point and an instance of model if , for
some , peaks in the histogram with a sufficient number
of votes.

f) Verify all the hypotheses established in Step e)and re-
peat from Step a) if all of them fail verification.

The complexity of this stage is per probe, where
is the number of points contained in the eye point and



436 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 17, NO. 3, AUGUST 2004

Fig. 6. Decomposition of the wafer map using a quadtree.

is the complexity of verifying one model. Note that the
complexity is independent of the number of models stored
in the system, thereby allowing fast navigation even on very
large-scale maps.

C. Performance Enhancement Using a Quadtree

Unlike absolute localization on the wafer, in the incremental
localization discussed here, the initial position is assumed to be
approximately known at the beginning of the navigation session.
The goal is to refine the eye-point position estimation. Thus, it
is possible to search for the eye point only in a relatively small
“expectation region” on the wafer map, based on the known ini-
tial location. One can observe that in the case of wafer naviga-
tion the set of models is actually formed from the neighboring
wafer image tiles. This allows us to refine the basic algorithm
to utilize prior knowledge about the approximate eye-point po-
sition. The quadtree data structure can be used to reduce the
number of models being examined by searching the hash table
for models within the “expectation region” only. A quadtree is a
spatial tree data structure that encodes an image hierarchically;
see Fig. 6. Each node of the tree has up to four children. The
root node represents the entire image; its children represent the
four quadrants of the entire image, and their children represent
the 16 subquadrants, etc.

The basic algorithm implementation uses a 2-D hash table,
whose bins are accessed according to the computed invariant
coordinates. Multiple entries within a single bin are organized
in a linked list and retrieved altogether when the corresponding
bin is accessed. The proposed enhancement replaces the linked
list with a quadtree at each bin in the hash table. These trees cor-
respond to the space partitioning of the global wafer map (see
an illustration in Fig. 7). In this way, it is possible to access only
the relevant part of each tree during voting and, thus, exclusively
account for models from the “expectation region.” To put it dif-
ferently, the quadtree allows us to select any partial wafer area
to be searched for the query eye point.

This approach improves the performance of the algorithm by
reducing both the navigation time and the false matches. The
approach addresses one of the undesirable effects of the pro-
posed navigation method, which is a high population of certain
areas of the hash table due to nonuniform distribution of coor-
dinates in the invariant space. This effect results in an increased
number of models getting many votes. This, in turn, makes it
necessary to increase the number of candidates retained after
the voting stage for verification, in order to get high reliability.
Practically speaking, the quadtree approach reduces the number

Fig. 7. Multiple entries within single bin are organized in a quadtree after the
enhancement, as opposed to a traditional linked list organization. This allows us
to access only the relevant part of each tree and not necessarily vote for all the
entries stored in the corresponding bin when it is accessed. For example, if one
is certain that the query eye point is located in the bottom left corner of the wafer
map (the area marked by grey shading), it is possible to follow the corresponding
path in the quadtree and to vote only for the relevant entries (colored light grey).

of irrelevant entries accessed in the hash table without actually
removing any contained data.

IV. FEATURES SELECTION

The extraction of image features is one of the critical parts of
the navigation algorithm. Extracted features are used to form in-
variant models’ descriptions during the preprocessing stage and
to determine which entries get votes during on-line navigation.
Various properties of the extracted features play an important
role in the navigation system performance. Here, we concen-
trate on the major ones: quantity and consistency.

System storage requirements may become a major issue as
the number of features increases, since a model with fea-
tures produces records in the hash table. For instance, a
system with 1000 models, each having 200 features, reaches

records. A large number of hash table
records significantly degrades navigation performance. Voting
within highly populated hash table bins is time consuming. Fur-
thermore, it can result in many wrong models receiving votes.
On the other hand, too few features make matching unreliable.

In general, there are actual differences between the database
model and the query eye-point images due to in-process mate-
rial variations. Consequently, a fraction of the eye-point features
will not match the features extracted from the model during the
preprocessing stage. We denote these unmatched eye-point fea-
tures as inconsistent features (outliers). These inconsistent fea-
tures do not contribute votes to the correct model and by doing
so reduce the ability of the system to successfully match the eye
point to the reference model. Moreover, if any outlier is used to
form a basis for voting during navigation, there is a good chance



LIFSHITS et al.: IMAGE-BASED WAFER NAVIGATION 437

Fig. 8. 447 corners that were detected by the Harris corner detector in the
sample model image.

that the algorithm will fail and point to an incorrect eye-point lo-
cation on the wafer map.

A. Selecting the Right Feature

Generally, as the complexity of the features increases, the
number of features making up the models decreases, since an
object can be described by a few complex parts or by many
simple parts [14]. Thus, feature quantity is largely determined
by complexity. When selecting the right type of features one has
to take into account the following general ideas. Using simple
features (e.g., corners) results in large amounts of hash table
records. These features represent a more ambiguous interpre-
tation of the model data (e.g., a few corners in the eye point
may correspond to many corner triplets in many models); there-
fore, matching is similar to accumulating a lot of insignificant
evidence for the presence of the correct model. On the other
hand, utilizing more complex features (e.g., contour groupings
or “virtual” polygons with vertices corresponding to simple fea-
ture points) results in fewer records stored in the hash table.
These features have much more discriminative power, since a
very special polygon is not likely to be present in many different
models. Matching can be based on a very few such primitives,
because each provides significant evidence for the presence of
the correct model. However, reliable recovery of complex fea-
tures is a difficult problem, particularly in the presence of noise
and obliteration [14].

We adopted the above approach when selecting features to be
used in our algorithm. In order to achieve fast and reliable nav-
igation one would like to work with a moderate number (due
to their medium complexity) of sufficiently consistent features.
Adapting geometry-based features makes the navigation algo-
rithm invariant to intensity changes. Typical wafer images con-
tain rectangular structures; therefore, the objects being of partic-
ular concern are corners, straight line segments, and rectangles.

We used a Harris detector [15] to find corner features. As ex-
pected, using such simple features results in a high number of
entries being stored in the hash table. Typical model images with
which we worked contained more than 200 corners (see, for ex-
ample, Fig. 8), reaching practically unmanageable numbers of

Fig. 9. Schematic representation of rectangular features detected in the model
image and the query eye point (marked with a bold black line). Note that
rectangles that are partially contained in the eye-point image (marked with
light grey) cannot be taken into account during voting.

hash table records. Storing such a huge amount of information
negatively affects the performance of the navigation system, as
it slows down the voting stage and gives rise to false matches.
This undesirable effect can be reduced by grouping corners into
an integrated feature, e.g., a rectangle. A rectangle’s complexity
is much higher than corners; consequently, they produce a man-
ageable number of hash table records. Furthermore, rectangles
are less likely to be found at random. We experimented on the
wafer images with a typical eye point containing too few rect-
angles to produce reliable voting (see Fig. 9).

The following feature type allows us to take advantage of
the higher reliability of rectangular features while maintaining
enough hash table entries to make voting reliable. We chose,
as features, distinct corners found with the Harris corner de-
tector, which coincided with corners of detected rectangles. In
this manner, we can account for all the rectangle corners con-
tained within the eye point in Fig. 9.

In order to demonstrate the properties of different types of
extracted features and give some basis for comparison between
them, we performed the following test: we constructed a map
from 70 models; then, for each model, ten different eye points
were selected. Three types of features were extracted from all
of the eye points: corners found with the Harris corner detector,
distinct corners found with the Harris corner detector that co-
incided with the corners of detected rectangles, and rectangles.
The average quantity of the different feature types are presented
in Fig. 10(a). The interplay between quantity and complexity of
features, which is schematically shown in Fig. 10(b), is consis-
tent with the obtained test results. There are too few rectangles,
as they are a relatively complex feature. The number of corners
found with the Harris corner detector is, on the other hand, very
high, since corners are much more simple features. Harris cor-
ners corresponding to rectangular ones are found in the desired
moderate quantity and provide sufficient consistency.

V. VERIFICATION

The second stage of the navigation algorithm is verification.
Given a set of candidate models that accumulated the highest
number of votes, one has to determine which is the best match
to the query eye point. For this purpose, it is essential to specify
how to fit the candidate models to the eye point.



438 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 17, NO. 3, AUGUST 2004

Fig. 10. Quantity of different types of features contained in typical eye
points, which is randomly produced from 70 different models. Corners were
found with the Harris corner detector. R Corners stand for distinct corners
found with the Harris corner detector, which coincide with corners of detected
rectangles. Total number of features within the eye point as well as the
number of consistent features are shown by light grey and dark vertical bars,
respectively, in the left subfigure. Interplay between quantity and complexity
of features is schematically shown in the right subfigure: (a) average quantity
and (b) quantity and complexity interplay.

A. Approximating the Best Solution

To form the eye point, the models undergo similarity trans-
formation, which is a composition of translation, rotation, and
isotropic scaling. Thus, fitting a model to an eye point should be
done by a similarity transformation estimation. The eye point is
characterized in terms of a feature points set in , and
each of the candidate matching models is described by its fea-
ture points , where is a projective space. First, it is essen-
tial to find all point correspondences to compute a sim-
ilarity transformation , which transforms a model to the eye
point: for each . Two correspondences are enough
to fully constrain , as the total number of degrees of freedom
for similarity is four (one for the rotation, two for the transla-
tion, and one more for scaling), and every correspondence gives
rise to two independent equations in the entries of . How-
ever, since the locations of points in the query eye point are not
exact (due to noise), all of the correspondences should be used
to determine the “best” transformation, given the data. Accord-
ingly, is calculated by finding the least squares solution of
the overdetermined linear system.

B. Robust and Efficient Detection of a Maximum Point
Correspondences Set

An important issue is how to efficiently find all of the cor-
respondences. The navigation voting stage provides one corre-
sponding basis (two point-to-point correspondences) between
the candidate model and the eye point. This allows us to ap-
proximate the desired transformation by and then, after
applying on the candidate model, every model point
will correspond to the closest eye-point feature . Formally

(1)

where subindex indicates any eye-point feature and is
the Euclidian distance between two points and .

Thus, to compute all of the point correspondences it is pos-
sible to check the distance of each point to every transformed

Fig. 11. Process of constructing the Voronoi tessellation of the eye point for
verification acceleration: (a) eye-point feature, (b) Voronoi tessellation, and
(c) Voronoi diagram points.

model point . If the model contains points and the eye
point contains points, those interset distances are computed
in time.

This computation can be accelerated by employing a Voronoi
tessellation [16] for segmentation of the eye point image.
Voronoi tessellation is partitioning of a plane with points into

convex polygons such that each polygon contains exactly one
point and every point in a given polygon is closer to its central
point than to any other.

We start the verification by constructing the Voronoi tessel-
lation from the points in the query eye point, which is done
in time [16] (see Fig. 11). This allows us to find
the corresponding point of in by checking what
polygon within the Voronoi tessellation contains the trans-
formed point and choosing its center point. It follows
that the time needed for point correspondences calculation is
reduced from to .

In practice, the situation is complicated by the fact that some
eye-point feature might be mistakenly reported and will not
match any model point. The mismatched points, outliers, can
severely disturb the estimated transformation and, consequently,
should be identified. In order to make the verification robust
to outliers, one has to obtain a big enough set of inliers from
the presented correspondences so that the transformation can be
re-estimated in an optimal manner (solving the overdetermined
linear system as previously explained).

For this propose, a general robust estimator, the RANSAC al-
gorithm [17], is used. It is able to cope with a large proportion
of outliers and has the important property of reporting an ex-
plicit number of inliers, which is important to intuitively reject
false positive candidates. Given an initial putative set of cor-
respondences , computed from the model to the eye-
point primary basis correspondence, the algorithm performs the
following steps. A sample of two corresponding points is ran-
domly selected and the appropriate approximation of the trans-
formation is calculated. Then, the number of inliers consis-
tent with is computed in terms of correspondences for which

, where . These steps are repeated sev-
eral times and the with the largest number of inliers is chosen
(in case of a tie the solution having the minimal standard devi-
ation of inliers is chosen). We would like to choose a threshold

such that with a probability the point is an inlier. It is as-
sumed that the position error is Gaussian with zero mean and
standard deviation . Thus, the square of the point distance

is the sum of the squared Gaussian variables and follows a
chi-squared distribution with two degrees of freedom (as
is the sum of squared and measurement errors). The cumu-
lative chi-squared distribution represents the probability



LIFSHITS et al.: IMAGE-BASED WAFER NAVIGATION 439

TABLE I
VALUES OF DISTANCE THRESHOLD t FOR WHICH THE PROBABILITY

THAT THE POINT IS AN INLIER EQUALS �

that the value of the random variable is less than . Hence,
to guarantee with probability that the point is an inlier, one has
to choose a distance threshold . Some values of

associated with different levels of certainty that the point is an
inlier are tabulated in Table I. For example, if one wants to make
sure that an inlier is incorrectly rejected only 5% of the time, he
or she will choose as 0.95 and accordingly .

VI. EXPERIMENTS

This section presents a number of experiments demonstrating
both quantitative and qualitative aspects of the proposed naviga-
tion algorithm. The benefits gained from exploiting the quadtree
enhancement, described in Section III-C, are also presented.
We performed tests on both synthetic and real data sets. Syn-
thetic images were chosen for their ability to isolate the indexing
mechanism from other issues involved in navigation, such as
feature extraction.

A. Test Data Sets

To create data sets we constructed two database model col-
lections (wafer maps). The first, a synthetic map, consists of 30
synthetic models with different polygonal objects. Every syn-
thetic model has 12–16 corner features. Examples of the models
and the whole synthetic map are shown in Fig. 12 and Fig. 13.
The second real wafer map covers an area of 4.5 9 mm on the
wafer surface. It was constructed from real wafer images ob-
tained on KLA-Tencor 5200XP overlay metrology tool using a
750- m field of view. Examples of the images and part of the
whole wafer map are shown in Figs. 14 and 15.

B. Performance Fine-Tuning Experiments

The main performance criterion for our navigation algorithm
as well as for any indexing scheme is whether the correct model
gets significantly more votes than others. If it does not, sequen-
tial comparison with a large number of the database models
is required during the verification stage, making the indexing
scheme insignificant and unnecessary. Consequently, if all the
models are stored in a candidate list sorted by the number of re-
ceived votes, one of the best criteria for algorithm performance
is how close the true model is to the top of the candidates list.
Since ground truth is available, it is possible to analyze indexing
efficiency even if subsequent verification fails.

In the following, we present a number of tests exploring dif-
ferent aspects of our navigation system while the main criteria
for algorithm performance is how close the true model is to the
top of the candidates list.

1) Discrimination Power Test: This test explores the depen-
dance of the algorithm’s discrimination power on the number of
features in the query eye point. We varied the number of features
in the query eye point that was arbitrarily chosen from the wafer

Fig. 12. Examples of the synthetic model images, each containing 12–16
corners features.

Fig. 13. Synthetic map constructed from 30 model images.

Fig. 14. Examples of the real wafer images used as models in the algorithm.

Fig. 15. Part of a real wafer map constructed from 72 images, some of which
are shown in Fig. 14.

map and for each number performed a set of 100 iterations. At
each iteration we analyzed the distribution of votes among all
models and registered the position of the correct model within
the candidates list. Results are shown in Fig. 16(a). It can be
seen that the algorithm is very discriminative when the number
of features is not small (more than eight) and the position of the
true model is very close to the top of the candidates list. An in-
creasing features number further improves the results as each
additional feature point provides supplemental evidence for the
presence of the correct model. There is a substantial reduction
in the number of models to verify, as, on the average, the correct
model/basis got into the 30 most voted-for models, which is less
than 1% of all possible model/bases combinations.

2) Discrimination Power Test With Quadtree Enhancement:
This test investigates algorithm performance improvement



440 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 17, NO. 3, AUGUST 2004

Fig. 16. Discrimination power test. Average position of the correct model in the candidates list is plotted against the number of features in the eye point: (a) basic
algorithm and (b) using quadtree enhancement.

when employing the quadtree approach described in Sec-
tion III-C. In Fig. 16(b), the results of the same test as before
are shown, while using a quadtree with depth two for efficient
access to the hash table entries (quadtree implementation is
taken from [18]). The discrimination power of the algorithm is
improved by a factor of four as expected, since only one-fourth
of the models actually participate in navigation. It can be seen
that the position of the true model in the candidates list is four
times closer to the top.

3) Quality of Bases Test: Given an eye point, the first step
of the navigation algorithm is to select a basis in order to create
an eye-point invariant representation. The choice of two points,
used to form a basis, greatly influences the algorithm’s per-
formance. This phenomenon is discussed in [19]–[21], among
others. For example, a large separation of the basis points re-
sults in an invariant model description that is less sensitive to
noise; i.e., the computed invariant coordinates will have smaller
noise-induced inaccuracy. Optimally, to form a good basis with
good selectivity power, one should select a pair of points max-
imally separated from each other and so that all the remaining
points would be located close to the center of the formed coor-
dinate frame.

We performed the following test, this time using both syn-
thetic and real wafer images, to demonstrate the influence of
basis selection on the performance of the algorithm. At each it-
eration, a random eye point from the wafer map was selected
and navigation with two different bases was performed. While
the first basis was randomly selected as before, the second was
selected according to the following measure, which is based on
[20]

(2)

for the basis points of model where and are the
coordinates of the third point in the coordinate frame defined
by this basis.

In Fig. 17, the average position of the correct model in the
candidates list is plotted against the normalized quality of the
selected basis. It can be seen that (2) is a good measure for bases
quality, as highly ranked bases produced a very high-vote count
for the correct model; consequently, that model was set at the
top of the candidates list.

Fig. 17. Quality of bases test. Solid line corresponds to bases where the points
were randomly selected. Results for bases having the best quality are shown
with the dashed-dotted line.

C. Overall System Test

This test demonstrates the capabilities of the proposed navi-
gation algorithm and provides a systematic evaluation of its per-
formance. During voting, an eye-point invariant description is
calculated and used to index the hash table and vote for all the
accessed entries. The description is based on a pair of features,
which form a basis, as explained in Section III. In many prac-
tical situations, there is a good chance that one of the points used
to form a basis will be reported by mistake and hence not match
any model point. Therefore, one should make multiple attempts
using different bases (e.g., different descriptions) to ensure with
sufficiently high probability that at least one of them is free of
outliers. We evaluated the navigation algorithm performance by
varying the number of different eye-point feature bases being
used in voting.

We tested the algorithm on a total of 10 different navigation
tasks to obtain a statistically meaningful measure of its perfor-
mance. Each time we selected a random eye point and then, if
the correct location on the wafer “map” was reported by the al-
gorithm (ground truth was available due to the nature of data set
formation), the result was considered to be true positive (TP). In
case of an incorrect location or if no location was found (simply
because none of the database models got enough votes), the re-
sult was regarded as a false positive (FP) or miss, accordingly.



LIFSHITS et al.: IMAGE-BASED WAFER NAVIGATION 441

Fig. 18. System behavior with a different number of bases used in voting.

The summary of the obtained results is presented in Fig. 18.
The hit rate reaches 95% with a 4% false
alarm rate and a 1% miss rate when four bases are used. A
100% HR is not achieved as the constructed map contains areas
difficult for navigation, that is, areas having no distinguishable
features or filled with repetitive geometric structures. Note that
even a human would have serious difficulties in solving the task
of self-localization for “degenerate” eye points selected from
these unfavorable areas. Generally, we found that the algorithm
performed well for eye points from most of the wafer areas.

D. Accuracy Estimation

The inaccuracy of the navigation result may be formulated
as follows. Assuming the eye-point features are measured with
a Gaussian error of standard deviation , it can be shown that
[22]:

the root mean square (RMS) estimation error (distance
of the estimated point location from its true value) is

and the root mean square (RMS) residual error (distance
of the measured from the estimated value) is

where is number of correspondences used.
The graph of these errors is shown in Fig. 19. Note that for

50 sample points the estimation error is 0.2 pixels. Thus, if an
eye-point image of size 200 200 pixels is taken at resolu-
tion of 50 m, our algorithm provides navigational accuracy of
0.05 m.

E. Testing the Algorithm Robustness to Image Change

The aim of this test is to provide the experimental analysis
of the algorithm behavior when the wafer images are distorted
(e.g., due to possible process variations). Creating a full and sta-
tistically meaningful model of the algorithm’s performance in
the presence of various process variations is beyond the scope
of this work. Therefore, we analyzed a number of extremely dis-
torted wafer images in order to develop a procedure which sys-
tematically distorts “clean” wafer images to simulate possible

Fig. 19. Error in pixels when the number of sample points used to estimate
the transformation varies and the measurement error level is assumed to be one
pixel.

visual changes. We tested our algorithm on these systematically
distorted images.

We concentrated on the factors having the most negative ef-
fect on the navigation performance: gray scale intensity changes
and image rotations. We transformed the original image inten-
sity according to a scheme that uses cubic spline interpolation of
specially placed points to create five intensity remapping func-
tions. Note that such a simulation accounts for possible local dy-
namic range variations, since these result from the nonlinearity
of the underlying remapping functions. Color inversion was also
simulated by a function produced with collinear points, linearly
remapping the brightest intensity to darkest. This ad hoc sim-
ulation does not model all relevant intensity changes but pro-
duces images coherent with a number of real-world examples
that we analyzed. We also rotated the images up to 8 . The av-
erage results of navigation performed on randomly chosen and
systematically distorted eye-point images are shown in Figs. 20
and 21 along with some examples of these images. The navi-
gation results were interpreted as in the overall system test (see
Section VI-C). Note that in both cases the HR (the rate of cor-
rectly matching the eye point) does not drop below 0.8 even for
severely distorted eye-point images.

VII. CONCLUSION

We presented a new method for navigation on wafers, based
on the geometric hashing technique. The method is invariant
to changes in visual appearance, such as nonlinear contrast
variation, scale, rotation, and partial obliteration. A quadtree
enhancement of the basic geometric hashing algorithm was
proposed, improving its computational performance by al-
lowing efficient access to the hash table entries. We showed that
combing basic feature types leads to consistent features in a
desired moderate quantity. We also showed how verification can
be significantly accelerated by applying a Voronoi tessellation
of the eye point. Extensive experimental analysis demonstrates
the high reliability of the proposed method.

The same principles can be used to identify known defects
(by efficiently searching a defects database) and to perform
many other tasks essential for semiconductor manufacturing. In
the future, we plan to implement a distributed system in order



442 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 17, NO. 3, AUGUST 2004

Fig. 20. Average navigation results performed on systematically distorted images simulating real-world intensity changes. Images under the graph are the examples
corresponding to intensity changes 1–5, respectively. Note that the peak corresponds to the intensity change that linearly inverts colors (bright turns into dark and
vice versa).

Fig. 21. Average navigation results performed on systematically distorted images simulating real-world rotations. Images under the graph are the examples
corresponding to rotations by 0–8 , respectively.

to perform the voting in parallel thereby reducing the navi-
gation time, on one hand, and eliminating the need for huge

storage, on the other, since the hash table would reside on mul-
tiple computers.



LIFSHITS et al.: IMAGE-BASED WAFER NAVIGATION 443

ACKNOWLEDGMENT

The authors would like to thank KLA-Tencor Israel for a do-
nation of the 5200XP metrology tool and for support in instal-
lation and training.

REFERENCES

[1] V. Sankaran, C. M. Weber, and K. W. Tobin, “Inspection in semicon-
ductor manufacturing,” Websters Encyclopedia of Electrical and Elec-
tronic Engineering, vol. 10, pp. 242–262, 1999.

[2] International Technology Roadmap for Semiconductors, S. I. Associa-
tion. (2001). http//public.itrs.net/Files/2001ITRS/Home.htm [Online]

[3] International Technology Roadmap for Semiconductors Update ,
(2002). http//public.itrs.net/Files/2002Update/Home.pdf [Online]

[4] International Technology Roadmap for Semiconductors , (2003).
http//public.itrs.net/Files/2003ITRS/Home2003.htm [Online]

[5] S. Melikian, “Geometric searching improves machine vision,” Lasers
Optronics, vol. 18, no. 7, p. 13, July 1999.

[6] A. Kalvin, E. Schonberg, J. T. Schwartz, and M. Sharir, “Two-di-
mensional, model-based, boundary matching using footprints,” Int. J.
Robotics Res., vol. 5, no. 4, pp. 38–55, 1986.

[7] Y. Lamdan, J. T. Schwartz, and H. J. Wolfson, “Affine invariant model-
based object recognition,” IEEE Trans. Robotics Automat., vol. 6, pp.
578–589, Oct. 1990.

[8] , “On recognition of 3-d objects from 2-d images,” in Proc. IEEE
Int. Conf. Robotics Automation, vol. 3, Philadelphia, PA, Apr. 1988, pp.
1407–1413.

[9] , “Object recognition by affine invariant matching,” in Proc. IEEE
Conf. Computer Vision Pattern Recognition, Ann Arbor, MI, June 1988,
pp. 335–344.

[10] H. J. Wolfson, “Model-based object recognition by geometric hashing,”
in Proc. Eur. Conf. Computer Vision, Antibes, France, Apr. 1990, pp.
526–536.

[11] G. N. DeSouza and A. C. Kak, “Vision for mobile robot navigation: A
survey,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, pp. 237–267,
Feb. 2002.

[12] Y. Lamdan and H. J. Wolfson, “Geometric hashing: A general and effi-
cient model-based recognition scheme,” in Proce. 2nd Int. Conf. Com-
puter Vision, Tampa, FL, June 1988, pp. 238–249.

[13] J. Schwartz and M. Sharir, “Identification of partially obscured objects
in two and three dimensions by matching noisy characteristic curves,”
Int. J. Robotics Res., vol. 6, no. 2, pp. 29–44, 1987.

[14] S. J. Dickinson, A. P. Pentland, and A. Rosenfeld, “From volumes to
views an approach to 3-d object recognition,” CVGIP: Image Under-
standing, vol. 55, no. 2, pp. 130–154, March 1992.

[15] C. J. Harris and M. Stephens, “A combined corner and edge detector,”
in Proc. 4th Alvey Vision Conf., Manchester, June 1988, pp. 147–151.

[16] M. V. Kreveld, M. Overmars, O. Schwarzkopf, and M. V. K. Mark de
Berg, Computational Geometry, 2nd ed. Berlin, Germany: Springer
Verlag, Feb. 2000, pp. 147–163.

[17] M. A. Fischler and R. C. Bolles, “Random sample consensus: A para-
digm for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[18] L. Balmelli, J. Kovacevic, and M. Vetterli, “Quadtree for embedded
surface visualization: constraints and efficient data structures,” in Proc.
IEEE Int. Conf.Image Processing, vol. 2, Oct. 1999, pp. 487–491.

[19] H. J. Wolfson and I. Rigoutsos, “Geometric hashing: An overview,”
IEEE Computational Sci. Eng., vol. 13, pp. 10–21, 1997.

[20] I. Rigoutsos and R. Hummel, “Robust similarity invariant matching in
the presence of noise,” in Proc. 8th Israeli Conf. Artificial Intelligence
Computer Vision, Tel Aviv, Israel, Dec. 1991.

[21] W. E. L. Grimson, D. P. Huttenlocher, and D. W. Jacobs, “A study of
affine matching with bounded sensor error,” Int. J. Computer Vision, vol.
13, no. 1, pp. 7–32, 1994.

[22] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge, U.K.: Cambridge Univ. Press, 2000.

Michael Lifshits received the B.A. degree
(with honors) in computer science, from the
Technion-Israel Institute of Technology, Haifa, in
2000. He is pursuing the M.S. degree in computer
science at the same university.

From 1998 to 2000, he worked at GE Ultrasound,
Israel, and in 2000 at Quantum, Snap Division, U.S.
His research interests include machine vision and pat-
tern recognition.

Roman Goldenberg received the B.A. (summa cum
laude) and Ph.D. degrees in computer science from
the Technion—Israel Institute of Technology, Haifa,
in 1995 and 2003, respectively.

From 1994 to 1996 and in 1999, he was with
the IBM Research Lab, Haifa. Currently, he is a
Research Fellow at the Technion R&D Foundation
and the Samuel Neeman Institute for Advanced
Studies in Science and Technology, Haifa. His
research interests include video analysis, tracking,
motion-based recognition, PDE methods for image

processing, and medical imaging.

Ehud Rivlin received the B.Sc. and M.Sc. degrees
in computer science and the M.B.A. degree from the
Hebrew University, Jerusalem, Israel, and the Ph.D.
degree from the University of Maryland, College
Park.

Currently, he is an Associate Professor in the Com-
puter Science Department, Technion–Israel Institute
of Technology, Haifa. His current research interests
include machine vision and robot navigation.

Michael Rudzsky received the Ph.D. degree in
physics and mathematics from the Institute of Space
Research, Moscow, U.S.S.R., in 1980.

He worked in the Scientific and Industrial Asso-
ciation for Space Research in Baku, Azerbajan, until
1990. Since 1991, he has been a Research Fellow in
the Physics Department and since 1995 at the Com-
puter Science Department, Technion–Israel Institute
of Technology, Haifa. His current research interests
include computer vision, pattern recognition, and
compression of images.

Mike Adel received the B.Sc. degree in physics
from the University of New South Wales, Sydney,
Australia, in 1983 and the D.Sc. degree in solid
state physics from the Techion–Israel Institute of
Technology, Haifa, in 1989.

Since graduation, he has held positions as an
Industrial Physicist in areas ranging from electro-op-
tical remote sensing, biomedical diagnostics, and
more recently semiconductor metrology. Since 1999,
he has been employed by KLA-Tencor, Migdal
Ha’emek, Israel, where he currently holds the posi-

tion of Director of Advanced Development for the Optical Metrology Division.
He is also an Adjunct Lecturer to the Technion Industrial Engineering faculty
where he teaches product development in the MBA program.


	toc
	Image-Based Wafer Navigation
	Michael Lifshits, Roman Goldenberg, Ehud Rivlin, Michael Rudzsky
	I. I NTRODUCTION

	Fig. 1. Example of the real eye point within a wafer map.
	II. N AVIGATION P ROBLEM AS AN O BJECT R ECOGNITION T ASK

	Fig. 2. Wafer map constructed by the combination of many adjacen
	III. N AVIGATION A LGORITHM
	A. Constructing a Wafer Model's Database for Navigation


	Fig. 3. Every four adjacent small tiles/models are merged into a
	Fig. 4. Determining the hash table entries when points 2 and 5 d
	B. Navigation Algorithm

	Fig. 5. Outline of the navigation process. Wafer map that is con
	Fig. 6. Decomposition of the wafer map using a quadtree.
	C. Performance Enhancement Using a Quadtree

	Fig. 7. Multiple entries within single bin are organized in a qu
	IV. F EATURES S ELECTION

	Fig. 8. 447 corners that were detected by the Harris corner dete
	A. Selecting the Right Feature

	Fig. 9. Schematic representation of rectangular features detecte
	V. V ERIFICATION

	Fig. 10. Quantity of different types of features contained in ty
	A. Approximating the Best Solution
	B. Robust and Efficient Detection of a Maximum Point Corresponde

	Fig. 11. Process of constructing the Voronoi tessellation of the
	TABLE€I V ALUES OF D ISTANCE T HRESHOLD $t$ FOR W HICH THE P RO
	VI. E XPERIMENTS
	A. Test Data Sets
	B. Performance Fine-Tuning Experiments
	1) Discrimination Power Test: This test explores the dependance 



	Fig. 12. Examples of the synthetic model images, each containing
	Fig. 13. Synthetic map constructed from 30 model images.
	Fig. 14. Examples of the real wafer images used as models in the
	Fig. 15. Part of a real wafer map constructed from 72 images, so
	2) Discrimination Power Test With Quadtree Enhancement: This tes

	Fig. 16. Discrimination power test. Average position of the corr
	3) Quality of Bases Test: Given an eye point, the first step of 

	Fig. 17. Quality of bases test. Solid line corresponds to bases 
	C. Overall System Test
	Fig. 18. System behavior with a different number of bases used i

	D. Accuracy Estimation
	E. Testing the Algorithm Robustness to Image Change

	Fig. 19. Error in pixels when the number of sample points used t
	VII. C ONCLUSION

	Fig. 20. Average navigation results performed on systematically 
	Fig. 21. Average navigation results performed on systematically 
	V. Sankaran, C. M. Weber, and K. W. Tobin, Inspection in semicon
	International Technology Roadmap for Semiconductors, S. I. Assoc
	International Technology Roadmap for Semiconductors Update, (20
	International Technology Roadmap for Semiconductors, (2003). ht
	S. Melikian, Geometric searching improves machine vision, Lasers
	A. Kalvin, E. Schonberg, J. T. Schwartz, and M. Sharir, Two-dime
	Y. Lamdan, J. T. Schwartz, and H. J. Wolfson, Affine invariant m
	H. J. Wolfson, Model-based object recognition by geometric hashi
	G. N. DeSouza and A. C. Kak, Vision for mobile robot navigation:
	Y. Lamdan and H. J. Wolfson, Geometric hashing: A general and ef
	J. Schwartz and M. Sharir, Identification of partially obscured 
	S. J. Dickinson, A. P. Pentland, and A. Rosenfeld, From volumes 
	C. J. Harris and M. Stephens, A combined corner and edge detecto
	M. V. Kreveld, M. Overmars, O. Schwarzkopf, and M. V. K. Mark de
	M. A. Fischler and R. C. Bolles, Random sample consensus: A para
	L. Balmelli, J. Kovacevic, and M. Vetterli, Quadtree for embedde
	H. J. Wolfson and I. Rigoutsos, Geometric hashing: An overview, 
	I. Rigoutsos and R. Hummel, Robust similarity invariant matching
	W. E. L. Grimson, D. P. Huttenlocher, and D. W. Jacobs, A study 
	R. I. Hartley and A. Zisserman, Multiple View Geometry in Comput



