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Abstract. We present an approach for human body parts tracking in
3D with prelearned motion models using multiple cameras. Gaussian
Process Annealing Particle Filter is proposed for tracking in order to
reduce the dimensionality of the problem and to increase the tracker’s
stability and robustness. Comparing with a regular annealed particle
filter based tracker, we show that our algorithm can track better for
low frame rate videos. We also show that our algorithm is capable of
recovering after a temporal target loose.

1 Introduction

Human body pose estimation and tracking is a challenging task for several rea-
sons. First, the large dimensionality of the human 3D model complicates the
examination of the entire subject and makes it harder to detect each body part
separately. Secondly, the significantly different appearance of different people
that stems from various clothing styles and illumination variations, adds to the
already great variety of images of different individuals. Finally, the most chal-
lenging difficulty that has to be solved in order to achieve satisfactory results of
pose understanding is the ambiguity caused by body.

This paper presents an approach to 3D articulated human body tracking,
that enables reduction of the complexity of this model. We propose a novel
algorithm, Gaussian Process Annealed Particle Filter (GPAPF) (see also Raskin
et al. [11,26]). In this algorithm we apply a nonlinear dimensionality reduction
using Gaussian Process Dynamical Model (GPDM) (Lawrence [7], Wang et al.
[19]) in order to create a low dimensional latent space. This space describes poses
from a specific motion type. Later we use annealed particle filter proposed by
Deutscher and Reid [3,15] that operates in this laten space in order to generate
particles.

The annealed particle filter has a good performance when applied on videos
with a high frame rate (60 fps, as reported by Balan et al. [5]), but performance
drops when the frame rate is lower (30fps). We show that our approach provides
good results even for the low frame rate (30 fps and lower). An additional ad-
vantage of our tracking algorithm is the capability to recover after temporal loss
of the target, which makes the tracker more robust.



2 Related Works

There are two main approaches for body pose estimation. The first one is the
body detection and recognition, which is based one a single frame (Perona et
al. [33], Ioffe et al. [30], Mori et al. [12]). The second approach is the body
pose tracking which approximates body pose based on a sequence of frames
(Sidenbladh et al. [27], Davidson et al. [14], Agarwal et al. [2,1]). A variety of
methods have been developed for tracking people from single views (Ramanan
et al. [9]), as well as from multiple views (Deutscher et al. [3]).

One of the common approaches for tracking is using particle filtering meth-
ods. Particle Filtering uses multiple predictions, obtained by drawing samples of
pose and location prior and then propagating them using the dynamic model,
which are refined by comparing them with the local image data, calculating the
likelihood (see, for example Isard and MacCormick [24] or Bregler and Malik
[6]). The prior is typically quite diffused (because motion can be fast) but the
likelihood function may be very peaky, containing multiple local maxima which
are hard to account for in detail. For example, if an arm swings past an arm-
like pole, the correct local maximum must be found to prevent the track from
drifting (Sidenbladh et al. [17]). Annealed particle filter (Deutscher et al. [15])
or local searches are the ways to attack this difficulty. An alternative is to apply
a strong model of dynamics (Mikolajcyk et al. [20]).

There exist several possible strategies for reducing the dimensionality of the
configuration space. Firstly it is possible to restrict the range of movement of the
subject. This approach has been pursued by Rohr [21]. The assumption is that
the subject is performing a specific action. Agarwal and Triggs [2, 1] assume a
constant angle of view of the subject. Because of the restricting assumptions the
resulting trackers are not capable of tracking general human poses. Several works
have been done in attempt to learn subspace models. For example, Ormoneit et
al. [25] has used PCA on the cyclic motions. Another way to cope with high-
dimensional data space is to learn low-dimensional latent variable models [4, 13].
However, methods like Isomap [10] and locally linear embedding (LLE) [31] do
not provide a mapping between the latent space and the data space. Urtasun et
al. [29, 28, 18] uses a form of probabilistic dimensionality reduction by Gaussian
Process Dynamical Model (GPDM) (Lawrence [7], and Wang et al. [19]) and
formulate the tracking as a nonlinear least-squares optimization problem.

We propose a tracking algorithm, which consists of two stages. We separate
the body model state into two independent parts: the first one contains informa-
tion about 3D location and orientation of the body and the second one describes
the pose. We learn latent space that describes poses only. In the first one we
generate particles in the latent space and transform them into the data space
by using learned a priori mapping function. In the second stage we add rotation
and translation parameters to obtain valid poses. Then we project the poses on
the cameras in order to calculate the weighted function.

The article is organized as follows. In Section 3 and Section 4 we give a
description of particle filtering and Gaussian fields. In Section 5, we describe
our algorithm. Section 6 contains our experimental results and comparison to



annealed particle filter tracker. The conclusions and possible extension are given
in Section 7.

3 Filtering

3.1 Particle filter

The particle filter algorithm was developed for tracking objects, using the Bayesian
inference framework. In order to make an estimation of the tracked object pa-
rameter this algorithm suggests using the importance sampling. Importance sam-
pling is a general technique for estimating the statistics of a random variable.
The estimation is based on samples of this random variable generated from other
distribution, called proposal distribution, which is easy to sample from.
Let us denote x,, as a hidden state vector and y,, be a measurement in time
n. The algorithm builds an approximation of a maximum posterior estimate of
the filtering distribution: p (2, |y1.n), where y1., = (y1,...,yn) is the history of
the observation. This distribution is represented by a set of pairs {mgf), ) }Jlel’
i=
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The main problem is that the distribution p (y,|x,) may be very peaky and
far from being convex. For such p (y,|z,) the algorithm usually detects several
local maxima instead of choosing the global one (see Deutscher and Reid [15]).
This usually happens for the high dimensional problems, like body part track-
ing. In this case a large number of samples have to be taken in order to find
the global maxima, instead of choosing a local one. The other problem that
arises is that the approximation of the p (x,|y1.,) for high dimensional spaces
is a very computationally inefficient and hard task. Often a weighting function
w!, (yn, ) can be constructed according to the likelihood function as it is in the
condensation algorithm of Isard and Blake [23], such that it provides a good
approximation of the p (y,|x,) , but is also relatively easy to calculate. There-
fore, the problem becomes to find configuration xj that maximizes the weighting
function w?, (yn, ).

3.2 Annealed Particle Filter

The main idea is to use a set of weighting functions instead of using a single one.
While a single weighting function may contain several local maxima, the weight-
ing function in the set should be smoothed versions of it, and therefore contain a
single maximum point, which can be detected using the regular annealed particle
filter.

m=2 m=1 m=0
Fig. 1. Annealed particle filter illustration for M=5 . Initially the set contains many
particles that represent very different poses and therefore can fall into local maximum.
On the last layer all the particles are close to the global maximum, and therefore they
represent the correct pose.



A series of {w, (Yn, x)}%zo is used, where wy,—1 (yn, ) differs only slightly
from wy, (yn,x) and represents a smoothed version of it. The samples should
be drawn from the wq (yn,x) function, which might be peaky, and therefore a
large number of particles needed to be used in order to find the global maxima.
Therefore, was (yn, ) is designed to be a very smoothed version of wg (yn, ) -
The usual method to achieve this is by using w,, (yn, ) = (wo (Yn, x))ﬁ’", where
1=00>..> Bum and wg (yn, ) is equal to the original weighting function.
Therefore, each iteration of the annealed particle filter algorithm consists of M
steps, in each of these the appropriate weighting function is used and a set of

pairs is constructed {:m(f)m, m(f)m} ! . Tracking is described in Algorithm 1.

Fig. 1 shows the illustration of Z‘Jﬁe 5-layered annealing particle filter. Initially
the set contain many particles that represent very different poses and therefore
can fall into local maximum. On the last layer all the particles are close to the
global maximum, and therefore they represent the correct pose.

Algorithm 1 : The annealed particle filter algorithm
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noise nmy, N (0, Py).

end for
- The optimal configuration can be calculated using the following formula: =, =
Np (@) (9
Zi:l 71-'n,,O‘CI:'?’:,,O‘ .
- The unweighted particle set for the next observation is produced using 3353_17 M=
955:,)0 + ng, where ng is a Gaussian noise n.n, N (0, P).
end for each

4 Gaussian Fields

The Gaussian Process Dynamical Model (GPDM) (Lawrence [7], Wang et al.
[19]) represents a mapping from the latent space to the data: y = f (x), where
z € R denotes a vector in a d-dimensional latent space and y € R” is a
vector, that represents the corresponding data in a D-dimensional space. The



model that is used to derive the GPDM is a mapping with first-order Markov
dynamics:

2=y aidi (T1-1) + nay

(5)
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where n,; and n, ; are zero-mean Gaussian noise processes, A = [a1, as, ...] and
B = [by, b, ...] are weights and ¢; and 1); are basis functions.

For Bayesian perspective A and B should be marginalized out through model
average with an isotropic Gaussian prior on B in closed form to yield:
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where W is a scaling diagonal matrix, Y is a matrix of training vectors, X
contains corresponding latent vectors and K, is the kernel matrix:
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W is a scaling diagonal matrix. It is used to account for the different variances
in different data elements. The hyper parameter 3, represents the scale of the
output function, 5 represents the inverse of the Radial Basis Function (RBF)
and 35 ! represents the variance of Ny.+ . For the dynamic mapping of the latent
coordinates X the joint probability density over the latent coordinate system
and the dynamics weights A are formed with an isotropic Gaussian prior over
the A, it can be shown (see Wang et al. [19]) that
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x1 has an isotropic Gaussian prior. GPDM uses a ”linear+RBF” kernel with
parameter «; :
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5 GPAPF Filtering

5.1 The Model

In our work we use a model similar to the one proposed by Deutscher et al.
[3] with some differences in the annealing schedule and weighting function. The
body model is defined by a pair M = {L,I'}, where L stands for the limbs
lengths and I for the angles between the limbs and the global location of the
body in 3D. The limbs parameters are constant, and represent the actual size
of the tracked person. The angles represent the body pose and, therefore, are
dynamic. The state is a vector of dimensionality 29: 3 DoF for the global 3D
location, 3 DoF for the global rotation, 4 DoF for each leg, 4 DoF for the torso,
4 DoF for each arm and 3 DoF for the head (see Fig. 2). The whole tracking
process estimates the angles in such a way that the resulting body pose will
match the actual pose. This is done by maximizing the weighting function which
is explained next.

Fig. 2. The 3D body model (a) and the samples drawn for the weighting function
calculation (b). On the right image the blue samples are used to evaluate the edge
matching, the cyan points are used to calculate the foreground matching, the rectangles
with the edges on the red points are used to calculate the part-based body histogram.

5.2 The Weighting Function

In order to evaluate how well the body pose matches the actual pose using the
particle filter tracker we have to define a weighting function w (I', Z), where I"
is the model’s configuration (i.e. angles) and Z stands for visual content (the
captured images). The weighting function that we use is a version of the one sug-
gested by Deutscher et al. [15] with some modifications. We have experimented
with 3 different features: edges, foreground silhouette and foreground histogram.

The first feature is the edge map. As Deutscher et al. [15] proposes this
feature is the most important one, and provides a good outline for visible parts,



such as arms and legs. The other important property of this feature is that it
is invariant to the color and lighting condition. The edge maps, in which each
pixel is assigned a value dependent on its proximity to an edge, are calculated
for each image plane. Each part is projected on the image plane and samples
of the N, hypothesized edges of human body model are drawn. A sum-squared
difference function is calculated for these samples:

$e(I,Z) =

Ne
Z 1—pS (I, Z:))° (12)

i MZ

1
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where N, is a number of camera views, and Z; stands for the image from the
i-th camera . The p{ (I, Z;) are the edge maps. Each part is projected on the
image plane and samples of the N, hypothesized edges are drawn.

However, the problem that occurs using this feature is that the occluded
body parts will produce no edges. Even the visible parts, such as the arms, may
not produce the edges, because of the color similarity between the part and
the body. This will cause p§ (I, Z;) to be close to zero and thus will increase
the squared difference function. Therefore, a good pose which represents well
the visual context may be omitted. In order to overcome this problem for each
combination of image plane and body part we calculate a coefficient, which
indicates how well the part can be observed on this image. For each sample
point on the model’s edge we estimate the probability being covered by another
body part. Let IV; be the number of hypothesized edges that are drawn for
the part i. The total number of drawn sample points can be calculated using
N, ZN"’” N;, where Ny, is the total number of body parts in the model. The
coefficient of part 1 for the image plane j can be calculated as following:

1 < fa 2
MJMggﬁm(mzw (13)

where [ is the model configuration for part i and pig (I, Z;) is the value of the
foreground pixel map of the sample k. If a body part is occluded by another one,
then the value of pig (I, Z;) will be close to one and therefore the coefficient
of this part for the specific camera will be low. We propose using the following
function instead of sum-squared difference function as presented in (12):

Nbp Ney
1 1 —
TUN2) = g 2 2 M (s Z)) (14)
i=1 j=1
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5 (Dops Zew) = Y (1= p§ (Dop, Zew))? (15)
k=1

The second feature is the silhouette obtained by subtracting the background
from the image. The foreground pixel map is calculated for each image plane with



background pixels set to 0 and foreground set to 1 and sum squared difference
function is computed:

1 1 NC’U Ne 2
f _
21N 2) = 557 ZZ( FZ)) (16)
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where p 9(I', Z;) is the value is the foreground pixel map values at the sample
points.

The third feature is the foreground histogram. The reference histogram is
calculated for each body part. It can be a grey level histogram or three separated
histograms for color images, as shown in Fig. 3. Then, on each frame a normalized
histogram is calculated for a hypothesized body part location and is compared
to the referenced one. In order to compare the histograms we have used the
squared Bhattacharya distance [32,16], which provides a correlation measure
between the model and the target candidates :

Nip Ney
h I,z p‘”t (I3, Z; 17
( ch Nbp 2; Zl )) ( )
i=13j
where
Nbpins
ppart Fbp7 cv Z \/pTEf Fbp7 cv) kyp (Fbpach) (18)
and p;° (Fbp, Zwy) is the value of b1n i of the body part bp on the view cv in

the reference histogram, and the pi P (Typ, Zcy) is the value of the corresponding
bin on the current frame using the hypothesized body part location.
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Fig. 3. The reference histograms of the torso: (a) red, (b) green and (c) blue colors of
the reference selection.

The main drawback of that feature is that it is sensitive to changes in the
lighting conditions. Therefore, the reference histogram has to be updated, using
the weighted average from the recent history.

In order to calculate the total weighting function the features are combined
together using the following formula:

w(l,Z) = 67(2€(r,2)+2f9(r,2)+2h(r,z)) (19)



As was stated above, the target of the tracking process is equal to maximizing
the weighting function.

5.3 GPAPF Learning

The drawback in the particle filter tracker is that a high dimensionality of the
state space causes an exponential increase in the number of particles that are
needed to be generated in order to preserve the same density of particles. In
our case, the data dimension is 29-D. In their work Balan et al. [5] show that
the annealed particle filter is capable of tracking body parts with 125 particles
using 60 fps video input. However, using a significantly lower frame rate (15 fps)
causes the tracker to produce bad results and eventually to lose the target.

The other problem of the annealed particle filter tracker is that once a target
is lost (i.e. the body pose was wrongly estimated, which can happen for the fast
and not smooth movements) it is highly unlikely that the pose on the following
frames will be estimated correctly.

In order to reduce the dimension of the space we introduce Gaussian Process
Annealed Particle Filter (GPAPF). We use a set of poses in order to create a
low dimensional latent space. The latent space is generated by applying non-
linear dimension reduction on the previously observed poses of different motion
types, such as walking, running, punching and kicking. We divide our state into
two independent parts. The first part contains the global 3D body rotation and
translation parameters and is independent of the actual pose. The second part
contains only information regarding the pose (26 DoF). We use Gaussian Process
Dynamical Model (GPDM) in order to reduce the dimensionality of the second
part and to construct a latent space, as shown on Fig. 4. GPDM is able to
capture properties of high dimensional motion data better than linear methods
such as PCA. This method generates a mapping function from the low dimen-
sional latent space to the full data space. This space has a significantly lower
dimensionality (we have experimented with 2D or 3D). Unlike Urtasun et al.
[18], whose latent state variables include translation and rotation information,
our latent space includes solely pose information and is therefore rotation and
translation invariant. This allows using the sequences of the latent coordinates
in order to classify different motion types.

We use a 2-stage algorithm. In the first stage a set of new particles is gen-
erated of in the latent space. Then we apply the learned mapping function that
transforms latent coordinates to the data space. As a result, after adding the
translation and rotation information, we construct 31 dimensional vectors that
describe a valid data state, which includes location and pose information, in
the data space. In order to estimate how well the pose matches the images the
likelihood function, as described in the previous section, is calculated.

The main difficulty in this approach is that the latent space is not uni-
formly distributed. Therefore we use the dynamic model, as proposed by Wang
et al. [19], in order to achieve smoothed transitions between sequential poses in
the latent space. However, there are still some irregularities and discontinuities.
Moreover, while in a regular space the change in the angles is independent on the



Fig. 4. The latent space that is learned from different poses during the walking se-
quence. (a) the 2D space; (b): the 3D space. On the image (a): the brighter pixels
correspond to more precise mapping.

actual angle value, in a latent space this is not the case. Each pose has a certain
probability to occur and thus the probability to be drawn as a hypothesis should
be dependent on it. For each particle we can estimate the variance that can be
used for generation of the new ones. In Fig. 4.(a) the lighter pixels represent
lower variance, which depicts the regions of the latent space that produce more
likely poses.

frame 137 frame 138
Fig. 5. Losing and finding the tracked target despite the miss-tracking on the previous
frame. Top: camera 1, Bottom: camera 4.

Another advantage of this method is that the tracker is capable of recovering
after several frames, from poor estimations. The reason for this is that particles



generated in the latent space are representing valid poses more authentically.
Furthermore because of its low dimensionality the latent space can be covered
with a relatively small number of particles. Therefore, most of possible poses will
be tested with emphasis on the pose that is close to the one that was retrieved
in the previous frame. So if the pose was estimated correctly the tracker will be
able to choose the most suitable one from the tested poses. However, if the pose
on the previous frame was miscalculated the tracker will still consider the poses
that are quite different. As these poses are expected to get higher value of the
weighting function the next layers of the annealing process will generate many
particles using these different poses. As shown in Fig. 5 in this way the pose is
likely to be estimated correctly, despite the miss-tracking on the previous frame.

In addition the generated poses are, in most cases, natural. The large vari-
ance in the data space causes the generation of unnatural poses by the CON-
DENSATION or by annealed particle filtering algorithms. In the introduced
approach the poses that are produced by the latent space that correspond to
points with low variance are usually natural as the whole latent space is con-
structed based on learning from a set of valid poses. The unnatural poses
correspond to the points with the large variance (black re-
gions on Fig. 4.(a)) and, therefore, it is highly unlikely that
it will be generated. Therefore the effective number of the particles is
higher, which enables more accurate tracking.

As shown in Fig. 4 is that the latent space is not continuous. Two sequential
poses may appear not too close in the latent space; therefore there is a minimal
number of particles that should be drawn in order to be able to perform the
tracking.

The other drawback of this approach is that it requires more calculation than
the regular annealed particle filter due to the transformation from the latent
space into the data space. However, as it is mentioned above, if same number of
particles is used, the amount of the effective poses is significantly higher in the
GPAPF then in the original annealed particle filter. Therefore, we can reduce
the number of the particles for the GPAPF tracker, and by this compensate for
the additional calculations.

5.4 GPAPF Algorithm

As we have explained before we are using a 2-stage algorithm. The state consists
of 2 statistically independent parts. The first one describes the body 3D location:
the rotation and the translation (6 DoF). The second part describes the actual
pose i.e. the latent coordinates of the corresponding point in the Gaussian Space
(that was generated as we have explained in part 5.3). The second part usually
has a very small DoF (as was mentioned before we have experimented with 2 and
3 dimensional latent spaces). The first stage is the generation of new particles.
Then we apply the learned transform function that transforms latent coordinates
to the data space (25 DoF). As the result, after adding the translation and
rotation information, we construct a 31 dimensional vectors that describe a valid
data state, which includes location and pose information, in the data space. Then



the state is projected to the cameras in order to estimate how well it fits the
images.

Suppose we have M annealing layers. The state is defined as a pair I' =
{4, 2}, where A is the location information and {2 is the pose information.
We also define w as a latent coordinates corresponding to the data vector f2:
2 = p (w), where p is the mapping function learned by the GPDM. A,, p, 2,.m
and wy, », are the location, pose vector and corresponding latent coordinates on
the frame n and annealing layer m. For each 1 <m < M —1 A, ,,, and wy m
are generated by adding multi-dimensional Gaussian random variable to A, p4+1
and wy, 41 respectively. Then (2, , is calculated using wy, . Full body state
Iym = {Anm, 20 m} is projected to the cameras and the likelihood 7, is
calculated using likelihood function as explained in section 5.2 (see Algorithm
2).

In the original annealed particle filter algorithm the optimal configuration is
achieved by calculating the weighted average of the particles in the last layer.
However, as the latent space is not an Euclidian one, applying this method on
w will produce poor results. The other method is choosing the particle with
the highest likelihood as the optimal configuration w,, = w,(ff('}”), where 4,00 =

arg min; (71'7(;)7”) However, this is unstable way to calculate the optimal pose, as

in order to ensure that there exists a particle which represents the correct pose
we have to use a large number of particles. Therefore, we propose to calculate
the optimal configuration in the data space and then project it back to the latent
space. At the first stage we apply the p on all the particles to generate vectors
in the data space. Then in the data space we calculate the average on these
vectors and project it back to the latent space. It can be written as follows:

_ N 7 7
on =57 (70 ().

5.5 Towards more precise tracking

The problem with such a 2-stage approach is that Gaussian field is not capa-
ble to describe all possible posses. As we have mentioned above, this approach
resembles using probabilistic PCA in order to reduce the data dimensionality.
However, for tracking issues we are interested to get the pose estimation as close
as possible to the actual one. Therefore, we add an additional annealing layer as
the last step. This stage consists from only one stage. We use data states, which
were generated on the previous 2 staged annealing layer, described in previous
section, in order to generate data states for the next layer. This is done with
very low variances in all the dimensions, which practically are equal for all ac-
tions, as the purpose of this layer is to make only the slight changes in the final
estimated pose. Thus it does not depend on the actual frame rate, contrary to
original annealing particle tracker, where if the frame rate is changed one need
to update the model parameters (the variances for each layer).

The final scheme of each step is shown in the Fig. 6 and described in Al-
gorithm 3 . Suppose we have M annealing layers, as explained in section 5.4.



Algorithm 2 : The GPAPF algorithm

N
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for each: frame n
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end for
- The optimal configuration can be calculated using the following formula:A, =

Zl 1 71'(2) /1(11 and w, = w(“{“””) where imq; = arg min; ( () )

n1

- The unweighted particle set for the next observation is produced using ASJ)FL M=

C ) () (1)
A+ nf and Wptrim = Wy
random variables.

end for each

+ n¥, where n{' and n¢ are multivariate Gaussian




Then we add one more single-staged layer. In this last layer the (2, ¢ is cal-
culated using only the (2, ; without calculating the w, . We should also pay
attention that the last layer has no influence of the quality of tracking in the
following frames, as wy,; is used for the initialization of the next layer. Fig. 7
shows the difference between the version without the additional annealing layer
and the results after adding it. We have used 5 2-staged annealing layers in both
cases. For the second tracker we have added additional single staged layer. In
the Fig. 8 shows the error graph that were produced by two trackers. The error
was calculated, based on comparison of the tracker’s output and the result of
the MoCap system. The comparison was suggested by A. Balan [5]. This is done
by calculating the 3D distance between the locations of the different joints that
is estimated by the MoCap system and by the trackers results. The joints that
are used are hips, knees, etc. The distances are summed and multiplied by the
weight of the corresponding particle. Then the sum of the all weighted distances
is calculated, which is used as an error measurement. We can see that the er-
ror, produced by GPAPF tracker without the additional layer (blue circles on
the graph) is lower then the one produced by the original GPAPF algorithm
with the additional annealing layer (red crosses on the graph) for the walking
sequence taken at 30 fps. We can notice that the error is lower when we add the
layer. However, as we have expected, the improvement is not dramatic. This is
explained by the fact that the difference between the estimated pose using only
the latent space annealing and the actual pose is not very big. That suggests
that the latent space accurately represents the data space.

Fig. 6. GPAPF with additional annealing layer graphical model. The black solid arrows
represent the dependencies between state and visual data; the blue arrows represent
the dependencies between the latent space and the data space; dashed magenta arrows
represent the dependencies between sequential annealing layers; the red arrows repre-
sent the dependencies of the additional annealing layer. The green arrows represent
the dependency between sequential frames.

We can also notice that the improved GPAPF has less peaks on the error
graph. The peaks stem from the fact that the argmaz function, that has been
used to find the optimal configuration, is very sensitive to the location of the best
fitting particle. In the improved version, we calculate weighted average of all the



Algorithm 3 : The GPAPF algorithm with the additional layer

N,
(i) .1 P
n,M>» N -1

Initialization: {/1(1 MW
for each: frame n
for m = M downto 1 do
1. Calculate !27(37) =p (w M) applying the prelearned by GPDM mapping func-

N,
: : @ NV
tion p on the set of particles { w,, M} oy

i=
2. Calculate the weights of each particle:
™ om A o) p (A 12Dy )
" (AT T AT o) !

-1
Ny 0 (5 A >m,w;>m) (Asam,wn A0, <>))

where k = (Zi:l o)

(Aol | A 0D, )

N,
3. Draw N particles from the weighted set {Agf)m,wff)m,wff)m} r with replace-
i=1

ment and with distribution p (/1 = Agf)m, w= (’) > = m(f)m.
4. Calculate {A(i) cw® } ~ q (/1(1) w® |A$f)m,wn m7yn), which can

n,m—1"%*nm-—1 n,m—13 nml

(A(lm 1|Anm7yn) = A(Zm +7’L and wz) 'Y

be rewritten as A" n n,m—

n,m—1

q <w,(f)m 1|wn m,yn) = wn b + 1%, where n/ and n¥, are multivariate Gaussian
random variables.

end for

- The optimal configuration can be calculated by the following steps:

1. Calculate {A‘” foi } (Ai?m Rz 1|A55)m,9$’,,L,yn), which can

n,m—13 n,m—1

be rewritten as Ail)m .~ q(/l“) A'Ezlm7yn> = A'SLZ,)m + nf and Qs,)m—l ~

(Q” 1|Qnm7yn) = q(Q” Lle (fom) yn> = p(ﬂﬁf,)m) + nj, where nj,
and n!? are multivariate Gaussian random variables.

N
2. Draw N particles from the weighted set {Aﬁf)m, .Q,(fm; Z) } ' with distribution

i=1

n,m—1

P (/1 = Agf,),m 2= Qﬁf)m) = wgf)m Calculate the weight of each particle.
3. The optimal configuration is A, = Z @) A(ZO and (2, Zf\]:pl Trfi)o .fo)o

- The unweighted particle set for the next observatlon is produced using A;“H M=

/1(Z> + ng and Wm)q M= w(’) + n§, where ng and n§ are multivariate Gaussian

random variables.
end for each
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Fig. 7. The errors GPAPF tracer with additional annealing layer (blue circles) and
without it (red crosses) for a walking sequence captured at 30 fps.
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Fig. 8. GPAPF algorithm before (top) and after (bottom) adding additional annealed
layer.



particles. As we have seen from our experiments, there are often many particles
with the weight close to the optimal. Therefore, the result is less sensitive to the
location of some particular particle. It depends on the whole set of them.

We have also tried to use the results, produced by the additional layer, in
order to initialize the state in the next time step. This was done by applying
the inverse function p~!, suggested by Lawrence [8], on the particles that were
generated in previous annealing layer. However, this approach did not produce
any valuable improvement in the tracking results. As the inverse function is com-
putationally heavy it caused significant increase the calculation time. Therefore,
we decided not to experiment with it further.

6 Results

We have tested GPAPF tracking algorithm using HumanEva dataset [22]. The
sequences contain different activities, such as walking, boxing etc. which were
captured by 7 cameras; however we have used only 4 inputs in our evaluation.
The sequences were captured using the MoCap system that provides the correct
3D locations of the body parts for evaluation of the results and comparison to
other tracking algorithms.

The first sequence that we have used was a walk on a circle. The video
was captured at frame rate 120 fps. We have tested the annealed particle filter
based body tracker, implemented by A. Balan, and compared the results with
the ones produced by the GPAPF tracker. The error was calculated, based on
comparison of the tracker’s output and the result of the MoCap system, using
average distance between 3-D joints location, as explained in section 5.4. Fig. 10
shows the error graphs, produced by GPAPF tracker (blue circles) and by the
annealed particle filter (red crosses) for the walking sequence taken at 30 fps. As
can be seen, the GPAPF tracker produces more accurate estimation of the body
location. Same results were achieved for 15 fps. Fig. 9 presents sample images
with the actual pose estimation for this sequence. The poses are projected to
the first and second cameras. The first 2 rows show the results of the GPAPF
tracker. The third and forth rows show the results of the annealed particle filter.

We have experimented with 100 particles up to 2000 par-
ticles. For the 100 particles per layer using 5 annealed lay-
ers the computational cost was 30 sec per frame. Using the
same number of particles and layers in the annealed particle
filter algorithm takes 20 seconds per frame. However, the
annealed particle filter algorithm was not capable of track-
ing the body pose with such a low number of particles for
30 fps and 15 fps videos. Therefore, we had to increase the
number of particles used in the annealed particle filter to

500.
We have also tried to compare our results to the results
of CONDENSATION algorithm. However, the results of



the condensation algorithm were either very poor or a very
large number of particles needed to be used, which made
this algorithm computationally not effective. Therefore we
do not show the results of this somparisson.

The second sequence was captured in our lab. On that sequence we have
filmed similar behavior, produced by a different actor. The frame rate was 15
fps. In case of walking, the learning was done on the first sequence data. The
GPAPF tracker was able to track the person and produced results similar to the
ones, which were produced for the original sequence.

frame 37 frame 73 frame 117 frame 153 frame 197

Fig. 9. Tracking results of annealed particle filter tracker and GPAPF tracker. Sample
frames from the walking sequence. First row: GPAPF tracker, first camera. Second
row: GPAPF tracker, second camera. Third row: annealed particle filter tracker, first
camera. Forth row: annealed particle filter tracker, second camera.

We have also experimented with sequences containing different behavior, like
leg movements, object lifting, clapping and boxing. We have manually marked
some of the sequences in order to produce the needed training sets for GPDM.
After the learning we have run the validation on the other sequences containing
same behavior. As it is shown on the Fig. 11, the tracker successfully tracked
these sequences. We have experimented with 100 going up to 2000 particles. For
the 100 particles the computational cost was 30 sec/frame. The results that are
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Fig. 10. The errors of the annealed tracker (red crosses) and GPAPF tracker (blue
circles) for a walking sequence captured at 30 fps.

Fig. 11. Tracking results of annealed particle filter tracker and GPAPF tracker. Sample
frames from the running, leg movements and object lifting sequences.



shown in the videos are done with 500 particles (2.5 min per frame). The code
that we are using is written in Matlab with no optimization packages. Therefore
the computational cost can be significantly reduced if moved to C libraries.

7 Conclusion and Future Work

We have presented an approach that uses GPDM in order to reduce the dimen-
sionality and in this way to improve the ability of the annealed particle filter
tracker to track the object even in a high dimensional space. We have also shown
that using GPDM can increase the ability to recover from temporal target loss.
We have also presented a method to approximate the possibility of self occlusion
and we have suggested a way to adjust the weighed function for such cases, in
order to be able to produce more accurate evaluation of a pose.

The main problem is that the learning and tracking are done for a specific
action. The ability of the tracker to use a latent space in order to track a different
motion type, has not been shown yet. A possible approach is to construct a
common latent space for the poses from different actions. The difficulty with
such approach may be the presence of a large number of gaps between the
consecutive poses. In the future we plan to extend the approach in order to be
able to track different activities, using same learned data.

The other challenging task is to track two or more people simultaneously.
The main problem here is that in this case there is high possibility of occlusion.
Furthermore, while for a single person each body part can be seen from at least
one camera that is not the case for the crowded scenes.
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