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Abstract

Estimating intrinsic geometric properties of a surface from a polygonal mesh obtained from range data is an important stage of
numerous algorithms in computer and robot vision, computer graphics, geometric modeling, and industrial and biomedical engineering.
This work considers different computational schemes for local estimation of intrinsic curvature geometric properties. Four different algo-
rithms and their modifications were tested on triangular meshes that represent tessellations of synthetic geometric models. The results
were compared with the analytically computed values of the Gaussian and mean curvatures of the non-uniform rational B-spline
(NURBS) surfaces from which these meshes originated. The algorithms were also tested on range images of geometric objects. The
results were compared with the analytic values of the Gaussian and mean curvatures of the scanned geometric objects. This work man-
ifests the best algorithms suited for Gaussian and mean curvature estimation, and shows that different algorithms should be employed to

compute the Gaussian and mean curvatures.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A number of approaches have been proposed to repre-
sent a 3D object for the purposes of reconstruction, recog-
nition, and identification. The approaches are generally
classified into two groups: volumetric- and boundary-based
methods. A volumetric description utilizes global charac-
teristics of a 3D object: principal axes, inertia matrix [25],
tensor-based moment functions [13], differential character-
istics of iso-level surfaces [35,50], etc. Boundary-based
methods describe an object based on distinct local proper-
ties of its boundary and their relationships. This method is
well suited for recognition purposes because local proper-
ties are still available when only a partial view of an object
is acquired.
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Differential invariant properties such as Gaussian and
mean curvatures are one of the most essential features in
boundary-based methods, extensively used for segmenta-
tion, recognition, and registration algorithms [2,57]. Unfor-
tunately, these significant geometric quantities are defined
only for twice differentiable (C) surfaces. In contrast, geo-
metric data sets are frequently available as polygonal,
piecewise linear approximations, typically as triangular
meshes. Such data sets are common output of, for exam-
ples, 3D scanners.

A plethora of work [1,5,11,20,24,28,30,31,33,34,42,
44,49,54] describing algorithms for curvature estimation
from polygonal surfaces exists. Great effort has been
invested in designing methods of computing curvature that
target real range image data [3,52]. The existence of such a
large number of curvature computation methods made it
necessary to find some way of comparing them
[15,22,27,44,46,51]. Unfortunately, although error analysis
methods for several different algorithms exist [33,34], the
known comparison results are insufficient and provide only
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a partial image. The reason for the absence of such work
may lie in the large amount of factors that has to be ana-
lyzed when comparing curvature. A few examples of such
factors are finding interesting, representative, and fair sur-
faces for computing curvatures, developing a reliable way
of evaluating the accuracy of computations, and, neverthe-
less, the time and memory requirements of different
methods.

Starting in the 1980s, the curvature computation field
made great strides. Probably the first comparison work
was published in 1989, [15]. The authors’ conclusion was
that the algorithms existing at that time were appropriate
for computing the signs of the curvatures, while the values
of the curvatures were extremely sensitive to quantization
noise. In this context, the authors in [52] reached the same
conclusion six years later, in 1995.

Recently, methods providing the ability to compute cur-
vature values are reported in literature. They can be
grouped into several main approaches. A good and updat-
ed characterization of the existing literature can be found
in [51]. Following [51], we describe the most common cur-
vature computation methods.

1.1. Methods employing local analytic surface
approximations

Curvature computation essentially means evaluations of
second order derivatives [7]. This process is known to be
sensitive to quantization noise. Probably the most popular
approach for trying to cope with this phenomenon com-
putes an approximation of the vicinity of a node with an
analytic surface. In general, quadratic or cubic surfaces
are involved. To the best of our knowledge, the most pop-
ular approach is paraboloid fitting together with its vari-
ants [20,27,28,42,44].

A lot of effort has been invested in finding good local
approximation surfaces. A comparison of local surface
geometry estimation methods in terms of accuracy compu-
tation of curvatures can be found in [32].

Several extensions of the paraboloid fitting methods
were also proposed in [14,17,29,40]. We mention that there
are methods that employ local analytic surface approxima-
tions via computing nearly isometric parameterizations for
each vertex [41] and via a spline surface fitting stage [36].

1.2. Methods employing discrete approximation formulas

Discrete approximation formulas employ the 3D infor-
mation existent in a node and its neighbors in a direct for-
mula. In general, the formulas used are relatively short, a
fact that provides some gain in computation time at the
cost of the attainable accuracy. The authors in [24,27,33]
considered such methods based on the Gauss—Bonnet
[9,45] theorem. We describe such a method, that is based
on the Gauss—Bonnet theorem, in detail in Section 3.2.

In this context, the Gauss—Bonnet theorem can be used
on simplex meshes [8], which are representations consid-

ered to be topologically dual to triangulations. Moreover,
applications of angle excess in the context of minimal sur-
faces and straight geodesics can be found in [38,39].

1.3. Methods employing Euler and Meusnier theorems

In numerous works, curvature computation is based on
evaluating the curvature of curves that cross through a ver-
tex and its neighbors. Each neighbor provides a directional
curvature value. These values are further merged employ-
ing Euler and Meusnier theorems (see [9,45]). In many
other works, curvature computation is based on approxi-
mating tangent circles to surfaces. In this context, in
[5,31], circular cross sections, near the examined vertex,
are fitted to the surface. Then, the principal curvatures
are computed using Meusnier and Euler theorems (see
[9,45]). An interesting application of the Euler theorem
toward curvature computation can be found in [54]. We
describe this method in detail in Section 3.3.

1.4. Methods employing tensor evaluations

The tensor curvature is a map that associates to each
surface tangent direction (at a surface point) the corre-
sponding directional curvature (see [49] for details). Proba-
bly the most popular method for curvature computations
based on tensor curvature evaluation is [49]. Note that an
extension of the Taubin scheme [49] appears in [19]. Gopi
et al. [19] employs extended regions on neighbors and uses
a different weighting scheme.

1.5. Methods employing voting mechanisms

Besides extended regions of neighbors, and closely relat-
ed to, voting mechanisms are often employed towards algo-
rithms accuracy improvement. The authors feel that most
of the voting mechanisms existent in the literature, targeted
the tensor computation accuracy improvement. In this con-
text, Taubin approach [49] is at center stage and several
very interesting improvements were reported as follows.

A method considered to be robust to noise when evalu-
ating the signs of curvatures [51] can be found in [47]. Fol-
lowing [47] and [48], the authors in [37] proposed an
improvement over Taubin’s method [49] that, in addition,
detects crease values over large meshes. Another improve-
ment in the quality of curvature computation was recently
reported in [51].

1.6. Methods employing multi-scaling and total and global
techniques

Relative recent works investigated the developing of
local surface descriptors that employ smoothing and filter-
ing at different scales toward reliable curvature computa-
tion. Probably the most representative method in the
multi-scaling methods category is [34]. The results achieved
in [34] are dependent on a 2D Gaussian filtering iteratively
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applied on the input free-form. An estimation of the error
is also provided [34]. Note that the advantage of multi-scale
techniques is that they provide solutions for multi-target
problems, such as interpolation, smoothing, and segmenta-
tion simultaneously [10].

The authors in [37] identified a category of curvature
computation methods that provides the values of curva-
tures at each point at the end of the computations. In this
approach, intermediate computation stages have to be fin-
ished over the entire input in order to be able to evaluate
the curvature values at any point of interest. This approach
is used in [56], where the authors proposed a method for
computing the electrical charge distributions of a field tar-
geting segmentation. The electrical charge distribution is,
in fact, a differential characteristic that is proven to have
similar properties to the curvature, especially for segmenta-
tion tasks.

1.7. Choosing methods for comparison

Following [46], we attempt to quantitatively compare
four methods for estimating the Gaussian and mean curva-
tures of triangular meshes. We tested these methods on tri-
angular meshes that represent tessellations of four
synthetically generated objects: a cylinder, a cone, a sphere,
and a plane, as well as on non-uniform rational B-spline
(NURBS) surfaces. The results are compared to the analyt-
ic evaluation of these curvature properties on the surfaces.
Moreover, we present the results of tests of the perfor-
mance of the different methods on range images of geomet-
ric objects scanned using a 3D Cyberware scanner [23]. The
results are compared to the analytic values of the Gaussian
and mean curvatures of the scanned geometric objects. The
analytic values of the Gaussian and mean curvatures were
inferred from the dimensions of the real objects. The
dimensions of the objects were measured using a
micrometer.

In our experiments, we employed four synthetically gen-
erated objects and their real objects counterparts, which
have similar dimensions and tessellations. This fact repre-
sents a key factor in our comparisons.

Our main goal is to obtain a high level of understanding
of the main current approaches. In order to obtain such
insight, we selected four specific methods, each one repre-
sentative of a different approach. The chosen methods
are: paraboloid fitting (Section 3.1), Gauss—Bonnet (Sec-
tion 3.2), Watanabe and Belayev (Section 3.3), and Taubin
(Section 3.4).

1.7.1. Methods employing local analytic surface
approximations: paraboloid fitting

We feel that paraboloid fitting is an appropriate repre-
sentative method, it being by far the most popular method
of its class. In [27] and [44] the paraboloid fitting method is
compared to other ones. The authors in [27] provide us a
general overview of three algorithms on four types of prim-
itive surfaces: spheres, planes, cylinders, and trigonometric

surfaces. No general surfaces are considered, however. In
[44], five methods are compared on a cube, a sphere, a
noisy sphere, and an approximated image of a ventricle.

1.7.2. Methods employing discrete approximations formulas:
the Gauss—Bonnet scheme

In [24,27,33], an algorithm based on the Gauss—Bonnet
theorem [9,45] is described. We refer to it as the Gauss—
Bonnet scheme. The Gauss—Bonnet scheme is also known
as the angle deficit method [33]. The authors in [33] provide
an error analysis for this method. The reasons for choosing
the Gauss—Bonnet scheme is that it is extremely popular for
computing the Gaussian curvature and both the Gaussian
and mean curvatures involve a convenient, elegant, and
fast evaluation of a formula based on turning the angles
of its neighbors.

1.7.3. Methods employing Euler and Meusnier theorems. the
Watanabe and Belyaev approach

Numerous methods of curvature computation employ
Euler and Meusnier theorems [9,45]. We have chosen the
Watanabe and Belyaev scheme [54] as representative of this
group. The authors in [54] focused on mesh decimation,
and provide a comparison of mesh decimation methods.
Unfortunately, there is no mention of the accuracy of the
curvature computation the authors proposed. The reason
for choosing the Watanabe and Belyaev scheme is that,
in our opinion, its performance primarily as regards curva-
ture computation accuracy is unknown. Specifically, [31]
concluded that the paraboloid fitting provides better results
than a method that involves Euler and Meusnier theorems,
called the circular cross sections method, on noisy data. We
mention that the interest in analyzing the Watanabe and
Belyaev scheme comes also from its behavior on noisy data
captured in range images of real 3D objects as we show in
Section 4.2.

1.7.4. Methods employing tensor evaluations and voting
mechanisms: the Taubin approach

Our belief is that the method that best fits the tensor
evaluating methodology is Taubin’s method. Moreover,
the vast majority of algorithms that attempt improvements
of curvature computation accuracy by voting target tensor
evaluation and, therefore, the Taubin method. Another
benefit of Taubin’s method is that it provides very good
results and was tested on real objects; see [21].

The paper is organized as follows: a short review of dif-
ferential geometry of surfaces is provided in Section 2. In
Section 3, a concise description of the four algorithms we
considered is given. Then, results of our comparison are
presented in Section 4. Finally, we conclude in Section 5.

2. Differential geometry of surfaces

Let S(x, y) be a regular C> continuous freeform para-
metric surface in R®. The unit normal vector field of

—

S(x, y) is defined by
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The curvature « of curve C(1) : [a,b] — S passing through
the point S(xo,y,) = C(t) is defined by

C'(to) x C"(to)|

_ |
(@), C0)
where a, b € R and (-, -) is the scalar product of vectors.
The normal curvature i, of curve C C S passing through
the point S(r, ) is defined by the following relation,
known as

Theorem 2.1 (Meusnier’s theorem).

K, = KCOS @, (2.1)

where K is the curvature ofé at §(r0, ty) and @ is the angle
between the curve’s normal n and the normal N (ry, ty) of S.

A graphical representation of Meusnier theorem can be
seen in Fig. 1.

The principal curvatures, (g, %) and (rg, Zg), of S at
S(ro, to) are defined as the maximum and minimum normal
curvatures at §(r0, ty), respectively. The directions for
which these values are attained are called the principal
directions (see [9,45]). We denote the principal directions
with P, and P,, respectively. Bearing in mind that Meus-
nier’s theorem associates to each direction a normal curva-
ture at each surface point §(r0, ty), the definitions of
principal curvatures and directions are consistent. The nor-
mal curvature , of surface S(r, ) in tangent direction T is
equal to:

Theorem 2.2 (Euler’s theorem).
K, = K1 cos” 0 + K, sin* 0, (2.2)

where 0 is the angle between the first principal direction and
T.

Fig. 1. Curvature and normal curvature at a point on a curve on a surface.
k is the curvature of C at v, 7 is the curvature of C at v, N is the normal to
the surface S at v, k, is the normal curvature at v, and k7 is a vector
oriented in the direction of 7 with length .

The Gaussian and mean curvatures, K(r,f) and H(r,?),
are uniquely defined by the principal curvatures of the
surface:

K(}", t) :Kl(ra t) : K2<r7 t)v
K](V, t) + K2(r7t)
—

(2.3)

H(r,t) = (2.4)

3. Algorithms for curvature estimation

In this work, we consider four methods for the estima-
tion of the Gaussian and mean curvatures, for triangular
meshes. We assume that each given triangular mesh
approximates a smooth, at least twice differentiable,
surface.

3.1. Paraboloid fitting

The paraboloid fitting method, as well as several vari-
ants of it, were described in [20,27,28,42,44]. In
[20,27,28,42,44], the principal curvatures and principal
directions of a triangulated surface are estimated at each
vertex by a least squares fitting of an osculating paraboloid
to the vertex and its neighbors. These references use linear
approximation methods where the approximated surface is
obtained by solving an over-determined system of linear
equations. More recently, in [33], the authors provided an
asymptotic analysis of the paraboloid fitting scheme adapt-
ed to an interpolation case.

Interestingly enough, the paraboloid fitting method was
considered a good estimator for differential parameter esti-
mation in iterative processes. For example, in [42], the
authors presented a nonlinear functional minimization
algorithm that is implemented as an iterative constraint
satisfaction procedure based on local surface smoothness
properties.

The paraboloid fitting algorithm approximates a small
neighborhood of the mesh around a vertex v by an osculat-
ing paraboloid. The principal curvatures of the surface are
considered to be identical to the principal curvatures of the
paraboloid (see [20,27,28,42,44)).

Vertex v; is considered an immediate neighbor of vertex
v if edge ¢; = Tv; belongs to the mesh. Denote the set of
immediate neighboring vertices of v by {v;}/_, ! and the set
of the triangles containing the vertex v by {AL -~

0<ig<n—-1

(3.1)

Fig. 2 shows the notations used for vertices, edges, and
triangles.

Let N, be the normal of surface S at vertex v. Normals
are, in many cases, provided with the mesh in order to
enable Gouraud and/or Phong shading [16]. Otherwise, let

Ai - A(U,' v U([+1)m0dr1)7

(0; = 0) X (V(i+1)modn — V)

N’ = :
' H(Ui - U) X (U(i+l)modn - U)”

(3.2)

be the unit normal of triangle 4;. Then, N, could be esti-
mated as an average of normals N”
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Fig. 2. Notation for vertices and edges.

(3.3)

=

where v is now transformed along with its immediate neigh-
boring vertices, {v;}/—, , to the origin such that N, coalesces
with the z axis. Assume an arbitrary direction x (and
y =z x x). Then, the osculating paraboloid of this canoni-

cal form equals,

z = ax* + bxy + ¢y’ (3.4)

The coefficients @, b, and ¢ are found by solving a least
squares fit to v and the neighboring vertices {v,-};';ol . Then,
the Gaussian and mean curvatures are computed as

K=4dac—b, H=a+c. (3.5)

Fig. 3 shows a visual representation of the paraboloid
fitting method.

3.2. The Gauss—Bonnet scheme

Consider again vertex v and its immediate neighborhood
{v: :’;01 Then, fori=0,...,n — 1, let o; = Z(v;, U, V(i+1) mod n)
be the angle at v between two successive edges e; = 07;.
Further, let Vi+1 = A(Ul', U(i+1) mod n> U(i+2) mod n) be the outer

U / Vg
7

Fig. 4. Internal and external angles in the Gauss—Bonnet method, when
the analyzed vertex and its neighbors are planar.

angle between two successive edges of neighboring vertices
of v. Then, simple trigonometry can show that

(3.6)

The vertices and the edges are indexed as shown in Fig. 2.
Fig. 4 shows specific notations used in the Gauss—Bonnet
method.

The Gauss—Bonnet [9,45] theorem reduces, in the polyg-
onal case, to

n—1
//KdA:Zn—Zyi, (3.7)
4 i=0
which, according to Eq. (3.6) equals,
n—1
//KdA =2t o, (3.8)
4 i=0

where A is the accumulated areas of triangles A; (Eq. (3.1))
around v.

Assuming K is constant in the local neighborhood, Eq.
(3.8) can be rewritten as [24]

2n — Yo
== 0 (3.9)
This approach for estimating K is used, for example, by
[1,11,24,33,44]. In [11,24] a similar integral approach to
the computation of the mean curvature is proposed as
H— iz::()l le:| B

, (3.10)
14

where |le/| denotes the magnitude of e; and f; measures nor-
mal deviations f; = Z(N],N{;.1) moa ) (e Eq. (3.2)).
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3.3. The Watanabe and Belyaev approach

A simple method for estimating the principal curvatures
of a surface that is approximated by a triangular mesh was
proposed in [54].

Consider an oriented surface S. Let 7 be a tangent vec-
tor and N be the unit normal at a surface point v. A normal
section curve 7(s) associated with 7' at v is defined as the
intersection between the surface and the plane through v
that is spanned by 7 and N (see Fig. 5). Let P, and P, be
the principal directions at v associated with the principal
curvatures k; and k,, respectively. x,(¢) denotes the nor-
mal curvature of the normal section curve, where ¢ is the
angle between T and P,. Using Euler’s theorem (see Theo-
rem 2.2), integral formulas of x,(¢) and its square are
derived [54]:

1 2n

1 [ 5 3 1
— k.(@)dp =H;  — k.(p) dep = ~H* — K.
3 | wodo =i 5 [Cherd

2 2
(3.11)

In order to estimate the integrals of Eq. (3.11), one needs to
estimate the normal curvature around v, in all possible tan-
gent directions.

Consider v being a mesh vertex and recall its normal N,
(Eq. (3.3)). Here, the average of the normals of the faces
adjacent to vertex v takes into account the relative areas
of the different faces.

v is now transformed along with its immediate neighbor-
ing vertices, {v;}/_), to the origin such that N, coalesces
with the z axes. Consider the intersection curve 7 = F(s)
of the surface by a plane through v that is spanned by N,
(the z axis in our canonical form) and edge e; = 77;. A Tay-
lor series expansion of F(s) gives

(s) = F(0) + s7(0) +

=Ny

(3.12)

Fig. 5. Specific notations in the Watanabe and Belyaev method.

where T, and N, are the unit tangent and normal of r(s).
Recall that v = r(0) and that v; = r(s). The arclength s could
be approximated by the length of edge e, =7vv;, or
s ~ ||5;|. Multiplying Eq. (3.12) by N, = N, yields,

o [zl

N, 00; = K, ~ ——

K, ~ .
2 B [

(3.13)

The vertices and the edges are indexed as shown in Fig. 2.
Fig. 5 shows specific notations used in the Watanabe and
Belyaev method.

The trapezoid approximation of Eq. (3.11) leads to

n—1
dH~Y K (W) (3.14)
i=0
and
3 2 1 - i2 OC(ifl)modn'i_fxi

3.4. The Taubin approach

Let P, and P, be the two principal directions at point v
of surface S and let 7y = P, cos(0) + P, sin(6) be some unit
length tangent vector at v. Taubin, in [49], defines the sym-
metric matrix M, by the integral formula of

1 +7 I
Mﬁ—/ K" (T9)T4T, do0,

=5 (3.16)

—T
where x?(T,) is the normal curvature of S at v in the direc-
tion 7.

Since the unit length normal vector N to § at v is an
eigenvector of M, associated with the eigenvalue zero, it
follows that M, can be factorized as follows

o2
m' m)
M, =M}, | ' | My,
2,2
m m

v v

(3.17)

where M, = [131 , 132] is the 3 x 2 matrix constructed by con-
catenating the column vectors P, and P,. Note that
mi = MiTjML.M,-j for any i, j€ {1,2}. The principal curva-
tures can then be obtained as functions of the nonzero
eigenvalues of M, [49]:

ki = 3mi1 — miz, ky = Smi2 — mil.

(3.18)

The first step of the implementation estimates the normal
vector N, at each vertex v of the surface with the help of
Eq. (3.2). Then, for each vertex v, matrix M, is approximat-
ed with a weighted sum over the neighbor vertices v;:

M, = wu,(T)T.TT, (3.19)
i=0
where
_N.NT _
7, - U=NN)(v ) (3.20)
[( = NNT) (v — vy
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is the unit length normalized projection of vector v,—v onto
the tangent plane (N,)". The normal curvature in direction
T, is approximated with the help of Eq. (3.13) as

K(T7) = Wilid) The vertices and the edges are indexed

[vi—v :
as shown ‘in lJig. 2.

The weights w; are selected to be proportional to the
sum of the surface areas of the triangles incident to both
vertices v and v; (two triangles if the surface is closed,
and one triangle if both vertices belong to the boundary
of ).

By construction, the normal vector N, is an eigenvector
of the matrix M, associated with the eigenvalue zero. Then,
M, is restricted to the tangent plane (N,)" and, using a
Householder transformation [18] and a Givens rotation
[18], the remaining eigenvectors P, and P, of M, (i.e., the
principal directions of the surface at v) are computed.
Finally, the principal curvatures are obtained from the
two corresponding eigenvalues of M, using Eq. (3.18).

3.5. Modifications

We suggest several modifications for the paraboloid fit-
ting [20,27,28,42,44], Watanabe and Belyaev [54], and Tau-
bin [49] methods. We now describe our proposed
modifications.

We employed the paraboloid fitting method
[20,44,42,28,27] on the rings of immediate neighbors (see
[12] for a free implementation). Moreover, we extended
these rings to neighbors that are not immediate. We refer
to the paraboloid fitting » method when rings from 1 up
to n were involved in computations.

We considered two modifications to the algorithm of
Watanabe and Belyaev [54]. In the following two modified
algorithms, we do not change the first step of the Watanabe
and Belyaev method. We employ the tangent directions 7;
at vertex v produced by Eq. (3.20). Having two vertices (v
and v;), tangent direction T ; and the normal in v, we com-
pute the radius of the fitted circle and from that derive
K.(®,), the normal curvature in the specified direction T,

e Watanabe A: Having the normal curvatures, we apply
Egs. (3.14) and (3.15).

e Watanabe B: From the set of the normal curvatures of
each vertex v, {x'}'_), we select the maximal (k;) and
the minimal (k;) normal curvature values and apply
the classic Egs. (2.3) and (2.4).

We also considered two modifications of Taubin’s algo-
rithm [49]:

e Taubin A (Constant integration): In Eq. (3.19), the
weights w; are selected to be proportional to angles
Z(v;,v,v;41) instead of the surface areas.

o Taubin B (Smoothing with a trapezoidal rule): The direc-
tional curvature x,(7;) in Eq. (3.19) is selected as an
average of values xn(f(i,l)modn) and K,,(T’i).

4. Experimental results

We differentiate between two categories of data: synthetic
and real range. While the interest for the synthetic data is
generated from the fact that it is accurate and allows for
ground truth to be produced at any point, the interest in
range data is motivated by the fact that in most cases it
is noisy, with direct influence on the accuracy and stability
of the algorithms.

Denote by K; and H; the values of Gaussian and mean
curvatures computed by one of the methods from the trian-
gular mesh data in vertex v;, while K, and H; are the exact
(analytically computed) values of the Gaussian and mean
curvatures, at the same surface location v; :S"(r,-,tl-) on
the corresponding surface. We considered the following
error values:

(1) Average of the absolute error value of the Gaussian
curvature K

1 & .
LS k- &if
m 4
i=1
(2) Average of the absolute error value of the square of
the mean curvature H>

1 m .
LS
m 3

4.1. Comparison using synthetic data

We tested all the algorithms described in Section 3 on a
set of synthetic models that represent the tessellations of
four objects: a cylinder, a conus, a sphere, and a plane.
Moreover, we tested all the algorithms described in Section
3 on a set of synthetic models that represent the tessella-
tions of four NURBS surfaces: a surface of revolution gen-
erated by a non-circular arc, the body and the spout of
the infamous Utah teapot model, and an ellipsoid (see
Fig. 7)".

We built a library of triangular meshes that represent
approximations (with different resolutions) of the synthetic
models. For each synthetic surface, we have produced sev-
eral polyhedral approximations with a varying number of
triangles. The cylinder, the cone, the sphere, and the plane
were created artificially and ray-traced as if they were
scanned (see Fig. 6).

Consider the way in which the Cyberware range scanner
captures 3D objects. This device registers the distances of
3D points to the sensors. The sensors are situated at fixed
points in a vertical line, relative to the ground. The cap-
tured object is located at a platform that moves linearly
in the front of the sensors. The sensors are activated at

! The synthetic models along with their dimensions and curvature values
for each vertex (where is relevant) are also available in http://www.cs.
technion.ac.il/~octavian/poly_crvtrs/poly_synthetic_data.


http://www.cs.technion.ac.il/~octavian/poly_crvtrs/poly_synthetic_data
http://www.cs.technion.ac.il/~octavian/poly_crvtrs/poly_synthetic_data
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Fig. 6. The tessellations types of the synthetic counterparts of the real objects shown in Fig. 17, at relative low resolutions. The captured interior points are
grouped in square-like neighborhoods. The tessellation enriches these grouping with diagonal lines.

Table 1
Dimensions of the cylinder, the cone, the sphere, and the plane in millimeters and their implicit analytic curvature values used in comparisons

K H
Cylinder Radius = 33.25 0 0.015037594
Cone Small radius = 24 Big radius = 50 Height = 150 0
Sphere Radius = 19.8 0.00255076 0.00255076
Plane Width Length 0 0

constant intervals of times, therefore, range images are
parameterizable 3D sets of points. The directions of
parameterizations are two: the first is defined by the loca-
tions where the sensors are activated, while the second is
defined by the density of the sensors on the vertical line
they are located at. The vast majority of interior points
are captured in square-like neighborhoods. In Fig. 6, we
show the square-like neighborhood simulation results
together with diagonals added for triangulations building
purposes.

The dimensions and the analytic curvature values for the
cylinder, the cone, the sphere, and the plane are specified in
millimeters in Table 1. The tessellations for the NURBS sur-
faces was performed using samplings in the parametric
domain followed by evaluations of the 3D values on surfaces.
The library files contain, for each NURBS surface and for
each vertex v; its 3D coordinates and analytically
precomputed values of the Gaussian curvature K; and the

squared value of the mean curvature /2. The Gaussian
and mean curvature values are computed from the original
NURBS surfaces.

The tessellations of each model were produced for sever-
al different resolutions: from about one hundred triangles
to several thousand triangles for the finest resolution. The
different tessellations of the spout surface are shown in
Fig. 8. These different resolutions helped us gain some
insight into the convergence rates of the tested algorithms
as the accuracy of the tessellation improves.

In the vast majority of the previous results, only primi-
tives such as cones and spheres were examined for the accu-
racy of these curvature approximation algorithms. The
output of the tests of four different schemes on seven mod-
els (see Figs. 6 and 7) shows that while the best algorithm
for the estimation of the Gaussian curvature is the Gauss—
Bonnet scheme, the best method for the estimation of the
mean curvature is the paraboloid fitting method.

Fig. 7. The NURBS surfaces that were used for curvature estimation tests.
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Bearing in mind that each mesh of the objects shown in
Fig. 6 is obtained from an orthographic ray-tracing, we can
attach a parametrization of two perpendicular axes to the
mesh. Moreover, we create different resolutions of meshes
by decreasing the resolutions, that is we purge each second
column and row of samplings. In all figures in this section,
the horizontal axis is used to mark the resolutions of the
tessellations of the analyzed surfaces, where the origin
means the coarsest resolution. The different resolutions
are labelled according to their number of triangles as well
as with a relative resolution indicator of form n x n. This
indicator shows the relative resolution of the mesh in the
two directions of the attached parametrization.

Figs. 9 and 10 show the results of the tests for the tessel-
lations of the sphere (see Fig. 6(3)). Figs. 11-16, show the
results of the tests for the tessellations of the surface of rev-
olution (see Fig. 7(1)), the spout of the Utah teapot (see
Figs. 7(3) and 8) and the ellipsoid (see Fig. 7(4)).

These graphs show a partial set of the examples of the
results we got throughout our tests. The Gauss—Bonnet
scheme shines when K is computed and the parabolic fitting
scheme works better for H, as compared to the Gauss—
Bonnet scheme as well as all other schemes. Hence, the
optimal approximation scheme for triangular meshes should
be based on a synergy of the two schemes.

A2\
f‘//‘ <
0‘ §54

\ $
\O'M‘\
\'s,
\\\
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(4) (5) (6)

Fig. 8. The tessellations of the spout surface were produced for the
following resolutions: (1) 128 triangles, (2) 288 triangles, (3) 512 triangles,
(4) 1152 triangles, (5) 2048 triangles, and (6) 5000 triangles.

In the case of the sphere and the surface of revolution,
(see Fig. 6(3) and Fig. 7) one can see that the accuracy in
the mean curvature computation provided by the parabo-
loid fitting is slightly outperformed by Watanabe and Tau-
bin’s variants. However, on the free form surfaces, the
paraboloid fitting is close to the Gauss—Bonnet scheme,
in the case of ellipsoid being the best and in the case of
the Utah spout being the second one.

Another significant result that can be drawn from these
graphs is that this synergetic scheme does not always con-
verge as the fineness of the mesh is improved, that is the
higher the resolution of the mesh, the closer the values of
the curvatures computed at the mesh points are to the exact
(analytically computed) values. This convergence was not
witnessed in all schemes, yet the parabolic fitting scheme
for H always converged in the case of the free-form surfaces.
In this context, the Gauss—Bonnet scheme also converges,
except in the case of the surface of revolution when
computing H.

The authors feel that the convergence of the paraboloid
fitting method relies on the approximation provided by the
paraboloid that locally approximates each point of interest.
This method is designed to work well on free-form surfac-
es. However, bearing in mind that the paraboloid is essen-
tially not a sphere, we think that methods that locally
approximate surfaces by spheres could have advantages
on spherical surfaces.

The authors consider the results shown in Figs. 13 and
14 for the spout of the Utah teapot (see Fig. 7(3) and
Fig. 8), which is a free-form surface, the most relevant.
The experiments on the ellipsoid free-form surface (see
Figs. 15 and 16) strengthen this conclusion.

4.2. Using real range data

We tested all the algorithms described in Section 3 on
triangular meshes that represent tessellations of a cylinder,
a cone, a sphere, and a plane. These objects were scanned
using a 3D Cyberware scanner [23]. The images of the test-
ed objects are shown in Fig. 17. The results were compared
with the analytic values of the Gaussian and mean curva-
tures of the scanned geometric objects, see Table 1.2 (In
the case of the cone, only the Gaussian curvature was
computed.)

We built a library of triangular meshes that represent
approximations (with different resolutions) of the four real
objects that were scanned. For each surface, we produced
several polyhedral approximations with a varying number
of triangles. The library files contain the 3D coordinates
of each vertex v;.

The tessellations of each model were produced for sever-
al different resolutions: from about one hundred triangles
to several thousand triangles for the finest resolution. The

2 These models, which resulted from range image data, along with the
curvature values are also available at http://www.cs.technion.ac.il/~
octavian/poly_crvtrs/poly_range_data.


http://www.cs.technion.ac.il/~octavian/poly_crvtrs/poly_range_data
http://www.cs.technion.ac.il/~octavian/poly_crvtrs/poly_range_data
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Fig. 9. Average of the absolute error for the value of the Gaussian curvature for the tessellations of the sphere (see Fig. 6(3)). The Gauss—Bonnet scheme is
the most accurate being closely followed by the paraboloid fitting method.

Sphere Absolute Error H

10
1
04 e auss-Bonnet
) el Paraboloid_Fitting
==r==Taubin
001 = 4= TaubinA
: m—r  TaubinB
m=@===\\/atanabe
0.001 WatanabeA
’ ===8  WatanabeB
0.0001 A
0.00001

[1x1 - 30] [2x2 - 169] [4x4 - 786] [8x8-3336]  [16x16-13710]  [32x32 - 55544]

Fig. 10. Average of the absolute error for the value of the mean curvature for the tessellations of the sphere (see Fig. 6(3)). The paraboloid fitting method
is slightly outperformed by Taubin and its variants, due to the fact that the normal curvature in Taubin’s method is based on tangent circle

approximations.
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Fig. 11. Average of the absolute error for the value of the Gaussian curvature for the tessellations of a surface of revolution (see Fig. 7(1)). The Gauss—
Bonnet and the paraboloid fitting schemes provide the best accuracy, they having decreasing errors as the resolution increases.
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Fig. 13. Average of the absolute error for the value of the Gaussian curvature for the tessellations of the Utah teapot’s spout (see Fig. 7(3)). The Gauss—

Bonnet scheme provides the best accuracy.

sizes of the objects being known from a-priori measure-
ments, their intrinsic analytic values of Gaussian and mean
curvatures are available for error evaluation purposes.
These four objects have the same dimensions as their syn-
thetic counterparts (see Section 4.1). The same software
that created the tessellations in the synthetic case (see Sec-
tion 4.1) was used here, therefore the tessellations in the
synthetic and real cases are similar (see Fig. 6).

4.2.1. Comparing methods on subsequent refined meshes

We tested all the algorithms described in Section 3 on
triangular meshes that represent refined tessellations of
range data images representing a cylinder, a cone, a sphere,
and a plane. We used the same way of representing the
results as in Section 4.1.

In Figs. 18-21, we show the results for the sphere
and the plane in Fig. 17(3) and (4). At high resolutions,

high errors in computing the Gaussian and mean
curvatures were detected, due to the fact that the
relative distances among the points are comparable to
the scanning errors. Fig. 22 illustrates this problem.
Note that when filtering is used, this problem is alleviated
(see Section 4.2.3).

Two different tessellated surfaces of a scanned ping-
pong ball (the sphere. in Fig. 17(3)) are shown in Fig. 22.
When the scanning resolution is low, the relative distances
among the points are higher than the scanning errors and
the graphs (Figs. 18 and 19) are consistent with the
observation presented in Section 4.1. As can be seen, at
high resolutions, the Watanabe A and B methods provide
the best results, although, at lower resolutions, the
Gauss—Bonnet and the paraboloid fitting methods are
preferable. We computed the corresponding graphs for
the cylinder and the cone, and obtained similar results.
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Fig. 14. Average of the absolute error for the value of the mean curvature for the tessellations of the Utah teapot’s spout (see Fig. 7(3)). The paraboloid
fitting is outperformed by the Gauss-Bonnet scheme only.
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Fig. 15. Average of the absolute error for the value of the Gaussian curvature for the tessellations of an ellipsoid (see Fig. 7(4)). The Gauss—Bonnet scheme
provides the best accuracy.
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Fig. 16. Average of the absolute error for the value of the mean curvature for the tessellations of an ellipsoid (see Fig. 7(4)). The paraboloid fitting and the
Gauss—Bonnet scheme provide the best accuracy.
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Fig. 17. Real objects used in experiments.
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Fig. 18. Average of the absolute error for the value of the Gaussian curvature for the tessellations of the sphere, which is the ping-pong ball (see Figure
17(3)). Although at high resolution, Watanabe A and B have higher accuracies, the Gauss—Bonnet and paraboloid fitting schemes present more accurate

computations at lower resolution meshes.

A common feature of all the graphs for the cylinder, the
cone, the sphere, and the plane is that at very high level of
noise, the Watanabe’s A and B method present improved
accuracies. However, at low level resolutions of the meshes,
all the methods give very small errors in curvature accuracy
computation.

As a common characteristic of all the graphs in this
section and their counterparts in Section 4.1, we observe
that the errors detected at higher resolutions of the
meshes are higher than the ones computed at lower res-
olutions. All the graphs, except Gauss—Bonnet and
paraboloid fitting in the free-form cases, have an ascend-
ing tendency.

4.2.2. Comparing paraboloid fitting multi-ring methods

Contemporary 3D acquisition devices are able to
provide very dense clouds of points. However, the accuracy
of these 3D points is not satisfactory. One way to cope with
the inaccuracy is to use extended regions of neighborhoods
[19,21].

The authors believe that the best accuracy in curvature
computation can be achieved when one employs multi-ring
methods. We ran the paraboloid fitting method using a dif-
ferent number of rings on the same image. For example,
Fig. 23 shows the results of running the paraboloid fitting
method on the cylinder (with maximum resolution). We
computed similar graphs for the cone, the sphere, and the
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Although at high resolution, Watanabe A and B have higher accuracies, the paraboloid fitting scheme presents more accurate computations at lower

resolution meshes.
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Fig. 20. Average of the absolute error for the value of the Gaussian curvature for the tessellations of the plane (see Fig. 17(4)).

plane. In all these graphs the objects selected have the
maximal attainable resolution. The number of the rings
varies from one to four, on the horizontal axis. Fig. 23 as
well as graphs that reflect results of running the multi-ring
paraboloid fitting method on the cone, the sphere, and the
plane show that methods of curvature computation that
use more rings provide better approximations to curvature
values.

All these graphs are characterized by convergence to the
exact results when the first four rings were considered. In
this context, an interesting and non-negligible issue when
working with multi-ring methods is their computation time
consumption (see Section 4.3).

The multi-ring version of the paraboloid fitting
method behaves as a low pass filter. At the highest attain-
able resolution, the distances between adjacent points of

the meshes is approximatively 0.5 mm on average and
the errors in the measurements are approximatively
0.1 mm, which amounts to approximatively twenty per-
cent. At these resolutions, low pass filtering is the key
for better approximations, and the graphs show that four
rings still do not introduce an error higher than the rela-
tive error in the positions of the captured points. The
limits at which a low pass filter, or equivalently, the mul-
ti-rings method provides better results are shown in Figs.
24 and 25.

Figs. 24 and 25 show the results of running the multi-
ring versions of the paraboloid fitting method on the same
object with, however, different resolutions. We gradually
increased the resolution of the meshes by four gradually
at each abscissa value. The graphs show that more rings
improve the approximations as long as the error in the
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Fig. 21. Average of the absolute error for the value of the mean curvature for the tessellations of the plane (see Fig. 17(4)).

Fig. 22. The surface of the ping-pong ball as it was scanned: 52,306 triangles (1) and the most coarse approximation: 159 triangles (2) (the sphere in

Fig. 17(3)).

information provided by the rings does not exceed the error
in the information at the exact location of the analyzed
point. Practically, if methods that employ more rings are
available, they should be preferred when working on high
resolution meshes.

Consider, for example, Fig. 24. At the highest attainable
resolution, the multi-ring paraboloid fitting with 40 rings
provides the best estimation for curvature approximation.
The more rings are used, the better the result is at this res-
olution. The differentiation is the same even at lower reso-
lutions, 4 x 4 times coarser than the highest one considered

here. However, when the meshes are sparser, and the points
are farther from each other, we do not attain more accurate
results by applying low pass filters. The average distance
between adjacent points is 0.5 x4 =2 mm (at 2 X 2 coarser
resolution-marked 4 x4 in Figs. 24 and 25) whereas the
error remains the same 0.1 mm. In conclusion, multi-ring
methods provide better performance than one-ring meth-
ods when applied on meshes with errors in point locations
of upto 20 percent, relative to distances between adjacent
points. Multi-rings methods are able to overcome errors
in scanning, however, only up to the point where they
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Fig. 24. Results of running the multi-ring versions of the paraboloid fitting method on a sphere provided in several resolutions, for the computation of the
Gaussian curvature. The amount of rings is indicated in the right box. The resolutions are represented on the horizontal axis. Note that R20, R30, and R40

have almost equal values at the maximum resolution.

modify the locally approximated surface of the captured
objects. The use of any more rings introduces errors in
computing curvatures values that are greater than the ones
resulting from the point capturing processes.

Fig. 25, shows the same behavior as Fig. 24. We com-
puted the corresponding graphs for the cylinder, the cone,
and the plane, and obtained similar behavior.

4.2.3. Comparing methods on filtered range images

We tested all the algorithms described in Section 3 on
triangular meshes that represent tessellations of Gaussian
filtered range data images representing a cylinder, a cone,
a sphere, and a plane. The Gaussian filter was applied to

the depth component of the scanned points that form the
meshes of the four objects. In all these graphs we represent
on the abscissa the « factor used in the Gaussian filter,

h(t) = VT exp <_th2>.

o

4.1

We show comparison results for the cylinder and the
sphere in Fig. 17(1) and (3). The results as graphs are
shown in Figs. 26-29. We filtered the meshes representing
the cylinder and the sphere employing a Gaussian low pass
filter Eq. (4.1). The values of the graphs represent the
detected average errors in computing the Gaussian and



E. Magid et al. | Computer Vision and Image Understanding 107 (2007) 139-159

error

155

Sphere : H - absolute error

=f=—R1

e

=lli=R5

0.1

=dr=R10

=4==R20

0.01

=He=R30

====R40

Y.
7

0.001 +

resolution

0.0001

1x1 2x2 4x4

8x8

16x16 32x32

Fig. 25. Results of running the multi-ring versions of the paraboloid fitting method on a sphere provided in several resolutions, for the computation of the
mean curvature. The amount of rings is indicated in the right box. The resolutions are represented on the horizontal axis. Note that R20, R30, and R40

have almost equal values at the maximum resolution.

error

10

Cylinder : K - absolute error

e G auss-Bonnet
@il Daraholoid_Fitting

= [= Paraboloid_Fitting2

=== 'Paraboloid_Fitting3
—&— Taubin

—#&——TaubinA

==t TaubinB

—@&— Watanabe
WatanabeA
==& 'WatanabeB
006 Mg
0.001 &‘\ e (e o) E ,TI
alpha
0.0001 e e e B e e s e B B e B S s s

0 02040608 1

2 3 4 65 8 7 8 89 10 15 20 25 30 35 40 45 50

Fig. 26. Results of running all the methods on the cylinder, for the computation of the Gaussian curvature. The cylinder model was filtered with a
Gaussian filter. The horizontal axis represents the radius of the filter whereas the vertical one represents the error. Note that the Gauss—Bonnet and the

paraboloid fitting methods have very close values.

the mean curvatures. Similar graphs were obtained for the
cone and the plane.

Figs. 26 and 27 show that all the graphs are monotoni-
cally decreasing for o €[0..4]. For values of o > 4 the
graphs are non-monotonically decreasing. Moreover, they
are even increasing due to the fact that the Gaussian filter
modifies the objects and thus the values of the Gaussian
and the mean curvatures at any point on the meshes. Sim-
ilar behavior can be seen in all the graphs; see the addition-
al examples in Figs. 28 and 29.

The best method for computing the Gaussian curva-
ture when Gaussian filtering is used is Watanabe B.
For the mean curvature the best method is Watanabe
A. In this context, we mention that the paraboloid fitting

method is one of the best methods for mean curvature
estimation. The four objects analyzed in this section
are particular geometric objects and the authors feel that
the paraboloid fitting method is very appropriate, espe-
cially on free-form surfaces such as the surface of revo-
lution (see Fig. 7(1)) and the spout of the Utah teapot
(see Figs. 7(3) and 8). A study on such surfaces requires
solving registration problems and is not in the scope of
the current work.

Note that in the way in which we applied the Gaussian
low pass filter, the graphs showed convergence of the
methods up to point (« =~ 4), where the surfaces begin
to change. Taking into account that Figs. 26 and 27 have
logarithmic scale representations, we conclude that all the
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Fig. 28. Results of running all the methods on the sphere, for the computation of the Gaussian curvature. The sphere model was filtered with a Gaussian
filter. The horizontal axis represents the radius of the filter whereas the vertical one represents the error. Note that the Gauss—Bonnet, the paraboloid

fitting, the Taubin, and the Taubin B methods have very close values.

methods received improved input by filtering up to
(e~ 4). By applying more specialized filters, one can
recover the geometry of scanned objects better. In this
case, the Gauss—Bonnet scheme remains the best choice
for the Gaussian curvature computation and the parabo-
loid fitting method is the best for the mean curvature
computation.

Note that especially for the case of the Gaussian curva-
ture, the comparison between error results is difficult and
perhaps irrelevant when all the methods report very low
values. This fact is dictated by numerical reasons such as
the condition numbers of the implied formulas.

4.3. Computation time requirements

We compared the running times of all the algorithms
described in Section 3. Table 2 represents a comparison

of times required for computing the curvatures on the high-
est resolution available tessellations for a cylinder, a conus,
a sphere, and a plane. The most interesting result relates to
the paraboloid fitting 2 and 3 methods. We measured com-
putation times on a personal computer equipped with two
Pentium IV hyper-threading 2.4 GHz processors and 1 Gb
of memory.

5. Conclusions and future work

In this work, we provided a comparison of four different
approaches for curvature estimation of triangular meshes.
For each approach, we selected a representative algorithm.
The input data comprised synthetic geometric objects as
well as range data obtained from scanning real 3D objects.

In the case of synthetic models, the Gauss—Bonnet
scheme excels when K is computed and the parabolic fitting
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Table 2
Computation time required by each of the methods for a cylinder, a conus,
a sphere, and a plane, in seconds

Cylinder Conus Sphere Plane
Gauss—Bonnet 1 1 1 1
Watanabe 2 1 <1 1
Watanabe A 3 3 1 1
Watanabe B 3 3 1 1
Taubin 2 2 <1 1
Taubin A 2 2 1 1
Taubin B 2 2 <1 1
Paraboloid fitting 51 15 4 6
Paraboloid fitting 2 72 21 6 8
Paraboloid fitting 3 85 36 9 15

scheme works best for H. Hence, the optimal approximation
scheme for triangular meshes should be based on a synergy of
the two schemes. Moreover, for K, the parabolic fitting
scheme was second in many cases, especially on synthetic
surfaces, and followed the Gauss—Bonnet scheme closely.
If one must select only one method of choice, the most sta-
ble method that always has a good convergence is the oscu-
lating paraboloid fitting scheme. Another significant result
is that both the Gauss—Bonnet and the paraboloid fitting
methods converge as the fineness of the mesh is improved
on synthetic surfaces. This convergence was not witnessed
in all the schemes. We mention that in [33] the authors
proved that the paraboloid fitting method, in a particular
case of interpolation, has a quadratic error bound (using
asymptotic analysis) even for non-uniform meshes (that is
usually the case in practice), while the Gauss—Bonnet
scheme has a quadratic error bound in the case of uniform
mesh and linear error bound.

In the case of real range image data, the output of the
tests of four different schemes on four models (Fig. 17)
shows that the conclusions obtained on synthetic data are
valid over the set of real range images data. However, when

the resolution is very high, the relative error of the scanning
process perturbs the accuracy of the Gaussian and the
mean curvatures values. In this case, the most stable
method is Watanabe B for Gaussian curvature and Watan-
abe A for the mean curvature.

Developing analytic expressions for the error of the
approximations is of high interest. One of the future direc-
tions of our research is to choose several basic primitive
objects, such as a sphere, an ellipsoid, or a paraboloid,
and so on, and to compute analytic evaluations for the
errors of the different methods.

An interesting aspect is hidden in the triangulations that
one uses. Different methods provide different accuracies of
the Gaussian and mean curvatures values on different styles
of meshes. This problem is partially analyzed in [6]. We
consider this issue as a future research direction that has
a high potential and one that could shed new light on the
quality of curvature computations.

An aspect to which curvature computation comparison
work should relate is finding the best parameters for each
method that participates in the comparison [43]. In this
context, the use of adapting filters [53,55] on the input
data should be more thoroughly considered. In the future,
it will be interesting to do further research into a compar-
ison of methods with parameters tuned to their highest
capacity. In this context, the authors believe that studying
the generalizations of the methods of curvature computa-
tion to ones that use extended neighborhoods is the
key to fully exploiting the information provided by 3D
scanners.

In [4], the authors proved that there are differential char-
acteristics other than the Gaussian and the mean curva-
tures (see [26]) that provide better accuracy for
description of objects. The knowledge of the accuracy pro-
vided by other differential characteristics accompanied by
their memory and time requirements is an important future
research theme.
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