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Abstract— Many vision-based navigation systems are restricted
to use only a limited number of landmarks when computing the
camera pose. This limitation is due to the overhead of detecting
and tracking these landmarks along the image sequence. A new
algorithm is proposed for subset selection from the available land-
marks. This algorithm searches for the subset that yields minimal
uncertainty for the obtained pose parameters. Navigation tasks
have different types of goals: moving along a path, photographing
an object for a long period of time etc. The significance of
the various pose parameters differs for different navigation
tasks. Therefore, a requirements matrix is constructed from a
supplied severity function, which defines the relative importance
of each parameter. This knowledge can then be used to search
for the subset that minimizes the uncertainty of the important
parameters, possibly at the cost of greater uncertainty in others.
It is shown that the task-oriented landmark selection problem
can be defined as an integer-programming problem for which
a very good approximation can be obtained. The problem is
then translated into a Semi-Definite Programming representation
which can be rapidly solved. The feasibility and performance of
the proposed algorithm is studied through simulations and lab
experimentation.

I. INTRODUCTION

In this paper the problem of landmark-based navigation is
examined. Landmarks are distinctive features in the surround-
ing scene for which the 3D location is known with respect
to some global coordinate system. Consider an autonomous
vehicle equipped with a camera. In order to perform vision-
based navigation, a set of predefined landmarks is supplied and
the 2D projections on the camera’s image-plane are identified
and tracked during the vehicle’s movement. Given the 3D and
2D data, the navigation problem is defined as the estimation
of the camera pose (position and orientation) with respect to
the global reference frame.

During the last two decades robust pose estimation algo-
rithms have been developed by the computer vision commu-
nity. These algorithms can integrate an arbitrary number of
landmarks in the pose computation, leading to accurate and
numerically stable results (e.g., [1], [2], [3], [4]). However,
for each used landmark, its 2D measurements need to be
extracted from each image along the robot’s trajectory. A
feature-extraction algorithm may be used in the first frame
in order to identify the landmarks in the image, and some
tracking algorithm will be used in the consecutive frames

to obtain the 2D feature displacement. As a result, due to
performance limitations, many real-time navigation systems
are restricted to use only a very small number (usually 4-
10) of landmarks. In [5], for example, a navigation system
is presented where only four landmarks are simultaneously
tracked.

If the number of available landmarks is small as well, the
system will use all the visible landmarks at hand. However,
if the system is equipped with a large landmark database,
a subset needs to be selected from the visible landmarks
as the camera moves. An example of such a scenario is an
unmanned aerial vehicle (UAV) that utilizes a digital map and
an ortho-photo of the observed terrain. In this configuration,
the 3D locations of any point on the terrain is known, and any
visually distinctive point can thus be used as a landmark. The
number of potential landmarks in such a case is large, and a
subset must be chosen. Another example is a Simultaneous
Localization and Map Building (SLAM) system such as the
one in [6], [7]. These systems estimate the camera motion
and simultaneously track new features along the path of the
robot’s movement. The 3D locations of the tracked features are
reconstructed and added to a landmark database. As a result,
the database is progressively enlarged and after a while there
will be too many visible landmarks in order to track them all.

While the navigating platform moves, new landmark subsets
should be occasionally selected. The need for a new subset
may arise, for example, when one of the landmarks leaves the
camera field of view or after the camera has moved more than
a certain distance since the last subset was chosen. Whenever
a new subset is required, an initial guess of the camera pose
can be utilized to filter the landmarks which are supposed
to be visible at the moment and to predict their projection
location on the image before actually detecting them. At this
stage we face an important question: how do we choose the
subset from the filtered landmarks wisely, in a manner that will
lead to the best pose estimate according to the requirements
of the specific navigation task? This task-oriented landmark
selection problem stands at the center of the present work.

In most previous works (e.g., [6], [8]) the landmark selection
problem was addressed from the image appearance point of
view, where the 3D location of the landmarks was disregarded
and the selection criterion based solely on a measure of
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distinction of the 2D features in the captured image. In [5],
[9], [10] and [11], as in the present work, the 3D structure of
the selected landmark constellation and its influence on the
obtained accuracies was studied. In [9] a weak-perspective
projection was assumed (which is inadequate for general
landmark-based navigation), while in [5], [10] and [11] the
navigation problem was restricted to a two-dimensional world
where only three pose parameters had to be estimated.

None of the aforementioned works addressed task-oriented
considerations when selecting the landmark subset. Both [5]
and [9] used the condition-number of the pose covariance
matrix as the landmark selection criterion. This criterion does
not reflect the different severity of errors in the different pose
parameters. For example, a unit error in the camera position
(e.g., 1 cm) should not be considered equivalent to an angular
unit error (e.g., 1 radian) in its orientation. Additionally, the
purpose of the pose computation should not be overlooked.
The navigation system usually supports a control system that
uses the pose estimates to perform some predefined task.
According to the requirements of the specific task, some of the
pose parameters may be considered more essential than others.
For example, if the platform needs to follow a predefined
path, then accurately identifying its location along the path
is not as important as identifying any drifts from the path.
Another example is the task of landing an airplane on a landing
track. Obviously, the set of relevant parameters and accuracies
during landing differs from those that need to be controlled for
maintaining straight and level flight. In this paper we present
a new criterion for task-oriented landmark selection which
prefers a subset of landmarks that minimizes the error in some
of the pose parameters even at the expense of larger errors in
the other parameters according to the requirements of the task.

The paper continues as follows. Section II reviews the
topic of pose estimation from landmarks and its uncertainty.
Section III shows how the system designer can use a severity
function to specify the adequacy of different poses for the spe-
cific navigation task. This function can be used to construct a
requirement matrix that reflects the importance of the different
pose parameters for the task at hand. A method to evaluate
how well the different subsets conform to the requirements
of the navigation task is developed in Section IV. Section V
presents a good and efficient approximate solution to the sub-
set selection problem which uses Semi-Definite Programming.
A solution for this class of optimizations can be found easily
and rapidly, qualifying the proposed algorithm for real-time
navigation systems. Experimental results on simulated and real
data are presented in Section VI. We conclude in Section VII.

II. LANDMARK-BASED NAVIGATION

Before considering the task-oriented landmark selection
problem we briefly summarize the landmark-based navigation
problem. Let Pi ∈ R

3 (i = 1, ..., n) be a set of available
landmarks. The 3D location of these points is assumed to be
known with respect to some reference coordinate system W . In
order for an autonomous vehicle to navigate in this scene, it is
equipped with a calibrated camera, for which another Cartesian

coordinate system, denoted C, is attached. Traditionally, the
origin of this system coincides with the camera’s center of
projection and the Z-axis is oriented along the optical axis.
The pose of the camera with respect to W can be represented
by an orthonormal rotation matrix, R ∈ SO(3), and by the
camera position vector t ∈ R

3 such that
CPi = RT (Pi − t) , (1)

where CPi is the representation of Pi in the camera’s system
C. Due to the orthonormality of R, the camera’s orientation
has only three degrees of freedom, usually represented by the
Euler-angles φ, θ, and ψ, which reflect the rotation around the
X, Y, and Z axes respectively. Thus, the camera pose is fully
defined by a 6D parameter vector, Θ = (φ, θ, ψ, tT )T .

In the camera frame, the 3D landmarks are perspectively
projected to their 2D location in the image-plane. Let
fi : R

6 �→ R
2 be the perspective projection function of the

i th landmark:

fi(Θ) = (ui, vi)
T = (CPix/

CPiz ,
CPiy/

CPiz)
T
. (2)

Given the 3D landmarks and their corresponding 2D camera
measurements (ûi, v̂i)

T , the navigation problem is to accu-
rately and robustly estimate the camera pose parameters - Θ̂.
Usually, these parameters are estimated by a non-linear opti-
mization procedure that minimizes the squared error between
the camera’s 2D measurements and the landmark projections
(which are calculated using the pose hypothesis):

Θ̂ = arg min
Θ

n∑
i=1

‖fi(Θ) − (ûi, v̂i)
T ‖2. (3)

A. The Pose Covariance Matrix

The 2D measurements obtained from the camera are not
error-free. These errors occur due to errors in the feature detec-
tion procedure and are commonly modelled as independently
and identically distributed Gaussian additive errors. Let σI be
the standard deviation of this isotropic Gaussian distribution.
In the absence of these errors the exact pose Θ would have
been obtained; however, in realistic scenarios these errors
propagate through the optimization process and lead to the
perturbed estimate of the pose Θ̂.

The Jacobian Ji of the i th landmark is the 2 × 6 matrix
containing all fi’s partial derivatives, and the Jacobian matrix
of all the landmarks which participate in the pose computation
is defined as the concatenation of all the respective Jis:

J = [JT

1 , . . . , J
T

n ]T . (4)

Following the derivations in [12], a first-order approxima-
tion of the error propagation from image measurements to the
pose parameters is given by the covariance matrix of Θ:

ΣΘ = (JTJ)−1
JT ΣIJ (JTJ)−1

, (5)

where ΣI in the above expression is the image measurements’
covariance matrix, which reflects the errors in the 2D mea-
surements. Since it was assumed that these errors are i.i.d and
isotropic, ΣI takes the special form of a diagonal matrix with



constant value σ2
I along the diagonal. Hence, the expression

for the pose covariance matrix may be simplified as follows:

ΣΘ = (JTJ)−1
JT
(
σ2

II
)
J (JTJ)−1

= σ2
I (JTJ)−1 = σ2

I

(
n∑

i=1

JT

i Ji

)−1

. (6)

The diagonal of the pose covariance matrix contains the
variances of the six pose parameters, while the off-diagonal el-
ements represent the dependencies between these parameters.
This symmetric matrix also represents a 6D ellipsoid (usually
known as the uncertainty ellipsoid) in the pose configuration
space. The main axes of this ellipsoid are in the direction of
ΣΘ’s eigenvectors and their lengths correspond to the square-
roots of ΣΘ’s eigenvalues. One can think of this ellipsoid as an
approximation of the volume in which the real pose is located
up to some certainty. For accurate pose estimates this volume
will be relatively small.

III. THE REQUIREMENT MATRIX CONSTRUCTION

It is clear that different selections of landmark subsets will
lead to different pose accuracies. As an illustrative example,
consider the choice of a subset containing landmarks with
very small distances between them. Their projection rays will
form a very narrow bundle, which will in turn lead to a very
inaccurate pose estimate as compared to a subset of landmarks
that are far away from each other. The landmark selection
problem is simply defined as the problem of finding the best
subset – the one that will lead to the most accurate pose.

As was already shown in section II-A, the pose accuracy is
not represented by a scalar but rather by a 6 × 6 covariance
matrix. Any landmark subset will lead to a different covariance
matrix. This leads to a fundamental question: given two
covariance matrices, which one is “better”? Each covariance
matrix reflects an uncertainty ellipsoid. If one of the ellipsoids
contains the other, then it is clear that the smaller one should
be preferred. For example, one can see that ellipsoids B and
C in Fig. 1 are preferable to ellipsoid A. However, the choice
between ellipsoids B and C is less obvious and should take
into account the requirements of the specific navigation task.
For example, if for some reason the x-parameter is much more
important than the y-parameter to our navigation task, it may
be preferable to choose ellipsoid C over ellipsoid B although
it has higher uncertainty along the (less important) y direction.
Additionally, the configuration space should not be perceived
as a Euclidian space. An error of one angular unit (e.g., radian)
in the camera orientation is not equivalent to an error of one
metric unit (e.g., centimeter) in the pose translation vector.
In order to deal with the aforementioned issues, a 6 × 6
requirements matrix should be constructed and supplied by
the system designer who is familiar with the requirements of
the specific navigation task. The requirements matrix, denoted
ΣR, should be symmetric, positive semi-definite, and reflect
the importance of the different pose parameters (particularly
the correct balance between angular and translational errors).
This matrix will be used to induce a Mahalanobis norm on

X
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Fig. 1. Comparison between uncertainty ellipsoids in a 3D pose
configuration space. It is clear that ellipsoids B and C are preferable
comparing to A, but the choice between these two is less obvious and
should take into account the requirements of the specific navigation
task

the pose configuration space, so the severity of every pose
perturbation - ΔΘ can be evaluated:

perturbation severity = ‖ΔΘ‖2
R = ΔΘT · ΣR · ΔΘ (7)

where ‖·‖R denotes the Mahalanobis norm that is induced by
ΣR.

In order to construct this matrix, a pose-severity function,
denoted S(Θ), is defined by the system designer. This function
evaluates how “bad” the pose is for the specific task. For
example, if our task is to photograph an object in the scene,
then a proper severity function could be the 2D distance
between the object’s projection and the principle-point. Such
a severity function reflects the desire to keep the object at
the center of the image. Another classical example appears
when the task is to follow some predefined trajectory. In this
case, a reasonable severity function could measure the distance
of the camera from the trajectory. Landing an airplane is an
example of such a task: the trajectory leads the airplane along
the landing track in a smooth and tangential manner.

Next, a close camera pose Θ0 which is optimal according to
the severity function S is chosen. Thus, the value and gradient
of S at this pose vanish. In this simplified case, the second
order approximation of S at any perturbed Θ is:

S(Θ) =
1
2

(Θ − Θ0)
T
HS(Θ0) (Θ − Θ0) , (8)

where HS is the Hessian matrix of S. The vector (Θ − Θ0)
represents the perturbation (ΔΘ) in the pose’s configuration
space. Comparing the above result to (7), we observe that the
Hessian is proportional to the desired ΣR and thus may serve
as the requirements matrix.

IV. TASK-ORIENTED GRADING OF LANDMARK SUBSETS

In [5] and [9] each landmark subset was graded according to
the condition number of its covariance matrix, which is defined
as the ratio between the largest and smallest eigenvalues.
In terms of uncertainty ellipsoids, the condition number is
the squared lengths ratio of the longest and shortest main-
axes, thus measuring the “roundness” of the ellipsoid. Using
this criterion will bring us to choose the landmark subset
with the most spherical uncertainty ellipsoid. Note that in our
3D example of Fig. 1, ellipsoid A would have been chosen
according to the condition number. Another problem with
this criterion is that it perceives the configuration space as



a Euclidian space, and thus doesn’t reflect the real severity
balance between angular and translational errors or between
the different pose parameters according to the requirements of
the task.

A new grading criterion for landmark subsets is proposed.
First, instead of grading according to the uncertainty ellipsoid’s
roundness, we would like to use a criterion that reflects its
size. Two straightforward alternatives are the summation and
the multiplication of the covariance matrix eigenvalues. These
quantities can be easily obtained as the covariance matrix’s
trace and determinant respectively. At first sight, it seems like
the product of the eigenvalues would be a better choice since
it is proportional to the squared volume of the uncertainty
ellipsoid. However, such a criterion might prefer an ellipsoid
with very long axis when the rest of the axes are very short
and hence compensate for the long one. When summing the
eigenvalues, on the other hand, the squared lengths of the axes
are summed and hence will be relatively large even if only one
of the axes is long. Additionally, the length of the uncertainty
ellipsoid’s main axes will not be measured using the Euclidian
norm but rather by the Mahalanobis norm induced by the
requirements matrix that was supplied.

Given a covariance matrix ΣΘ that was obtained from a
landmark subset, the grading criterion is developed as fol-
lows. Let ΣΘ = MΘΛΘM

T

Θ be the eigenvectors-eigenvalues
decomposition of ΣΘ. MΘ = [m̂1, · · · , m̂6] is an orthonormal
matrix in which the eigenvectors of the covariance matrix
are its columns, and ΛΘ is a diagonal matrix containing the
eigenvalues - λi. Therefore, the grade of the covariance matrix,
which is defined to be the sum of squared Mahalanobis lengths
of the ellipsoid’s main axes, is:

grade =
6∑

i=1

∥∥∥√λi · m̂i

∥∥∥2

R
=

6∑
i=1

λi · m̂T

i ΣRm̂i, (9)

In contrast to a simple summation of ΣΘ’s eigenvalues,
here we obtained their weighted sum. The weights m̂T

i ΣRm̂i

represent the severity of the pose errors in the m̂i direction.
During the optimization process, where the landmark subset

with the minimal grade is sought, the grade function is eval-
uated many times for different subsets. Therefore, in order to
reduce the overhead of the optimization, it would be desirable
to avoid the eigenvectors-eigenvalues decomposition of ΣΘ.
Since it is only the sum of squared lengths that we need for
the grade computation, this function takes much simpler form
as:

grade = tr [ΣRΣΘ] , (10)

where tr [ ] represent the matrix trace. The two grade
definitions (9) and (10) are equivalent since:

tr [ΣRΣΘ] = tr [ΣRMΘΛΘMT
Θ ] = tr

�√
ΛΘMT

ΘΣRMΘ

√
ΛΘ

�
=

= tr

���
λiλjm̂

T
i ΣRm̂j

�
i,j=1,...,6

�
=

6�
i=1

λi · m̂T
i ΣRm̂i ,

where
√

ΛΘ is the diagonal matrix containing the square
roots of the six eigenvalues –

√
λi. In the above manipulation

we used a cyclic permutation of the matrices in the trace.
Such a permutation is known to preserve the trace.

V. APPROXIMATE SOLUTION FOR THE SUBSET SELECTION
PROBLEM

Equipped with the task-oriented grading criterion, we can
address the central problem of this work: the task-oriented
landmark selection problem. Given a set of n available and
visible landmarks, we would like to obtain the best landmark
subset of some predefined size k (k < n). This problem can
be posed as an integer programming optimization problem by
introducing n indicator variables, αi ∈ {0, 1} (i = 1, . . . , n),
each indicating whether the corresponding landmark was se-
lected to the subset. Let α = (α1, . . . , αn) be the vector
concatenation of these variables. Stipulating the participation
of each Ji in (6) according to its corresponding αi and
ignoring the constant factor σ2

I yields the subset’s covariance
matrix:

ΣΘ(α) =

(
n∑

i=1

αi · JT

i Ji

)−1

. (11)

By substituting (11) into (10), the integer-program becomes:

arg min
α

tr

[
ΣR

(
n∑

i=1

αi · JT
i Ji

)−1
]

s.t :
n∑

i=1

αi = k , αi ∈ {0, 1}. (12)

The first constraint guarantees that the obtained subset size
will be as required, while the second constraint enforces the
Boolean behavior of the indicators.

Computing the exact solution for this program is NP-Hard.
However, a very good approximation can be obtained by
solving the problem relaxation, where the Boolean restriction
of the αis is replaced by the relaxed constraint 0 ≤ αi ≤ 1.
The objective function of this program is convex and can be
solved using any non-linear optimization toolbox (e.g., [13])
to obtain the fractional solution. In order to decide which
of the landmarks should be selected, a rounding heuristic
should be applied to the obtained fractional αi variables.
A well known rounding method [14] proceeds as follows:
each of the fractional αis is perceived as the probability that
the corresponding landmark will be selected to the subset.
Hence, several subsets are randomly constructed according to
these probabilities; next, the grade of each subset is evaluated
according to (10), and the subset with the minimal grade is
chosen. Note that although the subsets’ size expectation is k
as desired (due to the subset size constraint), the actual size
of the randomly generated subsets may be slightly different.
Therefore, the random subsets should be corrected by adding
or discarding landmarks in order to reach the necessary size,
where the choice of which landmarks to add/discard is in
accordance with the fractional αis’ values: for subsets that are
too large we will discard the landmarks with the lowest αi,
and for subsets that are too small we will add the landmarks
with the largest αi. Experimental results, which are presented



in section VI, demonstrate that this scheme can obtain very
good approximations for the optimal solution.

A. Posing the Relaxed Program as an SDP

The relaxed problem is a constrained non-linear optimiza-
tion problem. Although it can be solved using general opti-
mization toolboxes (e.g., [13]), the overhead of converging
to an accurate solution might be large, thus disqualifying
the proposed method for real-time navigation systems. How-
ever, this problem can be easily converted to a Semi-Definite
Programming (SDP) problem for which powerful and very
efficient algorithms exist [14], [15], [16], [17]. One can think
of SDP as an extension of the well-known linear programming,
in which the linear inequality constraints are extended by the
so-called Linear Matrix Inequality (LMI) constraint. Such an
LMI constraint on the α variables should be in the form:

n∑
i=1

Ai · αi + C � 0, (13)

where Ai and C are symmetric matrices and the notation
P � Q reflects that P − Q should be positive semi-definite.
Despite its name, one can see that such a constraint can express
non-linear behavior through the requirement of the matrix
positiveness.

Note that in the SDP formulation the objective function
is still required to be linear in the problem’s variables. In
order to transfer the non-linearity of ΣΘ(α) from the objective
function to the problem constraints (where non-linearity can be
handled), we introduce 21 additional slack variables arranged
in a 6 × 6 symmetric matrix Y . Using the new variables the
problem can be redefined as:

arg min
α,Y

tr [ΣRY ]

s.t :
Y � ΣΘ(α)

n∑
i=1

αi = k , 0 ≤ αi ≤ 1. (14)

In order to verify that (12) and (14) are equivalent, one
needs to show that the following two conditions hold:

• Every feasible solution of (12) can be extended to a
feasible solution of (14) by setting some values to Y such
that the two objective functions coincide (which implies
that the optimum of (12) ≥ the optimum of (14)).

• The objective function of (12) is a lower bound of the
objective function in (14) for any given α and Y (implying
that the optimum of (12) ≤ the optimum of (14)).

The first condition is easily verified by letting Y be equal
to ΣΘ(α). The second condition is proved in the following
lemma:

Lemma 1: Let Y � ΣΘ(α) and ΣR � 0 be defined as
before. Then:

tr [ΣRY ] ≥ tr [ΣRΣΘ(α)] .
Proof:

tr [ΣRY ] − tr [ΣRΣΘ(α)] = tr [ΣR (Y − ΣΘ(α))] =

tr [UUT (Y − ΣΘ(α))] = tr[UT (Y − ΣΘ(α))︸ ︷︷ ︸
�0

U ] ≥ 0.

In the above derivation, the requirements matrix was
decomposed using Cholesky decomposition into ΣR = UUT .
The next step is based on the well-known property that
multiplying positive semi-definite matrix A from both sides
by any matrix, UTAU , will not effect its positiveness. The
last inequality results from the fact that the matrix trace is
equal to the sum of its eigenvalues, which are all non-negative
for positive semi-definite matrices.

In order to represent the non-linear constraint in (14) as an
LMI, the Schur complement lemma will be used:

Lemma 2 (Schur complement lemma): Let

A =
[
B CT

C D

]
be a symmetric matrix where B is positive definite. Then, A
is positive semi-definite iff D − CB−1CT is positive semi-
definite.
See [14] for a proof of this lemma. Thus, the constraint
Y � ΣΘ(α) can be replaced by:	


 Σ−1
Θ (α) I

I Y

�
� =

	



n�
i=1

αiJ
T
i Ji I

I Y

�
� � 0. (15)

Finally, the LMI representation of our constraint is:
n�

i=1

�
JT

i Ji 0
0 0

�
αi +

21�
j=1

�
0 0
0 Ej

�
yj +

�
0 I
I 0

�
� 0,

(16)
where Ei (i = 1, . . .,21) are 6 × 6 matrices with all elements
equal to zero except the entries of the corresponding yi in Y
which are set to one.

The relaxed problem in its new formulation can be fed into
an SDP toolbox such as [18], [19], [20] to rapidly obtain its
solution. Such toolboxes solve semi-definite problems using
interior point algorithms which simultaneously optimize two
problems: the original minimization problem, which is known
as the primal problem and its dual maximization problem. As
in the linear programming scenario, the optimum of the two
problems coincides. This gives us a very simple stopping crite-
rion for the optimization process, by monitoring the decreasing
gap between the two solutions. The convergence speed of
interior point algorithms is known to be exponential. Together
with the convexity of the problem, this implies that a correct
solution with the desired accuracy can be obtained in almost a
fixed number of iterations regardless of the quality of the initial
guess. On a Pentium 4 machine full convergence is reached
after about 0.1 seconds for 10 available landmarks and about
0.5 seconds in the case of 100 available landmarks. Much
faster results can be obtained with a small compromise on the
obtained accuracy by stoping the iterative process before full
convergence is reached. Keeping in mind that the selection
procedure should be activated only once in a while, its time
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Fig. 2. Approximation factors that were obtained for different subset
sizes. The blue solid line was obtained by the algorithm, the red
dotted line by taking the best of 10 uniformly selected subsets , and
the red dashed line by taking the best of 100 uniformly selected
subsets.

consumption is not too high for reasonable problem sizes, and
thus can be integrated into real-time navigation and control
systems of autonomous robots.

VI. RESULTS

In this section the performance and the advantages of the
proposed algorithm are demonstrated through simulations and
lab experimentation.

Obtaining the dual value as part of the SDP solution is
advantageous: it is a lower bound on the primal grade optimum
which is in itself a lower bound on any feasible integral
solution of the original problem. Hence, one can use the dual
value to obtain an upper bound on the approximation factor
of any evaluated landmark subset. In Fig. 2 the approximation
factors obtained by the algorithm are evaluated. A set of 100
landmarks was synthetically generated from which subsets of
different sizes were selected. One can see that the obtained
approximation is very good, almost 1 for any subset size
larger than 3. For comparison, groups of 10 and 100 subsets
were selected uniformly as well (the dotted and dashed red
lines in Fig. 2). As could be expected, the approximations
obtained by this method were similar to those of the proposed
algorithm when the subset size was near 100. However, a clear
and drastic advantage can be observed in the more realistic
scenarios where small subsets are selected.

In order to demonstrate the advantage of the proposed algo-
rithm in real scenarios, two lab experiments were conducted:
one with still images and the other with a video that was
captured while a robotic arm was preforming some tasks.

A. Still Images Experiment

For the first experiment two environments were constructed:
the first one contained 100 coplanar landmarks that were
defined by the squares’ corners on a 10× 10 chessboard (see
Fig. 3(a) or 3(c)), and the other contained 300 landmarks from
3 orthogonal chessboards (see Fig. 3(e)). A calibrated camera
was placed in various positions and orientations in the two
environments and images of 640 × 480 were captured. First,
the ground-truth camera pose was calculated from all visible
landmarks. Next, different tasks were defined and subsets with
size ranging from 4 to 50 landmarks were selected accordingly
using the task-oriented algorithm. Fig. 3 shows the selected

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Subset selection of 5 and 40 landmarks for different tasks.
(a) and (b) show coplanar landmarks parallel to the image plane,
(c) and (d) show coplanar landmarks in general position, (e) and (f)
show landmarks placed on 3 orthogonal planes. In all six images
the markers represent the selected landmarks according to different
navigational tasks: a red ’x’ - a task of computing the X component
of camera position, a green diamond - a task of computing the Y
component of camera position, a blue circle - a photographing task.

subsets of size 5 and 40 for three examined tasks: the first
requires only the X-component of the camera position, the
second requires the Y-component, and the third task is one in
which an object is photographed as described in section III.
One can see that different subsets were automatically selected
as a result of the different task definitions.

Next, for each examined task and subset size, additional 500
subsets were uniformly selected for comparison. Fig. 4 com-
pares the weighted (Mahalanobis) error of the pose obtained
by the algorithm’s selected subset to the mean weighted error
of the poses when using the uniformly selected subsets. All
these subsets were selected from the environment presented
in Fig. 3(e). A clear advantage of the proposed algorithm
can be observed for all subset sizes although this advantage
diminishes for large subsets, as in Fig. 2.

B. Robot Experiment

In this experiment a path-following task was performed
using landmarks that were selected by the proposed algorithm.
A video camera with a resolution of 720 × 428 pixels was
attached to a robotic arm (see Fig. 5(a)). This arm can be ma-
nipulated in 6 d.o.f and supplies the trajectory in which it was
maneuvered up to sub-millimetric accuracy. This positional
information that was gathered from the odometry sensors of
the robot was not used during the navigation task but rather
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Fig. 4. The weighted error obtained by different subset sizes for the
scene presented in Fig. 3(e). The dashed line shows the pose mean
error when using the uniformly selected subsets, the blue solid line
shows the pose error when using the selected subset of the algorithm.
(a) the navigation task requires the X component of camera position,
(b) shows the results for the photographing task.

(a) (b)

Fig. 5. (a) The video camera mounted on 6 d.o.f robotic arm. (b) A
frame captured by the camera. The red circles mark the 6 landmarks
that were selected at this frame using the selection algorithm.

was collected and saved as a ground truth for the algorithm
evaluation.

A scene was constructed from 34 landmarks lying on three
orthogonal planes. Thirty of them were located in a relatively
dense cluster while the other 4 were dispersed in different
locations (see Fig. 5(b)).

While the camera was in motion, subsets of different sizes
(6-15 landmarks) were selected whenever required: when one
of the landmarks left the field of view, or after the camera pose
shifted beyond a certain threshold. Fig. 5(b) shows an example
of such a subset selected by the proposed algorithm. Note
that the dispersed landmarks of the scene were automatically
selected by the algorithm.

As part of the control loop, the camera pose was constantly
estimated on the basis of the selected landmarks and, as
a consequence, the robotic arm trajectory was periodically
adjusted. For any of the tested subset sizes both the mean
and maximum task-related errors of the obtained trajectories
are reduced when using the algorithm to select the landmarks,
as can be observed in Fig. 6(a) and 6(b).

VII. CONCLUSION

In this paper a new algorithm for landmark selection was
proposed. Due to performance limitations a real-time naviga-
tion system can usually use only a small number of landmarks
for the pose computation. It was shown that by defining
the specific task requirements in the form of a requirements
matrix, different subsets from the available landmarks are
automatically selected. The obtained subset yields minimal un-
certainty for the pose parameters according to the Mahalanobis
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Fig. 6. Mean (a) and maximal (b) millimetric errors of the trajectories
obtained when selecting subsets of different sizes. The blue line
shows the results obtained when using the selection algorithm. The
red line shows the results obtained when using arbitrary selection of
landmarks.

metric defined using the requirements matrix. Simulations
and experimentations verify the advantages of integrating the
proposed algorithm in real-time navigation systems.
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