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Abstract—A novel algorithm for pose and motion estimation using corresponding features and a Digital Terrain Map is proposed.

Using a Digital Terrain (or Digital Elevation) Map (DTM/DEM) as a global reference enables the elimination of the ambiguity present in

vision-based algorithms for motion recovery. As a consequence, the absolute position and orientation of a camera can be recovered

with respect to the external reference frame. In order to do this, the DTM is used to formulate a constraint between corresponding

features in two consecutive frames. Explicit reconstruction of the 3D world is not required. When considering a number of feature

points, the resulting constraints can be solved using nonlinear optimization in terms of position, orientation, and motion. Such a

procedure requires an initial guess of these parameters, which can be obtained from dead-reckoning or any other source. The

feasibility of the algorithm is established through extensive experimentation. Performance is compared with a state-of-the-art

alternative algorithm, which intermediately reconstructs the 3D structure and then registers it to the DTM. A clear advantage for the

novel algorithm is demonstrated in variety of scenarios.

Index Terms—Pose estimation, vision-based navigation, DTM, structure from motion.

Ç

1 INTRODUCTION

THIS paper deals with the problem of estimating the pose
(i.e., location and orientation) and motion of a calibrated

camera from multiple views of a scene. As opposed to most
of the computer-vision literature dealing with the subject,
the starting point in this work is that, in addition to having
pairs of corresponding features from two consecutive
frames, the location, orientation, and motion of the camera
are approximately known and a model of the scene is
available in the form of a Digital Terrain (or Elevation) Map
DTM/DEM. The main objective of the work is to show that
the a priori solution can be improved by using the extra
information provided by the correspondence pairs and
the DTM.

The current research is motivated by the intrinsic
difficulties involved in maintaining a good estimate of pose
and motion. Indeed, in the seminal work [24], it was shown
that, for calibrated camera motion, reconstruction was
possible only up to a similarity transformation, which
meant not only that the absolute position/orientation could
not be estimated, but also that the scene structure and
camera motion could only be recovered up to a certain
scale. After two decades of intense research, a number of
theoretical results, algorithms, and experimental results are
now available for solving the Structure From Motion (SFM)
problem under various scenarios. For example, [14] con-
tains a thorough discussion of theoretical issues associated
with multiple view geometry, [2], [4], [8], [10], [11], [15],
[19], [28], [30], [32], [33], [34], [37], [38], [40], [41], [43], [44],

[45] elaborate several alternative SFM algorithms, and [29]
and [42] discuss the advantages and disadvantages of such
implementations. It is important to stress that the present
paper is not ”yet another work” on SFM but rather an
attempt to incorporate additional information to overcome
the intrinsic weaknesses of today’s solutions while preser-
ving the multiview flavor.

In order to remove the ambiguity in the reconstruction,
absolute information about the motion or the scene is
required and several alternative methods for acquiring it
can be found in the literature. For example, one could
complement the system with a set of known landmarks
distributed in the scene. Once a set of features from a frame
is matched to the supplied landmarks, the pose of the
camera can be determined to an accuracy that will usually
depend on the relative size of the set of landmarks and their
spatial distribution. Additional processing should also
allow the computation and elimination of motion drift.
Variations of landmarks-based pose estimation algorithms
have been presented in [7], [12], [13], [16], [18], [20], [23],
[27], [39]. In spite of these apparent merits, the landmarks
approach suffers from two important drawbacks that rule it
out as a solution to the problem at hand under the
“minimalistic” conditions assumed in this research. First,
this approach requires having an available and accessible
database of known and calibrated landmarks. Second, the
approach assumes that the system has enough resources to
match a set of image features to the stored landmarks. Put
together, these two requirements demand substantial
preliminary work—selecting and storing the landmarks—
and, also, sufficient processing power for the online
implementation.

The landmark approach can be reformulated by replacing
the landmarks with a database describing the structure of
the scene. The DTM is a natural candidate to meet this
requirement, given that it has already been used success-
fully as a positioning aid [3], [5]. In the case considered in
the aforesaid references, relative altitude (clearance) in-
formation is used to compute the location of a flying
platform. The procedure consists of storing a data record of
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terrain altitudes under the platform and then matching this
data to the DTM database. Good results for this class of
algorithms have been reported in the literature for systems
capable of independently measuring motion to a good
accuracy; note that motion knowledge is required in order
to transform the clearance measurements into a 3D curve
that can later be registered into the 3D terrain for the pose
computation. One might think that 2D visual projections
should compare favorably with the 1D altitude measure-
ment, but the scaling ambiguity involved in the reconstruc-
tion makes this an involved procedure. In a straightforward
translation of clearance-based to vision-based approach, an
SFM algorithm could be used to recover motion and
reconstruct an unscaled patch of the scene. Thereafter, a
correlation algorithm could be used for matching the patch
to the DTM. Variations of this very basic idea have been
used in [31] and [35]. One of the difficulties of this approach
is that it requires the intermediate step of reconstructing the
3D geometry of the scene, which is prone to errors in the
face of inaccurate information about the motion. As will be
shown in the present work, the intermediate step of
structure reconstruction can be skipped by addressing
simultaneously the problem of pose and motion computa-
tion, which leads to more accurate estimates for the
navigation parameters. The DTM will be locally approxi-
mated around each feature point by a plane and a constraint
will be written given the a priori location of the feature and
its corresponding projections on the two consecutive
camera frames.

2 THE TWO-VIEW CONSTRAINT

This section contains a derivation of the two-view
constraint, relating feature correspondences with the
absolute position, orientation, and motion of a calibrated
camera. The section begins by introducing some notation
and a formal presentation of the problem of interest. After
that, a solution is built in three steps. The solution is then
compared with a more classical SFM result. Some
properties of the solution are also discussed.

2.1 Notation and Problem Definition

The problem definition requires two coordinate systems:

1. CðtÞ: Camera-fixed coordinate system at time t, such
that:

. The origin of CðtÞ is at the center of projection of
the camera.

. The Z axis coincides with the optical axis.

. The X and Y axes lie parallel to the horizontal
and vertical axes of the image plane.

2. W : Global (i.e., “World”) coordinate system.

For discrete time instances ti, the somewhat simpler
notation Ci ¼ CðtiÞ will often be used below. Moreover,
the global coordinate system is chosen to facilitate a “flat
earth” assumption.1 The location and orientation of CðtÞ
with respect to W will be denoted pðtÞ and RðtÞ,
respectively, with pðtÞ 2 IR3 and RðtÞ a rotation matrix.
Throughout this paper, and whenever required for clarity, a
left superscript will be added to vectors to denote the
coordinate frame in which they are expressed (for example:
Fv denotes the vector v in the F frame). Again for simplicity,

the superscript will be dropped for vectors in the World
coordinate system—see the definition of pðtÞ above. Also,
RðtÞ will always denote the rotation from camera to world
coordinates, so that, for instance,

v ¼Wv ¼ RðtÞCvþ pðtÞ:
Consider now two consecutive time instances t1 and t2: The
corresponding two frames of the camera will be referred to
as C1 and C2 and, likewise, pi ¼ pðtiÞ; Ri ¼ RðtiÞ for
i ¼ 1; 2. The ego-motion transformation connecting the
two frames is given by the translation vector p12 (which is
the position of the origin of the camera at t1 under the C2

frame) and the rotation matrix R12 ¼ RT
2R1, such that

C2v ¼ R12
C1vþ p12:

The next ingredient in the formulation is the feature
correspondence pairs. Given Qi 2 IR3, a feature point, uikf g
(i ¼ 1. . .n; k ¼ 1; 2), denotes the perspective projections of
the point on the image planes. More specifically, ui1 2 IR2

and ui2 2 IR2 represent the location in the image during the
first and second frames, respectively. It is implicit in this
notation that the correspondence problem has been solved
between the projections in the two images. Assuming the
focal distance has been conveniently normalized to unity,
let C1qi1 and C2qi2 be Ckqik ¼ ðuikT ; 1Þ

T 2 IR3. Although the
qik vectors are expressed in the corresponding camera
frame, their left superscripts will be omitted throughout this
paper for the sake of notation simplicity.

Unlike the classical SFM problem, in which feature
correspondence (or optical flow) is the only available data,
the present work makes use of additional information
provided by a DTM. In practice, a DTM is an ASCII or
binary file that contains only spatial elevation data in a
regular grid pattern in raster format for the whole or part of
the earth. DTMs are usually classified in levels according to
their grid size. For instance, Level 0 denotes a 30 arcsec (or
approximately 1 km) grid map, while Level 5 denotes a fine,
almost 1 m, grid map. Not all of these maps are available to
the general public, but 30 m are or will be available for most
of the earth, while 10 m ones can be obtained for some
regions (in particular, for the United States). For instance,
the Shuttle Radar Topography Mission generated an
elevation map with a 30 m grid and 16 m absolute vertical
accuracy.

For the discussion below, it is convenient to assume that
the DTM is a function h : IR2 ! IR giving the altitude of the
terrain, say, over the mean local sea level, for each
geographical location ðU; V Þ 2 IR2. Since ðU; V Þ are taken
in W , this assumption involves extensive, database-depen-
dent, albeit straightforward, manipulations with coordinate
systems over the earth. When reporting numerical results in
later chapters, the discrete and noisy nature of the data will
be taken into account.

The constraint to be derived next assumes that the DTM
can be linearized around a point. This in turn requires one
to assume that a sufficiently good estimate of the pose of the
camera at t1 and its ego-motion between the two time
instances are available. These estimates will be denoted by
the subscript “E,” i.e., p1E , R1E , p12E and R12E , to stress that
these are a priori estimated quantities. Estimates can be
obtained, for instance, from a dead-reckoning algorithm
that uses inertial-system measurements.

With the notations introduced above, the Pose and Motion
from Correspondence and DTM problem can be formulated as
follows:
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1. For instance, W may be the local-level frame with the same origin as
C t0ð Þ for some reference time t0.



Given the following data,

1. a priori estimates for the camera pose and ego-
motion p1E , R1E , p12E , and R12E ,

2. correspondence pairs uikf g, and
3. a DTM function h : IR2 ! IR,

find the true pose and motion p1, R1, p12, and R12 of the
camera.

In practice, the presence of noise will not allow the
computation of true pose and motion and, hence, one
should settle for a posteriori estimates of these quantities.

2.2 Single-Frame Geometry

To begin the discussion, a single feature point on the
terrain, QT , will be considered in this and the next sections.
Assuming a pinhole model for the calibrated camera, this
feature is perspectively projected onto a point q1 on the
image-plane of the first camera frame C1. The present
section concentrates on the single-view geometry that will
eventually lead to the two-view geometry discussed in the
next section.

Using an initial guess of the camera pose at t1, the line
passing through p1E along the direction of q1 can be
intersected with the DTM. A ray-tracing algorithm can be
used for this purpose. The intersection point can be
computed as

QE ¼ p1E þ �ER1E q1; ð1Þ
for some �E computed, e.g., by using ray-tracing. The
subscript letter “E” again highlights the fact that this point
is an estimated location. The true feature location QT can
similarly be expressed by

QT ¼ p1 þ �TR1q1; ð2Þ
and, in general, QE 6¼ QT . There are two main error sources
that explain the difference between QT and QE : the error in
the a priori estimates for the pose and the errors in the
determination of QE caused by DTM discretization, as well
as intrinsic errors. However, it is assumed that, for
reasonable a priori estimates and DTM-related errors, the
two points are sufficiently close so that QT can be
approximated as belonging to a plane tangent to the DTM
at the point QE ; see Fig. 1. Specifically, if N denotes the
normal to the DTM at QE , then

NT QT �QEð Þ ¼ 0: ð3Þ

The parameter �T is the depth of the feature point and
encodes the information about the structure of the scene. In
order to avoid the structure reconstruction, the linearization
assumption can be used to eliminate �T from the expres-
sions above. Indeed, from (2),

QT �QE ¼ p1 þ �TR1q1 �QE; ð4Þ

and, hence, using (3) and after some reordering,

NT ðp1 �QEÞ þ �TNTR1q1 ¼ 0;

implying

�T ¼ �
NT ðp1 �QEÞ
NTR1q1

: ð5Þ

The above expresses the depth of the scene point as a
function of the camera pose and the (known) linearization

plane parameters. It is this expression which enables us to
avoid handling the depths of the scene points as unknowns.
Instead, this expression can replace unknowns in our
equations, which will eventually result in a system of
12 unknowns (of the pose and motion parameters) instead
of nþ 12 unknowns for n tracked features.

Substituting (5) in (4) and grouping the different terms,
one gets

QT �QE ¼ I �R1q1N
T

NTR1q1

� �
p1 �QEð Þ: ð6Þ

In order to further simplify the expression and facilitate its
geometrical interpretation, the following projection opera-
tor is introduced:

Pðu; nÞ¼:
�

I� un
T

nTu

�
: ð7Þ

This operator projects vectors onto the plane orthogonal
to n. Notice that the projection is not orthogonal but, rather,
along the direction of u. By using the above definition, it is
straightforward to verify that nT � Pðu; nÞ � 0 and
Pðu; nÞu � 0. See Fig. 2a for a geometrical interpretation
of P.

Using the above operator, one can rewrite (6) as

QT �QE ¼ P R1q1; Nð Þ p1 �QEð Þ; ð8Þ

with the operator

P R1q1; Nð Þ ¼ I�R1q1N
T

NTR1q1

� �
ð9Þ

projecting vectors onto the tangent plane to the DTM at QE

along the direction of R1q1.
Equation (8) has a nice geometric interpretation as shown

in Fig. 2b. The unknown vector QT �QE is the vector from

QE to QT in the frame W . It can be obtained by taking the
vector from QE to p1 and using the P operator in order to
project it onto the linearization plane orthogonal to N along
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Fig. 1. The terrain feature, QT , is perspectively projected to the image
plane point q1 under the true first camera frame (where p1 represents its
position and R1 its orientation). Using this projected point and the
estimated pose of the camera (p1E and R1E ), the ray from p1E in the
direction of R1E q1 can be intersected with the DTM at QE . The DTM is
linearized around this point and QT is assumed to lie on that tangent
plane.



the q1 direction. (R1q1 will be used since the world’s frame

representation of q1 is required.)

2.3 Two-Frame Geometry

Suppose next that a second frame is now available. Then,

the location of the feature point in the C2 frame can be

expressed as

C2QT ¼ p12 þR12
C1QT : ð10Þ

Since

QT ¼ p1 þR1
C1QT ;

(10) can also be expressed as

C2QT ¼ p12 þR12 R
T
1 ðQT � p1Þ

� �
¼ p12 þRT

2 QT � p1ð Þ: ð11Þ

Using a standard reprojection argument, one can claim that
C2QT can also be written using its projection onto the image

plane:

C2QT ¼ �T2q2; ð12Þ

where �T2 is the depth of the feature in C2. To eliminate the

dependence on the depth, use the equality

I � q2q
T
2

qT2 q2

� �
q2 ¼ P q2; q2ð Þq2 ¼ 0: ð13Þ

For ease of notation, call

Pðq2Þ¼: P ðq2; q2Þ:
Using this in (11), one gets the constraint

P q2ð Þ p12 þRT
2 ðQT � p1Þ

� �
¼ 0: ð14Þ

The last step in getting a useful constraint and avoiding

structure reconstruction is to substitute

QT � p1 ¼ QT �QEð Þ þ QE � p1ð Þ

in the equation above and use the one-view geometry

constraint (8) to get

P q2ð Þ p12 þRT
2 ðI � PðR1q1; NÞÞðQE � p1Þ

� �
¼ 0: ð15Þ

Using the definition of the projection operator (7),

P q2ð Þ p12 þRT
2

R1q1N
T

NTR1q1
QE � p1ð Þ

� �
¼ 0; ð16Þ

or

P q2ð Þ p12 þ
R12q1N

T

NTR1q1
QE � p1ð Þ

� �
¼ 0: ð17Þ

This basic constraint involves all pose and ego-motion

parameters defining the two frames of the camera and

involves the measurements in the image plane and the

estimated location for the feature point QE . The pose and

ego-motion parameters are, therefore, constrained to verify

this equation.

Remark. Notice that (15) and its variants are trivially

verified by multiplying by qT2 on the left, so that this

equation is equivalent to two—and not three—linearly

independent equations.

2.4 Multiple Features

Suppose next that n feature points are tracked in two

frames, so that the estimated locations QEi and projections

onto the image plane q1i and q2i are estimated and

measured, respectively, for i ¼ 1; � � � ; n. Associated with

each QEi is the normal vector to the DTM at this point,

namely, Ni. Taking this into account, one can rewrite (17) in

matrix form as

�Pðq2iÞ Pðq2iÞ R12q1iN
T
i

NT
i R1q1i

h i p12

p1

� �
¼

Pðq2iÞ
R12q1iN

T
i

NT
i R1q1i

QEi: ð18Þ

Repeating this for each feature point:

�Pðq21Þ Pðq21Þ R12q11N
T
1

NT
1
R1q11

�Pðq22Þ Pðq22Þ R12q12N
T
2

NT
2
R1q12

..

. ..
.

�Pðq2nÞ Pðq2nÞ R12q1nN
T
n

NT
n R1q1n

2
66666664

3
77777775
p12

p1

� �
¼

Pðq21Þ R12q11N
T
1

NT
1
R1q11

QE1

Pðq22Þ R12q12N
T
2

NT
2
R1q12

QE2

..

.

Pðq2nÞ R12q1nN
T
n

NT
n R1q1n

QEn

2
66666664

3
77777775
: ð19Þ

In compact notation:

An
p12

p1

� �
¼ Bn: ð20Þ

Note that An and Bn depend on known quantities: the

estimated features, the normals of the DTM tangent planes,

and the images of the features at the two time instances,

together with the unknown orientation R1 and the relative

rotation R12. At this point in our discussion, several remarks

are in order.
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Fig. 2. (a) The vector v is being projected by Pðu; nÞ onto the plane
orthogonal to n along the direction of u. (b) In order to obtain the
unknown vector QT �QE , the vector p1 �QE is being projected onto the
linearization plane and along the R1q1 direction using the P projection
operator.



Remark 1. The constraint (19) involves 12 “unknowns,”
namely, the pose and ego-motion of the camera. From
the remark at the end of the previous section, the
equation involves at most 2n linearly independent
constraints, so that at least six features at different
locations QTi are required to have a determinate system
of equations. Usually, more vectors will be used in order
to define an overdetermined system and, hence, reduce
the effect of noise. Clearly, there are degenerate scenarios
in which the obtained system is singular, no matter what
the number of available features is. Examples for such
scenarios include flying above completely planar or
spherical terrain (see Section 2.5). However, in the
general case where the terrain has “interesting” structure
the system is nonsingular and the 12 parameters can be
obtained.

Remark 2. The constraint (19) is nonlinear and, therefore, no

analytic solution to it is readily available. Thus, an

iterative scheme will be used in order to solve this

system. A robust algorithm using Newton iterations and

an M-estimator will be described in following sections.

Remark 3. Given Remark 2, one observes that the location

and translation appear linearly in the constraint. Using

the pseudoinverse, these two vectors can be solved

explicitly to give

p12

p1

� �
¼ AynBn; ð21Þ

so that, after resubstituting in (20),

I �AnAyn
� 	

Bn ¼ 0: ð22Þ

This remark leads to two conclusions:

1. If the rotation is known to good accuracy and
measurement noise is relatively low, then the
position and translation can be determined by
solving a linear equation. This fact may be
relevant when ”fusing” the procedure described
here with other measurement, e.g., with inertial
navigation.

2. Equation (22) shows that the estimation of
rotation (both absolute and relative) can be
separated from that of location/translation. This
fact is also found when estimating pose from a set
of visible landmarks as shown in [25]. In that
work, similarly to the present, the estimate is
obtained by minimizing an objective function that
measures the errors in the object-space rather than
on the image plane (as in most other works). This
property enables the decoupling of the estimation
problem. Note, however, that [25] addresses only
the pose rotation and translation decoupling
while, here, the six parameters of absolute and
relative rotations are separated from the six
parameters of the camera location and translation.

2.5 Degenerate Scenarios

The proposed algorithm utilizes the information derived

from the 2D movement of the tracked features on the image

plane. It relies on the assumption that these movements

dictate the ego-motion of the camera and the structure of

the 3D features up to similarity. Next, the additional

information supplied by the DTM is assumed to dictate

the unknown similarity transformation by restricting the

3D features to lay on the terrain. However, in any case in

which one of these assumptions does not hold, a degenerate

scenario arises and, thus, a singular system of constraints

will be obtained.

Pure rotational ego-motion is a classic scenario where the

first assumption does not hold. It is well established that,

under such motion, the depth of the 3D feature has no

influence on the projected features’ displacement. Collinear

features are another example where the ego-motion cannot

be determined.

Intuitive examples for scenarios where the second

assumption does not hold include a planar or spherical

terrain. Once the 3D structure of the features constellation

was derived (from the image displacements), a whole

manifold of solutions embedded in the similarities’ config-

uration space is adequate. In order to study the conditions

under which the terrain surface yields a degenerate

scenario, we follow the Constraint Analysis proposed by

[36] and extend it from Euclidean transformations to

similarities.
Assuming one is supplied with the true similarity (which

registers the 3D features into the terrain) as an initial guess
for the algorithm, a degenerate scenario could be differen-
tially characterized by the existence of infinitesimal pertur-
bation of the similarity parameters such that the quality of
the registration will not deteriorate. Let Q ¼C2 QT ¼C2 QE be
a 3D feature lying on its corresponding tangent plane. By
applying an infinitesimal translation of �t 2 IR3, scale of
1þ �s 2 IR, and rotation of k�!k around the �! 2 IR3 axis,
these features are transformed to

Q0 ¼ ð1þ �sÞðQþ �!�QÞ þ �t: ð23Þ

This equation is obtained from the first order approximation
of the Rodrigues formula. Therefore, a degenerate scenario
arises when there are non-all-zero �t; �!; �s such that

C2NT
i Q0i �Qi

� �
¼ C2NT

i �s �Qi þ 1þ �sð Þ �!�Qið Þ þ �t½ � ¼ 0

ð24Þ

for all tracked features (i ¼ 1:::n). The above constraint
verifies that the vector of the 3D feature displacement
induced by the similarity perturbation is parallel to the
corresponding tangent plane and, thus, has no effect on the
registration quality. One should notice that, in case such
perturbation is found, the scaled perturbation � � �t; � �
�!; � � �s (for any � 2 IR) should also verify the constraint in
order to create a whole subspace of adequate solutions in
the similarities configuration space:

C2NT
i �Qið�Þ½ � ¼ 0; ð25Þ

where

�Qið�Þ ¼ ��s �Qi þ ��!�Qi þ �2�s �!�Qið Þ þ ��t: ð26Þ

Dividing (25) by �, subtracting the result from (24), and
once again dividing by 1� � yields
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�s �!�Qið Þ ¼ 0: ð27Þ

Since the 3D features are not collinear, not all of them are

parallel to �!. Therefore, either �s ¼ 0 or �! ¼ 0.
In case �! ¼ 0, (24) reduces to

C2NT
i �s �Qi þ �t½ � ¼ 0: ð28Þ

If �s ¼ 0, then we remain with C2NT
i �t ¼ 0. This means that

�t is orthogonal to all the normal vectors Ni, which,

therefore, must be coplanar. Surfaces with this characteristic

are those which can be swept out by moving a planar curve

along the �t direction (see Fig. 3a). If �s 6¼ 0, then it can be

assumed that �s ¼ 1 (since the scale of the perturbation is

arbitrary). This leads to the constraint C2NT
i Qi þ �tð Þ ¼ 0,

which means that, after moving the camera by �t, all 3D

features belong to the surface’s silhouette (see Fig. 3b).
In the presence of rotational perturbation (�! 6¼ 0), there

is no scale change. Hence, (24) reduces to

C2NT
i �!�Qi þ �t½ � ¼ 0: ð29Þ

In the special case where �! ? �t, �t can be expressed as a

cross-product of �! and some d 2 IR, which leads to the

following representation of (29): C2NT
i �!� ðQi þ dÞ½ � ¼ 0.

This equation shows that, after translating the 3D features

by d, the rotation-axis �!, the translated feature ðQi þ dÞ,
and the surface normal are coplanar. Such behavior is

obtained from surfaces of revolution such as a sphere or a

Gaussian hill (see Fig. 3c). In the general case of arbitrary

translation, �t can be decomposed into two components: �t?

orthogonal to �! and �tk parallel to it. Therefore, one obtains

C2NT
i �!� ðQi þ dÞ þ �tk
h i

¼ 0:

Surfaces which are consistent with that constraint include

cylinder, spiral, and others (see Fig. 3d).

Remark 4. Since only infinitesimal perturbations are
considered, only a small surface environment of each
feature is significant for singularity conditions. There-
fore, it is enough that the surface will satisfy the above
conditions, piecewise.

2.6 The Epipolar Constraint Connection

Before proceeding any further, it is interesting to look at (17)

in the light of previous work in SFM and, in particular,

epipolar geometry. In order to do this, it is worth deriving the

basic constraint in the present framework and notation. Write

C2QT ¼ �2q2 ¼ p12 þ �1R12q1 ð30Þ

for some scalars �1 and �2 (see Fig. 4). It follows that

p12 � �2q2 ¼ p12 � �1R12q1; ð31Þ

and, hence,

qT2 p12 �R12q1ð Þ ¼ 0: ð32Þ

For a vector x 2 IR3, let x^ denote the skew-symmetric

matrix:

x^ ¼
x1

x2

x3

2
4

3
5
^

¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

2
4

3
5:

Then, it is well known that the vector product between two

vectors x and y can be expressed as

x� y ¼ x^y:

Using this notation, the epipolar constraint (32) can be

written as

qT2 R12q1ð Þ^p12 ¼ 0 ð33Þ

and symmetrically as

qT1 R
T
12q
^
2 p12 ¼ 0: ð34Þ
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Fig. 3. Examples of constellations which lead to singularities of the algorithm: (a) features from a surface which can be swept out by moving a planar

curve along constant direction, (b) features laying on a silhouette of arbitrary surface, (c) surface of revolution, (d) and spiral.

Fig. 4. The examined scenario from the second camera frame’s (C2)
point of view. q2 is the perspective projection of the terrain feature C2QT

and, thus, the two should coincide. Additionally, since q1 is also a
projection of the same feature in the C1 frame, the epipolar constraint
requires that the two rays (one in the direction of q2 and the other from
p12 in the direction of R12q1) will intersect.



The important observation here is that, if the vector p12

verifies the above constraint, then the vector � � p12 also
verifies the constraint, for any number �. This is an
expression of the ambiguity built into the SFM problem.
On the other hand, the constraint (17) is nonhomogeneous
and, hence, does not suffer from the same ambiguity. In
terms of the translation alone (and for only one feature
point!), if p12 verifies (17) for given an R1 and R12, then
p12 þ �q2 will also verify the constraint and, hence, the ego-
motion translation is defined up to a one-dimensional
vector. However, one has the following trivially:

qT1 R
T
12q2

^q2 ¼ 0; ð35Þ

and, hence, the epipolar constraint does not provide an
additional equation that would allow us to solve for the
translation in a unique manner. Moreover, observe that (17)
can be written using a vector product instead of the
projection operator as

q2
^ p12 þ

R12q1N
T

NTR1q1
QE � p1ð Þ

� �
¼ 0: ð36Þ

Taking into account the identity

R12q1ð ÞT q2
^R12q1 � 0; ð37Þ

it is possible to conclude that (36) �! (34) and, hence, the
new constraint ”contains” the classical epipolar geometry.
Indeed, one could think of the constraint derived in (17) as
strengthening the epipolar constraint by requiring not only
that the two rays (in the directions of q1 and q2) should
intersect, but, in addition, that this intersection point should
lie on the DTM’s linearization plane. Observe, moreover,
that taking more than one feature point would allow us to
completely compute the translation (at least for the given
rotation matrices).

3 ALGORITHM IMPLEMENTATION

In this section, we elaborate a possible implementation for
the proposed algorithm. As mentioned above, the constraint
is nonlinear and, hence, needs to be solved using a
numerical procedure. In particular, a least-squares solution
using the Newton-iterations scheme can be used.

3.1 Internal versus External Iterations

In a practical implementation, the approximation of the
DTM by a plane is true only locally and, hence, the Newton
iterations presented above can only partially correct the
errors in the initial a priori estimate. Notice that, once the
ray-tracing algorithm has located the estimated terrain
features—the QEs, these points, together with the tangent
planes they determine, are kept fixed during the iterations.
Since it is assumed that the QT points lie somewhere on
these planes, the Newton iterations will not converge to the
true pose and motion but, rather, to the best pose and
motion for which the 3D features are on the required
planes.

The limitation described above can be easily ameliorated
by reactivating the ray-tracing algorithm between consecu-
tive iterations. Namely, after each Newton iteration, the
updated pose of the first camera frame could be used for the
ray-tracing, leading to more accurate estimates of the QEs
and a refinement of the tangent-plane approximation. In the
theoretical scenario of perfect DTM and image features

location (infinite resolution and error-free), and when the
initial guess of the camera pose is not too far from the true
pose, such a scheme would converge to the true camera
pose and ego-motion parameters, as will be empirically
shown in Section 4. The resulting algorithm exacts, never-
theless, a high price in terms of computational cost. Indeed,
in spite of having been a topic of continuous research in the
computer-graphics community, ray-tracing algorithms are
still considered to be involved and time consuming.
Consequently, and taking into account real-time considera-
tions, it is desirable to reduce the number of ray-tracing
steps as much as possible. This observation leads to an
alternative scheme based on internal and external iterations.
The internal iterations are the Newton iterations discussed
above. During these iterations, the QEs and tangent planes
are kept constant and the algorithm proceeds until a
convergence criterion has been met. When this occurs, an
external iteration is performed using the best available pose
and motion data. During this iteration, ray-tracing is used to
compute a new set of estimated locations and of tangent
planes. The overall algorithm continues until the estimated
locations converge.

3.2 Dealing with Outliers

In order to handle real data, a procedure for dealing with
outliers must be included in the implementation. Three
kinds of outliers should be considered:

1. outliers present in the correspondence solution (i.e.,
”wrong matches”),

2. outliers caused by the terrain shape, and
3. outliers caused by relatively large errors between the

DTM and the observed terrain.

The latter two kinds of outliers are illustrated in Fig. 5. The
outliers caused by the terrain shape appear for terrain
features located close to large depth variations. For
example, consider two hills, one closer to the camera, the
other farther away, and a terrain feature Q located on the
closer hill. The ray-tracing algorithm using the erroneous
pose may “miss” the proximal hill and erroneously place
the feature on the distal one. Needless to say, the error
between the true and estimated locations is not covered by
the linearization. To visualize the errors introduced by a
relatively large DTM-actual terrain mismatch, suppose a
building was present on the terrain when the DTM was
acquired, but is no longer there when the experiment takes
place. The ray-tracing algorithm will locate the feature on
the building, although the true terrain-feature belongs to a
background that is now visible.
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Fig. 5. Outliers caused by terrain shape and DTM mismatch. CT and CE
are true and estimated camera frames, respectively. Q1E and Q2E are

outliers caused by terrain shape and by terrain/DTM mismatch,

respectively.



As discussed above, the multifeature constraint is solved
in a least-squares sense for the pose and motion variables.
Given the sensitivity of least-squares to incorrect data, the
inclusion of one or more outliers may result in the
convergence to a wrong solution. A possible way to
circumvent this difficulty is by using an M-estimator, in
which the original solution is replaced by a weighted
version. In this version, a small weight is automatically
assigned to the constraints involving outliers, thereby
minimizing their effect on the solution. See [17] for further
details about M-estimation techniques.

4 EXPERIMENTAL RESULTS

Experiments were performed to verify the applicability,
accuracy, and robustness of the algorithm. Two types of
experiments were conducted: the first using synthetic data
and the second using an experimental setup where data
was obtained by a real camera focusing on a terrain model.

4.1 Simulation Results

In this experiment, a virtual-terrain of 300� 300 meters
was synthesized. The terrain contains patches of varying
slopes representing hills of various heights, the tallest
one being 60 meters high. The terrain also contains a
15� 15� 25 meter ”box” representing a man-made build-
ing. The terrain was then discretized to produce a model,
i.e., the DTM, with a one-meter spatial grid. After
computing the DTM, the synthetic terrain was modified
by changing the location of the building so as to introduce a
substantial terrain-DTM mismatch (see Fig. 6). Images from
the terrain were obtained by using a virtual camera from
various positions and orientations with respect to the
terrain. A collection of 100 different correspondence pairs
was analytically derived. The a priori estimate of the
position and orientation of the camera was obtained by
adding an error of approximately 17 m and 3 degrees.

Fig. 7 shows a typical example of the convergence of the
algorithm. One can see that convergence is achieved after
four external iterations. When the synthesized correspon-
dence measurements were error-free, the estimation process
was able to completely remove the error from the pose
initial guess. The outliers caused by the mislocated building
did not deteriorate the estimate accuracy due to the
utilization of the M-estimator. When i.i.d. Gaussian noise
of � ¼ 0:001 (roughly equivalent to 0.5 pixels for a 500� 500

camera) was added to the correspondence measurements, a
less accurate estimate was obtained for the camera pose.
However, as shown in Fig. 7, convergence speed was not
significantly affected. During the tests, 30 internal iterations
were performed for each external one, although it is clear
that fewer iterations would have produced essentially the
same result. In the face of measurements error, the obtained
accuracy depends on different parameters of the confronted
scenario: the number of corresponding features, the image
and DTM resolutions, the structure of the visible terrain,
and the length of the ego-motion baseline. Lerner et al. [22]
present an extensive simulation and detailed discussion
regarding the effects of these parameters on the algorithm
performance.

4.2 Robustness of the Algorithm Against Large
Errors in the Initial Guess

The optimization scheme used by the algorithm can only
search for a local minimum. Since the problem is non-
convex in the general case, there may be scenarios in which
the camera will converge to the wrong pose. These
scenarios are characterized by a large bias between the
visible patch from the scene and the apparently visible
patch taken from the DTM. The severity of this bias cannot
be determined absolutely, but rather with respect to the
“frequency” of the observed terrain: Rough mountainous
terrain (that contains high frequencies) will be more
sensitive to small biases compared to a terrain with soft
and smooth hills (that only contains low frequencies).

Three factors should be considered for the characteriza-
tion of such problematic scenarios: the magnitude of the
initial guess error, the distance between the camera and the
observed features, and the roughness of the terrain. The
second factor is very important when considering angular
errors in the camera pose. In such cases, the bias magnitude
of the scene features will be larger for distant features.

In order to check the robustness of the algorithm, a series
of simulations was conducted. A DTM of real terrain with
10 m grid spacing was used [1]. In light of the above
observations, a rough terrain from Montana’s Rocky
Mountains was chosen to examine the algorithm in
relatively difficult scenarios (see Fig. 8a).

Five virtual cameras were placed in different locations
and orientations and about 225 feature correspondences
were analytically derived for short baseline ego-motion of
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Fig. 6. (a) The virtual terrain and (b) the DTM constructed from this
terrain (grid-spacing is coarser than in the experiment, for visualization
purposes). Note that the building on the virtual terrain (the box at the
bottom of (a)) has been moved to the gray bump at the center of
the DTM.

Fig. 7. (a) Translational and (b) rotational errors of the calculated pose
as a function of the number of iterations. The symbols I, II, III, and IV
denote external iterations. Each iteration contains 30 internal iterations.
The blue solid line is an error-free scenario while the red dotted line is a
scenario with Gaussian error of 0.5 pixel S.D. Units are meters and
radians.



20 m along the camera Z direction. In each test of each
virtual camera, a variety of positional errors (30 m to 300 m)
and angular errors (1 degree to 10 degrees) in the pose
initial guess were randomly generated. The percentages of
success under the tested error magnitudes are shown in
Figs. 8b and 8c.

As can be seen, convergence to the true pose was
obtained for any initial guess error smaller than 100 m of the
camera position and 4 degrees of its orientation. As
expected, camera 5 is the most sensitive to angular error
due to its large distance to the terrain. Camera 2, on the
other hand, is very sensitive to translational error. This may
result from its low altitude, which leads to a relatively small
observable patch, which is not very informative.

Performance was also tested using larger baselines: 20 m
and 100 m along the camera Z direction and along the
camera X direction. However, similar results were obtained
for all types and magnitudes of baselines. This is in line
with the former argument regarding the factors that should
influence the algorithm robustness. The baseline does not
influence the above-mentioned bias and, thus, should not
influence the algorithm robustness.

Errors with magnitude of 100 m and 4 degrees, as

mentioned above, are considered huge for airborne vehicles.

As was mentioned before, the accuracy of the pose

computed by the proposed algorithm depends on different

parameters: the number of corresponding features, the

image and the DTM resolution, the structure of the terrain

and the ego-motion baseline (see [22]). In most realistic

scenarios, the average error is expected to be approximately

10 m and 0.6 degree (compare, for example, to the errors in

Fig. 7 and the results in Section 5). Therefore, in case it is

desired to keep the errors under 15 m and 1 degree, for

example, the vision-based algorithm should be activated in

time intervals that prohibit the inertial navigation system to

drift the pose by more than 5 m and 0.4 degrees. In what

follows, the minimal rate for keeping the navigation error

within the above-mentioned margins is computed. An

example for available consumer off-the-shelf navigation

systems is the MIDG-II series IMU/INS system of Micro-

botics (see http://www.microbotics.com). Using this system

for pure inertial navigation, the orientation solution diverges

in 0:05�=s=
ffiffiffiffiffiffi
Hz
p

. This leads to accumulated angular error of

0:05 �
ffiffiffiffiffiffi
�t
p

after �t seconds. As a result, an interval of no

more than 0:4=0:05ð Þ2¼ 64 seconds should be kept for the

desired orientation accuracy. As for the positional error, the

inertial drift can be expressed by �p ¼ �a ��t2=2, where �a

is the acceleration error, which is approximately 0:003 m/s2

in the MIDG-II system. Thus, an interval of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � 5=0:003

p
’

57 seconds is required. To conclude, by activating the

proposed algorithm at a minimal rate of 1=57 Hz, the

expected navigation errors will be kept far lower than its

robustness breaking point. Therefore, the algorithm can be

practically used for realistic navigation systems even when

confronting rough terrains such as the Rocky Mountains and

even when flying far away from the observed features.

4.3 Lab Experiment Results

Lab experimentation was performed using a real 3D model
of a terrain and real images obtained by a camera. The
dimensions of the model were 50� 77 cm with elevation
variations as high as 24 cm (see Fig. 9a). A laser-based
3D scanner was used to capture the terrain and build a
DTM with a 1 cm spatial grid (see Fig. 9b).

In each experiment, the camera moved along a trajectory
while attached to a robot manipulator. This configuration
allowed moving of the camera in a controlled manner while
also providing true measurements for the pose of the
camera at all time instances. Fig. 10 shows examples for two
of the trajectories evaluated. The first trajectory (a in the
figure) contains mostly translational camera motion with

1412 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 9, SEPTEMBER 2006

Fig. 8. The robustness simulations were conducted for five virtual cameras located in different poses. (a) A DTM of Montana’s Rocky mountains was

chosen to examine the algorithm on relatively rough terrain. (b, c) The percentage of success in converging to the true camera pose for different

magnitudes of (b) translational and (c) angular errors in the algorithm’s initial guess. The red lines correspond to camera 1, green to camera 2, blue

to camera 3, black to camera 4, and the dotted line to camera 5.

Fig. 9. (a) A 3D terrain model of horizontal dimension 50� 77 cm.

(b) The DTM was constructed by using a laser-based 3D-scanner. The

spatial grid was 1 cm (the one in the figure has a coarser grid for

visualization purposes).



the orientation held essentially constant. For the second
trajectory (b in the figure), the position and the orientation
of the camera were changed in a significant manner.
Although highly accurate “ground-truth” data for the
trajectory of the camera was obtained from the robotic
manipulator, this trajectory was corrupted using a simu-
lated error model so that the “true” and the a priori
trajectories drifted away with time. The error model was
quite extreme: 7.4 mm/s and 5 degrees/s, respectively. In
order to compensate for this drift, the pose/motion
estimation algorithm was called at 3/2 Hz rate. The two
images used for the processing were the latest one available
and a one-second-old frame. The a priori information was
derived from the available drifted pose at these two frames.
When used for a real navigation system, it might be
preferable to use an adaptive time gap for the two frames,
which takes into account the estimated velocities and the
already-reconstructed trajectory. As was mentioned in the
previous section, the magnitude of translation between the
two frames is important to the accuracy and stability of the
algorithm.

During the experiments, gray-scale images of 1024� 768
were obtained using a Dragonfly video camera at a rate of
15 frames per second. Correspondence between about
400 features was derived using the Lucas-Kanade tracking
method ([26], [6]). Features were not selected using an
image-dependent algorithm but, rather, by using a regular
grid spanned over the image plane. A typical frame and its
features correspondence are shown in Fig. 11.

As shown in Figs. 12a and 12b, the algorithm converged
to reasonable estimates for the navigation parameters along
the two trajectories described above. The figures show the
ground truth together with two trajectories computed using
the error model: The first contains no updates while the
second was updated periodically by using the pose/motion
algorithm, at a 3/2 Hz rate. The figures clearly show that
the corrected path remains close to the true path along the
whole trajectory.

Fig. 13a shows the position errors of the drifted and
corrected paths for experiment b. It can be seen that the
errors of the corrected path are kept small while the errors
in the uncompensated path increase gradually. Fig. 13b
shows the orientation errors for the two computed paths.
The sawtooth-shaped graph of the corrected path is
characteristic: The orientation errors accumulate between
updates but are strongly reduced each time the algorithm
is used.

5 A COMPARISON WITH AN SFM AND A

REGISTRATION ALGORITHM

As mentioned in the introduction, the algorithm introduced
in this paper is not the only possible approach to the
problem at hand. An alternative is to divide the problem
into subproblems and use existing algorithms as building
blocks for a solution. For instance, one can formulate a two-
step approach by first estimating the motion and structure
using correspondences pairs and an SFM algorithm and
then finding the pose by matching the reconstructed
structure to the DTM. The purpose of this section is to
present the implementation details for an algorithm as such
and then compare its performance with the new one-step
formulation. As the experiments confirm, the fact that the
novel algorithm uses the DTM to constrain simultaneously
pose and motion computation is advantageous over the two-
step alternative.

5.1 The “SFM+ICP” Algorithm

In this section, the implementation details of the two-step
algorithm are presented. Starting from correspondence
pairs in two frames, numerous algorithms have been
developed and studied for estimating ego-motion and
reconstructing the scene. The algorithm presented in [30]
was selected for the first step. In this work, the camera ego-
motion was first derived and the structure of the scene was
later reconstructed using the corresponding pairs and the
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Fig. 10. Two of the tested trajectories. Trajectory a is mostly a translation

while trajectory b has significant changes in orientation.

Fig. 11. (a) A frame taken from one of the camera’s trajectories. (b) The

estimated correspondence of 400 features taken from a 20� 20 regular

grid over the image plane of this frame.

Fig. 12. Experimental results for trajectories a and b (see Fig. 10). The

diverging trajectories use the error model and no updates. The updated

paths use the pose/motion algorithm to bound divergence.



estimated motion. Being visual-based, this algorithm suffers
from the velocity versus structure-scale ambiguity dis-
cussed in the introduction. Additionally, the algorithm
makes no use of the DTM information and, hence, can only
estimate camera motion.

Once the structure has been recovered, the “Iterative
Closest Point” algorithm (ICP) can be used to estimate pose.
By using the ICP algorithm presented by Chen and Medioni
[9], the Euclidean transformation that best matches a set of
points to a given surface can be estimated. In the present
context, the points of the reconstructed structure given in
the coordinates frame of the camera can be fed into the
ICP algorithm to find the transformation, giving the best
matching with the actual terrain surface as encoded by the
DTM. Given that the SFM algorithm yields the scene
structure only up to an unknown scale-factor, a slightly
modified version of ICP is required, in which a similarity
transformation is optimized instead of the more usual
Euclidean one. The camera pose and the scale factor can be
extracted easily from the estimated similarity transforma-
tion, and the scale factor ambiguity can be removed from
the translational component of the ego-motion.

5.2 Performance Comparison

The performance of the algorithm presented in this paper
was compared to the two-step approach discussed above by
performing a large number of numerical experiments. In
order to have a completely controlled environment, a
3� 3 kilometer synthetic terrain was created, similar to

the one used in the previous section (see Fig. 14b). Several
different views were obtained using a virtual camera
constrained to 600 meters above the terrain. A pure
translation was selected as the virtual ego-motion, with a
relatively large baseline of p12k k ¼ 150m. Observe that the
length of the baseline should have a similar effect on both
approaches to the problem.

Performance was studied under different scenarios. Each
scenario was characterized by the following parameters:
The grid spacing of the DTM (also referred to as the
DTM resolution), the altitude variations on the observed
terrain, the resolution of images obtained by the virtual
camera, and the number of corresponding pairs being used
by the algorithm.

At each simulation, all parameters except for the one
being tested were kept at predefined values. For example, in
the default scenario, the terrain was scaled to contain 600 m
elevation differences (Fig. 14b) and a DTM with a 50 m
spatial grid was used as a model of the terrain (Fig. 14e).
The camera is assumed to consist of 500� 500 pixels and a
maximum of 400 corresponding pairs were analytically
derived prior to the calculations.

Each of the simulations described below studies the
influence of a different parameter. A variety of values were
examined and 150 random tests were performed for each
tested value. For each test, the camera position and
orientation were randomly selected (except for height over
the terrain). Additionally, the direction of the ego-motion
translation was chosen at random.

Fig. 15 shows the results of the first simulation where the
resolution of the DTM was varied and its influence on the
accuracy was studied. All parameters were set to their
default values except for the DTM resolution, which was
varied from 10 m up to a worst case of 100 m between
adjacent grid points (see Figs. 14d, 14e, and 14f). Figs. 15a
and 15b show that better estimates for the camera position
and orientation were obtained by using the single-step
algorithm, for all tested resolutions. Better estimates were
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Fig. 13. (a) Position errors and (b) orientation errors of the drifted path
(dotted line) and of the corrected path (solid line) of the second
trajectory.

Fig. 14. The synthetic terrain was scaled to obtain a variety of elevation

variations: (a) 800 m, (b) 600 m, (c) 300 m. Different DTMs were

obtained for terrain (b) by sampling the terrain under different spatial

grids (resolutions): (d) 100 m, (e) 50 m, (f) 30 m.



obtained for most ego-motion parameters as well, although
this advantage becomes marginal as the DTM grid spacing
increases (see Figs. 15c and 15d). This behavior was
expected since the advantage of the single-step algorithm
stems from the utilization of the DTM data for the ego-
motion computation. Notice that the new algorithm
strongly outperforms the two-step procedure when the
grid-spacing is 40 m and better—a level compatible with
modern DTM databases.

The next simulation demonstrates the relative impor-
tance of different terrain structures on the achievable
accuracy. According to the discussion in Section 2.5, in the
extreme scenario of flying above a planar terrain, the
observed ground features do not contain the required
information for the camera pose derivation and the system
of equations becomes singular. As the slope and the
variability of the terrain increases, the features become
more informative and better estimates can be derived. For
this simulation, the virtual terrain elevation differences
were scaled to vary from 300 m to 800 m (Figs. 14a and 14c).
As can be seen in Fig. 16, better estimates for the camera
pose and motion were obtained by using the single-step
algorithm, when elevation differences were greater than
350 m. However, as the terrain flattens, the advantage of the
single-step algorithm can easily change to a disadvantage.
Motion estimation is not directly influenced by the structure
of the terrain when using the SFM algorithm. The single-
step algorithm, on the other hand, estimates the pose and
motion simultaneously. Hence, in a noninformative
scenario of relatively flat terrain, pose and motion are
drifting simultaneously, leading to an overall larger drift.
As a demonstration of the above property, one can see how
the gap between the two algorithms becomes small and
even favors the SFM+ICP for low elevation differences.

As could be expected, performance is improved for
both algorithms as image resolution increases. In the third
set of simulations, the image resolution was varied from a
low resolution of 200� 200 to a high resolution of
1; 000� 1; 000. Fig. 17 shows that the single-step algorithm

achieves better pose accuracies for all resolutions. How-
ever, the gap between the two algorithms becomes small
for very high resolutions and a small difference actually
favors the SFM+ICP algorithm in ego-motion accuracies,
as can be seen in Figs. 17c and 17d. This characteristic
could be expected since the “fusion” of noisy DTM
information in the motion computation can improve or
damage the obtained accuracy compared with the SFM,
which ignores this information. In the theoretical scenario
of infinite image resolution, it is clear that a perfect
motion estimate can be obtained using SFM (excluding
translation scale), while the single-step algorithm will still
diverge due to errors encoded in the DTM.

The final simulation compares the two algorithms for
different numbers of corresponding features. The features
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Fig. 15. Pose and ego-motion estimation accuracy using the single-step

algorithm (solid line) and the SFM+ICP algorithm (dotted line) for

different DTM resolutions. Resolution varies from 10 m to 100 m.

(a) Position errors, in meters. (b) Orientation errors, in radians.

(c) Motion translation errors, in meters. (d) Motion rotation errors, in

radians.

Fig. 16. Pose and ego-motion accuracies obtained by the single-step
algorithm (solid line) and the SFM+ICP algorithm (dotted line) for
terrains with varying elevation differences (from 300 m to 800 m).
(a) Position error, in meters. (b) Orientation error, in radians. (c) Motion
translation error, in meters. (d) Motion rotation error, in radians.

Fig. 17. Pose and ego-motion accuracy obtained by the single-step
algorithm (solid line) and the SFM+ICP algorithm (dotted line) for
different image resolutions (from 200� 200 to 1; 000� 1; 000).
(a) Position error, in meters. (b) Orientation error, in radians.
(c) Motion translation error, in meters. (d) Motion rotation error, in
radians.



were not selected using an image-dependent selection
algorithm but, rather, from a regular grid that was spanned
over the image plane, where the resolution of the grid varies
from 4� 4 (16 features) up to 20� 20 (400 features); see
Fig. 9b for an illustration of this grid. Fig. 18 shows that the
single-step algorithm achieves better estimates for the pose
and motion parameters when at least 64 corresponding
features were available. However, the gap between the two
algorithms converges for large numbers of features. This
result is due to the Gaussian error assumption on the image
measurements that leads to improving the estimate of the
navigation parameters as the number of features increases.

6 CONCLUSIONS AND FURTHER WORK

This paper has introduced an algorithm for computing the
pose (position and orientation) and motion (translation and
rotation) of a calibrated camera with respect to an external
reference system. The approach uses correspondence
between feature points in two images and the information
provided by a DTM to build a simultaneous constraint on
the pose and motion variables. The constraint requires
a priori information about the pose of the camera in the first
frame and assumes that the DTM can be linearized in the
sense discussed in Section 2. The final constraint is
nonlinear and, hence, in general, needs to be solved by
using numerical techniques. The constraint characterizing
the two views plus DTM geometry presents several
interesting features. First, at least six correspondence points
are required to solve the different variables. Second, the
formulation includes epipolar geometry, showing that the
DTM effectively encodes additional valuable information
about the 3D scene. Third, the constraint does not suffer
from the ambiguity that haunts the SFM problem. A study
of the degenerate scenarios was also presented. In addition
to the theoretical results, the paper contains implementa-
tions details for the algorithm, including an M-estimator
scheme for outliers elimination. Next, rather thorough

numerical studies on synthetic and model-data are pre-
sented. The paper closes by comparing the performance of
the novel algorithm to an alternative two-step algorithm
constructed from “state of the art” building-blocks. A clear
advantage has been shown for the novel algorithm in most
reasonable scenarios.

Research is under way on several different aspects of the
work presented here. First, an error analysis is being
performed (see the forthcoming publication [21]) to under-
stand the accuracy limitations of the algorithm. In parti-
cular, the balance between position and orientation errors
requires further understanding. Second, the counterpart of
the present algorithm using optical flow is of interest and
can be derived along the lines of Section 2. Third, the fact
that position and translation appear linearly in the con-
straints strongly suggests the possibility of using the current
scheme in a filtering scheme. It seems that fusing the
approach with inertial navigation may provide an effective
and accurate inertial/optical navigation algorithm.
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