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An Automated Method for Analysis of Flow
Characteristics of Circulating Particles From
In vivo Video Microscopy
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Abstract—The behavior of white and red blood cells, platelets,
and circulating injected particles is one of the most studied areas
of physiology. Most methods used to analyze the circulatory
patterns of cells are time consuming. We describe a system named
CellTrack, designed for fully automated tracking of circulating
cells and micro-particles and retrieval of their behavioral char-
acteristics. The task of automated blood cell tracking in vessels
from in vivo video is particularly challenging because of the blood
cells’ nonrigid shapes, the instability inherent in in vivo videos, the
abundance of moving objects and their frequent superposition.
To tackle this, the CellTrack system operates on two levels: first,
a global processing module extracts vessel borders and center
lines based on color and temporal patterns. This enables the
computation of the approximate direction of the blood flow in each
vessel. Second, a local processing module extracts the locations
and velocities of circulating cells. This is performed by artificial
neural network classifiers that are designed to detect specific types
of blood cells and micro-particles. The motion correspondence
problem is then resolved by a novel algorithm that incorporates
both the local and the global information. The system has been
tested on a series of in vivo color video recordings of rat mesentery.
Our results show that the synergy between the global and local
information enables CellTrack to overcome many of the difficulties
inherent in tracking methods that rely solely on local information.
A comparison was made between manual measurements and
the automatically extracted measurements of leukocytes and
fluorescent microspheres circulatory velocities. This comparison
revealed an accuracy of 97%. CellTrack also enabled a much
larger volume of sampling in a fraction of time compared to the
manual measurements. All these results suggest that our method
can in fact constitute a reliable replacement for manual extraction
of blood flow characteristics from in vivo videos.

Index Terms—Blood cells, leukocyte, microcirculation, mi-
croscopy, motion correspondence, segmentation, tracking.
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1. INTRODUCTION

NALYSIS of the behavior of circulating blood cells and in-

jected particles in in vivo video microscopy is paramount
to micro-hemodynamics research. Manually performed anal-
ysis is time consuming and limited in the number of measure-
ments that can be made and in the reproducibility of the results.
Hence, a robust automated method for identification, tagging
and tracking of blood cells as well as measurements of cell ve-
locities and microvascular shear rates may prove valuable for in
vivo video microscopy analysis. The difficulty in developing a
method for blood cell tracking stems from the cells’ nonrigid
shapes and the noise, cluttering and abundance of moving ob-
jects that disappear and reappear sporadically. Another level of
difficulty is added by the video instability and the defocusing
that occurs in moving organs, which is intrinsic to videos taken
during in vivo microscopic studies.

A. Background

Research dealing with image processing of blood vessels and
blood circulation can be classified into algorithms performed on
the vessel level and algorithms performed on the cell/particle
level. Analysis on the vessel level includes tasks such as seg-
mentation of blood vessel regions [1]-[3] and vessel centerline
extraction [4], [5]. Analysis and tracking of circulating cells/par-
ticles includes the detection and/or tracking of leukocytes (white
blood cells) [1], [6]-[10], and erythrocytes (red blood cells)
[11]. Cell tracking methods can be further divided into edge-de-
tection-based methods that use active contours in order to track
cells, and feature-based methods. In [6] and [8] a shape and
size constrained snake model is introduced for tracking leuko-
cytes. Good performance was reported. However, the algorithm
is based on user interaction for initialization of the leukocyte
center position, which is not feasible for investigation of hun-
dreds of objects in video sequences. Another shortcoming of the
system is that it tracks one leukocyte at a time. In a recently pub-
lished work [12], a method for multicell detection and tracking
is described. In contrast to other methods, here the initializa-
tion of cell position is performed automatically. This is done by
exploiting the characteristic shape and intensity of cells. In an-
other method for leukocyte tracking, video images are registered
using template matching with normalized cross correlation, fol-
lowed by segmentation of vessel regions using a pixel’s gray
level temporal variance [1], [13]. Hopfield networks are then
used for coupling fragmented leukocytes trails. Other methods
for detection of leukocytes and fluorescent lymphocytes include
[71, [9], [10]; however, they do not perform tracking.
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B. General Description of Our System

The CellTrack system is an automated software system for
robust tracking of multiple particles in blood flow. It has been
designed and tested on a variety of in vivo color video record-
ings of rat microcirculation using fluorescent reflected light mi-
croscopy, or transmitted light microscopy. The system extracts
the following information from in vivo video microscopy: vessel
topology and diameter, vessel center-line, blood flow direction,
leukocyte or microsphere velocity and shear rate. The number
of cells or particles in the studied vessels are also observed and
tagged. The CellTrack system has two main modules.

1) Global processing module, performing analysis on the
vessel level:
* image registration (Section III-A);
» vessel segmentation (Section III-B);
* computation of the virtual flow (Section III-C).
2) Local processing module, performing analysis on the cell
level:
¢ cell detection (Section IV-A);
* resolving the motion correspondence problem (Sec-
tion IV-B);
« tracking of leukocytes/microspheres and computing
their velocity (Section IV-B).

The main modules in the system are summarized in Fig. 1. The
contributions of this paper are in the following aspects.

e In vivo color video sequences of rat mesentery were
generated and analyzed as opposed to gray scale videos,
which are analyzed by most automated cell tracking
methods. The advantage of using color video sequences
is twofold. First, the color information can be used to
augment the accuracy of the cell and particle detection
algorithm. Second, using different colorings for different
types of objects (e.g., microspheres and leukocytes) may
enable simultaneous tracking of more than one type of
object in the same video sequence.

e A description of a new vessel segmentation algorithm that
is based on artificial neural network (ANN) classification.
The algorithm utilizes a combination of color texture as
well as temporal texture-based features. We tested the al-
gorithm on a variety of in vivo color video sequences and
compared it to other segmentation algorithms. The results
demonstrate the superiority of the method described here.

* An algorithm for efficiently computing an approximation
of the blood flow direction (termed ’virtual flow’) in each
location inside a vessel based on the vessel topology and
axial direction is described.

» The Chetverikov particle image velocimetry method
[14], [15] was enhanced and applied to resolve the mo-
tion correspondence problem of circulating leukocytes
and microspheres.

» The tracking accuracy was tested on two types of targets,
leukocytes and microspheres, in a variety of scenarios. In
addition to standard tracking characteristics such as ob-
ject location and velocity, the method can also compute
other characteristics, for example, shear rate between the
fluid layers and the vessel wall. These computer generated
measurements were compared to manual measurements,
yielding an accuracy of 97%.
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Fig. 1. System flow chart.

II. IN Vivo VIDEO MICROSCOPY — EXPERIMENTAL SETUP

A microcirculation study was performed on rat mesentery.
The mesentery is a thin transparent membrane that supports the
blood vessels feeding the bowel. In anesthetized rats a section
of intestinal mesentery was exteriorized through a midline ab-
dominal incision, draped over a heated transparent pedestal, and
covered with a nylon wrap. Capillaries and postcapillary venules
were selected for observation.

A. Videomicroscopy

All observations were done using an Olympus trinocular
fluorescent microscope BX-60 (Tokyo, Japan) equipped with
trans- and epi-illumination. Experiments were recorded with a
Sony 3CCD color video DXC-950P camera coupled to the mi-
croscope and connected to a Sony digital videocassette recorder
(DVCAM DSR-30P), and in parallel to a color video monitor
(Mennen Medical). Two different types of video recordings
were generated, as described in [16].

1) Type I videos: Green fluorescent microspheres (1 pm di-
ameter) (Molecular Probes — USA) were injected into the
systemic circulation at a rate of 0.1 ml/min by an infu-
sion pump. To enable the visualization and identification
of the blood vessels, they were counter-stained by injec-
tion of fluoresceine or Rhodamine G6 (vital fluorescent
colorants). In order to see the microcirculatory behavior
of the circulating particles in a nontransparent solid organ,
epi-illumination with a fluorescent blue light was used
(480 nm wave length); for an example, see Fig. 2.
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Fig. 2.
The white arrows were added to mark the locations of the microspheres.

Small region extracted from four consecutive frames of a Type I in vivo color video sequence. The circulating microspheres are colored in green fluorescent.

Fig. 3.
circulating leukocytes.

2) Type II videos: These videos recorded a series of exper-
iments that studied the behavior of unstained circulating
leukocytes in the vascular bed of the mesenteric microcir-
culation. Their rolling adhesion to the vessel’s walls was
measured; for an example, see Fig. 3.

All the algorithms described in this paper were implemented
and tested on both types of video recordings (five Type I
videos and four Type II videos). One video sequence of each
type was used in order to fine tune the CellTrack parameters.
When applied on the rest of the respective video sequences,
the same set of parameters was used. We have made examples
of both types of in vivo video sequences publicly available at
http://www.cs.technion.ac.il/rudzsky/~celltrack1.html.

III. GLOBAL PROCESSING MODULE

The global processing module deals with the extraction
of information on the vessel level. It incorporates three sub-
modules: registration, vessel segmentation, and “virtual flow”
computation.

A. Registration

Prior to tracking, it is important to compensate for the image
background motion, which occurs between sequential frames
as a result of respiratory movements, and compute the offset
between the frames. Let I; be an image frame corresponding
to a moment ¢ in time. We performed the following procedure
to calculate the global offset between a reference frame R and
another frame I. Let B/ ww and B, ) be quadratic N x N
blocks extracted from R and T with centers at (u, v) and (a, b),
respectively (in the application we use N = 30 pixels; how-
ever, tests with other values of N yielded similar results as
long as N > 20). An estimation of the offset between R and
I can be computed by tracing BEW}) in I. This is done by
finding a block B 3 in I that maximizes the normalized cross
correlation (NCC) between the two blocks [1]. Let 4, ) and
H(a,b) be the mean of the pixel values in block BE ) and block

u7

Small region extracted from four consecutive frames of a Type II in vivo color video sequence. The white arrows were added to mark the locations of

B(a,p), respectively. The normalized cross correlation between
two blocks is

NCC(B(a4), Blyy) =
STtk bL) — gy [R(ut-ky 04D = 1)
K,

{ ;[I(a—l—k, b+1) — ()2 kz[R(quk, 041 = prun] 2}
ey
where indexes k and [ are used for running over all the pixels in
the blocks. The offset r = (a — u,b — v) between By, ) and
Bi(q,p)» which maximizes NCC(Bq 3), BEu,v) ), is an estimation
of the offset between R and I. The search for block B, p) is not
done on the entire image /. Instead, we assume that the offset be-
tween two frames does not exceed a maximal offset. Notice that
some blocks are more appropriate for registration than others;
e.g., a block that contains contrasted colors is likely to yield
better registration accuracy than a monotonic block. To accom-
modate for this, the block selection procedure includes the fol-
lowing steps. The Canny edge detector [17] is run on the ref-
erence image, R. For a block to be valid, the number of pixels
that belong to edges must be larger than a predefined threshold.
The Canny edge detector threshold is set automatically as fol-
lows: 1) A derivative magnitude image is computed. 2) The his-
togram of this image is extracted. 3) The upper threshold is set
to the minimal number for which more than 70% of the pixels
in the histogram are classified as not having an edge. The lower
threshold is 0.4 x the upper threshold. This procedure reduces
the chance of nonoptimal thresholding. We also performed this
block selection procedure using the Harris corner detector [18].
Our motivation was to test whether the uniqueness of corner
motion versus ambiguity of edge motion improves the results.
In practice, both approaches yielded similar results. In order
to make the registration more robust, the final offset between
frames R and [ is the median of offsets between n different pairs
of blocks (in the application n = 10 was used). Differences that
might occur between frames, in addition to background motion,
include image blurring as a result of the camera getting out of
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focus. This is not resolved by the above registration procedure.
Algorithms for solving this have been suggested [19], but due
to their substantial running time [8] (several minutes for regis-
tration of two frames), they are not practical for registration of
entire video sequences. Other registration algorithms, such as
the ones described in [20], [21], might further enhance regis-
tration accuracy. In practice, the global registration procedure
described here was able to compensate for most of the motion
effects in the video sequences under study.

B. Vessel Segmentation

Accurate vessel segmentation can enhance the precision of
cell tracking. It enables the restriction of regions where targets
should be tracked, thus reducing both running time and target
false positives. The task of image segmentation has received
much attention in the literature [22]-[24]. Most of the proposed
algorithms attempt to identify specific regions in an image using
edge-based and/or region-based methods [25]. A recent study
described a snake model approach for detection of vessel bor-
ders [3]. These algorithms rely mostly on the texture, color and
intensity of the image. However, when performing segmenta-
tion of frames taken from a video sequence it is also possible
to utilize temporal information to augment the accuracy of seg-
mentation. A vessel segmentation approach that utilizes the tem-
poral nature of in vivo video was suggested in [1]. It is based on
the assumption that the gray level of a pixel where blood flows
will vary from frame to frame while that of regions outside the
vessel, e.g., tissues, will basically stay constant. In [1], the tem-
poral variance of a pixel’s gray level was used in order to quan-
tify the amount the pixel’s intensity changed through a sequence
of frames. The temporal variance of a pixel’s gray value in a se-
quence of images is defined as

2 RS 2
op\L,Y) = — It Z, Yy _IT z,y (2)
r(z,y) = ;( (z,9) = Ir(x,y))
where I; is the tth frame and the temporal mean of a pixel is
defined as

- 1 —
Ir(z.y) = — > Ti=.y). 3)
t=1

A temporal information-based segmentation can now be per-
formed in the following way: o2 (z,y) is computed for each
pixel in the image, and if it exceeds a predefined threshold, the
pixel is classified as a vessel region; otherwise, it is identified
as a tissue region. When tested on our video sequences this
temporal segmentation yielded unsatisfactory results (see Sec-
tion V-A). This may be explained by local tissue deformations
during respiratory motion that were not compensated for by the
global registration process depicted in Section III-A. Another
factor leading to wrong pixel classification could be the motion
of fluids outside the vessel that contributes to a high temporal
variance in regions outside the vessel. We, therefore, opted for a
synergistic approach that aims to utilize temporal patterns com-
bined with the information inherent in the image’s color and
texture.

Our algorithm uses artificial neural networks (ANN)
[26]-[28] which are trained to classify a pixel into either vessel
or tissue classes, based on color as well as temporal features.
The trained ANN can then be used for segmentation by simply
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traversing over all the pixels in an image and classifying them.
More formally, let I;, 1 < t < n, be a sequence of frames and T
be the respective mean image in which each pixel is computed
as in (3). Igr, I, Ip and Igg are the respective RGB and
gray level mean images. IR is created by converting the
original RGB image into an intensity image, i.e., eliminating
the hue and saturation while retaining the luminance. 0% is the
temporal gray value variance over all pixelsin I;, 1 <t < n,
as defined in (2). Wr(z,v), Wa(z,y), Wg(z,y), War(z,y)
and Wy, (z,y) are | x | window patches, (I = 7 pixels),
obtained from Ig, I, Ip, Igr and U%, respectively with
window centers at position (x,y). For training and testing of
the ANN classifier a data set, Segmentation Set, was created in
which each element V consisted of five window patches:

V:[WR($7 y), WG($7 y)/ WB(z"/ y)7 WGR(z7 y)7 thp(x7 y)]
“)
These window patches were used for extraction of classifica-
tion features. The first four windows were used for obtaining
color features; the fifth was used for obtaining temporal features.
The Segmentation Set contained a total of 400 elements, 200 of
the “vessel” class and 200 of the “tissue” class, depending on
the type of region in which the window’s center pixel resided.
Half of the elements in each class were used as a training set
and the other half as a test set. It has been argued that high
level features may substantially improve classification accuracy
[29]. Consequently, we did not train the ANN classifier on the
“raw data,” i.e., on the pixel intensity values in each element.
Instead, the ANN was trained on high level features that were
extracted from each element. The feature extraction was per-
formed using a co-occurrence matrix, a statistical tool for ex-
traction of second order texture information from images [30],
[31]. For an image I with IV gray scale values [0,1,..., N —1],
the corresponding co-occurrence matrix P, is an N X N matrix.
In this matrix each element P, (i, j) represents the probability
of the co-occurrence of values ¢ and j in image I separated by
a vector v = (éx, by). A matrix P, with a vector v, which con-
nects adjacent pixels, can describe a texture fairly well. Hence,
we used the following compositional co-occurrence matrix, in
which each element P(4, j) was computed as follows:
P (,5) + Po, (6) + Py (4, §) + Po, (6, 5)

P(i,j) = y )

where v = (0,1), v = (1,1), v3 = (1,0), v4 = (1,—1). We
did not include the matrices for vectors (0,—1), (—1,—1),
(—1,0) and (—1, 1), since co-occurrence of values in an image
is symmetrical. The co-occurrence matrix is commonly used
for extraction of color texture features. However, we expand the
idea to enable extraction of temporal texture features. Initially,
the compositional co-occurrence matrix was computed for each
window patch in each element in the Segmentation Set and a
vector of 60 high level features was extracted (a complete list
of features is given in the Appendix ). We implemented the
greedy forward selection algorithm described in [29] to reduce
dimensionality. Our motivation for dimensionality reduction
was twofold: first, to improve the running time and second, to
discard irrelevant features that may introduce noise and reduce
classification accuracy. The reduced feature subset contained
seven color features and four temporal features, all of which
are listed in Table 1. Features (2)—(4) are color texture features
that were computed using the compositional co-occurrence
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Fig. 4. This figure shows an example where the utilization of temporal features, in addition to color features, improves the quality of segmentation. (a) Video
frame taken from mesenteric blood vessels. Notice that the outer vessel region marked by the arrow contains color and texture composition similar to the inner
vessel regions. (b) Segmentation results of a ANN classifier that only utilizes the color features (described in Table I). White and black regions correspond to inner
and outer vessel regions, respectively. It can be seen that part of the outer vessel region was wrongly classified as being an inner vessel region. (c) Segmentation
results of a ANN classifier that is based both on color and temporal features (described in Table I). Most of the outer region is now classified correctly.

TABLE 1
COLOR AND TEMPORAL-BASED FEATURES CHOSEN BY THE FEATURE
SELECTION PROCESS. P AND Q ARE THE CO-OCCURRENCE MATRICES
EXTRACTED FROM W¢ g(®, y) AND Wi, (2, y), RESPECTIVELY.
A FULL DESCRIPTION OF THE FEATURES AND HOW THEY WERE
CALCULATED IS GIVEN IN THE APPENDIX

Color features Temporal features

(1) Median med(Wgr) | (8) Median med(Wimp),
(2) Energy E(P) (9) Variance 2 (Wemp)
(3) Entropy S(P) (10) Homogeneity  H(Q)

(4) Homogeneity H(P) (11) Mean w(Wimp)

(5) Mean R w(Wr)

(6) Mean G uw(Wg)

(7) Mean B w(Wg)

matrix P extracted from W g(z,y). Feature (10) is a temporal
texture feature that was computed using the compositional
co-occurrence matrix Q extracted from Wy, (z, y) (for details
on how to calculate the features, see Appendix ). It is not
surprising that the subset of the features that yielded the highest
ANN accuracy in terms of correlation coefficient [see (10)]
also contained, in addition to the standard color-based features,
temporal-based features. For example, in some video sequences
local vessel and tissue regions have similar color intensity and
texture. Therefore, these regions are not separable by methods
that rely solely on differences in color and texture. Utilization
of temporal patterns, however, enables their accurate separation
(Fig. 4). We elaborate on this in Section V. In the training of the
ANN we evaluated many ANN architectures. To prevent data
overfitting, training was halted when performance on the test
set declined. A feed-forward back-propagation neural network
consisting of an input layer, a hidden layer of 10 neurons and
an output layer of one neuron was chosen since it yielded the
highest accuracy in terms of the correlation coefficient [see
(10)]. Once a classifier is selected, the task of locating the
vessel regions in an image can be performed by traversing over
all the pixels in the image and classifying them into “vessel”
and “tissue” pixels.

Reducing Segmentation Algorithm Running Time: The ANN
classification operation is time expensive: about 24 min for pro-
cessing a 400 x 400 pixel image on a Pentium 4, 2.5-GHz PC
using Matlab implementation. To improve the running time, we

assume a minimal vessel diameter (in pixels). Instead of classi-
fying each pixel in the image, we use an iterative approach that
starts with a rough segmentation that is then further refined. This
is done as follows.

1) Rough segmentation: Traverse over I by SI (Sample
Interval) steps where SI is the maximal integer that is
smaller than the minimal vessel diameter. The reason for
constraining the initial size of SI is to prevent “skipping
over” a vessel region as a result of sparse sampling. Each
sampled pixel is classified and its neighboring pixels in a
SI x SI window are assigned the same class. The result is
a bitmap where a pixel is assigned the value 1 if it is of
“vessel” class , otherwise it is assigned O [see Fig. 5(b)].

2) Refined segmentation: Traverse over I by |SI/2] steps. If
the sampled pixel is on the border between a “vessel” re-
gion and a “tissue” region in the bitmap (i.e., the |SI/2] x
|SI/2]| window is not entirely 1’s or 0’s), then classify
the pixel and assign its |SI/2] x |SI/2| neighborhood to
the same class [Fig. 5(c)]. The refined segmentation step
is repeated until the size of the traversal steps is smaller
than one pixel. The final result is smoothed by a median
filter that removes salt and pepper noise and by morpho-
logical filtering to smooth segmentation edges [Fig. 5(c),
(d)]. This sampling procedure does not lower the accu-
racy of the segmentation, however, the running time is
reduced considerably. The average running time dropped
from about 24 min to 79 s when tested on 400 x 400 pixel
video sequences.

For each video sequence, the segmentation algorithm is applied
only once as a tracking preprocessing step. The color features
are extracted from the mean of the first m frames in the video
sequence. The temporal features are computed over the first n
frames. We experimented with different values for n and m.
When the feature extraction was performed on a small number
of frames, 5 < m < 10 and 5 < n < 40, the method accuracy
increased as more frames were used, as might be expected. The
accuracy becomes roughly constant for m > 10 and n > 40.

C. “Virtual Flow” Computation

We present a procedure for computing an approximation of
the blood flow direction in a vessel based on the vessel topology.
The algorithm receives as input a bitmap, as in Fig. 5(d). For
each location inside the vessel the algorithm returns a unit vector
— a prediction of the direction in which the blood will flow.
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Fig. 5.
(d) Final segmentation after four iterations and morphological filtering.

The term virtual flow is used because the blood flow direc-
tion is calculated based on the vessel shape, without actually
measuring the “real blood flow direction” through consecutive
frames. We assume a model where the blood flow inside a vessel
is laminar and parallel to the vessel centerline, which is cor-
rect for unbranched vessels D < 100 pm. As a pre-processing
step, the vessel centerline is extracted. A good review on vessel
center-line extraction is given in [4]. After testing several ap-

proaches we found that the skeleton algorithms proposed in [5],

[32] are simple for implementation and yield robust and accu-

rate results (see Fig. 6). Once the vessel center-line is computed,

we compute the virtual flow in location (x,y) in the image as
follows.

1) Locate n adjacent pixels located on the center-line and
nearest to location (z,y). The notation NCLP(x,y) is
used to refer to the coordinates of these nearest center-line
pixels (in the application n = 10 was chosen; larger values
of n yielded similar results).

2) Compute the direction of the NCLP(xz,y) centerline sec-
tion. This is done by averaging over the sum of angles
between each two adjacent pixels in NCLP(z,y)

1 i+1 — Yi
a(z,y) = - Ztan_l <M>

Tit1 — T4

where (2;,v;), (Zit1,¥i+1) € NCLP(z,y) are adjacent
pixels.

The angle of the virtual flow at location (x,y), V F(z,y), can
have one of two values: «(z,y) or —a(xz,y). It is not possible
to determine which of the values corresponds to the real blood
flow direction solely based on vessel topology. To resolve this
ambiguity the following automatic initialization is performed:
the actual movement of flowing targets is tracked during the
first several frames (in the application we used five frames). The
image is divided into regions, and in each region the median
target flow direction is computed. This yields a map in which
each region is associated with a vector indicating the median
flow direction in that region. The ambiguities can now be easily
resolved in the following way: a V F'(x, y) in a particular region
is assigned the angle, either a(z,y) or —a(x,y)), which is
closer to the median flow direction in that region. Although
this median flow direction is often imprecise, it will solve the
V F(z,y) ambiguity as long as it is within —/2 to /2 of the
correct flow direction, which is almost always the case (see
Fig. 7). The virtual flow is used for enhancing the accuracy
of the motion correspondence algorithm (we elaborate on this
in Section IV-B).
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Segmentation of a video frame taken from mesenteric blood vessels. (a) Original frame. (b) Rough segmentation. (c) Finer segmentation after one iteration.

0

Fig. 6. (a) Vessel segmentation bitmap generated by our segmentation
algorithm. (b) The black lines inside the white vessel regions were generated
using the center-line extraction algorithm described in [32].

(b)
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Fig. 7. Vessel centerline and unit vectors indicating the virtual flow direction
at various locations in the image.

IV. LocAL PROCESSING MODULE

In this section we present a general algorithm for multi-object
tracking in circulating blood. The tracker was designed to track
two types of targets: “artificial fluorescent microspheres” and
“leukocytes.” For each target in each frame the tracker returns
its velocity, direction and shear rate between the fluid layers and
the vessel wall. In the rest of this section, unless specifically
mentioned, we will not make a distinction between the tracking
of leukocyte cells and fluorescent microspheres and will use the
general term “cell” in reference to both.

A. Cell Detection

The cell detection submodule is responsible for locating all the
cells in a given frame; it returns their center coordinates and their
boundaries. Cells in circulating blood are in constant motion.
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A popular approach for locating moving objects is background
subtraction and temporal differencing of consecutive frames
[33], [34]. Yet, in vivo video sequences contain many moving
elements besides circulating cells such as vessel boundaries and
tissue elements that shift as a result of respiratory movements,
fluids that flow outside the vessels as well as circulating
erythrocytes within the vessel. Hence, an approach that relies
solely on motion detection is likely to suffer from excessive
noise. To overcome this problem we execute the following
four target detection steps:

1) motion detection;

2) location-based filtering;

3) leukocyte and microsphere recognition performed by

ANNSs;

4) clustering of adjacent pixels in order to identify cell

objects.

The motion detection in Step 1) is performed using back-
ground subtraction. In Step 2), any object moving outside a
vessel region is assumed to be a false target and is therefore,
filtered out. This is done by utilizing the output of the vessel
segmentation algorithm described in Section III-B. The result
is a list of pixels that belong to moving objects located inside a
vessel. This list still contains many false targets and hence fur-
ther filtering is required. This is done in Step 3) by two ANN
classifiers that are trained to classify a pixel as a target or a non-
target (one ANN is trained to identify leukocytes and the other,
microspheres). The classification is based on color and texture
features extracted from the pixel’s surrounding 7 x 7 window.
The optimal feature set for training each of the ANNs was au-
tomatically selected from a large set of features using the same
feature selection procedure as described in Section III-B. In the
ANN training and testing a constant threshold was used. After
testing a wide range of thresholds, a threshold of 0.5 was chosen
since it yielded the highest performance in terms of the correla-
tion coefficient. When cell detection is performed on the video
sequences, the classification accuracy is augmented by using a
dynamic threshold that is based on posterior image information.
A search cone proportional in size and of the same direction as
the velocity computed in the previous two frames is applied,
similar to [14]. An object within the cone boundaries is more
likely to be a real cell and, therefore, the threshold in the cone is
lowered. In our application the threshold was lowered by 25%.
However, the exact choice for this value is not critical, since
lowering the threshold by more than 25% yielded similar re-
sults. Step 3) results in a list of pixel locations that are classified
as belonging to targets. In Step 4), adjacent pixels are clustered
into cell entities. This is efficiently done by scanning the entire
image and aggregating all the proximal target pixels using the
union-find algorithm. In order to approximate the distance be-
tween two pixels that are likely to belong to the same cell, we
take into account a priori knowledge of target sizes: leukocytes
diameter (7 pm — 20 pm), microsphere diameter (1 pm) and
knowledge of the microscope magnification (x 1000) that was
used to create the video.

Once the clusters are identified, the cell center is located by
computing the center of mass of all the pixels in the cluster

[Fig. 8(2)(0)].
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B. Motion Correspondence

Motion correspondence is the task of connecting a target
in frame ¢ to the same target in the preceding and following
frames. This task is especially difficult when multiple objects
with overlapping trajectories and changing appearance all move
simultaneously, as is the case in leukocyte/microsphere cir-
culation. Methods for computing motion correspondence of
particles and cells such as [1], [9], [14], and [15] have been
proposed. In [9], leukocytes were traced through consecutive
frames by appearance-based features. It was assumed that the
shape of a certain leukocyte changes only slightly between
consecutive frames. Many of the leukocytes/microspheres in
our video sequences have nonunique and amorphic shapes, and
therefore, in order to track them reliably, other features besides
appearance should be taken into account. In [15], a motion
correspondence algorithm, which maximizes the smoothness
of trajectory and velocity of particles, was used in order to per-
form particle image velocimetry. The algorithm is based on the
premise that the trajectory direction and velocity of a moving
particle changes only slightly between consecutive frames.
For instance, in Fig. 9, the path through A1 — B1 — C1
is smoother than the path through A2 — B1 — C2, and is
consequently, more likely to be the correct one. This approach
can be adopted in order to solve the motion correspondence
problem for circulating leukocytes and microspheres. However,
it relies solely on local information, i.e., on the locations of
the cells in each frame. Its accuracy can be augmented by
combining the local information with the global information
extracted on the vessel level. The idea is to utilize the virtual
flow (described in Section III-C) in the following way: given
a cell located at position (x,y) in frame ¢, we compute the
virtual flow V F'(x,y) at that location. This gives the general
direction in which the cell is most likely to flow in frame
1+ 1. For example, Fig. 10 shows a leukocyte at position A
in frame ¢ and two leukocytes at positions B and C in frame
1+ 1. This scenario can be interpreted in two ways:

¢ leukocyte moved from position A to B and a new leukocyte
appeared in C;

* leukocyte moved from position A to C and a new leukocyte
appeared in position B.

Since the shapes of the leukocytes are similar, the motion
correspondence cannot be solved based on target appearance.
Nevertheless, it is possible to solve this ambiguity by invoking
global information regarding vessel topology. In this case
trajectory A — C is more compatible with the virtual flow
(black arrow) than trajectory A — B, and consequently, it is
more likely that the leukocyte at position A moved to C. Hence,
when trying to determine the path of a cell the algorithm should,
in addition to finding the smoothest trajectory and velocity as
described in [15], also take into consideration the compatibility
of the trajectory with the virtual flow.

Consider three image frames taken in consecutive moments
of time: ¢ — 1, 7 and 2 + 1. Our algorithm for motion correspon-
dence is as follows.

* Given a cell B at position (25, yg) in frame 7 and a circle
C of radius R around it, we define two sets

Si—1(B) = {Cells in framei — 1
that appear within the circle C}.
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Fig. 8. (a) Small region extracted from three consecutive frames of an in vivo video sequence where circulating fluorescent microspheres were studied. (b) Binary
images obtained after background subtraction and thresholding, followed by filtering out of any motion that occurred outside a vessel. White areas indicate locations
where movement has occurred between sequential frames. Notice that this includes both true as well as false microsphere detections. (c) Binary images after filtering
with the microsphere specific ANN. Only the true microspheres remain. (d) The motion correspondence algorithm output. The motion correspondence algorithm
output. Each identified microsphere is surrounded by a square. Each line indicates a microsphere trajectory between the current and preceding frames. The line
indicates the trajectory between the current and preceding frames. The numbers above the squares are the microsphere velocities (pm/s).

Si+1(B) = {Cells in frame i + 1 * In order to resolve the motion correspondence of cell B,
that is to find the correct path of traversal through frames

that appear within the circle C}. ¢ :
1— 1,7 and 7+ 1, we perform an evaluation of all possible

* th = VF(za,y4) and b = VF(zp,yp) are the virtual paths. For each cell A € S;_1(B) and for each cell C €
flow angles at locations (2 4,94 ) and (z,yg) of cells A S;+1(B) we calculate a motion correspondence functional
and B, respectively. J(A,B,C,0:,6)

* A legal path of a cell B through frames ¢ — 1,7 and 7 + 1
isatriplet A - B — C where A € S;_1(B) and C € J(A,B,C,01,02) = AS(A, B,C) + VS(4, B,C)

Sit1(B). +VFS(A, B,C,01,605). (6)



EDEN et al.: AUTOMATED METHOD FOR ANALYSIS OF FLOW CHARACTERISTICS

Frame i-1 Frame i Frame i+1

Fig.9. Motion of cells through consecutive frames. Cell B1 in frame 7 has two
possible paths: A1l — B1 — C1 and A2 — B1 — C2. The first path is
smoother in terms of trajectory angles and should, therefore, be assigned as the
correct path by the motion correspondence algorithm.

Frame i Frame i+1

O

Fig. 10. In frame i a leukocyte appears at position A. In frame i + 1 two
leukocytes appear at positions B and C. The trajectory A — C is more
compatible with virtual flow (black arrow) than trajectory A — B and,
therefore, it is more likely that leukocyte A corresponds to C than to B.

* The cell B is assigned the path that attained the minimal
score, min J(A, B, C, 61, 65).

In (6), the angle smoothness (AS), velocity smoothness (VS),
and virtual flow smoothness (VFS are

AS(A,B,C)=1- —AB-BC o
4B - |BC||
ABI - IBCIN/2
vs(a, B,0) =1 — 2UABI- B ®
[AB|| + ||BC||
VFS(A, B,C,0;,05)=1— cos(91—a1)—;cos(92—a2). ©

The angles o1 and «» are the angles of trajectories AB and AC
relative to the positive x-axis. The motivation for choosing the
path that achieved the lowest score is that the score function
is designed to give low scores for paths with smooth trajecto-
ries and constant velocities and whose trajectory direction is
compatible with the direction of the virtual flow. The motion
correspondence algorithm depends on one parameter R, which
is the radius around cell B in which cells are traced in frames
1 — 1, and 4 4+ 1. Our tests show that the methods accuracy,
and especially its running time, are vulnerable to excessive
values of R. This vulnerability is due to the abundance of
targets in in vivo videos, which can reach up to a thousand
circulating cells per frame. A large R means that computing
the optimal trajectory of even one cell through three con-
secutive frames would require computing the scores of over
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a million possible trajectories. Fortunately, the velocities of
leukocytes and microspheres have a physiological upper bound.
This enables a reliable restriction of the area in which the
optimization should be performed. Although the velocity of
a leukocytes/microsphere varies depending on factors such as
vessel type, diameter and blood pressure, it is reasonable to
assume, based on our measurements in arterioles and venules,
that the velocities do not exceed 3000 pm/s. Since the camera
frame rate and microscope scale are known a priori, an upper
bound on the initial value of R can easily be computed. Once
a target has been tracked over two frames or more, R can be
regulated dynamically and more tightly based on the velocity
history. Our tests showed that R, which is three times the
mean distance travelled by cells in previous frames, gives a
sufficiently large safety margin. An example of the output gen-
erated by the motion correspondence algorithm when applied
on in vivo video sequences is given in Fig. 8(d).

V. EXPERIMENTS

Our method has been tested on nine in vivo video-microscopy
sequences: five Type I video sequences where fluorescent micro-
spheres were tracked and four Type II video sequences where
circulating leukocytes were tracked. In this section we describe
these tests and comparisons to other methods.

A. Testing Vessel Segmentation Accuracy

For assessing the accuracy of the segmentation algorithm
we evaluated the performance of the ANN, which was used for
segmentation, on the testing examples in the Segmentation Set
(described in Section III-B). As a measure for quantifying the
accuracy of classification we use the correlation coefficient,
CC, [28], which is defined as follows:

T15 — F1 Fy
V(o + B)(Th + Fi) (T + F1)(T + )

cC = (10)

Here, T} and T5 are true classifications of examples from classes
1 and 2, respectively; F; and F5 are false classifications of ex-
amples from classes 1 and 2, respectively. The values of the CC
range between —1 and 1, where 1 means a perfect classification,
0 means a random classification, and —1 means a completely
opposite classification to the correct one. In the segmentation
algorithm, 73 and T5 correspond to true vessel and true tissue
classifications. F; and F5 correspond to false vessel and false
tissue classifications.

The ANN performance on the test set was CC = 0.82 (83%
of the examples of the vessel class and 98% examples of the
tissue class were classified correctly). Examples of two frames
taken from two different in vivo video microscopy of rat mesen-
teric microvasculature are shown in Fig. 11(a), (b). They were
given as input to the CellTrack segmentation algorithm. The
output is shown in Fig. 11(e), (f). We compared the accuracy
of the CellTrack segmentation algorithm to two other segmen-
tation algorithms.
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Fig. 11. Comparison of segmentation methods. (a) and (b) are video frames
taken from the rat mesenteric microvasculature. (¢) and (d) are the manual
segmentations of (a) and (b) where black and white represent tissue and
vessel regions, respectively. (e)—(j) show a comparison of the output of three
different segmentation algorithms: (e) and (f) are the outputs of the CellTrack
segmentation algorithm, which utilizes both color- and temporal-based features;
(g) and (h) are the output of the temporal-based segmentation algorithm; (i) and
(j) are the output of the color texture-based segmentation, which uses Gabor
filters [35], [36].
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1) Temporal features-based segmentation algorithm.

We implemented the algorithm for vessel segmenta-
tion, presented in [1]. This algorithm is based on the
assumption that the variance of gray level intensity com-
puted through multiple frames is higher inside a vessel
region than outside it. The algorithm receives a pixels
temporal variance (as described in Section III-B) and,
using a predefined threshold, classifies it as belonging to
either a vessel or tissue region. We applied this algorithm
to the testing examples in the Segmentation Set. The tem-
poral variance histogram of a video sequence reported in
[1] was bi-modal. The inner vessel regions were reported
to have distinguishably higher values than outer vessel
regions. Hence, for classification, they chose a threshold
that best separated this bi-modal histogram. However,
when computed on our videos the temporal variance
did not yield a bi-modal histogram and, therefore, the
threshold could not be determined in this way. In order
to keep the comparison fair, we scanned through a wide
range of thresholds and calculated the classification ac-
curacy in each instance. The best result was CC = 0.09,
which means the classification of pixels was nearly
random. These results suggest that the variance assump-
tion does not hold on our video sequences. This may
be explained by the inherent noise in the in vivo videos
caused by the motion of particles and fluids outside the
vessel as well as tissue deformations that occur between
frames as a result of respiratory movements, all of which
cause motion not only inside the vessel but also outside.
However, the idea of the temporal variance presented in
[1] can still be used to capture more complex temporal
patterns that do enable differentiation between vessel and
tissue regions. For instance, by computing the standard
deviation and homogeneity of the temporal variance in
a 7 x 7 window around a pixel and then feeding the two
features into an ANN, it was possible to substantially
augment the classification accuracy from CC = 0.09 to
CC = 0.5628. This result, however, is still significantly
less accurate than that of CellTrack. For a qualitative
comparison, the temporal features-based segmentation
algorithm was given the same input [Fig. 11(a),(b)] as the
CellTrack segmentation algorithm. The corresponding
outputs are shown in Fig. 11(g),(h).

Color texture features-based segmentation algorithm:

The second segmentation algorithm with whom a
comparison was made is a color texture-based segmen-
tation algorithm that uses Gabor filters [35], [36]. This
segmentation is done in a three-step process. In the first
step it computes a convolution of a gray level inten-
sity image I with a bank of Gabor wavelets calculated
for s = 4 different scales and o = 6 orientations.
Hence, every pixel is transformed into a feature vector
of length o x s. In the second stage, clustering of these
multidimensional vectors is performed by a k-means
algorithm [37]. After testing several ks, a k = 4 was
chosen since it yielded the most accurate results. In the
third step a connected component analysis algorithm was
applied, followed by morphological operations in order
to diminish the influence of noise [38]. As a result, pixels
in I were classified into two classes: vessel and tissue.
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Unlike the previous two segmentation algorithms, it was
not possible to assess and compare the accuracy of this
color texture features-based segmentation algorithm in
terms of CC on the Segmentation Set since it cannot
classify individual elements from the set. Fig. 11(a), (b)
were given as input to the algorithm. The corresponding
outputs are shown in Fig. 11(1), (j).
Fig. 11(e)—(j) shows a qualitative comparison between the
output of the CellTrack segmentation, temporal feature-based
segmentation and color features-based segmentation algo-
rithms, respectively. In order to perform a quantitative com-
parison we manually extracted the vessel and tissue regions
of Fig. 11(a),(b), which resulted in the two images shown in
Fig. 11(c),(d). We assumed that Fig. 11(c),(d) were the correct
segmentations and used them as a reference for comparisons.
These images contain a total of 516018 pixels where 98 683
are of the vessel class and 417 335 are of the tissue class. The
outputs of the three algorithms were compared to the reference
images by subtracting Fig. 11(e),(f), (g),(h), and (i),(j) from
Fig. 11(c),(d) and counting the true and false pixel classifica-
tions. CellTrack yielded the highest accuracy witha CC = 0.87.
The temporal feature-based segmentation yielded the lowest ac-
curacy of CC = 0.43 and the color-based segmentation yielded
a CC = 0.71. A detailed comparison of the confusion matrices
is given in Table II. The confusion matrices are calculated as
) _ (T1/(T1+ F2) F2/(T1+ F2)
follows: CM = (Fl/(TZ +F1) T2/(T2+ F1)
T, and T, are true classifications of elements from class 1
(vessel class) and class 2 (tissue class), respectively. F} and F5
are false classifications of elements from classes 1 and 2, re-
spectively. It can be seen that all of the segmentation algorithms
applied on Fig. 11(b) yielded accurate results [Fig. 11(f), (h),
()], in which case there was no clear advantage to any of the
segmentation algorithms. However, segmentation of Fig. 11(a)
was substantially more difficult, as a result of similar colors
and texture in the tissue and vessel region as well as noisy
temporal patterns. All the algorithms yielded less accurate
results [Fig. 11(e), (f), (i)]. CellTrack segmentation, however,
yielded the most accurate segmentation.

where

B. Testing Cell Detection Accuracy

Two data sets were created, the Microsphere Set and the
Leukocyte Set. Each element in the sets is a 7 x 7 pixel window.
The Microsphere Set is made up of 300 elements, each con-
taining a microsphere and 300 elements of regions with no
microspheres, i.e., these are either vessels or tissue. The Leuko-
cyte set is made up of 300 elements that contain a leukocyte
and 300 windows of regions that did not contain a leukocyte.
Similar to the segmentation algorithm (Section III-B), the sets
were divided into mutually exclusive training and testing sets,
of sizes 200 and 100, respectively, on which the ANNs were
trained and tested. The accuracy of the classification into leuko-
cyte/microsphere and not-leukocyte/not-microsphere classes,
performed on the test sets, in terms of the correlation coefficient
is CC = 0.8867 and CC = 0.8555 for the microspheres and
leukocytes, respectively. The confusion matrices are given in
Table III. The cell detection module incorporates, in addition
to the ANNSs, other filters such as the motion detection filter
and the ANN dynamic threshold (Section IV-A), both of which
increase identification accuracy. Therefore, the ANN accuracy
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TABLE 11
COMPARING THE CELLTRACK SEGMENTATION ALGORITHM, WHICH IS
BASED ON BOTH TEMPORAL AND COLOR FEATURES, THE TEMPORAL
FEATURES-BASED SEGMENTATION ALGORITHM AND THE COLOR
TEXTURE-BASED SEGMENTATION ALGORITHM. IN THE COMPARISON
516018 PIXELS WERE CLASSIFIED INTO VESSEL (98,683 PIXELS)
AND TISSUE (417 335 PIXELS) CLASSES

CM cC
CellTrack 087 0.13 0.87
segmentation 0.02 0.98
Temporal features 026 0.74 0.43
based segmentation 0.01 0.99
Color texture features | 0.67  0.33 0.71
based segmentation 0.03 097

TABLE III

ACCURACY OF THE ANN CLASSIFICATION INTO TWO CLASSES:
LEUKOCYTE/MICROSPHERE CLASS AND NOT-LEUKOCYTE/NOT-MICROSPHERE

CLASS
CM CcC
Microsphere 1.00  0.00 0.89
classification | 0.07  0.93
Leukocyte 0.87 0.13 0.86
classification | 0.03  0.97

given in Table III should be regarded as a lower bound to the
method’s cell detection performance.

C. Tracking Accuracy

In order to assess the accuracy of the CellTrack tracker,
manual measurements performed on the monitor screen of
microspheres and leukocyte flow velocities were compared
to measurements extracted by the CellTrack system. We per-
formed the following experiments.

1) Single microspheres were tracked through consecutive
frames and manual measurements of their velocities
were compared to the computer generated measurements.
Results are summarized in Fig. 12.

2) Five different vessel regions were selected from three dif-
ferent video sequences. In each instance the velocities of
all the leukocytes or microspheres that flowed through
that region were extracted twice, manually and automati-
cally, using CellTrack. Based on these measurements the
average flows of the leukocytes and microspheres were
calculated for each region. The results are summarized
in Fig. 13, showing a compatibility of over 97% between
manual and computer extracted statistics.

3) The CellTrack tracker uses a synergistic approach that
combines global and local information to decrease
tracking errors that occur repeatedly in the inherently
noisy in vivo video sequences. In particular, it uses the
a priori knowledge of the vessel topology when trying
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Fig. 13. Flow velocity for fluorescent microspheres measured in

differentially sized microvessels from five experiments. No significant
statistical differences were found between manually and automatically
extracted measurements using CellTrack.

to solve motion correspondence by taking into account
the compatibility of the cell trajectory direction and the
virtual flow direction. To test the contribution of the vir-
tual flow to the motion correspondence solution, we per-
formed the following test: 171 trajectories of leukocytes
were tracked twice — with the virtual flow module en-
abled (“regular mode”) and disabled (in the latter case
the motion correspondence algorithm as described in Sec-
tion IV-B remains the same but the virtual flow smooth-
ness is omitted from the functional in (6)). In both in-
stances we counted the number of times in which the
motion correspondence was solved correctly and falsely
(compared to the manual solution). The virtual flow en-
abled tracker yielded an accuracy of 94% (164 correct
and 7 false assignments) while the virtual flow disabled
tracker had an accuracy of 88% (151 correct assignments
and 20 false assignments), hence showing the contribution
of the virtual flow to the motion correspondence accuracy.
A comparison was made between the CellTrack motion
correspondence algorithm and the IPAN general purpose
motion correspondence algorithm implemented in [39].
The IPAN algorithm utilizes a cost function that enforces
trajectory and velocity smoothness among three points
in consecutive frames. Multiple backward-forward testing
on the selected best triplet of points is then performed in
order to enhance accuracy and resolve ambiguities. The
comparison was performed in the following way: first,
the CellTrack cell detection module was applied to gen-
erate target coordinates. Second, these coordinates were

5)

0 004 008 012 016 0.2 024 028 032 036 04 044
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Two instances of manual versus CellTrack extracted measurements of a single microsphere velocity traced through consecutive frames.

used as input to IPAN and CellTrack motion correspon-
dence algorithms. The predicted trajectories were com-
pared to manually determined trajectories in the two types
of videos. In the tested Type I video sequence, where the
image is of high quality and the targets sparse, both al-
gorithms predicted the trajectories without any error. In
the tested Type II video, IPAN correctly assigned 93% of
the trajectories (40 out of 43) while CellTrack correctly
assigned 97% of the trajectories (42 out of 43). Overall,
both algorithms produce robust trajectory predictions, es-
pecially in cases where the quality of the video sequence is
high and target coordinates are reliable. However, in cases
where target coordinates extraction is noisy, the usage of
vessel topology constraints in the functional enabled Cell-
Track to filter out wrong trajectories that cannot be fil-
tered out by a general purpose motion correspondence
algorithm.

We demonstrate how the CellTrack system can be applied
in order to test a biological hypotheses by extracting a
large volume of data. Two in vivo video sequences were
taken from mesenteric micro vessels before occlusion
(closure of a vessel) and following reperfusion (removal
of occlusion and restoration of blood flow). Reperfusion
injury usually increases the number of leukocytes and
slows their velocity due to adhesion. Thus one would
expect a relatively low count of leukocytes with high
velocities in the video taken before occlusion compared
to a high number of leukocytes with low velocities in the
video taken following reperfusion. To test this, CellTrack
was applied on these two video sequences. A 25 X 75 um
region inside a vessel was defined. An automated leuko-
cytes count and computation of their mean velocity was
performed in this region before occlusion and following
reperfusion. Before occlusion the average leukocytes
count per frame was 4.4 (1112 leukocytes traced in 250
consecutive frames) compared to 20.1 (4659 leukocytes
traced in 232 consecutive frames) following reperfusion.
The mean velocity was 32.9 um/s before occlusion com-
pared to 25.2 pm/s after reperfusion. These results are
in agreement to what is expected following reperfusion
injury of the gut. Moreover, automatic extraction of these
measurements was performed in 2 min, significantly
faster compared to the time it would have taken to extract
this volume of data using manual counts.
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VI. CONCLUSION

In this paper, we present a system, CellTrack, for analysis
of circulating leukocytes and microspheres in in vivo video
sequences. Tracking targets in in vivo video sequences is a
very challenging task. The major problems are as follows.
1) The shift that occurs between sequential frames as a result
of movements of the tissue caused by respiration. 2) The poor
quality of in vivo video records. One of the main factors that
reduces the quality is video instability and defocusing that
occurs as a result of respiratory movement. 3) The abundance
of objects, which may include hundreds of leukocytes in each
video frame. 4) The targets’ amorphic and blurred shapes and
their sporadic appearance and disappearance between frames,
which makes the motion correspondence problem difficult to
solve. Any system aimed at extracting reliable and accurate
measurements must incorporate robust solutions to all of the
above problems.

To address these problems we adopted an approach that
synergizes between the extraction of global information
performed on the vessel level and the extraction of local
information performed on the circulating cell/microsphere
level. The main modules of the CellTrack system described in
this paper include: a vessel segmentation algorithm, a target
detection algorithm and an algorithm for solving the motion
correspondence problem of circulating cells and microspheres.
The system was tested on nine in vivo video sequences. The
CellTrack vessel segmentation algorithm, which uses both
temporal and color-based features, was compared qualitatively
and quantitatively to two other segmentation algorithms that
use either temporal or color-based features. The CellTrack
segmentation algorithm yielded the most accurate results,
CC = 0.87 compared to CC = 0.43 and CC = 0.71 for the
temporal and color feature-based segmentations, respectively.
This suggests that the utilization of temporal texture patterns
in addition to the color texture patterns leads to significantly
more robust and accurate segmentations in in vivo videos se-
quences. We examined the contribution of incorporating vessel
topology considerations (i.e., the virtual flow) into the motion
correspondence functional. In one test the motion correspon-
dence accuracy rose from 88% to 94% correct assignments
once the topology considerations were added, thus supporting
their relevancy. A series of tests comparing manually extracted
measurements and CellTrack extracted measurements show a
compatibility of 97% in the video sequences under study. Cell-
Track also enables the extraction of a large volume of data in a
short period of time (thousands of measurements in ~ 10 min),
compared to tedious and time consuming manual extraction
(~ 50-100 measurements in approximately 60 min). We have
made examples of the in vivo color video sequences used in
this study and the corresponding CellTrack output publicly
available at www.cs.technion.ac.il/rudzsky/~celltrack1.html

APPENDIX
CLASSIFICATION FEATURES

In this section the full set of classification features used in
Sections III-B and IV-A is given. The features are extracted
from a N x N window, W, surrounding the classified pixel (in
the application we used N = 7 pixels). We distinguish between
two classes of features.
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* Intensity features, as their name implies, are based on
the intensities of the pixels in the window surrounding the
classified pixel. We used the following intensity features:
1) Median m = med(W);

2) Mean = (1/N?) 32, W(z,y);
3) Variance o2 = (1/N3) S, (W (z,y) — p)?.

* Texture features characterize spatial correlations be-
tween values of pixel pairs and are calculated using a
co-occurrence matrix, as defined in (5). Let P(7,j) be
the (7, 7) element of a co-occurrence matrix. We use the
following notations and features adopted from [30], [31]:

e =212 P
%zZz—um ZPLJ
ay:Zj—uy ZPi,j.

For symmetric matrices, p, = f, = L.
The texture features we used are as follows:
4) Energy £ = Y. . P(i,§)%
) Entropy S = — S5, , P(i,j) log P(i, j);
6) Homogeneity
NP, j);

H=Y,;(1/(1+(-j)?
7) Inertia In = 37, (i — 3)2P (i, 5);

8) Prominence Pr = 7, (i + j — pe —
fiy)* P, )3

9) Correlation C’orr =

100 Shade Sd= (i 47 i —uy>3P<z;j>

11), 12) Texture variance 07,0

y
Each of the above features is computed over five types of
window patches Wg(z,y), Wa(z,y), Wa(z,y), War(z,y)
and Wy, (z,y) corresponding to the RGB, gray level and
temporal variance values as described in Section III-B. Hence
the full set of features contains 5 X 12 = 60 features. This
set is then reduced to a smaller feature subset using the feature
selection algorithm as described in Section III-B.
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