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Abstract 

Many types of common objects, such as tools and vehicles, usually move in simple ways when they are wielded or driven: the natural axes of 
the object tend to remain aligned with the local trihedron defined by the object’s trajectory. Based on this observation we use a model called 
Frenet-Serret motion which corresponds to the motion of a moving trihedron along a space curve. Knowing how the Frenet-Serret frame is 
changing relative to the observer gives us essential information for understanding the object’s motion. This is illustrated here for four examples, 
involving tools (a wrench and a saw) and vehicles (an accelerating van, a turning taxi). 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

An object moves because it is self-propelled (e.g. a 
vehicle) or because it is wielded (or thrown’) by an agent 
(e.g. a tool). Motion that efficiently performs a locomotional 
or mechanical function requires efficient energy transfer 
from the vehicle’s engine or the agent’s arm to the object, 
in order to efficiently overcome the constraints imposed by 
the environment in which the motion takes place (air resis- 
tance, friction, etc.). Assuming that an object has natural 
axes (e.g. the long axis of a stick), efficient force transfer 
requires simple relationships between the natural axes of the 
object and the motion trajectory. These relationships ensure 
that the object can perform its function efficiently. 

The most general model of object motion is unrestricted 
rigid motion. This type of motion is not common in every- 
day life. Usually objects are supported, and motion takes 
place when an object is in contact with a surface, another 
object, or an agent. In these cases (tool acting on a recipient 
object; ground vehicle) the motion becomes interestingly 
constrained. 

In our work we consider the relationship between this 
constrained motion and the object’s geometry. To analyze 
this relationship we use two frames: the object frame and the 

’ We assume in this paper that the propulsive force is applied to the object 
continuously, unlike the case of a projectile where it is applied only 
initially. We will not discuss projectiles further here. 
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frame of the motion trajectory. “Efficient” motion calls for 
a simple relationship between the object frame and the 
motion frame, and this relationship remains constant during 
the motion. Based on this observation we use a model called 
Frenet-Secret motion which corresponds to the motion of a 
moving trihedron along a space curve [ 11. The parameters of 
the motion are given by the curvature and torsion of the 
space curve along which the object moves. 

In practice the simple nature of the environment in which 
the object moves provides further constraints. A ground 
vehicle is moving on relatively flat terrain, and a tool is 
often acting on a planar surface. The motion is mostly planar 
(though the plane may rotate slightly during the motion). 
Over a long time period the motion is Frenet-Serret; over a 
short time period it is approximately planar and often 
approximately translational. 

We use the relationship between the object frame and the 
motion frame to analyze image sequences. Given a 
sequence of images of the moving object, our analysis 
enables us to output the motion and trajectory parameters 
of the object. Knowing how the Frenet-Serret frame is 
changing relative to the observer gives us essential informa- 
tion for understanding the object’s motion. Our analysis can 
also handle constraints on the motion. For example, the 
parameters of the object’s trajectory depend on its speed, 
mass, size, and on the medium through which it moves. 
These factors impose bounds on the curvature and torsion 
of the trajectory. 
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In this paper we approach object motion understanding 
through analysis of long image sequences. A key question in 
this context is how to relate short-sequence motion estima- 
tion to long-sequence motion estimation. Using the Frenet- 
Serret frame provides us with an ability to understand 
motion over a long time period. We can derive the motion 
parameters from the parameters of the trajectory and obtain 
motion descriptions suitable for long sequence analysis. 
Using these tools we can show, for example, that rotation 
becomes significant only in long sequences, and that in a 
short sequence translation is usually dominant. We show 
that using simplified scene and imaging models we can 
get adequate local estimates (short sequence, 2-4 frames) 
by analyzing the images, and by observing these estimates 
over a long sequence we can accumulate them to describe 
the object’s trajectory. Analysis of the trajectory parameters 
provides us with tools for understanding long-term object 
motion. 

2. Related work 

Understanding object motion is based on extracting the 
object’s motion parameters from an image sequence. Broida 
and Chellappa [2] proposed a framework or motion estima- 
tion of a vehicle using Kalman filtering. Weng et al. [3] 
assumed an object that possesses an axis of symmetry, 
and a constant angular momentum model which constrained 
the motion over a local frame subsequence to be a super- 
position of precession and translation. The trajectory of the 
center of rotation can be approximated by a vector poly- 
nomial. Changing the parameters of the model with time 
allows adaptation to long-term changes in the motion char- 
acteristics. Their work was based on correspondence; at 
least eight pairs of corresponding points were needed. 

Accumulating the information obtained from the motion 
analysis of the sequence to achieve an estimate of the 
moving object’s trajectory is another step toward under- 
standing object motion. (A good survey of motion-based 
recognition was compiled by Cedras and Shah [4].) Bruck- 
stein et al. [5,6] assumed a known object model (a rigid rod 
or disk) and tried to recover the object’s trajectory and 
rotation. They showed that five images are enough to 
recover the motion of a rod or a disk in accordance with 
physical laws. Techniques from algebraic geometry were 
used to establish the existence of solutions to the resulting 
polynomial equations. 

Engel and Rubin [7] (and similarly Gould and Shah [S]) 
used motion characteristics obtained by tracking represen- 
tative points on an object to identify important events cor- 
responding to changes in direction, speed and acceleration 
in the object’s motion. 

Work has also been done on higher-level descriptions of 
object trajectories in terms of such concepts as stopping/ 
starting, object interactions, and motion verbs [9-111. 
This level of object motion description will not be treated 

in this paper, nor will other work on understanding functions 
of tools [12-151. 

In [ 161 Duric et al. tried to determine the function of a tool 
from its motion. Given a sequence of images of a known 
tool performing some function, they attempted to determine 
what that function was. They showed that the motion of a 
tool, when combined with information about the tool and its 
uses, provides strong constraints on the possible function 
being performed. Their flow-based analysis treated rela- 
tively short sequences. 

Understanding object motion from images requires a 
mathematical formulation of the relationships between the 
object’s trajectory and the image motion field. In this paper 
a model for object trajectory analysis is used; a constant 
relationship between the object frame and the motion 
frame is assumed. The use of the Frenet-Serret frame pro- 
vides a vocabulary appropriate for describing longer motion 

sequences. 

3. Motion models 

3.1. Rigid body motion 

To facilitate the derivation of the motion equations of a 
rigid body B we use two rectangular coordinate frames, one 
(Oxyz) fixed in space, the other (Cxlylzl) fixed in the body 
and moving with it. The coordinates, X1, Y1, Z, of any point 
P of the body with respect to the moving frame are constant 
with respect to time t, while the coordinates X, Y, Z of the 
same point P with respect to the fixed frame are functions of 
t. It is assumed that these functions are differentiable with 
respect to t. The position_of the moving frame at any instant 
is given by the position d = (XcYcZc)T of the origin C, and 
by the nine direction cosines of the axes-of the -moving 
frame with respect to the fixed frame. Let i,j and k be the 
unit vectors in the directions of the Ox, Oy, and Oz axes, 
respectively; and let :,,j’, and kl be the unit vectors in the 
directions of the Cxr, Cy r, and Czl axes, respectively. For a 
given position i of P in Cx 1y lzI we have the position FP of P 

in Oxyz: 

= Rj+& (1) 

where R is the matrix of the direction cosines (the frames are 
taken as right-handed so that det R = 1). If we differentiate 
Eq. (1) with respect to time and use the fact that 
5 = RT(;, - d,), we obtain: 

$ = l?; + 2, = l?RT(;, - 2,) + ;i, = s2&, - 2,) + d,. (2) 

The skew matrix n = Z?RT = - RkT is the rotational velocity 
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Fig. 1, The Frenet-Serret coordinate frame moves along the path I’. 

matrix and & is the translational velocity vector. Multiply- 

ing a vector (3, - d,) by the skew matrix 0 can be replaced 
by taking the cross product ; X (FP -d,) where 
; = (w,w,w~)~ is the rotational velocity vector. 

3.2. Motion along a smooth curve 

Consider a moving frame Cxiy,z, (fixed in a rigid body 
B), which moves with C along a space curve I’ while rotat- 
ing so that the Cx I and Cy , axes coincide with, respectively, 
the tangent and principal normal of r. This means that as C 
moves along r the Cx ly I~I frame coincides with the Frenet- 
Serret trihedron at C:Ctnb. This trihedron consists of the 
tangent i, the principal normal ii, and the binormal 6, 
which are mutually orthogonal (see Fig. 1). The geometry 
of this-motion is completely defined by I?. 

Let d,(s) denote the position of C, in the fixed coordinate 
frame Oxyz, when it has moved along r through a total arc 
length of s. For any position 3 of a point P on B in Ctnb, the 
position Y,, in Oxyz is given by Eq. (1) with the matrix of 
direction cosines R suitably defined (see Fig. 1). If 
t = (t, ~t~)~, ii = (n,r~~q)~ and b = (b, b2b3)T are the unit 
vectors along Ct, Cn and Cb, differential geometry gives us 

i=Q, fiEK-1 ;iyrt, l%xii, (3) 

where K is the curvature of r. Then we have 

(4) 

We have the Frenet-Set-ret formulas [ 171 

ir = & ;’ = - Ki+ &, 6’ = - r; (5) 

where r is the torsion of r. Using Eq. (4) and Eq. (5) Eq. (2) 
can be written as 

- I=& x (;&)+i ‘P (6) 

where the Darboux vector & = 7i + KG is the rotational 
velocity vector and the unit tangent i of I? is the translational 
velocity vector; the motion parameter is the arc length s. If, 
instead of using arc length as a motion parameter, time t is 
used, the rotational velocity & and translational velocity i 
are scaled by the speed v = dsldt of the point C. In that case 

Y 

Fig. 2. The plane perspective projection image of P is F =flXIZ,Y/Z,l); the 

weak perspective projection image of P is obtained through the plane 

perspective projection of the intermediate point P, = (X,Y,Z,) and is 

given by G =f(X/Z,,Y/Z,,l). 

the equation of motion becomes 

(7) 

In the special case where r is a plane curve we have r = 0 
(r is torsionless), and thus Gd = Kb. Eq. (7) then becomes 

_;=VKI; x (;,-;i,)+Vi. (8) 

3.3. Simple motions of objects 

Objects move in reaction to forces which are being 
applied to them. When the forces acting on an object are 
added, the resultant force F determines the direction of 
motion and the moments of the forces (or the torques) deter- 
mine the rotation of the object. If the force e is applied to 
the object-B at the point P, the moment M is given by 
M =;p X F where yI, is the position of P relative to a 
point C. k has the same direction as the axis of the rotation 
of B that results from applying F. 

The engine of a vehicle needs to apply force to the vehicle 
in order to move it from one position to another. If the path 
is prespecified (as in the case of a ground vehicle on a road), 
efficient application of the force requires that the angle 
between the instantaneous directions of the force and the 
directions of the path elements be small. The force differ- 
ential generates torques which help turn the vehicle around 
the axis of rotation normal to the (osculating) plane of the 
path. During a turn, the wheels rotate with different speeds; 
the greater the distance between the wheels the larger their 
difference in speed. In order to minimize this difference the 
distance between the wheels needs to be small. Also, when 
forces are applied to the wheels the resulting torques are 
larger when the vehicle is moving along a short axis; but 
these torques need to be as small as possible to improve the 
handling of and minimize stresses on the vehicle. Because 
of all these factors the principal axis of inertia of the vehicle 
should be tangent to the path of the vehicle. It should be 
pointed out that [ 181 the translational velocity at any point 
on a ground vehicle is typically orders of magnitude larger 
than its rotational velocity (around the vehicle’s center of 
mass). The rotational velocity becomes significant only 
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when the vehicle is observed over a significant period of 
time (typically several frames). 

In the case of a moving tool the force is used not only to 
move the tool, but to act on a recipient object. Therefore, the 
required force depends on the task. For example, sawing 
involves continuously exerting a force perpendicular to 
the path of the saw; tightening with a wrench involves con- 
tinuously exerting torque around the axis of rotation. (Note 
that the force may not be applied to the recipient object 
continuously; for example, when we swing a hammer, the 
force is applied only when the head of the hammer hits the 
object.) Developing a general theory of tool motion is a 
subject of our continuing research. 

4. Computing motion from image sequences 

For the purpose of estimating object motion from images 
we rewrite Eq. (2) in the following way: 

$=; x (7&,+&G x;,+? (9) 

where F = 2,) + 2, - ; X 2, = (UbW)T is the translational 
velocity expressed in the fixed (camera) coordinate frame 
Oxyz. We will later show how the translational velocity d, 
can be recovered from T. 

4.1. The imaging models 

Let (X,Y,Z) denote the Cartesian coordinates of a scene 
point with respect to the fixed camera frame (see Fig. 2) and 
let (x,y) denote the corresponding coordinates in the image 
plane. The equation of the image plane is Z =J wherefis 
the focal length of the camera. The perspective projection 
onto this plane is given by 

fx fl x= -, y= -. 
Z Z 

(10) 

For weak perspective projection we need a reference point 
(X,,Y,,Z,.). A scene point (X,Y,Z) is first projected onto the 
point (X,Y,Z,); then, through plane perspective projection, 
the point (X,Y,Z,) is projected onto the image point (x,y). 
The projection equations are then given by 

(11) 

4.2. The image motion jield and the optical jlow field 

The instantaneous velocity of the image point (x,y) under 
perspective projection is obtained by taking the derivatives 
of Eq. (10) and using Eq. (9): 

Bz-xi Uf -xw -W,TCW, X2 i= 
22 = z f f+f -%Y, ( > 

(12) 

lz-Yi 
jl= 

Vf -yw 

22 
=p--w, 

Z 

(13) 

The instantaneous velocity of the image point (x,y) under 
weak perspective projection can be obtained by taking deri- 
vatives of Eq. (11) with respect to time and using Eq. (9): 

i=f 
AZ, - x.2, Uf -xw Z 

z,’ = zc +fw,Z, - J&Y, (14) 

9=f 
Pzc - Yi, 

= F-fwx;+ w,x. 
z,’ c c 

(15) 

Let i and 7 be the_ unit vectors in the x and y directions, 
respectively; ; = ii + $7 is the projected motion field at the 
point ; = x; + yy. If we choose a unit direction vector ii, at 
the image point ; and call it the normal direction, then the . 
normal motion field at 3 is 7, = (%)$ 2, can be chosen in 
various ways; the usual choice (as we shall now see) is the 
direction of the image intensity gradient. 

Let Z(x,y,t) be the image intensity function. The time 
derivative of Z can be written as 

where VI is the image gradient and the subscripts denote 
partial derivatives. 

If we assume dZ/dt = 0, i.e. that the image intensity does 
not vary with time, then we have VI.2 + Zt = 0. The vector 
field ii in this expression is called the optical flow. If we 
choose the normal direction 2, to be the image gradient 
direction, i.e. 7i, = VIIIVZ]], we then have 

-&VI 
G, = (;.ir,)ii, = - 

llVZl12 
(16) 

where 2, is called the normal flow. 
It was shown in [ 191 that the magnitude of the difference 

between Ei, and the normal motion field Tn is inversely pro- 
portional to the magnitude of the image gradient. Hence 
7, = i& when IIVZII is large. Eq. (16) thus provides an 
approximate relationship between the 3-D motion and the 
image derivatives. We will use this approximation later in 
this paper. 

5. Tool motion 

As indicated in Section 1, we can assume that the tool’s 
motion is (approximately) planar and that its velocity is 
composed of a translational velocity in the plane of the 
tool and a rotational velocity around an axis orthogonal to 
the plane of the tool. 
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5.1. The image motion$eld of a wielded tool 

Let the normal to the plane be fi = (N,N,NzJT; the equa- 
tion of the plane orthogonal to N which passes through the 
point (O,O,Zo) on the z-axis of the Oxyz coordinate frame is 
given by 

XNx + YNy + (Z - &)N, = 0. (17) 

If we assume a nondegenerate view (i.e., NL > 0) for points 
on the plane we obtain from Eq. (17) and Eq. (10) 

‘&+Px+qY) (18) 

where p = N,N; ’ and q = N,N:- ‘. From our assumption 
about rotational velocity it follows that we have 
; = (pwzqwzwz) for some wz. Also, since we have assumed 
that the translation is in the plane of the tool we have 
jQ.F = 0, or equivalently 

(pql)T.(UVW)T= up+ vq+ w=o. 

It follows that we have 

w= -up-vq. (19) 

From Eqs. (12), (13) and (18) and Eq. (19) we obtain the 
equations of projected motion for points on the plane: 

jc= Uf +xup+xvq 

fl0 
v+Px+qY)--Pw+ 

2 

j= Vf +y~+yvq(f+px+qY)-Pwz g+, 

( > 

+ qw. ZJ + 0,x. 
“f 

(21) 

Eqs. (20) and (21) relate the image (projected) motion field 
to the scaled components of the translational velocity 
Zo- ‘U = U. and &- ‘V = Vo, the rotational parameter w;, 
and the normal to the plane @l)‘. 

Given the point 3 = xi+ yj and the normal direction 
n,i+ r$, from Eqs. (20) and (21) the normal motion field 
?,,.i = n,k + nyj is given by 

3.~=u,(f+px+qy)[n,+(xn,+yn,)pf -‘I 

+vo(f+Px+9Y)[n,+(x~,+Yn,)qf-‘l 

+w,[n,J-y+qf-pxyf -’ +qx2f -‘> 

+n,(x-Pf +qxYf -’ -PY2f_‘)I 

= uocp, (P, q; 7,3 +vo’p2(P, q; F, 6) + w&J3@, q; 7, ii)W) 

where the cps are nonlinear functions of p, q, ;, and ii is given 

by 

cPl(P,q;;,~)=(f+Px+qY)[n,+(xn,+Y~,lPf-’l, (23) 

++(x-Pf +qxyf -’ -PY2f -‘I. (25) 

In Eq. (22) ; and G are observable from images, while the 5 
tuple (p,q,Uo,Vo,w;) is not directly. observable. To estimate 
this Stuple we need estimates of ;.G at five or more image 
points. 

5.2. Estimating tool motion from normal fIow 

If we use the spatial image gradient as the normal direc- 
tion G = VI/I/VIII = n,; + nJ and T,, = ti, we can obtain an 
approximate equation c&responding to Eq. (22) by 
replacing the left hand side of Eq. (22) by the normal 
flow -Z/llVrll. This equation involves the eight unknown 
elements of c. For each point (x,,y,),i = l,...,m of the 
image at which IIVZ(xj,yj,t)ll is large we can write one such 
equation. If we have m such points, where m > 5, we have 
an over-determined system of equations 

@ti, s).(UoVowz)T = b (26) 

where the m X 3 matrix function @ is given by 

(i.e., its columns are m-vectors that correspond to values of 
4 at points (xi,y;)), and the elements of the m-vector b are 
-(dI(X,,yj, t)ldt)lllVZ(Xj~y,t)ll. 

We seek the solution of the system Eq. (26) for which 
lb - Wp, q)( U~VOwz)?l is minimal - i.e., we are seeking the 
solution of Eq. (26) in the least squares sense. This is a 
separable nonlinear least squares problem; a good stable 
solution and an algorithm were given by Golub and Pereyra 
in [20]. It was shown that the problem is equivalent to 
minimizing 

r(p, q) = Ilb - ati, q)++ (P, q)bll, (27) 

where %+ is the generalized inverse of Cp. r(p,q) is first 
minimized to obtain optimal values J? and 4 of p and q 
respectively; these values are then used to obtain @@,G). 
The linear least squares method is then used to minimize 
I/b - a@, ~).(UoVow,)TII and obtain optimal values of the 
motion parameters Uo, Vo, and 0,. After estimating 
p, q, U,,V,, and w, we use Eq. (19) to obtain WO. Finally, 
we obtain 

N=@q1)T(1+p2+q2)-1 

and 

II;11 = &&qzgc$ 

We have estimated the translational velocity ? and the 
rotational velocity i; in the camera coordinate system Oxyz. 
We are interested in the translational and the rotational 
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velocity expressed in the Frenet-Setret frame Otnb. By com- 
paring Eq. (2), Eq. (8) and Eq. (9) we obtain 

; = &, I; = ssgnw,, VK = 111;ll (28) 

where sgn stands for the ‘sign of’ function. Also, from Eqs. 
(2) and (8) and Eq. (9) we have 

(u,v,w,)r = z,- ’ F = z(- l (;;I, - (3 x 2,) 

=Z&‘(vi-z x ;I,) 

and thus 

3 x zi, 
“t = (u,v,w())r + --&-. 
z, 

(29) 

Note that in Eq. (29) the quantities Za and d, (the position of 
the point C, the origin of the Otnb frame) are not known. 
However, let d, = (XCYCZC)T be the position of C and let 
(x,,yc) be the image of C (either the tip or the center of 
mass of the tool). From Eq. (18) we obtain 

so that Eq. (29) can be written as 

(30) 

From Eq. (30) we obtain the unit vector in the tangent direc- 
tion ‘t’ by normalizing vGZa. Finally, we obtain the unit 
vector in the normal direction using 

ii=bxi. (31) 

Eq. (28), Eq. (30) and Eq. (31) define the Frenet-Serret 
frame Otnb expressed in the camera coordinate system. 
Eq. (28) gives us the curvature K up to an unknown factor 
v (linear velocity). We conclude that the Frenet-Serret 
motion can be recovered up to the speed v; note that the 
translational velocity vi/Z0 does not help here because of the 
unknown depth of Za. 

Finally, we need to recover the orientation of the tool 
coordinate frame (its long and short axes) in the Otnb 

frame. We find the long and the short axes of the tool as 
the principal axes of the set of tool points. The long axis 1 of 
the tool and the origin 0 of the fixed (camera) coordinate 
frame Oxyz define a plane II,. Since the image 1’ of 1 lies in 
this plane we can find Pi, using I’ in place of 1. Because we 
have assumed a nondegenerate view we have two cases: (i) 
if the tangent vector t lies in II, the motion is along 1; (ii) if 
the normal vector ii lies in II, the motion is orthogonal to 1. 

We check if the vector lies in the plane II, using the 
following simple algorithm. Let i1 =(~~yLf)r and 
p2 = (~*yzf)~ be the positions of two endpoints on the 

image 1’ of 1. The normal 6, of the plane II, is given by 

ti*+i x5,. 

If the vector i lies in the plane II, we have $n X 1~ 0. So to 
find out the relative orientation of the tool frame and the 
Otnb frame_ w,e only n_eed to find which one of the inner 
products bVn.tl and IN&l is smaller. (Note that while 
one of the vectors i and ti lies in the plane II, the other 
vector is not always orthogonal to II,.) 

6. Vehicle motion 

We assume that the motion of the vehicle is planar and 
that it has a small rotational velocity around the axis ortho- 
gonal to the plane of motion. The translational velocity is 
dominant and at any time t the motion can be approximated 
by pure translational motion. 

6.1. The image motion field of a moving vehicle 

From Eq. (14) and Eq. (15) we obtain the (approximate) 
equations of projected motion for points on a vehicle under 
weak perspective: 

k= w -xw 
4 ’ 

(32) 

jl= Vf -YW 
z, (33) 

Eq. (32) and Eq. (33) relate the image (projected) mo$on 
field to the scaled translational velocity Z,- ‘T = 
z,-‘(uvw)~. 

Given the point F =x7+ ye and the normal direction of 
n,T+ ni, from Eq. (32) and Eq. (33) the normal motion field 
“;, .ti = &k + nyj is given by 

3.1; = nflZcp ’ + nJVZC- I - (n,x + n,y) WZCp ’ (34) 

Let 

i 

ai 

a= a2 

a3 

(35) 

Using Eq. (35) we can write Eq. (34) as ;,,.;1 =arc. The 
column vector a is formed of observable quantities only, 
while each element of the column vector c contains quan- 
tities which are not directly observable from the images. To 
estimate c we need estimates of g,.i; at three or more image 
points. 

6.2. Estimating vehicle motion from normal flow 

As in Section 5.2 we use linear least squares to estimate 
parameter vector c from the normal flow. 
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04 
Fig. 3. An experiment using a wrench: (a-h) frames 30, 40, . . . . 100. Top images: the input images. Bottom images: results of flow computation. 

In the case of a moving vehicle the parameters of interest 
are the vehicle’s trajectory and its rate of approach. The rate 
of approach 

W 
(y=- 

(measured in s-‘) is equivalent to the inverse of the time to 
collision and corresponds to the rate with which an object is 
approaching the camera (or receding from it). The rate (Y = 
0.1/s means that every second the object travels 0.1 of the 
distance between the observer and its current position. A 
negative rate of approach means that the object is going 
away from the camera. 

The direction of motion c = f/Z, gives us the tangent 
vector t = c/k/l of the Frenet-Serret frame. If the direction 
of motion changes over time we can use the Frenet-Serret 
formulae Eq. (5) to recover the (scaled)_curvature VK of the 
trajectory. Given the tangent direction to at time t and the 
tangent direction i1 at time t + At we have 

The unit vector in the direction iie at time t is the normal 
vector of the Otnb frame and the scaled curvature is given 
by VK = II&J. Finally, we obtain 

$=ixii (37) 

Eq. (36) and Eq. (37) give us the normal 6 to the plane of 
motion and the rotational velocity of turning (yaw) ; = VK~. 

7. Experiments 

In the following section we show two examples for each 
of the domains we have discussed: tools and vehicles. As was 
mentioned before, tools usually operate by planar motion, 
advancing along a line (drill) or moving in a plane (sawing). 
In our examples, presented in Section 7.1, we show two types 
of motion: rotation with negligible translation (a wrench) and 
relative small rotation with dominant translation (a saw). 

A ground vehicle’s motion usually takes place on terrain 
that has a small slope and on a road with a limited rate of 
turn. This results in small values of pitch and yaw, i.e. in 
locally translational motion. Long sequences are needed to 
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Fig. 4. Results of experiments on the wrench sequence: the graph shows rotational velocity in radians/s. 

detect basic maneuvers such as turning or lane changing. In 
Section 7.2 we analyze two examples: an accelerating van 
(essentially linear motion) and a turning taxi. 

7.1. Motions of tools 

We tested our motion analysis algorithm under full per- 
spective on two image sequences of tools in motion. We 

used sequences that were sufficiently long to allow time for 
significant activity to take place. The first sequence, 
sampled frames of which are shown in Fig. 3, was a 220- 
image sequence of the movement of a wrench tightening a 
bolt. Flow results are given below each image. 

The motion of the wrench was a rotation (to turn the bolt) 
around an axis approximately orthogonal to the plane of the 
image. The rotational velocity is shown in Fig. 4; it is given 

Fig. 5. Results of experiments on the wrench sequence. The solid line corresponds to the orientation (in radians) of the instantaneous direction of translation of 
the centroid of the wrench, and the dashed line corresponds to the orientation (in radians) of the principal axis of the wrench. 
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(4 ( f ) k> (h) 
Fig. 6. An experiment using a saw: (a - h) frames 30, 40, . . . . 100. Top images: the input images. Bottom images: results of flow computation. 

in radians/s and it corresponds to the scaled curvature VK. 

Fig. 5 shows the orientation of the principal axis of the 
wrench and the instantaneous translational velocity of its 
centroid (obtained using Eq. (30)) both measured in 
radians. As we see, the translational velocity vector remains 
approximately orthogonal to the principal axis throughout 
the motion sequence. The Frenet-Serret frame has its binor- 
ma1 i in the direction of the negative of the z-axis, its 
tangent i in the image plane and orthogonal to the principal 
axis of the wrench, and its normal i in the image plane and 
oriented from the centroid of the wrench toward the bolt. 
The big spikes in Figs. 4 and 5 near the end of the sequence 
correspond to the fact that the person using the wrench 
cannot keep turning it in the same direction; when his 
hand has rotated as far as it can, he must change his grip 
on the wrench before continuing to rotate it. 

We also tested our motion analysis algorithm on a 220- 
image sequence of a saw doing a periodic motion. (In this 
sequence the saw is not cutting anything; in [16] a shorter 
sequence of a knife slicing bread was used.) Fig. 6 shows 
sampled frames of the sequence, with flow results given below 
each image. The motion of the saw was pure translation 

(II;11 = 0). As can be seen from Figs. 7 and 8 the motion is 
mostly fronto-parallel (the z component of the translational 
velocity is small). The motion is periodic in the direction of 
the principal axis of inertia. It is a simple case of a (periodic) 
straight line motion with the Frenet-Secret frame corre- 
sponding to the princ$al axes of the saw; i corresponds to 
the longest axis, and b to the shortest axis. 

These graphs confirm that the motion components have a 
simple behavior; before they reach their extremal values 
they can be approximated by straight lines, indicating con- 
stant relative accelerations. 

7.2. Motions of vehicles 

In this section we also used two image sequences, and we 
used the algorithms for weak perspective. In the first experi- 
ment we used an image sequence of a van taken from another 
vehicle following the van. The sequence consisted of 56 
frames (slightly less than two seconds). Fig. 9 shows frames 
5, 15,25, and 35 as well as the corresponding normal flow on 
the van. Fig. 10 shows estimated values of ZJZ, ’ , VZCp ’ , and 

WZC- ’ These values correspond to the relative translation 
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Fig. 7. Results of experiments on the saw sequence. (I, V, Ware the scaled (by an unknown distance Z 0 ‘) components of the relative translational velocity. 

of the van and the vehicle carrying the camera (observer (as do all the velocity components) and after that it becomes 
coordinate system). Because of our choice of the coordinate negative because the van starts pulling away from the 
system the rate of approach Q! corresponds to the negative of vehicle carrying the camera. A similar image sequence 
WZCP ‘, i.e. CY = - WZC- ‘. The graph shows that there is an was used in [21] in studies of vehicle convoy behavior. 
impending collision (rate of approach greater than 1 s-l). In the second experiment we used an image sequence of a 
Around the 20th frame the rate of approach becomes zero turning taxi taken by a stationary camera. The sequence 
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Fig. 8. Results of experiments on the saw sequence The solid line corresponds to the orientation (in radians) of the instantaneous direction of motion of the saw, 

and the dashed line corresponds to the orientation (in radians) of the principal axis of the saw. 
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(4 w (4 (4 
Fig. 9. Frames 5, 15, 25, and 35 of the van sequence. The normal flow results are shown below the corresponding image frames. 

consisted of 21 frames. Fig. 11 shows frames 1,9, 15 and 21 
as well as the corresponding normal flow on the vehicles. 
Fig. 12 shows estimated values of UZC- ‘, VZcp ‘, and 
WC- ’ . These values correspond to the relative translation 
of the taxi. The graph shows that there is a large W compo- 
nent in the turn (the taxi is receding), and that the turn is to 
the right (negative U, positive V). The graphs confirm that 
the translational components change smoothly, enabling 
recovery of the scaled rotational velocity (Eq. (36)) and 
the ground plane. 

8. Conclusions and plans for future work 

Many types of common objects, such as tools 
vehicles, usually move in simple ways when they are 
wielded or driven: the natural axes of the object tend to 
remain aligned with the local trihedron defined by the object’s 
trajectory. In this paper we have considered the relationship 
between this constrained motion and the object’s geometry. 
To analyze this relationship we have used two frames: the 
object frame and the frame of the motion trajectory. 

and 

I I 1 1 I 

0 10 20 30 40 50 60 

Fig. 10. Results of experiments on the van sequence. (I, V, Ware the scaled (by an unknown distance Z,- ‘) components of the relative translational velocity. 
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Fig. 11. A taxi sequence: (a-d) frames 1, 9, 15, 21. Top images: the input images. Bottom images: results of flow computation. 

Assuming a constant relationship between the object frame 
and the motion frame during the motion, we have used 
Frenet-Serret motion as a motion model. Using the Frenet- 
Serret frame has provided us with an ability to understand 
motion over a long time period. 

We have derived equations for understanding the 
motions of tools and vehicles under full and weak per- 
spective. We have recovered descriptions of an object’s 
motion and the space curve along which the object 
moves, using relatively long image sequences. The motion 
and trajectory parameters provide a low-level description for 
understanding the motions of vehicles. For understanding 

tools in motion one needs additional knowledge about 
the tool and the context. This is a direction for further 
research. 

It is the need for efficient force transfer that imposes a 
simple and constant relationship between the natural axes of 
the object and the motion trajectory. We have used this 
functional constraint in analyzing the motions of tools 
and ground vehicles. Expanding this analysis to other 
classes of objects (e.g. air vehicles), as well as expanding 
the vocabulary that describes the behavior of tools and 
vehicles (sharp turn, skid, etc.) [ll], are other directions 
for future research. 

I 1 1 I I 1 I 1 I I 
2 4 6 6 lo 12 14 16 16 20 

Fig. 12. Results of experiments on the taxi sequence. (I, V, Ware the scaled (by an unknown distance Z,- ‘) components of the relative translational velocity. 
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