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Function From Motion

Zoran Duric, Member, IEEE Computer Society, Jeffrey A. Fayman, and Ehud Rivlin

Abstract—in order for a robot to operate autonomously in its environment, it must be able to perceive its environment and take
actions based on these perceptions. Recognizing the functionalities of objects is an important component of this ability. In this paper,
we look into a new area of functionality recognition: determining the function of an object from its motion. Given a sequence of
images of a known object performing some function, we attempt to determine what that function is. We show that the motion of an
object, when combined with information about the object and its normal uses, provides us with strong constraints on possible

functions that the object might be performing.

Index Terms—Obiject recognition, action perception, functionality, motion, normal flow.

1 INTRODUCTION

N the field of robotics, researchers have long pursued the

goal of enabling a robot to act autonomously in its envi-
ronment. For robots, as for humans, recognizing the func-
tions of objects is a prerequisite to autonomous interaction
with them. Functionality can be defined as the usability of
an object for a particular purpose [2]. As an example, sup-
pose we would like to open a letter. We seek a sharp object
such as a knife or a pair of scissors that would be appropriate
for opening the letter. Clearly the knife or scissors are func-
tional in the context of opening a letter, and a robot given the
task of opening a letter would at some point be required to
recognize such objects as being functional for its task.

Recent research has focused on the problem of recog-
nizing object functionality (for a short survey see [2]). The
goal of this research has been to determine functional capa-
bilities of an object based on characteristics such as shape,
physics and causation [20]. Little attention has been given
to the problem of determining the functionality of an object
from its motion. We believe that motion provides a strong
indication of function. In particular, velocity, acceleration,
and force of impact resulting from motion strongly con-
strain possible function. As in other approaches to func-
tional recognition, the object (and in our case, its motion)
should not be evaluated in isolation, but in context. The
context includes the nature of the agent and the frame of
reference it uses.

Information derived from motion can be useful in sev-
eral ways. We expect a robot to take actions based on per-
ceived events. In many instances, the events are perceived
visually as motions in the environment. For example, a ro-
bot serving as a mechanic’s mate [3] might “see” a person
tightening a bolt with a pair of pliers and offer the person a
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wrench which would be more suitable for the task. Here,
the robot determines the function of the pliers based on
their motion (i.e., tightening) and determines that the
wrench would be more suitable for tightening the bolt. This
is an example of action perception. This ability can be used
by an observing robot for monitoring other agents per-
forming different tasks. Action perception can be useful in
other domains as well. For example in automatic video se-
quence analysis, an observer can search a sequence for a
specific action, which is a combination of a known object
going through a certain motion profile.

Function based recognition tries to achieve a mapping
from function to form. When an agent has some action to
carry out an appropriate object is searched for. Observing
an acting agent trying to perceive what is the action taking
place involve an inversion of this mapping. Since the map-
ping from function to form is many to many, we need the
information provided by motion to enable us to infer what
is the mapping that the acting agent did, exact. In the above
example, we would like to use a motion of a tool (i.e., tight-
ening) to determine the function of the tool.

In this paper, we address the following problem: given a
model of an object, how can we use the motion of the object,
while it is being used to perform a task, to determine its
function? Our method of answering this question is based on
motion analysis of the given image sequence. The analysis
results in several motion descriptors. These descriptors are
compared with stored descriptors that arise in known mo-
tion-to-function mappings to obtain function recognition.

In Section 2 we review literature that describes related
work. In Section 3 we cover some preliminaries related to
the problem. Section 4 considers the problem of determin-
ing the functionality of a known object by analyzing an im-
age sequence showing that object performing the function.
The motion estimation machinery needed for this task is
developed in Section 5. In Section 6 we present experimen-
tal results demonstrating that motion analysis can indeed
be used in determining functionality. In Section 7 we dis-
cuss planned future work in the area.
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2 Related Work

Our research is concerned with the problem of determining
the function of an object by analyzing its motion. Motion
and functionality have appeared in the literature in several
contexts. Early work on functional recognition can be found
in [5], [17], [25]. More recently, Stark and Bowyer [18], [19],
[20], [21] used these ideas to solve some of the problems
presented by more traditional model-based methods of ob-
ject recognition. In the so-called function-based approach,
an object category is defined in terms of properties that an
object must have in order to function as an instance of that
category [20]. This work deals only with the stationary ob-
jects; no motion is involved. In recent work Green et al. [6]
discuss the use of motion information for the recognition of
articulated objects using function. The motion is used to
determine whether the object in view possess the appropri-
ate functional properties. The analysis is done using a full
3D boundary description. The motion is not used to infer
function in action.

Gould and Shah [7] use motion characteristics obtained
by tracking representative points on an object to identify
important events corresponding to changes in direction,
speed and acceleration in the object’s motion. They believe
that, “in many cases where an object has a fixed and prede-
fined motion, the trajectories of several points on the object
may serve to uniquely identify the object.” This identifica-
tion would be achieved by analyzing motion characteristics
alone without requiring an object model; but no object
identification results were given. We believe that since
many objects display similar motion characteristics, motion
alone is insufficient for function-based analysis, to deter-
mine the function of an object in action one needs not only
its motion, but also the object’s form.

Motion analysis for recognition of activities was de-
scribed by Polana and Nelson [14]. They use Fourier analy-
sis to detect and localize periodic activities such as walking
or flying in a sequence of images. This work is similar in
nature to our work in that both use motion as a basis for
identifying activities. However, Polana and Nelson are con-
cerned only with detecting the activities, without concern
for the source of the motion. This is not adequate for func-
tion-based analysis since many objects can display similar
motion characteristics. An object model is necessary to dis-
tinguish between the functions of objects that display simi-
lar motion characteristics.

Our work depends on segmenting the object into primi-
tive parts and analyzing their motions. This kind of seg-
mentation into functional parts was discussed by Rivlin et al.
in [15]. They proposed a technique for functional recognition
which extends the “Recognition by Parts” paradigm of object
recognition to support “Recognition by Functional Parts.”

3 PRELIMINARIES

In this section we begin with a discussion of primitive
shapes and motions. Next, we derive equations of motion
for both the observer-centered and the object-centered co-
ordinate systems. We then derive projected motion equa-
tions for the plane perspective imaging model and show
how these equations can be simplified by the use of weak
perspective projection [22]. Finally, we derive the relation-
ship between the image velocities and the projected motion.

3.1 Primitive Shapes and Primitive Motions

Following [1], [15], [16] we regard objects as composed of
primitive parts. On the most coarse level we consider four
types of primitive parts: sticks, strips, plates, and blobs,
which differ in the values of their relative dimensions. As in
[15] we let a,, a,, and a, represent length, width, and height,
respectively, of a volumetric part, we can define the four
classes as follows:

Stick:  a,=a,<a, \/a,=a,<a,\/a,=a,<a, (1)
Strip:  a,#a,/\a,#a,/\a, #a, @
Plate:  a,=a,>a,\/a,=a,®>a,\/a,=a,>4q, (3)
Blob: 4, =a,=a, 4)

If all three dimensions are about the same, we have a
blob. If two are about the same, and the third is very differ-
ent, we have two cases: if the two are bigger than the one,
we have a plate, and in the reverse case we have a stick.
When no two dimensions are about the same we have a
strip. For example, a knife blade is a strip, because no two
of its dimensions are similar.

These primitives can be combined to create compound
objects. In [15] the different qualitative ways in which these
primitives can be combined were described—for example,
end-to-end, end-to-side, end-to-edge, etc. In addition to
specifying the two attachment surfaces participating in the
junction of two primitives, we could also consider the an-
gles at which they join, and classify the joints as perpen-
dicular, oblique, tangential, etc. Another refinement would
be to describe qualitatively the position of the joint on each
surface; an attachment can be near the middle, near a side,
near a corner, or near an end of the surface. We can also
specialize the primitives by adding qualitative features
such as axis shape (straight or curved), cross-section size
(constant or tapered), etc.

Functional recognition is based on compatibility with
some action requirement. Some basic “actions” are static in
nature (supporting, containing, etc.), but most actions in-
volve using an object while it is moving. To illustrate the
ways in which one can interact with a primitive, consider
the action of “cutting” with a sharp strip or plate. Here a
sharp edge is interacting with a surface. The interaction can
be described from a kinematic point of view. The direction
of motion of the primitive relative to its axis defines the
action—for example, slicing or chopping. We define basic
or primitive motions to be motions along, or perpendicular
to, the main axes of a primitive object. (It is interesting to
note that motions along the main axis of a primitive pre-
serve “degenerate views” [10].) The motion can be a trans-
lation or a rotation.

3.2 Rigid Body Motion

To facilitate the derivation of the motion equations of a
rigid body B we use two rectangular coordinate frames,
one (Oxyz) fixed in space, the other (Cx,y,z,) fixed in the
body and moving with it. The coordinates X,, Y,, Z, of any
point P of the body with respect to the moving frame are
constant with respect to time #, while the coordinates
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X, Y, Z of the same point P with respect to the fixed frame
are functions of t. It is assumed that these functions are dif-
ferentiable with respect to t. The position of the moving
frame at any instant is given by the position
t:ic = (XC Y, ZE)T of the origin C, and by the nine direction
cosines of the axes of the moving frame with respect to the
fixed frame. Let 17, ], and k be the unit vectors in the direc-
tions of the Ox, Oy, and Oz axes, respectively; and let 171, ]?1/
and k, be the unit vectors in the directions of the Cx,, Cy,,
and Cz, axes, respectively. For a given position pof P in
Cx,,z, we have the position 7, of P in Oxyz

X i 21 3]:1 i ]El Xy X, -
?pEYzlzl Ph k|| [+ Y [=Rid ©
2) k4 kg, kR \Z) \Z

where R is the matrix of the direction cosines (the frames
are taken as right-handed so that det R = 1). The velocity of
r, is then given by

fo=ox(f,-d)+T
where @ = (A B C)T is the rotational velocity of the moving
frame; 36 = (X LY ZC)T =(Uuv W)T =T is the translational

velocity of the point C. This can be written as

X 0 -C B\[X-X| (U
Y(=| C 0 -Al|Y-Y [+|V 6)
z) \-B A oJiz-z ] W

Let the the
W, = (A1 B, Cl)T; we can write @ = R@, and @, = R,

rotational velocity in moving frame

Fig. 1. The plane perspective projection image of Pis F = (X/Z,Y/Z, 1);
the weak perspective projection image of P is obtained through the
plane perspective projection of the intermediate point P, = (X, Y, Z)
andis givenby G=f(X/Z,Y/Z,1).

3.3 The Imaging Model

Let (X,Y, Z) denote the Cartesian coordinates of a scene
point with respect to the fixed camera frame (see Fig. 1),
and let (x, y) denote the corresponding coordinates in the
image plane. The equation of the image plane is Z = f,
where f is the focal length of the camera. The perspective
projection is given by x = fX/Z, and y = fY/Z. For weak
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perspective projection we need a reference point (X, Y, Z).
A scene point (X, Y, Z) is first projected onto the point
(X,Y,Z); then, through plane perspective projection the
point (X, Y, Z) is projected onto the image point (x, y). The
projection equations are then given by

X Y
x=ofy=oF %

3.4 The Motion Field and the Optical Flow Field

The instantaneous velocity of the image point (x, y) under
weak perspective projection can be obtained by taking de-
rivatives of (7) with respect to time and using (6):

XZ XZ
=f— Z
[c Y.)+B(Z-2)+U|7, - XW
ZZ
uf —xW Z
:-_ZC__C(y_yc)_'LfB[Z_C“l)/ (8)
o YZ,-YZ
y= Zcz =
[C(X-X)-A(Z-2)+V]|z - YW
f e
Vf-yW z

where (x, y) = (X./Z, fY./Z) is the image of the point C.
Let { and ] be the unit vectors in the x and y directions,
respectively; F=i+ y‘f is the projected motion field at the
point 7 = xi +yj.

If we choose a unit direction vector 7, in the image point
7 and call it the normal direction, then the normal motion
field at 7 is ?n = (?-ﬁr)ﬁ,. #i, can be chosen in various
ways; the usual choice (as we shall now see) is the direction
of the image intensity gradient.

Let I(x, y, ) be the image intensity function. The time de-
rivative of I can be written as
dr - ol dx &Idy a1 - (s R
o EE? aydt (le+Jy;)~(x1+y])+IﬁVI-r+It
where VI is the image gradient and the subscripts denote
partial derivatives.

If we assume dI/dt = 0, i.e., that the image intensity does
not vary with time [9], then we have VI-#+1, =0. The
vector field # in this expression is called the optical flow. If
we choose the normal direction #, to be the image gradient
, we then have

direction, i.e., 7, =
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-IVI
Ivif

i, = (i, )i, = (10)
where 1, is called the normal flow.

It was shown in [24] that the magnitude of the difference
between i, and the normal motion field 7, is inversely pro-
portional to the magnitude of the image gradient. Hence
# =~ ii, when |VI] is large. Equation (10) thus provides an ap-
proximate relationship between the 3D motion and the image
derivatives. We will use this approximation later in this paper.

4 FuncTioN From MoOTION

Function-based recognition tries to achieve a mapping from
function to form. When an agent has some action to carry
out, an appropriate object is searched for. The recognition
process is an attempt to achieve compatibility with some
action requirements [23]. As mentioned earlier some basic
“actions” are static by nature (supporting, containing, etc.),
but most actions involve using an object while it is moving.
Observing an acting agent trying to perceive what is the
action taking place involve an inversion of this mapping.
Because the mapping from function to form is many to
many, if one is interested in revealing the mapping addi-
tional constraints are needed. An important such a con-
straint is motion.

In this work, we are interested in the mapping f: M+ F
from motion to function. Given a moving object as seen by
an observer we would like to infer the function being per-
formed by the acting agent. The process is described in
Fig. 2. The object is given as a collection of primitives. In
this example a knife is described as a collection of two
primitives. In the figure the different combinations for a
stick and a strip are shown. The knife can be composed from
a stick and a strip, two sticks or two strips, and the exact
combination is given to the system. Given the model the
system estimate the pose of the object which is passed to the
motion estimation module. The model and the results of the
motion estimation phase enable the system to infer the func-
tion that is performed by the agent. In this paper we develop
and test the motion estimation needed for the mapping.

Object Category: knife Pose

t—=»{ Motion Estimation }—== Function

Shape Description: Estimation

0 ===

E Chopping—t— Stabbing

[[I — Slicing —t— Jabbing

@ co—

Fig. 2. Mapping motion to function: Given an object, i.e., the shape
primitives that constitute the object (front view on the left, side view on
the right), the image is processed to achieve a pose estimation. The
image sequence is analyzed and motion estimation is carried out. The
combination of the given model and the results of the motion estima-
tion enables us to infer the mapping to the function that is carried out
by the acting agent.

Fig. 3. Slicing: The motion of the strip is planar and periodic.

We are interested in the object’s motion over time in the
object’s coordinate system and its relation to the object it
acts on (the actee). Both of these measurements are neces-
sary for the mapping. The object’s motion over time in the
object coordinate system gives us the relationship between
the main axis of the object and its direction of motion.
Given an object, these relationships help to determine the
intended function. For example, we would expect the mo-
tion of a knife that a person is using to “stab” to be parallel
to the main axis of the knife, whereas if the person is
“chopping” with the knife we would expect motion per-
pendicular to the main axis.

In our work we give importance to primitive motions.
Basic or primitive motions (which can be rotational or
translational) are motions relative to the main axes of a
primitive object. For a stick, translation and rotation along
the main axis are important. When pure rotation is in-
volved we have a screwdriver or a rotor (long and short
axis respectively). When pure translation along the main
axis is performed we have stabbing or jabbing. (When tor-
sion is also involved we have screwing, drilling, etc.) For a
plate, translation along the direction of the normal and ro-
tation around the normal are important. In other directions
there is no special component because a plate is isotropic.
For a strip there are two important axes (it can be regarded
as a plate and stick combined). Note that in all of these ex-
amples the motion is in a plane.

When determining function from motion, attention must
be paid to the intended recipient. The relation to the actee is
essential for establishing the mapping and creating a frame
of reference. The importance of the actee in constraining the
shape of the acting object was discussed in [11], [12] (where
it is termed “functant”). They emphasize the ways in which
the acting object shape is constrained by the need to match
the shape of the actee. Here we are interested in the spatial
relationship between the acting object and the actee—i.e., in
establishing the frame of reference. Once this frame is es-
tablished, motion of a knife in one direction could result in
stabbing while motion in perpendicular direction results in
slicing. Humans usually employ reference frames in which
one axis represents the gravity vector, but this is not neces-
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sary. We can slice bread on a wall as well as on a table;
what matters is the motion of the knife relative to the actee.

In the next section, we develop the motion estimation
machinery needed for this class of examples and we for-
malize our procedure for obtaining f: M — F. We assume
we are given a model of the object in view, that is the type
of the primitive part we are observing. We assume a recov-
ery process like the one described in [15] to give us this
kind of information. With each object category we relate a
set of motion descriptors which map the given model to a
function. These descriptors contain values for the different
motion parameters as a function of time. Matching the ob-
served motion to the stored descriptors result in function
recognition. As was mentioned before the actee has an inte-
gral part in the recognition process, as it provides the con-
text. The motion analysis relates to the external coordinate
system as given by the observer and the actee. On the other
hand the system does not verify a successful execution. For
achieving that the actee needs to be observed and analyze.
Such an analysis is given in [2] and we did not include it in
the system. In its present form the analysis will not differ-
entiate between a real act and a play (pantomime).

In Section 5 we analyze motion of sticks and strips. We
assume a pose estimation module like in [4] which we use
to establish the object frame. We assume that the motion of
the tool is planar and that the plane in which the tool
moves is “visible” by the observer (camera). The “visibility”
constraint allows an oblique view as long as the angle be-
tween the surface normal and the z-axis of the camera is
less than or equal to 30°. When the hand tool is a strip we
assume that the motion is in the plane of the strip: the
translational velocity is then parallel to the plane of the
strip and the rotational velocity is orthogonal to the plane
of the strip. When the hand tool is a stick the consecutive
positions of the stick define the motion plane; the transla-
tional velocity lies in the plane and the rotational velocity is
orthogonal to the plane.

Experimental results inferring function from image se-
quences are presented in Section 6.

5 MOTION OF STICKS AND STRIPS

Consider a moving object B. There is an ellipsoid of inertin
associated with B. The center of the ellipsoid is at the center
of mass C of B; the axes of the ellipsoid are called the prin-
cipal axes. We associate the coordinate system Cxy,z, with
the ellipsoid and choose the axes of Cx,y,z, to be parallel to
the principal axes. Let 7, be the unit vector in the direction
of the longest axis I, (this axis corresponds to the smallest
principal moment of inertia); let k, be the unit vector in the
direction of the shortest principal axis (this axis corre-
sponds to the largest moment of inertia); and let j, be the
unit vector in the direction of the remaining principal axis
with the direction chosen so that the vectors (i, ,71,721) form
a right-handed coordinate system (see Fig. 4).
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Fig. 4. The object centered coordinate system Cx,y,z,: The unit vectors
i;, j;.and k, are parallel to the principal axes of the object.

In this paper we consider only planar and approximately
straight strips and sticks. For a planar strip the axis of the
maximal moment of inertia is orthogonal to the plane of the
strip; if the strip is approximately straight, the axis of the
minimal moment of inertia is approximately parallel to the
medial axis I, of the strip; the axis of the maximal moment
of inertia is orthogonal to the plane of the strip. In the case
of a straight stick we have the center of mass C at the mid-
dle of its medial axis [: in this case [ corresponds to the
longest principal axis of the ellipsoid of inertia; the other
two principal axes are orthogonal to /. and can be chosen
arbitrarily. We assume that the motion of the tool is planar
and that the plane in which the tool moves is “visible” by
the observer." When the hand tool is a strip we assume that
the motion is in the plane of the strip: the translational ve-
locity is then parallel to the plane of the strip and the rota-
tional velocity is orthogonal to the plane of the strip. When
the hand tool is a stick the consecutive positions of the stick
define the motion plane; the translational velocity lies in the
plane and the rotational velocity is orthogonal to the plane.
When the tool is a stick we choose the axis of minimal mo-
ment of inertia (it can be chosen arbitrarily) to be orthogo-
nal to the plane of the motion.

We choose the center of mass C of a stick or a strip B as
the origin of the object coordinate system Cxy.z ; the coor-
dinates of C expressed in the fixed frame are (X, Y, Z) (see
Fig. 4). We choose the unit vector 71 along I with the ori-
entation chosen to be in the direction of the acting part of
the tool; we choose El to be orthogonal to the plane of mo-
tion and pointing away from the observer (camera) so that

k-k, = 0. We choose the direction of j; so that Cx,y,z, is a
right-handed orthogonal coordinate system. Let I1, be the
plane in which both the line [ and j (the unit vector in the
direction of the y-axis of the camera) lie; we can obtain IJ,
by sliding a line parallel to the  along [. Also, let I1, be the
plane in which both the line I_and k (the unit vector in the
direction of the z-axis of the camera) lie; we can obtain [T,
by sliding a line parallel to the k along ..

1. The “visibility” constraint allows an oblique view as long as the angle
between the surface normal and the z-axis of the camera is less than or
equal to 30",
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Let the angle between the plane I1, and the Cy, axis of
the object be y. The rotation R (—y) around the Cx, axis of

the object through the angle —y transforms j, into j, (the
unit vector parallel to l'ly) and 1?1 into lzc‘ The orthographic
image of [ in the plane Z = Z_is the line I which is the inter-
section of the plane Z = Z_and I1;; let the angle between I/
and [, be ¢. The rotation R, around an axis Cy, (passing
through C and parallel to j.) through the angle —¢ trans-
forms i, into i, (the unit vector along I/) and it transforms
k . into k (the unit vector along the z-axis of the camera). Fi-
nally, let the angle between the positive direction of the x-axis
of the camera and the direction i, be o. The rotation R (—¢)
around the axis Cz (passing through C and parallel to k)
through the angle —o transforms z: into i and it transforms

jo into j . The rotation matrix R + R,(-a)R, (-¢)R, (-¥) in

(5) is then given by
cosee —sina 0
R=|sinox cosax 0O|x

0 0 1
cosp O sing
0 10 (11
~singp 0 cos¢
1 0 0

X| 0 cosy —siny

0 siny cosy

5.1 Image Motion Fields of Sticks and Strips

By our assumption about the translational velocity of the
object and the choice of the object coordinate system we

have T, = (U, V, O)Tand T = RT,. The expression for the
translational velocity in the fixed frame is given by

R 31 U, cos @ + V, sin @ siny
T=|V |=R,(~0) V, cosy 12)
w ~U, sing +V, cos psiny

Similarly, for the rotational velocity we have @; = qi?l.
The expression for k, in the Oxyz frame isRk,. We have
from (11)

R : _ X -

sin ¢ sin ¢ cos ¥ — cos ¢ sin =|N,|=N.
peosy y

COS ¢ COS Y N

z

- (coscxsin(pcosl// + sin o/ sin y N

The expression for the rotational velocity in the fixed frame
is given by

®=(ABC) =C Rk =CN. (13)

We now consider the term (Z — Z)/Z_for the points on
the object B. The equations we derive are valid for points in
the plane in which [ lies and is orthogonal to I1; the unit
vector k; is normal to this plane. The equation (in the Oxyz
frame) of the plane orthogonal to N = Rk, in which the
point (X, Y,, Z) lies is given by

(X = X)N, + (X = YDN, + (Z = Z)N,= 0.
Multiplying by (ZN,)” and using (7) we obtain

Z-7,

f > :—(x—xC)Nx/NZA(y—yc)Ny/Nz.
This is an exact formula for thin planar strips; in the case of
sticks this formula is exact for an occluding contour.

From (8), (9), and (14) we obtain the equations of pro-
jected motion for points on B under weak perspective:
o Uf-xw
x= 7 _Cl(y*yc)Nz—

C][(x - )N,N, /N, +(y - yc)N;/NZ],

(14

(15)

o Vf-yWw
Y=z

Cl[(x_XC)Nz/NZ+(y_yC)N1Ny/NZ]' (16)

Equations (15) and (16) relate the image (projected) motion
field and (x, y) to the scaled translational velocity

7T = z;‘(u Vv W)T, the rotational parameter C,, and the

+Cy(x—x )N, +

- T

normal to the strip N = (Nx N, NZ) .
Given the point 7 = xi + yj’ and the normal direction

nx;' + nﬁ we have from (15) and (16) the normal motion field

Fo=ngbny =, f[u/zc +(x /fJGN, N, /NZ] -

nx(WjZ, + CGN, N,/N,)

7nx(y - yc)cl(Nz + NyZ/Nz) + nyf[v/zc - (yc/f)cle Ny/Nz]

~1,Y(W/Z. = CN N, /N, )+ 71, (x =% )C, (N, + NI /N, ).

(17)
Let
aq, _”;;fx
a. x
= aj — —‘nx(y_yc)
a= a, | nyf 5
as -1y
aﬁ n}‘(x - xc)
U/2, +(x./f)CN, N,/N, (18)
G W/ZC + N, Ny/Nz
C
- cz _ CI(NZ+NYZ/NZ>
€ || V/Ze = (3 /F)CN, N, N,
Cs W/z. -CN, Ny/Nz
C
6 CI(NZ+N3/NZ)
Using (18) we can write (17) as
Roizale (19)

The column vector a is formed of the observable quantities
only, while each element of the column vector ¢ contains
quantities which are not directly observable from images.
To estimate ¢ we need estimates of 7, -7 at six or more im-
age points.
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5.2 Estimating Motion Parameters From Normal Flow
If we use the spatial image gradient as the normal direction
i, = VI/|VI| = ni + ny] and 7, = i, we can obtain an ap-
proximate equation by replacing the left hand side of (19) by
normal flow —I./[[VI]|. In this way we obtain one approximate
equation in the six unknown elements of ¢. For each point
(x,y), i=1, ..., m of the image at which |[VI(x, y, 1) is large
we can write one equation. If we have more than six points
we have an over-determined system of equations Ac = b; the
rows of the m x 6 matrix A are the vectors a, and the elements
of the m-vector b are —(0l(x, y, £)/91) /|V I(x, y, t)|.

We seek the solution for which ||b — Ad|| is minimal. This
solution is the same as the solution of the system A"Ac = A™b
= d. We solve the system A"Ac = d using the Cholesky de-
composition. Since the matrix A"A is a positive definite 6 x 6
matrix there exists a lower triangular matrix L such that LL' =
ATA. We then have LL ¢ = d. We solve two triangular systems
Le =d and L’c = e to obtain the parameter vector c.

After estimating ¢ we can use (18) to obtain T/Z and C;:
Letc, = (c,— ¢,)/2, we then have

—U—:c XL
Z, 1 7
\4 x.cy
AR A
w

Cy +C
& = 2 5 >, C = sgn(cs),/%c6 - c72

where sgn is the sign function.
We will next show how U,/Z_and V,/Z, can be esti-
mated from (U/Z, V/Z, W/Z). From (12) we have

U, cos ¢+ V,singsiny uj/z, d,
z! V, cosy =R ()| V/Z, |=1d, | (0)
U, sin@ +V, cos @ siny W/Z, ds

and by rearrangement we obtain
Vi uy/7, cosp —sing) (4,
7o = iny )~ (Smp b (i) @

To estimate U,/Z, V,/Z, ¢, and y we need at least four

equations, but (21) provides only three. However, by our
assumption about the slant of the plane of the motion relative

to the image plane, L(E], E) is at most 30". The first and the

second rotations in (11) are in orthogonal planes; it follows
(from the fact that in a right triangle the longest side is the

hypotenuse) that both ¢ and ymust be smaller than 30°.

Since we have four variables and only three equations
we seek @ and y for which | @l+1yl| is minimal. From (21)
we have

dytany = d, sing +d, cos = \Jd; +d3 sin(p - 0;) (22)
where ¢, = —arctan(d,/d,). The value of ¢ which satisfies
(22) and minimizes | @l +[y| belongs to the interval [0, @]
(the interval can be cropped if it exceeds 30" bound). To
each value of ¢ corresponds one value of y. Because of the
convexity of the constraint the solution to min{{ ¢!+ i}
can be found using simple search through all ¢ €0, ¢,] and
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corresponding ys. The values of ¢ and y can then be used
in@2D tofind U,/Z and V,/Z.

6 EXPERIMENTS

This section illustrates how our methods can be applied to
real image sequences. In each sequence, we captured the
motion of an object performing a task. The vision system
recorded images at 25 frames per second for five seconds,
yielding 125 images per experiment. After each image se-
quence was recorded, a representative sampling of the 125
images was used for further processing. Eleven evenly
spaced samples, each composed of three consecutive images,
were used.” This resulted in 33 images for each experiment.

In our experiments we assumed a table-top scenario,
with a stationary observer on one side of the table. Based on
this assumption we used a coordinate system that was fixed
to the center of the image, with the X axis horizontal and
pointing toward the right side of the image, the Y axis
pointing upward, and the Z axis chosen to yield a right-
handed coordinate frame (pointing toward the scene). All
measurements were made relative to this coordinate sys-
tem. The focal length f of the camera was 550 (pixels).

In Section 6.1 we describe the method which we use to
estimate the direction of the medial axis a and the center of
mass (x, y,) of the image of the tool; we also define the parame-
ters used to describe the motion of sticks and strips. In other
subsections we describe the experiments on real image se-
quences. Two types of experiments were performed. First we
show how the motion can be used to discriminate between dif-
ferent functionalities of the cutting tools. All the functionalities
belong to the same family of manipulation tasks, namely cut-
ting. In the second scenario we show how the motion informa-
tion can be used to discriminate between two different function-
alities of the same object, but this time for two different families
of manipulation tasks. We give two examples of this scenario. In
the first example, a shovel is used for scooping or for hitting. In
the second example, a wrench is used for tightening or for
hammering. In both examples, the first use is the normal one
and the second use is an instance of improvisation. The motion
gives clear information for a correct interpretation of the action
that is taking place.

6.1 Parameterizing Motion of Sticks and Strips

We have assumed that an approximate direction (right,
left, up, down) of the acting part of the tool is known. The
exact direction of the medial axis is found using the fol-
lowing algorithm:

1) Make a sorted (circular) list of all edge elements
(sorted by their orientation modulo 7) for which the
normal flow is computed.

2) Find the shortest segment [y, %] such that more than
3/4 of the orientations in the list is contained within it.

3) Find the median orientation « in the sorted sublist
chosen in the previous step.

4) If oo does not agree with the general direction of the
tool (right, left, up, down) then o« o + 7.

5) Use o as the orientation of the medial axis.

2. For instance, samples 1 and 2 in any given experiment used images 0-2
and 10-12, respectively.
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(b)
Fig. 5. (a) Flow vectors for jabbing. (b) Jabbing motion.
35 T T T

it 1 i

05 i i
0

Fig. 6. Angles ¢, 8, and @ for jabbing. ¢ is given by a dashed fine, S is
given by a solid line, and @ is given by a dash-dot line.

We estimated (x,, y)—the image position of C (the ref-
erence point and the center of mass of the object)—as the
average of the coordinates of all edge points for which the
normal flow was computed.

We define f as the angle between the vector (U, V, 0)
and the Cx;, axis of the tool coordinate system. We have

(23)

= L

B = arctan o,

We define 6 to be the total rotation angle as a function of
time. We have

¢
0 - joc]dt (24)

We use the triples (¢, B, 6) to parameterize the motions
of sticks and strips.

6.2 Action Recognition for a Class

of Manipulation Tasks: Cutting
We start with three examples of simple functions performed
by knives: chopping, jabbing and stabbing. In what follows
we demonstrate how motion can be used to differentiate
between the three. Finally, we show the cases of slicing with
a knife (periodic motion) as well as sawing with a saw.
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R

(a)

(b)
Fig. 7. (a) Flow vectors for chopping. (b) Chopping motion.

0 2 4 6 8 m 12
Fig. 8. Angles o, B, and 6 for chopping. o is given by a solid line, and 8
is given by a dash-dot line.

6.2.1 Jabbing
Jabbing is defined as the cutting motion of a knife in which
o (the angle between the projection of I onto the plane
Z =7 and the Ox axis) is close to either 0 or 7, B is ap-
proximately 0, and 6 is small and approximately constant.
Fig. 5 shows the flow vectors taken from the sixth sam-
ple and a composite image of the knife taken from the first,
sixth and eleventh samples of the jabbing experiment. Fig. 6
shows a plot of the triple (¢, 8, 6) with respect to time
(frame numbers). We can see that the values of ¢ are very
close to 0, as was expected, fis close to 0, and 6is around 0.
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Fig. 9. (a) Flow vectors for stabbing. (b) Stabbing motion.

Fig. 10. Angles a, b, and g for jabbing. a is given by a dashed line, b
is given by a solid line, and q is given by a dash-dot line.

6.2.2 Chopping

Chopping is defined as the cutting motion of a knife in
which a (the angle between the projection of I, onto the plane
Z =7_and the Ox axis) is close to either 0 or 7z, 3 is close to
n/2 (o= m or —rr/2 (when o= 0), and 6 is small and ap-
proximately constant. Fig.7 shows the flow vectors taken
from the sixth sample and a composite image of the knife
taken from the first, sixth and eleventh samples of the chop-
ping experiment. Fig. 8 shows a plot of the triple (¢, B, 6)
with respect to time (frame numbers). We can see that the
values of o are very close to 0, as was expected, Bis close to
-n/2, and #is around 0.

6.2.3 Stabbing

Stabbing is defined as the cutting motion of a knife in
which « (the angle between the projection of I onto the
plane Z = Z_and the Ox axis) is close to either —n/2 or /2, 8
is approximately 0, and 6 is small and approximately con-
stant. The difference between jabbing and stabbing is in o
Fig. 9 shows the flow vectors taken from the sixth sample
and a composite image of the knife taken from the first, sixth,
and eleventh samples of the stabbing experiment. Fig. 10
shows a plot of the triple (¢, B, 6) with respect to time (frame
numbers). We can see that the values of ¢ are very close to —
7/2, as was expected, fis close to 0, and 61is around 0.

(b)
Fig. 11. (a) Flow vectors for slicing. (b). Slicing motion.

i i H
S

25 i
10 15 20 25

Fig. 12. Angles a, 3, and 6 for slicing. o is given by a dashed line, 8
is given by a solid line, and @ is given by a dash-dot line.

6.2.4 Periodic Motion: Slicing

Slicing is defined as the cutting motion of a knife in which
o is approximately 0 (or < ©/2), B is oscillating between
approximately 0 and approximately n, and 6 is small and
approximately constant.

Fig. 11 shows the flow vectors taken from the sixth sam-
ple and a composite image of the knife taken from the first,
sixth, and eleventh samples of the slicing experiment.
Fig. 12 shows a plot of the triple (¢, B, 6) with respect to
time (frame numbers). We can see that the values of o are
very close to 0, as was expected, 8 oscillates between ap-
proximately /2 and approximately —37/2 (note the two
approximate values differ by x).
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(b)

Fig. 13. (a) Flow vectors for sawing. (b) Sawing motion.

S ; H : ;
0 5 10 15 20 25

Fig. 14. Angles ¢, 3, and @ for sawing. «ris given by a dashed line, 3
is given by a solid line, and @ is given by a dash-dot line.

6.2.5 Periodic Motion: Sawing

Sawing is defined as the periodic cutting motion of a saw in
which o is approximately 0, 8 is oscillating between ap-
proximately 0 and approximately m (or any two values
which differ by approximately n), and € is small and ap-
proximately constant.

Fig. 13 shows the flow vectors taken from the sixth sam-
ple and a composite image of the saw taken from the first,
sixth and eleventh samples of the sawing experiment.
Fig. 14 shows a plot of the triple (¢, §, 6) with respect to
time (frame numbers). We can see that the values of ¢ are
very close to 0, as was expected, B oscillates between ap-
proximately 0 and approximately —7.

(b)

Fig. 15. (a) Flow vectors for scooping with a shovel. (b) Scooping
motion.

] O

q i ; i i i

Fig. 16. Angles o, 3, and 6 for scooping with a shovel. & is given by a
dashed line, Bis given by a solid line, and 6 is given by a dash-dot line.

6.3 Multi-Usage Objects

In this Section we have two examples of multiple use of
objects. We examine two actions using a shovel and two
using a wrench.

6.3.1 Shovel

Two actions using a shovel were examined. In one experi-
ment, the shovel was used in a scooping action; in the
other sequence, it was used in a hitting action. In these
cases the same tool is being used for two inherently differ-
ent functions. This example of double usage is a typical
instance of improvisation. In [8] the relationship between
the physical properties of an object, its functional repre-
sentation, and its use in problem solving was explored. This
analysis can be used to predict the types of motions one can
expect for a given primitive shape. In the following experi-
ment we use motion analysis to differentiate between two
possible uses of an object.

Scooping with a shovel is a type of motion in which the
rotational angle 6 is small and the angle B (which corre-
sponds to the translational direction in the object coordinate
frame) is small. Fig. 15 shows the flow vectors taken from
the sixth sample and a composite image of the shovel taken
from the first, sixth, and eleventh samples of the scooping
with a shovel experiment. Fig. 16 shows a plot of the triple
(o, B, 6) with respect to time (frame numbers). We can see
that the values of 6 are small while zand f5 are close to 0.
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(b)
Fig. 17. (a) Flow vectors for hitting with a shovel. (b} Hitting motion.

15 4 L

.

Fig. 18. Angles «, ﬂ and @ for hitting with a shovel. ¢ is given by a
dashed line, 3 is given by a solid line, and 8 is given by a dash-dot
line.

Hitting with the shovel is a type of motion in which the
translational part of the motion dominates over the rota-
tional part of the motion and the direction of translation is
approximately orthogonal to the direction of the medial axis
of the tool. Fig. 17 shows the flow vectors taken from the
sixth sample and a composite image of the shovel taken from
the first, sixth, and eleventh samples of the hitting with a
shovel experiment. Fig. 18 shows a plot of the triple (¢, f3, 6)
with respect to time (frame numbers). We can see that the
values of o are small and that 8 = 0 while fis close to ~7/2.

589

=

(a)

Fig. 19. (a) Flow vectors for tightening with a wrench. (b) Tightening
motion.

Fig. 20. Angles @, f, and 0 for tightening with a wrench. o is given by
a dashed line, B is given by a solid line, and 6 is given by a dash-dot
line.

6.3.2 Wrench

Two actions using a wrench were examined. In one ex-
periment, the wrench was used to tighten a bolt; in the
other sequence, the wrench was used as a hammer. In these
cases the same tool is being used for multiple, inherently
different functions. Motion analysis enables us to differen-
tiate between the two.
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(b)

Fig. 21. Flow vectors for hammering with a wrench. (b} Hammering
motion.

Fig. 22. Angles ¢, , and 6 for hammering with a wrench. «is given by a
dashed line, Bis given by a solid line, and @ is given by a dash-dot line.

Tightening with the wrench is type of motion in which
the rotational angle 6 and the angle B (which corresponds
to the translational direction in the object coordinate frame)
have opposite signs. This is equivalent to saying that the
head of the tool is fixed while the handle is moving.

Fig. 19 shows the flow vectors taken from the sixth sam-
ple and a composite image of the wrench taken from the
first, sixth and eleventh samples of the tightening with a
wrench experiment. Fig.20 shows a plot of the triple

(o, B, 8) with respect to time (frame numbers). We can see
that the values of o are decreasing (this is equivalent to
6 < 0) while Bis close to 7/2.

Hammering with the wrench is a type of motion in
which the translational part of the motion dominates over
the rotational part of the motion and the direction of
translation is approximately orthogonal to the direction of
the medial axis of the tool. Fig. 21 shows the flow vectors
taken from the sixth sample and a composite image of the
wrench taken from the first, sixth, and eleventh samples of
the hammering with a wrench experiment. Fig. 22 shows a
plot of the triple (o, B, 6) with respect to time (frame num-
bers). We can see that the values of o are small and that
8~ 0 while S is close to —7/2.

7 CONCLUSIONS

Perceiving function from motion provides an understand-
ing of the way an object is being used by an agent. To ac-
complish this we combined information on the shape of the
object, its motion, and its relation to the actee (the object it
is acting on). Assuming a decomposition of the object into
primitive parts, we analyzed a part’s motion relative to its
principal axes. Primitive motions (translation and rotation
relative to the principal axes of the object) were dominating
factors in the analysis. We used a frame of reference rela-
tive to the actee. Once such a frame is established, it can
have major implications for the functionality of an action.

Seven sequences of images were used to demonstrate
the approach. Function understanding from motion was
established in all seven cases. In the first three sequences,
motion was used to discriminate between three cutting
actions: stabbing, chopping and jabbing. In the last two
pairs of sequences we used motion information to differ-
entiate between two different functionalities of the same
object: scooping and hitting with a shovel, and hammering
and tightening with a wrench. These examples of double
usage are typical instances of improvisation; motion pro-
vides clear information for a correct interpretation of the
action that is taking place.

Natural extensions of this work include the analysis of
more complex objects. Complexity can be expressed in
terms of either the shapes of the parts or the way in which
the parts are connected. An interesting area is the analysis
of articulated objects. The different types of connections
between the parts constrain the possible relative motions of
the parts. A pair of pliers or a pair of scissors is a simple
case, with only a single articulated connection (one degree
of freedom in relative motion of the parts). Learning is an-
other possible extension. A robot can learn object function-
ality by watching the object in use. As an example, a robot
might “see” a knife being used to open a letter and learn the
function of cutting and the context in which it can be used.
We see our work as a step toward action perception of
moving objects, which could lead to a better understanding
of percejving the actions of moving agents.
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