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Abstract

We present an algorithm for producing behavior descriptions of planar fixed axes mechanical
motions from image sequences using a formal behavior language. The language, which covers the
most important class of mechanical motions, symbolically captures the qualitative aspects of objects
that translate and rotate along axes that are fixed in space. The algorithm exploits the structure of these
motions to robustly recover the objects behaviors. It starts by identifying the independently moving
objects, their motion parameters, and their variation with respect to time using normal optical flow
analysis, iterative motion segmentation, and motion parameter estimation. It then produces a formal
description of their behavior by identifying individual uniform motion events and simultaneous
motion changes, and parsing them with a motion grammar. We demonstrate the algorithm on
three sets of image sequences: mechanisms, everyday situations, and a robot manipulation scenario.
0 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Understanding how actions are originated, constrained, and how they determine what
will happen in the immediate future is an important aspect of visual classification and a
major tasks in artificial intelligence. An essential prerequisite of understanding action is
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Fig. 1. Two images from a video sequence of an athlete working out on an exercise machine in a gym: (a) pulling
down, and (b) pushing up.

determining how things move. Given a sequence of images showing moving objects, the
goal is to produce a high-level description of their behavior, which is defined by the object
motions and their relationships. For example, a description of a video sequence showing
an athlete working out on an exercise machine in a gym (Fig. 1) is:

as the athlete repeatedly lowers and raises his arms, the handle translates down and
up, and the weights translate up and down by the same amount.

What makes this description intuitively appealing is that it meaningfully groups together
frame sequences according to uniform motion events (motions, their directions, and their
duration), that it focuses on change (there is no mention of the frame or other static objects
in the room), that it relates the motion of the different objects (up and down, down and up
by the same amount), and that it ignores small variations in speed and acceleration. This
qualitative description is invariant to different camera poses, lighting conditions, and image
capture noise. Producing short, abstract, semantically meaningful qualitative descriptions
of image sequences has important applications in robotics, surveillance, manufacturing,
and video databases.

Going from image sequences to behavior descriptions is a difficult and computationally
expensive task. First, representation issues must be addressed: how are motions and their
relations described? What constitutes an adequate image sequence segmentation? Then,
the algorithmic issues must be addressed: how is object motion identified? How is motion
segmented? What constitutes motion change? Clearly, these issues are in great part domain
and application specific. The challenge is to identify an important and useful class of
behaviors, and develop robust algorithms for producing such descriptions from image
sequences.

Our central premise is that producing behavior descriptions from image sequences
is a parsing process whose aim is to recover the internal structure of the object
motions and their relations. In structured domains, such as classical ballet, soccer, and
mechanical machines, object motions tell a story which is best understood in terms of
the domain’s motion language. Elementary motions correspond to words, which combine
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into grammatical sentences according to predefined motion rules. Sentences combine into
paragraphs, describing complex behaviors. Having defined the domain’s motion language,
the image sequence understanding process consists of identifying specific patterns of
elementary motions and their combinations.

This paper presents an algorithm for producing formal behavior descriptions of basic
mechanical motions based on a simple and expressive formal language derived from first
principles [21,22]. The language symbolically captures the important aspects of changing
contact, coordinated, rigid, multi-body kinematics and simple dynamigdaofar fixed-
axes mechanical motionstructured motions where objects translate and rotate along axes
that are fixed in space. Fixed-axes mechanical motions constitute the most important class
of mechanical motions according to our survey of 2,500 mechanisms in a comprehensive
encyclopedia [23]. They are very common in everyday artifacts, such as door handles
and staplers, in manufacturing and assembly cells, and in mechanisms, such as locks and
car transmissions. Unlike natural motions, such as human body motions, a downhill rock
slide, or loosely coupled motions, such as motor vehicle traffic patterns, they are highly
structured and thus more amenable to robust automated analysis. The formal behavior
descriptions can be used as input to programs that automate other tasks, such explanation
generation, and automatic comparison and classification of image sequences.

The algorithm starts by identifying the independently moving objects, their motion
parameters, and their variation with respect to time using normal optical flow analysis,
iterative motion segmentation, and motion parameter estimation. It isolates individual
moving objects by finding rectangular image regions containing their motion envelopes.
It then produces a description of their behavior by identifying individual uniform motion
events and simultaneous motion changes, and parsing them with a motion grammar which
captures the semantics of the domain. The distinguishing characteristics of the algorithm
are that it performs all the steps of the image analysis and description generation processes,
that it is generative and does not rely on object shapes, that it exploits the constrained
structure of coupled fixed-axes mechanical motions, and that its scope is defined by a
simple and expressive motion grammar derived from first principles. The algorithm has
been implemented and tested on a variety of challenging examples in three categories:
mechanisms, everyday situations, and a robotic cell.

The paper is organized as follows: the next section surveys related work in computer
vision on extracting semantic descriptions from image sequences. Section 3 motivates
planar fixed-axes mechanical motion and reviews previous work on describing mechanical
motion. Section 4 presents the language grammar. Section 5 outlines the two steps of the
algorithm—motions from image sequences and behaviors from motions and illustrates
them with a simple example. Section 6 presents the image and rigid body motion
models and describes how motions are extracted from image sequences by normal optical
flow computation and iterative motion segmentation and motion parameter estimation.
Section 7 describes the derivation of behaviors from motions by uniform motion events
and simultaneous motion changes identification followed by parsing. Section 8 presents
experimental results of our implementation on three types of examples: mechanisms,
everyday situations, and robot manipulation. Section 9 concludes with extensions and
future work.
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2. Previous work

Extracting high-level behavior information from still images and video sequences
requires a series of image processing steps, such as edge detection, optical flow
computation, motion segmentation, and model matching. Both the individual steps and
the entire analysis process have been the subject of continuous research over the last three
decades. In this section, we only review previous work that addresses the entire analysis
problem. We will review relevant individual steps in the following sections as appropriate.
We first survey work on event-based recognition, which includes motion-based recognition
algorithms, and then work on function-based recognition.

Event-based recognition attempts to segment image sequences by identifying events
happening in a given context. One approach to simplify the task is to restrict events to
a fixed set of predefined events [35,44]. Another is to restrict the shape of the objects
and the context in which they appear [6,8]. It is also possible to restrict both [2,30]. For
example, Nagel et al. [25,26,30] produce qualitative descriptions of road traffic scenes
using both shape constraints and motion information. Their program detects and tracks
moving vehicles in road traffic scenes and produces natural language descriptions of
trajectory segments. Although similar in spirit to the work presented here, the domain of
moving cars is very different from the domain of mechanical object motion. Moving cars
exhibit loosely coupled, non-repetitive motions, while object motions in mechanisms are
tightly coupled and repetitive. Semantic descriptions of car motions, such as turning left or
making a “U” turn are inappropriate for describing mechanical object motions.

Siskind [35] describes ABIGAIL, a system that produces semantic descriptions of events
occurring in an animated line drawing movie. ABIGAIL uses notions of support contact
and attachment as the basis for the grounding language. Its drawback is that it is limited
to a very small set of actions, such as place and pick up, and does not work on real
images. Recently, the system was extended to handle real image sequences in a restrictive
set-up in which it recognized small set of actions [36]. Yacoob and Davis [44] describe
an approach for image motion estimation that uses learned models of temporal-flows
to recognize actions, such as various types of walking. Activities are learned from the
temporal-flow models and represented as a set of orthogonal temporal-flow bases that are
learned using principal component analysis of instantaneous flow measurements. Spatial
constraints on the temporal flow were developed for modeling the motion of regions
in rigid and constrained motion. The method is based on a learning stage for creating
a database of simple activities. Motion-based recognition algorithms identify events by
extracting the objects’ motion parameters from successive images. They estimate the
moving object’s trajectory by accumulating the information obtained from the motion
analysis of sequences. This approach usually assumes that the number of objects is known,
is very sensitive to noise, and does not produce high-level descriptions. For a survey of
motion-based recognition algorithms, see [9].

Bruckstein et al. [6,7] use known object models to recover the object’s trajectory and
orientation. They show that five images are enough to recover the motion of a rigid rod
or a disk in accordance with physical laws. The existence of solutions to the resulting
polynomial motion equations is determined with techniques from algebraic geometry.
Engel and Rubin [11], and similarly Gould and Shah [14] use motion characteristics



T. Dar et al. / Artificial Intelligence 112 (1999) 147-179 151

obtained by tracking representative points on an object to identify important events
corresponding to changes in direction, speed and acceleration in the object’s motion. Work
has also been done on higher-level descriptions of object trajectories in terms of concepts
such as stopping/starting, object interactions, and motion verbs [8,20,26]. Bobick et al. [2,
18] propose a method that restricts the context of the scenes to be analyzed: moving objects
are modeled weakly and are tracked under the closed world assumption. It presupposes a
space-time region of an image sequence in which the complete taxonomy of objects is
known and in which all pixels can be explained as belonging to one of those objects. This
approach was successfully tested in the football domain for annotating video sequences
by tracking football players. although there is no attempt to segment images or produce
higher-level behavior descriptions.

In contrast to the event-based approach, the function-based approach attempts to
recognize objects and their motions based on their function. An object category is defined
in terms of properties that an object must have in order to function as an instance of that
category [40]. Recognizing an object functionally provides a potential behavior. Attempts
to recognize objects in a single image following this approach are described in [3,4] and
in [31,38,39]. Brand et al. [3,4] describe a system, called SPROCKET, that recovers the
causal structure of simple machines in a single image. It incrementally builds a scene
model through interleaved sensing and analysis using precompiled qualitative knowledge
about rigid body interactions. It integrates diverse visual cues into an explanation of a
machine’s design and function. Because SPROCKET works on a single image, it cannot
take advantage of motion information and must rely on object shape. Duric et al. [10]
present a method to determine the function of a known tool in an image sequence from its
motion while performing a task. They show that the motion of a tool, when combined with
information its uses provides strong constraints on the possible function being performed.
However, their flow-based analysis treated relatively short sequences. The understanding
of the motion analysis phase required a database of various typical tool behaviors.

None of this work adequately addresses the problem of producing high-level behavior
descriptions of mechanical motions from image sequences. In the next section, we justify
our focus on fixed-axes mechanical motion, survey existing mechanical motion description
languages, and present the language we propose.

3. Classification and description of mechanical motion

We begin by addressing two key issues in producing descriptions of mechanical motions
from image sequences: (1) identifying the most common types of mechanical motions and
(2) determining the appropriate language in which to describe them.

Based on the mechanical engineering literature and on our own studies, we identify
six classes of mechanical motions, each corresponding to a class of mechanisms: fixed
axes, linkages, and general, each of which can be planar or spatial. Fixed-axes motions
are rotations and/or translations along axes that are fixed in space, possibly with contact
changes between objects (Fig. 2(a)). Linkage motions are coupled motions along curves
produced resulting from parts permanently connected by standard joints (Fig. 2(b)).
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Fig. 2. Examples of planar fixed axes and linkage mechanisms and their descriptions, as they appear in
Artobolevsky's encyclopedia. (a) Fixed axes. (b) Linkage.

General motions are all motions which are neither fixed-axes nor linkage motions. Planar
motions are those that can be embedded on a single plane.

Fixed-axes motions is the largest, most important, and most common class. Our survey
of 2,500 mechanisms from Artobolevsky’s encyclopedia [23] shows that 85% of object
motions are planar, that 32% are fixed axes, that 27% are linkages, and that 34% are
general motions, of which 20% are a combination of fixed axes and linkages motions. Of
all pairwise motions, 89% are fixed axes motions, and 66% are planar fixed axes. Most of
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the input/output behavior of general mechanisms can be described with fixed-axes motions.
We also observe that fixed-axes motions are very common in operating daily artifacts, such
as turning door handles, and opening lids. The practical importance of fixed-axes motion

class justifies focusing on it first.

The next issue is how to describe object motions and their relationships. The motion of
an assembly of rigid objects in space can be described by six configuration parameters (or
their associated transformation matrix) and their first and second derivatives with respect to
time for each moving object. Relations between object motions can be described implicitly,
through their dependence on time, or directly, by equations relating the motion parameters.
While fully general, this quantitative representation is often too complex and detailed, and
fails to reveal the structure of simple motions, the relations between several moving objects,
and repetitive, tightly interrelated patterns of behavior. These descriptions are also highly
sensitive to noise and do not explicitly identify nearly simultaneous object motion changes.
Unlike natural and unstructured motions, it is both possible and desirable to describe them
at a symbolic, qualitative level of abstraction, as in the descriptions of Fig. 2.

Previous work describes languages for qualitative mechanical motion. Kota and
Chiou [27] describe fixed-axes motions with qualitative motion constraint matrices and
define a symbolic matrix algebra to compose them. Kannapan and Marshek [24] propose
a hybrid algebraic and predicate logic language. Both languages provide a single level of
abstraction and are restricted to one degree of freedom, permanent contact mechanisms,
which we consider too restrictive since our survey indicates that over 20% of mechanical
motions have multiple behavior modes resulting from contact changes. Linkage motions
are difficult to describe qualitatively because objects move along complex paths (see
description of Fig. 2(b)). Freudenstein and Maki [13] classify linkage behavior from their
kinematic structure according to their degrees of freedom only, but this is too coarse for our
purposes. Shrobe [34] presents a language for describing simple, one-degree of freedom
planar linkage behavior based on qualitative features of the curve shapes. No symbolic
language has been proposed for general motions, perhaps because those are most difficult
to describe verbally.

Configuration space [28] provides a first-principles framework for developing mechan-
ical motion description languages. All collision-free rigid object motions in an assembly
can be described as paths in free pairwise configuration space regions. Regions correspond
to pairwise behavioral modes, and region adjacencies correspond to transitions between
modes. Joskowicz’ region diagrams [21] and Faltings’ place vocabularies [12] embody this
idea. Configuration space based representations have been used for fixed axes qualitative
simulation explanation [33,37], for mechanism concept retrieval [29], and for kinematic
motion synthesis [41]. The main drawback of representations derived from configuration
spaces is that they describe every contact change, which produces overly detailed descrip-
tions in most cases.

4. A language for fixed-axes mechanical motion

We base our planar fixed-axis mechanical motion language on the fixed-axes mecha-
nisms language described in Joskowicz and Neville [22] and on Joskowicz simplification
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and abstraction operators [21]. The language is based on the configuration space represen-
tation and describes the behavior of fixed axes mechanisms by means of predicates and
algebraic relations that define the configurations and motions of objects. The language is
simple and comprehensive, and captures the important aspects of the kinematics and sim-
ple dynamics of mechanisms. It distinguishes between structural and behavior information,
and allows both quantitative, accurate and complete descriptions, and partial, qualitative,
descriptions. Because it is defined as a BNF grammar, it provides a precise, formal char-
acterization of its scope and is amenable to computation. We chose to produce formal
behavioral descriptions and not natural language-like descriptions because formal descrip-
tions can be used to automate other tasks, such explanation generation, and comparison
and classification of image sequences [21].

Fixed-axes mechanical motions are described as sequences of rotations and translations
of objects. Transitions from one motion to another in the sequence reflect contact changes
between objects (e.g., gears that stop meshing) or actuation changes (e.g., the driving
motor reversing its rotation direction). The language, which was originally developed to
specify design requirements, describe known mechanisms, and catalog them according to
their behavior, was adapted for the task of mechanical motion understanding from image
sequences. First, causal relations, specifying which objects drive other objects must be
discarded because they cannot in general be inferred from the image sequences alone. For
example, from an image sequence of two turning meshed gears, it is impossible to deduce
which is the driver and which is the driven gear. Similarly, it is not possible to distinguish
between objects that hold other objects or are permanently stationary. To keep spatial and
temporal coherence, and track objects that have stop and go motion, we introduce the
no-motion descriptor: it indicates that a certain object is temporarily stationary. Relative
object velocity, and not absolute object configuration, better reflects object behavior and is
directly obtainable for the image sequences. Finally, names of objects, axes, and motion
parameters can only be selected syntactically, without reflecting the object function,
which is not known a priori. We use meaningful names in our descriptions to facilitate
comprehension.

Table 1 shows the new BNF grammar for describing fixed-axes mechanical behaviors.
We explain it next, starting from the derivation at the top. A behavior description is a
sequence of one or more motion sequences. A motion sequence is composed of sequential
and simultaneous motions of single objects. Sequential motions occur one after the other
in the order indicated by the sequence. Simultaneous motions occur in parallel. The single
motion clause contains the motion information associated with an individual object. It
consists of a unique object name, motion type, axis, motion parameter, and the interval
of the motion. The motion parameter is a velocity parameter. The motion describes a
continuous motion along the axiganslation, rotation, or no-motion for temporarily
stationary objects. Repetitive motion patterns are expressed with a motion modifier. The
most common are alternation and dwaellternate indicates a constant change in the
direction of motion, such as the motion of windshield wipesdth-dwell indicates a
rest period in a motion with constant direction, such as stop-and-go motties)ate-
with-dwell indicates an alternating motion with a dwell period in between. The motion
relation can be a constant (constant velocity), a qualitative value (positive or negative), or
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Table 1

BNF description of the planar fixed-axis mechanical behavior language. Symbols enclosed by brackets, e.g.,
<MOTION> are non-terminals. Bold symbols, e.tjanslation are terminals. Other symbols, i.e.y@BoLIcC-
EXPRESSIONstand for classes of terminals defined in a separate dictiohasyan abbreviation for one or more
symbols

<MOTION-SEQUENC9+

<BEHAVIOR-DESCRIPTION>

<MOTION-SEQUENCE> = <SINGLE-MOTION> |
<SEQUENTIAL-MOTIONS> | <SIMULTANEOUS-MOTIONS>

<SEQUENTIAL-MOTIONS> = <SINGLE-MOTION>then <MOTION-SEQUENCE>
<SIMULTANEOUS-MOTIONS> = <SINGLE-MOTION>and <MOTION-SEQUENCE>
<SINGLE-MOTION> = <OBJECT>: <MOTION-TYPE>,<AXIS>,

<MOTION-PARAMETER>=
<MOTION-RELATION>,<TIME-INTERVAL >

<MOTION-TYPE> = <MOTION> | <MOTION> <MOTION-MODIFIER>
<MOTION> = translation | rotation | no-motion
<MOTION-MODIFIER> = alternate | with-dwell | alternate-with-dwell
<MOTION-RELATION> = <AMOUNT> | + | — | SYMBOLIC-EXPRESSION
<TIME-INTERVAL> = t € [RAMOUNT>,<AMOUNT>]

<AMOUNT> = INTEGER| REAL-VALUE | CONSTANT| VARIABLE
<OBJECT> = OBJECT-NAME

<AXIS> = AXIS-NAME

<MOTION-PARAMETER> = MOTION-PARAMETER-NAME

a symbolic expression describing the parameter variation as a function of time or relative
to another parameter.

5. Algorithm

We present now an overview of our algorithm and highlight its distinguishing
characteristics. The algorithm proceeds in two steps (Table 2): it first extracts object
motions from the image sequence, and then constructs behavior descriptions from the
resulting object motions. Object motion extraction identifies the independently moving
objects, their motion parameters, and their variation with respect to time, which it describes
with motion graphs. Behavior descriptions are constructed from the motion graphs by
first partitioning them into sequences of individual uniform motion events, identifying
simultaneous object motion changes, and then parsing the motion event sequences with
the motion grammar.

In the first step, the algorithm starts by computing the normal optical flow image
sequence from pairs of consecutive images. Next, it iteratively performs motion parameter
estimation and motion segmentation on each image. Initially, the algorithm assumes that
there is a single moving object and computes its motion parameters. The hypothesized
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Table 2
Outline of the algorithm

I. Motions from image sequences
(i) Compute normal optical flow image sequence.
(ii) For each image region do (initially the entire image is a single region):
(a) estimate the single motion parameters;
(b) compute the hypothesized normal optical flow;

(c) motion segmentation:
— compare the actual and hypothesized normal optical flow images;
— if they are not similar, divide the region and repeat step (ii);

(d) construct motion graphs for each region.

1. Behaviors from motions
(i) Identify individual uniform motion events:
partition each motion graph along the parameter axis and extract the start and end time, average motion
parameter values.
(i) Identify simultaneous object motion changes: concurrently adjust motion events intervals by looking for
nearby motion changes along the time axis.
(iii)y Parse the resulting motion event sequences using the motion grammar.

motion induces a normal optical flow on the image points, which is computed and
compared with the original one. If the original normal optical flow image indeed contains

a single motion, the two flows will be very similar, and the segmentation is completed.
Otherwise, the algorithm divides the image into axis-aligned rectangular regions, which it
hypothesizes to be single motion regions, and recursively repeats the above computation
until each region is left with a single motion. The result of this computation is the
identification of the independently moving objects (one per region) and its motion
parameters for each normal optical flow image. The final regions contain the motion
envelope of each moving object. Repeating this process over all the normal optical flow
images yields the motion description of the independently moving objects, which is
represented by a motion graph showing the value of each motion parameter at each frame.
To speed up the computation, the algorithm uses the motion description results (regions
and motion parameters) of one normal optical flow image as the initial guess for the motion
segmentation on the nextimage.

In the second step, the algorithm partitions the motion graphs into individual uniform
motion events, identifies simultaneous motion changes, and parses the resulting motion
events sequence with the motion grammar to obtain the behavior description. The
partitioning is performed by individually thresholding the motion graph of each object
along the parameter axis to determine where uniform motion events begin and end and
to obtain the average motion parameter values in that interval. Different thresholds are
used for different motion parameters and different objects, e.g., some objects might be
stationary while others might be rotating with no translation. Next, the algorithm identifies
simultaneous events—object motion changes that occur almost at the same time—by
correlating all the motion graphs and locating nearby parameter value changes on the time
axis. The algorithm uses the start and end times of the motion events and a predefined time
window to locate and determine simultaneous events. The result is a sequence of motion
events for each moving object, which is viewed as words in a sentence of the motion
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@) (b)

Fig. 3. Two images from the video sequence showing the driver half-gear meshed with (a) the driven right gear
and (b) the driven left gear.

(@) (b)

Fig. 4. Results of the iterative motion segmentation. (a) Normal flow for meshed right gear. (b) Single motion
regions.

language. The behavior description, which is the structure of the sentence, is obtained by
parsing the motion event sequences according to the motion language grammar.

We illustrate the algorithm on a simple example. Fig. 3 shows a mechanism consisting
of a driver half-gear (center) and two driven full gears (left and right). The driver half-
gear continuously rotates clockwise at constant speed, alternately meshing with the left
and right gears and turning them counterclockwise proportionally for half a turn. Fig. 4(a)
shows the normal optical flow image of the half-gear meshed with the right gear (there
is no flow for the left gear, which is stationary). Fig. 4(b) shows the three single motion
regions, which closely match the gear diameters. Fig. 5 shows a detail of the right gear
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Fig. 5. Detail of the right gear flow: (a) actual flow; (b) hypothesized flow assuming a single moving object in
the entire image (wrong) and (c) hypothesized flow after region division (correct). Note that flows (a) and (c) are
much more similar than (a) and (b).

actual and hypothesized normal optical flows. Fig. 6 shows the motion graphs of the three
gears.

In the second step, the individual motion event identification determines that the
translational velocities of all three gears are negligible when compared to their angular
velocities, and are thus taken to be zero throughout the sequence. The angular velocity
graphs are partitioned into three segments:

(1) a no motion event followed by a positive angular velocity event for the left gear,

repeated three times;

(2) asingle constant negative angular velocity event for the center gear, and;

(3) a positive angular velocity event followed by a no motion event for the right gear.
Next, the algorithm determines that the beginning of the left gear rotation events coincide
with the end of the right gear rotation events, and that the beginning of the right gear
rotation events coincides with the end of the left gear rotation event. The vertical lines
in Fig. 6 show the resulting event partition. The final parsing step produces the behavior
description in Table 3.

Distinguishing characteristics

Our method has several distinguishing characteristics that contribute to research in
understanding motion from image sequences. First, the algorithm perfalimbe
analysis process, from low-level image processing to high-level behavior description, on
a commonly occurring and formally defined class of motions. It uses a small number
of predefined parameter thresholds for comparing optical flows and determining when
a motion is present based on velocity ratios. The algorithm is designed to exploit the
constrained structure of fixed-axes mechanical motions, defined by a simple and expressive
motion grammar. Because it works directly with object motions and their changes, it does
not rely on object shapes and thus does not require shape modeling, segmentation, or
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Fig. 6. Motion graphs of the left, center, and right gears for the angular veloeitigsp), and horizontal
translational velocity: (middle), and vertical translational velocities The horizontal axis indicates the frame
number (time), and the vertical axis the parameter magnitude. The vertical lines indicate simultaneous events
partition.

Table 3

Behavior description of the gear mechanisth., O,, O; andcc, cr, cl are

the axes names and angular velocity parameters of the center, right, and left
gears,o = 0.075 rad/frame on average, afig are frame intervals from the
sequence @4, 61,97, 134 166

S2i 1eTy
left-gear: no-motion
center-gear: rotation, axis= O, cC=—a
right-gear: rotation, axis= Oy, cr =+«
then

82i+1 relitg
left-gear: rotation, axis= 0y, cl=+«a
center-gear:  rotation, axis= O, cC=—«

right-gear: no-motion
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recognition. It uses an iterative scheme for motion segmentation and motion parameter
estimation to identify and classify individual object motions based on velocity profiles.
This scheme makes no a-priori assumption on the number of moving objects, their size,
or their motion sequences. It is capable of identifying and keeping track of objects with
stop and go motions, correctly identifying them as the same object. It segments the image
sequence by adaptively identifying individual motion events and simultaneous motion
changes, which occur frequently and convey meaningful behavioral information. Because
it uses a generative approach to motion event identification and behavior description, it
does not require a predefined library of motions and behaviors.

6. From images to motions

The first step of the algorithm identifies the moving objects and their motion
characteristics by iterative motion parameter estimation and motion segmentation. The
input is the unedited sequence of images. The output is a list of moving objects, their axis
of motion, and three velocity graphs for each part describing the planar angular, horizontal
and vertical velocities as a function of time.

There are two approaches for obtaining motion information from image sequences:
discrete feature-based methods and differential optical flow methods. Feature-based
methods [5,19,43] first find correspondences between moving points in subsequentimages,
then estimate the motion parameters and the scene structure from these correspondences.
The methods require identifying distinguishing points for each moving object, such as
points on their boundary obtained by edge detection. They also require a large number
of point feature correspondences and stable tracking over the entire sequence to achieve
robustness. Because the number of moving objects and their shapes is unknown, and the
object can be stationary temporarily, feature-based methods are unsuitable for our problem.

Optical flow methods [10,17] recover the motion information by computing and
interpretingoptical flow fieldsWhen an observed object moves, it induces a velocity for
each projected point in the image. The set of all image point velocities creates a motion
field. The motion field cannot be computed directly; it is estimated with the optical flow
field, which is obtained by taking the pixel difference between pairs of successive images.
In fact, as [16,42] show, only theormal optical flowindicating the flow in the direction of
the grey-level gradient, can be computed for each image. A dense normal optical flow field
is obtained by analyzing a neighborhood of each image point. The field can be computed
by filtering [15] or by global minimization of a predetermined function [16]. We choose
to work directly with the normal optical flow without trying to recover first the optical
flow. The advantages of flow-based methods are that they do not require feature detection,
feature tracking, or maintaining feature correspondences. They are especially suited for
sequences of images with small time intervals between them, for which establishing stable
feature correspondences is difficult.

This section presents the details of the new iterative motion parameter estimation and
motion segmentation based on normal optical flow computation and comparison. We begin
by describing the imaging model and developing the equations of the motion field and the
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Fig. 7. The plane perspective projection imagePofs R = f(X/Z,Y/Z,1); the weak perspective projection

image of P is obtained through the plane perspective projection of the intermediate poia( X, Y, Z.) and is
givenbyS = f(X/Z:,Y/Z¢, D).

normal optical flow. We then describe planar motion parameter estimation and motion
segmentation.

6.1. Imaging model

We model the relations between the moving object and the imaging system with respect
to two orthonormal coordinate frames: the fixed camera (observer) coordinate system,
Oxyz, and the moving coordinate fram€x1y1z1, which is fixed to the moving object’s
origin.® The unit vectord;, j1, andky are in the directions of th€x1, Cy1, andCz1 axes.

The position of the moving frame’s origii, with respect to the fixed coordinate system

at any instant is given by the positiah = (X., Y., Z.)T. Its orientation is defined by the
nine direction cosines of the axes of the moving frame with respect to the fixed frame. For
a given positiorp of point P in Cx1y1z1, the positiory, of P in Oxyz is determined by

?p:Rﬁ_"jc’ (1)

whereR is the matrix of the direction cosines.

Let (X, Y, Z) denote the Cartesian coordinates of a scene point with respect to the fixed
camera frame (Fig. 7), and I€t, y) denote the corresponding coordinates in the image
plane. The equation of the image plan€is- f, wheref is the focal length of the camera.
The perspective projection is given by= fX/Z andy = fY/Z. For weak perspective
projection, an additional reference poitX,, Y., Z.) is needed. To obtain the image
coordinates of a scene poi(X, Y, Z), we first project it onto the pointX, Y, Z.), and
then project it onto the image point, y) through plane perspective projection. Usually,

3We use capital letters for the world coordinates, and small letters for coordinates in the image. Quantities
that are in the moving (object) frame, and thus not in the fixed camera (observer) system are identified by the
subscript 1.
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Z. is taken to be the average of thHevalues of the object points. The projection equations
are then given by

X

Y
X=Z—Cf, yZZ_Cf' (2)

6.2. Motion field and normal optical flow

We now turn to object motion. The velocity of a poiiton a rigid object is obtained by
differentiating (1):

Fp=x (Fp—do)+ T,
where® = (A, B, C)T is the angular velocity of the moving frame and
jc = (X6‘7 YCa ZC)T = (U5 Va W)T =

is the translational velocity of the point, which can be re-written as

X 0 —-C B X — X, U
<Y>=<c 0 —A)(Y—Yc)—i-(V). (3)
Z -B A 0 Z—7Z 1%

To compute the instantaneous velocity of the projection of an object point into the image

point (x, y) under weak perspective projection, we take derivatives of (1) with respect to
time and use (3):

XZo—XZc FLECO —Yo) + BIZ ~ Z0) + UlZe = XW

i=f

zz zz
_Uf W Zz
- C(y —ye) + fB(Zc 1), (4)
) YZ.—YZ, [CX—X)—A(Z—-Z)+V]Z.—YW
y=1r 7 =f 7
_Vf—w ey Z _
-— +C(x — x¢) fA(ZC 1), (5)

where(x¢, yo) = (fX./Zc, fY./Z.) is the image of the poinf. LetT andj be the unit
vectors in thex and y directions, respectively. The projected motion field at the point
F=xi+yJis¥=xi+yJ. We choose a unit direction vectdf at the image poinf
and call it the normal direction. We define thermal motion fieldat image point as
Fn = (r n,)n,, wherern, is a unit normal direction vector at The vectors, can be
chosen in various ways. The usual choice, which we adopt, is the direction of the image
intensity gradient.
LetI(x, y,t) be the image intensity function. The time derivativd afan be written as
dIl ol dx dl dy 81
dr  ox dt+8y dr
whereV 1 is the image gradlent and the subscripts denote partial derivatives. Assuming that
the image intensity does not vary with time, i.el/dir = 0 [16], we getV[I - i + I; = 0.

=(LT+1L,]) (F+37)+ L =VI-F+1,
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The vector fieldi in this expression is called theptical flow If we choose the normal
directions, to be the image gradient direction, i.2.,= VI/||VI||, we obtain
_ —I;VI

VI
whereis, is thenormal optical flowat a point.

It was shown in [42] that the magnitude of the difference betwigeand the normal
motion field7, is inversely proportional to the magnitude of the image gradient. Hence

Fu A i, When ||V is large. Eq. (6) thus provides an approximate relationship between
the three-dimensional motion and the image derivatives.

Izn = (ﬁ . ;ir);ir

(6)

6.3. Estimating planar motion parameters from normal optical flow

_ For an object moving in the plane, the previous equation simplifies as follows [10]. Let
T = (U, V, W) be the translation of a point in spad®, = (U1, V1,0)" be its translation
in the moving frame, and its rotation in the fixed frame is given by

&=(A,B,C)" =C1Rky=C1iN, (7)
whereN is the normal to the object motion plane. Note that= C1k1, and thatl’ and T,
are related by a rotation matrix.

We now consider the terniZ — Z.)/Z._for the points on the moving object. The

equation of the plane orthogonal ¢ = R k1 which contains the poin¢X., Y., Z.) in
the Oxyz frame coordinates is:

(X — X)Ny + (Y — Yc)Ny +(Z-2Z,)N,;=0.
Multiplying by f(Z.N.)~! we obtain
Z—-7Z
f 7 =—(x —x)Nx/N; — (y — yc)Ny/N;. (8)
c

From (5), and (8) we obtain the equations of projected motion for points on the moving
object under weak perspective:
. Uf—xWw
X=—F—
Zc
. Vi—yW
y= fziy + C1(x —xc)N; + Cl[(x - xc)N)g/Nz + (- yc)NxNy/Nz]~ (10)
c
These two equations relate the projected image motion field(and.) to the scaled
translational velocity -7 = Z-1(U Vv W)T, the rotational paramet€h,, and the normal
to the object motion plan& = (N, Ny, N;)T.
The normal motion field for projected points that are on the moving object is

— C1(y = YNz — C1[(x — xo)Ne Ny /N; + (v — ye)NZ/N: ], (9)

Fen=nyX+nyy
=ny f[U/Zc + (xc/f) CLN<Ny/N;| — nyx(W/Zc + C1NxNy/N;)
—ne(y = y)C1(N; + NZ/N;) +ny f[V/Ze — (ye/ )CLN Ny /N ]
—nyy(W/Ze — CINyNy/N;) 4+ ny(x — x.)C1(N; + N?/N,), (11)
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where andn,T+ n,J is the normal direction andx,, y.) is the position of the object
reference poinC, which is chosen to be the object center of mass computed by averaging
the coordinates of all edge points for which the normal flow was computed. We can re-write
this relation as

Fi=a'c, (12)
where
ai ny f
az —NxX
a— as — —nx(y — ye)
as nyf ’
as —nyy
as ny(x — x¢)
Cc1 U/Zc+(xc/f)CleNy/Nz
c2 W/Z:+ C1NyNy /N,
|32 C1(N: + N}/Nz) (13)
ca V/Zc— (ye/f)CLNxNy/N;
c5 W/Zc_cleNy/NZ
c6 C1(N; + NZ/N,)

To separate between directly observable quantities (vegt@nd quantities that need to be
estimated (vectar).

We compute an estimate foras follows. A good approximation for the normal motion
field is the normal flow of the image points;, y;), i = 1, ..., m, at which the magnitude
of the image gradientVI (x;, y;, t)| is large. We replace the left hand side of (12) by the
normal flow—1,/||VI||. As a result, we obtain the system of equatidrs~ b, wherec is
the vector with six unknownsi is am x 6 matrix whose rows are the vectars andb is
anm-vector whose elements are

—(01(xi, yi.1)/01) /|| VI (xi. yi. D).

The solution to this linear system of equations formulated over six image points yields the
desired result.

When more than six points are used £ 6) the system becomes over-constrained, so
we look for a solution that minimizes the norm of the differefibe- Ac||. The solution to
this system is identical to the solution of the system

ATAc=ATb=d.
We solve the system
ATAc=d

using the Cholesky decomposition. BecauskA is a positive definite 6< 6 matrix,
we compute the lower triangular matrix such thatL LT = ATA. Substituting, we get
L LT¢ =d, for which we solve two triangular systenig = d andLT¢ = e to obtain the
parameter vectat.
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Having estimated, we obtain an estimate for the planar motion paramd?c;%c and
C1 by applying (13) to obtain:
U XcC7 |4 XcC7

— =c1—

Z. o Z o
W  c24c¢s5 .
Z_c =—5 C1 =sIgn(ce)+/ c3c6 — c%, (14)

wherec7 = (¢2 — ¢5)/2.

Under the assumption of planar motion viewed at a fronto-parallel plane slanted by at
most 30, the translation parameters in the moving object’s coordinate sySigm. and
V1/Z. can be estimated from the translation in the camera’s (observer) coordinate system
w/z.,V/Z.,W/Z.) [10]. This assumption is justified because a nearly frontal viewpoint
is the best way to show a planar mechanism. We apply this procedure here to complete the
recovery of the three motion parameters of the moving object.

6.4. Motion segmentation

The motion parameter estimation procedure that we just described assumes a single
planar motion over the full image frame and over the entire image sequence. Clearly, this
is not a valid assumption for the situations we want to handle. It is, however, an effective
procedure for the image regions and image sub-sequences within which there is indeed a
single object moving. If we can automatically identify single motion regions in the image
sequence, we can directly determine the number of moving objects (one per region), their
locations and motion axes, and their planar translational and angular velocities at each
frame. The single motion regions is an estimate of the motion envelope of the object:
the set of points occupied by the object as it moves. Three motion graphs per object are
obtained by plotting the value of each velocity parameter as a function of time, measured
at frame intervals.

To automatically identify single motion regions without any a priori knowledge of
the number of moving objects and their shapes, we propose the following top-down
iterative method (unlike [1,32], which use a bottom-up approach). Initially, the algorithm
hypothesizes that there is a single region covering the entire image with a single moving
object. It computes its motion parameters under this assumption as described in Section 6.3.
The hypothesized motion induces a normal optical flow on the image points, which is
computed using the equations in Section 6.2. Each point in the image region has now
associated with it two normal optical flows: the actual one, which was computed from
the original sequence of images, and the hypothesized one. If the image sequence indeed
contains a single rigid motion in the region, most of the normal optical flow values at the
image points should be very similar (note that they will not be all exactly identical because
the computation model is approximate, ery.~ i, when|VI| is large). When the two
optical flows are very similar, the hypothesis is valid and the segmentation is completed.
Otherwise, the algorithm divides the image into axis-aligned rectangular regions, which it
hypothesizes to be single motion regions, and recursively repeats the above computation
until each region is left with a single motion.
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Computing the hypothesized normal optical flow

We derive the hypothesized normal optical flow at each point from Egs. (4) and (5).
Since we assume planar motion, the first two components of the angular velocity vector
&= (A,B,C)T, A and B are zero. Substituting in these equations and rearranging, we
obtain the hypothesized translational velociti€sand V/ of an image pointx, y):

Uc/sz/Zc_XW/ZC_Cl(y_)’c)y

(15)
Vc/:fv/zc —yW/Z:+ C1(x — x¢).

Since we can calculaté/Z. andV/Z. andCj from Eg. (14), and:. andy. are known,
we can computé// and V. To obtain the hypothesized normal flow, we project this flow
on the normal direction.

Comparing normal optical flows

To determine if the actual and the hypothesized normal optical flows are close, we
establish a similarity measure. The measure is the ratio between the image points for which
the relative difference between the actual and hypothesized normal optical flows is smaller
than a predetermined threshold and the total number of points

similarity = 1 (Z (
n

i=1

(actualiz,, i) — hypothesized:,, i))
max; (actuakii,,, i))

< thresholo)), (16)

whereactualii,, i) andhypothesized,, i) are the actual and hypothesized normal flow
vectori, magnitudes at pixel. The similarity measure tends to zero when the flows are
very different (many moving objects, for which the flow appears as non-rigid motion of a
single object) and to one when they are very similar (a single moving object). For example,
for the flows in Fig. 5, the similarity measure between (a) and (b) is 0.32, and between (a)
and (c) is 0.70 for a threshold of 5.1. Alternative robust statistical estimate methods based
on histogramming can also be used.

Region division

When the actual and hypothesized flow differ, the region contains more than one moving
object. It must be divided into two or more regions, each containing a single moving object.
In general, motion regions can have various shapes, corresponding to the motion envelopes
of the moving objects. We approximate the motion envelopes with nearly non-overlapping
axis-aligned rectangles containing them. Initially, the entire image rectangle is a single
region. The region is subdivided by expanding small rectangles from each one of its four
corners. The rectangles are expanded until the similarity measure decreases significantly.
When it does, the region is marked as a possible solution, and the algorithm proceeds to
search for more single motion regions from the four neighboring sides or the rectangle.
The rectangle with the best similarity measure from the four candidates is selected. The
algorithm continues the subdivision process recursively until each region is a single object
motion region.

This region division strategy assumes that there is little overlap between the object
motion envelopes, which is the case in most situations (it is true in all the examples of
this paper). The strategy can be modified to handle overlapping cases at the expense of
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more computation by, for example, growing regions that are only a few pixels in size, and
splitting and merging them as appropriate.

Image sequence motion segmentation

The motion segmentation starts by performing motion segmentation on the first pair of
images in the sequence as described above. The resulting single motion regions are then
used as initial guesses for the successive pairs ofimages. In each region, motion parameters
are estimated, and the hypothesized normal optical flow is computed. The regions are then
updated as follows. If the actual and hypothesized flows are similar, the region remains as
is. If the hypothesized flow is very weak (values are below a given threshold), the object
in the region is not moving, and the region remains as is. If the actual and monitored flows
are dissimilar, a new object has started moving or has entered the region. The region is then
split and adjusted as described above. This procedure guarantees the spatial and temporal
coherence: objects that have stopped moving will be recognized as the same object when
they start moving again.

7. From motions to behaviors

To produce the formal sentences that describe the behaviors of the mechanism, we
developed a three-step algorithm. First, the algorithm partitions the motion graphs into
individual uniform motion events. Next, it identifies simultaneous motion changes, and
then parses the resulting motion events sequence with a motion grammar to obtain the
behavior description. For each behavior of each part of the mechanism, it produces a
sentence that describes it. When one object changes its motion, a new sentence is written to
reflect the new behavior. This process terminates when there is a sentence for each moving
object behavior.

7.1. Individual motion events identification

Uniform motion events for each moving object are identified by individually partitioning
each motion graph. The partitioning is performed by individually thresholding the motion
graph of each object along the parameter axis to determine where uniform motion events
begin and end, and to obtain the average motion parameter values in that interval. Different
thresholds are used for different motion parameters and different objects: objects have
different types of motion and are moving with different very different velocities. The
threshold is set to be sensitive to the processed graph, e.g., by some relative portion of
the average parameter values. Note that the precise locations on the time axis where the
partition takes place are dependent on a predefined threshold.

7.2. Simultaneous motion changes identification
The next step is to identify the relationship between events, relating them on the time

axis. To identify simultaneous events, object motion changes that occur almost at the same
time, the algorithm correlates all the motion graphs and locates nearby parameter value
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changes on the time axis. The algorithm uses the start and end times of the motion events
and a predefined time window to locate and determine simultaneous events. Events that
fall within the same time window are considered to happen together, and get the average
value of the time window as a time stamp. Note that the size of the time window is scenario
dependent. For example, when analyzing a series of fast events, we would expect the time
window to contain fewer frames. The result is a sequence of motion events for each moving
part. These are the building blocks for the next step, which is to take these events/words
and combine them into a sentence of a motion language.

7.3. Behavior parsing

The final step is to group the motion events into higher level structures, as specified by
the motion grammar. The symbolic form of the individual events of each moving object
are obtained directly from the motion graph partition, which determines the sequence
of simultaneous events. This straightforward translation yields terminals describing the
behavior of each part (rotation, translation no-motion, etc.), their axes, and motion
relations. The result is a string of primitive events, which constitute the words of the
behavior sentences. The structure of the sentences is recovered by parsing the sentences
with a standard bottom up technique. Note that further processing can turn this formal
output into natural language sentences (we have not investigated this further).

8. Experimental results

We have implemented the algorithm and tested it on image sequences of examples
and scenarios of varying complexity from three categories: mechanisms, everyday life
situations, and a robotic cell. We briefly describe the experimental setup and results
next.

The video sequences consist of 36876 8-bit gray-level pixelimages (440 kB) shot at a
rate of 25 images per second. Sequences last from 5 to 60 seconds. The camera image plane
is at an angle of at most 3Grom the motion plane in all sequences. The camera position
and lighting are constant throughout the sequence. Full-resolution images are used in the
computation, with no temporal or spatial sub-sampling. Most of the computation time is
spent on normal optical flow computation and image file handling. Reading and writing
the normal optical flow images to disk takes up to 70% of the computation time. For a 200
image sequence, this process takes about one hour on a SGI IP25 workstation. The motion
segmentation and motion parameter estimation take about a minute for the first pair of
images. The program uses the regions as estimates for the subsequent images, which is a
correct guess for most of the images, as discussed in Section 6.4. Processing the motion
graph takes less than 30 seconds in all cases.

The results depend on the values of various thresholds and parameter values. For the
first step, the hypothesized and actual normal optical flows are considered similar in a
region if the similarity measure is higher than 0.5. Usually, the ratio is 0.7 when there
is a single object, and 0.3 or less when there are two or more (Section 6.4). The motion
segmentation uses nearly non-overlapping axis-aligned rectangles. The rectangle sizes are
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grown in multiples of 20 pixels, e.g., 20 60, 40x 80 and so on. For the second step,
the velocity thresholds were chosen individually for each part and for each type of motion.
The velocity ratios between different objects were 5:1 or less, which allowed the program
to successfully filter out from the velocity graphs the noise and slight velocity variations
due to inertia, impacts, and motor fluctuations. We chose to distinguish between three
velocity values: positive, negative, and zero. Zero was taken to be values below 10% of
the maximum value. Events were considered to be simultaneous if they occur within a half
second (12 frame) interval. For the behavior description, we chose qualitative descriptions
indicating the velocity sign, not its actual value, and ignored acceleration.

8.1. Mechanisms

We built, videotaped, and successfully analyzed a dozen fixed-axes mechanisms
representing the most common mechanical elements: gear, cam, and belt drives. They were
all powered by a small, inexpensive electric motor. The gear drive example in Fig. 3 was
discussed in Section 5. Figs. 8-10 show three additional examples: a reciprocating cam
piston, a crank slider, and a belt drive from two different views. In the cam piston example,
the cam continuously rotates clockwise, driving the piston up and down. In the crank slider
mechanism, the slider translates horizontally back and forth as the wheel rotates clockwise

) 004

0 20 6 005 | / "‘"""\_\_\‘
-0.005 -006 1
001 - -007 -
008

(b) ©

Fig. 8. Cam piston mechanism and its segmented motion graphs. (a) Cam piston. (b) Cam velocity. (c) Piston
velocity.
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Fig. 9. Crank slider mechanism and its segmented motion graphs. (a) Crank slider. (b) Wheel velocity. (c) Slider
velocity.

according to a sine relationship. In both cases, the program identifies the periodicity and
includes the modifiealternatein the description:

teli,i +95 fori=0,1,2
crank: rotation¢-axis,c = +
slider: translation alternate-axis,u = +

The image sequence includes three cycles that repeat every 95 frames. Each cycle
consists of two slider translation segments of equal length, starting with translation in the
positive direction. The crank rotates continuously in the positive direction. Note that the
intermediate link motion, which is not fixed axes, is ignored. This shows that the program
is capable of correctly producing an input/output behavior when not all part motions are
fixed axes.

In the belt drive mechanism, the right wheel uniformly rotates at a constant speed
clockwise, causing the left wheel to rotate more slowly. The motion of the chain, which
is not a rigid body object is correctly ignored. Note that, after thresholding, the belt drive
graphs show that the velocities are constants and that the velocity ratios are very similar.

8.2. Everyday situations

Another interesting category are human actuated mechanisms from everyday life
situations, such as the gym example in the introduction Fig. 1 and the door handle in
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Fig. 10. Belt drive mechanism from two viewpoints and their motion graphs?°(aied. (b) 30° view. (c) Motion
graphs. In (c) the top two plots are the velocities of the large and small wheel8,ar2Dthe bottom two plots
are the velocities of the large and small wheels®at 0

(b)

Fig. 11. A door handle sequence. The handle was turned from behind the door. (a) Closed door. (b) Open door.

Fig. 11. Fig. 12 shows the corresponding motion graphs. In these cases, there is more
variation in the motion, and thus more noise. Nevertheless, the program correctly identified
individual continuous motion events.



172 T. Dar et al. / Artificial Intelligence 112 (1999) 147-179

0.15 0.1

: SN LT

20 40 80 100 120

-0.1

(@) (b)

Fig. 12. Door latch graphs. (a) Latch horizontal translation. (b) Handle angular velocity.

s - B “ grinder 7

Fig. 13. A robot cell scene consisting of a handle-activated meat grinder (left), a lever-activated stapler, and a
moving robot tip rigidly holding a wrench (center). The grinder handle is initially supported by a white rectangular
block. The grinder handle and the stapler lever can rotate with respect to their bases. The grinder knife rotates
inside the grinder housing. All the robot motions are translational.

8.3. Robotcell

The most complex scenario we analyzed is the robot cell in Fig. 13. There are four
moving objects: the robot tip, the stapler lever, the grinder handle, and the grinder knife.
Fig. 14 shows six frames from the image sequence. In the initial configuration (a), the
wrench side is in contact with the meat grinder handle. The robot performs the following
sequence of motions: first, it moves the tip up and down, raising and lowering the grinder
handle and causing the grinder knife to rotate clockwise and counterclockwise (b). Then,
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®

Fig. 14. Robot sequence. (a) Initial configuration. (b) Raised handle. (c) Lowered handle. (d) Tip above the lever.
(e) Pushing down the lever. (f) Releasing the lever.

the robot tip keeps moving down after it leaves the handle (c), stops, and moves left until
it is above the stapler lever (d). It then moves down and up, pushing (e) and releasing the
lever (f). The robot tip keeps moving up after it releases the lever, stops, and moves right
to its home position. The robot makes short pauses between motions. This sequence is
repeated twice. The video segment last for about 60 seconds (1,500 images). We worked
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Fig. 15. Motion graphs. The horizontal axes is the frame number, the vertical axis is the magnitude of the velocity.
(a) Robot tip horizontal translation. (b) Robot tip vertical translation. (c) Grinder handle rotation. (d) Grinder knife
rotation. (e) Stapler lever rotation.

with an image resolution of 320 256 because of disk space limitations (no difference in
the outcome was detected).

The program recognizes four moving objects and 30 uniform motion events, including
the pauses between motions. Fig. 15 shows the five relevant motion graphs. The top two
graphs show the horizontal and vertical translations of the robot tip. The two middle graphs
show the simultaneous clockwise and counterclockwise rotations of the grinder handle and
knife. The bottom graph shows the stapler lever turning clockwise and counterclockwise,
followed by a rest period. The vertical lines show five significant simultaneous motion
events (out of 32) corresponding to the snapshots in Fig. 14. There are short, 2 second
pauses between motions. The final behavior description is shown in Table 4.
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Table 4

Fragment of the symbolic behavior description of the robotic cell motions

t €[0,96)

robot-tip: translationp-axis,v = —
knife: rotation,k-axis,c = +
handle: rotationi-axis,c = +
lever: no-motion

thent € [96,118

robot-tip, knife, handle, lever: no-motion
then

t €[118 213

robot-tip: translationp-axis,v = +
knife: rotation,k-axis,c = —
handle: rotationk-axis,c = —
lever: no-motion

then

t €213 235

robot-tip: translationy-axis,v = +
knife, handle, lever: no-motion
then

t € [235 268

robot-tip, knife, handle, lever: no-motion
then

t € [268 365

robot-tip: translationg-axis,u = —
knife, handle, lever: no-motion
then

t € [365 401)

robot-tip, knife, handle, lever: no-motion
then

t €401 431

robot-tip: translationy-axis,v = +
knife: no motion

handle: no-motion

lever: no-motion

then

t € [431, 458

robot-tip: translationy-axis,v = +
lever: rotation/-axis,c = +

knife, handle, no-motion

then

t € [458 497)

robot-tip, knife, handle, lever: no-motion
then

t € (497,542

robot-tip: translationy-axis,v = —

lever: rotation/-axis,c = —

knife, handle, no-motion

then

t € [542 557)

robot-tip: translationy-axis,v = —

knife, handle, lever, no-motion

then

t € [557,591)

robot-tip, knife, handle, lever: no-motion
then

t €591 674)

robot-tip: translationg-axis,u = +

knife, handle, lever: no-motion

then

t€[674,718

robot-tip, knife, handle, lever: no-motion
then

t€[718 738

robot-tip: translationy-axis,v = —

knife: no motion

handle: no-motion

lever: no-motion

then

t €[738 818

robot-tip: translationy-axis,v = —

knife: rotation,k-axis,c = +

handle: rotationf-axis,c = +

lever: no-motion

then

t €818 870

robot-tip, knife, handle, lever: no-motion

9. Conclusion
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We have presented a new algorithm for producing behavior descriptions of planar
fixed axes mechanical motions from image sequences. The algorithm uses a formal
behavior language that symbolically captures the qualitative aspects of objects that
translate and rotate along an axis that is fixed in space. The language covers the most
important class of mechanical motions and is based on the first-principles theory of
configuration spaces. The algorithm follows a multi-step process whose aim is to recover
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the internal structure of the object motions and their relations based on the language.
It starts by identifying the independently moving objects, their motion parameters, and
their variation with respect to time using normal optical flow analysis, iterative motion
segmentation, and motion parameter estimation. It isolates individual moving objects by
finding rectangular image regions containing their motion envelopes. It then produces
a formal description of their behavior by identifying individual uniform motion events
and simultaneous motion changes, and parsing them with a motion grammar. These
formal behavior descriptions can be used as input to programs that automate other
tasks, such explanation generation, and automatic comparison and classification of image
sequences.

The distinguishing characteristics of our method are that it perfaiinthe process,
from low-level image processing to high-level behavior description, that it exploits the
constrained structure of fixed-axes mechanical motions, and that it provides a generative
approach to motion event identification and behavior description based on a formal
motion language. Because the algorithm works directly with object motions and their
changes, it does not rely on object shapes and thus does not require shape modeling,
segmentation, or recognition. It uses an iterative scheme for motion segmentation and
motion parameter estimation to identify and classify individual object motions based on
velocity profiles. This scheme makes no a-priori assumption on the number of moving
objects and their size. It is capable of identifying and keeping track of objects with stop and
go motions, correctly identifying them as the same object. It segments the image sequence
by adaptively identifying individual motion events and simultaneous motion changes,
which occur frequently and convey meaningful behavioral information. It uses a small
number of predefined parameter thresholds for comparing optical flows and determining
when a motion is present based on velocity ratios.

Algorithmic improvements

Various improvements are possible in each one of the algorithm steps. The most
important issue is the thresholds determination for normal optical flow comparison,
uniform motion event identification, and simultaneous eventidentification. Currently, these
thresholds are predefined or established by simple averaging schemes. Robust statistical
methods based on histogramming can significantly improve the stability and reliability of
the parsing process, and better automate the process.

When deriving motion parameters from image sequence, the most sensitive process is
motion segmentation. We plan to extend the scope of the segmentation process by allowing
moving regions with various shapes, not just axis-aligned rectangles. This will yield better,
more accurate region division, and will enhance the segmentation results. It will also allow
us to remove the current restriction on non-overlapping motion envelopes. Another subject
of current research is to develop better methods for simultaneous event detection, which
will become a critical issue as the scope of motions is extended. Other research subjects
include better parsing strategies, curve fitting for motion graphs for richer, more detailed
motion description, and noise reduction.
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Scope extensions

The first extension is to objects with general mechanical planar motions, where the
angular and translational velocities are coupled. Planar motions usually occur in linkage
mechanisms, as discussed in Section 3. The most difficult issue is finding an appropriate
symbolic language, possibly along the lines of [34]. The first step of the algorithm
remains unchanged, as it assumes planar motion. For the second step, event identification
requires to extend the event identification step to detect motion events in the three velocity
graphs simultaneously because general planar motions couple the angular and translational
velocities in specific patterns.

The second extension is to fixed-axes spatial motions, such as meshed bevel gears with
orthogonal axes. The motion language can be easily extended to deal with two new types
of spatial motion: helical motion and independent translation and rotation (cylindrical
joint) while all the rest remains the same. The easiest way to deal with this issue is to
simultaneously record the moving objects from different camera positions so that each
object moves on a plane roughly perpendicular to the camera normal. We believe that
specialized motion estimation parameter techniques are best to identify this type of motion.
Note that the individual motion events and simultaneous motion changes identification
method described in Section 6 remains the same. Identifying general spatial motions is a
hard problem, as discussed in the introduction. Identifying human motion is of particular
interest [44]. In our framework, it requires first the development of a motion language for
the domain (classical dance, soccer, exercising). Another avenue is to attempt to predict
motion by simulating the physical laws of motion.

Applications

We envisage several applications to our algorithm. One is the production of natural
language explanations. Automating this task is relatively straightforward, since the
structure of the natural language sentences can closely follow the structure of the formal
sentences. Another one is the segmentation of video sequences of machines for database
retrieval. Mechanical behavior can be classified and retrieved according to partial formal
descriptions stated in the motion language [21]. A third application is in inspection and
repair of machines. We also plan to use the qualitative partitioning as a guide for more
refined analysis.
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