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ABSTRACT (VEML) to annotate instances of the events described in
VERL [2]. Another representation technique base on hierar-

This paper presents a novel approach for video event repre- chical CASE representation was proposed by M Shah et al.
sentation and recognition of multi agent interactions. The in [3] and then enhanced by [4].
proposed approach integrates behavior modeling techniques The dynamic nature of video clips always requires robust
based on Generalized Stochastic Petri Nets (GSPN) and in- modelling technique that can efficiently treat the uncertainty
troduces Petri net marking analysis for better scene under- of the video scenes. Therefore, the Bayesian Networks [5-7]
standing. The GSPN model provides remarkable flexibility in and various HMMs [8-10] have been widely used in the area

representation of time dependent activities which usually co- of video event recognition. KMurphy introduced the Dy-
exist with logical, spatial and temporal relations in real life namic Bayesian Networks (DBN) which generalizes HMMs
scenes. The nature of Petri net concept allows efficient model- by improving the state space representation [11].
ing of the complex sequential and simultaneous activities but YIvanov and A.Bobick proposed the stochastic parsing
disregards the global scope of a given model. The proposed approach [12] that combines the Coupled HMM (CHMM) for
marking analysis creates a new model extension based on the low level temporal event detecting and gesture classification
global scene view and uses historical and training information with stochastic context-free parser (SCFG) for structural ac-
for current and future state interpretations. The GSPN ap- tivity recognition using the external knowledge about the
proach is evaluated using the developed surveillance system video domain.
which can recognize events from videos and give a textual Another modelling technique based on Petri nets was

expression for the detected behavior. The experimental results presented by C.Castel et al. [13]. This work proposed a sym-
illustrate the ability of the system to create complex spatio- bolic language to capture the logical and algebraic conditions.
temporal and logical relations and to recognize the interac- Activity prototypes and state conditions were suggested and
tions of multiple objects in various video scenes using GSPN then interpreted by the Petri net graph. N.Ghanem et al. pro-
and marking analysis capabilities. posed using Petri nets for mining of surveillance video

in [14]. A high level query language that allows the user to
submit spatiotemporal queries about human activities was
developed. The recognized events were hierarchically com-

1. INTRODUCTION bined using primitive and composite events. Spatial, temporal
and logical relations using the Petri nets were defined and

The development of video surveillance systems presents illustrated on some real video episodes.
many challenges in creating a robust applications that will Our work extends the work of N.Ghanem et al. [14] and
effectively combine the methods for object detection, feature proposes to integrate Generalized Stochastic Petri Nets
extraction, tracking, behaviour modelling and event interpre- (GSPN) for video event representation and recognition. We
tation. Any behaviour analysis process begins from choosing introduce Petri net marking analysis for better video scene
a powerful event representation method that supports the rec- understanding of current state and for predicting of the next
ognition of complex activities. R.Nevatia et al. presented the state upon the available training information. Finally, we pre-
Event Recognition Language (ERL) [1] which can describe sent a surveillance system which is based on the proposed
hierarchical representation of complex spatiotemporal and concepts and demonstrate experimental results on some real
logical events. The proposed hierarchical event structure was and synthetic video clips.
constructed of primitive, single-thread and multi-thread
events that were recognized using Bayesian network and 2.EVENTREPRESENTATIONUSING GSPN
semi-HMM methods. Lately, R.Nevatia et al. developed
Video Event Representation Language (VERL) for describing The Petri net model is represented as a bipartite graph that
ontology of events and Video Event Markup Language consists of two node types: places and transitions. The nodes
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can be connected by regular or inhibit arcs. Place nodes may priority parameter to each transition node. In case of conflict
contain a number of another graph component called tokens. high priority transition will always fire before the low one.
Petri net components are illustrated on Figure 1. The state change in the Petri net model is typically a re-

The dynamic behaviour of the Petri net is obtained byfir- sult of some activity initiation/completion or a result of condi-
ing tokens from one place node to another according to the tion verification. Considering the first state, the Timed Petri
parameters associated with transition nodes. The parameters Net introduces temporal specifications which are associated
that define transition node behaviour can be represented by with timed transitions. The timer that is associated with a
the enabling rules and firing rules. Both the enabling and the timed transition measures the duration of the activity in the
firing rules are specified through arcs. An enabling rule de- modelled system. The activity starts when the conditions of
fines the preconditions that should be satisfied before the the associated enabling rule are satisfied and stops when the
transition node may fire, while the firing rules defines the enabling rule is violated. If the duration of the activity is
marking modification that will take place in case of transition greater then a predefined threshold, the timed transition is
firing. A comprehensive presentation of the Petri nets struc- allowed to fire.
ture, dynamic behaviour and modelling techniques are given In some cases, the PN model with strictly defined timed
in [15]. transition delays does not accurately describe the behaviour of

the underlying system. An alternative PN model that adopts
0 0 *timed transitions with exponential distributions for transition

delays are known as Stochastic Petri Net (SPN). The most
popular method for random delay modelling is based on the

XG| ~~~~~~negative exponential Probability Density Function (PDF).
Obviously, the same model may enjoy of a significant advan-
tage of using immediate transitions in PN models together
with timed transitions. In our model immediate transitions
coexist with timed transitions, transition priorities and random
firing delays with negative exponential PDF and this creates
GeneralizedSPN (GSPN) model [15].

Figure 1: Petri net components. The PN model state can be characterized by the number
of tokens in the place nodes. This defines the current marking

In our representation model, each token represents an ob- of the PN model. Prior to involving any PN model dynamics,
ject that exists in the video scene. Places represent the object it is possible to compute the set of all markings reachable
states and the transitions represent video events that provide from the initial marking and all the paths that the system may
dynamics of the behaviour model. Transition node firing is a follow to move from state to state. The set of all reachable
result can be equivalent to the object state change in the real markings define reachability set of the graph. The reachabil-
scene or can be result of a satisfied relation constraint. ity graph consists of nodes representing reachable marking

The flexibility of an enabling rule is predefined by the and arcs representing possible transition from one marking to
tracking and classification information that is supplied by the another. An example of reachability graph is demonstrated
intermediate video processing layer. on Figure 2.

An enabling rule triggers transition firing if and only if:
1. Each input place contains token(s) that satisfy enabling

rule constraint and the number of such tokens is greater or
equal than a given arc multiplicity

2. Each inhibitor place contains a number of tokens smaller
than a given threshold. This rule can be modified to ap-
plied the sane enabling rules on the tokens contained in the
inhibit nodes.
Our representation model does not allow firing rule

modifications, however it can be customized for implementa-
tion of complex firing behaviour. Any firing transition deletes
from each input place as many tokens as the input arc multi- Figure 2: Reachability graph example.
plicity and then adds to each output place as many tokens as
the output arc multiplicity. Occasionally, more then one ena- In principle, the firing times are assumed to be independ-
bling rule can be satisfied at the same time and depending on ent of the marking of the GSPN model, however the transition
the graph structure, it can lead to a conflict because firing of parameters can be marking dependent. If one or more transi-
one transition may immediately disable another transition. tions are enabled in the same marking then it is possible to
The conflicts can be resolved in a controllable way by adding calculate the distribution of the sojourn time in that marking.

Moreover, the probability of the transition node to fire first
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can be computed using the PDFs of the transitions which also sity of the timed transition delay is a PDF function of the
may be dependent on current marking. It is important to note form:
that the specification of marking dependent parameters re- Dn 1-=eI-"e (2)
quires special attention to possible global states of the mod-
elled system. The reachability graph of the GSPN system de- Where tn is an enabling period of timed transition n and ,u
fines the possible transitions between the reachable markings; is an average delay of timed transition n. The average delay of
however the probability of each transition can be com- the transition is automatically calculated using a training se-
puted as: quence of input videos. During the training, no timed transi-

A =N IN (1) tion can fire, so the average enabling period can be calculated.
The training sequence must cover all typical activities in the

Where: 4n,k is probability to move to marking Mk from particular domain. This allows the system to build the reach-
marking Mn, N n,k is number of detected transitions from ability set of the explored domain and build a Discrete Time
marking Mn to marking Mk, and Nn is number of Mn marking Markov Chain.
occurrences. Each marking node represents a legal state of the system

The reachability graph with the probabilities of marking that occurred during the training process and the links be-
transitions defines a Discrete Time Markov Chain (DTMC) tween nodes represent legal transitions between the states.
that will describe the stochastic process associated with the These transition probabilities are calculated and used for con-
system. The DTMC can significantly extend the understand- struction a DTMC. In our surveillance system we use this
ing of the current system state upon the statistical parameters model for prediction of the most probable next state in the
collected during the system training process. A brief presenta- scene and for calculation of conditional probabilities for cer-
tion of the DTMC capabilities in GSPN can be found in [15]. tam events. This information is presented for the user in real-

time and can be stored in textual file.
3. SYSTEM MODELING WITH PETRI NETS

4. SURVEILLANCE SYSTEM OVERVIEW
3.1. Logical Relations

The proposed video surveillance system is built of intermedi-
A typical representation of logical relations in a Petri Net as- ate video processing module, behaviour configuration module
sumes that that the places and the tokens contained in these and video event interpreter (Figure 3).
places are operands. The satisfied relation is represented by a
fire event of the involved transition node. The implementation
of the basic logical relations (AND, OR and NOT) can be
found in [14].

3.2. Temporal Relations

Similar to the logical relation representation, the place nodes
represent the input arguments while the combination of transi-
tion node represents the required temporal relation. The tran-
sitions are augmented by conditions that should be satisfied F 3t
for this temporal relation to hold. The complete set of Allen's
algebra relations and their implementation in Petri nets can be The intermediate processing module performs motion de-
found in [14]. tection, object detection and tracking functions. The output of

this sub-system supports the format of the ground truth
3.3. Spatial Relations labeling files as defined in the CAVIAR project [16]. This sub

module can be replaced with any format compliant datasets.

A spatial relation can be one of the following categories: topo- For instance, we may use a set of synthetic video clips that

logical, directional or distance relation. Currently our model symbolically draws object locations, but provides ground
supports only directional and distance relations which can be truth labeling files as in a real scene.

defined using the enabling rules of transition nodes. These The behaviour configuration module implements a

rules define the distance between objects D[max,min] and graphical interface for creating behaviour models using the
difference in their orientation O[max,min]. GSPN graphical language. Currently, the correctness and effi-

ciency of the constructed model relies on the user's expertise
3.4 GSPN.ModelTraining in Petri net modelling methods and the knowledge of the

scene domain. In order to reduce the complexity of the model-
Theprbblsi beaiu ofteGP.oesbsdo ling task and to enable model reuse, our system supports vari-

.. .. ~~~~~oustemplates. These templates can be created or extended bythe random delays of timed transitions. The probability den- thusroadptemfrnteroel
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The video event interpreter analyzes the input video </hypothesis>
scene using the predefined behaviour model and generates </hypothesislist>
textual expressions for the detected events. The interpretation </object>
process can run in two execution modes: training mode and </objectlist>
normal mode. During the training all stochastic parameters of </frame>
the model are calculated and stored. Once the model is Figure 4: Annotation file format.
trained, the detected states and transition parameters construct 5 1 Example 1: Security Check
the DTMC which will be used for testing new scenes in the
same romaln. This example assumes a public place where every visitor must

The result of the interpretation iS presented in the log
ps euiycek iue5sosteci fanra

window and then can be stored in a text file. The interpreta- pasaeuri heck.oFiguret 5shows theclipo aborabehaviour where one visitor stops (2) for a security checktion module can be configured to run automatically on video while another one (3) passes near the guard (1) and evades thedatabases and store the interpretation results in textual files. check. Similar scenes were enerated usin the same sce-
This enables our system to analyze existing databases and to nario. Figure 6 shows one g g. . narlo Flgure 6shows oneof them where each circle repre-perform various user defined queries for specific events.

Our system consists of two separate applications that im- s Anobjing the pre p.
plement the behaviour modelling and the video event inter- Aourdin t sth propos model, the surveincstem should raise a security alert on one of the two events:pretation modules. All graphical interfaces are implemented a visitor enters the hall without being checked,
in C# while the GSPN model is implemented in C++ to give
better performance characteristics. The interpretation process * the security check is abnormally long.
can run in two execution modes: training mode and normal
mode. During the training all stochastic parameters of the
model are calculated and stored in the model.-

5. EXPERIMENTAL RESULTS

The following experiment demonstrates GSPN behaviour
modelling capabilities and the video event interpretation re- (a) (b)
sults. The input for the surveillance system can be obtained
from two sources: a pre-processed video clip or a synthesised I
clip that can be generated using an animation tool that was -
developed. This tool allows creating a series of random sym-
bolic clips that have common behaviour pattern as well as add
abnormal activities that have to be detected. In the synthetic
clips, moving objects are drawn as filled color circles and
static objects are drawn by their contours. The background (c) (d)
area can be schematically divided to interaction zones which Figure 5: Real security check scene.
are represented by different colors. The annotation file that is g
created with the generated clip is fully reliable and eliminates
the need to handle erroneous or inaccurate tracking results.

The format of the annotation file that the interpretation
module expects to receive from an external tracker is pre-
sented on Figure 4. The full definition of this format can be
found in [16].

<frame number=" 1> (a) (b)
<objectlist>
<object id="O">
<orientation>0</orientation>
<box xc=" 10" yc=" 10" w=" 10" h=" 10" I>
<appearance>appear</appearance>
<hypothesislist>
<hypothesis id="O" prev="0.0" evaluation=" .0">
<movement evaluation="l1.O">walking</movement> (c) (d)
<role evaluation=" 1 .O">unknown</role>
<context eval1uation=" 1 .0">unknown</context>
<situation evaluation="1.O">unknown></situation Figure 6: Synthetic security check scene.
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The GSPN behaviour model for this example consists of sev- 56 'Visitor Entered the Hall fired on objects :2
eral events as illustrated on Figure 7. 61 'Guard Met Visitor' fired on objects :0, 2

61 'Visitor Entered the Hall' fired on objects :6
68 'Visitor Was Not Checked' fired on objects :6

The interpretation starts from a special place node called - 71 'Security_Check Is Too Long_Detected' fired on objects :0, 2
'Root Node'. In every new frame, this place contains tokens 86 'Meeting_Is_Over' fired on objects :0, 2
for all detected objects in the scene. Any new object is re-
ported by the tracker as recently appeared one, then the transi-
tion 'Object_Appeared' fires and transfers the corresponding
token to the place called 'ObjectjIn_Scene'. There are 3 pos-
sible values of object movement characteristic: active, walk-
ing or running. The interpretation of the movement property
will move the token to one of the appropriate states: 'Ob-
jectIsMoving' or 'ObjectIsActive'. The transition 'Visi-
tor_Entered_the_Hall' that has spatial constraint fires when an
object passes through the door and enters the building. The
transition 'Visitor Was_Not Checked' fires if the visitor
leaves the area around the guard before the check begins. If
the visitor approaches the guard and both stop moving, we
consider that the security check is in progress and then the
transition 'Guard Met Visitor' fires. The complete list of the
detected events is presented in Table 1 and the interface of the
interpretation module is presented on Figure 8.

The training sequence constructs the Petri net reachabil-
ity set that we use for marking analysis. The created marking
graph defines the DTMC that we use to calculate the most Figure 8: Interpretation module interface.
probable next marking state of the scene. This information
improves our understanding of the current state as well. For We can also calculate the probability that this visitor will be
instance, assume the visitor has entered the hall (Visi- properly checked. All possible paths to reach the
tor_Walking_Towards_Guard). According to the model and Guard_Checked_one_Visitor state form the state Visi-
the marking graph presented on Figure 9 the most probability tor_Walking_Towards_Guard are highlighted by the red arcs
next state is One_Visitor_Stopped_Near_Guard. on Figure 9. The total probability to check one visitor is the

sum of probabilities to go over the two highlighted paths:
§1. Pr_roa~ i ~okI TonP = 0.72 x I x 0.63 + 0.72 x I x 0.37 x 0.78 0.66 (3)
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Figure 9: Marking graph for security check example.
Figure 7: GSPN model for security check example.

5.2. Example 2: Traffic Junction Control
Table 1: Interpretation results for security check exam-

ple. We assume that each car that enters the junction may cross the
junction unless there is a car on its right side. Any violation of

Frame TMessage l this rule is considered as abnormal situation and must be re-
| 1 Object_Appeared fired on objects:0| potdbthsuvilneytm.W gnradasresf
120 Object Appeared' fired on objects :2 potdb1h uvilnesse.W eeae eiso

25~ ~'OjcApae fie nojcs: seudo random synthetic clips where each vehicle is symboli-

37



catty marked as a colored circle. The bright grey region de- In this example the surveillance system succeeded to de-
fines the internal area of the junction while the dark grey re- tect a car that crosses the junction despite the fact that there is
gion defines the active zone where the vehicles begin their another car on its right side (Frame #52).
interaction. One of the synthetic clips is illustrated on
Figure 10.
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