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ABSTRACT

This paper presents a novel approach for video event repre-
sentation and recognition of multi agent interactions. The
proposed approach integrates behavior modeling techniques
based on Generalized Stochastic Petri Nets (GSPN) and in-
troduces Petri net marking analysis for better scene under-
standing. The GSPN model provides remarkable flexibility in
representation of time dependent activitics which usually co-
exist with logical, spatial and temporal relations in real life
scenes. The nature of Petri net concept allows efficient model-
ing of the complex sequential and simultaneous activities but
disregards the global scope of a given model. The proposed
marking analysis creates a new model extension based on the
global scene view and uses historical and training information
for current and future state interpretations. The GSPN ap-
proach is evaluated using the developed surveillance system
which can recognize events from videos and give a textual
expression for the detected behavior. The experimental results
illustrate the ability of the system to create complex spatio-
temporal and logical relations and to recognize the interac-
tions of multiple objects in various video scenes using GSPN
and marking analysis capabilities.

1.INTRODUCTION

The development of video surveillance systems presents
many challenges in creating a robust applications that will
effectively combine the methods for object detection, feature
extraction, tracking, behaviour modelling and event interpre-
tation. Any behaviour analysis process begins from choosing
a powerful event representation method that supports the rec-
ognition of complex activities. R.Nevatia et al. presented the
Event Recognition Language (ERL) [1] which can describe
hierarchical representation of complex spatiotemporal and
logical events. The proposed hierarchical event structure was
constructed of primitive, single-thread and multi-thread
events that were recognized using Bayesian network and
semi-HMM methods. Lately, R.Nevatia et al. developed
Video Event Representation Language (VERL) for describing
ontology of events and Video Event Markup Language
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(VEML) to annotate instances of the events described in
VERL [2]. Another representation technique base on hierar-
chical CASE representation was proposed by M. Shah et al.
in [3] and then enhanced by [4].

The dynamic nature of video clips always requires robust
modelling technique that can efficiently treat the uncertainty
of the video scenes. Therefore, the Bayesian Networks [5-7]
and various HMMs [8-10] have been widely used in the area
of video event recognition. K. Murphy introduced the Dy-
namic Bayesian Networks (DBN) which generalizes HMMs
by improving the state space representation [11].

Y.Ivanov and A.Bobick proposed the stochastic parsing
approach [12] that combines the Coupled HMM (CHMM) for
low level temporal event detecting and gesture classification
with stochastic context-free parser (SCFG) for structural ac-
tivity recognition using the external knowledge about the
video domain.

Another modelling technique based on Petri nets was
presented by C.Castel et al. [13]. This work proposed a sym-
bolic language to capture the logical and algebraic conditions.
Activity prototypes and state conditions were suggested and
then interpreted by the Petri net graph. N.Ghanem et al. pro-
posed using Petri nets for mining of surveillance video
in [14]. A high level query language that allows the user to
submit spatiotemporal queries about human activities was
developed. The recognized events were hierarchically com-
bined using primitive and composite events. Spatial, temporal
and logical relations using the Petri nets were defined and
illustrated on some real video episodes.

Our work extends the work of N.Ghanem et al. [14] and
proposes to integrate Generalized Stochastic Petri Nets
(GSPN) for video event representation and recognition. We
introduce Petri net marking analysis for better video scene
understanding of current state and for predicting of the next
state upon the available training information. Finally, we pre-
sent a surveillance system which is based on the proposed
concepts and demonstrate experimental results on some real
and synthetic video clips.

2.EVENT REPRESENTATION USING GSPN

The Petri net model is represented as a bipartite graph that
consists of two node types: places and transitions. The nodes
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can be connected by regular or inhibit arcs. Place nodes may
contain a number of another graph component called fokens.
Petri net components are illustrated on Figure 1.

The dynamic behaviour of the Petri net is obtained by fir-
ing tokens from one place node to another according to the
parameters associated with transition nodes. The parameters
that define transition node behaviour can be represented by
the enabling rules and firing rules. Both the enabling and the
firing rules are specified through arcs. An enabling rule de-
fines the preconditions that should be satisfied before the
transition node may fire, while the firing rules defines the
marking modification that will take place in case of transition
firing. A comprehensive presentation of the Petri nets struc-
ture, dynamic behaviour and modelling techniques are given

in [15].
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Figure 1: Petri net components.

In our representation model, each token represents an ob-
ject that exists in the video scene. Places represent the object
states and the transitions represent video events that provide
dynamics of the behaviour model. Transition node firing is a
result can be equivalent to the object state change in the real
scene or can be result of a satisfied relation constraint.

The flexibility of an enabling rule is predefined by the
tracking and classification information that is supplied by the
intermediate video processing layer.

An enabling rule triggers transition firing if and only if:

1. Each input place contains token(s) that satisfy enabling
rule constraint and the number of such tokens is greater or
equal than a given arc multiplicity

Each inhibitor place contains a number of tokens smaller
than a given threshold. This rule can be modified to ap-
plied the sane enabling rules on the tokens contained in the
inhibit nodes.

Our representation model does not allow firing rule
modifications, however it can be customized for implementa-
tion of complex firing behaviour. Any firing transition deletes
from each input place as many tokens as the input arc multi-
plicity and then adds to each output place as many tokens as
the output arc multiplicity. Occasionally, more then one ena-
bling rule can be satisfied at the same time and depending on
the graph structure, it can lead to a conflict because firing of
one transition may immediately disable another transition.
The conflicts can be resolved in a controllable way by adding
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priority parameter to each transition node. In case of conflict
high priority transition will always fire before the low one.

The state change in the Petri net model is typically a re-
sult of some activity initiation/completion or a result of condi-
tion verification. Considering the first state, the 7imed Petri
Net introduces temporal specifications which are associated
with timed transitions. The timer that is associated with a
timed transition measures the duration of the activity in the
modelled system. The activity starts when the conditions of
the associated enabling rule are satisfied and stops when the
enabling rule is violated. If the duration of the activity is
greater then a predefined threshold, the timed transition is
allowed to fire.

In some cases, the PN model with strictly defined timed
transition delays does not accurately describe the behaviour of
the underlying system. An alternative PN model that adopts
timed transitions with exponential distributions for transition
delays are known as Stochastic Petri Net (SPN). The most
popular method for random delay modelling is based on the
negative exponential Probability Density Function (PDF).
Obviously, the same model may enjoy of a significant advan-
tage of using immediate transitions in PN models together
with timed transitions. In our model immediate transitions
coexist with timed transitions, transition priorities and random
firing delays with negative exponential PDF and this creates
Generalized SPN (GSPN) model [15].

The PN model state can be characterized by the number
of tokens in the place nodes. This defines the current marking
of the PN model. Prior to involving any PN model dynamics,
it is possible to compute the set of all markings reachable
from the initial marking and all the paths that the system may
follow to move from state to state. The set of all reachable
markings define reachability set of the graph. The reachabil-
ity graph consists of nodes representing reachable marking
and arcs representing possible transition from one marking to
another. An example of reachability graph is demonstrated
on Figure 2.
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Figure 2: Reachability graph example.

In principle, the firing times are assumed to be independ-
ent of the marking of the GSPN model, however the transition
parameters can be marking dependent. If one or more transi-
tions are enabled in the same marking then it is possible to
calculate the distribution of the sojourn time in that marking.
Moreover, the probability of the transition node to fire first



can be computed using the PDFs of the transitions which also
may be dependent on current marking. It is important to note
that the specification of marking dependent parameters re-
quires special attention to possible global states of the mod-
elled system. The reachability graph of the GSPN system de-
fines the possible transitions between the reachable markings;
however the probability of each transition can be com-
puted as:

Y3

n,k :Nn,k/Nn (1)

Where: A, is probability to move to marking A4, from
marking M,, N ,; is number of detected transitions from
marking M, to marking A, and N, is number of A4, marking
occurrences.

The reachability graph with the probabilities of marking
transitions defines a Discrete Time Markov Chain (DTMC)
that will describe the stochastic process associated with the
system. The DTMC can significantly extend the understand-
ing of the current system state upon the statistical parameters
collected during the system training process. A brief presenta-
tion of the DTMC capabilities in GSPN can be found in [15].

3.SYSTEM MODELING WITH PETRINETS

3.1. Logical Relations

A typical representation of logical relations in a Petri Net as-
sumes that that the places and the tokens contained in these
places are operands. The satisfied relation is represented by a
fire event of the involved transition node. The implementation
of the basic logical relations (AND, OR and NOT) can be
found in [14].

3.2. Temporal Relations

Similar to the logical relation representation, the place nodes
represent the input arguments while the combination of transi-
tion node represents the required temporal relation. The tran-
sitions are augmented by conditions that should be satisfied
for this temporal relation to hold. The complete set of Allen’s
algebra relations and their implementation in Petri nets can be
found in [14].

3.3. Spatial Relations

A spatial relation can be one of the following categories: topo-
logical, directional or distance relation. Currently our model
supports only directional and distance relations which can be
defined using the enabling rules of transition nodes. These
rules define the distance between objects D[max,min] and
difference in their orientation O[max,min].

3.4 GSPN Model Training

The probabilistic behaviour of the GSPN model is based on
the random delays of timed transitions. The probability den-
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sity of the timed transition delay is a PDF function of the
form: .
D, =1-e """ )

Where £, is an enabling period of timed transition » and u
is an average delay of timed transition n. The average delay of
the transition is automatically calculated using a training se-
quence of input videos. During the training, no timed transi-
tion can fire, so the average enabling period can be calculated.
The training sequence must cover all typical activities in the
particular domain. This allows the system to build the reach-
ability set of the explored domain and build a Discrete Time
Markov Chain.

Each marking node represents a legal state of the system
that occurred during the training process and the links be-
tween nodes represent legal transitions between the states.
These transition probabilities are calculated and used for con-
struction a DTMC. In our surveillance system we use this
model for prediction of the most probable next state in the
scene and for calculation of conditional probabilities for cer-
tain events. This information is presented for the user in real-
time and can be stored in textual file.

4.SURVEILLANCE SYSTEM OVERVIEW

The proposed video surveillance system is built of intermedi-
ate video processing module, behaviour configuration module

and video event interpreter (Figure 3).
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Figure 3: System architecture diagram.

The intermediate processing module performs motion de-
tection, object detection and tracking functions. The output of
this sub-system supports the format of the ground truth
labeling files as defined in the CAVIAR project [16]. This sub
module can be replaced with any format compliant datasets.
For instance, we may use a set of synthetic video clips that
symbolically draws object locations, but provides ground
truth labeling files as in a real scene.

The behaviour configuration module implements a
eraphical interface for creating behaviour models using the
GSPN graphical language. Currently, the correctness and effi-
ciency of the constructed model relies on the user's expertise
in Petri net modelling methods and the knowledge of the
scene domain. In order to reduce the complexity of the model-
ling task and to enable model reuse, our system supports vari-
ous templates. These templates can be created or extended by
the user to adopt them for another model.



The video event interpreter analyzes the input video
scene using the predefined behaviour model and generates
textual expressions for the detected events. The interpretation
process can run in two execution modes: training mode and
normal mode. During the training all stochastic parameters of
the model are calculated and stored. Once the model is
trained, the detected states and transition parameters construct
the DTMC which will be used for testing new scenes in the
same domain.

The result of the interpretation is presented in the log
window and then can be stored in a text file. The interpreta-
tion module can be configured to run automatically on video
databases and store the interpretation results in textual files.
This enables our system to analyze existing databases and to
perform various user defined queries for specific events.

Our system consists of two separate applications that im-
plement the behaviour modelling and the video event inter-
pretation modules. All graphical interfaces are implemented
in C# while the GSPN model is implemented in C++ to give
better performance characteristics. The interpretation process
can run in two execution modes: training mode and normal
mode. During the training all stochastic parameters of the
model are calculated and stored in the model.

5.EXPERIMENTAL RESULTS

The following experiment demonstrates GSPN behaviour
modelling capabilities and the video event interpretation re-
sults. The input for the surveillance system can be obtained
from two sources: a pre-processed video clip or a synthesised
clip that can be generated using an animation tool that was
developed. This tool allows creating a series of random sym-
bolic clips that have common behaviour pattern as well as add
abnormal activities that have to be detected. In the synthetic
clips, moving objects are drawn as filled color circles and
static objects are drawn by their contours. The background
area can be schematically divided to interaction zones which
are represented by different colors. The annotation file that is
created with the generated clip is fully reliable and eliminates
the need to handle erroneous or inaccurate tracking results.

The format of the annotation file that the interpretation
module expects to receive from an external tracker is pre-
sented on Figure 4. The full defmition of this format can be
found in [16].

<frame number="1">
<objectlist>
<object id="0">

<orientation>0</orientation>

<box x¢="10" yc="10" w="10" h="10" />

<appearance>appear</appearance>

<hypothesislist>

<hypothesis id="0" prev="0.0" evaluation="1.0">

<movement evaluation="1.0">walking</movement>
<role evaluation="1.0">unknown</role>
<context evaluation="1.0">unknown</context>
<situation evaluation="1.0">unknown></situation
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</hypothesis>
</hypothesislist>
</object>
</objectlist>
</frame>
Figure 4: Annotation file format.

5.1. Example 1: Security Check

This example assumes a public place where every visitor must
pass a security check. Figure 5 shows the clip of abnormal
behaviour where one visitor stops (2) for a security check
while another one (3) passes near the guard (1) and evades the
check. Similar scenes were generated using the same sce-
nario. Figure 6 shows one of them where each circle repre-
sents an object in the real clip.

According to the proposed model, the surveillance sys-
tem should raise a security alert on one of the two events:
a visitor enters the hall without being checked,
the security check is abnormally long.
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Figure 5: Real security check scene.
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Figure 6: Synthetic security check scene.



The GSPN behaviour model for this example consists of sev-
eral events as illustrated on Figure 7.

The interpretation starts from a special place node called
‘Root Node’. In every new frame, this place contains tokens
for all detected objects in the scene. Any new object is re-
ported by the tracker as recently appeared one, then the transi-
tion ‘Object_Appeared’ fires and transfers the corresponding
token to the place called ‘Object_In_Scene’. There are 3 pos-
sible values of object movement characteristic: active, walk-
ing or running. The interpretation of the movement property
will move the token to one of the appropriate states: ‘Ob-
ject_Is_Moving’ or ‘Object_Is_Active’. The transition “Visi-
tor_Entered_the_Hall’ that has spatial constraint fires when an
object passes through the door and enters the building. The
transition ‘Visitor_Was_Not_Checked’ fires if the visitor
leaves the area around the guard before the check begins. If
the visitor approaches the guard and both stop moving, we
congider that the security check is in progress and then the
transition ‘Guard_Met_Visitor’ fires. The complete list of the
detected events is presented in Table 1 and the interface of the
interpretation module is presented on Figure 8.

The training sequence constructs the Petri net reachabil-
ity set that we use for marking analysis. The created marking
eraph defines the DTMC that we use to calculate the most
probable next marking state of the scene. This information
improves our understanding of the current state as well. For
instance, assume the visitor has entered the hall (Visi-
tor_Walking_Towards_Guard). According to the model and
the marking graph presented on Figure 9 the most probability
next state is One_Visitor_Stopped_Near_Guard.

o

i

k.-
Becurity_Check_In_Progress

Security_Check_|s_Tes_Leng_Datasted

s
- G
Muesting Is_Qver \ /

< =
o Security Chack_Is_ Too Lang
| /

Guard_Met_Visitor Object_Bacame_Active
i LY

N e C AR
! \ = — e
L B —- =
e Visiter_Was_Not_Checked - -
Visiter_in_the_Hall _Objsct In_Scene
- 3 .

b
Object_|s_hctive
Mesting_Is_Over

Object Stopped Baing Active

Object_Disappeared _'.

o Rootheds

on]-ect_npeared

Object_Stopped_Walking  Object Stopped Running Oblest Began Walking

Visitor_Entered_the Hail__ L - T

____7__;‘{ Yy —
=
Object_Is_Meving

Figure 7: GSPN model for security check example.

Table 1: Interpretation results for security check exam-

ple.
Frame Message
1 '‘Object_Appeared' fired on objects: 0
20 '‘Object_Appeared' fired on objects :2
25 ‘Object_Appeared' fired on objects :6

56 ‘Visitor_Entered_the Hall' fired on objects :2

61 ‘Guard_Met_Visitor' fired on objects :0, 2

61 'Visitor_Entered_the Hall' fired on objects :6

68 'Visitor Was_Not_Checked' fired on objects :6

71 ‘Security_Check Is_Too_I.ong_Detected' fired on objects :0, 2
86 ‘Meeting Is_Over' fired on objects :0, 2
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Figure 8: Interpretation module interface.

We can also calculate the probability that this visitor will be
properly checked. All possible paths to reach the
Guard_Checked_one_Visitor state form the state Visi-
tor_Walking_Towards_Guard are highlighted by the red arcs
on Figure 9. The total probability to check one visitor is the
sum of probabilities to go over the two highlighted paths:

P=072x1x0.63+0.72x1x0.37x0.78=0.66 (3)
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Figure 9: Marking graph for security check example.

5.2. Example 2: Traffic Junction Control

We assume that each car that enters the junction may cross the
junction unless there is a car on its right side. Any violation of
this rule is considered as abnormal situation and must be re-
ported by the surveillance system. We generated a series of
pseudo random synthetic clips where each vehicle is symboli-



cally marked as a colored circle. The bright grey region de-
fines the internal area of the junction while the dark grey re-
gion defines the active zone where the vehicles begin their
interaction. One of the synthetic clips is illustrated on
Figure 10.
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Figure 10: Synthetic road junction scene.

A similar situation was described and interpreted by
R.Higgins in [17]. In this work the events are described using
the VERL [2] and then recognized by a Bayesian network
model. Each instance of similar objects is represented by du-
plicated networks that are processed simultaneously. This
approach significantly increases the computation complexity
of a multi object scene while the Petri net approach proposed
in this work does not changes the network structure but adds
new tokens for the detected objects. For instance, the junction
control model does not limit the number of participating ob-
jects and does not change its structure during the recognition
process. The completed behaviour model for this example is
illustrated on Figure 11 and the results of the interpretation
process are given on Table 2.

Table 2: Interpretation results for junction control

example.

Frame Message
#0 ‘Car_Appeared' fired on the objects :2
#1 ‘Car_Appeared' fired on the objects: 0
#10 ‘Car_Appeared' fired on the objects :1
#18 ‘Car_Entered_Z1' fired on the objects: 0
#23 ‘Car_Entered_72' fired on the objects :2
#34 ‘Car_Entered_Z1' fired on the objects :1
#52 ‘Car_In_Z1_Brakes_the I.ow'fired on the objects: 0
#77 ‘Car_Entered_Z3' fired on the objects: 0
#80 ‘Car_Appeared' fired on the objects :3
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In this example the surveillance system succeeded to de-
tect a car that crosses the junction despite the fact that there is
another car on its right side (Frame #52).
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Figure 11: GSPN model for junction control example.

6. CONCLUSIONS AND FUTURE WORK

This paper introduces a new video event interpretation ap-
proach using GSPN. This approach integrates advanced
GSPN features (timed transitions with random delays, conflict
resolution using priorities, etc.) and proposes to add marking
analysis into a GSPN model for better scene under standing
and for next marking state prediction using historic data. Our
work demonstrates the advantages of using random delays
based on PDF and proposed a scheme for training timed tran-
sitions in a behaviour model. The reachability set is trans-
formed to a DTMC and then used for predicting future states
using the transition probabilities.

We present a new surveillance system that adopts GSPN
modelling approach for video event representation and recog-
nition. This system provides a powerful user interface for
creating various behaviour models that are interpreted by the
video event interpretation module.

Our future works will focus on extensions for the mark-
ing analysis approach which will allow controlling the spatial
and the temporal scope of the analysis and proposing marking
analysis models based on HMM or Bayesian networks. A few
enhancements will be considered to deal with inaccurate or
erroneous extraction of scene or object features.
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