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Abstract

In microscopy, regions of interest are usually much smaller than the whole
slide area. Various microscopy related medical applications are liable to ben-
efit greatly from microscope auto positioning in previously defined regions of
interest. In this paper we present a method for image-based auto positioning
on a microscope slide. The method is based on localization of a microscopic
query image using a previously acquired slide map. It uses geometric hash-
ing, a highly efficient technique drawn from the object recognition field. The
algorithm exhibits high tolerance to possible variations in visual appearance
due to slide rotations, scaling and illumination changes. Experimental results
indicate high reliability of the algorithm.

1 Introduction

Microscopic digital imagery is increasingly seen as a powerful tool in many medical re-
lated fields. In diagnostic pathology, for instance, an examined specimen is mounted on a
glass slide for microscopical examination. Under high magnification a typical specimen
can provide tens of thousands of distinct images. Because of the limited field of view of
microscope’s eyepiece we only see a single image per view.

Various medical procedures that are related to microscopic tissue examination and
utilize an automated microscope system (e.g. telepathology) would obviously be more
efficient by the ability to find previously defined regions of interest on a slide.

Our algorithm introduces the ability to find the location of a particular region of in-
terest on a slide in fractions of a second. The search is accomplished using geometric
hashing, a well known object recognition technique. First, a map of geometric objects
from the whole slide is efficiently stored in a hash look-up table. Then, accurate local-
ization is achieved by the non-sequential search of the query image on the map, which is
accelerated by indexing.

Several practical applications of the algorithm are obvious. The routine of patholog-
ical slide preparation includes slide pre-examination by a cytotechnician. The cytotech-
nician locates the regions of interest on a slide and marks them with a pen for further
examination by an expert pathologist. The marks can be inaccurate, and moreover the
procedure is invasive and time consuming. Moreover, it is impossible to mark features
using a high magnification level due to the approach’s very limited precision. The system
described in this paper allows practitioners to put “virtual marks” on a slide, which are
easily and automatically located at any magnification level.



Another possible application is the facilitation of computer aided diagnostics (CAD)
systems. These systems provide diagnosis based on slide content, which is subsequently
approved by an expert pathologist. While it is technically infeasible to store an image
of the whole slide, individual images of key regions may be stored. A pathologist may
wish to examine these key regions on the slide, previously marked by the CAD system as
suspect. The ability to automatically locate their correct positions on the slide will greatly
increase the efficiency of the pathologist’'s examination routine.

Our auto positioning system may be also applied in the area of medical education.
An educational slide is examined by an expert and numerous descriptions associated with
certain places of interest on the slide are recorded in the database. Later, students review-
ing this slide may, by providing a software system with an image of a particular spot on
the slide, get a full description of that spot.

Positioning accuracy, in our algorithm, is not affected by slide rotation and displace-
ment, which are likely to happen as it is impossible to place the slide exactly in the same
manner on another microscope. Moreover, the algorithm overcomes changes in lighting
conditions or partial degradation of slide quality. The algorithm is inherently robust to
rotations, scale changes and partial pattern obliteration. Likewise, the features we employ
are insensitive to variations of light conditions.

The paper is organized as follows: Section 2 describes our approach to the positioning
problem. In Section 3 the extraction of feature points is explained. Experimental results
obtained using a slide positioning system based on the proposed algorithm are presented
and analyzed in Section 4. Section 5 summarizes our work.

2 Proposed Approach for Positioning

Our approach for positioning on a slide is based on localization of small microscopic
sub-images using a previously acquired slide map. The algorithm uses advanced image
processing techniques and geometric hashing [4, 5, 6], a highly efficient technique drawn
from the object recognition field.

2.1 Localization Problem as an Object Recognition Task

Object recognition is a known problem in the computer vision field. Recognition is
achieved by finding the correspondence between a given object and a set of predefined
objects. In the model-based object recognition approach, the descriptions of previously
known objects are prepared in terms of various properties, such as shape, color, etc. These
descriptions are referred to as “models”. A given query object will be matched to one of
these models.

We refer to a partial image of a slide (e.g. the current field of view of the microscope
imaging system) as the “region of interest” (ROI). Localization on a slide is defined in
the following manner: given an ROI on a slide, determine its exact coordinates on the
slide map. Accordingly, map-based localization can be interpreted as model-based object
recognition as follows. First, the slide map is constructed from partial images captured by
a microscope imaging system moving over the surface of the slide. The slide map can be
divided into adjacent parts that will be identified during ROI localization. The map parts
correspond to a model set in the object recognition framework and the ROI plays the role
of query object. Matching the current ROI to one of the previously constructed parts of



the slide map during localization is essentially the same as associating a query object to
a known model in object recognition. The example of the ROI and corresponding part of
the slide map is shown in Fig.1.

Region of Interest (ROI) Part of the Slide Map
e .

Figure 1: Example of the real region of interest (ROI) on a slide map.

2.2 The Localization Algorithm

In order to handle the enormous amount of geometric shapes contained in biological im-
ages, we choose to address the positioning problem using an efficient technique from the
object recognition field, called geometric hashing [4, 5, 6]. ROl localization is performed
by applying object recognition in the following way. We assume a set of predefined geo-
metric modeldVly, ..., My, defining a slide map, and a query ROl ima@eformed from
one of the model. The task is to find the molg] corresponding to the given query ROI
Q.
It is assumed that the models are defined by a set of geometric features (e.g., object
skeletons endpoints) and that the same features can be extracted from the query ROI
image. A model can undergo similarity transformations to form the ROI: it can be rotated,
translated and uniformly scaled. One way to make feature points invariant under this
class of transformations is to represent them in the coordinate frame formed by the points
themselves. For example, we may arbitrarily choose an ordered pair of model points to
form a basis and describe the rest of the features in this coordinate frame. As there are
multiple ways to choose a basis, we are faced with a combinatorial problem of finding the
right one to match a model to the ROI.

The algorithm copes with this problem by shifting the computational burden to the
off-line learning stage. Instead of going over all feasible ROI/model bases couples and
trying to match them, all possible model representations are prepared in advance and
stored in a hash table for efficient access. Thus, a query ROI projected onto an arbitrarily
chosen basis has a matching model representation already stored in the hash table.

Assuming that the moda\ll; containsN; feature points, there at(é\z'i) different bases
for that model. To form a transformation-invariant model representation, the invariant
coordinatega, 3) are computed using each one of these bBggs= {m,,m, } for every
other model point. The corresponding enfi;, B,y ) is stored in the hash table with
index (a, B).

When analyzing the ROI during localization, the same invariant representation is used
as an indexing key to access the hash table and vote for the possible model matches



(entries(M;, By,y) stored in the accessed bins). The madehccumulating a significant
number of votes indicates the correspondence of the current ROI to that model. The
outline of the localization process is shown in Fig. 3. This scheme demands low on-line
complexity, which determines the actual time for localization. It depends linearly on the
number of features contained in the ROI and is independent of the number of models
stored in the system, thereby allowing fast positioning even on very large scale maps.
The technique successfully deals with various possible visual transformations such as 2D
rotations, translations and uniform scale.

2.3 \Verification

The localization algorithm is completed by verification. Given a set of candidate mod-
els that have accumulated the highest number of votes, one has to determine which best
matches the query ROI. To form the ROI, remember, the models have undergone a simi-
larity transformation, which is a composition of translation, rotation and isotropic scaling.
Thus, fitting a model to an ROI should be done by a similarity transformation estimation.
The ROI is characterized in terms of a feature pointg{ggtin P2, and each of the can-
didate matching models is likewise described by its feature pdils wherelP? is a
projective space. It is essential to find &ll— x| point correspondences to compute a
similarity transformatiorHs, which transforms a model into the R®isx; = X for each
i. Two correspondences are enough to fully constriinas the total number of degrees
of freedom for similarity is four (one for the rotation, two for the translation and one more
for scaling) and every correspondence gives rise to two independent equations in the en-
tries of Hs. However, since the locations of points in the query ROI are not exact (due
to noise), all of the correspondences should be used to determine the best transformation,
given the data. Accordinglys is calculated by finding the least-squares solution of the
over-determined linear system.

An important issue is how to efficiently find all of thxe — x| point correspondences.
The voting stage of the algorithm provides one corresponding basis (two point-to-point
correspondences) between the candidate model and the ROI. This allows us to approxi-
mate the desired transformatibty by I—Ts and then, after applying/I\s on the candidate
model, every model poirﬁi\sxi will correspond to the closest ROI featude Formally,

x; = argmind(xi, Hsxi),

where subindek indicates any ROI feature anigx, y) are the Euclidian distance between
two pointsx andy.

Thus, to compute all of the point correspondences we only need to check the distance
of each poink; to every transformed model poiHix;. If the model contains points and
the ROI contains points, these inter-set distances are computed(imn) time. This
computation can be accelerated by employingeonoi tessellatiorfi7] for segmentation
of the ROI image. Voronoi tessellation is partitioning of a plane withoints inton
convex polygons such that each polygon contains exactly one point and every point in a
given polygon is closer to its central point than to any other.

We start the verification by constructing the Voronoi tessellation from the points in
the query ROI, which is done i@(nlog(n)) time [7] (see Fig. 2). This allows us to find
the corresponding point af in O(log(n)) by checking which polygon within the Voronoi
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(a) ROI feature points (b) Voronoi tessellation (c) Voronoi diagram

Figure 2: The process of constructing the Voronoi tessellation of the ROI for verification
acceleration.

tessellation contains the transformed pcﬁm and choosing its center point. It follows
that the time needed for point correspondences calculation is reducedfiom) to
O(mlog(n)).

In practice, the situation is complicated by the fact that some ROI fe@iifemight
be mistakenly reported and will not match any model point. The mismatched points,
outliers, can severely disturb the estimated transformation, and consequently, should be
identified. In order to make the verification robust to outliers, one has to obtain a big
enough set of inliers from the presented correspondences so that the transformation can
be re-estimated in an optimal manner. This is done by the RANSAC algorithm [8].
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Figure 3: Outline of the localization process. A part of the slide map that is constructed
from 40 model images is shown on the top. A histogram of the voting results for the query
ROI, shown on the bottom in the middle are plotted on the right. The enlarged image of the
winning model (25) and the process of its feature points formation is presented on the left.
First, glands are found with the robust segmentation algorithm (explained in the following
section) and skeletons are constructed from their shape. Then skeleton endpoints are used
as the feature points for localization.



3 Feature Points Extraction

We experimented with microscopic histological prostate slides captured at z@im

(see Fig.1 for an example of the captured images). The images contain rich color, texture
and shape information. However, due to possible variations in the lightning conditions
and orientation of the slides, we are limited in selection of features to the features that
are not affected by these changes. For the current zoom level we use the glands’ shape
information for positioning.

In order to extract the shape of the glands from the microscopic images of prostate
tissue we perform segmentation. This is a challenging problem for the data set we use
due to nonuniform illumination, sensor noise and various artifacts. Moreover, there is
color variations between slides as a result of color fading in the stained tissues. In order
to segment the images automatically, we model the distribution of colors as a mixture of
three Gaussians:

3

f(x|§) = _Z‘Ofi fi(x|&),

wherex is a feature vectom; represents the mixing weightgﬂ;1 ai = 1), & represents
the collection of paramete(si1, a2, 03, &1, &2, &3), andf; is a multivariate Gaussian den-
sity parameterized by;. Each component of the mixture corresponds to one of three
object types: nuclei, glands, and stroma.

We utilize prior information about object colors in order to identify the components
of the Gaussian mixture. This information is based on the hematoxylin and eosin slide
staining process: the stroma areas are colored pink, the nuclei are colored blue, and the
glands remain unstained (transparent).

We use the Expectation-Maximization algorithm [10] to determine the maximum like-
lihood parameters estimatesfoiin the feature space (we suppose that there are three kinds
of objects in the images: stroma, glands and nuclei). Having estimated the model’s pa-
rameters, we assign each point to one of three clusters according to the estimate of the
point’'s membership based on its color features. At this point a morphological cleaning
algorithm is applied to the segmented image. As a result we get three types of areas:
stroma, glands and nuclei (for an example of segmentation, see figure 4).

The next step is to extract shape information from the detected glands. There are many
approaches to extracting shape representation (see [11] for a comprehensive survey). An
important and essential criterion for shape representation is invariance to translation, scal-
ing and rotation. Therefore, we use topology skeletons [12] as shape descriptors of the
glands.

Skeletonization is a process for reducing foreground regions in a binary image to a
skeletal remnant that largely preserves the extent and connectivity of the original region
while throwing away most of the original foreground pixels. The skeletons can be pro-
duced in the following way. First, calculate the distance transform of the image; then, find
all the pixels lying along the singularities (i.e., curvature discontinuities) in the distance
transform. Examples of the calculated skeletons for prostate glands are shown in Fig. 5.

We select the endpoints of the computed skeletons as feature points for our exper-
iments (see examples of segmented glands, skeletons of the glands and their extracted
feature points in Fig. 2).
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(c) A sample of prostate tissue

(d) Segmented glands

Figure 4: Examples of prostate image segmentations for feature extraction

(a) Segmented glands

(b) Calculated skeletons

Figure 5: Examples of skeletons calculated for glands.



4 Experiments

We now show the capabilities of the proposed localization algorithm and provide an eval-
uation of its performance and efficiency. We performed tests on the map covering an area
of 20mmx 4mm on the surface of a prostate slide. We used adjacent microscopic im-
ages obtained on Nikon Eclipse E600 microscope (zodfl) with a Point Grey CCD
camera to create the slide map. In order to index the hash table during localization and
vote for the correct model, an invariant description of the query ROI is calculated. This
description is based on a pair of features that form a basis, as illustrated in Section 2.2.
In practice, it is possible that one of the points used to form a basis will be reported by
mistake and, as a result, not match any model point. Moreover, possible inaccuracies in
the basis point locations (induced by the noise) may have a similar effect. In order to
avoid this, many multiple attempts should be made using different bases (e.g. different
descriptions), to ensure with sufficiently high probability that at least one of them is free
of extremely noisy points or outliers.

To obtain a statistically meaningful measure of the algorithm performance we tested
it on a total of10* different ROI localization tasks. We varied the number of different
ROI feature bases being used in voting, and evaluated the localization performance with
different levels of added Gaussian noise. Each time we selected a random ROI and then,
if the correct location on the slide map was reported by the algorithm (ground truth was
available due to the nature of data set formation), the result was considered to be true
positive (TP). The result was correspondingly considered a miss if an incorrect or no
location was detected.

The summary of the obtained results is presented in Fig. 6. The hi(ﬁ%s) was
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Figure 6: System behavior with a different number of bases used in voting and different
levels of added Gaussian noise.

above 90% for a moderately noisy level £ 1) when fifty bases are used.

We formulated the accuracy of the localization result as follows. Assuming the ROI
features are measured with a Gaussian error of standard dewdatiocan be shown that
[9]: the root mean square (RMS) distance of the estimated point location from its true



value is: a(2/n)Y/2, wheren is the number of correspondences used. Therefore, for 50
sample points the algorithm estimation error is 0.2 pixels, taking 1. As a result if

the ROl image of siz200x 200 pixels captures an area4® x 40 micron, our algorithm
provides a positioning accuracy 0004 um.

5 Summary

We presented a novel method for image-based positioning on microscopic slides, based
on geometric hashing. Precise positioning is achieved using invariant features extracted
from the specimen representative objects. It can greatly increase the efficiency of the
pathologist’s remote examination routine as well as assist in computer-aided diagnosis.
We showed how verification can be significantly accelerated by applying a Voronoi tes-
sellation of the ROI image. Experimental analysis demonstrates the high reliability of the
proposed method.
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