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Abstract 

Navigation involves recognizing the environment, identifying the current position within the 
environment, and reaching particular positions. We present a method for localization (the act 
of recognizing the environment), positioning (the act of computing the exact coordinates of a 
robot in the environment), and honing (the act of returning to a previously visited position) 
from visual input. The method is based on representing the scene as a set of 2D views and 
predicting the appearances of novel views by linear combinations of the model views. The method 
accurately approximates the appearance of scenes under weak-perspective projection. Analysis of 
this projection as well as experimental results demonstrate that in many cases this approximation 
is sufficient to accurately describe the scene. When weak-perspective approximation is invalid, 
either a larger number of models can be acquired or an iterative solution to account for the 
perspective distortions can be employed. 

The method has several advantages over other approaches. It uses relatively rich representations; 
the representations are 2D rather than 3D; and localization can be done from only a single 2D view 
without calibration. The same principal method is applied for both the localization and positioning 
problems, and a simple “qualitative” algorithm for homing is derived from this method. 
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1. Introduction 

Basic tasks in autonomous robot navigation are localization, positioning, and homing. 
Localization is the act of recognizing the environment, that is, assigning consistent 
labels to different locations, and positioning is the act of computing the coordinates of 
the robot in the environment. Positioning is a task complementary to localization, in 
the sense that position (e.g., “1.5 meters northwest of table r’) is often specified in a 

place-specific coordinate system (“in room 911”). Homing is the task of returning to a 
previously visited position. 

A method for localization, positioning, and homing in visually-guided navigation 
systems is presented. The method, based on [ 201, represents scenes by sets of their 2D 

images. Localization is achieved by comparing the observed image to linear combinations 
of model views. The position of the robot is computed by analyzing the coefficients of 

the linear combination that aligns the model to the image. Also, a simple, qualitative 
solution to the homing problem using the same scheme is presented. 

Visually-guided navigation systems can be classified according to the type of scene 
representations utilized. We distinguish between two types of representations, signatures 
and 3D models. Systems that represent the scene using a set of signatures usually 

generate from images of the scene a representation that is invariant over a relatively 
large range of transformations. These invariant representations often are obtained by 
projecting the image data onto a lower dimensional subspace or by computing a set of 

measurements from the data. Localization is achieved by generating signatures from the 
observed images and comparing the obtained signatures with the stored signatures in a 

straightforward way. 
Sarachik [ 171 computes and stores the dimensions of the navigated offices. Engelson 

and McDermott [ 61 use blurred images of the scene as signatures. Nelson [ 141 gen- 
erates signatures from averaged orientations of edges in different regions of the image. 
Braunegg [4] recovers a depth map of the scene from which he generates an occupancy 
map obtained by projecting the 3D edges onto “the floor”. Hong et al. [9] generate 
signatures from panoramic views of the scene by projecting them onto a 1D circle. 

Other systems store complete 3D descriptions of the scene. To recognize the scene 
the systems must first recover the transformation that relates between the model and the 
incoming images. Ayache and Faugeras [I] use a trinocular stereo system to recover 
the 3D structure of the scene before it is compared with the model. Onoguchi et al. 
[ 151 use a stereo system to recover a depth map of the observed scene. In order to 
align the stereo image with the model a set of landmarks is first located by the system 
and their positions are used to derive the transformation that relates the model to the 
image. Fennema et al. [ 71) compare the 3D models of the scene to sequences of 2D 
images. Gray-scaled templates of selected landmarks are generated from the model, and 
the location of these landmarks is computed by means of correlation and tracking. 

The method presented in this paper does not generate signatures of the scene. However, 
rather than using explicit 3D descriptions of the scene, the scene is represented by sets 
of its 2D images. Predicting the appearances of novel views is obtained by combining 
the model views. 

Homing was recently addressed in several studies. Nelson [ 141 and Zipser [22] 
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proposed to handle this problem by generating signatures of the scene from single images 
and storing them along with vectors directing the robot toward the target location. At 
runtime whenever the robot encounters a signature similar to one or more of the stored 
signatures it follows the precomputed direction vectors associated with these signatures. 
Hong et al. [9] perform homing by comparing signatures obtained from a panoramic 
view of the scene with a similar signature obtained at the target location. The robot is 
then instructed to move so as to bring the observed signature and the target signature 
into alignment. 

The method for homing presented in this paper differs from previous algorithms by 
that it does not use signatures to represent the scene. Homing is achieved by moving 
the robot so as to align the observed images of the scene with an image taken from the 
target position. Like [ 91, our algorithm computes the direction of motion “on the fly”. 
The algorithm is qualitative in nature, and it is designed so as to gradually bring the 
current and the target images into alignment. 

The rest of the paper is organized as follows. The method for localization is presented 
in Section 2, where we propose a method that works accurately under weak-perspective 
approximation and an iterative scheme to account for perspective distortions. Positioning 
is addressed in Section 3, and the algorithm for homing is described in Section 4. 
Constraints imposed on the motion of the robot as a result of special properties of 
indoor environments can be used to reduce the complexity of the method presented 
here. This topic is covered on Section 5. Experimental results follow. 

2. Localization 

The problem of localization is defined as follows: given P, a 2D image of a place, and 
M, a set of stored models, find a model M’ E M such that P matches M’. One problem 
a system for localization should address is the variability of images due to viewpoint 
changes. The inexactness of practical systems makes it difficult for a robot to return to 
a specified position on subsequent visits. The visual data available to the robot between 
visits varies in accordance with the viewing position of the robot. A localization system 
should be able to recognize scenes from different positions and orientations. 

Another problem is that of changes in the scene. At subsequent visits the same place 
may look different due to changes in the arrangement of the objects, the introduction of 
new objects, and the removal of others. In general, some objects tend to be more static 
than others. While chairs and books are often moved, tables, closets, and pictures tend to 
change their position less frequently, and walls are almost guaranteed to be static. Static 
cues naturally are more reliable than mobile ones. Confining the system to static cues, 
however, may in some cases result in failure to recognize the scene due to insufficient 
cues. The system should therefore attempt to rely on static cues, but should not ignore 
the dynamic cues. 

We are interested in a system that can recognize the environment from different 
viewing positions and that can update its representations dynamically to accommodate 
changes in the scene. A common approach to handling the problem of recognition from 
different viewpoints is by comparing the stored models to the observed environment 
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after the viewpoint is recovered and compensated for. This approach, called alignment, 

is used in a number of studies of object recognition [ 3,8,10,13,18,19]. We apply the 
alignment approach to the problem of localization. Below we describe a localization 
system based on the “Linear Combinations” scheme [ 201. The presentation is divided 

into two parts. In the first part (Section 2. I ) we describe the basic system that works 

under weak-perspective approximation. The second part (Section 2.2) proposes a method 
for handling large perspective distortions. 

2.1. Localization under a weak-perspective assumption 

The scheme for localization is the following. Given an image, we construct two view 
vectors from the feature points in the image, one contains the x-coordinates of the 

points, and the other contains the y-coordinates of the points. An object (in our case, 

the environment) is modeled by a set of such views, where the points in these views are 
ordered in correspondence. The appearance of a novel view of the object is predicted 
by applying linear combinations to the stored views. The coefficients of this linear 
combination are recovered using a small number of mode1 points and their corresponding 
image points. To verify the match, the predicted appearance is compared with the actual 

image, and the object is recognized if the two match. A large number of points (or 
line segments) are used for verification. The advantage of this method is twofold. 

First. viewer-centered representations are used rather than object-centered ones; namely, 
models are composed of 2D views of the observed scene. Second, novel appearances 
are predicted in a simple and accurate way (under weak-perspective projection). 

Formally, given P, a 2D image of a scene, and M, a set of stored models, the 
objective is to find a model M’ E M such that P = cf=, LYjM; for some constants 
~,i E R. It has been shown that this scheme accurately predicts the appearance of rigid 
objects under weak-perspective projection (orthographic projection and scale) [ 201. The 
limitations of this projection model are discussed later in this paper. 

More concretely, let p; = (x;, yi, Zi), 1 < i 6 n, be a set of n object points. Under 
weak-perspective projection, the position p,! = (xi, y!) of these points in the image are 

given by 

x; = STIIX, + sy12y; + STIJZ, + r,, 

y: = sr-21x; + sr22yi + smz, + t?, 
(1) 

where rij are the components of a 3 x 3 rotation matrix, s is a scale factor, and tx and 
ty are the amounts of horizontal and vertical translation respectively. Rewriting this in 
vector equation form we obtain 

x 
I 

= srllx + srl2y + srl37, + t,l, 

y’ = n-21x + sr22y + sr23z + t!l, 
(2) 

where x,y, z, x’, y’ E R” are the vectors of x;. yi, zi, xi and y; coordinates respectively, 
and l=(l,l,..., l)T. Consequently, 

x’,y’ E span(x,y, z,l} (3) 
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or, in other words, x’ and y’ belong to a four-dimensional linear subspace of R”. 
(Notice that z’, the vector of depth coordinates of the projected points, also belongs 

to this subspace. This fact is used in Section 2.2 below.) A four-dimensional space 

is spanned by any four linearly independent vectors of the space. Two views of the 
scene supply four such vectors [ 16,201. (See also [ 1 I] .> Denote by xt, y, and x2, 

y2 the location vectors of the n points in the two images; then there exist coefficients 
al,a2,a3,aq and bl,b2,63,b4 such that 

x’ = alxi + a2y, + agx2 + a41, 

Y’ = bixt + bzy, + 63x2 + b41. 
(4) 

(Note that the vector y, already depends on the other four vectors.) Since R is a rotation 
matrix, the coefficients satisfy the following two quadratic constraints: 

a:+a$+ai-b:-bi-bz= 2(blb3 - ala3)rll + 2(bzb3 - a2a3)r12, 

albl + a2b2 + ah + (alb3 + asbl )r11 + (a263 + a362)r12 = 0. 
(5) 

To derive these constraints the transformation between the two model views should be 

recovered. This can be done under weak-perspective using a third image. Alternatively, 

the constraints can be ignored, in which case the system would confuse rigid transfor- 
mations with affine ones. This usually does not prevent successful localization since 

generally scenes are fairly different from one another. 
Note that we incorporate in the model only points that appear in both model images. 

Points that are not visible in one of the images due to occlusion are excluded from 
the model. We can extend the models with additional points by taking more then two 
images of the scene. (See [ 201.) 

To summarize, we model the environment by a set of images with correspondence 

between the images. For example, a spot can be modeled by two of its corresponding 
views. The corresponding quadratic constraints may also be stored. Localization is 
achieved by recovering the linear combination that aligns the model to the observed 

image. The coefficients are determined using four model points and their corresponding 
image points by solving a linear set of equations. Three points are sufficient to determine 

the coefficients if the quadratic constraints are also considered. Additional points may 
be used to reduce the effect of noise. After the coefficients are recovered we use them 
to predict the appearance of the model. All the points of the model can be used at 
this stage. The predicted appearance is then compared to the actual image to verify the 
match. When the quadratic constraints are ignored the recovery of the coefficients can 
be done, for example, by testing all possible matches of quadruples of feature points 
in the model to quadruples of feature points in the image. In this case the worst-case 

time complexity of the localization process is k(m4n4)m’, where k is the number of 
models considered, m is the number of model points, n is the number of image points, 
and m’ is the number of points considered for verification. This complexity is typical 
to alignment schemes. This complexity can be reduced considerably by applying the 
constraints proposed in Section 5. A method to reduce the complexity of recovering the 
coefficients under an unconstrained transformation is described in [ 211. 
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The recovery of the alignment coefficients is defined as follows. Denote by 

M= [Xi,Y,,X2,11 (6) 

the matrix of model points, and let a and b denote the vectors of coefficients, then 

a = M+x’, b = M+y’, (7) 

where Mt = ( MTM) -’ MT is the pseudo-inverse of M. ( Mf = M-’ when only four 
points are used.) Note that for the recovery stage M, x’, and y’ should contain only 

the coordinates of those points used for the recovery process, e.g., of the hypothesized 

match. The sensitivity to errors of this recovery process is determined by the condition 
number of M. The robustness of the recovery process can be increased by choosing 

quadruples of model points arising from non-planar configurations and by extending the 
set of matches with additional points to generate an overdetermined system 

In our scheme we distinguish between static, semi-static, and dynamic cues. To handle 
the different types of features we assign weights to the model points reflecting their 

reliability. We can use several different criteria to determine the weights of points, such 
as, the number of occurrences in subsequent visits or the height of points in the scene 
(higher points tend more to be static). The weights are incorporated in both stages of 

recovering the coefficients and verification. In the recovery stage, let w be a vector of 
weights assigned to the model points, and let W = &g(w) then 

a = (WM)+Wx’, b = (WM)+Wy’ 

In the verification stage, distances between predicted positions of model features and 
their matched positions in the image are weighed according to w. 

Our scheme for localization uses viewer-centered models, that is, representations that 
are composed of images. It has a number of advantages over methods that build full 

three-dimensional models to represent the scene. First, by using viewer-centered models 
that cover relatively small transformations we avoid the need to handle occlusions in the 
scene. If from some viewpoints the scene appears different because of occlusions we 
utilize a new model for these viewpoints. Second, viewer-centered models are easier to 

build and to maintain than object-centered ones. The models contain only images and 
correspondences. By limiting the transformation between the model images one can find 
the correspondence using motion methods (e.g., epipolar constraints [2,12]). If large 
portions of the environment are changed between visits a new model can be constructed 
by simply replacing old images with new ones. 

The number of models required to cover the scene from all possible viewing positions 

depends on the complexity of the scene. A complex scene (containing many aspects) 
may require a relatively large number of views. In practice, however, navigation may 
require only a relatively small number of models. Specifically, to recognize its rough 
location in the environment the robot may need to represent the environment as it 
appears from the access routes only. For example, to recognize a room the robot can 
represent the appearance of the room from the threshold. One model may therefore be 
sufficient in this case. (See Section 5.) 

One problem with using the scheme for localization is due to the weak-perspective 
approximation. (An analysis of the weak-perspective assumption under this scheme is 
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given in Appendix A.) In contrast with the problem of object recognition, where we 
can often assume that objects are small relative to their distance from the camera, in 
localization the environment surrounds the robot and perspective distortions cannot be 
neglected. The limitations of the weak-perspective modeling are discussed both math- 
ematically and empirically through the rest of this paper. It is shown that in many 
practical cases weak-perspective is sufficient to enable accurate localization. The main 
reason is that the problem of localization does not require accurate measurements in 
the entire image; it only requires identifying a sufficient number of spots to guarantee 
accurate naming. If these spots are relatively close to the center of the image, or if the 
depth differences they create are relatively small (as in the case of looking at a wall 
when the line of sight is nearly perpendicular to the wall), the perspective distortions 
are relatively small, and the system can identify the scene with high accuracy. Also, 
views related by a translation parallel to the image plane form a linear space even when 
perspective distortions are large. This case and other simplifications are discussed in 
Section 5. 

By using weak-perspective we avoid stability problems that frequently occur in per- 
spective computations. We can therefore compute the alignment coefficients by looking 
at a relatively narrow field of view. The entire scheme can be viewed as an accumulative 
process. Rather than acquiring images of the entire scene and comparing them all to a 
full scene model (as in [ 41) we recognize the scene image by image, spot by spot, until 
we accumulate sufficient convincing evidence that indicates the identity of the place. 

When perspective distortions are relatively large and weak-perspective is insufficient 
to model the environment, two approaches can be used. One possibility is to construct a 
larger number of models so as to keep the possible changes between the familiar and the 
novel views small. Alternatively, an iterative computation can be applied to compensate 
for these distortions. Such an iterative method is described in Section 2.2. 

2.2. Handling perspective distortions 

The scheme presented above accurately handles changes in viewpoint assuming the 
images are obtained under weak-perspective projection. Error analysis and experimental 
results demonstrate that in many practical cases this assumption is valid. In cases where 
perspective distortions are too large to be handled by a weak-perspective approxima- 
tion, matching between the model and the image can be facilitated in two ways. One 
possibility is to avoid cases of large perspective distortion by augmenting the library of 
stored models with additional models. In a relatively dense library there usually exists a 
model that is related to the image by a sufficiently small transformation avoiding such 
distortions. The second alternative is to improve the match between the model and the 
image using an iterative process. In this section we consider the second option. 

The suggested iterative process is based on a Taylor expansion of the perspective 
coordinates. As is described below, this expansion results in a polynomial consisting of 
terms each of which can be approximated by linear combinations of views. The first 
term of this series represents the orthographic approximation. The process resembles a 
method of matching 3D points with 2D points described recently by DeMenthon and 
Davis [ 51. In this case, however, the method is applied to 2D models rather than 3D 
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ones. In our application the 3D coordinates of the model points are not provided; instead 
they are approximated from the model views. 

An image point (x, y) = (fX/Z, p/Z) is the projection of some object point, 
(X, E Z) in the image, where f denotes the focal length. Consider the following Taylor 

expansion of l/Z around some depth value Zc: 

O” 1 (-l)kk! 
= c --(Z - &)” 

i=. k! Z,k+’ 

The Taylor series describing the position of a point x is therefore given by 

(9) 

Notice that the zero term contains the orthographic approximation for x. Denote by Ack) 

the kth term of the series: 

fX A(k) = _ 

zo 

A recursive definition of the above series is given below. 

l Initialization. 

x(O) = A (0) = c 
zo 

l Iterative step. 

X(k) =X(k-l) + A(k) 

where xck) represents the 
highest-order term in xck). 

(11) 

kth-order approximation for x, and Ack) represents the 

According to the orthographic approximation both X and Z can be expressed as linear 
combinations of the model views (Eq. (4)). We therefore apply the above procedure, 
approximating X and Z at every step using the linear combination that best aligns the 
model points with the image points. The general idea is therefore the following. First, 
we estimate x(O) and A(O) by solving the orthographic case. Then, at each step of the 



R. Bash. E. Rivlin /Artificial Intelligence 78 (1995) 327-354 335 

iteration we improve the estimate by seeking the linear combination that best estimates 
the factor 

(12) 

Denote by x E R” the vector of image point coordinates, and denote by 

p = [xI,Y,,n,ll (13) 

an II x 4 matrix containing the position of the points in the two model images. Denote 

by P+ = ( PTP) -’ PT the pseudo-inverse of P (we assume P is overdetermined). Also 
denote by a (@ the coefficients computed for the kth step. Pack) represents the linear 

combination computed at that step to approximate the X or the Z values. Since ZQ and 
f are constant they can be merged into the linear combination. Denote by xc’) and Ack’ 
the vectors of computed values of x and A at the kth step. An iterative procedure to 

align a model to the image is described below. 

l Initialization. Solve the orthographic approximation, namely 

x(O) = 4’0’ = Pa(O) 

0 Iterative step. 

4 
(k) = (x _ #-I)) L_ A(&-1) 

aw = p+q’k’, 

A’@ = (pa’@) @A+“, 

#) = X(k-l) + A(k), 

where the vector operations 8 and + are defined as 

The method presented above is meant to improve the overall match between the 
model and the image by reducing perspective effects. One problem with applying this 
method is that we may mistake false matches for errors due to perspective distortion. In 
general, one cannot distinguish a priori between the two kinds of errors. One possible 
way to avoid false matches is by applying the following procedure. First, apply the 
orthographic solution and evaluate the solution by allowing for reasonable perspective 
distortions. Then, extend the set of feature points by matching model points to image 

points which deviate within a predetermined bound. The bound will be determined by the 
eccentricity of the point in the image and by its expected depth value (using the analysis 
in Appendix A). Finally, run the iterative procedure to convergence. If a poor match 
is obtained, repeat the iterative procedure on another match. This procedure guarantees 
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a polynomial-time solution, but it has the disadvantage of increasing the combinatorics 
of the correspondence problem relative to the orthographic solution. Heuristics and 

probabilistic methods may be used to reduce this complexity, and additional cues (such 

as stereo, color, texture, or previous knowledge) and instruments (e.g., sonar) may be 
used to detect where large variations due to perspective distortion should be anticipated. 

3. Positioning 

Positioning is the problem of recovering the exact position of the robot. This position 

can be specified in a fixed coordinate system associated with the environment (i.e., 
room coordinates), or it can be associated with some model, in which case location is 

expressed with respect to the position from which the model views were acquired. In 
this section we derive the position of a robot from the alignment coefficients. 

We assume a model composed of two images, Pt and P2; their relative position is 

given. Given a novel image P’, we first align the model with the image (i.e., local- 
ization). By considering the coefficients of the linear combination the robot’s position 

relative to the model images is recovered. To recover the absolute position of the robot 
in the room the absolute positions of the model views should also be provided. Note that 
the computation is done in “image coordinates” (that is, assuming a unit focal length). 
Positions should be normalized if world coordinates are used. 

Assume P2 is obtained from PI by a rotation R, translation t = (t,, t,, t, ), and scaling 
s. (Denote the average distance of the camera in PI to the scene by &, s is given by 
&/( .?$ + t7 ) .) The coordinates of a point in P’, (x’, y’), can be written as linear 
combinations of the corresponding model points in the following way: 

.x’ = alxl + u2y1 + u3x2 + 04. 

J” = hxi + b2y1 -t 1)3x2 + 04. 

Substituting for x2 we obtain 

(14) 

x’ = UlXl + a2y1 + ~3(WlXl + sr12yj + sr13z1 + tx) + u4, 

.v’ = blxl + b2yI + b3(srIIxI + srl2yI + sr13~1 + tx) + b4, 
(15) 

and rearranging these equations we obtain 

x’ = (a~ + a3w1)x1 + (a2 + u3w2)yI + (a3sr13)zl + (a3tx + u4), 

Y’ = (h + bw+II)xI + (h + b3srl2)yl + (b3sr13)a + (b3t, +a4). 
(16) 

Using these equations we can derive all the parameters of the transformation between 
the model and the image. Assume the image is obtained by a rotation U, translation t,, 
and scaling s,. Using the orthonormality constraint we can first derive the scale factor 

4 = (al -k a3w1)* + (a2 + u3sr12)* + (u3srl3)* 

=u~+a~+u~s2+2u3s(u~r~~ +u2rl2). (17) 
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Note that we can also extract the scale factor by applying the same constraint to the b’s: 

s; = 6: + 6; + b&v* + 2b3S(blr,l + b2r12). (18) 

We can use the two equations to verify that the weak-perspective approximation is 
valid. The orthogonality constraint (Eq. 5) can also be used for the this purpose. From 
Equations (16) and (17), by deriving the components of the translation vector, t,, we 
can obtain the position of the robot in the image relative to its position in the model 
views: 

Ax = a3tx + a4, Ay = b3t.v + h, Az=t+$(1-f)). (19) 

Note that AZ is derived from the change in scale of the object. The rotation matrix U 
between PI and P’ is given by 

al + a3wl h + b-21 
Ull = , U21 = 

sil sn 

a2 + a3sn2 b2 + b-22 
U12 = U22 = (20) 

St! 8, 

a3w3 b3 St23 
u13 =-) U*3 = -. 

Sll Sll 

As has already been mentioned, the position of the robot is computed here relative 
to the position of the camera when the first model image, PI, was acquired. AX and 
AZ represent the motion of the robot from PI to P’, and the rest of the parameters 
represent its 3D rotation and elevation. To obtain this relative position the transformation 
parameters between the model views, PI and P2, are required. Consequently, positioning, 
unlike localization, requires calibration of the model images. 

One should note that the results of the positioning process depend on the precision 
of the alignment coefficients, which may be erroneous due to either a bad choice 
of correspondences or to an invalid orthographic approximation. In cases of errors 
in the coefficients the recovery of Ax and Ay would depend linearly on the errors, 
while AZ is inversely dependent on the errors. This sensitivity of AZ is typical in 
processes of recovering depth such as stereo and motion. We should note, however, that 
positioning in general is performed after localization is achieved, and so the estimate of 
the coefficients can be improved by using a large number of points. Section 4 below 
presents an alternative process to lead the robot to desired positions which, due to the 
use of feedback, is less sensitive to errors and does not require calibration of the model 
images. 

4. Homing 

The homing problem is defined as follows. Given an image, called the target image, 
position yourself in the location from which this image was observed. One way to 
solve this problem is to extract the exact position from which the target image was 
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obtained and direct the robot to that position. In this section we are interested in a 
more qualitative approach. Under this approach position is not computed. Instead, the 
robot observes the environment and extracts only the direction to the target location. 

Unlike the exact approach, the method presented here does not require the recovery of 
the transformation between the model views. 

We assume we are given with a model of the environment together with a target 
image. The robot is allowed to take new images as it is moving towards the target. We 
begin by assuming a horizontally moving platform. (In other words, we assume three 
degrees of freedom rather than six; the robot is allowed to rotate around the vertical axis 

and translate horizontally. The validity of this constraint is discussed in Section 5.) Later 
in this section we shall consider homing in the full 3D case. Below we give a simple 

computation that determines a path which terminates in the target location. At each time 
step the robot acquires a new image and aligns it with the model. By comparing the 
alignment coefficients with the coefficients for the target image the robot determines its 

next step. The algorithm is divided into two stages. In the first stage the robot fixates 

on one identifiable point and moves along a circular path around the fixation point until 

the line of sight to this point coincides with the line of sight to the corresponding point 
in the target image. In the second stage the robot advances forward or retreats backward 

until it reaches the target location. 
Given a model composed of two images, PI and P2, P2 is obtained from Pi by a 

rotation about the Y-axis by an angle cy, horizontal translation t,, and scale factor s. 
Given a target image P,, P, is obtained from PI by a similar rotation by an angle 0, 
translation tt, and scale s,. Using Eq. (4) the position of a target point (xy, y,) can be 
expressed as (see Fig. 1) 

(21) 

(The rest of the coefficients are zero since the platform moves horizontally.) In fact, 
the coefficients are given by 

s,sin(cu - 6) trst sin 6 
al = 

sinff ’ 
u4 = t, _ ___ 

ssina ’ 

st sin 0 
CI? = - 

s sin (Y ’ 
b2 = s,. 

(22) 

(The derivation is given in Appendix B.) 
At every time step the robot acquires an image and aligns it with the above model. 

Assume that an image P,, is obtained as a result of a rotation by an angle 4, translation 
t,], and scale s,,. The position of a point ( xI, , y,) ) is expressed by 

-X,’ = ClXl + c3x2 + (‘4, 

?‘I> = d2.Y!, 
(23) 

where the coefficients are given by 
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Fig. 1. Illustration of the hommg task. PI and Pz are the two model images separated by an angle (Y. The 
target image is separated from PI by an angle 8, and the robot is positioned at an angle 4 of PI. 

C] = 
sy sin( ff - 4) 

c4 = t, - 
t,sp sin 4 

sina ’ ssinff ’ 

sp sin 4 
(24) 

c3 = - 
s sin c~ ’ 

d2 = s,,. 

The step performed by the robot is determined by 

That is, 

s = s sin(a - 4) ssin(a - 19) 

sin+ - sin6 
= ssina(cot4 -cotf3). 

(25) 

The robot should now move so as to reduce the absolute value of 6. The direction of 

motion depends on the sign of LY. The robot can deduce the direction by moving slightly 
to the side and checking if this motion results in an increase or a decrease of 6. The 
motion is defined as follows. The robot moves to the right (or to the left, depending on 
which direction reduces ISI) by a step Ax. 

A new image P,, is now acquired, and the fixated point is located in this image. 
Denote its new position by x,. Since the motion is parallel to the image plane the depth 
values of the point in the two views, Pp and P,, are identical. We now want to rotate the 
camera so as to return the fixated point to its original position. The angle of rotation, 
jl, can be deduced from the equation 

xP =x,cosp+sinfi. (27) 

This equation has two solutions. We chose the one that counters the translation (namely, 
if translation is to the right, the camera should rotate to the left), and that keeps the 
angle of rotation small. In the next time step the new picture P, replaces P,, and the 
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procedure is repeated until 6 vanishes. The resulting path is circular around the point of 
focus. 

Once the robot arrives at a position for which 6 = 0 (namely, its line of sight 
coincides with that of the target image, and 4 = 6) it should now advance forward 

or retreat backward to adjust its position along the line of sight. Several measures can 
be used to determine the direction of motion; one example is the term c3/us which 
satisfies 

2 _ J/’ -- 
a3 sf 

(28) 

when the two lines of sight coincide. The objective at this stage is to bring this measure 
to 1. 

A similar process can be formulated in the full 3D case. Given a model composed 
of two images, Pr and PI, P2 is obtained from Pi by a rotation matrix R, translation 

vector t, and scaling s. Given a target image Pt, Pt is obtained from PI by a rota- 

tion U, translation t,, and scaling s,. As before, at every time step the robot acquires 

an image and aligns it with the above model. Assume that an image P,, is obtained 
as a result of a rotation U’, translation t,,, and scaling s,,. Again, the robot takes 
a circular path attempting to minimize simultaneously the absolute value of the four 

terms 

As is shown in Appendix B, 

(30) 

where the term ~1-13 depends on the model and so it is constant throughout the com- 
putation. The signs of & (k = 1, . . . . 4) therefore depend only on the rotation com- 
ponents of the current and the target image. Note that since only the rotation compo- 

nents determine the sign of & there exists a circular path that decreases the absolute 
values of all four terms simultaneously. The direction pointing to the sought circu- 
lar path can be found for example by searching through all possible directions for 
the direction that maximizes the change in all Sk’s simultaneously. Efficient methods 
for searching through the possible directions will not be discussed further in this pa- 
per. 

Once the robot arrives at a position where & = 0 (k = 1, . ...4) the rotation matrix 
corresponding to the current image, P,,, and that corresponding to the target image, Pt, 
become equal, namely, U’ = U. This is shown in the following claim. 

Claim. & =o (k= 1 , . ...4) implies that (I’ = U. 
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Proof. 61 = 0 implies that 

41 a11 
7=-v 
u13 u13 

and Sz = 0 implies that 

42 Ml2 
-=--_. 

43 u13 

As a result, the two following vectors are identical 

Notice that the top rows of U’ and U are the normalized versions of these two vectors, 
and so clearly they also must be equal: 

(4, J&43) = (ullv~12~~13). 

Similarly, 83 = 84 = 0 implies that the middle rows of U and U’ are equal, namely 

(4, ,&~u~3> = (u21vu22,u23), 

and since the third row of a rotation matrix is given by the cross product of the first 
two rows we obtain that 

Consequently, after the robot reaches a position where all Sk vanish the line of sight 
of the robot coincides with the line of sight at the target image. In order to reach the 
target position the robot should now advance forward or retreat backward to adjust its 
position along the line of sight. Again, the measure ~/us can be used for this purpose 
since 

c3 sp -=- 

a3 sr 
(31) 

when the two lines of sight coincide. The objective at this stage is to bring this measure 
to 1. 

5. Imposing constraints 

Localization and positioning require a large memory and a great deal of on-line 
computation. A large number of models must be stored to enable the robot to navigate 
and manipulate in relatively large and complicated environments. The computational cost 
of model-image comparison is high, and if context (such as path history) is not available 
the number of required comparisons may get very large. To reduce this computational 
cost a number of constraints may be employed. These constraints take advantage of the 
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structure of the robot, the properties of indoor environments, and the natural properties 
of the navigation task. This section examines some of these constraints. 

One thing a system may attempt to do is to build the set of models so as to reduce 
the effect of perspective distortions in order to avoid performing iterative computations. 
Views of the environment obtained when the system looks relatively deep into the 

scene usually satisfy this condition. When perspective distortions are large the system 
may consider modeling subsets of views related by a translation parallel to the image 
plane (perpendicular to the line of sight). In this case the depth values of the points 

are roughly equal across all images considered, and it can be shown that novel views 
can be expressed by linear combinations of two model views even in the presence of 

large perspective distortions. This becomes apparent from the following derivation. Let 

(Xi, x, Z;), I < i 6 II, be a point projected in the image to (xi, yi) = (fXi/Z;, fi/Zi), 
and let (.K(. y() be the projected point after applying a rigid transformation. Assuming 
that Z,’ = Zi we obtain (assuming .f‘ = 1) 

Z;x: = rllX, + r12Y + r13Z, + f,. 

Z,y: = r-21X; + r22X + r232, + Iv. 
(32) 

Dividing by Z, we obtain 

I .x: = ~IIX, + r12y, + r13 + t,--, 
Z, 

I 
yJ = r-214 + r22yi + r-23 + rJz, 

Rewriting this in vector equation form gives 

x’ = rilx + r12y + t-131 + t,C’, 

y’ = r2,lx + my + ml + t+-‘, 

(33) 

(34) 

where x, y, x’, and y’ are the vectors of xi, yi, xi, and yi values respectively, 1 is a vector 
of all Is, and z-’ is a vector of l/Z; values. Consequently, as in the weak-perspective 
case, novel views obtained by a translation parallel to the image plane can be expressed 
by linear combinations of four vectors. 

An indoor environment usually provides the robot with a flat, horizontal support. 
Consequently, the motion of the camera is often constrained to rotation about the vertical 
(I’) axis and to translation in the XZ-plane. Such motion has only three degrees of 
freedom instead of the six degrees of freedom in the genera1 case. Under this constraint 
fewer correspondences are required to align the mode1 with the image. For example, in 
Eq. (4) (above) the coefficients u2 = 01 = b3 = b4 = 0. Three points rather than four 
are required to determine the coefficients by solving a linear system. Two, rather than 
three, are required if the quadratic constraints are also considered. Another advantage to 
considering only horizontal motion is the fact that this motion constrains the possible 
epipolar lines between images. This fact can be used to guide the task of correspondence 
seeking. 

Objects in indoor environments sometimes appear in roughly planar settings. In par- 
ticular, the relatively static objects tend to be located along walls. Such objects include 
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windows, shelves, pictures, closets and tables. When the assumption of orthographic 
projection is valid (for example, when the robot is relatively distant from the wall, or 

when the line of sight is roughly perpendicular to the wall) the transformation between 

any two views can be described by a 2D affine transformation. The dimension of the 
space of views of the scene is then reduced to three (rather than four), and Eq. (4) 
becomes 

x’ = atxt + azy, + a41, 

y’ = blXl + bzy, + 641. 
(35) 

(~1x3 = b3 = 0.) Only one view is therefore sufficient to model the scene. 

Most office-like indoor environments are composed of rooms connected by corridors. 
Navigating in such an environment involves maneuvering through the corridors, entering 
and exiting the rooms. Not all points in such an environment are equally important. 

Junctions, places where the robot faces a number of options for changing its direction, 
are more important than other places for navigation. In an indoor environment these 

places include the thresholds of rooms and the beginnings and ends of corridors. A 
navigation system would therefore tend to store more models for these points than for 
others. 

One important property shared by many junctions is that they are confined to relatively 

small areas. Consider for example the threshold of a room. It is a relatively narrow place 
that separates the room from the adjacent corridor. When a robot is about to enter a 

room, a common behavior includes stepping through the door, looking into the room, 
and identifying it before a decision is made to enter the room or to avoid it. The images 
relevant for this task include the set of views of the room from its entrance. Provided that 
thresholds are narrow these views are related to each other almost exclusively by rotation 

around the vertical axis. Under perspective projection, such a rotation is relatively easy 
to recover. The position of points in novel views can be recovered from one model view 

only. This is apparent from the following derivation. Consider a point p = (X, I: Z). Its 
position in a model view is given by (x, y) = (fX/Z, p/Z). Now, consider another 
view obtained by a rotation R around the camera. The location of p in the new view is 

given by (assuming f = 1) 

(X’TY’I = 
rll~ + r12Y + ~32 121x + r22Y + r23z 

r3,X + r32Y + r33z ’ r31x + r32y + r33z > 

implying that 

(x’, y’) = ( rlI x + n2y + r13 r21 x + r22y + r23 

> r31x+r32y+r33’r31x+r32y+r33 ’ 

(36) 

(37) 

Depth is therefore not a factor in determining the relation between the views. Eq. (37) 
becomes even simpler if only rotations about the Y-axis are considered: 

(x’, y’) = 
( 

xcos.Ly +sina Y 

> -xsinff +cosa’ -xsincr+cosa ’ 
(38) 

where LY is the angle of rotation. In this case LY can be recovered merely from a single 
correspondence. 
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6. Experiments 

The method was implemented and applied to images taken in an indoor environment. 
Images of two offices, A and B, that have similar structures were taken using a Panasonic 

Fig. 2. Two model views of office A 

Fig. 3. Lines extracted from the image. Left picture contains the search blocks. The lines were extracted from 

the upper three blocks only. Right picture contains the lines found by the Hough transform procedure. 

Fig. 4. Matching a model of office A to an image of office A (left), and matching a model of office B to the 
same image (right). 
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Fig. 5. Matching a model of office A to an image of the same office obtained by a relatively large motion 
forward and to the right. 

camera with a focal length of 700 pixels. Semi-static objects, such as heavy furniture 
and pictures, were used to distinguish between the offices. Fig. 2 shows two mode1 
views of office A. The views were taken at a distance of about 4m from the wall. 
Candidates for correspondence were picked using the following method. The image was 
divided into six equal-size blocks. Candidates were picked from the upper three blocks 
only, assuming that the upper portion of the image is more likely to contain static 
features of the scene. In each block the dominant lines were selected and ranked using 
a Hough transform procedure. A line was ranked by the sum of the gradient values 
along its points. The results of this process are shown in Fig. 3. Feature points were 
then obtained by intersecting the obtained lines. 

Using the extracted feature points, recovering the coefficients of the linear combination 
that aligns the model with the image was done in a method similar to [ 8, lo]. Quadruples 
of image points were matched to quadruples of model points, and the match between the 
mode1 and the image using these correspondence was evaluated. The best match obtained 
was selected. The results of aligning the mode1 views to images of the two offices can 
be seen in Fig. 4. The left image contains an overlay of a predicted image (the thick 
white lines), constructed by linearly combining the two views, and an actual image of 
office A. A good match between the two was achieved. The right image contains an 
overlay of a predicted image constructed from a model of office B and an image of 
office A. Because the offices share a similar structure the static cues (the wall corners) 
were perfectly aligned. The semi-static cues, however, did not match any features in the 
image. 

Fig. 5 shows the matching of the mode1 of office A with an image of the same office 
obtained by a relatively large motion forward (about 2m) and to the side (about 1.5m). 
Although the distances are relatively short most perspective distortions are negligible, 
and a good match between the mode1 and the image is obtained. 

The next experiment shows the application of the iterative process presented in Sec- 
tion 2.2 in cases where large perspective distortion were noticeable. Fig. 6 shows two 
mode1 views, and Fig. 7 shows the results of matching a linear combination of the mode1 
views to an image of the same office. In this case, because the image was taken from 



Fig. 6. Two model views of office C 

Fig. 7. Matching the model to an image obtained by a relatively large motion. Perspective distortions can be 

seen in the table, the board, and the hanger at the upper right. 

a relatively close distance, perspective distortions cannot be neglected. The effects of 
perspective distortions can be noticed on the right corner of the board, and on the edges 
of the hanger on the top right. Perspective effects were reduced by using the iterative 
process. The results of applying this procedure after one and three iterations are shown 
in Fig. 8. 

Another set of experiments was applied to a corridor scene. Here, because of the 
deep structure of the corridor, perspective distortions are noticeable. Nevertheless, the 
alignment results still demonstrate an accurate match in large portions of the image. 
Fig. 9 shows two model views of the corridor. Fig. 10 (left) shows an overlay of a 
linear combination of the model views with an image of the corridor. It can be seen that 
the parts that are relatively distant align perfectly. Fig. 10 (right) shows the matching of 
the corridor model with an image obtained by a relatively large motion (about half of the 
corridor length). Because of perspective distortions the relatively near features no longer 
align (e.g., the near door edges). The relatively far edges, however, still match. Fig. 11 
shows the result of applying the iterative process for reducing perspective distortions on 
the scene. The process converged after three iterations. 

The experimental results demonstrate that the method achieves accurate localization 
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Fig. 8. The results of applying the iterative process to reduce perspective distortions after one (left) and three 
(right) iterations. 

Fig. 9. Two model views of a corridor. 

Fig. 10. Matching the corridor model with two images of the corridor. The right image was obtained by a 
relatively large motion forward (about half of the corridor length) and to the right. Note that the results of 
alignment when the picture is taken roughly under the conditions of Eq. (34) (left) are better then when 
these conditions are violated (right). 



348 R. Basri. E. Rivlin/Artijicial Intelligence 78 (1995) 327-354 

Fig. I 1. Results of applying the iterative process to reduce perspective distortions after three iterations. 

in many cases, and that when the method fails because of large perspective distortions 
an iterative computation can be used to improve the quality of the match. 

7. Conclusions 

We presented a method for localization and positioning from visual input. The method 
is based on representing the scene as a set of 2D views and predicting the appearance 

of novel views by linear combinations of the model views. The method accurately 
approximates the appearances of scenes under weak-perspective projection. Analysis 
of this projection as well as experimental results demonstrate that in many cases this 

approximation is sufficient to accurately describe the scene. When the weak-perspective 
approximation is invalid, either a larger number of models can be acquired or an iterative 

solution can be employed to account for the perspective distortions. 
Using our method we presented a solution to the homing problem. The solution takes 

advantage of the 2D representation. The homing process is done in the image domain 
in a simple and qualitative manner. Specifically, it does not require the recovery of the 
transformation between the model images. 

The method presented in this paper has several advantages over existing methods. 

It uses relatively rich representations; the representations are 2D rather than 3D, and 
localization can be done from a single 2D view only without calibration. The same basic 
method is used in both the localization and positioning problems. Future work includes 
handling the problem of acquisition and maintenance of models, constructing indexing 
methods to reduce the complexity of the localization process, and building maps using 
visual input. 

Appendix A. Projection model-error analysis 

In this appendix we estimate the error obtained by using the localization method. The 
method assumes a weak-perspective projection model. We compare this assumption with 
the more accurate perspective projection model. We start by deriving the error between 
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a true perspective image and its orthographic approximation, and then we compute the 
error implied by assuming a weak-perspective projection for both the model and the 
image. 

A point (X, Y Z) is projected under the perspective model to (x, y) = (fX/Z, p/Z) 
in the image, where f denotes the focal length. Under our weak-perspective model the 
same point is approximated by (2, 9) = (sX, sY) where s is a scaling factor. The best 
estimate for s, the scaling factor, is given by s = f/a, where .Zc is the average depth 
of the observed environment. Denote the error by 

E = 12 - xl. 

The error is expressed by 

(A.1) 

E=lj-X(&+)1. (A.21 

Changitq : 

E= 

to image coordinates 

xz(&-;)l 
or 

E= 1. 
Z 

x( z-1. I I 

(A.3) 

(A.4) 

The error is small when the measured feature is close to the optical axis, or when our 
estimate for the depth, Zc, is close to the real depth, Z. This supports the basic intuition 
that for images with low depth variance and for fixated regions (regions near the center 
of the image), the obtained perspective distortions are relatively small, and the system 
can therefore identify the scene with high accuracy. Figs. A.1 and A.2 show the depth 
ratio Z/Zc as a function of x for E = 10 and 20 pixels, and Table A.1 shows a number 
of examples for this function. The allowed depth variance, Z/Zc, is computed as a 
function of x and the tolerated error, E. For example, a 10 pixel error tolerated in a field 
of view of up to f50 pixels is equivalent to allowing depth variations of 20%. From 
this discussion it is apparent that when a model is aligned to the image the results of 
this alignment should be judged differently at different points of the image. The farther 
away a point is from the center the more discrepancy should be tolerated between the 
prediction and the actual image. A five pixel error at position x = 50 is equivalent to a 
10 pixel error at position x = 100. 

So far we have considered the discrepancies between the weak-perspective and the 
perspective projections of points. The accuracy of the scheme depends on the validity 
of the weak-perspective projection both in the model views and for the incoming image. 
In the rest of this section we develop an error term for the scheme assuming that both 
the model views and the incoming image are obtained by perspective projection. 

The error obtained by using the scheme is given by 

E = 1.x - axI - by, - cx2 - dl . (A.51 
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Fig. A. I. Z/Z,, as a function of .X for E = IO pixels. 

0 so 100 150 200 250 300 

Fig. A.2. Z/S& as a function of x for E = 20 pixels. 

Table A.1 

Allowed depth ratios. Z/Z,,, as a function of x (half the width of the field considered) and the error allowed 

(E, in pixels) 

d \ F: 5 IO IS 20 

2s I.2 I .4 1.6 1.8 

SO I.1 I 2 1.3 I .4 

IS I .07 1.13 I .2 I .21 

100 I .os 1.1 1.15 1.2 

Since the scheme accurately predicts the appearances of points under weak-perspective 
projection, it satisfies 

A = ~4, - bj$ - ci2 - d, (A.61 

where accented letters represent orthographic approximations. Assume that in the two 
model pictures the depth ratios are roughly equal: 

(‘4.7) 
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(This condition is satisfied, for example, when between the two model images the 
camera only translates along the image plane.) Using the fact that 

x=fif_fx~ ZJ 
z 

_--==f- 
ZfJz z’ 

we obtain 

E = Ix - axl - byI - cx2 - dl 

(A.81 

(A.9) 

The error therefore depends on two terms. The first gets smaller as the image points get 
closer to the center of the frame and as the difference between the depth ratios of the 

model and the image gets smaller. The second gets smaller as the translation component 
gets smaller and as the model gets close to orthographic. 

Following this analysis, weak-perspective can be used as a projection model when 
the depth variations in the scene are relatively low and when the system concentrates 
on the center part of the image. We conclude that, by fixating on distinguished parts 
of the environment, the linear combinations scheme can be used for localization and 

positioning. 

Appendix B. Coefficients values for homing 

In this appendix we derive the explicit values of the coefficients of the linear combi- 
nations for the case of horizontal motion. Consider a point p = (x, y, z ) that is projected 

by weak-perspective to three images, PI, P2, and P’, P2 is obtained from PI by a ro- 
tation about the Y-axis by an angle a, translation t,, and scale factor s,,, and P’ is 
obtained from PI a rotation about the Y-axis by an angle 8, translation tp and scale s,,. 
The position of p in the three images is given by 

(XltYl) = (KY>, 

(x2,y2) = (~,,~cosa+s,,zsin~~+f~~,~~~y), 

(2,~‘) = (s,xcos~+s,zsinB+t,~,s,y). 

The point (x’, y’) can be expressed by a linear combination of the first two points: 
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I 
x = UlXl + u2x2 + u3, 

y’ = by,. 

Rewriting these equations we get 

s,,xcosB+s,,zsin8+t,, =a~.r+a~(.s,,,xcoscu+s,,zsincuft,,) +a3, 

spy = by. 

Equating the values for the coefficients in both sides of these equations we obtain 

S,’ cos 0 = u1 + QS,, cos(Y, r,> = a2t,,t + a3. 

s,’ sin 0 = UPS,, sin LY, .s/, = 0, 

and the coefficients are therefore given by 

ut = 
sp sin( (Y - @) 

(14 = t,, ~- 
t,,,~,, sin 0 

sina ’ s,,, sin (Y ’ 

a3 = 
s,, sin 0 

. . 
sn, sin a 

b = s,, 

Similarly, we can derive terms describing the coefficients in the 3D case. Given a 
model composed of two images PI and P2 and an image Pt, P, is obtained from PI by 
a rotation U, translation t, = (t _. t f,r fV, tf,) and scaling st, the position of a target point 
(x,, y,) can be expressed as 

x/ = alxl + a2yj -I- u3x2 + (14, 

yr = hxl + bz_m + bm + bq. 

Using Eq. ( 16) (Section 3) we obtain that the coefficients are given by 

stu23 
h=---, 

ST13 

a4 = t,, - 
.ytu13 
-t x9 
so3 

Similarly, given an image P,) obtained from PI by a rotation U’, translation t, = 
( tpx, t,,! , t,,Z > and scaling sp, the position of a point (x,, , yp ) is expressed by 

X,’ = CIXI + c2yt + c3x2 + C4. 

y,, = ~IXI + d2y1 + &x2 + d4. 

where the coefficients are given by 
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cI=sp(u;,-u;3~), d,=sp(u;,-u;3~), 

ci=s,(u:,-u:,$. &=sp(u:2-u;3~)r 
w/13 

c3 = - 
St& 

sr13 ’ 
d3 = - 

w3 ’ 

w’13 t 
c4 = t,, - - 

sr13 ” 
d4 = tpg - ety. 

We define the terms 

Cl a1 s,=---, 
~3 a3 

63=$_$, 

(j2=c2_a2, 
~3 a3 

Substituting for the coefficients we obtain that 
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